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中文摘要 

研究背景：暴露體學已成為環境衛生學界的重要方法論，近年來更是發展出 

“Public Health Exposome Approach”，探討特定地區的暴露特徵及健康影響。本論文

針對台灣最大的石化工業區第六套輕油裂解廠 (簡稱六輕) 附近居民進行暴露體

學研究，找出暴露程度、代謝體及早期健康效應生物指標物之間的相關性。 

研究方法：本研究依住家與六輕距離、尿中暴露生物指標物濃度 (釩與多環芳香

烴暴露生物指標物 1－羥基芘) 將 273 位研究對象分為高暴露組 (9－15 歲小孩

43 人、> 55 歲老年人 77 人) 與低暴露組 (小孩 75 人、老年人 78 人)，分析

其 (一) 外在暴露：對六輕主要排放源的距離、住家附近道路面積、住家空氣中

釩及多環芳香烴濃度；(二) 內在暴露：尿中石化工業污染暴露生物指標物砷、

鎘、鉻、鎳、汞、鉛、釩、錳、銅、鍶、鉈與 1－羥基芘濃度；(三) 代謝體：利

用二維氣相層析飛行時間質譜儀建立尿液代謝體，以超高壓液相層析－四極柱飛

行時間質譜儀分析血液代謝體及血液脂質體；(四) 早期健康效應：尿中氧化壓力

指標物與血中醯基肉鹼類濃度。本研究以「中途相遇法」找出潛在可作為連結暴

露與早期健康效應的中間生物指標物，並以生物途徑分析找出多重石化工業污染

物暴露可能影響的生理途徑。 

研究成果：本研究結果顯示在小孩及老年人受試者中，高暴露組比低暴露組居住離

六輕主要排放源較近、有較高的住家空氣中釩及多環芳香烴濃度，且高暴露組比低

暴露組有較高的尿中暴露生物指標物濃度與氧化壓力生物指標物濃度。尿液代謝

體在高低暴露組之間有年齡依賴性的改變可連結多重暴露與氧化壓力，在小孩中

是色氨酸代謝等途徑的異常，在老年人中則是甘氨酸、絲氨酸與蘇胺酸代謝等途徑

的異常，且在小孩與老年人的尿液代謝體中發現潛在暴露生物指標物癸烷、十二烷、

十三烷。小孩的血液代謝體在高低暴露組之間有顯著差異，並找到十個潛在可做為

中間生物指標物的代謝物質，連結多重工業致癌物暴露 (國際癌症研究機構定義一
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級致癌物：砷、鎘、鉻、鎳；二級致癌物：汞、鉛、釩、多環芳香烴) 與早期健康

效應氧化壓力增加、血中醯基肉鹼類濃度異常。生物途徑分析結果顯示小孩暴露於

多重工業致癌物質可能造成嘌呤代謝途徑異常。小孩的血液脂質體在高低暴露組

之間有顯著差異，並發現有 21 個脂質與多重工業污染物暴露相關，包括溶血卵磷

脂類、卵磷脂類、神經鞘磷脂類及磷脂酸肌醇類，這四種脂質皆可連結到尿中氧化

壓力生物指標物或血中醯基肉鹼類。 

結論：Public health exposome approach 可用於探討石化工業影響地區內的易感族

群，並釐清多重工業污染暴露如何影響重要生理途徑，導致與慢性和急性疾病相關

的早期健康效應。氣相層析方法分析尿液代謝體可用於辨識石化工業附近的易感

族群如小孩與老年人，並發現與年齡相關的生理途徑連結多重暴露與氧化壓力。液

相層析方法分析血液代謝體可用於尋找多重工業致癌汙染物暴露在小孩與青少年

體內影響的生理途徑，並連結癌症相關的早期健康效應。液相層析方法分析血液脂

質體可用於辨識多重工業污染暴露在小孩及青少年體內造成與肝功能異常相關的

脂質變化。基於本研究的發現，我們建議顯著降低石化工業污染排放量以減少暴露

程度、改善代謝異常，並持續追蹤六輕附近居民的健康狀態。本研究也證實，暴露

體學可作為公共衛生研究工具，探討工業污染對附近居民既有及潛在的健康效應，

未來可作為尋找新的個人化健康效應指標及暴露生物指標物質、建立個人化風險

評估指標的參考。 

 

關鍵字：石化工業、暴露體學、代謝體學、脂質體學、重金屬、多環芳香烴 
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Abstract 

Background: Exposomics is an important methodology in environmental health research. 

Recently, a branching paradigm, the Public Health Exposome Approach, focuses on the 

impact of exposures on the overall health of a population within a particular region. This 

dissertation focuses on the exposomics study of residents living near No. 6 Naphtha 

Cracking Complex, the largest petrochemical complex in Taiwan, and aim to clarify the 

association between exposure levels, metabolome, and early health effect biomarkers.  

Material and Methods: We classified 273 study subjects as high exposure group 

(children aged 9-15 N=43; elderly aged > 55 N=77) and low exposure group (children 

N=75; elderly N=78) by the distance from their homes to the complex, and urinary levels 

of exposure biomarkers vanadium (V) and polycyclic aromatic hydrocarbon (PAHs) 

metabolite 1-hydroxypyrene (1-OHP). We analyzed (1) external exposures: distance from 

their homes to main emission points of the complex, road area surrounding homes, and 

ambient levels of V and PAHs at homes using previously established models; (2) internal 

exposures: urinary levels of exposure biomarkers, arsenic (As), cadmium (Cd), chromium 

(Cr), nickel (Ni), mercury (Hg), lead (Pb), vanadium (V), manganese (Mn), copper (Cu), 

strontium (Sr), thallium (Tl), and 1-OHP; (3) metabolome: urine metabolomics was 

analyzed using two dimensional gas chromatography coupled with time-of-flight mass 

spectrometry (GCxGC-TOFMS), and serum metabolomics and lipidomics were analyzed 

using ultra-high performance liquid chromatography-quadrupole time-of-flight mass 

spectrometry (UHPLC-qTOFMS); (4) early health effects: urinary levels of oxidative 

stress biomarkers, and serum acylcarnitines. We applied “meet-in-the-middle” approach 

to identify potential intermediate biomarkers connecting exposures with early health 

effects, and pathway analysis to find biological mechanisms affected by exposure to 

multiple pollutants. 
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Results: In both children and elderly subjects, high exposure group lived closer to main 

emission points of the complex, had elevated ambient levels of V and PAHs at home 

locations, and increased urinary exposure biomarkers and oxidative stress biomarkers 

compared to low exposure group. Urine metabolomics identified age-dependent 

biological pathways that associated multiple pollutants exposure with increased oxidative 

stress, including tryptophan metabolism in children, and serine, glycine, and threonine 

metabolism in elderly subjects. In addition, potential exposure biomarkers decane, 

dodecane, and tridecane were identified in both children and elderly subjects. Serum 

metabolomics found 10 potential metabolites possibly linking increased exposure to 

IARC group 1 carcinogens (As, Cd, Cr, Ni) and group 2 carcinogens (V, Hg, PAHs) with 

elevated oxidative stress and deregulated serum acylcarnitines. Purine metabolism was 

identified as the possible mechanism affected by children’s exposure to carcinogens. 

Serum lipidomics results in children also showed significant difference between high and 

low exposure groups. We found 21 lipids associated with multiple industrial pollutants 

exposure, including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins, 

and phosphatidylinositols. All four types of lipids were associated with urinary oxidative 

stress biomarkers and/or serum acylcarnitines. 

Conclusion: Public health exposome approach could be used in a large petrochemical 

industry influenced region to identify vulnerable populations, and understand how 

multiple industrial pollutants exposure are affecting critical biological mechanisms, 

leading to early health effects that may be precursors to chronic and acute diseases. Urine 

metabolomics analyzed via GC-based method could be used to identify children and 

elderly as vulnerable populations in regions influenced by a large petrochemical industry, 

and found age-dependent pathways linking multiple exposures to increased oxidative 

stress. Serum metabolomics analyzed via LC-based method could be used to find 
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biological pathways affected by multiple industrial carcinogenic pollutants exposure in 

children and adolescents, that could be linked to cancer-related early health effects. Serum 

lipidomics analyzed via LC-based method could be used to identify in children and 

adolescents exposed to multiple industrial pollutants, lipid profile changes that have been 

implicated in liver dysfunctions. Based on our findings, we suggest significant reduction 

of petrochemical industrial emissions from the complex to decrease multiple pollutants 

exposure and metabolic abnormalities, and continued follow up on of residents’ health. 

This dissertation also attests the application of exposomics as a public health research 

tool, in the investigation of current and potential health impacts of industrial pollution on 

nearby residents, providing information for future identification of novel personalized 

health indicators and exposure biomarkers, and establishment of individual risk index.  

 

Keywords: petrochemical industry, exposomics, metabolomics, lipidomics, heavy 

metals, polycyclic aromatic hydrocarbons.  
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1. Introduction 

1.1 Background 

Petrochemical industrial complex is a consortium of high-pollution facilities such as 

oil refineries and coal-fired power plants. These facilities emit multiple pollutants 

including sulfur oxides (SOx), nitrogen oxides (NOx), carbon dioxide (CO2), carbon 

monoxide (CO), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons 

(PAHs), and heavy metals arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni), 

vanadium (V), mercury (Hg), lead (Pb), manganese (Mn), copper (Cu), strontium (Sr), 

and thallium (Tl) (Chan et al. 2006; Driscoll et al. 2015; George et al. 2015; Hu et al. 

2011; Nadal et al. 2004; Nadal et al. 2009). Cumulative exposure to such complex 

chemical mixtures may have synergistic effects on health, and warrant the use of novel 

analytical approaches for a comprehensive evaluation (Carpenter et al. 2002). 

In Taiwan, Chan et al. have conducted for the past ten years, extensive environmental 

and epidemiological studies near No. 6 Naphtha Cracking Complex, the largest 

petrochemical complex in Taiwan. To date, Chan et al. have published 15 research articles 

in SCI journals, 12 master theses and doctoral dissertations, and annual reports 

documenting the environmental and health impacts of No. 6 Naphtha Cracking Complex 

on surrounding areas and residents (Table 1).   

Environmental studies found significant increase of ambient pollutants within 10 km 

radius of the complex, including NOx, SOx, VOCs such as ethylene, propylene, propane, 

butane, and benzene, PAHs such as anthracene, chrysene, fluoranthene, phenanthrene, 

and pyrene, vinyl chloride monomers (VCM), and metals (詹長權 2010, 2011, 2012, 

2013). For his doctoral dissertation, Shie did a comprehensive study of air toxics pollution 

in areas surrounding No. 6 Naphtha Cracking Complex from accidental and routine 
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emissions (謝瑞豪 2014). In 2011, he deployed a variety of air-monitoring instruments 

to evaluate the air toxin levels inside and downwind of No. 6 Naphtha Cracking Complex 

before and during a fire at the complex caused by a liquefied petroleum gas fuel leak. 

They found high levels of combustion-related gaseous and particulate pollutants inside 

the complex and 10 km downwind for at least two days after the fire, demonstrating that 

a timely and comprehensive air monitoring is essential for tracing air pollution from 

industrial accidents (Shie and Chan 2013). Shie also used pollution rose to assess the level 

of SO2 in townships downwind to the complex in preoperational period (1995–1999) and 

two postoperational periods (2000–2004 and 2005–2009), and showed that in the 

postoperational periods, hourly SO2 levels exceeded the U.S. Environmental Protection 

Agency (EPA) health-based standard of 75 ppb (Shie et al. 2013). Pien established the 

protocols for analyzing heavy metals in particulate matters collected near No. 6 Naphtha 

Cracking Complex using Harvard Impactor, and in urine samples of residents living near 

the complex for her master thesis (邊瑋緒 2011). This methodology was later applied by 

Chio et al. to construct a two-stage dispersion model to assess the ambient concentrations 

of V and As in the vicinity of the complex, and by Yuan et al. to confirm association 

between model-estimated ambient V at home locations and individual urine 

concentrations of V in residents living near the complex (Chio et al. 2014; Yuan et al. 

2015a). Yuan et al. established a kriging model to assess the ambient concentration of 16 

PAHs surrounding the complex in 2015, and found significant association between 

estimated ambient levels of five PAHs including pyrene, benzo[a]anthracene, 

benzo[k]fluoranthene, fluoranthene, and dibenzo[a,h]anthracene, at home addresses and 

individual urinary concentrations of 1-hydroxypyrene (1-OHP) in residents living near 

the complex (Yuan et al. 2015b). These studies established urinary V and 1-OHP as 

exposure biomarkers for petrochemical industrial pollution within this area.  
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In order to examine the health impact of petrochemical industrialization, Chen et al. 

compared life expectancies and personal income between Yunlin County where No. 6 

Naphtha Cracking Complex is located, and one reference county (Yilan County) which 

had no significant industrial activities, using data spanning 11 years before and after the 

complex began operations in 1999. Their findings showed Yunlin residents had lesser 

increases in life expectancy over time than Yilan residents, with male residents more 

vulnerable to the effects of industrialization, and no significant differences in individual 

income between the two counties (Chen et al. 2014).  

Epidemiology studies were also conducted to further investigate the health impact of 

petrochemical industrial pollution on nearby residents, including chronic diseases such as 

cancer, chronic kidney disease, and hyperlipidemia, acute disease such as allergic diseases, 

asthma, and bronchitis, and subclinical abnormalities such as liver fibrosis. For his master 

thesis, Shen used primary data of demographic information, risk factors, biomarkers, and 

biochemical indices to investigate the adverse health effects, and secondary data of 

Taiwan Health Insurance Database (Registry for Catastrophic Illness Database) to 

retrospectively investigate the incidence of all cancers (ICD-9: 140-165, 170-176, 179-

208) in 2,388 adults aged > 35 years at the time of recruitment (2009-2012), and aged > 

20 years when the complex began operations in mid-1999, who have lived in Yunlin 

County for more than five years (沈育正 2014). Yuan et al. applied his methodology, and 

geographically classified the 2,388 participants into high exposure group (HE, lived in 

Mailiao and Taisi Townships, < 10 km from the complex), and low exposure group (LE, 

lived in Baojhong, Shihhu, Dongshih, Lunbei, Erlun, Citong, Yuanchang, and Huwei 

Townships, > 10 km from the complex). Temporally, Yuan et al. divided the 12 years 

participants lived near the complex since the operation of complex began with reported 

emissions of VOCs into the first period 1999-2007 (0-9 years after operation began) and 
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the second period 2008-2010 (10-12 years after operation began). Their results showed 

higher urine levels of carcinogens As, Cd, Hg, Pb, V, and PAHs biomarker 1-OHP at HE 

compared to LE, with Pb and V urine levels exceeding normal range, and significantly 

higher body mass index (BMI) and hepatitis C prevalence. Long-term SO2 pollution 

levels were also significantly higher in HE than LE areas. Significant exposure area effect 

on elevating the relative risks (RRs) of the all cancer crude cumulative incidence rates 

(CIRs) were found for elder subjects (1.52; 1.04-2.22), female subjects (1.41; 1.00-1.97), 

and elder female subjects (1.91; 1.15-3.19) after the complex had operated for 10-12 years 

(Yuan et al. 2018). Chen et al. conducted a similar study in Changhua County which is 

north of the complex, with 1,934 adult participants (aged > 20) recruited in 2014-2016 

who have lived in this area for more than five years, geographically divided into three 

study zones: Taisi Village (average 5.5 km from complex), Dacheng Township (average 

9.2 km from complex), and Zhutang Township (average 19.9 km from complex), 

comparing all cause cancer incidence rate (ICD-9: 140-208), and urine exposure 

biomarkers. Results showed urine levels of carcinogenic pollutants As, Cd, Cr, Ni, and V, 

as well as other pollutants Mn, Cu, and Tl were significantly higher for participants in 

Taisi Village compared to the other two study zones. Temporal increase for all cause 

cancer incidence rates (IRs) were found in all three study zones when comparing 1999-

2007 period (0-9 years after operation began) to 2008-2014 period (10-16 years after 

operation began), with the highest crude incidence rate ratios (IRRs) in Taisi Village 

compared to the other two study zones. All cause cancer IRRs were higher for Taisi 

Village compared with the other two study zones for all subjects and male subjects, and 

higher for Taisi Villange than Dacheng Township for female subjects, after the complex 

had operated for 10-16 years, with hepatitis C and age significantly associated with higher 

all cause cancer IRRs (Chen et al. 2018). 
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In addition to cancer, for his master thesis Ke analyzed 2,069 adult residents from the 

same epidemiology cohort that Shen used from Yunlin County, for urinary exposure 

biomarkers and the association with estimated glomerular filtration rate (eGFR) and 

chronic kidney disease (CKD). He found that decreased eGFR and increased odds ratio 

of CKD were associated with decreased distance from home address to complex, and 

increased levels of urine As (柯登元  2016). Jhuang conducted a similar study in 

Dacheng Township of Changhua County with 1,374 adult participants recruited from 

2014-2016 for her master thesis. Her findings confirmed the association between 

decreased eGFR and increased risk of CKD with decreased distance from home location 

to complex, with increased urinary levels of Ni and Cr associated with decreased eGFR 

and increased risk of CKDs (莊明潔  2018). Shun’s master thesis discussed the 

association between serum heavy metals levels and hyperlipidemia and CKD in 1,000 

Yunlin adult residents aged > 35 years from the same cohort as Shen and Ke. Her findings 

showed significant and positive association between serum Cr, As, and Hg with total 

cholesterol levels, serum Hg with low-density lipoprotein cholesterol levels (LDL-C), 

and serum As and Hg with risk of hyperlipidemia. She also found association between 

increased serum As, Cr, and Tl with decreased eGFR, and increased serum As and Cr 

with increased risk of CKD (孫稚翔 2017). 

Epidemiology studies were also conducted in children and adolescents who lived near 

the complex during critical periods of biological development. Liu established for her 

master thesis, an analytical method for exposure biomarker urinary thiodiglycolic acid 

(TDGA), a major metabolite of VCM, and used this method to analyze urine samples 

from 268 schoolchildren recruited from four elementary schools in Mailiao Township of 

Yunlin County. She found children attending an elementary school less than 1 km from 

the VCM/polyvinylchloride (PVC) plants within the complex had higher urine 
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concentration of TDGA than children attending schools further away, and their urine 

levels of TDGA significantly reduced during summer vacation (劉力瑄 2014). These 

findings were later published and gained media attention, which eventually led to a 

temporary relocation of the children to another school further away from the complex 

(Huang et al. 2016). In 2018, Wang et al. found association between urine TDGA levels 

and subclinical abnormal levels of hepatic fibrosis indicators serum aspartate 

aminotransferase (AST) and fibrosis-4 score (FIB-4) in the same group of schoolchildren 

(Wang et al. 2019). Chen applied a similar study design on 447 adult residents in Dacheng 

and Zhutang Townships of Changhua County for his master thesis, and found residents 

living closer to the complex had increased urine levels of TDGA, and significant 

association between urinary TDGA concentrations and liver fibrosis level indicator FIB-

4 (陳俊霖 2018). For her master thesis, Chiang recruited 587 11-14 year old school 

children from junior high schools in Yunlin County from 2009 to 2011, who have lived at 

the same addresses for more than five years, and classified them as high exposure group 

(HE, lived in Mailiao, Taisi, Donshih Townships) and low exposure group (LE, lived in 

Erlun, Lunbei, Huwei, Baojhong, Sihhu, and Yuanchang Townships). Her study covered 

the time from 1999 to 2010, which was further divided into three periods: four years 

(1999-2002), eight years (1999-2006), and 12 years (1999-2010) after the complex began 

operations. Health data were obtained from Taiwan Health Insurance Database, choosing 

outpatient data for allergic rhinitis (ICD-9-CM: 477), bronchitis (ICD-9-CM: 490-491), 

and asthma (ICD-9-CM: 493). SO2 was used as an indicator of exposure from the complex, 

using hourly data measured at two air quality monitoring stations set up by the Taiwan 

Environmental Protection Administration (TEPA) at HE area Taisi Township and LE area 

Lunbei Township from 1995 to 2010. From 2001, SO2 concentration increased 

significantly in HE areas, and the three-year average of the 99th percentile of SO2 
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concentration have exceeded U.S. EPA 75 ppb standards since 2003, and continued to do 

so with increasing concentrations up to 2010. Hazard ratios of children’s allergic rhinitis 

and bronchitis were significantly higher in HE compared to LE group for all three time 

periods, while for asthma the difference was only significant in the first time period. Boys 

had higher risk of developing allergic rhinitis and asthma, and children living near roads 

had higher risk of developing allergic rhinitis. Her results showed that association 

between SO2 exposure and acute respiratory effects occurred as early as < 2 years after 

the complex began operations, and lasted 8 to 12 years (Chiang et al. 2016; 江姿穎 

2015). Killian recruited 168 preschool children aged 4-8 from four kindergartens within 

13.7 km of the complex for her master thesis, and analyzed their urine concentrations of 

heavy metals and oxidative stress biomarkers, and at the same time used a food frequency 

questionnaire to assess individual’s intake of antioxidants. Her findings showed preschool 

children living closer to the complex had increased urinary levels of As, Cd, Cr, Ni, Pb, 

Mn, Cu, and Sr which were associated with elevated levels of urinary oxidative stress 

biomarker 8-hydroxy-2’-deoxyguanosine (8-OHDG). Increased intake of total oxidants 

resulted in a decrease of urine 8-OHDG that did not reach statistical significance (柯昀

君 2017). 

In order to clarify the biological mechanism between industrial pollutants exposure 

and oxidative stress, Yuan et al. used nuclear magnetic resonance spectroscopy (NMR) 

to analyze serum metabolites of 160 residents from a prospective cohort in Yunlin County. 

They found that exposure to V and PAHs may cause a reduction in amino acids and 

carbohydrates levels by elevating peroxisome proliferator-activated receptor (PPAR) 

signaling pathway, insulin signaling, and oxidative/nitrosative stress (Yuan et al. 2016). 

In vitro study was also conducted, and results showed that exposure to PM2.5 from No. 6 

Naphtha Cracking Complex emissions significantly correlated with reduced cell viability 
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and increased cytotoxicity-related lactate dehydrogenase, oxidative stress-related 8-

isoprostane, and inflammation-related interleukin (IL)-6 (Chuang et al. 2018).  

The findings of Chan et al. showed that adult, elderly, and children residents living 

near No. 6 Naphtha Cracking Complex are exposed to multiple hazardous industrial 

pollutants from routine and accidental emissions, and have increased risk of chronic and 

acute adverse health effects. Children and elderly residents may be more susceptible to 

these industrial pollutants exposure since children have immature physical development, 

and higher inhalation of air per unit time, and elderly residents may have compromised 

immune responses and underlying health conditions (Adler 2003; Makri and Stilianakis 

2008). The complexity of industrial pollution and health effects on different age groups, 

with temporal and spatial differences in this industrial community, indicated that 

traditional models accessing single toxic exposure and disease are not sufficient in 

evaluating the health status of people living in this area. Comprehensive evaluation of 

multiple industrial pollutants exposure and the impact on biological mechanisms and 

pathways that underlie a range of common complex diseases are needed in order to 

provide information for future risk assessment and development of personal and 

community interventions. To achieve this, application of novel approaches were required 

(Juarez et al. 2014).  
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Table 1. Studies on the Environmental and Health Impacts of No. 6 Naphtha 

Cracking Complex 

 Thesis / Dissertation SCI Journals 

External exposures   

Routine emissions (謝瑞豪 2014)  

Heavy metals (邊瑋緒 2011) (Chio et al. 2014) 

PAHs  (Yuan et al. 2015b) 

SOx (江姿穎 2015) (Shie et al. 2013) 

(Chiang et al. 2016) 

Accidental emissions (謝瑞豪 2014) (Shie and Chan 2013) 

Internal exposures   

Heavy metals   

Urine (邊瑋緒 2011) 

(柯登元 2016) 

(莊明潔 2018) 

(柯昀君 2017) 

(謝億廷 2019) 

(Yuan et al. 2015a) 

Serum (孫稚翔 2017)  

PAHs  (Yuan et al. 2015b) 

TDGA (劉力瑄 2014) 

(陳俊霖 2018) 

(Huang et al. 2016) 

(Wang et al. 2019) 

Biological mechanisms  (陳其欣 2019) 

(謝億廷 2019) 

(Yuan et al. 2016) 

(Chen et al. 2017) 

(Chen et al. 2019) 

Health effects   

Cancer incidence (沈育正 2014) (Yuan et al. 2018) 

(Chen et al. 2018) 

Respiratory disease (江姿穎 2015) (Chiang et al. 2016) 

Chronic kidney disease (柯登元 2016) 

(孫稚翔 2017) 

(莊明潔 2018) 

 

Liver fibrosis (陳俊霖 2018) (Wang et al. 2019) 

Hyperlipidemia (孫稚翔 2017)  

Oxidative stress (柯昀君 2017) 

(陳其欣 2019) 

(Yuan et al. 2016) 

(Chen et al. 2017) 

(Chen et al. 2019) 

In vitro study  (Chuang et al. 2018) 
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1.2 Exposomics 

Exposomics has become the leading methodology for assessing health impacts of 

multiple environmental exposures in environmental health studies. The concept of the 

exposome was first proposed by Wild in 2005, and characterized as the comprehensive 

evaluation of all exposures and their contribution to disease causation or progression by 

Rappaport and Smith (Rappaport and Smith 2010; Wild 2005). A branching paradigm, 

the public health exposome, focuses on the impact of exposures on the overall health of 

a population within a particular region, with the intention of identifying vulnerable 

populations with higher risks of chronic illnesses (Juarez et al. 2014; Smith et al. 2015). 

The use of omics methods such as transcriptomics, proteomics, and metabolomics have 

been recommended in exposomics studies to identify the links between exposures and 

health outcomes, understand the mechanisms of disease development and progression, 

and potentially developing new biomarkers for exposure and early health effects (Vineis 

et al. 2013; Wild 2009). 

1.3 Metabolomics 

Recently, metabolomics was proposed to quantitatively measure exogenous 

chemicals and biological responses in order to provide “a snapshot measure of an 

individual’s exposome” (Pennell 2016). Chadeau-Hyam et al. also proposed using 

metabolomics to identify “intermediate biomarkers” that could connect exposure with 

early health effects using the “meet-in-the-middle” approach (Chadeau-Hyam et al. 2011). 

Metabolites are the endpoint of biochemical activities and the metabolome could best 

reflect the effects of exposures and correlate with phenotype, since it is more sensitive to 

perturbations than transcriptome and proteome (Kell et al. 2005; Patti et al. 2012). Due 

to the complex chemical properties of metabolites, it is not possible to use one single 
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analytical platform to assess the complete metabolome within one biospeciman (Blow 

2008). Gas chromatography (GC) -based methods detect metabolites that are of lower 

molecular weight and relatively polar metabolite classes, while liquid chromatography 

(LC) -based methods can be used to detect metabolites with higher molecular weight and 

medium-to-high lipophilicity (Dunn et al. 2011). Bouatra et al. and Psychogios et al. 

applied multiple metabolomics platforms including NMR, GC-MS, and LC-MS to assess 

urine and serum samples, respectively, and found relatively small overlaps in the 

metabolite profiles identified using different platforms and biospecimen (Bouatra et al. 

2013; Psychogios et al. 2011). Urine and blood samples are most often used in 

metabolomics studies since the collection is relatively less invasive compared to other 

biological samples, and are integrative biofluids that reflect functions and phenotypes 

from different parts of the body (Dunn et al. 2011). So far metabolomics have been 

applied in pharmacology, clinical disease diagnosis, nutritional, and environmental 

studies (Robertson et al. 2011). However, most environmental metabolomics studies have 

focused on the assessment of single exposure (Ellis et al. 2012).  

1.4 Lipidomics 

Lipidomics is considered a sub-discipline of metabolomics that focuses on systemic 

analysis of lipids and their interacting partners (Wenk 2005). Deregulation of lipid 

profiles have been associated with disease onset and progression, and is often applied in 

clinical studies in search for novel biomarkers or understanding pathological mechanisms 

in diseases such as cancer, liver diseases, cardiovascular disease, diabetes, kidney 

diseases, and Alzheimer’s disease (Stegemann et al. 2014; Yang et al. 2016; Zhao et al. 

2015). When lipidomics approach was applied in exposure studies, most were based on 

animal models and focused on single toxic exposure (Chi et al. 2019; Hu et al. 2018; Li 
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et al. 2019). 

1.5 Oxidative stress 

Oxidative stress is an imbalance between production of free radicals, reactive oxygen 

species (ROS), and nitrogen reactive species (RNS), and their reduction by protective 

antioxidants. Accumulation of this imbalance can invoke early health effects such as 

inflammation, lipid peroxidation, and DNA damage. Oxidative stress is prevalent in CKD 

patients, elevated in hyperlipidemia patients, contributes to liver fibrosis, and mediates 

allergic respiratory diseases (Bowler and Crapo 2002; Hopps et al. 2010; Poli 2000; Xu 

et al. 2015). Oxidative stress also interacts with all three stages of cancer process: cancer 

initiation, cancer promotion, and cancer progression through ROS and RNS induced DNA 

damage, lipid peroxidation, and protein damage (Reuter et al. 2010; Valavanidis et al. 

2009). 

1.6 Serum acylcarnitines 

Serum acylcarnitines are involved in transporting fatty acids into the mitochondria for 

β-oxidation and production of energy (Semba et al. 2017). Deregulations in serum 

acylcarnitines can activate inflammatory signaling pathways, and have been associated 

with chronic diseases including cancer, cardiovascular diseases, CKD, and Alzheimer’s 

disease (Fouque et al. 2006; Ruiz-Canela et al. 2017; Rutkowsky et al. 2014; Toledo et al. 

2017; Zhou et al. 2012b). 
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2. Objectives 

Figure 1 shows the study framework for this thesis, and our objectives are to: 

1. Establish comprehensive urine and serum metabolite profiles of children and elderly 

residents living near No. 6 Naphtha Cracking Complex. 

2. Identify deregulations in biological mechanism associated with exposure to multiple 

industrial pollutants. 

3. Use metabolomics to find the link connecting multiple industrial pollutants 

exposures with early health effect. 

 

Figure 1. Study framework
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3. Material and Methods 

3.1 Study area and subjects 

Our study area surrounded the largest petrochemical complex in Taiwan, No. 6 

Naphtha Cracking Complex, located in Yunlin County on the west coast of central Taiwan. 

The complex began major operations in 1999. To date, the complex covers a total area of 

2603 ha, housing 64 plants including one coal-fired power plant that generates 1800 MW 

of power, three oil refiner plants that processes 450,000 barrels of crude oil every day, 

two naphtha cracking plants that produces 160 million tons of ethylene per year, and three 

cogeneration plants that generates 2820 MW of power. Our subjects were selected from 

a prospective cohort of 3,230 residents who have lived in three townships in close vicinity 

to the complex (pink) and seven other townships further away (yellow) as shown in Figure 

2 for more than five years. All 3,230 subjects (aged 5–88) have completed interview-

administered questionnaire surveys including key factors related to exposure, provided 

one morning spot urine sample, and one fasting blood sample. Urine samples were stored 

at -20 oC, serum samples were extracted from coagulated blood samples using centrifuge 

and stored at -80 oC. All 3,230 participants’ urine samples have been analyzed for As, Cd, 

Cr, Ni, Pb, Hg, V, Mn, Cu, Sr, Tl, and 1-OHP. We used urine concentrations of V and 1-

OHP as well as residential address to identify 257 cohort members who lived in the three 

townships closest to the complex, with urine concentrations previously established 

petrochemical industrial exposure biomarkers V and 1-OHP in the top 60 % of the 3,230 

residents as high exposure group, and another 337 cohort members who lived in 

townships further away, with urine concentrations of V and 1-OHP in bottom 40 % of the 

cohort as low exposure group. We then randomly select 43 children (aged 9–15) and 77 

elderly (aged > 55) subjects from the 257 cohort members as our high exposure subjects, 
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and 75 children and 78 elderly participants from the 337 cohort members as our low 

exposure subjects. This study was approved by the Research Ethics Committee of 

National Taiwan University Hospital, and informed consent was obtained from each 

participant. 

 

Figure 2. GIS map of (A) Yunlin County in central Taiwan and (B) location of 

study area, petrochemical plants, and 273 study subjects’ homes 

3.2 External exposure 

Geographic coordinates for all 273 participant's home address were determined, and 

geological information system (GIS) software (ArcGIS version 10.1) was used to 

calculate the distances from each home address to previously identified main emission 

points of coal-fired power plant and oil refineries, respectively. GIS software was also 

used to measure road area surrounding homes, in order to estimate traffic contribution on 

air toxics levels. Ambient concentrations of V and five PAHs including pyrene, 

fluoranthene, dibenzo[a,h]anthracene, benzo[k]fluoranthene, and benzo[a]anthracene 

were calculated using previously established two-stage dispersion model and kriging 

method model, respectively (Chio et al. 2014; Yuan et al. 2015b).  
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3.3 Internal exposure 

All 273 participants’ urine samples had been analyzed for heavy metals and 1-OHP. 

Urine concentrations of heavy metals As, Cd, Cr, Ni, Pb, Hg, V, Mn, Cu, Sr, and Tl were 

analyzed using previously reported inductively coupled plasma mass spectrometry (ICP-

MS) method, and 1-OHP was analyzed using previously reported high performance liquid 

chromatography (HPLC) method. For heavy metals, spikes were examined to confirm 

measurement stability, and standard reference materials (SRM) for each metal were 

analyzed to assess accuracy. For 1-OHP analysis, detection limit was 0.01 ng/mL with an 

89.6 % recovery rate and a 4.0 % coefficient of variation for repeated measurements. 

Urine concentration of exposure biomarkers below the method detection limit (MDL) was 

replaced by half of the MDL. Urinary creatinine analysis was conducted using enzyme-

linked immunosorbent assay at National Taiwan University Hospital medical diagnosis 

laboratory and used for adjustment of urinary exposure biomarker levels. 

3.4 Metabolomics 

3.4.1 Urine metabolomics 

252 participants had urine samples available for urine metabolomics analysis. 

Samples were prepared and analyzed following protocols derived from previous 

publications, using a Pegasus 4D GC × GC − TOFMS (LecoCorp., St. Joseph, MI, USA) 

for analysis (Figure 3) (Chan et al. 2011; Pasikanti et al. 2013). Briefly, 200 μL urine 

sample was centrifuged at 12,000 rpm for 10 min at 4 oC. 50 μL supernatant was then 

transferred to a new Eppendorf tube. 10 μL urease (30 unit/10 μL) was added, vortexed 

thoroughly, and incubated at 37 oC for 1 hr. Internal standards 10 μL heptadecanoic acid 

(1 mg/mL) and 10 μL 2-chlorophenylalanine (0.3 mg/mL) were added to the mixture. 620 
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μL methanol was then added, vortexed for 1 min, then centrifuge at 12,000 rpm, 4 oC for 

5 min. 550 μL supernatant was then transferred to a glass vial and dried using nitrogen 

gas. Derivatization steps involved adding 80 μL derivatization agent methoxyamine (15 

mg/mL) to the dried sample and incubate at 60 oC for 2 hr for methoximation. Another 

derivatization agent was added for trimethylsililation, 80 μL N,O-

Bis(trimethylsilyl)trifluoroacetamide (BSTFA), and the mixture incubated at 70 oC for 

1hr. Derivatized sample was then centrifuged at 6,000 rpm for 3 min, then 100 μL 

supernatant was transferred to a glass insert, ready for GC analysis. Chromatographic 

separations were performed using a 30 m×250 μm (i.d.)×0.25 μm RXI-5 column fused 

together with a 2 m×180 μm (i.d.)×0.2 μm RTX-200 column as primary and secondary 

columns, respectively (RestekCorp., Bellefonte, PA, USA). Carrier gas was helium, at 1.5 

mL/min constant flow rate. Primary oven temperature program began at 70 oC for 0.2 

min, and increased at 5 oC/min to 270 oC where it was held for 7.5 min. Secondary oven 

temperature was maintained at 10 oC higher than the primary oven throughout the 

program. Thermal modulator was set at 20 oC higher than the primary oven. Modulation 

time was set at 4 sec with hot pulse of 0.8 sec and 1.2 sec cool time between stages. The 

inlet, transfer line, and ion source temperatures were set at 220, 200, and 250 oC, 

respectively. The mass spectrometer source was operated in EI mode with an electron 

energy of 70 eV at the detector voltage of 1450 V. Data was acquired over the range of 

m/z 40-600 at an acquisition rate of 100 Hz. For quality control (QC), blanks and pooled 

QC samples were analyzed at the beginning of each batch, and every five samples within 

batch. After data cleaning and preprocessing, acquired data were outputted as peak area 

for NIST library (version 08, National Institute of Standards and Technology, 

Gaithersburg, MD, USA) identified potential metabolite peaks, and we selected those 

with mass spectrum matched library spectrum for > 60 % (similarity score > 600 out of 
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1000). Obtained potential metabolite features were preprocessed by removing those with 

> 50 % missing values, and replacing the missing values of the remaining features with 

half of the minimum positive value in the original data. Preprocessed data were 

normalized by sum of total peak area, log transformed, and autoscaled (mean-centered 

and divided by the standard deviation of each variable) prior to further statistical analysis. 

NIST library match showed the derivatized form of potential metabolite peaks, which we 

converted to underivatized forms by replacing methoxyamine and trimethylsilyl groups 

with carbonyl and hydroxyl functional groups, respectively. ChemSpider was used for the 

identification of the underivatized forms of potential metabolite peaks (Royal Society of 

Chemistry, London, UK). All potential metabolites peaks were then put through an online 

repository (http://cts.fiehnlab.ucdavis.edu/) and searched under three online databases: 

the Human Metabolome Database (HMDB) (Wishart et al. 2018), Kyoto Encyclopedia of 

Genes and Genomes (KEGG) (Kanehisa et al. 2014), and Chemical Entities of Biological 

Interest (ChEBI) (Hastings et al. 2013), for identification of known metabolites, chemical 

class, and involved biological pathways.  
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Figure 3. Flowchart of urine metabolomics analysis 

3.4.2 Serum metabolomics 

252 participants had serum samples available for serum metabolomics analysis. 

Serum metabolomics analysis was conducted by The Metabolomics Core Laboratory, 

Center of Genomic Medicine, National Taiwan University. Sample preparation and 

analytical method using Agilent 1290 UHPLC system coupled with 6540-QTOF 
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(UHPLC-QTOF) (Agilent Technologies, Santa Clara, CA, USA) were performed 

following previously reported protocols (Lai et al. 2015). Aliquots of 100 μL of serum 

samples were added to extraction solvents by the ratio of 1:4 and extracted using Geno 

Grinder 2010 (SPEX, Pittsburg, CA, USA) at 1000 rpm for 2 min. Extracts were 

centrifuged at 15000 g for 5 min at 4 °C. Supernatant was then collected and evaporated 

using centrifugal vaporizer (EYELA, Tokyo, Japan) for 2 h. Residue was reconstituted in 

200 μL of 50% methanol and centrifuged at 15000 g for 5 min, and filtered with 0.2 μm 

Minisart RC 4 filter (Sartorius, Goettingen, Germany) before analysis. A total of 2 μL of 

sample was injected into an ACQUITY UPLC HSS T3 column (2.1 × 100 mm; 1.8 μm) 

(Waters, Milford, MA, USA). The mobile phase was composed of solvent A (water/0.1% 

formic acid) and solvent B (acetonitrile/0.1% formic acid). Gradient profile used was 

0−1.5 min, 2% B; 1.5−9 min, linear gradient from 2 to 50% B; 9−14 min, linear gradient 

from 50% to 95% B; 14−15 min, 95% B; the column was then re-equilibrated. Flow rate 

was maintained at 0.3 mL/min. Column oven and auto-injection system temperatures 

were set at 40 °C and 10 °C, respectively. Jet Stream electrospray ion source with capillary 

voltage of 4 kV in positive mode and 3.5 kV in negative mode was used for sample 

ionization. For MS parameters, dry gas temperature, 325 °C; dry gas flow, 5 L/min; 

nebulizer, 40 psi; sheath gas temperature, 325 °C; sheath gas flow, 10 L/min; and 

fragmentor, 120 V were used. Scan range was set at m/z 50−1700. For QC, blanks and 

pooled QC samples were analyzed at the beginning of each batch, and every five samples 

within batch. Synthetic samples containing 40 chemical standards (QC standard) were 

analyzed at the beginning of each batch to check instrument performance. Three repeated 

analysis was performed for each sample and total ion chromatogram was manually 

checked for technical replicates. Acquired data was preprocessed using True Ion Pick 

(TIPick) algorithm for background subtraction and peak picking (Ho et al. 2013). Peak 
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identification was conducted by matching m/z to an established in-house database: the 

National Taiwan University MetaCore Metabolomics Chemical Standard Library. 

Obtained potential metabolite features were preprocessed by removing those with > 50% 

missing values, and replacing the missing values of the remaining features with half of 

the minimum positive value in the original data. Preprocessed data were normalized by 

sum of total peak area, log transformed, and autoscaled (mean-centered and divided by 

the standard deviation of each variable) prior to further statistical analysis. 

3.4.3 Serum lipidomics 

252 participants had serum samples available for serum lipidomics analysis. Serum 

lipidomics analysis was conducted by The Metabolomics Core Laboratory, Center of 

Genomic Medicine, National Taiwan University. Lipidomic profiling for seurm samples 

was performed using an Agilent 1290 UHPLC system coupled with a Bruker maXis 

impact QTOF (Bruker Daltonik, Bremen, Germany). 100 uL of serum sample was mixed 

with 100 uL water and 1000 uL methanol/chloroform (1:2) for extraction. After shaking 

at 1000 rpm for 5 minutes by using Geno/Grinder 2010 (SPEX SamplePrep., Metuchen, 

NJ, US), the extract was centrifuged by using Eppendorf Centrifuge 5810R at 15000 rcf 

for 5 minutes at 4 °C. 600 ul of the lower organic layer was taken to another eppendorf 

tube for dryness by nitrogen. Dried residues were reconstituted in 120 uL methanol, 

sonicated 10 minutes and centrifuged at 15000 rcf for 5 minutes at 4 °C. The supernatant 

were filtered through a 0.2 μm Minisart RC 4 filter (Sartorius Stedim Biotech GmbH, 

Goettingen, Germany) and subjected to LC-MS/MS analysis. 2 μL of sample from serum 

extract was injected into an Agilent ZORBAX Eclipse Plus C18 column (2.1 x 100 mm, 

1.8μm, Agilent Technologies, Santa Clara, CA); the analytical column was maintained at 

55 °C. The mobile phase was composed of solvent A (water/10 mM ammonium 
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acetate/0.1% formic acid) and solvent B (methanol: isopropanol: water = 60: 40: 1/10 

mM ammonium acetate/0.1% formic acid). The gradient elution program was as follows: 

0–2 min: linear gradient from 35 to 80% B; 2–7 min: linear gradient from 80 to 100% B; 

and 10 min maintenance in 100% B. The flow rate was 350 μL min-1. For ionization, an 

electrospray ionization source was used for sample ionization. The following parameters 

were used throughout the study: 180 °C dry gas temperature, 8 L min-1 dry gas flow, 2.0 

bar nebulizer, 500 V end plate offset, 4500 V in positive mode for capillary voltage. The 

mass scan range and acquisition rate were m/z 150–1600 and 2 Hz, respectively. PITracer 

algorithm was applied for data format conversion, relative mass difference estimation, 

chromatogram generation, and peak detection (Wang et al. 2015). Peak identification was 

performed by matching m/z to an established in-house database: the National Taiwan 

University MetaCore In-House Lipidomics Library. Preprocessed data were normalized 

by sum of total peak area, log transformed, and autoscaled (mean-centered and divided 

by the standard deviation of each variable) prior to further statistical analysis. 

3.5 Early health effects 

3.5.1 Oxidative stress 

252 participants had urine samples available for urine oxidative stress biomarkers 

analysis. Urine concentrations of four oxidative stress biomarkers 8-hydroxy-2’-

deoxyguanosine (8-OHDG), 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), 8-

isoprostaglandin F2α (8-isoPF2α), and 8-nitroguanine (8-NO2Gua) were analyzed using 

previously published methods and adjusted with urinary creatinine concentrations (Wu et 

al. 2016). QC was conducted following European Medicines Agency guidelines (EMA 

2011). The four oxidative stress biomarkers applied in this study represent the different 

effects of oxidative stress, and all four biomarkers participate in the process of 
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carcinogenesis. 8-OHDG is the most used biomarker for free radical induced DNA 

damage and has been reported as a good biomarker for risk assessment of cancer 

(Valavanidis et al. 2009). HNE-MA is a metabolite of lipid peroxidation product 4-

hydroxy-2-nonenal (HNE), a cytotoxic and mutagenic signaling molecule that regulates 

cell cycle and forms DNA adducts leading to DNA damage (Ayala et al. 2014; Bartsch 

and Nair 2005; Valavanidis et al. 2009). Urine levels of 8-isoPF2α is a biomarker for 

arachidonic acid peroxidation, and has been associated with increased risk of potential 

malignant oral disorders and breast cancer progression (Ferroni et al. 2017; Senghore et 

al. 2018). 8-NO2Gua is formed from DNA damage induced by RNS generated under 

inflammatory conditions, and reported to participate in carcinogenesis (Hiraku 2010). 

3.5.2 Serum acylcarnitines 

252 participants had serum samples available for serum acylcarnitines analysis. 

Serum acylcarnitines were analyzed by The Metabolomics Core Laboratory, Center of 

Genomic Medicine, National Taiwan University. Serum levels of 31 acylcarnitines were 

analyzed using Agilent 1290 UHPLC coupled with an Agilent 6460 triple quadrupole 

mass spectrometer (Agilent Technologies). A total of 400 μL of methanol (Scharlau, 

Sentmenat, Spain) was added into 100 μL of human serum to extract metabolites. The 

extraction was performed on Geno/Grinder2010 (SPEX, Metuchen, NJ, US) at 1,000 rpm 

for 2 min followed by centrifugation at 15,000 rcf for 5 min at 4 oC. Supernatant was 

collected and evaporated using EYELA CVE-200D Centrifugal Evaporator (TOKYO 

RIKAKIKAI CO., Tokyo, Japan) until dry. Dried extracts were reconstituted with 200 μL 

of 10 % methanol and centrifuged at 15,000 rcf for 5 min. The supernatant was then 

filtered with 0.2-μm Ministart RC 4 filter (Sartorius, Goettingen, Germany). All aliquots 

were transferred to glass inserts prior to UHPLC-MS analysis. The MS parameters were 

325 oC, 325 oC, 500 V, and 3500 V for the drying gas temperature, sheath gas temperature, 
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nozzle voltage, and capillary voltage, respectively. The dry gas flow and sheath gas flow 

were 7 and 11 L min-1, respectively. The nebulizer was set at 45 psi. HSS T3 column (100 

x 2.1 mm, 1.8 μm, Waters, Milford, MA, USA) was employed and the column 

temperature was set at 40 oC. The mobile phase was composed of solvent A (0.1 % formic 

acid in DI water) and solvent B (0.1 % formic acid in ACN) (J.T. Baker, Phillipsburg, NJ, 

USA). The gradient elution program was as followed: 0–1.5 min: 2% B; 1.5–9 min: linear 

gradient from 2 to 50% B; 9–14 min: linear gradient from 50 to 95% B; and 3 min 

maintenance in 95% B with the flow rate of 0.3 ml min-1. A 3 min equilibrium was used 

before next injection. All analytes were monitored in positive MRM mode. All the peaks 

were integrated with MassHunter Quantitative Analysis software (Agilent Technologies). 

Pooled QC sample was analyzed every 20 samples and calculated for relative standard 

deviation (RSD). Out of the 31 analyzed acylcarnitines, 29 had RSD < 20%, and was used 

for statistical analysis of samples. Preprocessed data were normalized by sum of total 

peak area, log transformed, and autoscaled (mean-centered and divided by the standard 

deviation of each variable) prior to further statistical analysis. 

3.6 Pathway analysis 

Pathway analysis was performed using Metaboanalyst 4.0, which currently supports 

80 pathways in the Homo sapiens pathway library (Chong et al. 2018). HMDB ID number 

and normalized peak area values were used as input. The method “Globaltest” was used 

for pathway enrichment analysis, and “betweenness centrality” for pathway topology 

analysis. 

3.7 Meet-in-the-middle 

Partial least squares discrimination analysis (PLS-DA) was performed using 
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Metaboanalyst 4.0 (The Metabolomics Innovation Center, Edmonton, Alberta, Canada) 

to identify exposures-related potential metabolites. PLS-DA models were validated using 

permutation test and cross-validation test. We further used Student’s t test adjusted for 

false discovery rate (FDR) q value to compare the peak area of each potential metabolite 

between high and low exposure groups for urine metabolomics results, and analysis of 

covariance (ANCOVA) adjusted for age, sex, and BMI for serum metabolomics and 

lipidomics results. Pearson’s correlation analysis was conducted to identify early health 

effect-related potential metabolites in urine metabolomics, and linear regression analysis 

was conducted for serum metabolomics and lipidomics, adjusting for age, sex, and BMI 

(Figure 4). 

  

Figure 4. Meet-in-the-middle approach. 

3.8 Association between exposure and early health effects 

Individual association between eight carcinogens and four oxidative stress biomarkers 

were analyzed using linear regression analysis, while association of eight combined 

carcinogen exposures with four oxidative stress biomarkers were analyzed using 

weighted quantile sum (WQS) regression, both adjusted for age, sex, and BMI. The 

weighted contribution of quantile-scored exposures were derived based on bootstrap 
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sampling (N=100). 

3.9 Statistical analysis 

For comparison of basic characteristics and external exposure levels between high 

and low exposure groups, we used Student’s t test to analyze continuous variables, and 

Chi-squared test or Fisher’s exact test for discrete variables. Urine concentrations of 

internal exposure biomarkers were adjusted using urine creatinine concentrations and log 

transformed before comparing between high and low exposure groups using ANCOVA 

adjusting for age, sex, smoking, alcohol consumption, betel nut chewing, fish 

consumption, and BMI with a post comparison by Scheffe test. Oxidative stress 

biomarkers were adjusted using urine creatinine concentrations and log transformed 

before comparing between high and low exposure groups using Student’s t test. Peak area 

of urine metabolite features were normalized before comparing between high and low 

exposure groups using Student’s t test and FDR q value. Peak area of serum metabolite 

features, lipid features, and acylcarnitines were normalized before comparing between 

high and low exposure groups using ANCOVA, adjusting for age, sex, and BMI with a 

post comparison by Scheffe test. Student's t-test, Chi-squared test, Fisher's exact test, 

ANCOVA test, and linear regression analysis were performed using SAS 9.4 for 

Windows. PCA and PLS-DA were performed using Metaboanalyst 4.0. FDR q value was 

measured using fdrtool package in R 3.1.3 for Windows. WQS regression analysis was 

conducted using the gWQS package in R 3.5.1 for Windows. 
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4. Results and Discussion 

4.1 Part 1. Linking sources to early effects by profiling urine metabolome of 

residents living near oil refineries and coal-fired power plants 

4.1.1 Results 

For 252 subjects used in urine metabolomics study, the comparison between high and 

low exposure groups in basic characteristics, external exposure at each subject's home 

locations, and internal exposures as urine biomarkers concentrations is shown in Table 2. 

Overall, high exposure subjects lived 10.07± 2.43 km away from the main emission point 

of the coal-fired power plant and 9.35 ± 2.65 km away from the main emission point of 

oil refineries, while low exposure subjects lived 21.64 ± 5.19 and 20.69 ± 5.00 km away 

from the two main emission points, respectively. High and low exposure subjects in 

children (13.76 ± 0.93 years old) and elderly (65.88 ± 6.92 years old) age groups showed 

no significant difference in gender distribution, smoking, drinking, and betel nut chewing 

history, body mass index, and systolic blood pressure. Ambient concentrations of V, and 

three PAHs pyrene, fluoranthene, and dibenzo[a,h]anthracene were significantly higher 

at the home locations of high exposure subjects when compared to low exposure subjects, 

for both children and elderly participants. Another PAH, benzo[k]fluoranthene, was 

significantly increased in high exposure group in elderly subjects, but showed no 

difference between high and low exposure groups in children subjects. 

Benzo[a]anthracene was decreased in high exposure groups for both children and elderly 

subjects. Road areas surrounding participants' homes, which we used to represent traffic 

contribution of air toxics levels, showed no difference between high and low exposure 

groups for both children and elderly residents at 25 m buffer. When we increased the 

buffer to 500 m, elderly subjects in the low exposure group had larger road areas 
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surrounding their homes than those in the high exposure group. Urine concentrations of 

1-OHP, V, Ni, Cu, As, Sr, Cd, Hg, and Tl were significantly increased in high exposure 

groups compared to low exposure groups for both children and elderly subjects. The 

difference between high and low exposure groups was most profound for V, 1-OHP, and 

Tl, followed by Sr. Pearson's correlation analysis results showed significant correlation 

between ambient and urinary V levels; and between ambient pyrene, fluoranthene, and 

dibenzo[a,h]anthracene and urine 1-OHP concentrations for both children and elderly 

subjects (Table 3). 
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Table 2. Comparison of basic characteristics and exposure levels in 252 study subjects 

 
Children  Elderly 

High (n=40) Low (n=70) p  High (n=71) Low (n=71) p 

Basic Characteristics            

Age (years), mean±SD 13.78 ±0.93 13.83 ±0.89 0.88  66.23 ±6.54 66.36 ±7.47 0.76 

Male, n (%) 22 (55.0) 38 (54.3) 0.94  28 (39.4) 35 (49.3) 0.24 

Smoking history, n (%) 3 (7.5) 3 (4.3) 0.67  3 (4.2) 7 (9.9) 0.33 

Drinking history, n (%) 2 (5.0) 1 (1.4) 0.30  8 (11.3) 7 (9.9) 0.79 

Betel nut chewing history, n (%) 1 (2.5) 0 (0) 0.60  4 (5.6) 3 (4.2) 1.00 

BMI (kg/m2), mean±SD 21.13 ±3.20 20.05 ±3.43 0.10  26.30 ±3.89 26.36 ±3.35 0.93 

SBP (mmHg), mean±SD 117.63 ±13.02 115.79 ±14.26 0.50  140.76 ±20.74 141.76 ±18.95 0.77 

External Exposures at study subjects’ homesb, mean±SD          

Distance to coal-fired power plant 10.31 ±2.50 22.66 ±10.31 <0.05  9.94 ±2.39 20.62 ±4.72 <0.05 

Distance to oil refinery 9.80 ±2.63 21.73 ±5.20 <0.05  9.09 ±2.65 19.66 ±4.59 <0.05 

Road area surrounding homes            

25 m buffer 241.08 ±279.23 279.23 ±226.64 0.38  269.41 ±222.79 304.52 ±237.50 0.37 

500 m buffer 68088.07 ±61248.67 61248.67 ±20502.19 0.18  71269.64 ±22808.14 82235.11 ±27217.15 <0.05 

Ambient concentrations            

Vanadium 8.60 ±1.39 5.75 ±1.08 <0.05  8.97 ±1.63 6.22 ±0.96 <0.05 

Polycyclic Aromatic Hydrocarbonsc            

Pyrene 0.026 ±0.005 0.023 ±0.003 <0.05  0.030 ±0.005 0.022 ±0.003 <0.05 

Fluoranthene 0.028 ±0.001 0.026 ±0.003 <0.05  0.027 ±0.001 0.024 ±0.003 <0.05 

Dibenzo[a,h]anthracene  0.013 ±0.002 0.011 ±0.001 <0.05   0.014 ±0.002 0.011 ±0.001 <0.05 
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Children  Elderly 

High (n=40) Low (n=70) p  High (n=71) Low (n=71) p 

Benzo[k]fluoranthene 0.017 ±0.003 0.017 ±0.002 0.98   0.019 ±0.003 0.018 ±0.002 <0.05  

Benzo[a]anthracene  0.017 ±0.001 0.019 ±0.001 <0.05  0.017 ±0.001 0.020 ±0.002 <0.05 

Internal Exposuresd, mean±SD            

1-hydroxypyrene 0.25 ±0.31 0.03 ±0.01 <0.05  0.42 ±0.70 0.03 ±0.01 <0.05 

Vanadium 2.34 ±1.53 0.23 ±0.10 <0.05  4.02 ±2.23 0.17 ±0.08 <0.05 

Chromium 3.89 ±4.56 2.06 ±1.65 0.11  5.32 ±7.33 2.98 ±2.62 0.09 

Nickel 10.41 ±16.62 3.70 ±2.89 <0.05  11.28 ±15.34 8.33 ±29.64 <0.05 

Copper 16.38 ±14.94 11.22 ±7.50 <0.05  22.87 ±24.33 17.36 ±30.23 <0.05 

Arsenic 62.28 ±42.02 39.47 ±29.46 <0.05  119.60 ±205.04 64.92 ±51.73 <0.05 

Strontium 170.77 ±249.93 70.47 ±64.55 <0.05  211.26 ±176.33 86.53 ±55.23 <0.05 

Cadmium 0.34 ±0.34 0.19 ±0.15 <0.05  1.30 ±1.11 0.87 ±0.73 <0.05 

Mercury 3.30 ±3.15 1.92 ±1.81 <0.05  2.59 ±2.35 1.49 ±1.27 <0.05 

Thallium 2.13 ±3.92 0.21 ±0.11 <0.05  1.60 ±3.67 0.12 ±0.08 <0.05 

Lead 0.77 ±1.08 0.65 ±0.59 0.71  1.79 ±2.30 1.09 ±1.21 0.17 

a Comparison of basic characteristics between the high and low exposure groups for continuous variables was performed using Student’s t-test, and 

for discrete variables, Chi-squared test or Fisher’s exact test. Urinary exposure biomarker concentrations are log-transformed, high and low 

exposure groups compared by ANCOVA test adjusting age, gender, smoking, alcohol consumption, betel nut chewing, fish consumption, and 

source of drinking water with a post comparison by Scheffe test. b Distance to source: Average of home-to-coal-fired power plant and home-to-oil 

refinery distance, unit: km; Road area surrounding homes unit: m2; Ambient V unit: ng/m3; Polycyclic Aromatic Hydrocarbons unit: ng/m3. c 

Children low exposure group n=35; Elderly low exposure group n=50. d For 1-hydroxypyrene, unit: µmol/mol-creatinine; for heavy metals, unit: 

µg/g-creatinine BMI: Body Mass Index; SBP: Systolic Blood Pressure  
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Table 3. Association between model-estimated ambient levels and analyzed urine 

concentrations of V and PAHs in children and elderly subjects. 

Urine  

Ambient 

Children  Elderly 

1-OHP  V  1-OHP  V 

coefficient p  coefficient p  coefficient p  coefficient p 

Vanadiuma - -  0.634 <0.05  - -  0.697 <0.05 

PAHsb            

Pyrene 0.317 <0.05  - -  0.555 <0.05  - - 

Fluoranthene 0.483 <0.05  - -  0.521 <0.05  - - 

Dibenzo[a,h]anthracene 0.306 <0.05  - -  0.574 <0.05  - - 

Benzo[k]fluoranthene -0.097 0.41  - -  0.237 <0.05  - - 

Benzo[a]anthracene -0.594 <0.05  - -  -0.343 <0.05  - - 

Association were assessed using Pearson’s correlation analysis. 
a Children n=110; Elderly n=142. b Children n=75; Elderly n=121.  

Fig. 5 compared log-transformed urine concentrations of four oxidative stress biomarkers 

between high and low exposure groups in children and elderly subjects. In children, urine 

concentrations of 8-OHDG were 3.1± 2.52 and 2.59 ± 2.78 μg/g-creatinine in high and low 

exposure groups, respectively, with no significant statistical difference. For elderly subjects, 8-

OHDG urine levels were 6.61 ± 20.34 and 3.16 ± 4.07 μg/g-creatinine for high and low 

exposure groups, respectively, with p value of 0.006 (Fig. 5A). Urine levels of HNE-MA were 

significantly increased in high exposure groups compared to low exposure groups for both 

children and elderly subjects (Fig. 5B), with urine concentrations 2.16±2.7 and 1.4±2.3 μg/g-

creatinine for high and low exposure groups, respectively, in children, and 2.59± 3.16 and 1.82 

±3.66 μg/g-creatinine for high and low exposure groups, respectively, in elderly subjects. 8-

isoPGF2α was increased when comparing high (3.22 ± 3.4 μg/g-creatinine) to low exposure 

group (2.06 ± 2.14 μg/g-creatinine) in children, but the difference was not as significant in 

elderly subjects, with urine concentrations of high exposure group at 2.88 ± 2.94 μg/g-creatinine, 
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and low exposure group at 2.47±4.32 μg/g-creatinine (Fig. 5C). Fig. 5D showed 8-NO2Gua was 

significantly increased when comparing high and low exposure groups for both children and 

elderly subjects. Urine concentrations were 6.88 ± 11.93 and 2.43 ± 2.97 μg/g-creatinine for the 

high and low exposure groups, respectively, in children, while elderly subjects had 7.44±15.21 

and 3.19±3.34 μg/g-creatinine for high and low exposure groups, respectively.  

 

Figure 5. Urine concentrations of (A) oxidative DNA damage biomarker 8-OHDG (B)(C) 

lipid peroxidation biomarkers HNE-MA and 8-isoPGF2α and (D) nitrative DNA damage 

biomarker 8-NO2Gua levels between high and low exposure groups in children and 

elderly study subjects.  

*p<0.05, **p<0.01 

Urine metabolomics identified 405 potential metabolite peaks in each individual's urine 

sample in children, and 391 in elderly participants, 216 and 209 of which were identified as 

doi:10.6342/NTU201901261



33 

 

known human metabolites by HMDB in children and elderly participants, respectively (see 

Appendix 1). PLS-DA results showed separation between the urine metabolite profiles of 

children and elderly subjects, as well as high and low exposure groups, while no significant 

difference was found between metabolite profiles of different genders (see Table 4). Separate 

analysis of urine metabolite profiles in children and elderly participants showed clear separation 

of urine metabolite profiles between high and low exposure groups in both children (Fig. 6A) 

and elderly subjects (Figure 6B). Permutation test confirmed the validity of the PLS-DA models 

(see Figure 6C and 6D), and cross-validation test results showed that for both children and 

elderly subjects, best performance of the PLS-DA models were acquired after applying three 

components (see Figure 6E and 6F). The variable importance in the projection (VIP) value of 

each potential metabolite peak in first three components was listed in Table 4. Potential 

metabolite peaks with Component 1 VIP score > 1 were considered responsible for the 

separation between high and low exposure groups, 45 of these exposure-related potential 

metabolites were identified in children (FDR q < 0.1, p ≤ 0.033), and 42 in elderly subjects 

(FDR q < 0.15, p ≤ 0.040), of which only 11 were found in both children and elderly subjects. 

These 76 potential metabolites were classed by HMDB as 9 benzenoids, 3 hydrocarbons, 10 

lipids and lipid-likemolecules, 19 organic acids and derivatives, 14 organoheterocyclic 

compounds, 2 organonitrogen compounds, 15 organooxygen compounds, 1 organosulfur 

compound, 2 phenylpropanoids and polyketides, and 1 homogeneous non-metal compound 

(Table 5).  

doi:10.6342/NTU201901261



34 

 

 

Figure 6. PLS-DA results for children and elderly urine metabolite profile analysis 

shown as (A)(B) PLS-DA score plots, (C)(D) permutation test results, and (E)(F) cross 

validation results. 
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Table 4. PLS-DA model validation results between different gender, age and exposure 

groups. 

    Cross-validation Permutation test 

(p value)   n accuracy R2 Q2 

Male vs. Female           

Total 252 0.642 0.494 0.031 0.20 

Children 110 0.602 0.223 -0.080 0.84 

Elderly 142 0.618 0.897 0.056 0.48 

Children vs. Elderly           

Total 252 0.907 0.882 0.674 <0.01 

High exposure 111 0.984 0.957 0.736 0.66 

Low exposure 141 0.922 0.923 0.640 0.01 

High vs. Low 

exposure 
          

Total 252 0.708 0.714 0.207 <0.01 

Children 110 0.826 0.826 0.494 0.04 

Elderly 142 0.728 0.823 0.273 0.02 
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Table 5. Urine metabolic profiling of multiple exposures from refineries and coal-fired 

power plants in children and elderly subjects using GCxGC-TOFMS analysis 

Metabolite Identification a Involved pathway b Trend c 

Childrend   

Benzenoids    

2-phenylpropanal − Up 

3-Hydroxyhippuric acid − Down 

4-Hydroxybenzoic acid Phenylalanine metabolism Down 

Hippuric acid Phenylalanine metabolism Down 

o-Cymene − Up 

Hydrocarbons    

Decane − Up 

Dodecane None Up 

Tridecane None Up 

Lipids and lipid-like molecules    

Azelaic acid None Down 

Glycerol 3-phosphate Glycerolipid metabolism Up 

Myristic acid Fatty acid biosynthesis Down 

Stearic acid Fatty acid biosynthesis Up 

Tiglic acid None Up 

Organic acids and derivatives    

3-Hydroxyoctanoic acid cAMP signaling pathway Down 

Aminomalonic acid None Up 

Fumaric acid Citrate cycle (TCA cycle) Up 

Hydroxypyruvic acid Glycine, serine, and threonine metabolism Up 

L-Alpha-aminobutyric acid Cysteine and methionine metabolism Up 

L-Aspartic acid Alanine, aspartate, and glutamate 

metabolism 

Down 

L-Histidine Histidine metabolism Down 

N-acetylglutamic acid Arginine biosynthesis Down 

Succinic acid Citrate cycle (TCA cycle) Up 

Tiglylglycine − Down 

doi:10.6342/NTU201901261



37 

 

Metabolite Identification a Involved pathway b Trend c 

γ-Aminobutyric acid Alanine, aspartate, and glutamate 

metabolism 

Down 

Organoheterocyclic compounds    

1H-Indole-3-acetamide Tryptophan metabolism Up 

2-Deoxy-L-ribono-1,4-lactone − Down 

4-Pyridoxic Acid Vitamin B6 metabolism Down 

Cyanuric acid None Up 

DL-Tryptophan Tryptophan metabolism Down 

L-Gulonolactone Tryptophan metabolism Down 

Quinolinic acid Ascorbate and aldarate metabolism Down 

Sumiki's acid Tryptophan metabolism Down 

Organonitrogen compounds    

Dimethylamine Methane metabolism Up 

Organooxygen compounds    

4-Deoxyerythronic acid − Up 

Cyanic acid Nitrogen metabolism Down 

Cyclohexanone Caprolactam degradation Up 

Diacetone alcohol − Up 

D-Threitol None Up 

Gluconic acid Pentose phosphate pathway Down 

Hex-2-ulosonic acid None Down 

L-Sorbose None Up 

Rhamnose  Fructose and mannose metabolism Down 

Threonic acid Ascorbate and aldarate metabolism Down 

Phenylpropanoids and polyketides    

Hydroxyphenyllactic acid Tyrosine metabolism Up 

L-Phenylalanine Phenylalanine metabolism Up 

Elderlye   

Benzenoids  

  

Catechol Chlorocyclohexane and chlorobenzene 

degradation 

Up 
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Metabolite Identification a Involved pathway b Trend c 

m-Cresol Toluene degradation Up 

Mono(2-ethylhexyl)phthalate 

[MEHP] 

None Up 

o-Cymene − Up 

Phenol Tyrosine metabolism Up 

Homogeneous non-metal compounds  

  

Phosphoric acid Oxidative phosphorylation Up 

Hydrocarbons  

  

Decane − Up 

Dodecane None Up 

Tridecane None Up 

Lipids and lipid-like molecules  

  

2,4-Dihydroxybutanoic acid − Up 

2-Hydroxyglutaric acid None Up 

Borneol None Down 

L-Threonine Glycine, serine and threonine metabolism Up 

Myristic acid Fatty acid biosynthesis Up 

Palmitic acid Fatty acid biosynthesis Up 

Stearic acid Fatty acid biosynthesis Up 

Organic acids and derivatives  

  

(S)-3-Hydroxyisobutyric acid Valine, leucine and isoleucine degradation Up 

2-Ethylhydracrylic acid − Up 

Alanine Alanine, aspartate and glutamate 

metabolism 

Up 

Glutaric acid Fatty acid degradation Up 

L-Aspartic acid Alanine, aspartate and glutamate 

metabolism 

Down 

Leucine Valine, leucine and isoleucine degradation Up 

L-Valine Valine, leucine and isoleucine degradation Up 

Serine Glycine, serine and threonine metabolism Up 

Thiodiacetic acid Metabolism of xenobiotics by cytochrome Up 
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Metabolite Identification a Involved pathway b Trend c 

P450 

Organoheterocyclic compounds  

  

5-Hydroxyindoleacetic acid Tryptophan metabolism Down 

Cytosine Pyrimidine metabolism Up 

D-Xylono-1,5-lactone Pentose and glucuronate interconversions Up 

Hypoxanthin Purine metabolism Down 

Picolinic acid Tryptophan metabolism Up 

Uracil Pyrimidine metabolism Up 

Organonitrogen compounds  

  

Diethanolamine Glycerophospholipid metabolism Up 

Organooxygen compounds  

  

1,3-butanediol − Up 

4-Deoxyerythronic acid − Up 

Acetoin None Up 

Arabinose − Up 

Cyclohexanone Caprolactam degradation Up 

Glyceric acid Pentose phosphate pathway Up 

Inositol − Up 

L-Sorbose None Up 

Threonic acid Ascorbate and aldarate metabolism Up 

Organosulfur compounds  

  

Dimethyl sulfone Sulfur metabolism Up 

a Urine metabolites detected by GCxGC-TOFMS, identified using NIST library, and found in and classified 

via Human Metabolome Database. 

b Metabolites were searched in KEGG database for involved biological pathways. If metabolite is involved 

in multiple pathways, only one is shown. None: Found in KEGG database but with no known involved 

pathways. −: Not found in KEGG database. 

c The up- or downregulation of metabolites in high exposure group compared to low exposure group. 

d VIP >1, FDR q <0.1 e VIP >1, FDR q <0.15  
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Pathway enrichment and pathway topology analysis on the 45 exposure-related potential 

metabolites in children identified three main biological pathways potentially affected by 

multiple exposures: alanine, aspartate, and glutamate metabolism, phenylalanine metabolism, 

and tryptophan metabolism. For the 42 potential metabolites found in elderly participants, 

pathway analysis showed glycine, serine, and threonine metabolism, alanine, aspartate, and 

glutamate metabolism, as well as aminoacyl-tRNA biosynthesis were the most important 

pathways disrupted by multiple exposures (Impact value > 0.1, FDR adjusted p < 0.05) (see 

Table 6). Through the Comparative Toxicogenomics Database (CTD), we found that pyrene, 

fluoranthene, As, Cu, Cd, and Ni were significantly associated with tryptophan metabolism, As, 

Cd, and Ni with phenylalanine metabolism, dibenzo[a,h]anthracene, As, Cu, Cd, Ni, and Hg 

with alanine, aspartate, and glutamate metabolism, and As, Cu, Cd, and Ni with glycine, serine, 

and threonine metabolism (Bonferroni adjusted p < 0.01) (Fig. 7) (Davis et al. 2019). 

Table 6. Potential biological pathways affected by multiple exposures in children and 

elderly subjects. 

Pathway Total Hits Impactc FDR pd 

Children a     

Alanine, aspartate and glutamate metabolism 24 4 0.370 0.0004 

Phenylalanine metabolism 45 5 0.151 0.0003 

Tryptophan metabolism 79 2 0.123 0.0347 

Elderly b     

Alanine, aspartate and glutamate metabolism 24 1 0.265 0.0001 

Glycine, serine and threonine metabolism 48 4 0.233 0.0059 

Aminoacyl-tRNA biosynthesis 75 5 0.113 0.0174 

a Pathway analysis results of exposure-related metabolites identified via PLS-DA (q value <0.1) 

b Pathway analysis results of exposure-related metabolites identified via PLS-DA (q value <0.15) 

c Pathway impact value calculated from pathway topology analysis. (Impact value >1 are shown) 

d FDR adjusted p value calculated from pathway enrichment analysis. (FDR p <0.05 are shown)
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Figure 7. Exposure pathways of petrochemical air pollution and the effects on 

urine metabolic profile changes and increased oxidative stress 

We also identified 163 oxidative stress-related potential metabolites in children 

subjects, and 144 in elderly subjects that were associated with at least one of the four 

oxidative stress biomarkers (p < 0.05) (Appendix 1). In children, we found 54 potential 

metabolites associated with 8-OHDG, 108 with HNE-MA, 69 with 8-isoPGF2α, and 56 

with 8-NO2Gua, while in elderly subjects, 33 were correlated with 8-OHDG, 113 with 

HNE-MA, 65 with 8-isoPGF2α, and 49 with 8-NO2Gua. Identified oxidative stress-related 

potential metabolites showed more overlap (113 out of 194) than multiple exposure-

related potential metabolites (11 out of 76) between children and elderly subjects.  

Through the “Meet-in-the-middle” approach, we identified a profile of putative 

intermediate biomarkers that were associated with both exposures and oxidative stress 
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biomarkers in children participants: 10 for 8-OHDG, 23 for HNE-MA, 11 for 8-isoPGF2α, 

and 22 for 8-NO2Gua. We also identified another profile of such biomarkers in elderly 

subjects: 17 for 8-OHDG, 32 for HNE-MA, 10 for 8-isoPGF2α, and 26 for 8-NO2Gua (see 

Table 7). Fig. 7 showed that these putative intermediate biomarkers could be located in 

previously identified exposures-related pathways. In children, tryptophan and indole-3-

acetamide could be located in tryptophan metabolism pathway, phenylalanine, hippuric 

acid, and 4-hydroxy benzoic acid in phenylalanine metabolism pathway, and succinic acid 

in both phenylalanine metabolism and alanine, aspartate, and glutamate metabolism 

pathways. In elderly participants, threonine, serine, and glyceric could be located in 

glycine, serine, and threonine metabolism. Aspartic acid, which was identified in both 

children and elderly subjects, is involved in alanine, aspartate, and glutamate metabolism.
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Table 7. Putative intermediate biomarkers associated with both exposure and oxidative stress identified in children and elderly subjects. 
Biomarker 

 

Metabolite          

8-OHDG  HNE-MA  8-isoPGF2α  8-NO2Gua 

Children Elderly  Children Elderly  Children Elderly  Children Elderly 

Benzenoids            

  Catechol, MEHP, o-Cymene, 

Phenol 

 2-phenylpropanal, 4-

Hydroxybenzoic acid, Hippuric 

acid, o-Cymene 

Catechol, o-Cymene, Phenol  3-Hydroxyhippuric acid   2-phenylpropanal, Hippuric 

acid, o-Cymene 

Catechol, MEHP, o-Cymene, 

Phenol 

Hydrocarbons            

 Tridecane Dodecane  Decane, Dodecane, Tridecane Decane, Dodecane, Tridecane   Decane  Decane, Dodecane, Tridecane Dodecane, Tridecane 

Lipids and lipid-like molecules           

  2-Hydroxyglutaric acid, 

Myristic acid, Stearic acid 

 Azelaic acid, Stearic acid 2,4-Dihydroxybutanoic acid, 2-

Hydroxyglutaric acid, Myristic 

acid, Stearic acid 

 Azelaic acid Myristic acid, Stearic acid  Myristic acid, Stearic acid, 

Tiglic acid 

2-Hydroxyglutaric acid, L-

Threonine, Myristic acid, 

Stearic acid 

Organic acids and derivatives           

 N-acetylglutamic acid, 

Tiglylglycine 

(S)-3-Hydroxyisobutyric acid, 

Serine 

 Aminomalonic acid, N-

acetylglutamic acid, Succinic 

acid, Tiglylglycine 

(S)-3-Hydroxyisobutyric acid, 

2-Ethylhydracrylic acid, 

Glutaric acid, L-Aspartic acid, 

Leucine, L-Valine, Serine, 

Thiodiacetic acid 

 L-Alpha-aminobutyric acid, N-

acetylglutamic acid, Succinic 

acid 

Leucine  L-Aspartic acid, L-Histidine, 

Succinic acid 

(S)-3-Hydroxyisobutyric acid, 

Glutaric acid, L-Valine, Serine, 

Thiodiacetic acid 

Organoheterocyclic compounds           

 2-Deoxy-L-ribono-1,4-lactone, 

DL-Tryptophan, L-

Gulonolactone, Quinolinic acid 

Cytosine, D-Xylono-1,5-

lactone 

 DL-Tryptophan 5-Hydroxyindoleacetic acid, 

Cytosine, D-Xylono-1,5-

lactone, Picolinic acid, Uracil 

 Cyanuric acid, DL-Tryptophan 5-Hydroxyindoleacetic acid, 

Cytosine, D-Xylono-1,5-

lactone 

 1H-Indole-3-acetamide, 

Cyanuric acid, Quinolinic acid, 

Sumiki's acid 

D-Xylono-1,5-lactone, 

Hypoxanthin 

Organonitrogen compounds           

     Diethanolamine     Dimethylamine  

Organooxygen compounds           

 4-Deoxyerythronic acid Arabinose, Cyclohexanone, L-

Sorbose, Threonic acid 

 4-Deoxyerythronic acid, 

Cyclohexanone, Diacetone 

alcohol, D-Threitol, L-Sorbose, 

Rhamnose, Threonic acid 

4-Deoxyerythronic acid, 

Arabinose, Cyclohexanone, 

Glyceric acid, Inositol, L-

Sorbose, Threonic acid 

 4-Deoxyerythronic acid, 

Diacetone alcohol, D-Threitol, 

Rhamnose 

Arabinose, Threonic acid  4-Deoxyerythronic acid, 

Cyclohexanone, Diacetone 

alcohol, Gluconic acid, 

Threonic acid 

1,3-butanediol, 4-

Deoxyerythronic acid, 

Arabinose, Cyclohexanone, 

Glyceric acid, Inositol, L-

Sorbose, Threonic acid 

Phenylpropanoids and polyketides           

 Hydroxyphenyllactic acid, L-

Phenylalanine 

  Hydroxyphenyllactic acid, L-

Phenylalanine 

       

Organosulfur compounds           

  Dimethyl sulfone   Dimethyl sulfone   Dimethyl sulfone   Dimethyl sulfone 
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4.1.2 Discussion 

Here we demonstrate a urine metabolomic approach to evaluate how a mixture of air 

toxics from an industrial emission source can increase the external and internal exposures 

of nearby residents in a distance-to-source-related manner, inducing age-dependent 

responses in children and elderly residents that led to elevated oxidative stress. The 

strength of this study was that we comprehensively evaluated multiple air toxics, and 

successfully used untargeted metabolomics to find the association between exposures and 

early health effect oxidative stress through the “Meet-in-the-middle” approach.  

 External and internal exposure results suggest petrochemical complex is the major 

source of both external and internal exposures to multiple air toxics for our study subjects. 

High exposure groups lived closer to the emission sources, had higher levels of ambient 

V and PAHs at the location of their home addresses, with increased urinary concentrations 

of heavy metals and PAHs metabolite 1-OHP, of which PAHs, V, Ni, As, and Cu 

exposures have been reported near both coal-fired power plants and oil refineries, and Cd, 

Hg, Sr, and Tl near coal-fired power plants (Dybing et al. 2013; George et al. 2015; IARC 

1989a, b; O'Rourke and Connolly 2003; Peter and Viraraghavan 2005; Williams et al. 

2006). Lack of difference in surrounding road area at home addresses of high and low 

exposure groups suggest limited traffic influence on exposures. 

Urine oxidative stress biomarkers were elevated in high exposure groups, including 

8-OHDG, a biomarker for oxidative DNA damage, HNE-MA, produced by lipid 

peroxidation, 8-isoPGF2α, a metabolite from arachidonic acid peroxidation, and 8-

NO2Gua, potential biomarker for nitrative DNA damage (Wu et al. 2016). Previous 

studies have reported exposure to PAHs and heavy metals V, Ni, Cu, As, Cd, and Hg can 
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induce oxidative stress through increment of reactive oxygen species (ROS) and/or 

reduction of anti-oxidants (Jomova and Valko 2011; Penning and Drury 2007). Our 

findings suggest that exposure to multiple air toxics induces oxidative stress, an early 

health effect that contributes to numerous common complex chronic diseases such as 

cancer, cardiovascular disease, diabetes, and neurodegenerative diseases, as well as acute 

respiratory diseases such as allergic rhinitis and asthma (Bowler and Crapo 2002; Reuter 

et al. 2010). 

Potential metabolites responsible for the separation between high and low exposure 

groups were different for children and elderly subjects, and pathway analysis results 

showed three different and one common biological pathway affected by exposures in the 

two age groups. “Meet-in-the-middle” approach found putative intermediate biomarkers 

that were involved in these four pathways, suggesting that exposures can disrupt diverse 

biological mechanisms in different age groups, inducing common early health effect 

oxidative stress. 

Tryptophan metabolism was one of the exposures-related pathways identified in 

children subjects. Tryptophan can be metabolized through different pathways, the most 

important route, kynurenine pathway, is often upregulated by activated immune responses, 

leading to the depletion of tryptophan, and has shown involvement in increased oxidative 

stress as well as numerous diseases including cancer, neurodegenerative diseases, and 

allergic disorders such as rhinitis and asthma (Chen and Guillemin 2009; Ciprandi et al. 

2010; Gostner et al. 2016; Stoy et al. 2005). Our previous study in the same area also 

showed increased incidence of allergic rhinitis, bronchitis, and asthma in children living 

near the petrochemical complex (Chiang et al. 2016). Tryptophan was downregulated in 

high exposure group compared to low exposure group in children subjects, identified as 
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a putative intermediate biomarker and correlated with 8-OHDG, HNE-MA, and 8-

isoPGF2α. Downstream metabolite 1H-indole-3-acetamide from another tryptophan 

metabolism route was also identified and associated with 8-NO2Gua. These findings 

suggest exposures could affect at least one tryptophan metabolism pathway, inducing 

multiple oxidative stress outcomes. Given the mediating roles of tryptophan metabolism 

and oxidative stress in allergic respiratory diseases (Bowler and Crapo 2002; Ciprandi et 

al. 2010; Gostner et al. 2016), our findings may provide further information on the 

biological mechanisms deregulated by petrochemical industry exposures that led to 

increased risks in children. Phenylalanine metabolism was also identified in children 

subjects. Phenylalanine, which have been used as an oxidative stress biomarker (Orhan 

et al. 2004), was significantly correlated with exposures and oxidative stress biomarkers 

8-OHDG and HNE-MA, and with HNE-MA, 8-isoPGF2α, and 8-NO2Gua through its 

downstream metabolites hippuric acid, 4-hydroxy benzoic acid, and succinic acid in 

children participants. Since the increase of 8-OHDG levels in high exposure group for 

children participants increased but did not reach statistical significance, our findings 

suggest that urinary tryptophan and phenylalanine could be a potential intermediate 

biomarkers of exposure-induced oxidative stress in children study subjects, before DNA 

damage became significant. In elderly subjects, glycine, serine, and threonine metabolism 

was identified, with related-compounds threonine associating with 8-NO2Gua, serine 

with 8-OHDG, HNE-MA, and 8-NO2Gua, and glyceric acid with HNE-MA and 8-

NO2Gua. The disruption of this pathway is closely related to oncogenic transformation, 

and the biosynthesis of antioxidant glutathione (Amelio et al. 2014). Alanine, aspartate, 

and glutamate metabolism was identified in both children and elderly participants, with 

aspartic acid downregulated in high exposure subjects of both age groups, associated with 

8-NO2Gua in children participants, and with HNE-MA in elderly participants. Previous 
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studies have shown that aspartic acid could increase glutathione levels and decrease lipid 

peroxidation in animal models (Sivakumar et al. 2011). Threonic acid was also identified 

in both age groups as a putative intermediate biomarker, indicating deregulation of its 

precursor, antioxidant ascorbic acid (Gao et al. 2012), associating multiple exposures with 

HNE-MA and 8-NO2Gua in children and all four oxidative stress biomarkers in elderly 

participants. We can draw from these results a complicated web showing the relation 

between exposures and different oxidative stress induced health effects through age-

dependent diverse biological pathways. 

Accidentally but not unexpectedly, we also found some exposure biomarkers in our 

untargeted urine analysis of metabolomes. Decane, dodecane, and tridecane were elevated 

in high exposure groups for both children and elderly subjects. These compounds are 

intermediates in petrochemical industrial productions, and were previously reported as 

potential health risks (IARC 1989b; Williams et al. 2006). We did not locate decane, 

dodecane, or tridecane in human biological pathway analysis, suggesting these 

compounds are from external sources, and can be used as exposure biomarkers of 

petrochemical emissions.  

There are limitations to the present study. First, biomarkers measured in one spot urine 

may have daily variability, and may not be as stable in reflecting exposure to heavy metals 

as those measured in other biospecimens such as hair, which unfortunately was not 

collected in this study. Nevertheless, we believe this would not systemically bias our 

exposure classification because distance-to-source and model-based ambient 

concentrations all showed the same pattern as urine biomarkers. In addition, the 

petrochemical complex has had continuous emissions since operation started in 1999, and 

our study subjects have lived in the area for at least five years. Secondly, the air toxics in 
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this study was limited to PAHs and heavy metals for which we performed biomonitoring. 

SO2, NOx, black carbon, and other toxics whose biomarkers were not measured in this 

study may also contribute to the increase of oxidative stress. Thirdly, we could not rule 

out routes of exposure other than air that could induce oxidative stress, such as water and 

food. Lastly, we could not rule out the possibility of inaccurate metabolite identification 

by library match. 

Urine exposure biomarkers of PAHs and heavy metals V, Ni, As, Cu, Sr, Cd, Hg, and 

Tl were elevated in children and elderly residents living near a petrochemical complex. 

These internal exposures were associated with model-estimated ambient concentrations 

at residential addresses, and could possibly be traced to air toxics emitted by oil refineries 

and coal-fired power plants within the complex. Both children and elderly residents living 

in the pollution-affected area with higher levels of urine exposure biomarkers showed 

changes in urine metabolite profiles which could be linked to increased oxidative stress, 

including oxidative and nitrative DNA damage, and lipid peroxidation. We conclude that 

urine metabolomics could possibly serve as the link to trace multiple air toxics exposure 

to oxidative stress through age-specific biological pathways including tryptophan 

metabolism and phenylalanine metabolism in children subjects, glycine, serine, and 

threonine metabolism in elderly subjects, and alanine, aspartate, and glutamate 

metabolism in both age groups. The identified exposures and metabolic pathways will 

improve risk assessments on developing common complex chronic diseases, such as 

cancers and cardiovascular diseases, as well as allergic respiratory diseases, such as 

allergic rhinitis and asthma, for the residents living near the petrochemical complex if air 

toxics exposure continues in the future. We recommend to significantly reduce air toxics 

emissions from the petrochemical complex to lower residents’ health risks. Our findings 
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also warrant a follow-up study on residents who continue to be affected by petrochemical 

pollution.
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4.2 Part 2. Metabolomics of Children and Adolescents Exposed to Industrial 

Carcinogenic Pollutants 

Based on the age-dependent findings from our Part 1 study, we decided further 

metabolomics studies for the two age groups should be conducted separately. At the same 

time, Yuan et al. and Chen et al. reported increased risk of all cancers for residents living 

near No. 6 Naphtha Cracking Complex (Chen et al. 2018; Yuan et al. 2018). Since 

children exposed to carcinogenic pollutants at critical periods of development have more 

time for chronic adverse health effects such as cancer to manifest, we decided to first 

focus on our children participants in order to identify the association between industrial 

carcinogenic pollutants exposure, serum metabolic changes, and cancer-related early 

health effects including oxidative stress and serum acylcarnitines. We used serum 

samples in our Part 2 study because blood circulates the body covering every tissue and 

organ, carrying all the molecules that are secreted, excreted, or discarded in response to 

physiological needs and stress, and alterations in blood metabolite profile could reflect 

pathological states and the body’s attempt to maintain homeostasis (Psychogios et al. 

2011).  

4.2.1 Results 

Table 8 showed the comparison of basic characteristics, external and internal 

exposure levels, and urine oxidative stress biomarker levels between high and low 

exposure groups of the 107 children participants with serum samples available for 

metabolomics analysis. High exposure group lived 10.57±2.52 km and 10.02±2.73 km 

away from the main emission points of coal-fired power plant and oil refineries, 

respectively, while low exposure group lived 21.81±5.71 km and 20.91±5.44 km away, 
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respectively. High and low exposure group showed no significant difference in age, sex 

distribution, systolic blood pressure (SBP), smoking history, alcohol history, and betelnut 

history. However, high exposure group had higher BMI compared to low exposure group. 

Road area surrounding homes showed no significant difference between the two exposure 

groups at neither 25 m or 500 m buffer. Urine concentrations of exposure biomarkers As, 

Cd, Cr, Ni, 1-OHP, V, and Hg were increased in high exposure group compared to low 

exposure group, with As, Cd, 1-OHP, V, and Hg reaching statistical significance. The 

difference was most profound in 1-OHP and V. Urine concentrations of oxidative stress 

biomarkers showed all four biomarkers were increased in high exposure group compared 

to low exposure group, but the differences were more statistically significant for lipid 

peroxidation biomarkers HNE-MA (p=0.006) and 8-isoPF2α (p=0.09) than DNA damage 

biomarkers 8-OHDG (p=0.21) and 8-NO2Gua (p=0.11). Only 99 out of the 107 subjects 

had available data for urine oxidative stress biomarkers concentrations. 
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Table 8. Comparison of basic characteristics, carcinogens exposure levels, and 

oxidative stress biomarker levels in 107 study subjects. 

 High (n=37)  Low (n=70)  pa 

Basic characteristics        

Age, mean±SD 13.67 ±0.92  13.70 ±0.90  0.84 

Male, n(%) 20 (54.1)  38 (54.3)  0.98 

Systolic blood pressure (SBP), mean±SD 118.7 ±12.96  116.2 ±13.73  0.37 

Body Mass Index (BMI), mean±SD 21.67 ±3.41  20.15 ±3.48  0.04 

Smoke history, n(%) 5 (13.5)  5 (7.1)  0.28 

Drink history, n(%) 5 (13.5)  3 (4.3)  0.12 

Betelnut history, n(%) 1 (2.7)  3 (4.4)  1.00 

External exposuresb, mean±SD        

Distance to coal-fired power plant 10.57 ±2.52  21.81 ±5.71  <0.0001 

Distance to oil refinery 10.02 ±2.73  20.91 ±5.44  <0.0001 

Road area surrounding homes        

25 m buffer 304.1 ±211.4  329.4 ±204.7  0.58 

500 m buffer 70938.4 ±26594.8  64120.1 ±20016.4  0.18 

Internal exposuresc, mean±SD        

Group 1 carcinogen        

Arsenic 60.27 ±42.16  39.62 ±30.18  0.01 

Cadmium 0.34 ±0.34  0.19 ±0.15  0.02 

Chromium 3.24 ±2.96  2.14 ±1.63  0.10 

Nickel 6.69 ±8.72  3.89 ±2.85  0.31 

Group 2A carcinogen        

Lead 0.64 ±0.64  0.66 ±0.65  0.80 

1-OHP 0.19 ±0.14  0.03 ±0.01  <0.0001 

Group 2B carcinogen        

Vanadium 2.46 ±1.64  0.24 ±0.10  <0.0001 

Mercury 3.13 ±2.89  1.86 ±1.88  0.04 

Oxidative stressd, mean±SD        

8-OHDG 3.01 ±2.15  2.63 ±2.86  0.21 

HNE-MA 2.00 ±2.58  1.30 ±2.20  0.006 

8-isoPF2α 3.27 ±3.54  2.06 ±2.18  0.09 

8-NO2Gua 6.49 ±11.77  2.54 ±3.05  0.11 

a Comparison of basic characteristics between the high and low exposure groups for 

continuous variables was performed using Student’s t-test, and for discrete variables, 

Chi-squared test or Fisher’s exact test. Urinary exposure biomarker concentrations are 

log-transformed, high and low exposure groups compared by ANCOVA test adjusting 
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age, sex, smoking, alcohol consumption, betel nut chewing, fish consumption, and BMI 

with a post comparison by Scheffe test. Urinary oxidative stress biomarker 

concentrations are log-transformed, high and low exposure groups compared by 

Student’s t-test. 
b Distance to source: Average of home-to-coal-fired power plant and home-to-oil refinery 

distance, unit: km; Road area surrounding homes unit: m2. 
c For urine 1-OHP, unit: µmol/mol-creatinine; for urine heavy metals, unit: µg/g-

creatinine 
d Urine oxidative stress biomarkers unit: µg/g-creatinine. High exposure group N=34, low 

exposure group N=65. 

Figure 8 showed serum levels of six acylcarnitines that were significantly different in 

high exposure group compared to low exposure group in 107 study subjects. Samples are 

in columns and arranged according to high exposure (red) and low exposure (green) 

groups. Acylcarnitines are in rows and were arranged according to hierarchical clustering 

using Euclidean distance measure and Ward algorithm. The colors vary from deep blue 

to dark brown to indicate data values change from down-regulation (blue) to up-

regulation (brown). We found long-chain acylcarnitines were clustered together and 

down-regulated in high exposure group compared to low exposure group 

(Dodecanoylcarnitine, C12; Tetradecanoylcarnitine, C14; Tetradecenoylcarnitine, C14:1; 

Hexadecenoylcarnitine, C16:1; Pristanoylcarnitine, C19), while short-chain acylcarnitine 

(Hexanoylcarnitine, C6) was up-regulated in high exposure group compared to low 

exposure group.  
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Figure 8. Heat map of serum acylcarnitine levels in 107 study subjects 

PCA showed clear clustering of pooled QC on the score plots shown in Figure 9. 

Metabolomics identified 84 potential metabolite features in study subjects serum samples 

after removing features missing in more than 50% of the samples, 80 of which had 

available HMDB ID number as shown in Appendix 2. 84 potential metabolite features 

were put through PLS-DA analysis, and results showed metabolic profiles between high 

and low exposure groups could be significantly separated by two components that 

accounted for 5.8 % and 9.0 % of variability of metabolic profiles between high and low 

exposure groups, respectively (Accuracy=0.78, R2=0.53, Q2=0.23) (Figure 10A). 

Permutation test was performed to confirm the validity of PLS-DA model (p=0.01). PLS-

DA and ANCOVA analysis adjusting for age, sex, and BMI found 11 exposure-related 

potential metabolite features (average variable importance in projection (VIP) score >1, 

ANCOVA p <0.05), which through in house library search was identified as 10 potential 

metabolites. Two potential metabolites, one detected under positive mode and one under 

negative mode of UHPLC-qTOFMS analysis, were both identified as pyroglutamic acid. 

Figure 10B showed the up- and down-regulation of exposure-related potential metabolites 

in high and low exposure groups. Samples are in columns arranged according to high 

exposure (red) and low exposure (green) groups. Potential metabolites are in rows and 

were arranged according to hierarchical clustering using Euclidean distance measure and 
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Ward algorithm. The colors vary from deep blue to dark brown to indicate data values 

change from down-regulation (blue) to up-regulation (brown). We found potential 

metabolites up-regulated in high exposure group compared to low exposure group were 

clustered together, including ketoleucine, carnitine, isovalerylcarnitine, aspartic acid, and 

octenoyl-L-carnitine, while down-regulated potential metabolites were also clustered 

together, including pyroglutamic acid, adenosine monophosphate (AMP), inosinic acid 

(inosine monophosphate, IMP), oxoglutaric acid, and malic acid (Figure 10B). Pathway 

analysis results showed purine metabolism was the main biological pathway affected by 

multiple exposures (p < 0.05, Impact > 0.1) (data not shown). We identified two exposure-

related potential metabolites involved in purine metabolism, nucleotides AMP and IMP 

(Figure 10B) (Simoni et al. 2007). Through the Comparative Toxicogenomics Database 

(CTD), we found that group 1 carcinogens As, Cd, Cr, and Ni were significantly 

associated with purine metabolism pathway (Bonferroni adjusted p < 0.01). 
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Figure 9. Principle component analysis score plot of 61 pooled quality control (QC) 

samples data from 11 batches detected under (A) negative mode and (B) positive 

mode of UHPLC-qTOFMS metabolomics analysis 

 

Figure 10. Comparison of serum metabolic profile in 107 study subjects using (A) 

PLS-DA score plot (Accuracy=0.78, R2=0.53, Q2=0.23, Permutation p=0.01) and 

(B) heat map of exposure-related potential metabolite levels (average VIP score >1, 

ANOVA p <0.05 are shown adjusted for sex, age, and BMI) 
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Table 9 showed the association between eight individual carcinogens with four 

oxidative stress biomarkers in 99 study subjects. Individually, amongst four group 1 

carcinogens, urinary levels of Cd was positively associated with urinary concentrations 

of 8-NO2Gua (p=0.029). The two group 2A carcinogens was not associated with any of 

the four oxidative stress biomarkers. For the two group 2B carcinogens, V was associated 

with HNE-MA (p=0.003), 8-isoPF2α (p=0.023), and 8-NO2Gua (p=0.004), and Hg was 

associated with 8-OHDG (p=0.008) and HNE-MA (p=0.012). Figure 11A to 11D showed 

the WQS regression analysis of the association of combined eight carcinogens exposure 

with four oxidative stress biomarkers, respectively. Association with all four oxidative 

stress biomarkers were positive and statistically significant with 8-OHDG, HNE-MA, and 

8-NO2Gua, while association with 8-isoPF2α was borderline significant. For 8-OHDG, 

group 2B carcinogen Hg predominated in the mixture index (49.7%) and group 1 

carcinogens Ni, As, and Cd also contributed to the association (p=0.002) (Figure 11A). 

Figure 11B showed group 2B carcinogens Hg (43.3%) and V (31.1%) contributed to over 

half of the mixture index positively associated with HNE-MA levels (p=0.0006), and 

group 1 carcinogens As, Cd, Ni, and Cr also showed contribution. Associations with 8-

isoPF2α was predominated by group 2B carcinogens Hg (36.9%) and V (31.6%), followed 

by group 1 carcinogen Ni (19.4%), with contribution from Cr and As (p=0.08) (Figure 

11C). In Figure 11D, we can see in the mixture index positively associated with 8-

NO2Gua (p=0.0001), group 2B carcinogen V contributed to half of the association 

(50.1%), followed by group 1 carcinogen Ni (32.0%), with contributions from Cd, Cr, 

and As.
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Table 9. Individual association between urine carcinogens and oxidative stress biomarkers in 99 study subjects. 

Linear regression analysis adjusted for sex, age, and BMI 

 

 8-OHDG  HNE-MA  8-isoPF2α  8-NO2Gua 

 Estimate 95% CI p value 

 

Estimate 95% CI p value 

 

Estimate 95% CI p value 

 

Estimate 95% CI p value  

Group 1 carcinogen                       

Arsenic 0.049 (-0.165, 0.263) 0.653 

 

0.092 (-0.163, 0.347) 0.476 

 

-0.096 (-0.321, 0.130) 0.402 

 

0.016 (-0.324, 0.356) 0.925 

Cadmium -0.025 (-0.252, 0.202) 0.831 

 

0.097 (-0.173, 0.366) 0.480 

 

-0.141 (-0.379, 0.097) 0.243 

 

0.391 (0.040, 0.743) 0.029 

Chromium -0.186 (-0.380, 0.007) 0.059 

 

-0.016 (-0.251, 0.219) 0.892 

 

-0.061 (-0.269, 0.147) 0.562 

 

0.120 (-0.192, 0.432) 0.448 

Nickel 0.018 (-0.172, 0.209) 0.848 

 

0.033 (-0.194, 0.260) 0.775 

 

0.126 (-0.073, 0.326) 0.213 

 

0.224 (-0.075, 0.523) 0.140 

Group 2A carcinogen 

  

 

    

 

    

 

    

 

Lead 0.115 (-0.112, 0.341) 0.318 

 

0.158 (-0.112, 0.429) 0.249 

 

-0.135 (-0.374, 0.104) 0.265 

 

-0.033 (-0.397, 0.331) 0.858 

1-OHP 0.094 (-0.057, 0.244) 0.219 

 

0.146 (-0.032, 0.325) 0.107 

 

0.073 (-0.087, 0.232) 0.369 

 

0.188 (-0.050, 0.425) 0.121 

Group 2B carcinogen 

 

 

    

 

    

 

    

 

Vanadium 0.132 (-0.013, 0.276) 0.073 

 

0.254 (0.087, 0.422) 0.003 

 

0.176 (0.025, 0.327) 0.023 

 

0.330 (0.107, 0.554) 0.004 

Mercury 0.246 (0.064, 0.427) 0.008 

 

0.279 (0.062, 0.496) 0.012 

 

0.119 (-0.078, 0.316) 0.233 

 

0.005 (-0.293, 0.304) 0.973 
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Figure 11. Combined associations between internal exposure levels and (A) 8-

OHDG (p=0.002), (B) HNE-MA (p=0.0006), (C) 8-isoPF2α (p= 0.08), and (D) 8-

NO2Gua (p=0.0001) levels based on weighted quantile sum (WQS) regression 

analysis in 99 study subjects. (Adjusted for sex, age, and BMI) 

“Meet-in-the middle” approach identified eight potential metabolites that were both 

carcinogens exposure-related and associated with biomarkers of early health effects. 

Table 10 and 11 showed the level of association between carcinogens exposure-related 

potential metabolites (in rows) and biomarkers of early health effects (in columns). For 

oxidative stress biomarkers, 8-OHDG was significantly associated with pyroglutamic 

acid and inosinic acid, HNE-MA was significantly associated with ketoleucine, octenoyl-

L-carnitine, pyroglutamic acid, AMP, and IMP, 8-isoPF2α was significantly associated 

with octenoyl-L-carnitine, and 8-NO2Gua was not significantly associated with any 

exposure-related potential metabolites (Table 10). Long-chain acylcarnitines C14 and 

C19 were associated with the most number of exposure-related potential metabolites, five 

for C14 (carnitine, octenoyl-L-carnitine, pyroglutamic acid detected in both positive and 

negative modes, IMP) and five for C19 (carnitine, octenoyl-L-carnitine, pyroglutamic 

acid, AMP, IMP). C16:1 was associated with carnitine and octenoyl-L-carnitine. Short-

chain acylcarnitine C6 was associated with four exposure-related potential metabolites 
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including ketoleucine, isovalerylcarnitine, and pyroglutamic acid detected in both 

positive and negative modes (Table 11). Overall, for the exposure-related potential 

metabolites, octenoyl-L-carnitine and pyroglutamic acid were associated with the most 

number of biomarkers of early health effects. Octenoyl-L-carnitine was associated with 

two oxidative stress biomarkers and three long-chain acylcarnitines, and pyroglutamic 

acid was associated with two oxidative stress biomarkers, short-chain acylcarnitine, and 

two long-chain acylcarnitines. Aspartic acid, oxoglutaric acid, and malic acid were not 

significantly associated with any of the biomarkers of early health effects. 
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Table 10. Association between exposure-related potential metabolites and oxidative 

stress biomarkers in 99 study subjects  

(Estimates of linear regression analysis are shown. 95% CI are in brackets. *p<0.05 †p<0.01 ‡p<0.001). 
 

8-OHDG  HNE-MA  8-isoPF2α 8-NO2Gua  

Ketoleucine 0.03 0.10* 0.05 0.09 

(-0.05, 0.11) (2.19E-03, 0.19) (-0.04, 0.13) (-0.03, 0.22) 

Carnitine 2.79E-03 0.05 0.01 -0.02 

(-0.08, 0.09) (-0.05, 0.14) (-0.08, 0.10) (-0.15, 0.11) 

Isovalerylcarnitine -0.05 -0.01 0.03 0.03 

(-0.13, 0.03) (-0.11, 0.09) (-0.05, 0.12) (-0.10, 0.16) 

Aspartic acid -0.03 -0.03 2.84E-04 0.11 

(-0.11, 0.04) (-0.12, 0.07) (-0.08, 0.08) (-0.01, 0.24) 

Octenoyl-L-carnitine 0.05 0.09* 0.08* 0.11 

(-0.03, 0.13) (2.00E-03, 0.18) (4.28E-03, 0.17) (-0.01, 0.23) 

Pyroglutamic acida -0.04 -0.09 0.02 -0.07 

(-0.12, 0.04) (-0.19, 1.89E-03) (-0.07, 0.10) (-0.20, 0.05) 

Pyroglutamic acidb -0.08* -0.09* 0.01 -0.04 

(-0.16, -3.36E-03) (-0.19, -3.48E-04) (-0.07, 0.09) (-0.16, 0.09) 

Adenosine Monophosphate -0.05 -0.11* 0.02 -0.11 

(-0.13, 0.03) (-0.20, -0.02) (-0.07, 0.10) (-0.24, 0.01) 

Inosinic acid -0.08* -0.13† -0.04 -0.08 

(-0.16, -9.14E-04) (-0.23, -0.04) (-0.12, 0.05) (-0.21, 0.05) 

Oxoglutaric acid -0.04 -0.01 1.48E-03 -0.09 

(-0.12, 0.04) (-0.11, 0.08) (-0.08, 0.09) (-0.22, 0.03) 

Malic Acid -0.01 -0.03 0.05 0.01 

(-0.09, 0.07) (-0.12, 0.07) (-0.03, 0.14) (-0.11, 0.14) 

Linear regression model adjusted for age, sex, and BMI.  

Pyroglutamic acid was detected in both a negative and b positive mode.  
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Table 11. Association between exposure-related potential metabolites and acylcarnitines in 107 study subjects 

(Estimates of linear regression analysis are shown. 95% CI are in brackets. *p<0.05 †p<0.01 ‡p<0.001). 

 C6 b C14:1 b C12 b C19 b C14 b C16:1 b 

Ketoleucine 0.31 (0.12, 0.49)† -0.01 (-0.20, 0.17) 0.01 (-0.18, 0.19) -0.04 (-0.23, 0.15) -0.04 (-0.23, 0.15) 4.66E-03 (-0.19, 0.20) 

Carnitine 0.11 (-0.09, 0.31) -0.13 (-0.32, 0.05) -0.16 (-0.34, 0.02) -0.19 (-0.38, -3.39E-03)* -0.25 (-0.43, -0.06)* -0.23 (-0.42, -0.04)* 

Isovalerylcarnitine 0.20 (1.39E-03, 0.40)* 0.08 (-0.11, 0.28) 0.02 (-0.17, 0.21) -0.09 (-0.29, 0.10) -0.14 (-0.34, 0.05) -0.09 (-0.29, 0.11) 

Aspartic acid 0.04 (-0.15, 0.24) -0.09 (-0.27, 0.09) -0.14 (-0.31, 0.04) -0.02 (-0.21, 0.16) -0.10 (-0.28, 0.11) -0.08 (-0.27, 0.11) 

Octenoyl-L-carnitine 0.13 (-0.06, 0.32) -0.12 (-0.30, 0.06) -0.12 (-0.30, 0.05) -0.32 (-0.49, -0.14)‡ -0.21 (-0.39, -0.03)* -0.19 (-0.38, -0.01)* 

Pyroglutamic acida -0.39 (-0.57, -0.32)‡ 0.17 (-0.01, 0.36) 0.13 (-0.05, 0.32) 0.27 (0.09, 0.46)† 0.21 (0.02, 0.39)* 0.19 (-0.01, 0.38) 

Pyroglutamic acidb -0.32 (-0.50, -0.13)† 0.13 (-0.05, 0.31) 0.07 (-0.11, 0.25) 0.17 (-0.01, 0.35) 0.20 (0.02, 0.39)* 0.14 (-0.05, 0.33) 

Adenosine Monophosphate 0.03 (-0.17, 0.22) 0.08 (-0.10, 0.27) 0.15 (-0.02, 0.33) 0.34 (0.17, 0.52)‡ 0.18 (-2.75E-03, 0.36) 0.09 (-0.10, 0.28) 

Inosinic acid -0.06 (-0.25, 0.13) 0.01 (-0.17, 0.19) 0.05 (-0.13, 0.23) 0.48 (0.31, 0.64)‡ 0.20 (0.02, 0.38)* 0.05 (-0.15, 0.24) 

Oxoglutaric acid 0.05 (-0.14, 0.25) 0.13 (-0.05, 0.32) 0.08 (-0.10, 0.26) 0.13 (-0.06, 0.31) 0.09 (-0.09, 0.28) 0.12 (-0.07, 0.31) 

Malic Acid 0.06 (-0.14, 0.25) 0.14 (-0.04, 0.32) 0.14 (-0.04, 0.32) 0.17 (-0.01, 0.36) 0.15 (-0.03, 0.34) 0.08 (-0.11, 0.27) 

Linear regression model adjusted for age, sex, and BMI.  

Pyroglutamic acid was detected in both a negative and b positive mode.
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4.2.2 Discussion 

Previous studies have reported exposure to individual carcinogens As, Cd, Cr, Ni, 

Pb, PAHs, V, and Hg can induce oxidative stress through production of reactive radicals 

and/or depletion of anti-oxidants (Fu et al. 2012; Jomova and Valko 2011; Valko et al. 

2005). However, these studies mostly focused on the association between single 

carcinogen exposure and oxidative stress, and only occupational exposure studies in 

adults reported the association between multiple heavy metals exposure and oxidative 

stress (Ko et al. 2017). Our subjects were exposed to multiple carcinogens and therefore 

it was difficult to find one-to-one association between specific carcinogens and oxidative 

stress. The level of which each carcinogen induced oxidative stress may also vary, 

especially in a mixture. The strength of our study is that we applied WQS regression 

analysis and showed in children and adolescents, exposure to a mixture of eight 

environmental carcinogens was positively associated with four oxidative stress 

biomarkers, and both group 1 and group 2 carcinogens contributed to this association.  

Our study is the first to report multiple carcinogens exposure could be associated 

with alterations in serum acylcarnitine levels in children and adolescents. Our findings 

support a previous study of adults occupationally exposed to metal-containing welding 

fumes who had significant decrease in short- and long-chain acylcarnitines (Shen et al. 

2018). Previous studies have suggested acylcarnitines to be suitable candidates for cancer 

diagnosis (Ni et al. 2016). Interestingly, the up- and down-regulation of short- and long-

chain acylcarnitines vary by cancer types and studies. Ni et al. reported both short-chain 

and long-chain acylcarnitines were significantly increased in lung cancer patients 

compared to healthy control subjects (Ni et al. 2016). Another study showed significant 
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decrease of short-chain acylcarnitines in early stage non-small-cell lung cancer patients 

(Klupczynska et al. 2017). In hepatocellular carcinoma patients, short-chain 

acylcarnitines were decreased and long-chain acylcarnitines were increased compared to 

control subjects (Chen et al. 2013; Zhou et al. 2012b). We identified serum acylcarnitine 

deregulations in children and adolescents exposed to multiple carcinogens that has been 

reported in cancer patients, which may imply the possibility of increased cancer risk. 

Deregulation in purine metabolism has been associated with early stage cancer 

development and cancer progression (Bester et al. 2011). Purine metabolism is involved 

in energy production and signal transduction, and the enzymes and metabolites from this 

pathway can mediate oxidative stress through reactive species and anti-oxidant 

productions (Cantu-Medellin and Kelley 2013; Maiuolo et al. 2016; Pedley and Benkovic 

2017). Our findings suggest multiple carcinogens exposure can induce perturbations in 

purine metabolism and link to increased oxidative stress and altered serum acylcarnitine 

levels.  

Multiple carcinogens exposure were also associated with several potential 

metabolites in this study which could not be summarized in pathway analysis, but are 

involved in important biological mechanisms and have been reported in cancer studies. 

These potential metabolites included aspartic acid, an amino acid that has been reported 

to be involved in oxidative stress regulations (Sivakumar et al. 2011). Carnitine and citrate 

cycle-related metabolites malic acid and oxoglutaric acid were also identified, and 

carnitine was associated with acylcarnitines. Carnitine cooperates with acylcarnitines 

transporting fatty acids into mitochondria for β-oxidation, forming acetyl-CoA that enters 

the citrate cycle (Semba et al. 2017). These findings suggest multiple carcinogens 

exposure in children and adolescents may affect fatty acid oxidation and energy 
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production mechanisms leading to deregulation of acylcarnitines. Multiple carcinogens 

exposure in children and adolescents also affected pyroglutamic acid, an intermediate 

metabolite of anti-oxidant glutathione, and was linked to oxidative stress biomarkers and 

acylcarnitines (Kumar and Bachhawat 2012). Interestingly, four of the exposure-related 

potential metabolites we identified also showed similar patterns of alteration in early stage 

non-small cell carcinoma patients, including increased serum aspartic acid and carnitine, 

and decreased serum malic acid and pyroglutamic acid (Klupczynska et al. 2016a; 

Klupczynska et al. 2016b; Klupczynska et al. 2017). Our findings suggest multiple 

carcinogens exposure may have diverse effects on children and adolescents, causing 

disruptions in various biological mechanisms such as fatty acid oxidation, energy 

production, oxidative stress, and amino acid metabolism. 

In this study, we found children and adolescents living near a petrochemical complex 

had increased exposure to multiple carcinogens which induced metabolic changes 

associated with early health effects including increased oxidative stress and altered serum 

acylcarnitines, both of which may lead to increased cancer risk. Our findings may provide 

an explanation for increased cancer incidence among adult residents living near the same 

petrochemical complex reported in previous studies (Chen et al. 2018; Yuan et al. 2018). 

There are limitations to this study. Firstly, we analyzed metabolomics using single 

analytical platform which limited the number of potential metabolite features detected, 

and cannot provide a comprehensive view of the metabolome. Secondly, we applied in-

house library match using m/z for metabolite identification and therefore could not rule 

out the possibility of inaccurate metabolite identification and could not provide exact 

quantification of potential metabolites. Thirdly, our sample size was limited, which could 

possibly explain why three of the four oxidative stress biomarkers were increased but did 
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not reach statistically significant difference between high and low exposure groups. Lastly, 

this is a cross-sectional study using single urine and serum samples, and therefore we 

could not confirm biomarker stability and could not be certain if the potential metabolites 

we identified can serve as life-long indicators of increased cancer risk. 

Our findings imply multiple carcinogens exposure during critical periods of 

childhood and adolescence development induce metabolic perturbations in children and 

adolescents linking to early health effects that may contribute to cancer risk later in life. 

This indicates significant reduction of toxic emissions from the complex could decrease 

carcinogens exposure and metabolic abnormities, which may potentially reduce cancer 

risks in children and adolescents living nearby. We recommend longitudinal 

epidemiological studies in this area to follow up on children and adolescents’ health if 

carcinogens emission continues in the near future. 
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4.3 Part 3. Lipidomics of Children and Adolescents Exposed to Industrial 

Pollutants. 

Part 2 of our study focused on carcinogenic pollutants and cancer-related biological 

mechanisms and pathways. Previous epidemiological studies have reported increased 

risks of other chronic and acute adverse health effects for residents in this industrial 

community, including CKD, hyperlipidemia, subclinical liver dysfunctions, and allergic 

respiratory diseases (Chiang et al. 2016; Wang et al. 2019; 柯登元 2016; 孫稚翔 2017; 

莊明潔  2018). We aim in Part 3 of our study to use serum lipidomics to identify 

intermediate biomarkers linking multiple industrial pollutants exposure and biomarkers 

of early health effects, that have also been implicated in chronic and acute diseases. 

4.3.1 Results 

Serum samples from the same 107 children and adolescents that participated in the 

Part 2 study were analyzed for untargeted lipidomics. Figure 12 showed the PCA score 

plot of 61 QC samples from 13 batches of analysis, with all five QCs analyzed in batch 

13 (displayed names s13-1 to s13-5) outside of the 95% confidence interval. We removed 

data from eight participants in batch 13, leaving 99 out of 107 participants for statistical 

analysis. Table 12 showed the comparison of basic characteristics, external and internal 

exposure levels, and urine oxidative stress biomarker levels between high and low 

exposure groups of the 99 children participants included in serum lipidomics analysis. 

High exposure group lived 10.71±2.33 km and 10.20±2.18 km away from the main 

emission points of coal-fired power plant and oil refineries, respectively, while low 

exposure group lived 21.66±5.81 km and 20.77±5.54 km away, respectively. High and 

low exposure group showed no significant difference in age, sex distribution, SBP, 

aspartate transaminase (AST), smoking history, and betelnut history. However, high 
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exposure group had significantly higher BMI and number of children with drinking 

history compared to low exposure group, and alanine transaminase (ALT) was also higher 

with borderline statistical significance. Road area surrounding homes showed no 

significant difference between the two exposure groups at neither 25 m or 500 m buffer. 

Urine concentrations of exposure biomarkers As, Cd, Cr, Ni, 1-OHP, V, Hg, Mn, Cu, Sr, 

and Tl were increased in high exposure group compared to low exposure group, with As, 

Cd, 1-OHP, V, Hg, Sr, and Tl reaching statistical significance. The difference was most 

profound in 1-OHP, V, and Tl. Urine concentrations of oxidative stress biomarkers 

showed all four biomarkers were increased in high exposure group compared to low 

exposure group, but only HNE-MA reached statistical significance (p=0.010), and 8-

NO2Gua reaching borderline significance (p=0.059). Only 97 out of the 99 subjects had 

available data for urine oxidative stress biomarkers concentrations. 
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Figure 12. Principle component analysis score plot of 61 pooled quality control 

(QC) samples data from 13 batches detected using UHPLC-qTOFMS analysis 
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Table 12. Comparison of basic characteristics, exposure levels, and oxidative stress 

biomarker levels in 99 study subjects. 

 High (n=34)  Low (n=65)  pa 

Basic characteristics        

Age, mean±SD 13.65 ±0.94  13.70 ±0.93  0.785 

Male, n(%) 18 (52.9)  35 (53.9)  0.932 

SBP, mean±SD 118.3 ±13.44  116.2 ±14.06  0.480 

BMI, mean±SD 21.54 ±3.25  20.07 ±3.55  0.047 

ASTb, mean±SD 20.24 ±3.03  20.54 ±4.25  0.683 

ALTb, mean±SD 14.68 ±5.98  12.57 ±5.14  0.070 

Smoke history, n(%) 4 (11.8)  4 (6.2)  0.441 

Drink history, n(%) 5 (14.7)  2 (3.1)  0.045 

Betelnut history, n(%) 1 (2.9)  2 (3.1)  1.000 

External exposuresc, mean±SD        

Distance to coal-fired power plant 10.71 ±2.33  21.66 ±5.81  <0.0001 

Distance to oil refinery 10.20 ±2.18  20.77 ±5.54  <0.0001 

Road area surrounding homes        

25 m buffer 303.2 ±213.5  324.4 ±210.5  0.665 

500 m buffer 69973.4 ±26069.9  63749.4 ±20308.0  0.195 

Internal exposuresd, mean±SD        

Arsenic 61.99 ±43.53  38.67 ±27.47  0.006 

Cadmium 0.34 ±0.35  0.19 ±0.15  0.014 

Chromium 3.20 ±3.08  2.14 ±1.66  0.289 

Nickel 7.13 ±8.97  3.95 ±2.92  0.258 

Lead 0.66 ±0.66  0.67 ±0.67  0.899 

1-OHP 0.20 ±0.15  0.03 ±0.01  <0.0001 

Vanadium 2.27 ±1.46  0.23 ±0.10  <0.0001 

Mercury 3.24 ±2.96  1.86 ±1.86  0.033 

Manganese 2.10 ±2.16  1.22 ±0.76  0.108 

Copper 14.63 ±8.60  10.83 ±7.71  0.076 

Strontium 144.68 ±155.63  72.95 ±65.90  0.004 

Thallium 2.05 ±3.94  0.21 ±0.12  <0.0001 

Oxidative stresse, mean±SD        

8-OHDG 3.01 ±2.18  2.64 ±2.88  0.219 

HNE-MA 1.60 ±1.19  1.31 ±2.21  0.010 

8-isoPF2α 2.88 ±2.77  2.07 ±2.19  0.145 

8-NO2Gua 6.68 ±11.90  2.53 ±3.07  0.059 

a Comparison of basic characteristics between the high and low exposure groups for 
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continuous variables was performed using Student’s t-test, and for discrete variables, Chi-

squared test or Fisher’s exact test. Urinary exposure biomarker concentrations are log-

transformed, high and low exposure groups compared by ANCOVA test adjusting age, 

sex, smoking, alcohol consumption, betel nut chewing, fish consumption, and BMI with 

a post comparison by Scheffe test. Urinary oxidative stress biomarker concentrations are 

log-transformed, high and low exposure groups compared by Student’s t-test. 
b Unit: IU/L 
c Distance to source: Average of home-to-coal-fired power plant and home-to-oil refinery 

distance, unit: km; Road area surrounding homes unit: m2. 
d For urine 1-OHP, unit: µmol/mol-creatinine; for urine heavy metals, unit: µg/g-

creatinine 
e Urine oxidative stress biomarkers unit: µg/g-creatinine. High exposure group N=33, low 

exposure group N=64. 

SBP: Systolic blood pressure; BMI: Body Mass Index; AST: aspartate transaminase; ALT: 

alanine transaminase; TC: total cholesterol; HDL-C: high-density lipoprotein cholesterol; 

LDL-C: low-density lipoprotein cholesterol; TC: triacylglycerol;  

Figure 13 showed serum levels of eight acylcarnitines that were significantly 

different in high exposure group compared to low exposure group in 99 study subjects. 

Samples are in columns and arranged according to high exposure (red) and low exposure 

(green) groups. Acylcarnitines are in rows and arranged according to hierarchical 

clustering using Euclidean distance measure and Ward algorithm. The colors vary from 

deep blue to dark brown to indicate data values change from down-regulation (blue) to 

up-regulation (brown). We found long-chain acylcarnitines were clustered together and 

down-regulated in high exposure group compared to low exposure group 

(Dodecanoylcarnitine, C12; Tetradecanoylcarnitine, C14; Tetradecenoylcarnitine, C14:1; 

Pentadecanoylcarnitine, C15; Hexadecenoylcarnitine, C16:1; Linoleylcarnitine, C18:2; 

Pristanoylcarnitine, C19), while short-chain acylcarnitine (Hexanoylcarnitine, C6) was 

up-regulated in high exposure group compared to low exposure group. 
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Figure 13. Heat map of serum acylcarnitine levels in 99 study subjects 

Lipidomics identified 134 potential lipid features in study subjects serum samples 

after removing features missing in more than 50% of the samples, and with >20% RSD 

in QC samples. These 134 lipid features corresponded to 64 lipid species from six lipid 

subclasses that could be classified into two lipid categories, glycerophospholipids 

(including three lipid subclasses: lysophosphatidylcholine (LPC), phosphatidylcholine 

(PC), and phosphatidylinositol (PI)) and sphingolipids (including three lipid subclasses: 

ceramide (CER), cerebroside (CB), and sphingomyelin (SM)) (Appendix 3). All 134 

potential lipid features were put through PLS-DA analysis, and results showed lipid 

profiles between high and low exposure groups could be significantly separated by three 

components that accounted for 13.6, 6.9, and 7.7 % of variability of lipid profiles between 

high and low exposure groups, respectively (Accuracy=0.85, R2=0.66, Q2=0.42) (Figure 

14A). Permutation test was performed to confirm the validity of PLS-DA model (p < 

0.01). PLS-DA and ANCOVA analysis adjusting for age, sex, and BMI found 18 

exposure-related potential lipid features (average variable importance in projection (VIP) 

score >1, ANCOVA p <0.05). Figure 14B showed the up- and down-regulation of 

exposure-related potential lipids in high and low exposure groups. Samples are in 

columns arranged according to high exposure (red) and low exposure (green) groups. 

Potential lipids are in rows and arranged according to hierarchical clustering using 
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Euclidean distance measure and Ward algorithm. The colors vary from deep blue to dark 

brown to indicate data values change from down-regulation (blue) to up-regulation 

(brown). We found potential lipids up-regulated in high exposure group compared to low 

exposure group included one LPC, four PCs, and two SMs, while down-regulated 

potential lipids included three LPCs, five PCs, two PIs, and one SM (Figure 14B).  
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(A) 

 

(B) 

 

Figure 14. Comparison of serum lipid profile in 99 study subjects using (A) PLS-

DA score plot (Accuracy=0.85, R2=0.66, Q2=0.42, Permutation test p <0.01) and (B) 

heat map of exposure-related potential metabolite levels (average VIP score >1, 

ANOVA p <0.05 are shown adjusted for sex, age, and BMI). 

PC: phosphatidylcholine; LPC: lysophosphatidylcholine; SM: sphingomyelin; PI: 

phosphatidylinositol; chain length and number of cis-double bonds are shown in 

brackets   
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Table 13 showed the association between 12 individual carcinogens with four 

oxidative stress biomarkers in 97 study subjects. Individually, 8-OHDG was significantly 

associated with Hg (p=0.010), while association with Cr (p=0.060) and Sr (p=0.078) were 

borderline significant. HNE-MA was significantly associated with V (p=0.013), Hg 

(p=0.013), and Mn (p=0.039), while association with Tl was borderline significant 

(p=0.068). For 8-isoPF2α, there was only borderline significant association with V 

(p=0.053). For 8-NO2Gua, the association with Cd (p=0.024), V (p=0.002), and Tl 

(p=0.001) all reached statistical significance. Figure 15A to 15D showed the WQS 

regression analysis of the association of combined 12 carcinogens exposure with four 

oxidative stress biomarkers, respectively. Association were positive and statistically 

significant with 8-OHDG, HNE-MA, and 8-NO2Gua. Associations with 8-isoPF2α was 

positive but did not reach statistical significance (p=0.102). For 8-OHDG, Hg 

predominated in the mixture index (38.7%) followed by Sr (15.9%) (p=0.009) (Figure 

15A). Figure 15B showed Hg (25.6%), Mn (21.9%), and V (21.0%) contributed to over 

half of the mixture index positively associated with HNE-MA levels (p=0.0005), and Tl 

also contributed to the association (10.3%). Associations with 8-isoPF2α was 

predominated by Hg (25.7%), V (22.9%), and Ni (20.9%), with contributions from Mn 

(14.4%) (Figure 15C). In Figure 15D, we can see in the mixture index positively 

associated with 8-NO2Gua (p=0.00008), V (43.2%) contributed to nearly half of the 

association, followed by Tl (14.8%) and Ni (14.4%). 
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Table 13. Individual association between urine exposure biomarkers and oxidative stress biomarkers in 97 study subjects.  

Linear regression analysis adjusted for sex, age, and BMI 

 8-OHDG  HNE-MA  8-isoPF2α  8-NO2Gua 

 Estimate 95% CI p value 

 

Estimate 95% CI p value 

 

Estimate 95% CI p value 

 

Estimate 95% CI p value  

Arsenic 0.026 (-0.069, 0.121) 0.588  0.053 (-0.056, 0.161) 0.337  -0.043 (-0.141, 0.055) 0.388  0.002 (-0.149, 0.153) 0.978 

Cadmium -0.014 (-0.116, 0.086) 0.773  0.035 (-0.080, 0.151) 0.545  -0.060 (-0.164, 0.043) 0.251  0.179 (0.024, 0.335) 0.024 

Chromium -0.081 (-0.166, 0.003) 0.060  0.010 (-0.109, 0.089) 0.846  -0.031 (0.120, 0.058) 0.491  0.054 (-0.082, 0.190) 0.434 

Nickel 0.009 (-0.075, 0.919) 0.840  0.016 (-0.079, 0.111) 0.740  0.055 (-0.030, 0.141) 0.200  0.097 (-0.034, 0.227) 0.145 

Lead 0.049 (-0.050, -.148) 0.331  0.066 (-0.048, 0.180) 0.252  -0.059 (-0.161, 0.043) 0.256  -0.013 (-0.172, 0.146) 0.871 

1-OHP 0.038 (-0.027, 0.105) 0.247  0.054 (-0.021, 0.130) 0.157  0.025 (-0.044, 0.093) 0.471  0.087 (-0.017, 0.191) 0.098 

Vanadium 0.054 (-0.010, 0.119) 0.099  0.093 (0.020, 0.165) 0.013  0.065 (-0.001, 0.132) 0.053  0.161 (0.062, 0.259) 0.002 

Mercury 0.106 (0.026, 0.185) 0.010  0.117 (0.025, 0.208) 0.013  0.051 (-0.033, 0.136) 0.231  0.005 (-0.126, 0.135) 0.943 

Manganese 0.029 (-0.087, 0.144) 0.624  0.136 (0.007, 0.265) 0.039  0.049 (-0.070, 0.167) 0.418  0.098 (-0.084, 0.279) 0.288 

Copper 0.014 (-0.124, 0.151) 0.842  0.029 (-0.128, 0.186) 0.716  -0.038 (-0.179, 0.104) 0.596  0.086 (-0.131, 0.303) 0.434 

Strontium 0.075 (-0.009, 0.159) 0.078  0.054 (-0.043, 0.151) 0.270  -0.008 (-0.096, 0.080) 0.861  0.103 (-0.030, 0.236) 0.128 

Thallium -0.016 (-0.088, 0.055) 0.650  0.075 (-0.006, 0.156) 0.068  0.038 (-0.036, 0.116) 0.308  0.192 (0.086, 0.299) 0.001 
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Figure 15. Combined associations between internal exposure levels and (A) 8-

OHDG (p=0.009), (B) HNE-MA (p=0.0005), (C) 8-isoPF2α (p= 0.1022), and (D) 8-

NO2Gua (p=0.00008) levels based on weighted quantile sum (WQS) regression 

analysis in 97 study subjects.  

(Adjusted for sex, age, and BMI) 

“Meet-in-the middle” approach identified ten potential lipids that were both 

exposure-related and associated with at least one oxidative stress biomarker (Table 14), 

and 16 that were both exposure-related and associated with at least one serum 

acylcarnitine (Table 15). Table 14 and 15 showed the level of association between 

exposure-related potential lipids (in rows) and biomarkers of early health effects (in 

columns). For oxidative stress biomarkers, 8-OHDG was significantly associated with 

three LPCs and two PCs. HNE-MA was significantly associated with five PCs, and one 

SM. 8-isoPF2α was not significantly associated with any potential lipids, and 8-NO2Gua 

was significantly associated with one PC. For serum acylcarnitines, short-chain 

acylcarnitine (C6) was significantly associated with one LPC, three PCs, two PIs, and 
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two SMs. While long-chain acylcarnitines were each significantly associated with at least 

eight potential lipids. C14 was significantly associated with the most number of potential 

lipids, 11 including one LPC, eight PCs, and two PIs. C19 was associated with with ten 

potential lipids, C12 and C16.1 with nine, C14.1 and C15 with eight, and C18.2 with six. 

Overall, only C18.2 was associated with LPC(18:1), and it is also the only long-chain 

acylcarnitine associated with SMs.  
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Table 14. Association between exposure-related potential lipids and oxidative stress 

biomarkers in 97 study subjects 

 (Estimates of linear regression analysis are shown. 95% CI are in brackets. *p<0.05 

†p<0.01 ‡p<0.001). 

 8-OHDG HNEMA 8-isoPF2α 8-NO2Gua 

LPC (17:0) -0.084* -0.066 -0.056 -0.081 

 (-0.166, -0.002) (-0.161, 0.028) (-0.142, 0.030) (-0.213, 0.050) 

LPC (18:1) 0.023 0.014 -0.010 0.071 

 (-0.058, 0.103) (-0.078, 0.107) (-0.094, 0.073) (-0.057, 0.198) 

LPC (19:0) -0.092* -0.082 -0.026 -0.022 

 (-0.174, -0.010) (-0.177, 0.013) (-0.113, 0.061) (-0.156, 0.112) 

LPC (22:6) -0.080* -0.069 -0.012 -0.073 

 (-0.159, -0.002) (-0.160, 0.022) (-0.095, 0.070) (-0.200, 0.053) 

PC (16:0/20:1) 0.053 0.104* 0.069 0.145* 

 (-0.030, 0.135) (0.012, 0.197) (-0.016, 0.153) (0.017, 0.273) 

PC (18:0/18:0)  -0.052 -0.120* -0.008 -0.087 

 (-0.137, 0.033) -(0.214, -0.025) (-0.096, 0.080) (-0.221, 0.047) 

PC (18:2/14:0)  0.097* 0.115* 0.015 0.047 

 (0.017, 0.176) (0.025, 0.206) (-0.070, 0.099) (-0.082, 0.176) 

PC (18:2/17:1) 0.078 0.117* 0.032 0.031 

 (-0.003, 0.159) (0.026, 0.208) (-0.053, 0.117) (-0.099, 0.161) 

PC (18:2/20:2)  -0.079 -0.087 -0.024 -0.114 

 (-0.161, 0.003) -(0.181, 0.007) (-0.110, 0.062) (-0.244, 0.016) 

PC (18:2/20:5) 0.061 0.128† 0.065 0.067 

 (-0.025, 0.146) (0.033, 0.223) (-0.023, 0.153) (-0.069, 0.203) 

PC (18:3/18:2) -0.090* -0.029 0.022 -0.048 

 (-0.170, -0.010) (-0.122, 0.065) (-0.062, 0.106) (-0.177, 0.082) 

PC (20:1/18:0)  0.047 0.046 -0.020 -0.036 

 (-0.036, 0.130) (-0.049, 0.141) (-0.106, 0.066) (-0.168, 0.096) 

PC (20:4/16:0)  -0.037 -0.036 0.058 -0.032 

 (-0.119, 0.045) (-0.130, 0.058) (-0.026, 0.142) (-0.162, 0.099) 

PI (32:1) -0.055 -0.063 0.011 -0.095 

 (-0.138, 0.027) (-0.157, 0.032) (-0.075, 0.097) (-0.225, 0.035) 

PI (34:3) 0.003 -0.039 0.018 -0.058 

 (-0.082, 0.088) (-0.136, 0.057) (-0.070, 0.105) (-0.192, 0.076) 
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SM (d18:1/21:0) 0.004 0.093* 0.020 0.017 

 (-0.078, 0.086) (0.001, 0.185) (-0.065, 0.105) (-0.112, 0.147) 

SM (d18:1/22:0)  -0.018 -0.045 -0.020 0.083 

 (-0.100, 0.063) (-0.138, 0.048) (-0.104, 0.064) (-0.045, 0.211) 

SM (d18:1/25:0) 0.002 0.064 0.032 0.064 

 (-0.080, 0.084) (-0.029, 0.157) (-0.053, 0.116) (-0.065, 0.194) 

Linear regression model adjusted for age, sex, and BMI. PC: phosphatidylcholine; LPC: 

lysophosphatidylcholine; SM: sphingomyelin; PI: phosphatidylinositol; tail lengths and 

number of cis-double bonds are shown in brackets. 
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Table 15. Association between exposure-related potential lipids and acylcarnitines in 99 study subjects 

(Estimates of linear regression analysis are shown. 95% CI are in brackets. *p<0.05 †p<0.01 ‡p<0.001). 

 C6 C12 C14 C14.1 C15 C16.1 C18.2 C19 

LPC (17:0) -0.164 -0.006 0.085 0.045 0.062 0.064 0.040 0.017 

 (-0.353, 0.026) (-0.198, 0.185) (-0.115, 0.284) (-0.151, 0.242) (-0.139, 0.263) (-0.139, 0.267) (-0.169, 0.250) (-0.183, 0.217) 

LPC (18:1) -0.169 -0.045 -0.079 -0.137 -0.102 -0.137 0.357‡ -0.150 

 (-0.353, 0.015) (-0.231, 0.141) (-0.273, 0.115) (-0.327, 0.052) (-0.297, 0.092) (-0.333, 0.058) (0.167, 0.547) (-0.342, 0.043) 

LPC (19:0) -0.209* 0.081 0.219* 0.105 0.104 0.089 -0.027 0.147 

 (-0.398, -0.020) (-0.111, 0.274) (0.022, 0.415) (-0.092, 0.302) (-0.098, 0.305) (-0.115, 0.293) (-0.238, 0.184) (-0.052, 0.347) 

LPC (22:6) -0.001 0.096 0.185 0.185 0.291† 0.225* -0.155 0.188 

 (-0.187, 0.185) (-0.088, 0.280) (-0.004, 0.375) (-0.001, 0.372) (0.106, 0.476) (0.035, 0.416) (-0.355, 0.045) (-0.002, 0.377) 

PC (16:0/20:1) 0.146 -0.305‡ -0.298† -0.349† -0.306† -0.377‡ -0.272‡ -0.397‡ 

 (-0.041, 0.333) (-0.483, -0.127) (-0.485, -0.110) (-0.529, -0.169) (-0.494, -0.118) (-0.561, -0.192) (-0.471, -0.074) (-0.576, -0.217) 

PC (18:0/18:0)  -0.114 0.355‡ 0.340† 0.270† 0.068 0.217* 0.149 0.443‡ 

 (-0.309, 0.080) (0.175, 0.536) (0.148, 0.531) (0.077, 0.462) (-0.137, 0.272) (0.016, 0.419) (-0.062, 0.360) (0.261, 0.626) 

PC (18:2/14:0)  0.261‡ -0.197* -0.356‡ -0.269† -0.276† -0.339‡ -0.045 -0.452‡ 

 (0.082, 0.440) (-0.379, -0.015) (-0.536, -0.175) (-0.453, -0.086) (-0.463, -0.088) (-0.524, -0.155) (-0.249, 0.158) (-0.623, -0.281) 

PC (18:2/17:1) 0.037 -0.236* -0.347‡ -0.186 -0.146 -0.192 0.215* -0.423‡ 

 (-0.151, 0.225) (-0.417, -0.056) (-0.529, -0.166) (-0.375, 0.002) (-0.341, 0.048) (-0.387, 0.002) (0.016, 0.415) (-0.598, -0.248) 

PC (18:2/20:2)  -0.243* 0.223* 0.336† 0.306† 0.348‡ 0.333‡ 0.086 0.357‡ 

 (-0.428, -0.057) (0.037, 0.408) (0.149, 0.522) (0.120, 0.492) (0.160, 0.535) (0.143, 0.523) (-0.122, 0.294) (0.171, 0.542) 
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PC (18:2/20:5) 0.269‡ -0.178 -0.310† -0.156 -0.186 -0.101 0.014 -0.295‡ 

 (0.077, 0.460) (-0.372, 0.016) (-0.506, -0.113) (-0.357, 0.044) (-0.391, 0.018) (-0.309, 0.108) (-0.203, 0.230) (-0.493, -0.097) 

PC (18:3/18:2) -0.056 0.339‡ 0.371‡ 0.374‡ 0.306‡ 0.320‡ 0.005 0.427‡ 

 (-0.243, 0.132) (0.166, 0.513) (0.191, 0.551) (0.197, 0.550) (0.120, 0.493) (0.133, 0.507) (-0.199, 0.210) (0.252, 0.602) 

PC (20:1/18:0)  -0.068 0.220* 0.118 0.134 0.057 0.141 0.371‡ 0.123 

 (-0.259, 0.123) (0.035, 0.404) (-0.079, 0.315) (-0.060, 0.327) (-0.143, 0.257) (-0.058, 0.341) (0.177, 0.565) (-0.074, 0.321) 

PC (20:4/16:0)  -0.135 0.280‡ 0.364‡ 0.361‡ 0.315‡ 0.365‡ 0.115 0.352‡ 

 (-0.322, 0.052) (0.101, 0.459) (0.182, 0.546) (0.182, 0.539) (0.128, 0.502) (0.180, 0.550) (-0.090, 0.319) (0.169, 0.535) 

PI (32:1) -0.192* 0.238* 0.318† 0.320† 0.335‡ 0.345‡ 0.103 0.330‡ 

 (-0.379, -0.005) (0.054, 0.421) (0.130, 0.506) (0.136, 0.505) (0.147, 0.523) (0.156, 0.534) (-0.104, 0.310) (0.143, 0.517) 

PI (34:3) -0.204* 0.177 0.318† 0.212* 0.311‡ 0.280‡ 0.200 0.285‡ 

 (-0.390, -0.017) (-0.010, 0.363) (0.130, 0.506) (0.021, 0.402) (0.121, 0.501) (0.086, 0.473) (-0.004, 0.404) (0.095, 0.475) 

SM (d18:1/21:0) -0.048 0.025 -0.048 0.047 0.130 0.006 -0.008 -0.095 

 (-0.237, 0.140) (-0.162, 0.213) (-0.243, 0.148) (-0.145, 0.240) (-0.066, 0.326) (-0.193, 0.205) (-0.213, 0.198) (-0.291, 0.100) 

SM (d18:1/22:0)  0.186* -0.100 -0.123 -0.066 -0.114 -0.180 -0.327‡ 0.063 

 (0.002, 0.369) (-0.286, 0.086) (-0.316, 0.071) (-0.258, 0.126) (-0.309, 0.081) (-0.375, 0.014) (-0.520, -0.134) (-0.132, 0.258) 

SM (d18:1/25:0) 0.216* -0.136 -0.143 -0.118 -0.037 -0.144 -0.255† -0.153 

 (0.032, 0.400) (-0.322, 0.050) (-0.337, 0.052) (-0.310, 0.074) (-0.235, 0.161) (-0.341, 0.053) (-0.454, -0.056) (-0.347, 0.041) 

Linear regression model adjusted for age, sex, and BMI. PC: phosphatidylcholine; LPC: lysophosphatidylcholine; SM: sphingomyelin; PI: 

phosphatidylinositol; tail lengths and number of cis-double bonds are shown in brackets.  
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4.3.2  Discussion 

This is the first study to use an untargeted lipidomics approach to examine changes 

in serum lipid profile after multiple industrial pollutants exposure that could be linked to 

early health effects in children and adolescents. Previous studies mostly used animal 

models and focused on single toxic exposure. Li et al. reported PAH benzo[a]pyrene 

exposure reduced levels of serum LPC(18:0) and LPC(22:0), serum PCs with a total of 

36-40 carbons in the two acyl chains, and serum PIs in mice (Li et al. 2019). Low dose 

Cd exposure in rat model led to decreased serum PC(18:4/18:0) and increased LPC(20:0) 

(Hu et al. 2018). Serum analysis of mice chronically exposed to low dose inorganic 

arsenic showed increased levels of LPC(O-18:0), LPC(20:3), LPC(18:1), and LPC(22:6) 

(Chi et al. 2019). We observed similar trends in our study participants including increased 

levels of LPC(18:1), reduced levels of PCs with total of 36-38 carbons in the two acyl 

chains except for PC(18:2/20:5) which was increased, and reduced levels of PIs. Our 

findings suggest multiple industrial pollutants exposure induced deregulations of serum 

lipid profiles in children and adolescents. 

Reduced levels of serum LPCs have been reported in chronic liver dysfunctions, 

including liver cirrhosis, non-alcoholic fatty liver disease, and hepatocellular carcinoma 

(Orešič et al. 2013; Zhou et al. 2012a; Zhou et al. 2012b). This reduction of serum LPCs 

might be due to reduced activities of liver enzymes involved in LPC metabolism and 

reduced hepatic secretion of LPCs (Sekas et al. 1985; Tahara et al. 1993). Krautbauer et 

al. found saturated LPCs LPC(16:0) and LPC(18:0) were significantly associated with 

residual liver functions, but association was not found for unsaturated LPCs (Krautbauer 

et al. 2016). Zhou et al. associated decreased LPCs, both saturated and unsaturated, with 
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chronic liver disease, liver cirrhosis, and hepatocellular carcinoma. Out of the 16 LPCs 

they identified in their study, LPC(22:6) was also identified in our study with similar 

down-regulated trends, while LPC(18:1) was decreased in their findings and increased in 

ours. In contrast to our results, they found significantly decreased levels of serum 

acylcarnitine C6 in chronic liver disease, liver cirrhosis, and hepatocellular carcinoma 

patients compared to normal control subjects. Interestingly, they also reported decreased 

levels of tryptophan in hepatocellular carcinoma patients, which was also identified in 

Part 1 of our study, along with the deregulation of tryptophan metabolism in children, 

linking multiple industrial pollutant exposure with all four oxidative stress biomarkers 

(Chen et al. 2017; Zhou et al. 2012a; Zhou et al. 2012b). In view of the increased ALT in 

high exposure group compared to low exposure group in our study participants that 

reached borderline statistical significance, it could be worthwhile to further investigate 

the possibility of decreased serum LPC(22:6) as an early indicator for liver function 

abnormities in children and adolescents exposed to multiple industrial pollutants.
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5. Conclusion and Recommendation 

Public health exposome approach could be used in a large petrochemical industry 

influenced region to identify vulnerable populations such as children and elderly, and 

understand how multiple industrial pollutants exposure are affecting critical biological 

mechanisms, leading to early health effects that may be precursors to chronic and acute 

diseases. Urine metabolomics analyzed via GC-based method could be used to identify 

vulnerable populations such as children and elderly in regions influenced by a large 

petrochemical industry, and found age-dependent pathways linking multiple exposures to 

increased oxidative stress. Serum metabolomics analyzed via LC-based method could be 

used to find biological pathways affected by multiple industrial carcinogenic pollutants 

exposure in children and adolescents, that could be linked to cancer-related early health 

effects. Serum lipidomics analyzed via LC-based method could be used to identify in 

children and adolescents exposed to multiple industrial pollutants, lipid profile changes 

that have been implicated in liver dysfunctions. Based on our findings, we suggest 

significant reduction of petrochemical industrial emissions from the complex to decrease 

multiple pollutants exposure and metabolic abnormalities, and continued follow up on of 

residents’ health. This dissertation also attests the application of exposomics as a public 

health research tool, in the investigation of current and potential health impacts of 

industrial pollution on nearby residents, providing information for future identification of 

novel personalized health indicators and exposure biomarkers, and establishment of 

individual risk index. 
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7. Appendix 

7.1 Appendix 1: Urine metabolite profiles in children and elderly participants and 

the association with multiple exposures and oxidative stress. 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

Children           

HMDB00001 1-Methylhistidine 0.69 0.90 0.81 0.229 0.295 0.0440 0.0163 0.1127 0.0798 

HMDB00005 2-Ketobutyric acid 0.78 0.89 0.84 0.174 0.253 0.0643 0.0083 0.0032 0.6519 

HMDB00008 2-Hydroxybutyric acid 0.57 0.60 0.57 0.321 0.356 0.0114 0.0477 0.2722 0.4985 

HMDB00017 4-Pyridoxic Acid 1.25 1.11 1.04 0.029 0.086 0.7092 0.8297 0.3291 0.3974 

HMDB00019 3-Methyl-2-oxobutanoic acid 0.73 0.67 0.88 0.201 0.275 0.1920 0.0997 0.1654 0.5379 

HMDB00020 p-Hydroxyphenylacetic acid 0.09 0.20 0.30 0.871 0.599 0.9495 0.7759 0.4618 0.7956 

HMDB00023 (S)-3-Hydroxyisobutyric acid 1.06 0.93 1.19 0.063 0.139 0.4287 0.0018 0.1099 0.0016 

HMDB00034 Adenine 0.29 0.34 0.59 0.617 0.515 0.3377 0.0118 0.5669 0.9848 

HMDB00073 dopamine 0.21 0.47 0.56 0.717 0.552 0.0107 0.0054 0.1578 0.4685 

HMDB00076 Dihydrouracil  0.19 0.18 0.60 0.736 0.559 0.0505 0.0020 0.0070 0.1801 

HMDB00087 Dimethylamine 1.23 1.30 1.30 0.031 0.091 0.9582 0.1662 0.8406 0.0335 

HMDB00094 Citric acid 0.37 0.35 0.61 0.516 0.470 0.1577 0.1837 0.8283 0.8961 

HMDB00112 γ-Aminobutyric acid 1.37 1.64 1.46 0.016 0.060 0.1857 0.1540 0.1716 0.5158 

HMDB00115 Glycolic acid 0.43 0.39 0.42 0.458 0.441 0.5068 0.9831 0.5593 0.1402 

HMDB00118 Homovanillic acid 0.30 0.37 0.80 0.602 0.508 0.0310 0.0044 0.0436 0.1395 

HMDB00123 Glycine 0.31 0.30 0.48 0.586 0.502 0.1258 0.0858 0.3628 0.5183 

HMDB00126 Glycerol 3-phosphate 1.61 1.41 1.37 0.004 0.026 0.1783 0.4889 0.1133 0.9593 

HMDB00131 Glycerol 0.17 0.52 0.83 0.771 0.570 0.5323 0.1881 0.9915 0.2525 

HMDB00134 Fumaric acid 1.39 1.31 1.37 0.014 0.056 0.8539 0.6930 0.2614 0.7829 

HMDB00139 Glyceric acid 0.05 0.10 0.99 0.928 0.614 0.0084 0.0001 0.0941 0.0529 

HMDB00143 Hexose 0.58 0.60 0.58 0.312 0.349 0.0004 0.0012 0.0254 0.0718 

HMDB00148 Glutamic acid 1.06 1.24 1.11 0.063 0.139 0.0768 0.9826 0.8382 0.0003 

HMDB00149 Ethanolamine 0.26 0.63 0.94 0.647 0.527 0.7265 0.5501 0.3066 0.0001 

HMDB00157 Hypoxanthin 0.20 1.14 1.01 0.724 0.554 0.0190 0.0833 0.6005 0.0172 

HMDB00158 DL-Tyrosine 0.90 1.00 0.89 0.116 0.197 0.1751 0.0013 0.1675 0.8839 

HMDB00159 L-Phenylalanine 1.29 1.38 1.24 0.024 0.077 0.0199 0.0050 0.2633 0.0575 

HMDB00161 Alanine 0.94 0.83 1.11 0.102 0.185 0.0006 0.0001 0.0006 0.0001 

HMDB00162 L-Proline 0.64 0.62 0.76 0.265 0.321 0.2509 0.0760 0.1695 0.1085 

HMDB00167 L-Threonine 0.49 0.53 0.71 0.399 0.407 0.0952 0.0074 0.0034 0.0365 

HMDB00168 L-Asparagine 0.18 1.26 1.16 0.750 0.563 0.1553 0.0421 0.0338 0.0315 

HMDB00172 Isoleucine 0.60 1.22 1.12 0.299 0.342 0.0718 0.0653 0.0256 0.0043 
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HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB00177 L-Histidine 1.30 1.46 1.38 0.022 0.074 0.4554 0.2771 0.7251 0.0002 

HMDB00181 L-Dopa 0.83 0.73 0.77 0.149 0.231 0.9420 0.8303 0.3828 0.1601 

HMDB00182 Lysine 0.17 1.12 1.01 0.764 0.568 0.0582 0.0006 0.0716 0.0135 

HMDB00187 Serine 0.92 0.82 0.93 0.108 0.189 0.1163 0.0204 0.0650 0.4575 

HMDB00191 L-Aspartic acid 1.29 1.16 1.08 0.023 0.076 0.0779 0.5078 0.6788 0.0332 

HMDB00193 Isocitric acid 0.28 0.36 0.56 0.627 0.518 0.0814 0.8679 0.1454 0.4741 

HMDB00197 Indole-3-acetic acid  0.72 0.91 0.97 0.212 0.283 0.0004 0.0008 0.0724 0.4912 

HMDB00202 Methylmalonic acid 0.60 0.88 0.81 0.295 0.340 0.0151 0.0162 0.0987 0.4682 

HMDB00207 Oleic acid 0.45 0.65 0.82 0.435 0.428 0.1783 0.0555 0.9065 0.3623 

HMDB00209 Phenylacetic acid 0.07 0.54 0.53 0.898 0.607 0.0778 0.3924 0.2551 0.1631 

HMDB00210 Pantothenic acid 1.17 1.06 1.20 0.041 0.107 0.0119 0.0033 0.0668 0.2908 

HMDB00214 DL-Ornithine 0.63 0.57 0.81 0.273 0.326 0.0043 0.0837 0.0145 0.3811 

HMDB00220 Palmitic acid 1.14 1.01 1.14 0.046 0.116 0.7072 0.0037 0.0186 0.0004 

HMDB00228 Phenol 0.75 0.70 1.05 0.193 0.268 0.0931 0.0008 0.0777 0.0033 

HMDB00232 Quinolinic acid 1.47 1.47 1.38 0.009 0.043 0.0092 0.1153 0.0705 0.0227 

HMDB00243 Pyruvic acid 0.67 0.88 0.87 0.245 0.307 0.4451 0.1970 0.1975 0.0652 

HMDB00254 Succinic acid 1.50 1.31 1.29 0.008 0.040 0.0639 0.0116 0.0117 0.0001 

HMDB00262 Thymine 0.87 0.76 1.11 0.131 0.213 0.0120 0.0082 0.1593 0.7355 

HMDB00267 Pyroglutamic acid 0.73 0.89 0.79 0.205 0.277 0.1298 0.7975 0.6290 0.2787 

HMDB00283 D-Ribose 0.21 0.60 0.56 0.715 0.551 0.2261 0.5603 0.5959 0.7229 

HMDB00289 Uric Acid 1.12 1.01 0.94 0.051 0.123 0.3396 0.0213 0.2499 0.8346 

HMDB00291 Vanillylmandelic acid 0.19 0.84 0.75 0.748 0.562 0.0760 0.0646 0.2335 0.9453 

HMDB00294 Urea 0.61 0.55 0.82 0.289 0.336 0.0015 0.0018 0.0211 0.2406 

HMDB00300 Uracil 0.81 0.92 0.82 0.158 0.240 0.2274 0.0364 0.8859 0.6657 

HMDB00306 Tyramine 0.92 0.90 0.90 0.108 0.190 0.0137 0.0137 0.1833 0.8889 

HMDB00321 2-Hydroxyadipic acid 0.67 0.60 0.79 0.245 0.307 0.0217 0.0016 0.4425 0.9396 

HMDB00337 3,4-Dihydroxybutanoic acid 0.36 0.36 0.94 0.527 0.475 0.8925 0.1228 0.8532 0.0537 

HMDB00345 3-Hydroxyadipic acid 0.87 0.80 0.73 0.131 0.213 0.0833 0.4990 0.1914 0.5975 

HMDB00354 a-Methyl-b-hydroxybutyric acid 0.64 0.68 0.84 0.268 0.322 0.0092 0.0020 0.0142 0.3817 

HMDB00355 3-Hydroxymethylglutaric acid 1.19 1.09 1.27 0.037 0.100 0.0194 0.0053 0.0973 0.9696 

HMDB00360 3-Deoxytetronic acid 0.54 0.47 0.75 0.351 0.376 0.9609 0.2056 0.2195 0.0005 

HMDB00375 m-hydroxy-Hydrocinnamic acid 0.86 0.97 0.88 0.135 0.217 0.0718 0.0001 0.0524 0.2419 

HMDB00393 (E)-3-Hexenedioic acid 1.19 1.05 0.99 0.037 0.100 0.9362 0.0322 0.0182 0.0134 

HMDB00396 2-(hydroxymethyl)butanoic acid 0.22 0.37 0.85 0.698 0.545 0.0331 0.0008 0.0329 0.1269 

HMDB00407 2-hydroxyisovaleric acid 0.55 0.53 0.84 0.339 0.368 0.7225 0.7318 0.4729 0.2492 

HMDB00426 Citramalic acid 0.39 0.39 0.91 0.496 0.460 0.0003 0.0004 0.0106 0.2283 
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III 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB00439 2-Furoylglycine 0.05 0.17 0.26 0.930 0.615 0.0663 0.0027 0.5899 0.9080 

HMDB00440 3-Hydroxyphenylacetic acid 0.03 0.34 0.45 0.958 0.622 0.7121 0.0821 0.0998 0.5005 

HMDB00448 Adipic acid 0.53 0.81 0.82 0.359 0.381 0.0271 0.0257 0.0240 0.5811 

HMDB00452 L-Alpha-aminobutyric acid 1.59 1.78 1.58 0.005 0.028 0.3788 0.0696 0.0062 0.4033 

HMDB00479 3-Methylhistidine 0.67 0.63 0.61 0.242 0.305 0.8421 0.1122 0.0316 0.4721 

HMDB00491 a-Oxo-b-methylvaleric acid 0.42 0.37 0.51 0.466 0.445 0.2321 0.0065 0.0025 0.8995 

HMDB00498 4-Deoxyerythronic acid 1.34 1.18 1.21 0.018 0.065 0.0244 0.0001 0.0028 0.0008 

HMDB00500 4-Hydroxybenzoic acid 1.25 1.17 1.07 0.028 0.086 0.7414 0.0114 0.1052 0.1230 

HMDB00522 3-Methylglutaconic acid 0.93 1.11 1.02 0.103 0.186 0.0957 0.1231 0.0080 0.0590 

HMDB00525 5-Hydroxyhexanoic acid 0.29 0.43 0.61 0.617 0.514 0.0396 0.0168 0.0968 0.2256 

HMDB00539 Pentonic acid 0.30 0.26 0.65 0.602 0.508 0.2073 0.2004 0.0355 0.0670 

HMDB00555 B-methyladipic acid 0.05 0.46 0.41 0.928 0.615 0.3892 0.0258 0.2011 0.6693 

HMDB00568 L-Arabitol 0.22 0.65 0.60 0.698 0.545 0.3610 0.2673 0.0151 0.5636 

HMDB00574 L-Cysteine 0.06 0.89 0.79 0.923 0.613 0.4249 0.1854 0.0585 0.8218 

HMDB00613 Erythronic acid 0.25 0.72 0.76 0.670 0.535 0.4436 0.9609 0.4253 0.6431 

HMDB00622 Ethylmalonic acid 0.04 0.30 0.78 0.946 0.619 0.0302 0.0001 0.0307 0.0628 

HMDB00625 Gluconic acid 1.48 1.37 1.22 0.009 0.043 0.6666 0.0799 0.2655 0.0280 

HMDB00630 Cytosine 0.13 0.13 0.32 0.822 0.585 0.0121 0.4637 0.2241 0.7450 

HMDB00638 Dodecanoic acid 0.53 0.80 0.72 0.354 0.378 0.4392 0.0838 0.7246 0.5010 

HMDB00639 Galactaric acid 0.77 1.07 0.98 0.181 0.259 0.0455 0.0369 0.4514 0.1356 

HMDB00640 Levoglucosan 0.71 0.74 0.67 0.219 0.288 0.1238 0.4841 0.3785 0.5002 

HMDB00661 Glutaric acid 0.15 0.54 0.89 0.789 0.576 0.0238 0.0033 0.0156 0.3870 

HMDB00663 Glucaric acid 0.25 0.33 0.33 0.662 0.532 0.6329 0.3982 0.2553 0.0577 

HMDB00687 Leucine 0.48 0.77 0.69 0.407 0.411 0.0085 0.0001 0.0003 0.8341 

HMDB00691 Malonic acid 0.06 0.51 0.58 0.915 0.611 0.0761 0.0080 0.7159 0.2199 

HMDB00694 2-Hydroxyglutaric acid 0.02 0.23 0.56 0.976 0.626 0.7884 0.0160 0.8872 0.8361 

HMDB00696 L-Methionine 0.07 0.98 0.87 0.898 0.607 0.1048 0.2215 0.1979 0.0287 

HMDB00700 Hydroxypropionic acid 0.55 0.49 0.45 0.335 0.365 0.0836 0.0215 0.2592 0.0354 

HMDB00710 γ-Hydroxybutyric acid 0.25 0.34 0.55 0.660 0.531 0.0032 0.0533 0.0344 0.5773 

HMDB00714 Hippuric acid 1.40 1.26 1.26 0.014 0.055 0.2672 0.0022 0.4725 0.0001 

HMDB00715 Kynurenic acid 0.67 1.03 1.00 0.242 0.305 0.0518 0.0390 0.0050 0.0843 

HMDB00719 Homoserine 0.07 0.68 0.74 0.897 0.607 0.3593 0.8113 0.0088 0.0756 

HMDB00725 4-Hydroxyproline 0.82 0.74 0.88 0.154 0.235 0.1314 0.0165 0.0436 0.3403 

HMDB00729 2-hydroxyisobutyrate 0.98 0.87 1.05 0.086 0.168 0.3185 0.0029 0.4410 0.1579 

HMDB00744 Malic Acid 0.35 0.32 0.68 0.545 0.483 0.2363 0.0328 0.0514 0.3730 

HMDB00749 Mesaconic acid 0.66 0.62 1.16 0.251 0.311 0.2923 0.0724 0.0660 0.9855 
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IV 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB00750 3-hydroxymandelic acid 0.96 0.86 1.14 0.093 0.175 0.3117 0.0635 0.0181 0.8415 

HMDB00752 3-Methylglutaric acid 0.59 0.84 0.95 0.304 0.345 0.0151 0.0059 0.0417 0.6094 

HMDB00754 3-Hydroxyisovaleric acid 0.24 0.86 1.22 0.674 0.537 0.9975 0.1292 0.8230 0.3429 

HMDB00755 Hydroxyphenyllactic acid 1.39 1.30 1.27 0.015 0.057 0.0006 0.0038 0.2942 0.2202 

HMDB00763 5-Hydroxyindoleacetate 0.16 0.91 0.82 0.787 0.575 0.0003 0.0188 0.0009 0.6347 

HMDB00784 Azelaic acid 1.30 1.18 1.09 0.022 0.074 0.2172 0.0014 0.0122 0.0506 

HMDB00806 Myristic acid 1.64 1.43 1.45 0.004 0.024 0.6178 0.1222 0.8404 0.0020 

HMDB00827 Stearic acid 1.71 1.50 1.51 0.002 0.017 0.5580 0.0176 0.1446 0.0001 

HMDB00847 Nonanoic acid 0.38 0.35 0.65 0.513 0.468 0.7702 0.0190 0.7709 0.0147 

HMDB00849 Rhamnose  1.77 1.68 1.50 0.002 0.013 0.5008 0.0002 0.0003 0.1051 

HMDB00857 Pimelic acid 0.25 0.77 0.74 0.662 0.532 0.0620 0.0001 0.0035 0.7340 

HMDB00863 Isopropanol 1.04 1.07 1.23 0.070 0.149 0.0891 0.2632 0.3955 0.1026 

HMDB00870 Histamine 0.74 0.80 0.80 0.196 0.271 0.3309 0.4760 0.0857 0.6366 

HMDB00873 4-methylcatechol 0.74 1.08 0.98 0.199 0.273 0.0350 0.0502 0.0104 0.7782 

HMDB00881 Xanthurenic acid 0.98 1.15 1.09 0.088 0.170 0.2789 0.5305 0.2253 0.0401 

HMDB00883 L-Valine 0.60 0.53 0.62 0.298 0.341 0.1026 0.0866 0.0304 0.0277 

HMDB00893 Suberic acid 0.84 1.14 1.02 0.144 0.226 0.0672 0.0005 0.0013 0.0669 

HMDB00904 Citrulline 0.73 1.04 0.93 0.205 0.277 0.8052 0.2061 0.0047 0.1108 

HMDB00929 DL-Tryptophan 1.21 1.15 1.18 0.033 0.094 0.0403 0.0056 0.0045 0.0579 

HMDB00943 Threonic acid 1.51 1.32 1.49 0.008 0.038 0.3774 0.0003 0.0684 0.0015 

HMDB00956 (±)-Tartaric acid 0.14 0.13 0.46 0.809 0.582 0.3570 0.0023 0.0677 0.2412 

HMDB00957 Catechol 0.93 0.96 0.89 0.104 0.186 0.2317 0.0001 0.1553 0.3635 

HMDB00958 trans-Aconitic acid 0.61 0.54 0.52 0.288 0.336 0.0950 0.1974 0.0512 0.4480 

HMDB00959 Tiglylglycine 1.45 1.27 1.15 0.011 0.047 0.0070 0.5525 0.9227 0.5987 

HMDB01051 Glyceraldehyde 0.93 0.84 1.16 0.105 0.187 0.1011 0.1952 0.0448 0.6522 

HMDB01123 Anthranilic acid 0.64 0.64 0.76 0.263 0.319 0.0927 0.0049 0.9862 0.5410 

HMDB01138 N-acetylglutamic acid 1.30 1.30 1.27 0.023 0.075 0.0058 0.0027 0.0069 0.3324 

HMDB01147 Aminomalonic acid 1.22 1.16 1.12 0.032 0.092 0.1244 0.0039 0.0906 0.1012 

HMDB01266 L-Sorbose 1.35 1.30 1.18 0.017 0.063 0.3007 0.0255 0.7336 0.6782 

HMDB01352 Hydroxypyruvic acid 1.24 1.10 1.10 0.030 0.089 0.3353 0.2338 0.9247 0.3273 

HMDB01398 Guaiacol 0.12 0.62 0.62 0.840 0.591 0.5525 0.1124 0.5061 0.2912 

HMDB01414 putrescine 0.35 0.64 0.57 0.547 0.484 0.0454 0.0559 0.7566 0.3257 

HMDB01470 Tiglic acid 2.10 1.88 1.73 0.000 0.003 0.4229 0.0024 0.4547 0.0209 

HMDB01476 3-Hydroxyanthranilic acid 0.24 0.27 0.29 0.675 0.537 0.0917 0.1476 0.4709 0.6269 

HMDB01488 Niacin 0.74 0.67 0.93 0.199 0.273 0.1357 0.0099 0.0824 0.2741 

HMDB01490 Vanylglycol 0.93 0.89 0.82 0.106 0.188 0.4773 0.3149 0.1774 0.6565 
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V 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB01568 2-Octenoic acid 0.04 0.20 0.62 0.946 0.619 0.0899 0.0244 0.5234 0.1824 

HMDB01624 2-Hydroxycaproic acid 0.40 0.40 0.87 0.490 0.457 0.3948 0.2284 0.4148 0.1826 

HMDB01644 D-Xylulose 0.71 0.78 0.71 0.214 0.284 0.3024 0.7665 0.3548 0.0981 

HMDB01870 Benzoic acid 0.37 0.53 1.20 0.523 0.473 0.5032 0.0097 0.8861 0.0001 

HMDB01881 (±)-1,2-propanediol 0.99 0.98 0.88 0.085 0.166 0.0945 0.8404 0.0459 0.5980 

HMDB01882 Dihydroxyacetone  0.97 0.88 0.89 0.089 0.172 0.5758 0.4433 0.9946 0.0385 

HMDB01954 3-Hydroxyoctanoic acid 1.58 1.44 1.40 0.005 0.030 0.6057 0.4830 0.7270 0.1981 

HMDB01988 4-Hydroxycyclohexanecarboxylic acid 1.00 1.23 1.10 0.082 0.163 0.0339 0.0014 0.0950 0.1962 

HMDB02039 2-Pyrrolidinone 1.08 1.07 0.99 0.059 0.134 0.1725 0.0396 0.0977 0.4809 

HMDB02048 3-Methylphenol 0.65 0.57 0.59 0.257 0.315 0.0267 0.0250 0.2141 0.0106 

HMDB02078 Cyanic acid 1.81 1.60 1.44 0.001 0.011 0.6682 0.3236 0.3152 0.0577 

HMDB02142 Phosphoric acid 0.90 0.79 0.86 0.116 0.197 0.8642 0.1482 0.2721 0.0895 

HMDB02199 Desaminotyrosine 0.47 0.83 0.84 0.414 0.416 0.2519 0.0203 0.0001 0.1492 

HMDB02243 Picolinic acid 0.25 0.26 0.99 0.669 0.535 0.0009 0.0001 0.0119 0.2248 

HMDB02329 Oxalic acid 0.37 0.62 0.56 0.515 0.470 0.1755 0.2804 0.7028 0.4792 

HMDB02432 Sumiki's acid 2.48 2.24 2.08 0.000 0.000 0.6420 0.6038 0.6635 0.0112 

HMDB02434 Hydroquinone 0.06 0.35 0.54 0.917 0.612 0.1063 0.0663 0.1019 0.1106 

HMDB02643 

3-(3-Hydroxyphenyl)-3-hydroxypropionic 

acid 

0.07 0.22 0.67 0.907 0.609 

0.4256 0.0786 0.0400 0.0428 

HMDB02649 Erythrose 0.14 0.39 0.44 0.812 0.583 0.7474 0.2271 0.0002 0.2563 

HMDB02712 1,5-Anhydrosorbitol 0.84 0.73 0.75 0.144 0.226 0.2706 0.6744 0.3467 0.1182 

HMDB03070 Shikimic acid 0.93 0.81 0.75 0.104 0.186 0.3140 0.1341 0.4608 0.9940 

HMDB03156 2,3-Butanediol 0.64 0.57 0.61 0.264 0.320 0.7369 0.6161 0.9880 0.9961 

HMDB03219 Hept-2-ulose 0.12 0.59 0.52 0.835 0.589 0.4438 0.1842 0.0137 0.6108 

HMDB03243 Acetoin 0.67 0.63 0.63 0.243 0.305 0.8184 0.9876 0.6718 0.6420 

HMDB03315 Cyclohexanone 2.47 2.17 1.95 0.000 0.000 0.3576 0.0230 0.5663 0.0016 

HMDB03466 L-Gulonolactone 1.85 1.63 1.51 0.001 0.009 0.0205 0.2218 0.3242 0.2336 

HMDB03903 2-Hydroxyethanesulfonate 1.14 1.04 0.94 0.046 0.116 0.0253 0.1590 0.2821 0.0001 

HMDB03911 3-Aminoisobutanoic acid 1.13 1.07 0.96 0.048 0.118 0.0583 0.0063 0.0185 0.0516 

HMDB04136 D-Threitol 1.90 1.78 1.59 0.001 0.008 0.4647 0.0001 0.0180 0.1679 

HMDB04230 Pyrrole-2-carboxylic acid 0.07 0.34 0.52 0.902 0.608 0.0254 0.0130 0.0708 0.5859 

HMDB04437 Diethanolamine 1.07 1.01 0.92 0.062 0.137 0.7468 0.4748 0.6296 0.3304 

HMDB04812 2,5-Furandicarboxylic acid 0.21 0.46 0.47 0.720 0.553 0.7220 0.1982 0.1434 0.1672 

HMDB04983 Dimethyl sulfone 0.47 0.69 1.03 0.417 0.417 0.0690 0.0302 0.2881 0.0498 

HMDB05802 Trans-isoeugenol 0.37 1.33 1.31 0.525 0.474 0.2057 0.3179 0.1778 0.0035 

HMDB06116 3-Hydroxyhippuric acid 1.54 1.39 1.24 0.006 0.034 0.1413 0.7647 0.0365 0.7520 

doi:10.6342/NTU201901261



VI 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB06899 Alanylglycine 0.01 0.19 0.28 0.991 0.630 0.5757 0.8154 0.6383 0.1249 

HMDB10719 trans-Hex-2-enoic acid 0.47 0.41 0.60 0.419 0.419 0.8913 0.2402 0.3737 0.0728 

HMDB11676 3,4,5-Trihydroxytetrahydro-2H-pyran-2-one 0.44 0.89 0.80 0.448 0.435 0.5023 0.0043 0.0687 0.9361 

HMDB11732 Hex-2-ulosonic acid 1.50 1.36 1.26 0.008 0.040 0.3151 0.6691 0.1114 0.5028 

HMDB13231 Ethylamine 0.75 0.66 0.72 0.194 0.269 0.2593 0.1907 0.0480 0.5094 

HMDB13248 Mono(2-ethylhexyl)phthalate [MEHP] 1.09 0.99 1.33 0.057 0.132 0.1244 0.0025 0.0030 0.0065 

HMDB13674 Pyrogallol 0.18 0.47 0.43 0.751 0.564 0.7921 0.4113 0.0131 0.0843 

HMDB13716 Norvaline 0.49 0.67 0.60 0.393 0.403 0.1631 0.2940 0.0051 0.4414 

HMDB14328 Amphetamine 0.34 0.91 0.86 0.561 0.491 0.0155 0.0827 0.0201 0.1257 

HMDB29635 4-Methylbenzoic acid 0.79 0.74 0.79 0.170 0.249 0.6427 0.0500 0.6794 0.8868 

HMDB29739 1H-Indole-3-acetamide 2.04 1.78 1.58 0.000 0.004 0.5837 0.6450 0.7874 0.0066 

HMDB29942 Pentose 0.37 0.36 0.79 0.519 0.471 0.1930 0.0513 0.1132 0.3322 

HMDB31213 2-Ethoxyethanol 0.81 1.03 0.92 0.157 0.238 0.2194 0.3289 0.6778 0.1500 

HMDB31320 1,3-butanediol 0.37 0.41 0.50 0.518 0.471 0.6085 0.0474 0.0719 0.0239 

HMDB31404 Cyclohexylamine 0.02 0.18 0.43 0.977 0.627 0.3575 0.5249 0.2950 0.5059 

HMDB31444 Dodecane 1.36 1.21 1.37 0.017 0.062 0.2155 0.0019 0.8948 0.0001 

HMDB31445 Undecane 0.99 0.88 0.89 0.085 0.167 0.7239 0.0208 0.2802 0.0003 

HMDB31450 Decane 1.54 1.35 1.37 0.007 0.035 0.0651 0.0082 0.4617 0.0003 

HMDB31511 Diacetone alcohol 3.42 3.06 2.71 0.000 0.000 0.4636 0.0072 0.0427 0.0031 

HMDB31602 4-Pentenoic acid 0.59 0.61 0.62 0.307 0.347 0.8826 0.4206 0.2104 0.4134 

HMDB31626 2-phenylpropanal 1.41 1.24 1.38 0.013 0.053 0.3094 0.0366 0.1853 0.0183 

HMDB32037 1,3-Benzenediol 1.12 0.99 0.94 0.051 0.123 0.4365 0.1662 0.5088 0.0483 

HMDB32619 (±)-1-phenylethanol 0.12 0.79 0.71 0.829 0.588 0.4221 0.0524 0.0029 0.9497 

HMDB33244 Dibutyl phthalate 1.07 1.13 1.01 0.061 0.136 0.4438 0.4441 0.2783 0.6122 

HMDB33958 2-Deoxy-L-ribono-1,4-lactone 1.85 1.69 1.52 0.001 0.009 0.0118 0.5731 0.0767 0.2674 

HMDB34220 Inositol 0.82 0.74 1.26 0.154 0.236 0.0052 0.0001 0.0446 0.0001 

HMDB34284 Tridecane 1.59 1.40 1.35 0.005 0.029 0.0075 0.0014 0.9111 0.0315 

HMDB34778 (2R*,3R*)-1,2,3-Butanetriol 0.37 0.33 0.53 0.521 0.473 0.2073 0.1011 0.0615 0.2719 

HMDB34976 Borneol 0.38 1.03 0.92 0.509 0.467 0.1093 0.0821 0.0569 0.1180 

HMDB35056 

1-(3-Hydroxy-4-methoxyphenyl)-1,2-

ethanediol 

0.58 0.53 0.60 0.310 0.348 

0.8048 0.4010 0.3802 0.3733 

HMDB35227 Tartronic acid 0.27 0.58 0.53 0.645 0.526 0.0220 0.0002 0.3718 0.6764 

HMDB37050 o-Cymene 2.25 1.97 2.01 0.000 0.001 0.0862 0.0001 0.1274 0.0001 

HMDB41486 1-Deoxy-D-ribitol 0.35 0.36 0.55 0.541 0.482 0.6410 0.3979 0.1194 0.6476 

HMDB41861 Cyanuric acid 2.15 1.89 1.68 0.000 0.002 0.4612 0.0995 0.0338 0.0167 

HMDB41932 Methylephedrine 0.40 0.35 0.54 0.491 0.458 0.0904 0.1314 0.2761 0.5704 
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VII 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB42032 Thiodiacetic acid 0.76 0.77 1.16 0.183 0.261 0.5880 0.0008 0.6909 0.0027 

HMDB59740 4-Methyl-1,2-pentanediol 1.05 0.99 0.91 0.066 0.143 0.0290 0.0593 0.1334 0.2426 

HMDB59873 3-Ethylphenol 0.24 0.43 0.69 0.676 0.538 0.3726 0.1300 0.4243 0.1118 

HMDB59889 Isohexanol 0.25 0.65 0.60 0.666 0.534 0.7032 0.2639 0.3867 0.1875 

HMDB59901 Hemimellitene 1.01 0.88 0.90 0.079 0.160 0.8022 0.2888 0.1880 0.2892 

HMDB61927 5-Hydroxypentanoic acid 0.12 0.23 0.63 0.831 0.588 0.3040 0.0407 0.1920 0.8063 

HMDB61933 1H-Indole-2,3-dione 0.62 0.66 0.66 0.283 0.332 0.8686 0.1735 0.1107 0.2638 

Elderly           

HMDB02712 1,5-Anhydrosorbitol 0.79 1.02 1.02 0.274 0.318 0.6182 0.7174 0.4820 0.1918 

HMDB00001 1-Methylhistidine 1.10 0.89 0.96 0.119 0.215 0.8247 0.0034 0.0032 0.3412 

HMDB00005 2-Ketobutyric acid 0.48 0.54 0.59 0.148 0.233 0.2159 0.0114 0.0063 0.6355 

HMDB00008 2-Hydroxybutyric acid 0.35 0.46 0.43 0.307 0.338 0.8730 0.0067 0.8935 0.2809 

HMDB00017 4-Pyridoxic Acid 0.17 0.71 0.85 0.361 0.367 0.7156 0.3355 0.7537 0.4912 

HMDB00019 Alpha-ketoisovaleric acid 1.15 1.14 1.11 0.077 0.184 0.6481 0.8662 0.8770 0.3414 

HMDB00020 p-Hydroxyphenylacetic acid 1.13 0.89 0.74 0.284 0.324 0.0711 0.0006 0.1474 0.3868 

HMDB00023 (S)-3-Hydroxyisobutyric acid 1.60 1.40 1.25 0.162 0.242 0.0009 0.0307 0.1150 0.0256 

HMDB00034 Adenine 0.90 0.70 0.92 0.191 0.260 0.1757 0.0123 0.1135 0.6974 

HMDB00073 dopamine 0.09 0.56 0.46 0.059 0.165 0.0977 0.0349 0.1377 0.7260 

HMDB00076 Dihydrouracil 1.04 0.93 0.73 0.027 0.118 0.1190 0.2560 0.6192 0.0879 

HMDB00087 Dimethylamine 0.89 0.68 0.54 0.889 0.553 0.1898 0.4215 0.1821 0.8437 

HMDB00094 Citric acid 0.55 1.25 1.48 0.086 0.192 0.0123 0.1210 0.0317 0.0272 

HMDB00115 Glycolic acid 0.86 0.70 0.65 0.070 0.178 0.0562 0.0662 0.7560 0.2809 

HMDB00118 Homovanillic acid 0.18 1.20 0.98 0.320 0.346 0.1645 0.1066 0.0285 0.8256 

HMDB00123 Glycine 1.01 0.73 0.66 0.686 0.488 0.4619 0.0001 0.1802 0.2830 

HMDB00126 Glycerol 3-phosphate 0.90 0.96 0.76 0.665 0.482 0.0285 0.0019 0.2009 0.0764 

HMDB00131 Glycerol 0.46 0.59 0.46 0.371 0.372 0.6011 0.0163 0.1432 0.6561 

HMDB00134 Fumaric acid 0.82 0.72 1.26 0.400 0.385 0.9472 0.0009 0.2056 0.5292 

HMDB00139 Glyceric acid 2.00 1.52 1.19 0.029 0.122 0.0756 0.0040 0.0545 0.0425 

HMDB00143 Hexose 0.30 0.40 0.35 0.743 0.508 0.4979 0.0833 0.1686 0.1751 

HMDB00148 Glutamic acid 0.67 0.74 1.04 0.238 0.294 0.8426 0.0124 0.0113 0.8274 

HMDB00149 Ethanolamine 0.64 1.16 1.64 0.219 0.281 0.0064 0.5809 0.5264 0.0043 

HMDB00157 Hypoxanthin 1.38 1.39 1.27 0.483 0.419 0.4215 0.6340 0.2227 0.0037 

HMDB00158 DL-Tyrosine 0.56 0.62 0.81 0.094 0.198 0.2288 0.0064 0.0367 0.7003 

HMDB00159 Phenylalanine 1.17 1.38 1.08 0.499 0.426 0.9325 0.0717 0.2180 0.2623 

HMDB00161 Alanine 1.19 1.39 1.35 0.178 0.253 0.1315 0.0039 0.5709 0.0021 

HMDB00162 L-Proline 0.76 0.58 1.12 0.470 0.414 0.9275 0.9278 0.0039 0.6532 
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VIII 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB00167 L-Threonine 1.47 1.24 1.23 0.713 0.498 0.2666 0.1126 0.7332 0.0001 

HMDB00168 L-Asparagine 1.22 1.55 1.60 0.169 0.247 0.7446 0.0669 0.8659 0.5794 

HMDB00172 Isoleucine 1.01 1.11 1.42 0.098 0.201 0.8423 0.0245 0.0015 0.7229 

HMDB00177 L-Histidine 1.03 0.77 1.08 0.841 0.539 0.3380 0.0156 0.0127 0.2477 

HMDB00182 Lysine 0.49 0.47 0.71 0.512 0.430 0.8799 0.1963 0.0936 0.5330 

HMDB00187 Serine 2.21 1.55 1.23 0.536 0.439 0.0008 0.0184 0.1950 0.0001 

HMDB00191 L-Aspartic acid 1.39 1.27 1.30 0.751 0.511 0.4233 0.0199 0.0722 0.3050 

HMDB00193 Isocitric acid 0.92 0.89 0.78 0.035 0.133 0.5489 0.3137 0.4277 0.2156 

HMDB00197 Indole-3-acetic acid  0.54 1.04 0.81 0.103 0.204 0.3160 0.0032 0.1050 0.6093 

HMDB00202 Methylmalonic acid 1.09 0.99 0.91 0.597 0.460 0.0468 0.0007 0.0367 0.7975 

HMDB00207 Oleic acid 1.09 0.78 0.66 0.057 0.162 0.3464 0.3084 0.0009 0.1330 

HMDB00209 Phenylacetic acid 1.11 0.83 0.69 0.189 0.259 0.1318 0.0057 0.1005 0.0406 

HMDB00210 Pantothenic acid 0.97 1.04 0.94 0.576 0.453 0.4603 0.0611 0.2308 0.6218 

HMDB00214 DL-Ornithine 0.95 0.96 0.76 0.097 0.200 0.0946 0.0001 0.0048 0.0452 

HMDB00220 Palmitic acid 1.98 1.62 1.42 0.433 0.399 0.2270 0.2854 0.2632 0.0563 

HMDB00228 Phenol 1.94 1.62 1.28 0.574 0.453 0.0276 0.0321 0.3199 0.0001 

HMDB00232 Quinolinic acid 0.34 1.03 1.25 0.540 0.440 0.5849 0.0041 0.0172 0.8265 

HMDB00243 Pyruvic acid 0.89 1.13 0.92 0.001 0.021 0.0684 0.0311 0.0322 0.0003 

HMDB00254 Succinic acid 1.30 1.05 0.99 0.231 0.289 0.1925 0.0090 0.3105 0.3223 

HMDB00262 Thymine 0.98 1.02 1.16 0.079 0.186 0.0234 0.0008 0.0009 0.1630 

HMDB00267 Pyroglutamic acid 0.10 0.10 0.92 0.052 0.156 0.7392 0.1115 0.5222 0.4735 

HMDB00283 D-Ribose 0.20 0.21 0.76 0.649 0.477 0.9580 0.0153 0.1168 0.1307 

HMDB00291 Vanillylmandelic acid 1.00 1.00 1.21 0.070 0.177 0.6950 0.3219 0.9840 0.9744 

HMDB00294 Urea 0.60 1.59 1.39 0.710 0.497 0.0770 0.0010 0.0024 0.9817 

HMDB00300 Uracil 1.50 1.09 0.91 0.088 0.194 0.1557 0.0420 0.1898 0.0730 

HMDB00306 Tyramine 0.62 0.67 0.96 0.430 0.398 0.6558 0.0062 0.2630 0.9065 

HMDB00321 2-Hydroxyadipic acid 0.94 0.70 1.26 0.003 0.029 0.1839 0.0001 0.0061 0.1597 

HMDB00337 3,4-Dihydroxybutanoic acid 0.99 1.46 1.32 0.628 0.470 0.0014 0.0006 0.0259 0.0043 

HMDB00345 3-Hydroxyadipic acid 0.59 0.92 0.82 0.185 0.257 0.5512 0.1742 0.2444 0.4895 

HMDB00354 a-Methyl-b-hydroxybutyric acid 0.36 0.89 0.71 0.184 0.256 0.2027 0.0002 0.0509 0.7253 

HMDB00355 3-Hydroxymethylglutaric acid 0.91 0.94 1.01 0.143 0.231 0.0844 0.0013 0.1344 0.9682 

HMDB00360 2,4-Dihydroxybutanoic acid 1.70 1.33 1.05 0.039 0.138 0.0690 0.0002 0.0543 0.0898 

HMDB00375 m-hydroxy-Hydrocinnamic acid 0.48 0.93 0.75 0.176 0.251 0.7618 0.0310 0.1751 0.4624 

HMDB00393 (E)-3-Hexenedioic acid 0.93 0.74 0.58 0.163 0.243 0.6711 0.1484 0.3376 0.4313 

HMDB00396 2-Ethylhydracrylic acid 2.11 1.51 1.31 0.214 0.277 0.3003 0.0001 0.0638 0.0981 

HMDB00407 2-Hydroxy-3-methylbutyric acid 1.28 0.90 0.90 0.788 0.523 0.6070 0.3382 0.1752 0.2080 
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IX 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB00426 Citramalic acid 0.28 1.41 1.12 0.491 0.423 0.1454 0.0044 0.0502 0.1909 

HMDB00439 2-Furoylglycine 0.01 0.62 0.56 0.430 0.398 0.4129 0.7058 0.9346 0.2920 

HMDB00440 3-Hydroxyphenylacetic acid 0.53 0.74 0.67 0.011 0.074 0.8772 0.3609 0.4890 0.1614 

HMDB00448 Adipic acid 0.69 0.79 1.01 0.053 0.157 0.5674 0.0916 0.0808 0.4045 

HMDB00452 L-Alpha-aminobutyric acid 1.05 0.75 0.79 0.417 0.392 0.0599 0.0001 0.0001 0.0226 

HMDB00479 3-Methylhistidine 0.22 0.56 0.46 0.346 0.360 0.1746 0.0772 0.0146 0.8489 

HMDB00491 a-Oxo-b-methylvaleric acid 0.63 0.76 0.70 0.388 0.380 0.0786 0.2004 0.5202 0.1418 

HMDB00498 4-Deoxyerythronic acid 1.45 1.55 1.54 0.104 0.204 0.0512 0.0063 0.3277 0.0100 

HMDB00522 3-Methylglutaconic acid 0.53 1.46 1.15 0.422 0.395 0.7721 0.0256 0.1246 0.3039 

HMDB00525 5-Hydroxyhexanoic acid 1.29 0.90 1.50 0.406 0.388 0.7569 0.5628 0.4757 0.9073 

HMDB00539 Arabinonic acid 1.20 1.05 0.88 0.000 0.012 0.5187 0.1849 0.2093 0.5542 

HMDB00555 B-methyladipic acid 0.28 0.53 0.44 0.189 0.259 0.8033 0.0912 0.9028 0.0721 

HMDB00568 L-Arabitol 0.83 0.59 0.47 0.749 0.510 0.4990 0.6823 0.6695 0.5299 

HMDB00574 L-Cysteine 0.61 0.87 1.18 0.182 0.255 0.4669 0.0577 0.0210 0.1544 

HMDB00613 Erythronic acid 0.19 0.34 1.17 0.678 0.486 0.9376 0.4881 0.3588 0.0593 

HMDB00617 2-Furoic acid 0.22 0.98 0.77 0.000 0.012 0.9703 0.1505 0.0303 0.4797 

HMDB00622 Ethylmalonic acid 1.12 1.09 1.05 0.001 0.019 0.4414 0.0354 0.1769 0.8848 

HMDB00625 Gluconic acid 0.28 0.23 1.09 0.049 0.152 0.5178 0.1182 0.0980 0.0983 

HMDB00630 Cytosine 1.44 1.12 1.04 0.347 0.360 0.0199 0.0001 0.0021 0.0626 

HMDB00638 Dodecanoic acid 0.42 0.88 0.72 0.382 0.377 0.8705 0.5933 0.5287 0.3826 

HMDB00639 Galactaric acid 0.95 1.09 0.87 0.369 0.371 0.3643 0.3197 0.0950 0.3085 

HMDB00640 Levoglucosan 0.36 0.80 0.64 0.383 0.378 0.5014 0.2806 0.0483 0.2123 

HMDB00661 Glutaric acid 2.11 1.42 1.31 0.150 0.235 0.1154 0.0001 0.1274 0.0001 

HMDB00687 Leucine 1.53 1.08 1.29 0.648 0.477 0.2004 0.0026 0.0062 0.0501 

HMDB00691 Malonic acid 0.83 0.59 0.54 0.061 0.167 0.1170 0.0538 0.1258 0.9130 

HMDB00694 2-Hydroxyglutaric acid 2.45 1.81 1.60 0.023 0.111 0.0242 0.0001 0.4960 0.0182 

HMDB00696 L-Methionine 0.53 0.43 0.82 0.969 0.574 0.4514 0.0005 0.0149 0.4297 

HMDB00700 Hydroxypropionic acid 0.81 0.91 0.71 0.842 0.539 0.9811 0.6882 0.4692 0.0854 

HMDB00710 γ-Hydroxybutyric acid 0.04 1.26 1.00 0.943 0.567 0.8160 0.4047 0.6418 0.5773 

HMDB00714 Hippuric acid 0.84 1.15 1.27 0.656 0.479 0.5217 0.0015 0.8150 0.0284 

HMDB00715 Kynurenic acid 0.31 0.76 0.60 0.949 0.569 0.6291 0.2579 0.2523 0.3431 

HMDB00719 Homoserine 0.85 1.14 0.90 0.677 0.486 0.3386 0.0302 0.0837 0.2451 

HMDB00725 4-Hydroxyproline 0.67 0.60 0.83 0.000 0.015 0.0072 0.0001 0.0008 0.1811 

HMDB00729 2-hydroxyisobutyrate 0.99 1.42 1.42 0.107 0.206 0.1083 0.0001 0.0692 0.0196 

HMDB00744 Malic Acid 0.88 0.62 0.89 0.719 0.500 0.1673 0.0087 0.6677 0.8917 

HMDB00749 Mesaconic acid 1.07 1.22 0.95 0.647 0.477 0.0495 0.0001 0.0245 0.2361 
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X 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB00750 3-hydroxymandelic acid 0.18 0.66 1.11 0.001 0.020 0.9565 0.0005 0.0108 0.8233 

HMDB00752 3-Methylglutaric acid 0.05 1.34 1.12 0.026 0.117 0.1076 0.0023 0.0429 0.9024 

HMDB00754 3-Hydroxyisovaleric acid 0.49 0.83 0.90 0.947 0.568 0.1953 0.0239 0.1522 0.0807 

HMDB00755 b-(4-Hydroxyphenyl)lactic acid 0.47 0.73 0.99 0.499 0.426 0.8814 0.0203 0.2361 0.0152 

HMDB00763 5-Hydroxyindoleacetic acid 1.69 1.34 1.58 0.602 0.462 0.3941 0.0001 0.0134 0.6607 

HMDB00784 Azelaic acid 0.07 0.71 0.74 0.129 0.222 0.5159 0.0017 0.4336 0.3267 

HMDB00806 Myristic acid 2.18 1.67 1.39 0.107 0.206 0.0211 0.0001 0.0001 0.0092 

HMDB00827 Stearic acid 2.52 1.85 1.54 0.540 0.440 0.0143 0.0024 0.0261 0.0001 

HMDB00847 Nonanoic acid 0.61 0.82 0.93 0.137 0.227 0.5676 0.0634 0.0298 0.1061 

HMDB00849 Rhamnose  0.67 0.67 0.57 0.026 0.116 0.3766 0.0914 0.1407 0.1256 

HMDB00857 Pimelic acid 0.04 0.85 0.78 0.002 0.022 0.6134 0.0010 0.1502 0.1220 

HMDB00863 Isopropanol 0.99 0.70 0.75 0.386 0.379 0.9804 0.7295 0.8718 0.6418 

HMDB00873 4-methylcatechol 1.11 1.09 0.98 0.684 0.488 0.9926 0.9670 0.2501 0.3788 

HMDB00881 Xanthurenic acid 0.53 0.39 0.84 0.100 0.202 0.5480 0.7783 0.0317 0.8167 

HMDB00883 L-Valine 1.49 1.08 0.96 0.020 0.102 0.3558 0.0344 0.3560 0.0010 

HMDB00893 Suberic acid 0.59 0.68 0.88 0.218 0.280 0.3927 0.0400 0.1230 0.6432 

HMDB00904 Citrulline 0.73 0.79 0.91 0.182 0.255 0.5990 0.4857 0.4024 0.3911 

HMDB00929 L-Tryptophan 0.31 0.59 0.67 0.286 0.326 0.8445 0.1631 0.9042 0.6756 

HMDB00943 Threonic acid 2.31 1.64 1.40 0.144 0.231 0.0016 0.0134 0.0336 0.0001 

HMDB00956 (±)-Tartaric acid 0.17 0.70 0.99 0.036 0.133 0.3990 0.7274 0.9548 0.4623 

HMDB00957 Catechol 2.15 1.68 1.32 0.004 0.034 0.0195 0.0200 0.3246 0.0002 

HMDB00958 trans-Aconitic acid 0.44 0.31 0.31 0.002 0.022 0.4744 0.5271 0.0935 0.8356 

HMDB00959 Tiglylglycine 0.91 0.64 1.09 0.244 0.298 0.1174 0.0098 0.0516 0.2229 

HMDB01051 Glyceraldehyde 0.84 1.03 0.81 0.116 0.213 0.3107 0.0003 0.2475 0.1176 

HMDB01123 Anthranilic acid 0.19 0.22 1.31 0.285 0.325 0.3150 0.0001 0.0073 0.7095 

HMDB01138 N-acetylglutamic acid 0.96 0.82 1.73 0.173 0.250 0.5401 0.0003 0.0049 0.7253 

HMDB01147 Aminomalonic acid 0.97 1.15 0.90 0.325 0.349 0.2399 0.0001 0.0428 0.1381 

HMDB01266 L-Sorbose 1.46 1.15 0.92 0.351 0.362 0.0118 0.0006 0.1703 0.0159 

HMDB01352 Hydroxypyruvic acid 0.15 0.24 0.33 0.795 0.525 0.2944 0.0026 0.4271 0.5827 

HMDB01398 Guaiacol 0.90 1.18 1.10 0.001 0.016 0.3729 0.0229 0.2835 0.1772 

HMDB01414 putrescine 0.28 0.20 0.65 0.513 0.431 0.5134 0.0442 0.0098 0.3321 

HMDB01476 3-Hydroxyanthranilic acid 1.12 0.78 0.98 0.713 0.498 0.4712 0.1188 0.1071 0.1534 

HMDB01488 Niacin 0.76 0.70 1.19 0.161 0.241 0.0478 0.0078 0.0425 0.6665 

HMDB01490 Vanylglycol 1.15 0.93 0.73 0.259 0.309 0.2777 0.6107 0.0970 0.3368 

HMDB01568 2-Octenoic acid 1.31 1.03 0.86 0.372 0.373 0.0711 0.5574 0.3834 0.0171 

HMDB01624 2-Hydroxycaproic acid 0.64 0.86 0.73 0.093 0.197 0.0079 0.0271 0.0060 0.2960 

doi:10.6342/NTU201901261



XI 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB01644 D-Xylulose 0.48 0.95 0.77 0.395 0.383 0.8651 0.1073 0.2452 0.6233 

HMDB01847 Caffeine 0.14 0.71 0.58 0.012 0.077 0.7374 0.0951 0.2387 0.4943 

HMDB01858 p-Cresol 0.05 0.31 0.25 0.950 0.569 0.1335 0.9970 0.4159 0.1525 

HMDB01870 Benzoic acid 0.97 1.15 1.12 0.040 0.138 0.0181 0.0006 0.1404 0.0002 

HMDB01881 (±)-1,2-propanediol 0.46 0.78 0.71 0.111 0.209 0.2043 0.4515 0.3616 0.2797 

HMDB01954 3-Hydroxyoctanoic acid 0.47 0.75 0.60 0.821 0.533 0.8597 0.0699 0.4750 0.8168 

HMDB01988 4-Hydroxycyclohexanecarboxylic acid 0.27 1.02 0.82 0.810 0.530 0.7832 0.0658 0.1873 0.8469 

HMDB02039 2-Pyrrolidinone 0.09 0.82 0.77 0.180 0.254 0.3286 0.0092 0.1892 0.1768 

HMDB02048 m-Cresol 1.41 0.99 0.83 0.123 0.218 0.1848 0.2472 0.5508 0.1409 

HMDB02078 Cyanic acid 0.41 0.83 0.87 0.468 0.413 0.1782 0.0358 0.0266 0.2756 

HMDB02142 Phosphoric acid 1.85 2.33 1.82 0.315 0.343 0.1353 0.5977 0.5968 0.3591 

HMDB02199 Desaminotyrosine 0.25 1.60 1.31 0.229 0.287 0.0236 0.0019 0.0456 0.1045 

HMDB02243 Picolinic acid 1.98 1.61 1.69 0.774 0.518 0.1494 0.0147 0.0600 0.2762 

HMDB02259 Heptadecanoic acid 1.27 0.90 0.75 0.561 0.448 0.2663 0.0403 0.2003 0.7449 

HMDB02329 Oxalic acid 0.90 0.63 0.73 0.098 0.201 0.7952 0.1584 0.6175 0.9816 

HMDB02432 5-(Hydroxymethyl)furoic acid 0.85 1.12 1.01 0.005 0.041 0.6035 0.7636 0.1915 0.7088 

HMDB02434 Hydroquinone 0.84 1.38 1.09 0.308 0.339 0.7926 0.0393 0.6851 0.5842 

HMDB02643 

3-(3-Hydroxyphenyl)-3-hydroxypropionic 

acid 

0.25 0.52 0.41 0.003 0.031 0.2997 0.8750 0.3743 0.6031 

HMDB02649 Erythrose 0.42 0.35 0.49 0.011 0.074 0.3075 0.6382 0.2586 0.0450 

HMDB03070 Shikimic acid 0.29 0.52 0.75 0.032 0.128 0.5554 0.0657 0.0819 0.4349 

HMDB03156 2,3-Butanediol 1.27 0.92 1.03 0.041 0.139 0.5977 0.2487 0.9722 0.9525 

HMDB03243 Acetoin 1.42 0.99 0.81 0.004 0.033 0.9255 0.0546 0.2071 0.0563 

HMDB03315 Cyclohexanone 2.50 1.76 1.38 0.378 0.375 0.0398 0.0164 0.0796 0.0047 

HMDB03466 L-Gulonolactone 0.22 0.81 1.19 0.074 0.182 0.7533 0.1409 0.0059 0.4745 

HMDB03903 2-Hydroxyethanesulfonate 0.80 0.98 0.87 0.003 0.031 0.6995 0.0600 0.2051 0.1217 

HMDB03911 3-Aminoisobutanoic acid 0.31 0.75 0.59 0.215 0.278 0.1089 0.0409 0.9278 0.1504 

HMDB04136 D-Threitol 1.32 0.93 0.88 0.004 0.034 0.0437 0.0592 0.0351 0.0385 

HMDB04230 Pyrrole-2-carboxylic acid 0.16 1.45 1.40 0.055 0.161 0.0223 0.0192 0.4029 0.0039 

HMDB04437 Diethanolamine 1.74 1.45 1.13 0.023 0.110 0.2987 0.0007 0.8195 0.4339 

HMDB04812 2,5-Furandicarboxylic acid 0.79 1.56 1.28 0.596 0.460 0.1831 0.7411 0.5927 0.0220 

HMDB04983 Dimethyl sulfone 2.13 1.69 1.50 0.001 0.021 0.0007 0.0001 0.0129 0.0001 

HMDB05802 Trans-isoeugenol 0.91 0.74 1.48 0.210 0.274 0.9084 0.2942 0.0369 0.5517 

HMDB06116 m-Hydroxyhippuric acid 0.14 0.19 0.99 0.000 0.012 0.0629 0.1852 0.6364 0.4120 

HMDB06899 Alanylglycine 0.44 1.15 1.19 0.477 0.417 0.0824 0.2477 0.2131 0.0155 

HMDB10719 trans-Hex-2-enoic acid 0.38 1.12 1.03 0.123 0.218 0.3323 0.4104 0.4761 0.0440 
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XII 

 

HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB11676 D-Xylono-1,5-lactone 2.00 1.43 1.58 0.679 0.486 0.0324 0.0014 0.0036 0.0176 

HMDB11732 Hex-2-ulosonic acid 1.19 1.23 1.06 0.958 0.571 0.8867 0.3316 0.6890 0.5702 

HMDB13231 Ethylamine 0.46 0.91 0.71 0.536 0.439 0.9827 0.1952 0.2369 0.6486 

HMDB13248 Mono(2-ethylhexyl)phthalate [MEHP] 1.70 1.45 1.42 0.119 0.215 0.0011 0.0506 0.1521 0.0082 

HMDB13674 1,2,3-Trihydroxybenzene 1.19 1.51 1.19 0.143 0.230 0.1850 0.7337 0.6522 0.5163 

HMDB13716 Norvaline 0.42 0.54 0.44 0.077 0.185 0.8619 0.0541 0.2283 0.4500 

HMDB14328 Amphetamine 0.60 0.68 1.07 0.343 0.358 0.5672 0.0255 0.0097 0.7313 

HMDB29635 4-Methylbenzoic acid 1.01 0.89 0.70 0.617 0.467 0.4232 0.1444 0.0192 0.0425 

HMDB29739 1H-Indole-3-acetamide 1.22 0.92 1.19 0.006 0.045 0.2003 0.9194 0.1897 0.0362 

HMDB29942 Arabinose 1.50 1.28 1.00 0.770 0.517 0.0371 0.0025 0.0146 0.0077 

HMDB31213 2-Ethoxyethanol 1.13 0.90 0.71 0.154 0.236 0.4991 0.0383 0.0031 0.0762 

HMDB31320 1,3-butanediol 1.38 0.98 0.83 0.025 0.114 0.7117 0.0622 0.2327 0.0195 

HMDB31404 Cyclohexylamine 0.68 0.88 0.80 0.433 0.399 0.3059 0.4540 0.0330 0.2994 

HMDB31444 Dodecane 1.88 1.47 1.56 0.212 0.276 0.0120 0.0001 0.1099 0.0065 

HMDB31445 Undecane 0.72 1.19 1.35 0.295 0.332 0.6644 0.5070 0.9094 0.0018 

HMDB31450 Decane 1.57 1.14 0.89 0.986 0.578 0.1120 0.0011 0.0029 0.6343 

HMDB31602 4-Pentenoic acid 0.71 0.66 0.59 0.101 0.202 0.2216 0.8091 0.0553 0.5298 

HMDB31626 2-phenylpropanal 1.12 1.12 1.33 0.031 0.125 0.0184 0.3475 0.7970 0.1510 

HMDB32037 1,3-Benzenediol 0.38 0.28 0.72 0.003 0.030 0.0606 0.3639 0.0720 0.3702 

HMDB32619 (±)-1-phenylethanol 0.43 0.57 0.47 0.026 0.117 0.7552 0.0142 0.7730 0.7111 

HMDB33244 Dibutyl phthalate 0.58 0.43 0.77 0.208 0.273 0.8265 0.0446 0.3435 0.6329 

HMDB33958 

Dihydro-4-hydroxy-5-hydroxymethyl-2(3H)-

furanone 

0.39 1.40 1.32 0.010 0.066 0.2138 0.2657 0.0458 0.5398 

HMDB34220 Inositol 1.50 1.53 1.44 0.880 0.550 0.1996 0.0003 0.1427 0.0001 

HMDB34284 Tridecane 1.95 1.37 1.16 0.445 0.404 0.1738 0.0120 0.5312 0.0051 

HMDB34778 (2R*,3R*)-1,2,3-Butanetriol 0.69 0.57 0.46 0.779 0.520 0.4161 0.0006 0.0084 0.1226 

HMDB34976 Borneol 1.53 1.63 1.28 0.150 0.234 0.7223 0.7451 0.0537 0.4094 

HMDB35056 

1-(3-Hydroxy-4-methoxyphenyl)-1,2-

ethanediol 

1.04 1.16 0.91 0.136 0.226 0.1501 0.7574 0.6302 0.6822 

HMDB35227 Tartronic acid 0.04 0.86 0.67 0.983 0.578 0.5803 0.1195 0.2741 0.5077 

HMDB37050 o-Cymene 1.93 1.63 1.75 0.806 0.528 0.0022 0.0033 0.1216 0.0021 

HMDB41486 1-Deoxy-D-ribitol 0.90 0.63 0.50 0.152 0.236 0.4176 0.1673 0.4732 0.1467 

HMDB41861 Cyanuric acid 0.58 0.47 0.93 0.136 0.227 0.0782 0.0143 0.3659 0.5550 

HMDB41932 Methylephedrine 0.72 0.75 0.60 0.568 0.451 0.0864 0.2468 0.3534 0.0780 

HMDB42032 Thiodiacetic acid 1.51 1.07 1.02 0.798 0.526 0.1012 0.0033 0.1419 0.0422 

HMDB59873 3-Ethylphenol 1.16 0.86 0.69 0.914 0.560 0.1045 0.0205 0.3326 0.3190 
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HMDB Metabolite identification Comp. 1a Comp. 2a Comp. 3a p valueb q valuec 8-OHDGd HNE-MAd 8-isoPGF2a
d 8-NO2Guad 

HMDB59889 Isohexanol 0.52 0.53 0.56 0.684 0.487 0.3668 0.7734 0.2347 0.0789 

HMDB59901 Hemimellitene 0.41 1.07 1.13 0.487 0.421 0.2106 0.2099 0.8353 0.9239 

HMDB61927 5-Hydroxypentanoic acid 1.06 0.76 0.76 0.261 0.310 0.7495 0.0618 0.6087 0.1083 

HMDB61933 1H-Indole-2,3-dione 0.03 0.90 0.71 0.323 0.347 0.1488 0.1902 0.1407 0.6546 

a VIP score of components 1, 2, and 3 from PLS-DA analysis 

b p values from Student’s t test analysis of peak area between high and low exposure groups 

c FDR adjusted q value from Student’s t test p value 

d p values from Pearson’s correlation analysis of peak area and urine oxidative stress biomarkers 

concentration
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7.2 Appendix 2: Identified potential metabolite features in serum sample of 107 

subjects using metabolomics. 

Name HMDB Average VIP score ANCOVA p value Trend 

Carnitine HMDB0000062 2.47 <0.05 Up 

Oxoglutaric acid HMDB0000208 2.33 <0.05 Down 

Pyroglutamic acid HMDB0000267 2.31 <0.05 Down 

Adenosine monophosphate HMDB0000045 1.85 <0.05 Down 

Inosinic acid HMDB0000175 1.77 <0.05 Down 

Malic Acid HMDB0000744 1.61 <0.05 Down 

Ketoleucine HMDB0000695 1.58 <0.05 Up 

Aspartic acid HMDB0000191 1.54 <0.05 Up 

Pyroglutamic acid HMDB0000267 1.50 <0.05 Down 

Octenoyl-L-carnitine HMDB0013324 1.44 <0.05 Up 

Isovalerylcarnitine HMDB0000688 1.28 <0.05 Up 

(R)-3-Hydroxybutyric acid HMDB0000011 0.17 1.00 Down 

Octenoyl-L-carnitine HMDB0013324 0.49 0.99 Up 

Dehydroascorbic acid HMDB0001264 0.50 0.97 Up 

L-Kynurenine HMDB0000684 0.28 0.96 Down 

Octenoyl-L-carnitine HMDB0013324 0.42 0.95 Down 

Indolelactic acid HMDB0000671 0.16 0.94 Down 

L-Tryptophan HMDB0000929 0.32 0.93 Up 

L-Alanine HMDB0000161 0.31 0.92 Up 

Undecanoyl-L-carnitine NA 0.32 0.82 Up 

Decenoyl-L-carnitine NA 0.50 0.81 Down 

cis-Aconitate HMDB0000072 0.21 0.79 Down 

Propionyl-L-carnitine HMDB0000824 0.50 0.78 Up 

3-Methyladenine HMDB0011600 0.23 0.77 Up 

Tetradecenoyl-L-carnitine HMDB0013329 0.51 0.66 Up 

Deoxycholic acid HMDB0000626 0.34 0.65 Down 

Tyrosine HMDB0000158 0.62 0.65 Up 

Methionine HMDB0000696 0.66 0.62 Up 

Glycerophosphocholine HMDB0000086 0.39 0.62 Up 

1-Methyladenosine HMDB0003331 0.96 0.60 Up 

Tiglyl-L-carnitine HMDB0002366 0.67 0.58 Up 

cis-Aconitate HMDB0000072 0.72 0.57 Down 

L-Acetylcarnitine HMDB0000201 0.56 0.56 Down 

Uridine HMDB0000296 0.26 0.56 Up 
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Name HMDB Average VIP score ANCOVA p value Trend 

D-Glucurono-6,3-lactone HMDB0006355 0.42 0.54 Down 

L-Alloisoleucine HMDB0000557 0.56 0.51 Up 

L-Acetylcarnitine HMDB0000201 0.76 0.51 Up 

L-Alloisoleucine HMDB0000557 0.77 0.46 Down 

3-Methyladenine HMDB0011600 0.84 0.44 Down 

Deoxycholic acid HMDB0000626 0.57 0.44 Up 

Pipecolic acid HMDB0000070 0.48 0.44 Up 

N-Acetyl-L-alanine HMDB0000766 0.32 0.42 Up 

5-Methylcytidine HMDB0000982 0.69 0.42 Down 

L-Norleucine HMDB0001645 0.54 0.42 Up 

Dodecenoyl-L-carnitine HMDB0013326 0.83 0.42 Down 

citric acid HMDB0000094 0.99 0.42 Down 

Dehydroascorbic acid HMDB0001264 0.80 0.40 Down 

Methionine HMDB0000696 0.85 0.37 Up 

N6-Acetyl-L-lysine HMDB0000206 0.86 0.36 Down 

Ascorbic Acid HMDB0000044 0.54 0.35 Down 

Levulinic acid HMDB0000720 0.77 0.33 Up 

(R)-3-Hydroxybutyric acid HMDB0000011 0.59 0.31 Up 

Carnitine HMDB0000062 0.78 0.27 Up 

Cholic Acid HMDB0000619 0.90 0.27 Up 

Pyruvic acid HMDB0000243 0.78 0.27 Down 

Phenylalanine HMDB0000159 1.04 0.26 Down 

Hexanoylcarnitine HMDB0000705 0.77 0.25 Up 

Taurodeoxycholic acid HMDB0000896 0.84 0.23 Down 

Hypoxanthine HMDB0000157 0.97 0.21 Down 

Hypoxanthine HMDB0000157 0.68 0.21 Down 

D-threo-Isocitric acid HMDB0001874 0.79 0.21 Down 

2-Ketohexanoic acid HMDB0001864 0.94 0.21 Up 

5-Aminolevulinic acid HMDB0001149 0.88 0.21 Up 

Tetradecadienoyl-L-carnitine NA 1.07 0.20 Down 

Decanoylcarnitine HMDB0000651 0.65 0.18 Up 

2-Hydroxy-2-methylbutyric acid HMDB0001987 0.69 0.17 Up 

Butyrylcarnitine HMDB0002013 0.91 0.16 Up 

3-Hydroxyisovaleric acid HMDB0000754 0.76 0.15 Up 

2-Hydroxybutyric acid HMDB0000008 1.03 0.14 Up 

Pipecolic acid HMDB0000070 0.94 0.14 Up 
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Name HMDB Average VIP score ANCOVA p value Trend 

Decenoyl-L-carnitine NA 0.89 0.14 Up 

3-Hydroxydodecanoyl-L-carnitine HMDB0061638 1.02 0.13 Down 

Octanoyl-L-carnitine HMDB0000791 0.92 0.12 Up 

Malic Acid HMDB0000744 1.04 0.12 Down 

Dopamine HMDB0000073 1.29 0.11 Up 

L-alpha-Aminobutyric acid HMDB0000452 1.02 0.10 Up 

D-threo-Isocitric acid HMDB0001874 1.14 0.10 Down 

Isovalerylcarnitine HMDB0000688 1.25 0.09 Up 

L-Valine HMDB0000883 1.43 0.09 Down 

Creatine HMDB0000064 1.22 0.09 Up 

Creatinine HMDB0000562 1.46 0.08 Up 

Oxoglutaric acid HMDB0000208 1.03 0.06 Down 

Hydroxyphenyllactic acid HMDB0000755 1.05 0.06 Down 

N-Acetyl-L-alanine HMDB0000766 0.93 0.06 Up 
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7.3 Appendix 3: Identified potential lipid species in serum sample of 107 subjects 

using lipidomics. 

Name Average VIP score ANCOVA p value Trend 

CB (d18:1/18:1) 0.605 0.122 Down 

CB (d18:1/22:1) 0.145 0.996 Down 

CB (d18:1/24:1) 0.979 0.484 Down 

CB (d18:1/25:0) 0.749 0.862 Down 

CB (d18:1/26:1) 0.580 0.222 Down 

Cer (d18:1/22:1) 0.605 0.345 Down 

LCP (17:0) 1.278 0.039 Down 

LCP (19:0) 1.299 0.026 Down 

LPC (14:0)  0.434 0.103 Down 

LPC (15:0) 0.981 0.060 Down 

LPC (16:0) 0.910 0.350 Down 

LPC (17:1) 0.432 0.731 Down 

LPC (20:1) 0.593 0.045 Down 

LPC (20:4) 0.896 0.344 Down 

LPC (22:5) 0.655 0.309 Down 

LPC (22:6) 1.036 0.090 Down 

PC (16:0/16:0) 0.159 0.350 Down 

PC (18:0/16:0) 0.393 0.527 Down 

PC (18:0/18:0) 1.402 0.004 Down 

PC (18:0/22:4) 0.751 0.444 Down 

PC (18:2/20:2) 1.811 0.054 Down 

PC (18:3/16:0) 0.580 0.189 Down 

PC (18:3/18:2) 1.509 0.017 Down 

PC (20:1/18:0) 1.487 0.000 Down 

PC (20:4/16:0) 1.288 0.210 Down 

PC (20:4/17:0) 0.698 0.645 Down 

PI (32:1) 1.765 0.051 Down 

PI (34:3) 1.622 0.812 Down 

SM (d18:1/12:0) 0.800 0.707 Down 

SM (d18:1/17:0) 0.422 0.956 Down 

SM (d18:1/20:0) 0.858 0.731 Down 

SM (d18:1/21:0) 1.334 0.372 Down 

SM (d18:1/23:1) 0.697 0.797 Down 

SM(d18:1/17:1) 0.506 0.954 Down 
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Name Average VIP score ANCOVA p value Trend 

CB (d18:1/22:0) 0.236 0.331 Up 

CB (d18:1/23:0) 0.418 0.061 Up 

Cer (d18:1/24:1) 0.741 0.079 Up 

LPC (16:1) 0.726 0.427 Up 

LPC (18:1) 1.101 0.003 Up 

LPC (18:2) 0.541 0.046 Up 

LPC (18:3) 0.633 0.436 Up 

PC (16:0/14:0) 0.680 0.216 Up 

PC (16:0/17:1) 0.501 0.164 Up 

PC (16:0/20:1) 2.604 0.000 Up 

PC (16:1/14:0) 0.877 0.018 Up 

PC (17:0/18:2) 0.887 0.014 Up 

PC (18:0/22:5) 0.929 0.111 Up 

PC (18:0/22:6) 0.198 0.852 Up 

PC (18:1/17:0) 0.301 0.238 Up 

PC (18:2/14:0) 1.711 0.000 Up 

PC (18:2/17:1) 1.312 0.001 Up 

PC (18:2/20:5) 1.281 0.002 Up 

PC (20:4/14:0) 0.713 0.622 Up 

PC (22:6/17:0) 0.447 0.491 Up 

SM (d18:1/14:0) 1.056 0.105 Up 

SM (d18:1/15:0) 0.885 0.117 Up 

SM (d18:1/18:0) 0.700 0.050 Up 

SM (d18:1/19:1) 1.057 0.119 Up 

SM (d18:1/22:0) 1.303 0.012 Up 

SM (d18:1/23:0) 0.626 0.006 Up 

SM (d18:1/24:1) 0.822 0.023 Up 

SM (d18:1/25:0) 1.215 0.009 Up 

SM (d18:1/25:1) 0.484 0.381 Up 

SM(d18:1/26:1) 0.536 0.204 Up 

CB: cerebroside; CER: ceramide; LPC: lysophosphatidylcholine;  

PC: phosphatidylcholine; PI: phosphatidylinositol; SM: sphingomyelin 
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Background: This study aims at identifying metabolic changes linking external exposure to industrial air toxics
with oxidative stress biomarkers.
Methods: We classified 252 study subjects as 111 high vs. 141 low exposure subjects by the distance from their
homes to the two main emission sources, oil refineries and coal-fired power plants. We estimated individual's
external exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) by dispersion and kriging
models, respectively. Wemeasured urinary levels of heavy metals and 1-hydroxypyrene (1-OHP) as biomarkers
of internal exposure, and 8-OHdG, HNE-MA, 8-isoPGF2α, and 8-NO2Gua as biomarkers of early health effects.We
used two-dimensional gas chromatography time-of-flight mass spectrometry to identify urine metabolomics.
We applied “meet-in-the-middle” approach to identify potential metabolites as putative intermediate bio-
markers linking multiple air toxics exposures to oxidative stress with plausible exposures-related pathways.
Results:High exposure subjects showed elevated ambient concentrations of vanadium and PAHs, increased urine
concentrations of 1-OHP, vanadium, nickel, copper, arsenic, strontium, cadmium, mercury, and thallium, and
higher urine concentrations of all four urine oxidative stress biomarkers compared to low exposure subjects.
We identified a profile of putative intermediate biomarkers that were associatedwith both exposures and oxida-
tive stress biomarkers in participants. Urinemetabolomics identified age-dependent biological pathways, includ-
ing tryptophan metabolism and phenylalaninemetabolism in children subjects (aged 9–11), and glycine, serine,
and threoninemetabolism in elderly subjects (aged N 55), that could associatemultiple exposureswith oxidative
stress.
Conclusion: By profiling urine biomarkers andmetabolomics in children and elderly residents living near a petro-
chemical complex, we can link their internal exposure to oxidative stress biomarkers through biological path-
ways associated with common complex chronic diseases and allergic respiratory diseases. The internal
exposure may possibly be traced to multiple air toxics emitted from specific sources of oil refineries and coal-
fired power plants.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The concept of the exposome was first proposed in 2005 (Wild,
2005), and characterized as the comprehensive evaluation of all expo-
sures and their contribution to disease causation or progression
(Rappaport and Smith, 2010). Recently, a branching paradigm, the pub-
lic health exposome, focuses on the impact of exposures on the overall
health of a population within a particular region, with the intention of
obtained from the Ministry of
cience and Technology (MOST

competing financial interests.
edicine and Industrial Hygiene,
m. 722, No. 17, Xu-Zhou Rd.,
identifying vulnerable populations with higher risks of chronic illnesses
(Juarez et al., 2014; Smith et al., 2015). The use of omics methods has
been recommended in exposomics studies to identify the links between
exposures and health outcomes (Vineis et al., 2013). Untargeted meta-
bolomics allow unbiased global profiling of metabolites, the endpoint
of biological processes, and could best reflect the biochemical effects
of exposure and easier correlated with phenotypes (Patti et al., 2012).
So far metabolomics have been applied in pharmacology, clinical dis-
ease diagnosis, nutritional, and environmental studies (Robertson et
al., 2011). However,most environmentalmetabolomics studies have fo-
cused on the assessment of single exposure (Ellis et al., 2012; Gao et al.,
2014).

Petrochemical complex is usually a consortium of high-pollution fa-
cilities such as coal-fired power plants and oil refineries that emit mul-
tiple air toxics including sulfur dioxide (SO2), nitrogen oxides (NOx),
polycyclic aromatic hydrocarbons (PAHs), heavy metals, and volatile
doi:10.6342/NTU201901261
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organic compounds (VOCs) which can induce common complex dis-
eases (Chan et al., 2006; Driscoll et al., 2015; Nadal et al., 2004). Epide-
miological studies have shown increased risks of diseases such as
asthma and cancer in residents living near petrochemical complexes,
without linking health effects to emissions from specific sources (Pan
et al., 1994; Wichmann et al., 2009). The complexity of petrochemical-
related air toxics and potential health effects calls for a comprehensive
evaluation on nearby communities.

This study selected high exposure subjects who lived in close prox-
imity to a predominant emission source, the No. 6 Naphtha Cracking
Plant, the largest petrochemical complex in Taiwan, which houses 64
plants including a coal-fired power plant and three oil refineries (Shie
et al., 2013), and low exposure subjects that lived further away. We
aimed to clarify the effects of air toxics exposures on biological path-
ways that could lead to increased oxidative stress by measuring and
comparing multiple air toxics exposures and possible health effect
oxidative stress in the high and low exposure subjects, and using two-
dimensional gas chromatography time-of-flight mass spectrometry
(GC × GC − TOFMS)-based untargeted urine metabolomics to identify
the link between exposures and oxidative stress. We specifically fo-
cused on children (aged 9–15) and elderly (aged N 55) residents
whom are more susceptible to environmental exposures. Children are
more susceptible due to immature physical development, and higher
inhalation of air per unit time,while elderlymay have compromised im-
mune responses and underlying health conditions (Adler, 2003; Makri
and Stilianakis, 2008). Since age has been reported to affect the urine
metabolite profile, in this study we conducted the statistical analysis
of themetabolomics results for children and elderly subjects separately
(Slupsky et al., 2007; Thevenot et al., 2015).

2. Materials and methods

2.1. Study area and subjects

Our study area surrounded the No. 6 Naphtha Cracking Plant,
Taiwan's largest petrochemical complex, which is located in Yunlin
County on the western coast of central Taiwan (Fig. 1A). The complex
Fig. 1. GIS map of (A) Yunlin county in Taiwan, and (B) the locations
began major operations in 2000, covering a total area of 2603 ha. As
shown in Fig. 1B, the complex houses 64 plants including one coal-
fired power plant that generates 1800MWof power, three oil refineries
with a total capacity of 450,000 to 540,000 barrels of crude oil per day,
three co-generation plants that generate 2820 MW of power, three
naphtha cracking plants that produce 2.9 million tons of ethylene per
year, and other downstream plants (Shie et al., 2013). Our study sub-
jects were selected from a prospective cohort of 3230 residents (aged
5–88) living in the three townships closer to the complex (pink) and
the other seven townships relatively farther away from the complex
(yellow) as shown in Fig. 1B. All of them have completed questionnaire
surveys on key factors related to exposure and provided one morning
spot urine sample to measure biomarkers of exposure, early effects,
and metabolomics. Among them, we had 257 cohort members who
lived in the three townships closest to the complex, with urine concen-
trations of previously established exposure biomarkers vanadium (V)
and PAHs metabolite, 1-hydroxypyrene (1-OHP), in the top 60% of the
3230 residents (Yuan et al., 2015a; Yuan et al., 2015b), and another
337 cohort members who lived in townships further away, with urine
concentrations of V and 1-OHP in the bottom 40%. We then randomly
select 40 children (aged 9–15) and 71 elderly (aged N 55) subjects
from the 257 cohort members as our high exposure subjects, and 70
children and 71 elderly participants from the 337 cohort members as
our low exposure subjects. Study subjects' home locations were
shown in Fig. 1B. This study was approved by the Research Ethics
Committee of the National Taiwan University Hospital, and informed
consent was obtained for each participant.

2.2. External exposures

Geographic coordinates for each participant's home address were
determined, and geological information system (GIS) software (ArcGIS
version 10.1) was used to calculate the distances from each home ad-
dress to previously identified main emission points of coal-fired
power plant and oil refineries (Shie et al., 2013), respectively. GIS
software was also used to measure road area surrounding homes, in
order to estimate traffic contribution on air toxics levels. Ambient
of petrochemical plants, study area, and study subjects' homes.
doi:10.6342/NTU201901261
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concentrations of V and five PAHs including pyrene, fluoranthene,
dibenzo[a,h]anthracene, benzo[k]fluoranthene, and benzo[a]anthracene
were calculated using previously established two-stage dispersion
model and kriging method model, respectively (see Fig. S1) (Chio
et al., 2014; Yuan et al., 2015b). Briefly, the two-stage dispersion
model of ambient V was established using 192 air samples obtained
from 19 sampling sessions at 14 sampling sites from 2009 to 2012. In
the first stage of modeling, a backward fitting approach was used to
estimate V emissions from the main oil refinery emission point in the
complex. At the second stage, model-derived V emission rates and me-
teorological parameters such as ambient temperature, wind direction,
and wind speed were fed to the Industrial Source Complex, version 3
models to estimate the spatial distribution of V. Kriging interpolation
method and shift weighting average were then used to estimate ambi-
ent V concentrations at study subjects' home addresses in the simulation
domain of 50 km × 40 km. 1424 residents from the same cohort as the
present study were used in a multiple regression model, which con-
firmed the association between urinary vanadium and estimated air
levels at home address after adjusting for age, gender, education level,
smoking, alcohol intake, betel nut intake, fish consumption, and drink-
ing water source (Yuan et al., 2015a). Ambient PAHs models were
established using air samples collected at 10 sampling locations in
Yunlin at three different time points during downwind season in 2011
(May, June, and November). Kriging interpolation method was used to
estimate the spatial distribution of the PAHs in the simulation domain
of 100 m × 100 m. 781 residents from the same cohort as the present
study were used to determine the association between the estimated
ambient PAHs levels at their home addresses and their individual uri-
nary 1-OHP concentrations by applying a multiple linear regression
model. After adjusting for confounders including age, gender, education
level, smoking habit, grilled food consumption, incense burning
frequency, and proximity of residence to a road, results showed that
urinary 1-OHP levels significantly correlated with the five PAHs we
cited in this study (pyrene, benzo[a]anthracene, benzo[k]fluoranthene,
fluoranthene, and dibenzo[a,h]anthracene) (Yuan et al., 2015b).

2.3. Urine exposure biomarkers

Urine concentrations of V and 1-OHPwere analyzed using inductive-
ly coupled plasma mass spectrometry (ICP-MS) and high-performance
liquid chromatography (HPLC) methods, respectively, as previously re-
ported (Yuan et al., 2015a; Yuan et al., 2015b). Additional analysis of
urine chromium (Cr), nickel (Ni), copper (Cu), arsenic (As), strontium
(Sr), cadmium (Cd), mercury (Hg), thallium (Tl) and lead (Pb) were
performed using the same ICP-MS instrument andmethod as V analysis
(see SupplementalMaterial, p. 19). Urinary creatinine analysis was per-
formed on all the urinary samples for adjustment of urinary exposure
biomarker levels. Urine creatinine analysis was conducted using en-
zyme-linked immunosorbent assay at National Taiwan University Hos-
pital medical diagnosis laboratory. All the subjects selected in this study
had urinary creatinine concentrations between 30 and 300 mg/dL.

2.4. Urine oxidative stress biomarkers

Urine concentrations of four oxidative stress biomarkers 8-hydroxy-
2′-deoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic acid
(HNE-MA), 8-isoprostaglandin F2α (8-isoPF2α), and 8-nitroguanine (8-
NO2Gua) were analyzed using a liquid chromatography-tandem mass
spectrometry (LC-MS/MS) method in previously published literature
(Wu et al., 2016). Urinary oxidative stress biomarkers levels were ad-
justed using urinary creatinine concentrations.

2.5. Urine metabolomics

Samples were prepared and analyzed following previously
published protocol (Chan et al., 2011), using a Pegasus 4D GC × GC −
TOFMS (LecoCorp., St. Joseph, MI, USA) for analysis (see Supplemental
Material, p. 20 and Fig. S2). After data cleaning and preprocessing, ac-
quired data were outputted as peak area for NIST library (version 08,
National Institute of Standards and Technology, Gaithersburg, MD,
USA) identified potential metabolite peaks, and we selected those
with mass spectrum matched library spectrum for N60% (similarity
score N 600 out of 1000). After removing artifacts and peaks missing
in N50% of the individuals in children or elderly groups, we obtained
405 and 391 potential metabolite peaks for each individual in children
and elderly subjects, respectively.

2.6. Biological information search

NIST library match showed the derivatized form of potential metab-
olite peaks, which we converted to underivatized forms by replacing
methoxyamine and trimethylsilyl groups with carbonyl and hydroxyl
functional groups, respectively. ChemSpider was used for the identifica-
tion of the underivatized forms of potential metabolite peaks (Royal
Society of Chemistry, London, UK). All potential metabolites peaks
were then put through an online repository (http://cts.fiehnlab.
ucdavis.edu/) and searched under three online databases: the Human
MetabolomeDatabase (HMDB) (Wishart et al., 2013), Kyoto Encyclope-
dia of Genes andGenomes (KEGG) (Kanehisa et al., 2014), and Chemical
Entities of Biological Interest (ChEBI) (Hastings et al., 2013), for identifi-
cation of known metabolites, chemical class, and involved biological
pathways.

2.7. Meet-in-the-middle approach

For identifying exposures-related potential metabolite peaks, peak
area data were normalized by sum of total peak area so that the cumu-
lative peak area summed up to 1 in each subject, log transformed, and
autoscaled before performing partial least squares discrimination anal-
ysis (PLS-DA) between high and low exposure groups in children and
elderly subjects, respectively. PLS-DA models were validated using per-
mutation test and cross-validation test. We further used Student's t-test
to compare the peak area of each potential metabolite peak between
high and low exposure groups. For identifying oxidative stress-related
potential metabolite peaks, peak area data were adjusted using creati-
nine concentration for each subject, before using Pearson's correlation
test to assess the association with each of the four oxidative stress bio-
markers' creatinine-adjusted urine concentration. By comparing the
two lists of potential metabolite peaks related to exposures or oxidative
stress, we identified intercepting potential metabolite peaks as putative
intermediate biomarkers associating multiple exposures with oxidative
stress (Chadeau-Hyam et al., 2011).

2.8. Pathway analysis

Pathway analysis was performed using Metaboanalyst 3.0 (The
Metabolomics Innovation Center, Edmonton, Alberta, Canada), which
currently supports 80 pathways in the Homo sapiens pathway library
(Xia et al., 2015). HMDB ID and peak area values were used as input,
and were first processed by log transformation, normalization by sum
and autoscaling (mean-centered and divided by the standard deviation
of each variable). The method “Globaltest” was used for pathway en-
richment analysis, and “betweenness centrality” for pathway topology
analysis.

2.9. Statistical analysis

For comparison of basic characteristics and external exposure levels
between high and low exposure groups, we used Student's t-test or
Wilcoxon Mann Whitney test to analyze continuous variables, and
Chi-squared test or Fisher's exact test for discrete variables. We com-
pared log-transformed urine concentrations of exposure and oxidative
doi:10.6342/NTU201901261
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stress biomarkers betweenhigh and lowexposure groups using analysis
of covariance (ANCOVA) test, adjusting for age, gender, smoking,
alcohol consumption, betel nut chewing, fish consumption, and source
of drinking water with a post comparison by Scheffe test. Betel nut
chewing is a unique lifestyle factor in Yunlin area. Previous studies
have shown that betel nut chewing may increase the risks of arsenic,
cadmium, and lead exposure, and could also induce oxidative stress
(Al-Rmalli et al., 2011; Shih et al., 2010; Wang et al., 2007). Student's
t-test, Wilcoxon Mann Whitney test, Chi-squared test, Fisher's exact
test, ANCOVA test, and Pearson's correlation test were performed
using SAS 9.2 for Windows. PLS-DA was performed using
Metaboanalyst 3.0. FDR q value was measured using fdrtool package
in R-3.1.3 for Windows.

3. Results

Table 1 showed the comparison between high and low exposure
groups in basic characteristics, external exposure at each subject's
home locations, and internal exposures as urine biomarkers concentra-
tions. Overall, high exposure subjects lived 10.07± 2.43 km away from
the main emission point of the coal-fired power plant and 9.35 ±
2.65 km away from the main emission point of oil refineries, while
low exposure subjects lived 21.64 ± 5.19 and 20.69 ± 5.00 km away
from the two main emission points, respectively. High and low expo-
sure subjects in children (13.76 ± 0.93 years old) and elderly
Table 1
Comparison of basic characteristics and exposure levels in 252 study subjects.

Children

High (n = 40) Low (n = 70)

Basic characteristics
Age (years), mean ± SD 13.78 ±0.93 13.83 ±0.8
Male, n (%) 22 (55.0) 38 (54.3
Smoking history, n (%) 3 (7.5) 3 (4.3)
Drinking history, n (%) 2 (5.0) 1 (1.4)
Betel nut chewing history, n (%) 1 (2.5) 0 (0)
BMI (kg/m2), mean ± SD 21.13 ±3.20 20.05 ±3.4
SBP (mmHg), mean ± SD 117.63 ±13.02 115.79 ±14

External exposures at study subjects' homesb, mean ± SD
Distance to coal-fired power plant 10.31 ±2.50 22.66 ±10
Distance to oil refinery 9.80 ±2.63 21.73 ±5.2
Road area surrounding homes
25 m buffer 241.08 ±279.23 279.23 ±22
500 m buffer 68,088.07 ±61,248.67 61,248.67 ±20

Ambient concentrations
Vanadium 8.60 ±1.39 5.75 ±1.0
Polycyclic aromatic hydrocarbonsc

Pyrene 0.026 ±0.005 0.023 ±0.0
Fluoranthene 0.028 ±0.001 0.026 ±0.0
Dibenzo[a,h]anthracene 0.013 ±0.002 0.011 ±0.0
Benzo[k]fluoranthene 0.017 ±0.003 0.017 ±0.0
Benzo[a]anthracene 0.017 ±0.001 0.019 ±0.0

Internal exposuresd, mean ± SD
1-Hydroxypyrene 0.25 ±0.31 0.03 ±0.0
Vanadium 2.34 ±1.53 0.23 ±0.1
Chromium 3.89 ±4.56 2.06 ±1.6
Nickel 10.41 ±16.62 3.70 ±2.8
Copper 16.38 ±14.94 11.22 ±7.5
Arsenic 62.28 ±42.02 39.47 ±29
Strontium 170.77 ±249.93 70.47 ±64
Cadmium 0.34 ±0.34 0.19 ±0.1
Mercury 3.30 ±3.15 1.92 ±1.8
Thallium 2.13 ±3.92 0.21 ±0.1
Lead 0.77 ±1.08 0.65 ±0.5

BMI: Body Mass Index; SBP: Systolic Blood Pressure.
a Comparison of basic characteristics between the high and low exposure groups for continu

test or Fisher's exact test. Urinary exposure biomarker concentrations are log-transformed, hig
cohol consumption, betel nut chewing, fish consumption, and source of drinking water with a

b Distance to source: Average of home-to-coal-fired power plant and home-to-oil refinery dis
Aromatic Hydrocarbons unit: ng/m3.

c Children low exposure group n = 35; Elderly low exposure group n = 50.
d For 1-hydroxypyrene, unit: μmol/mol-creatinine; for heavy metals, unit: μg/g-creatinine.
(65.88 ± 6.92 years old) age groups showed no significant difference
in gender distribution, smoking, drinking, and betel nut chewing
history, body mass index, and systolic blood pressure. Ambient
concentrations of V, and three PAHs pyrene, fluoranthene, and
dibenzo[a,h]anthracene were significantly higher at the home
locations of high exposure subjects when compared to low exposure
subjects, for both children and elderly participants. Another PAH,
benzo[k]fluoranthene, was significantly increased in high exposure
group in elderly subjects, but showed no difference between high and
low exposure groups in children subjects. Benzo[a]anthracene was de-
creased in high exposure groups for both children and elderly subjects.
Road areas surrounding participants' homes, which we used to repre-
sent traffic contribution of air toxics levels, showed no difference be-
tween high and low exposure groups for both children and elderly
residents at 25mbuffer.Whenwe increased the buffer to 500m, elderly
subjects in the low exposure group had larger road areas surrounding
their homes than those in the high exposure group. Urine concentra-
tions of 1-OHP, V, Ni, Cu, As, Sr, Cd, Hg, and Tl were significantly in-
creased in high exposure groups compared to low exposure groups for
both children and elderly subjects. The difference between high and
low exposure groups was most profound for V, 1-OHP, and Tl, followed
by Sr. Pearson's correlation analysis results showed significant correla-
tion between ambient and urinary V levels; and between ambient
pyrene, fluoranthene, and dibenzo[a,h]anthracene and urine 1-OHP
concentrations for both children and elderly subjects (see Table S1).
Elderly

pa High (n = 71) Low (n = 71) pa

9 0.88 66.23 ±6.54 66.36 ±7.47 0.76
) 0.94 28 (39.4) 35 (49.3) 0.24

0.67 3 (4.2) 7 (9.9) 0.33
0.30 8 (11.3) 7 (9.9) 0.79
0.60 4 (5.6) 3 (4.2) 1.00

3 0.10 26.30 ±3.89 26.36 ±3.35 0.93
.26 0.50 140.76 ±20.74 141.76 ±18.95 0.77

.31 b0.05 9.94 ±2.39 20.62 ±4.72 b0.05
0 b0.05 9.09 ±2.65 19.66 ±4.59 b0.05

6.64 0.38 269.41 ±222.79 304.52 ±237.50 0.37
,502.19 0.18 71,269.64 ±22,808.14 82,235.11 ±27,217.15 b0.05

8 b0.05 8.97 ±1.63 6.22 ±0.96 b0.05

03 b0.05 0.030 ±0.005 0.022 ±0.003 b0.05
03 b0.05 0.027 ±0.001 0.024 ±0.003 b0.05
01 b0.05 0.014 ±0.002 0.011 ±0.001 b0.05
02 0.98 0.019 ±0.003 0.018 ±0.002 b0.05
01 b0.05 0.017 ±0.001 0.020 ±0.002 b0.05

1 b0.05 0.42 ±0.70 0.03 ±0.01 b0.05
0 b0.05 4.02 ±2.23 0.17 ±0.08 b0.05
5 0.11 5.32 ±7.33 2.98 ±2.62 0.09
9 b0.05 11.28 ±15.34 8.33 ±29.64 b0.05
0 b0.05 22.87 ±24.33 17.36 ±30.23 b0.05
.46 b0.05 119.60 ±205.04 64.92 ±51.73 b0.05
.55 b0.05 211.26 ±176.33 86.53 ±55.23 b0.05
5 b0.05 1.30 ±1.11 0.87 ±0.73 b0.05
1 b0.05 2.59 ±2.35 1.49 ±1.27 b0.05
1 b0.05 1.60 ±3.67 0.12 ±0.08 b0.05
9 0.71 1.79 ±2.30 1.09 ±1.21 0.17

ous variables was performed using Student's t-test, and for discrete variables, Chi-squared
h and low exposure groups compared by ANCOVA test adjusting age, gender, smoking, al-
post comparison by Scheffe test.
tance, unit: km; Road area surrounding homes unit: m2; Ambient V unit: ng/m3; Polycyclic
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Fig. 2 compared log-transformed urine concentrations of four oxida-
tive stress biomarkers between high and low exposure groups in chil-
dren and elderly subjects. In children, urine concentrations of 8-OHdG
were 3.1 ± 2.52 and 2.59 ± 2.78 μg/g-creatinine in high and low expo-
sure groups, respectively, with no significant statistical difference. For
elderly subjects, 8-OHdG urine levels were 6.61 ± 20.34 and 3.16 ±
4.07 μg/g-creatinine for high and low exposure groups, respectively,
with p value of 0.006 (Fig. 2A). Urine levels of HNE-MAwere significant-
ly increased in high exposure groups compared to low exposure groups
for both children and elderly subjects (Fig. 2B), with urine concentra-
tions 2.16±2.7 and1.4±2.3 μg/g-creatinine for high and lowexposure
groups, respectively, in children, and 2.59± 3.16 and 1.82 ± 3.66 μg/g-
creatinine for high and low exposure groups, respectively, in elderly
subjects. 8-isoPGF2α was increased when comparing high (3.22 ±
3.4 μg/g-creatinine) to low exposure group (2.06 ± 2.14 μg/g-creati-
nine) in children, but the differencewas not as significant in elderly sub-
jects, with urine concentrations of high exposure group at 2.88 ±
2.94 μg/g-creatinine, and low exposure group at 2.47± 4.32 μg/g-creat-
inine (Fig. 2C). Fig. 2D showed 8-NO2Gua was significantly increased
when comparing high and low exposure groups for both children and
elderly subjects. Urine concentrations were 6.88 ± 11.93 and 2.43 ±
2.97 μg/g-creatinine for the high and low exposure groups, respectively,
Fig. 2.Urine concentrations of (A) oxidative DNA damage biomarker 8-OHdG (B) (C) lipid pero
NO2Gua levels between high and low exposure groups in children and elderly study subjects. *
in children, while elderly subjects had 7.44± 15.21 and 3.19± 3.34 μg/
g-creatinine for high and low exposure groups, respectively.

Urine metabolomics identified 405 potential metabolite peaks in
each individual's urine sample in children, and 391 in elderly partici-
pants, 216 and 209 of which were identified as known humanmetabo-
lites by HMDB in children and elderly participants, respectively
(see Table S2). PLS-DA results showed separation between the urine
metabolite profiles of children and elderly subjects, as well as high
and low exposure groups, while no significant difference was found be-
tween metabolite profiles of different genders (see Table S3). Separate
analysis of urine metabolite profiles in children and elderly participants
showed clear separation of urine metabolite profiles between high and
low exposure groups in both children (Fig. 3A) and elderly subjects
(Fig. 3B). Permutation test confirmed the validity of the PLS-DA models
(see Fig. S4A and S4B), and cross-validation test results showed that for
both children and elderly subjects, best performance of the PLS-DA
models were acquired after applying three components (see Fig. S4C
and S4D). The variable importance in the projection (VIP) value of
each potential metabolite peak in first three components was listed in
Table S2. Potential metabolite peaks with Component 1 VIP score N 1
were considered responsible for the separation between high and low
exposure groups, 45 of these exposure-related potential metabolites
xidation biomarkers HNE-MA and 8-isoPGF2α and (D) nitrative DNA damage biomarker 8-
p b 0.05, **p b 0.01.
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Fig. 3. PLS-DA score plots of urinary metabolite peaks from (A) children (R2 = 0.826, Q2 = 0.494, Permutation p = 0.04) and (B) elderly study subjects (R2 = 0.823, Q2 = 0.278,
Permutation p = 0.02).
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were identified in children (fdr q b 0.1, p ≤ 0.033), and 42 in elderly sub-
jects (fdr q b 0.15, p ≤ 0.040), of which only 11 were found in both chil-
dren and elderly subjects. These 76 potential metabolites were classed
by HMDB as 9 benzenoids, 3 hydrocarbons, 10 lipids and lipid-like mol-
ecules, 19 organic acids and derivatives, 14 organoheterocyclic com-
pounds, 2 organonitrogen compounds, 15 organooxygen compounds,
1 organosulfur compound, 2 phenylpropanoids and polyketides, and 1
homogeneous non-metal compound (Table 2).

Pathway enrichment and pathway topology analysis on the 45 expo-
sure-related potential metabolites in children identified threemain bio-
logical pathways potentially affected by multiple exposures: alanine,
aspartate, and glutamate metabolism, phenylalanine metabolism, and
tryptophanmetabolism. For the 42 potentialmetabolites found in elder-
ly participants, pathway analysis showed glycine, serine, and threonine
metabolism, alanine, aspartate, and glutamate metabolism, as well as
aminoacyl-tRNA biosynthesis were the most important pathways
disrupted by multiple exposures (Impact value N 0.1, FDR adjusted
p b 0.05) (see Table S4). Through the Comparative Toxicogenomics Da-
tabase (CTD), we found that pyrene, fluoranthene, As, Cu, Cd, and Ni
were significantly associated with tryptophan metabolism, As, Cd, and
Ni with phenylalanine metabolism, dibenzo[a,h]anthracene, As, Cu, Cd,
Ni, and Hg with alanine, aspartate, and glutamate metabolism, and As,
Cu, Cd, and Ni with glycine, serine, and threonine metabolism
(Bonferroni adjusted p b 0.01) (Fig. 4) (Davis et al., 2015).

We also identified 163 oxidative stress-related potentialmetabolites
in children subjects, and 144 in elderly subjects that were associated
with at least one of the four oxidative stress biomarkers (p b 0.05)
(see Table S2). In children,we found54potentialmetabolites associated
with 8-OHdG, 108 with HNE-MA, 69 with 8-isoPGF2α, and 56 with 8-
NO2Gua, while in elderly subjects, 33 were correlated with 8-OHdG,
113 with HNE-MA, 65 with 8-isoPGF2α, and 49 with 8-NO2Gua. Identi-
fiedoxidative stress-related potentialmetabolites showedmoreoverlap
(113 out of 194) than multiple exposure-related potential metabolites
(11 out of 76) between children and elderly subjects.

Through the “Meet-in-the-middle” approach, we identified a profile
of putative intermediate biomarkers that were associated with both ex-
posures and oxidative stress biomarkers in children participants: 10 for
8-OHdG, 23 for HNE-MA, 11 for 8-isoPGF2α, and 22 for 8-NO2Gua. We
also identified another profile of such biomarkers in elderly subjects:
17 for 8-OHdG, 32 for HNE-MA, 10 for 8-isoPGF2α, and 26 for 8-
NO2Gua (see Table S5). Fig. 4 showed that these putative intermediate
biomarkers could be located in previously identified exposures-related
pathways. In children, tryptophan and indole-3-acetamide could be lo-
cated in tryptophanmetabolism pathway, phenylalanine, hippuric acid,
and 4-hydroxy benzoic acid in phenylalaninemetabolism pathway, and
succinic acid in both phenylalanine metabolism and alanine, aspartate,
and glutamate metabolism pathways. In elderly participants, threonine,
serine, and glyceric could be located in glycine, serine, and threonine
metabolism. Aspartic acid, whichwas identified in both children and el-
derly subjects, is involved in alanine, aspartate, and glutamate
metabolism.

4. Discussion

Here we demonstrate a urine metabolomic approach to evaluate
how a mixture of air toxics from an industrial emission source can in-
crease the external and internal exposures of nearby residents in a dis-
tance-to-source-related manner, inducing age-dependent responses in
children and elderly residents that led to elevated oxidative stress. The
strength of this study was that we comprehensively evaluated multiple
air toxics, and successfully used untargetedmetabolomics tofind the as-
sociation between exposures and early health effect oxidative stress
through the “Meet-in-the-middle” approach (Fig. 4).

External and internal exposure results suggest petrochemical com-
plex is themajor source of both external and internal exposures tomul-
tiple air toxics for our study subjects (Table 1). High exposure groups
lived closer to the emission sources, had higher levels of ambient V
and PAHs at the location of their home addresses, with increased uri-
nary concentrations of heavy metals and PAHs metabolite 1-OHP, of
which PAHs, V, Ni, As, and Cu exposures have been reported near both
coal-fired power plants and oil refineries, and Cd, Hg, Sr, and Tl near
coal-fired power plants (Dybing et al., 2013; George et al., 2015; IARC,
1989a; O'Rourke and Connolly, 2003; Peter and Viraraghavan, 2005).
Lack of difference in surrounding road area at home addresses of high
and low exposure groups suggest limited traffic influence on exposures.

Urine oxidative stress biomarkers were elevated in high exposure
groups, including 8-OHdG, a biomarker for oxidative DNA damage,
HNE-MA, produced by lipid peroxidation, 8-isoPGF2α, a metabolite
from arachidonic acid peroxidation, and 8-NO2Gua, potential biomarker
for nitrative DNA damage (Fig. 2) (Wu et al., 2016). Previous studies
have reported exposure to PAHs and heavy metals V, Ni, Cu, As, Cd,
and Hg can induce oxidative stress through increment of reactive
doi:10.6342/NTU201901261



Table 2
Urine metabolic profiling of multiple exposures from refineries and coal-fired power
plants in children and elderly subjects using GCxGC-TOFMS analysis.

Metabolite identificationa Involved pathwayb Trendc

Childrend

Benzenoids
2-Phenylpropanal – Up
3-Hydroxyhippuric acid – Down
4-Hydroxybenzoic acid Phenylalanine metabolism Down
Hippuric acid Phenylalanine metabolism Down
o-Cymene – Up

Hydrocarbons
Decane – Up
Dodecane None Up
Tridecane None Up

Lipids and lipid-like molecules
Azelaic acid None Down
Glycerol 3-phosphate Glycerolipid metabolism Up
Myristic acid Fatty acid biosynthesis Down
Stearic acid Fatty acid biosynthesis Up
Tiglic acid None Up

Organic acids and derivatives
3-Hydroxyoctanoic acid cAMP signaling pathway Down
Aminomalonic acid None Up
Fumaric acid Citrate cycle (TCA cycle) Up
Hydroxypyruvic acid Glycine, serine, and threonine

metabolism
Up

L-Alpha-aminobutyric acid Cysteine and methionine
metabolism

Up

L-Aspartic acid Alanine, aspartate, and glutamate
metabolism

Down

L-Histidine Histidine metabolism Down
N-acetylglutamic acid Arginine biosynthesis Down
Succinic acid Citrate cycle (TCA cycle) Up
Tiglylglycine – Down
γ-Aminobutyric acid Alanine, aspartate, and glutamate

metabolism
Down

Organoheterocyclic compounds
1H-Indole-3-acetamide Tryptophan metabolism Up
2-Deoxy-L-ribono-1,4-lactone – Down
4-Pyridoxic Acid Vitamin B6 metabolism Down
Cyanuric acid None Up
DL-Tryptophan Tryptophan metabolism Down
L-Gulonolactone Tryptophan metabolism Down
Quinolinic acid Ascorbate and aldarate metabolism Down
Sumiki's acid Tryptophan metabolism Down

Organonitrogen compounds
Dimethylamine Methane metabolism Up

Organooxygen compounds
4-Deoxyerythronic acid – Up
Cyanic acid Nitrogen metabolism Down
Cyclohexanone Caprolactam degradation Up
Diacetone alcohol – Up
D-Threitol None Up
Gluconic acid Pentose phosphate pathway Down
Hex-2-ulosonic acid None Down
L-Sorbose None Up
Rhamnose Fructose and mannose metabolism Down
Threonic acid Ascorbate and aldarate metabolism Down

Phenylpropanoids and
polyketides

Hydroxyphenyllactic acid Tyrosine metabolism Up
L-Phenylalanine Phenylalanine metabolism Up

Elderlye

Benzenoids
Catechol Chlorocyclohexane and

chlorobenzene degradation
Up

m-Cresol Toluene degradation Up
Mono(2-ethylhexyl)phthalate

[MEHP]
None Up

o-Cymene – Up
Phenol Tyrosine metabolism Up

Homogeneous non-metal
compounds

Phosphoric acid Oxidative phosphorylation Up
Hydrocarbons
Decane – Up
Dodecane None Up

Table 2 (continued)

Metabolite identificationa Involved pathwayb Trendc

Tridecane None Up
Lipids and lipid-like molecules
2,4-Dihydroxybutanoic acid – Up
2-Hydroxyglutaric acid None Up
Borneol None Down
L-Threonine Glycine, serine and threonine

metabolism
Up

Myristic acid Fatty acid biosynthesis Up
Palmitic acid Fatty acid biosynthesis Up
Stearic acid Fatty acid biosynthesis Up

Organic acids and derivatives
(S)-3-Hydroxyisobutyric acid Valine, leucine and isoleucine

degradation
Up

2-Ethylhydracrylic acid – Up
Alanine Alanine, aspartate and glutamate

metabolism
Up

Glutaric acid Fatty acid degradation Up
L-Aspartic acid Alanine, aspartate and glutamate

metabolism
Down

Leucine Valine, leucine and isoleucine
degradation

Up

L-Valine Valine, leucine and isoleucine
degradation

Up

Serine Glycine, serine and threonine
metabolism

Up

Thiodiacetic acid Metabolism of xenobiotics by
cytochrome P450

Up

Organoheterocyclic compounds
5-Hydroxyindoleacetic acid Tryptophan metabolism Down
Cytosine Pyrimidine metabolism Up
D-Xylono-1,5-lactone Pentose and glucuronate

interconversions
Up

Hypoxanthin Purine metabolism Down
Picolinic acid Tryptophan metabolism Up
Uracil Pyrimidine metabolism Up

Organonitrogen compounds
Diethanolamine Glycerophospholipid metabolism Up

Organooxygen compounds
1,3-Butanediol – Up
4-Deoxyerythronic acid – Up
Acetoin None Up
Arabinose – Up
Cyclohexanone Caprolactam degradation Up
Glyceric acid Pentose phosphate pathway Up
Inositol – Up
L-Sorbose None Up
Threonic acid Ascorbate and aldarate metabolism Up

Organosulfur compounds
Dimethyl sulfone Sulfur metabolism Up

a Urinemetabolites detected by GCxGC-TOFMS, identified using NIST library, and found
in and classified via Human Metabolome Database.

b Metabolites were searched in KEGG database for involved biological pathways. If
metabolite is involved inmultiple pathways, only one is shown. None: Found in KEGG da-
tabase but with no known involved pathways. −: Not found in KEGG database.

c The up- or downregulation of metabolites in high exposure group compared to low
exposure group.

d VIP N 1, FDR q b 0.1.
e VIP N 1, FDR q b 0.15.
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oxygen species (ROS) and/or reduction of anti-oxidants (Jomova and
Valko, 2011; Penning and Drury, 2007). Our findings suggest that expo-
sure tomultiple air toxics induces oxidative stress, an early health effect
that contributes to numerous common complex chronic diseases such
as cancer, cardiovascular disease, diabetes, and neurodegenerative dis-
eases, as well as acute respiratory diseases such as allergic rhinitis and
asthma (Bowler and Crapo, 2002; Reuter et al., 2010).

Potential metabolites responsible for the separation between high
and low exposure groups were different for children and elderly sub-
jects (Table 2), and pathway analysis results showed three different
and one common biological pathway affected by exposures in the two
age groups (see Table S4). “Meet-in-the-middle” approach found puta-
tive intermediate biomarkers thatwere involved in these four pathways
(see Table S5), suggesting that exposures can disrupt diverse biological
doi:10.6342/NTU201901261



Fig. 4. Exposure pathways of petrochemical air pollution and the effects on urine metabolic profile changes and increased oxidative stress.
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mechanisms in different age groups, inducing common early health ef-
fect oxidative stress (Fig. 4).

Tryptophanmetabolismwas one of the exposures-related pathways
identified in children subjects (see Table S4). Tryptophan can bemetab-
olized through different pathways, the most important route,
kynurenine pathway, is often upregulated by activated immune re-
sponses, leading to the depletion of tryptophan, and has shown involve-
ment in increased oxidative stress as well as numerous diseases
including cancer, neurodegenerative diseases, and allergic disorders
such as rhinitis and asthma (Chen and Guillemin, 2009; Ciprandi et al.,
2010; Gostner et al., 2016; Stoy et al., 2005). Our previous study in the
same area also showed increased incidence of allergic rhinitis, bronchi-
tis, and asthma in children living near the petrochemical complex
(Chiang et al., 2016). Tryptophan was downregulated in high exposure
group compared to low exposure group in children subjects (Table 2),
identified as a putative intermediate biomarker and correlated with 8-
OHdG, HNE-MA, and 8-isoPGF2α (see Table S5). Downstream metabo-
lite 1H-indole-3-acetamide from another tryptophan metabolism
route was also identified and associated with 8-NO2Gua. These findings
suggest exposures could affect at least one tryptophan metabolism
pathway, inducing multiple oxidative stress outcomes. Given themedi-
ating roles of tryptophanmetabolism and oxidative stress in allergic re-
spiratory diseases (Bowler and Crapo, 2002; Ciprandi et al., 2010;
Gostner et al., 2016), our findings may provide further information on
the biological mechanisms deregulated by petrochemical industry
exposures that led to increased risks in children. Phenylalanine
metabolismwas also identified in children subjects (see Table S4). Phe-
nylalanine, which have been used as an oxidative stress biomarker
(Orhan et al., 2004), was significantly correlatedwith exposures and ox-
idative stress biomarkers 8-OHdG and HNE-MA, and with HNE-MA, 8-
isoPGF2α, and 8-NO2Gua through its downstream metabolites hippuric
acid, 4-hydroxy benzoic acid, and succinic acid in children participants
(see Table S5). Since the increase of 8-OHdG levels in high exposure
group for children participants increased but did not reach statistical
significance (Fig. 2A), our findings suggest that urinary tryptophan
and phenylalanine could be a potential intermediate biomarkers of ex-
posure-induced oxidative stress in children study subjects, before DNA
damage became significant. In elderly subjects, glycine, serine, and thre-
onine metabolism was identified (see Table S4), with related-com-
pounds threonine associating with 8-NO2Gua, serine with 8-OHdG,
HNE-MA, and 8-NO2Gua, and glyceric acid with HNE-MA and 8-
NO2Gua (see Table S5). The disruption of this pathway is closely related
to oncogenic transformation, and the biosynthesis of antioxidant gluta-
thione (Amelio et al., 2014). Alanine, aspartate, and glutamate metabo-
lism was identified in both children and elderly participants (see Table
S4), with aspartic acid downregulated in high exposure subjects of
both age groups (Table 2), associatedwith 8-NO2Gua in children partic-
ipants, andwithHNE-MA in elderly participants (see Table S5). Previous
studies have shown that aspartic acid could increase glutathione levels
and decrease lipid peroxidation in animal models (Sivakumar et al.,
2011). Threonic acidwas also identified in both age groups as a putative
intermediate biomarker, indicating deregulation of its precursor, anti-
oxidant ascorbic acid (Gao et al., 2012), associating multiple exposures
with HNE-MA and 8-NO2Gua in children and all four oxidative stress
biomarkers in elderly participants (see Table S5). We can draw from
these results a complicated web showing the relation between expo-
sures and different oxidative stress induced health effects through
age-dependent diverse biological pathways (Fig. 4).

Accidentally but not unexpectedly, we also found some exposure
biomarkers in our untargeted urine analysis of metabolomes. Decane,
dodecane, and tridecane were elevated in high exposure groups for
both children and elderly subjects (Table 2). These compounds are
intermediates in petrochemical industrial productions, and were previ-
ously reported as potential health risks (IARC, 1989b; Williams et al.,
2006). We did not locate decane, dodecane, or tridecane in human
biological pathway analysis, suggesting these compounds are from
external sources, and can be used as exposure biomarkers of petro-
chemical emissions (Fig. 4).
doi:10.6342/NTU201901261



95C.-H.S. Chen et al. / Environment International 102 (2017) 87–96
There are limitations to the present study. First, biomarkers mea-
sured in one spot urine may have daily variability, and may not be as
stable in reflecting exposure to heavy metals as those measured in
other biospecimens such as hair, which unfortunately was not collected
in this study. Nevertheless, we believe this would not systemically bias
our exposure classification because distance-to-source and model-
based ambient concentrations all showed the same pattern as urine bio-
markers. In addition, the petrochemical complex has had continuous
emissions since operation started in 1999, and our study subjects have
lived in the area for at least five years. Secondly, the air toxics in this
study were limited to PAHs and heavy metals for which we performed
biomonitoring. SO2, NOx, black carbon, and other toxics whose
biomarkers were not measured in this study may also contribute to
the increase of oxidative stress. Thirdly, we could not rule out routes
of exposure other than air that could induce oxidative stress, such as
water and food. Lastly,we could not rule out thepossibility of inaccurate
metabolite identification by library match.

5. Conclusion

Urine exposure biomarkers of PAHs and heavy metals V, Ni, As, Cu,
Sr, Cd, Hg, and Tl were elevated in children and elderly residents living
near a petrochemical complex. These internal exposures were associat-
ed with model-estimated ambient concentrations at residential ad-
dresses, and could possibly be traced to air toxics emitted by oil
refineries and coal-fired power plants within the complex. Both chil-
dren and elderly residents living in the pollution-affected area with
higher levels of urine exposure biomarkers showed changes in urine
metabolite profiles which could be linked to increased oxidative stress,
including oxidative and nitrative DNA damage, and lipid peroxidation.
We conclude that urine metabolomics could possibly serve as the link
to trace multiple air toxics exposure to oxidative stress through age-
specific biological pathways including tryptophan metabolism and
phenylalanine metabolism in children subjects, glycine, serine, and
threonine metabolism in elderly subjects, and alanine, aspartate, and
glutamate metabolism in both age groups. The identified exposures
and metabolic pathways will improve risk assessments on developing
common complex chronic diseases, such as cancers and cardiovascular
diseases, as well as allergic respiratory diseases, such as allergic rhinitis
and asthma, for the residents living near the petrochemical complex if
air toxics exposure continues in the future. We recommend to signifi-
cantly reduce air toxics emissions from the petrochemical complex to
lower residents' health risks. Our findings also warrant a follow-up
study on residents who continue to be affected by petrochemical
pollution.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.envint.2017.02.003.
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ABSTRACT: Studies on metabolomes of carcinogenic
pollutants among children and adolescents are limited. We
aim to identify metabolic perturbations in 107 children and
adolescents (aged 9−15) exposed to multiple carcinogens in a
polluted area surrounding the largest petrochemical complex
in Taiwan. We measured urinary concentrations of eight
carcinogen exposure biomarkers (heavy metals and polycyclic
aromatic hydrocarbons (PAHs) represented by 1-hydroxypyr-
ene), and urinary oxidative stress biomarkers and serum
acylcarnitines as biomarkers of early health effects. Serum
metabolomics was analyzed using a liquid chromatography
mass spectrometry-based method. Pathway analysis and
“meet-in-the-middle” approach were applied to identify
potential metabolites and biological mechanisms linking carcinogens exposure with early health effects. We found 10 potential
metabolites possibly linking increased exposure to IARC group 1 carcinogens (As, Cd, Cr, Ni) and group 2 carcinogens (V, Hg,
PAHs) with elevated oxidative stress and deregulated serum acylcarnitines, including inosine monophosphate and adenosine
monophosphate (purine metabolism), malic acid and oxoglutaric acid (citrate cycle), carnitine (fatty acid metabolism), and
pyroglutamic acid (glutathione metabolism). Purine metabolism was identified as the possible mechanism affected by children
and adolescents’ exposure to carcinogens. These findings contribute to understanding the health effects of childhood and
adolescence exposure to multiple industrial carcinogens during critical periods of development.

■ INTRODUCTION

The petrochemical industrial complex is a consortium of high-
pollution facilities, such as oil refineries and coal-fired power
plants, that emit multiple carcinogenic pollutants including
group 1 carcinogens: arsenic (As), cadmium (Cd), chromium
(Cr), nickel (Ni), and vinyl chloride (VCM), and group 2
carcinogens: vanadium(V), mercury (Hg), lead (Pb), and
polycyclic aromatic hydrocarbons (PAHs), most of which are
associated with lung cancer risk.1−9 Cumulative exposure to
such complex chemical mixtures may have synergistic effects
on health.10 Previous studies found residents living near
petrochemical industrial complexes have a higher risk of lung
cancer compared to those living farther away, and 972 lung
cancer cases are attributable to residential exposure to
petrochemical industrial complexes each year in 22 EU

countries.11 In Taiwan, we conducted extensive environmental
and epidemiological studies near the No. 6 Naphtha Cracking
Plant, the largest petrochemical complex in Taiwan, and found
a distance-to-source trend in elevated carcinogenic exposures
and increased incidence of all cancers in adult residents living
in the vicinity of the complex.12,13

In 2016, the United Nations released a special report
reiterating the systemic problem of childhood exposure to
industrial chemicals all around the world, leading to a “silent
pandemic” of diseases and disabilities that impacts children’s
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health, development, and life.14 Children are more vulnerable
to environmental exposures due to lifestyle and physiological
conditions compared to adults, and they have time for chronic
adverse health effects, such as cancer, to manifest.15 Juvenile
animal bioassays also reported earlier onset and increased
incidence of cancer in response to carcinogen exposure
compared to mature animal models.16 Previous studies showed
children and adolescents (aged 11−14) living near the No. 6
Naphtha Cracking Plant had increased incidence of respiratory
diseases associated with SO2 exposure and subclinically
abnormal liver functions associated with elevated VCM
exposure.17,18 However, there are limited studies on cancer
risks of children and adolescents living near petrochemical
complexes. Pan et al. found excess cancer mortality in 10−19
year old children and adolescents that potentially have been
exposed to petrochemical pollutants since birth.19 Weng et al.
showed 0−19 year old children and adolescents who lived in
areas with higher petrochemical air pollution exposure index
had statistically increased risk of leukemia deaths compared to
those living in areas with a lower index.20 Comprehensive
evaluation of children and adolescents living near petrochem-
ical industrial areas is warranted, including their personal
carcinogens exposures and related biological disruptions that
may accumulate and contribute to cancer development later in
life.
The concept of exposome was first proposed in 2005 and

refers to all exposures throughout a lifetime and the
contribution to disease causation or progression.21,22 Recently,
metabolomics was proposed to quantitatively measure
exogenous chemicals and biological responses in order to
provide “a snapshot measure of an individual’s exposome”.23

Vineis et al. also proposed using metabolomics to investigate
the intermediate biomarkers and biological pathways linking
exposures to disease risk.24 Metabolites are the end point of
biochemical activities and could best reflect the effects of
exposures and correlate with phenotype.25 The metabolomics
approach has also been widely used in clinical cancer research

to investigate the pathogenesis of cancer with limited studies
focusing on children and adolescents.26

We had previously analyzed urine metabolomics of children
and adolescents living near the No. 6 Naphtha Cracking Plant,
and identified three biological pathways: tryptophan metabo-
lism, phenylalanine metabolism, and alanine, aspartate, and
glutamate metabolism, that linked increased multiple air toxics
exposure with elevated oxidative stress.27 Deregulations in
tryptophan metabolism has been reported in lung cancer,
colorectal cancer, and breast cancer.28 This study analyzed
serum metabolomics of children and adolescents (aged 9−15
years) who lived in the same petrochemical industrial area for
more than five years to identify biological perturbations linking
multiple carcinogen exposure with cancer-related early health
effects including oxidative stress and serum acylcarnitines.
Oxidative stress interacts with all three stages of the cancer
process: cancer initiation, cancer promotion, and cancer
progression through reactive oxygen species (ROS) and
nitrogen reactive species (RNS) induced DNA damage, lipid
peroxidation, and protein damage.29,30 Serum acylcarnitines
are involved in transporting fatty acids into the mitochondria
for β-oxidation and production of energy.31 Deregulations in
serum acylcarnitines can activate inflammatory signaling
pathways, and have been associated with chronic diseases
including cancer.32,33

■ MATERIAL AND METHODS
Study Area and Subjects. Our study area surrounded the

largest petrochemical complex in Taiwan, No. 6 Naphtha
Cracking Plant, located in Yunlin County on the west coast of
central Taiwan. The complex began major operations in 1999.
To date, the complex covers a total area of 2603 ha, housing 64
plants including one coal-fired power plant that generates 1800
MW of power, three oil refineries that processes 450 000
barrels of crude oil every day, two naphtha cracking plants that
produce 160 million tons of ethylene per year, and three
cogeneration plants that generate 2820 MW of power.34 Our

Figure 1. GIS map of (A) Yunlin County in central Taiwan and (B) location of study area, petrochemical plants, and 107 study subjects’ homes.
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subjects were selected from a prospective cohort of 680
children and adolescents (aged 9−15 years) who have lived in
three townships in close vicinity to the complex (pink) and
seven other townships further away (yellow) as shown in
Figure 1 for more than five years. All 680 have completed
interview-administered questionnaire surveys including key
factors related to exposure, provided one morning spot urine
sample, and one fasting blood sample. Urine samples were
stored at −20 °C, serum samples were extracted from
coagulated blood samples using a centrifuge and stored at
−80 °C. All 680 participants’ urine samples have been analyzed
for V and PAHs exposure biomarker 1-hydroxypyrene (1-
OHP). We had previously established urinary V and 1-OHP as
exposure biomarkers specific to petrochemical industrial
emissions in our study area, with statistically significant
association to ambient concentrations of V and PAHs,
respectively.35,36 We used urine concentrations of V and 1-
OHP as well as residential address to identify among the 680
participants 49 who lived in the three townships closer to the
complex, with urine concentrations of V and 1-OHP in the top
60% of the cohort as high exposure group, and 71 who lived in
townships further away, with urine concentrations of the two
exposure biomarkers in the bottom 40% of the cohort as low
exposure group. We set these two criteria in order to get
sufficient number of subjects in both high and low exposure
groups with significant contrast in external and internal
exposure levels. After checking for serum sample availability,
we confirmed 37 children and adolescents in the high exposure
group and 70 in the low exposure group as subjects for this
study. This study was approved by the Research Ethics
Committee of National Taiwan University Hospital, and
informed consent was obtained from each participant.
External Exposures. Distance from 107 individual study

subject’s home locations to two previously identified main
emission points: coal-fired power plant and oil refinery
plants,34 respectively, and road area surrounding homes were
calculated using geological information system (GIS) software
(ArcGIS version 10.1).
Internal Exposures. Urine concentrations of heavy metals

As, Cd, Cr, Ni, Pb, V, and Hg in 107 study subjects were
analyzed using previously reported inductively coupled plasma
mass spectrometry (ICP−MS) method,27,35 and 1-OHP was
analyzed using previously reported high performance liquid
chromatography (HPLC) method.36 For heavy metals, spikes
were examined to confirm measurement stability, and standard
reference materials (SRM) for each metal were analyzed to
assess accuracy. For 1-OHP analysis, detection limit was 0.01
ng/mL with an 89.6% recovery rate and a 4.0% coefficient of
variation for repeated measurements. Urine concentration of
exposure biomarkers below the method detection limit (MDL)
was replaced by half of the MDL. Yuan et al. had correlated
individual urine concentration of 1-OHP with ambient levels
of group 2 carcinogens benzo[a]anthrancene, benzo[k]-
fluoranthene, and dibenzo[a,h]anthracene at study subject’s
home locations in our study area.9,36,37 Industrial emissions
always contain multiple pollutants, especially petrochemical
industries.1,2,6,7 While we used V and 1-OHP as biological
tracers for exposure to petrochemical industrial emissions, we
analyzed other petrochemical industrial-related carcinogenic
pollutants in order to comprehensively evaluate the synergistic
early health effects, and to clarify the contribution of each
carcinogenic pollutant to early health effects. Urinary
creatinine analysis was conducted using enzyme-linked

immunosorbent assay at National Taiwan University Hospital
medical diagnosis laboratory and used for adjustment of
urinary exposure biomarker levels.

Metabolomics. Metabolic profiles for 107 study subjects
were analyzed. Sample preparation and analytical method using
Agilent 1290 UHPLC system coupled with 6540-QTOF
(UHPLC-QTOF) (Agilent Technologies, Santa Clara, CA)
were performed following previously reported protocols.38 For
quality control (QC), blanks and pooled QC samples were
analyzed at the beginning of each batch, and every five samples
within each batch. Principle component analysis (PCA)
showed clear clustering of pooled QC on the score plots
shown in Supporting Information (SI) Figure S1. Synthetic
samples containing 40 chemical standards (QC standard) were
analyzed at the beginning of each batch to check instrument
performance. Three repeated analysis was performed for each
sample and total ion chromatogram was manually checked for
technical replicates. Acquired data was preprocessed using
True Ion Pick (TIPick) algorithm for background subtraction
and peak picking.39 Peak identification was conducted by
matching m/z to an established in-house database: the
National Taiwan University MetaCore Metabolomics Chem-
ical Standard Library. Obtained potential metabolite features
were preprocessed by removing those with >50% missing
values, and replacing the missing values of the remaining
features with half of the minimum positive value in the original
data. Preprocessed data were normalized by sum of total peak
area, log transformed, and autoscaled (mean-centered and
divided by the standard deviation of each variable) prior to
further statistical analysis.

Biomarkers of Early Health Effects. Urine concen-
trations of four oxidative stress biomarkers 8-hydroxy-2′-
deoxyguanosine (8-OHdG), 4-hydroxy-2-nonenal-mercapturic
acid (HNE−MA), 8-isoprostaglandin F2α (8-isoPF2α), and 8-
nitroguanine (8-NO2Gua) were analyzed using previously
published methods and adjusted with urinary creatinine
concentrations.40 QC was conducted following European
Medicines Agency guidelines.41 The four oxidative stress
biomarkers applied in this study represent the different effects
of oxidative stress, and all four biomarkers participate in the
process of carcinogenesis. 8-OHdG is the most used biomarker
for free radical induced DNA damage, and it has been reported
as a good biomarker for risk assessment of cancer.30 HNE−
MA is a metabolite of lipid peroxidation product 4-hydroxy-2-
nonenal (HNE), a cytotoxic and mutagenic signaling molecule
that regulates cell cycle and forms DNA adducts leading to
DNA damage.30,42,43 Urine levels of 8-isoPF2α is a biomarker
for arachidonic acid peroxidation, and has been associated with
increased risk of potential malignant oral disorders and breast
cancer progression.44,45 8-NO2Gua is formed from DNA
damage induced by RNS generated under inflammatory
conditions, and reported to participate in carcinogenesis.46

Serum levels of 31 acylcarnitines in 107 study subjects were
analyzed using UHPLC−MS. Four hundred μL of methanol
(Scharlau, Sentmenat, Spain) was added into 100 μL of human
serum to extract metabolites. The extraction was performed on
Geno/Grinder2010 (SPEX, Metuchen, NJ) at 1000 rpm for 2
min followed by centrifugation at 15 000 rcf for 5 min at 4 °C.
Supernatant was collected and evaporated using EYELA CVE-
200D Centrifugal Evaporator (TOKYO RIKAKIKAI CO.,
Tokyo, Japan) until dry. Dried extracts were reconstituted with
200 μL of 10% methanol and centrifuged at 15 000 rcf for 5
min. The supernatant was then filtered with 0.2 μm of
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Ministart RC 4 filter (Sartorius, Goettingen, Germany). All
aliquots were transferred to glass inserts prior to UHPLC−MS
analysis. Analysis was performed on Agilent 1290 UHPLC
coupled with an Agilent 6460 triple quadrupole mass
spectrometer (Agilent Technologies). The MS parameters
were 325 °C, 325 °C, 500 V, and 3500 V for the drying gas
temperature, sheath gas temperature, nozzle voltage, and
capillary voltage, respectively. The dry gas flow and sheath gas
flow were 7 and 11 L min−1, respectively. The nebulizer was set
at 45 psi. HSS T3 column (100 × 2.1 mm, 1.8 μm, Waters,
Milford, MA) was employed and the column temperature was
set at 40 °C. The mobile phase was composed of solvent A
(0.1% formic acid in DI water) and solvent B (0.1% formic
acid in ACN) (J.T. Baker, Phillipsburg, NJ). The gradient
elution program was as followed: 0−1.5 min: 2% B; 1.5−9
min: linear gradient from 2 to 50% B; 9−14 min: linear
gradient from 50 to 95% B; and 3 min maintenance in 95% B
with the flow rate of 0.3 mL min−1. A 3 min equilibrium was
used before next injection. All analytes were monitored in
positive MRM mode. All the peaks were integrated with
MassHunter Quantitative Analysis software (Agilent Tech-

nologies). Pooled QC sample was analyzed every 20 samples
and calculated for relative standard deviation (RSD). Out of
the 31 analyzed acylcarnitines, 29 had RSD < 20%, and was
used for statistical analysis of samples.

Meet-in-the-Middle. Partial least-squares discrimination
analysis (PLS-DA) was performed using Metaboanalyst 4.0
(The Metabolomics Innovation Center, Edmonton, Alberta,
Canada) to identify exposures-related potential metabolites.47

PLS-DA models were validated using permutation test and
cross-validation test. We further used ANCOVA to compare
the peak area of each potential metabolite between high and
low exposure groups adjusting for age, sex, and body mass
index (BMI). Linear regression analysis was conducted for
identifying early health effect-related potential metabolites
adjusting for age, sex, and BMI.

Pathway Analysis. Pathway analysis was performed using
Metaboanalyst 4.0, which currently supports 80 pathways in
the Homo sapiens pathway library.47 HMDB ID number and
normalized peak area values were used as input. The method
“Globaltest” was used for pathway enrichment analysis, and
“betweenness centrality” for pathway topology analysis.

Table 1. Comparison of Basic Characteristics, Carcinogens Exposure Levels, and Oxidative Stress Biomarker Levels in 107
Study Subjects

high (n = 37) low (n = 70) pa

Basic Characteristics
age, mean ± SD 13.67 ± 0.92 13.70 ± 0.90 0.84
male, n(%) 20 (54.1) 38 (54.3) 0.98
systolic blood pressure (SBP), mean ± SD 118.7 ± 12.96 116.2 ± 13.73 0.37
body Mass Index (BMI), mean ± SD 21.67 ± 3.41 20.15 ± 3.48 0.04
smoke history, n(%) 5 (13.5) 5 (7.1) 0.28
drink history, n(%) 5 (13.5) 3 (4.3) 0.12
betelnut history, n(%) 1 (2.7) 3 (4.4) 1.00

External Exposuresb, Mean ± SD
distance to coal-fired power plant 10.57 ± 2.52 21.81 ± 5.71 <0.0001
distance to oil refinery 10.02 ± 2.73 20.91 ± 5.44 <0.0001
road area surrounding homes
25 m buffer 304.1 ± 211.4 329.4 ± 204.7 0.58
500 m buffer 70 938.4 ± 26 594.8 64 120.1 ± 20 016.4 0.18

Internal Exposuresc, Mean ± SD
Group 1 Carcinogen

arsenic 60.27 ± 42.16 39.62 ± 30.18 0.01
cadmium 0.34 ± 0.34 0.19 ± 0.15 0.02
chromium 3.24 ± 2.96 2.14 ± 1.63 0.10
nickel 6.69 ± 8.72 3.89 ± 2.85 0.31

Group 2A Carcinogen
lead 0.64 ± 0.64 0.66 ± 0.65 0.80
1-OHP 0.19 ± 0.14 0.03 ± 0.01 <0.0001

Group 2B Carcinogen
vanadium 2.46 ± 1.64 0.24 ± 0.10 <0.0001
mercury 3.13 ± 2.89 1.86 ± 1.88 0.04

Oxidative Stressd, Mean ± SD
8-OHdG 3.01 ± 2.15 2.63 ± 2.86 0.21
HNE−MA 2.00 ± 2.58 1.30 ± 2.20 0.006
8-isoPF2α 3.27 ± 3.54 2.06 ± 2.18 0.09
8-NO2Gua 6.49 ± 11.77 2.54 ± 3.05 0.11

aComparison of basic characteristics between the high and low exposure groups for continuous variables was performed using Student’s t test, and
for discrete variables, Chi-squared test or Fisher’s exact test. Urinary exposure biomarker concentrations are log-transformed, high and low exposure
groups compared by ANCOVA test adjusting for age, sex, smoking, alcohol consumption, betel nut chewing, fish consumption, and BMI with a
post comparison by Scheffe test. Urinary oxidative stress biomarker concentrations are log-transformed, high and low exposure groups compared by
Student’s t test. bDistance to source: Average of home-to-coal-fired power plant and home-to-oil refinery distance, unit: km; Road area surrounding
homes unit: m2. cFor urine 1-OHP, unit: μmol/mol-creatinine; for urine heavy metals, unit: μg/g-creatinine dUrine oxidative stress biomarkers
unit: μg/g-creatinine. High exposure group N = 34, low exposure group N = 65.
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Statistical Analysis. For comparison of basic character-
istics and external exposure levels between high and low
exposure groups, we used Student’s t test to analyze
continuous variables, and Chi-squared test or Fisher’s exact
test for discrete variables. Urine concentrations of internal
exposure biomarkers were adjusted using urine creatinine
concentrations and log transformed before comparing between
high and low exposure groups using analysis of covariance
(ANCOVA) adjusting for age, sex, smoking, alcohol
consumption, betel nut chewing, fish consumption, and BMI

with a post comparison by Scheffe test. Oxidative stress
biomarkers were adjusted using urine creatinine concentrations
and log transformed before comparing between high and low
exposure groups using Student’s t test. Serum levels of
potential metabolite features and acylcarnitines were normal-
ized before comparing between high and low exposure groups
using ANCOVA, adjusting for age, sex, and BMI with a post
comparison by Scheffe test. Individual association between
eight carcinogens and four oxidative stress biomarkers were
analyzed using linear regression analysis, whereas association of

Figure 2. Heat map of serum acylcarnitine levels in 107 study subjects.

Figure 3. Comparison of serum metabolic profile in 107 study subjects using (A) PLS-DA score plot (accuracy = 0.78, R2 = 0.53, Q2 = 0.23,
permutation p = 0.01) and (B) heat map of exposure-related potential metabolite levels (average VIP score >1, ANOVA p < 0.05 are shown
adjusted for sex, age, and BMI).
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eight combined carcinogen exposures with four oxidative stress
biomarkers were analyzed using weighted quantile sum (WQS)
regression, both adjusted for age, sex, and BMI. The weighted
contribution of quantile-scored exposures were derived based
on bootstrap sampling (n = 100). Student’s t test, Chi-squared
test, Fisher’s exact test, ANCOVA test, and linear regression
analysis were performed using SAS 9.4 for Windows. PCA and
PLS-DA were performed using Metaboanalyst 4.0.47 WQS
regression analysis was conducted using the gWQS package in
R 3.5.1.48

■ RESULTS

Table 1 showed the comparison of basic characteristics,
external and internal exposure levels, and urine oxidative stress
biomarker levels between high and low exposure groups. The
high exposure group lived 10.57 ± 2.52 km and 10.02 ± 2.73
km away from the main emission points of coal-fired power
plant and oil refineries, respectively, whereas the low exposure
group lived 21.81 ± 5.71 km and 20.91 ± 5.44 km away,
respectively. The high and low exposure groups showed no
significant difference in age, sex distribution, systolic blood
pressure (SBP), smoking history, alcohol history, and betelnut
history. However, the high exposure group had higher BMI
compared to the low exposure group. Road area surrounding
homes showed no significant difference between the two
exposure groups at either a 25 or 500 m buffer. Urine
concentrations of exposure biomarkers As, Cd, Cr, Ni, 1-OHP,
V, and Hg were increased in the high exposure group
compared to the low exposure group, with As, Cd, 1-OHP,
V, and Hg reaching statistical significance. The difference was
most profound in 1-OHP and V. Urine concentrations of
oxidative stress biomarkers showed all four biomarkers were
increased in the high exposure group compared to the low
exposure group, but the differences were more statistically
significant for lipid peroxidation biomarkers HNE−MA (p =
0.006) and 8-isoPF2α (p = 0.09) than DNA damage biomarkers
8-OHdG (p = 0.21) and 8-NO2Gua (p = 0.11). Only 99 out of
the 107 subjects had available data for urine oxidative stress
biomarkers concentrations.

Figure 2 showed serum levels of six acylcarnitines that were
significantly different in the high exposure group compared to
the low exposure group in 107 study subjects. Samples are in
columns and arranged according to high exposure (red) and
low exposure (green) groups. Acylcarnitines are in rows and
were arranged according to hierarchical clustering using
Euclidean distance measure and Ward algorithm. The colors
vary from deep blue to dark brown to indicate data values
change from down-regulation (blue) to up-regulation (brown).
We found long-chain acylcarnitines were clustered together
and down-regulated in high exposure group compared to low
exposure group (dodecanoylcarnitine, C12; tetradecanoylcar-
nitine, C14; tetradecenoylcarnitine, C14:1; hexadecenoylcarni-
tine, C16:1; pristanoylcarnitine, C19), whereas short-chain
acylcarnitine (hexanoylcarnitine, C6) was up-regulated in the
high exposure group compared to the low exposure group.
Metabolomics identified 84 potential metabolite features in

study subjects serum samples after removing features missing
in more than 50% of the samples, 80 of which had available
HMDB ID number as shown in SI Table S1.49 84 potential
metabolite features were put through PLS-DA analysis, and
results showed metabolic profiles between the high and low
exposure groups could be significantly separated by two
components that accounted for 5.8% and 9.0% of variability of
metabolic profiles between the high and low exposure groups,
respectively (accuracy = 0.78, R2 = 0.53, Q2 = 0.23) (Figure
3A). Permutation test was performed to confirm the validity of
PLS-DA model (p = 0.01). PLS-DA and ANCOVA analysis
adjusting for age, sex, and BMI found 11 exposure-related
potential metabolite features (average variable importance in
projection (VIP) score >1, ANCOVA p < 0.05), which
through in house library search was identified as 10 potential
metabolites. Two potential metabolites, one detected under
positive mode and one under negative mode of UHPLC−
qTOFMS analysis, were both identified as pyroglutamic acid.
Figure 3B showed the up- and down-regulation of exposure-
related potential metabolites in the high and low exposure
groups. Samples are in columns arranged according to high
exposure (red) and low exposure (green) groups. Potential
metabolites are in rows and were arranged according to

Table 2. Individual Association between Urine Carcinogens and Oxidative Stress Biomarkers in 99 Study Subjectsa

8-OHdG HNE−MA 8-isoPF2α 8-NO2Gua

estimate 95% CI p value estimate 95% CI p value estimate 95% CI p value estimate 95% CI p value

Group 1 Carcinogen

arsenic 0.049 (−0.165,
0.263)

0.653 0.092 (−0.163,0.347) 0.476 −0.096 (−0.321, 0.130) 0.402 0.016 (−0.324,
0.356)

0.925

cadmium −0.025 (−0.252,
0.202)

0.831 0.097 (−0.173,0.366) 0.480 −0.141 (−0.379, 0.097) 0.243 0.391 (0.040, 0.743) 0.029

chromium −0.186 (−0.380,
0.007)

0.059 −0.016 (−0.251, 0.219) 0.892 −0.061 (−0.269, 0.147) 0.562 0.120 (−0.192,
0.432)

0.448

nickel 0.018 (−0.172,
0.209)

0.848 0.033 (−0.194, 0.260) 0.775 0.126 (−0.073, 0.326) 0.213 0.224 (−0.075,
0.523)

0.140

Group 2A Carcinogen

lead 0.115 (−0.112,
0.341)

0.318 0.158 (−0.112, 0.429) 0.249 −0.135 (−0.374, 0.104) 0.265 −0.033 (−0.397,
0.331)

0.858

1-OHP 0.094 (−0.057,
0.244)

0.219 0.146 (−0.032, 0.325) 0.107 0.073 (−0.087,0.232) 0.369 0.188 (−0.050,
0.425)

0.121

Group 2B Carcinogen

vanadium 0.132 (−0.013,
0.276)

0.073 0.254 (0.087, 0.422) 0.003 0.176 (0.025, 0.327) 0.023 0.330 (0.107, 0.554) 0.004

mercury 0.246 (0.064, 0.427) 0.008 0.279 (0.062, 0.496) 0.012 0.119 (−0.078, 0.316) 0.233 0.005 (−0.293,
0.304)

0.973

aLinear regression analysis adjusted for sex, age, and BMI.
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hierarchical clustering using Euclidean distance measure and
Ward algorithm. The colors vary from deep blue to dark brown
to indicate data values change from down-regulation (blue) to
up-regulation (brown). We found potential metabolites up-
regulated in high exposure group compared to low exposure
group were clustered together, including ketoleucine, carnitine,
isovalerylcarnitine, aspartic acid, and octenoyl-L-carnitine,
whereas down-regulated potential metabolites were also
clustered together, including pyroglutamic acid, adenosine
monophosphate (AMP), inosinic acid (inosine monophos-
phate, IMP), oxoglutaric acid, and malic acid (Figure 3B).
Pathway analysis results showed purine metabolism was the
main biological pathway affected by multiple exposures (p <
0.05, impact >0.1) (data not shown). We identified two
exposure-related potential metabolites involved in purine
metabolism, nucleotides AMP and IMP50 (Figure 3B).
Through the Comparative Toxicogenomics Database (CTD),
we found that group 1 carcinogens, As, Cd, Cr, and Ni, were
significantly associated with purine metabolism pathway
(Bonferroni adjusted p < 0.01).51

Table 2 showed the association between eight individual
carcinogens with four oxidative stress biomarkers in 99 study
subjects. Individually, among four group 1 carcinogens, urinary
levels of Cd was positively associated with urinary concen-
trations of 8-NO2Gua (p = 0.029). The two group 2A
carcinogens was not associated with any of the four oxidative
stress biomarkers. For the two group 2B carcinogens, V was
associated with HNE−MA (p = 0.003), 8-isoPF2α (p = 0.023),
and 8-NO2Gua (p = 0.004), and Hg was associated with 8-
OHdG (p = 0.008) and HNE−MA (p = 0.012). Figure 4A to
4D showed the WQS regression analysis of the association of
combined eight carcinogens exposure with four oxidative stress
biomarkers, respectively. Association with all four oxidative
stress biomarkers were positive and statistically significant with
8-OHdG, HNE−MA, and 8-NO2Gua, whereas association

with 8-isoPF2α was borderline significant. For 8-OHdG, group
2B carcinogen Hg predominated in the mixture index (49.7%)
and group 1 carcinogens Ni, As, and Cd also contributed to the
association (p = 0.002) (Figure 4A). Figure 4B showed group
2B carcinogens Hg (43.3%) and V (31.1%) contributed to over
half of the mixture index positively associated with HNE−MA
levels (p = 0.0006), and group 1 carcinogens As, Cd, Ni, and
Cr also showed contribution. Associations with 8-isoPF2α was
predominated by group 2B carcinogens Hg (36.9%) and V
(31.6%), followed by group 1 carcinogen Ni (19.4%), with
contributions from Cr and As (p = 0.08) (Figure 4C). In
Figure 4D, we can see in the mixture index positively
associated with 8-NO2Gua (p = 0.0001), group 2B carcinogen
V contributed to half of the association (50.1%), followed by
group 1 carcinogen Ni (32.0%), with contributions from Cd,
Cr, and As.
The “meet-in-the middle” approach identified eight potential

metabolites that were both carcinogen exposure-related and
associated with biomarkers of early health effects. Table 3
showed the level of association between carcinogen exposure-
related potential metabolites (in rows) and biomarkers of early
health effects (in columns). For oxidative stress biomarkers, 8-
OHDG was significantly associated with pyroglutamic acid and
inosinic acid, HNE−MA, was significantly associated with
ketoleucine, octenoyl-L-carnitine, pyroglutamic acid, AMP, and
IMP, 8-isoPF2α was significantly associated with octenoyl-L-
carnitine, and 8-NO2Gua was not significantly associated with
any exposure-related potential metabolites. Long-chain acyl-
carnitines C14 and C19 were associated with the most number
of exposure-related potential metabolites, five for C14
(carnitine, octenoyl-L-carnitine, pyroglutamic acid detected in
both positive and negative modes, IMP) and five for C19
(carnitine, octenoyl-L-carnitine, pyroglutamic acid, AMP,
IMP). C16:1 was associated with carnitine and octenoyl-L-
carnitine. Short-chain acylcarnitine C6 was associated with four

Figure 4. Combined associations between internal exposure levels and (A) 8-OHdG (p = 0.002), (B) HNE−MA (p = 0.0006), (C) 8-isoPF2α (p =
0.08), and (D) 8-NO2Gua (p = 0.0001) levels based on weighted quantile sum (WQS) regression analysis in 99 study subjects. (Adjusted for sex,
age, and BMI.)
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exposure-related potential metabolites including ketoleucine,
isovalerylcarnitine, and pyroglutamic acid detected in both
positive and negative modes. Overall, for the exposure-related
potential metabolites, octenoyl-L-carnitine and pyroglutamic
acid were associated with the most number of biomarkers of
early health effects. Octenoyl-L-carnitine was associated with
two oxidative stress biomarkers and three long-chain
acylcarnitines, and pyroglutamic acid was associated with two
oxidative stress biomarkers, short-chain acylcarnitine, and two
long-chain acylcarnitines. Aspartic acid, oxoglutaric acid, and
malic acid were not significantly associated with any of the
biomarkers of early health effects.

■ DISCUSSION

Previous studies have reported exposure to individual
carcinogens As, Cd, Cr, Ni, Pb, PAHs, V, and Hg can induce
oxidative stress through production of reactive radicals and/or
depletion of antioxidants.52−54 However, these studies mostly
focused on the association between single carcinogen exposure
and oxidative stress, and only occupational exposure studies in
adults reported the association between multiple heavy metals
exposure and oxidative stress.55 Our subjects were exposed to
multiple carcinogens, and therefore, it was difficult to find a
one-to-one association between specific carcinogens and
oxidative stress. The level of which each carcinogen induced
oxidative stress may also vary, especially in a mixture. The
strength of our study is that we applied WQS regression
analysis and showed in, children and adolescents, exposure to a
mixture of eight environmental carcinogens was positively
associated with four oxidative stress biomarkers, and both
group 1 and group 2 carcinogens contributed to this
association.
Our study is the first to report multiple carcinogens exposure

could be associated with alterations in serum acylcarnitine
levels in children and adolescents. Our findings support a
previous study of adults occupationally exposed to metal-
containing welding fumes who had a significant decrease in
short- and long-chain acylcarnitines.56 Previous studies have
suggested acylcarnitines to be suitable candidates for cancer
diagnosis.57 Interestingly, the up- and down-regulation of
short- and long-chain acylcarnitines vary by cancer type and
study. Ni et al. reported both short-chain and long-chain
acylcarnitines were significantly increased in lung cancer
patients compared to healthy control subjects.57 Another
study showed a significant decrease of short-chain acylcarni-
tines in early stage nonsmall cell lung cancer patients.58 In
hepatocellular carcinoma patients, short-chain acylcarnitines
were decreased and long-chain acylcarnitines were increased
compared to control subjects.32,59 We identified serum
acylcarnitine deregulations in children and adolescents exposed
to multiple carcinogens that have been reported in cancer
patients, which may imply the possibility of increased cancer
risk.
Deregulation in purine metabolism has been associated with

early stage cancer development and cancer progression.60

Purine metabolism is involved in energy production and signal
transduction, and the enzymes and metabolites from this
pathway can mediate oxidative stress through reactive species
and antioxidant productions.61−63 Our findings suggest
multiple carcinogens exposure can induce perturbations in
purine metabolism and link to increased oxidative stress and
altered serum acylcarnitine levels.

Multiple carcinogens exposure was also associated with
several potential metabolites in this study which could not be
summarized in pathway analysis, but are involved in important
biological mechanisms and have been reported in cancer
studies. These potential metabolites included aspartic acid, an
amino acid that has been reported to be involved in oxidative
stress regulations.64 Carnitine and citrate cycle-related
metabolites malic acid and oxoglutaric acid were also
identified, and carnitine was associated with acylcarnitines.
Carnitine cooperates with acylcarnitines transporting fatty
acids into mitochondria for β-oxidation, forming acetyl-CoA
that enters the citrate cycle.31 These findings suggest multiple
carcinogens exposure in children and adolescents may affect
fatty acid oxidation and energy production mechanisms leading
to deregulation of acylcarnitines. Multiple carcinogens
exposure in children and adolescents also affected pyrogluta-
mic acid, an intermediate metabolite of antioxidant gluta-
thione, and was linked to oxidative stress biomarkers and
acylcarnitines.65 Interestingly, four of the exposure-related
potential metabolites we identified also showed similar patterns
of alteration in early stage nonsmall cell carcinoma patients,
including increased serum aspartic acid and carnitine, and
decreased serum malic acid and pyroglutamic acid.58,66,67 Our
findings suggest multiple carcinogens exposure may have
diverse effects on children and adolescents, causing disruptions
in various biological mechanisms such as fatty acid oxidation,
energy production, oxidative stress, and amino acid metabo-
lism.
In this study, we found children and adolescents living near a

petrochemical complex had increased exposure to multiple
carcinogens, which induced metabolic changes associated with
early health effects including increased oxidative stress and
altered serum acylcarnitines, both of which may lead to
increased cancer risk. Our findings may provide an explanation
for increased cancer incidence among adult residents living
near the same petrochemical complex reported in previous
studies.12,13

There are limitations to this study. First, we analyzed
metabolomics using a single analytical platform which limited
the number of potential metabolite features detected, and
cannot provide a comprehensive view of the metabolome.
Second, we applied in-house library match using m/z for
metabolite identification and, therefore, could not rule out the
possibility of inaccurate metabolite identification and could not
provide exact quantification of potential metabolites. Third,
our sample size was limited, which could possibly explain why
three of the four oxidative stress biomarkers were increased but
did not reach a statistically significant difference between high
and low exposure groups. Lastly, this is a cross-sectional study
using single urine and serum samples, and therefore we could
not confirm biomarker stability and could not be certain if the
potential metabolites we identified can serve as life-long
indicators of increased cancer risk.
Our findings imply multiple carcinogens exposure during

critical periods of childhood and adolescence development
induce metabolic perturbations in children and adolescents
linking to early health effects that may contribute to cancer risk
later in life. This indicates a significant reduction of toxic
emissions from the complex could decrease multiple carcino-
gens exposure and metabolic abnormalities, which may
potentially reduce cancer risks in children and adolescents
living nearby. We recommend longitudinal epidemiological

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b00392
Environ. Sci. Technol. 2019, 53, 5454−5465

5462 doi:10.6342/NTU201901261

http://dx.doi.org/10.1021/acs.est.9b00392


studies in this area to follow up on children and adolescents’
health if carcinogen emission continues in the near future.
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