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摘要

點對點式網路架構常用於使用者之間的檔案傳輸與分享，藉以改善

傳統主從式架構伺服器負擔過重以及易受攻擊等問題。然而，實驗結

果發現點對點網路架構容易造成搭便車問題，於是我們必須借助賽局

理論以設計良好的獎勵機制督促使用者貢獻自己的資源，以維持系統

運作 [16]。

我們的研究從 Chiranjeeb Buragohain 等人在 2003 年所提出的模

型 [2]延伸而來。原論文根據每位使用者的貢獻來決定他/她是否能從

社群獲得資源的機率函數，貢獻與機率成正相關，而效益函數則是所

獲得資源去扣除自己開放頻寬給其他使用者下載的成本，在兩個人的

環境下恰有兩個不崩潰的均質納許均衡，促使社群高貢獻的均衡點是

穩定的。在我們的論文額外考慮了使用者對其他人所擁有資源的需求

有所節制以及多重使用者的情況。在此情形下，我們發現當需求幾乎

沒有節制的時候不影響原本的納許均衡；當需求有些節制的時候會壓

低原本促使社群高貢獻的均衡點的貢獻量，同時該均衡點轉為不穩

定，可能收斂到其他均衡點；當使用者的需求極低 (資源同質性高)的

時候整個系統反而會崩潰 (使用者均不貢獻)。此外，我們也觀察了不

同條件之下納許均衡的效率隨著模型參數 (單位資源所產生之效益、需

求的節制、社群人數)的變化。

關鍵字：賽局理論、納許均衡、點對點、檔案分享、獎勵機制
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Abstract

A peer­to­peer (P2P) network is commonly used for file­sharing among

different users. This kind of structure can solve some common problems of

centralized networks. However, experiments show that free­riding is a major

problem for the P2P networks, so we have to design a good incentive mech­

anism with the help of game theory in order to encourage users to contribute

to the community and maintain the network [16].

We use the model proposed by Buragohain et al. [2] in 2003. In the orig­

inal paper, the author determines the probability function, from the contri­

bution of each user, which controls the probability that a user can retrieve

resources from the community. The probability increases with the contribu­

tion. The utility function is determined by the retrieved resources with the

contribution cost subtracted. In a two­player file­sharing game, there are two

non­collapsing Nash equilibria, one of which with a greater contribution is

stable. In our thesis, we further consider a multi­player file­sharing game

where the need for resources of each user is limited. In this game, we’ve dis­

covered that when the limitation is not obvious, the original Nash equilibria

are not affected. When the limitation is a little influential, the contribution

of the Nash equilibrium with a greater contribution will be lowered and it

will become unstable. When the limitation is drastic, the system will col­

lapse. Besides, we’ve also observed how the efficiency of Nash equilibria

changes with system parameters under different conditions. The parameters

include the benefit drawn by one unit of resources, the limitation of need for

iv
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resources, and the number of users in the network which will be defined later.

Keywords: Game Theory, Nash Equilibrium, Peer­to­Peer, File­Sharing, In­

centive Mechanism
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Chapter 1

Introduction

A peer­to­peer (P2P) network is a distributed system that consists of many users which

are often directly connected to each other, and they can be both providers and consumers

of resources at the same time in the network. In constrast to P2P networks, a centralized

network also consists of many users, but only servers provide all the resources and are con­

nected to clients. The clients can only consume the resources and they are not necessarily

connected to each other.

The most significant advantages of P2P networks over centralized networks are scal­

ability and robustness. When a new user joins a P2P network, he/she not only increases

the network load but also provides some resources to the system (as a small server), so

the network load is usually balanced and the P2P network is scalable. When a node is

attacked or fails to work for some reason, the other parts of the network can still work as

usual because only a very small part of the system is affected. In a centralized network,

an attack against one of the main servers can severely reduce the performance since the

resources are completely on the servers. Therefore P2P networks are more robust than

centralized networks.

However, a major problem for the P2P networks is “free­riding.” Free­riding means

that most users only consume the resources but forget to provide enough resources to

maintain the network. Since making contribution definitely takes some cost, it is intuitive

that free­riding is a dominant strategy. Unfortunately, if everyone chooses this dominant

strategy, there will be no resources in the network and therefore the system will collapse.

1
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Experiments in [9] showed this phenomenon. Hence, some incentive mechanisms are

needed to overcome this free­riding problem.

Incentive mechanisms incorporated by the P2P file­sharing networks in the past were

mainly based on monetary payment schemes or reciprocity­based schemes [5]. In mon­

etary payment schemes, users must pay money before consuming resources and can get

paid when providing resources to others. Mojonation and Karma [12], and some stud­

ies such as [6, 10, 14, 17] used this kind of schemes. The implementation is not easy in

practice since it requires infrastructure for accounting and micropayments. Contrary to

monetary payment schemes, we can also use reciprocity­based schemes. They include

direct reciprocity and indirect reciprocity. In direct reciprocity schemes, the quality of re­

sources user A wants to provide to user B is based on the quality of resources A retrieved

from B in the past. BitTorrent [3] uses this kind of schemes based on the tit­for­tat strat­

egy. In indirect reciprocity schemes, also called reputation based schemes, the quality of

resources a user deserves to obtain highly depends on his/her “overall” generosity. The

word “overall” here means that as long as user A’s reputation is high, it is not necessary for

A to provide good quality resources to user B even if A wants to retrieve good quality re­

sources fromB. Some studies such as [2, 7] used this kind of schemes. We should note that

this is an advantage when a user is not interested in anything the other one can offer. It is

the only difference between direct reciprocity and indirect reciprocity. Nowadays, the in­

centive mechanisms are further enhanced. For example, Hu et al. [8] combined monetary

payment schemes and indirect reciprocity schemes. Zhang et al. [18] used a Blockchain­

based mechanism to resolve the difficulty of finding a trusted third party (TTP) in a real

P2P system.

[2] is a representative paper about reputation based schemes. In [2] the authors pro­

posed a differential service­based incentive scheme to improve the system’s performance

(i.e., reduce free­riding). First, they considered the case of a “homogeneous” systemwhere

the value of resources is independent of users who own them and users who retrieve them.

In this case, there exists two non­collapsing Nash equilibria with different contribution

levels. Only the one resulting in the better overall performance is stable (i.e., easily real­

2
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ized). Second, they studied the case of a “heterogenous” system through simulation, since

no closed form solution is possible. In this case, the numerical experiments showed that

the system also converges to the desirable Nash equilibrium if a good initial condition is

given, and that the average contribution is almost independent of the number of users. Fi­

nally, they gave some suggestions on how to modify current P2P systems to implement the

proposed incentive scheme. We need a function of the contribution level of user A to con­

trol the probability that A can retrieve resources from another user B. Also, the probability

function should be a part of the system’s architecture. It means that the setting should be

exactly the same for all users and cannot be modified by them. In order to prevent users

from reporting their contribution levels incorrectly, a neighbour audit scheme in which

users can verify the information of their neighbors is required. In order to encourage new

users to join the system, they can be given a default contribution level at the beginning.

Our research is continued from [2]. In the original paper, the resources a player pos­

sesses are not limited. To our best knowledge, there are almost no research papers dis­

cussing the case of limited resources, so we will consider this environment in our thesis.

We only study the case of a homogeneous system of two players, three players, and mul­

tiple players, but with a fixed maximum benefit of resources from each player, and the

probability function satisfying some “good” assumptions that we will introduce in the next

chapter. Our main contribution is to find some important Nash equilibria under different

parameter settings, analyze their stability and efficiency including the price of anarchy

(PoA) and price of stability (PoS), and observe how they vary with related parameters.

We define the PoA to be the ratio of the maximum total utility among all possibilities to

that of the “worst” Nash equilibrium, and define the PoS to be the ratio of the maximum

total utility among all possibilities to that of the “best” Nash equilibrium.

The rest of the thesis is organized as follows. In Chapter 2, we explain the meaning of

our newly proposed model and introduce the related parameters. In Chapter 3, we analyze

a homogeneous system of two players. In Chapter 4, we analyze a homogeneous system

of three players, but without considering the stability of Nash equilibria. In Chapter 5, we

analyze a homogeneous system of multiple players, but only considering symmetric Nash

3
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equilibria. That is, all players have the same strategy. Finally in Chapter 6, we conclude

our analysis, describe additional possibly extended models, and discuss some aspects that

can be improved in the future.

4
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Chapter 2

Model

In this chapter, we’re going to introduce the system parameters inherited from [2] that will

be used in this thesis. Assume that there areN players (users) P1, P2, ..., PN in the system.

All parameters, as in the original paper, are dimensionless.

Definition 2.1 (Contribution). Let di be the contribution of Pi which is a nonnegative

number. The meaning of the contribution can be very widespread. For example, [2] says

we may think of di as the disk space contribution integrated over a fixed period of time,

or the number of downloads served by this peer to other peers. In this thesis, we usually

see di as the amount of downloadable resources owned by Pi. Since this parameter is also

a strategy one player can decide, the term “strategy” and “contribution” have the same

meaning in this thesis.

Definition 2.2 (Benefit). The value of resources owned by a player may vary depending

mainly on other users who retrieve them. For example, if Alice has lots of music, whereas

Bob has lots of Japanese animation, I may prefer Bob’s resources to Alice’s. Hence we let

b denote how much the “unit” contribution made by one player is worth to another player

in a homogeneous system. That is, if a player Pi retrieves one unit of contribution from

another player Pj , then Pi’s utility will increase by b. Details of the utility function will

be introduced later.

Definition 2.3 (Probability as Service Differentiator). In a differential service, the prob­

ability that a player Pi can retrieve resources from other players should increase with

5
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his/her contribution di. This mechanism encourages the players to share their file re­

sources. In this thesis, a player Pi can retrieve resources from other players with proba­

bility p(di), and is rejected with probability 1−p(di).

Proposition 2.1. To achieve the goal of a service differentiator, the probability function

p(d) must be non­decreasing (i.e., p′(d) ≥ 0 for d ≥ 0). To meet the definition of “prob­

ability,” p should satisfy p(0) = 0 and lim
d→∞

p(d) = 1. To ensure each player has only one

best strategy in each iteration, we assume p′(d) to be decreasing (i.e., p′′(d) < 0 when

0 ≤ p(d) < 1). To ensure bdp′(d) = C has at most two solutions for every constant

C > 0, we also assume dp′(d)
∣∣∣
d=0

= lim
d→∞

dp′(d) = 0, and there exists a threshold d0 such

that (dp′(d))′ > 0 for d < d0 and (dp′(d))′ < 0 for d > d0. We assume all probability

functions p(d) satisfy all our assumptions in this proposition unless otherwise specified.

Definition 2.4 (Utility). Let the total utility ui that Pi will derive in the homogeneous sys­

tem be ui = −di+
∑
j ̸=i

min{K, bdjp(di)}. The term −di is the cost ofPi to join the system,

which is proportional to his/her contribution. The other term
∑
j ̸=i

min{K, bdjp(di)} is the

total expected benefit of Pi. It is obvious that min{K, bdjp(di)} for some j is the ex­

pected benefit gained from some player Pj . In this term, dj is the amount of resources

Pj can provide, so multiplying it by p(di) gives the expected amount of resources Pi can

acquire. Multiplying it by b again obtains the expected “benefit.” In that term K denotes

the maximum benefit one player can derive from another player. Normally K is greater

than 0.

Proposition 2.2. Suppose all di’s have the same value of d. If b ≤ 1

n− 1
, the utility

function ui is therefore not greater than (n− 1) b d p(d)− d = d
(
(n− 1) b p(d)− 1

)
≤

d
(
(n − 1) b − 1

)
≤ d (1 − 1) = 0. This means that any homogeneous solution is not

better than the origin. It may cause the system to collapse. To avoid this problem, we

should assume b >
1

n− 1
in this thesis.

After the definitions and propositions, here is one important lemma about Proposition

2.1 that will commonly be referred to when the parameter b varies.

6
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Lemma 2.1. Assume the two equations b1xp′(x) = C and b2xp′(x) = C, where 0 < b1 <

b2, have solutions. Let the solutions to b1xp
′(x) = C be d1ℓ and d1h, where d1ℓ ≤ d1h.

Let the solutions to b2xp
′(x) = C be d2ℓ and d2h, where d2ℓ ≤ d2h. Then d2ℓ < d1ℓ and

d2h > d1h.

Proof. Since xp′(x)
∣∣∣
x=0

= 0 and xp′(x)
∣∣∣
x=d1ℓ

= C/b1, by the intermediate value theorem

there must exist at least one xℓ < d1ℓ such that xp′(x)
∣∣∣
x=xℓ

= C/b2 (∵ b2 > b1). Since

xp′(x)
∣∣∣
x=d1h

= C/b1 and lim
x→∞

xp′(x) = 0, by the intermediate value theorem there must

exist at least one xh > d1h such that xp′(x)
∣∣∣
x=xh

= C/b2 (∵ b2 > b1). Therefore xℓ <

d1ℓ ≤ d1h < xh. Since b2xp
′(x) = C has at most two solutions, we can simply say

xℓ = d2ℓ and xh = d2h. ∴ d2ℓ < d1ℓ and d2h > d1h.

Figure 2.1: A geometric illustration of Lemma 2.1

After introducing the system parameters, we’re going to derive some important lem­

mas related to the probability function that will be heavily used in the later chapters.

2.1 Useful Properties

Before the lemmas, we also define two symbols that will be used in the whole thesis.

Definition 2.5. Let uopt be the maximum total utility in an n­player file­sharing game.

That is, uopt = max
di≥0

for 1≤i≤n

u(d1, d2, ..., dn).

Definition 2.6. Let do be the unique solution to the equation bxp(x) = K. Since K > 0,

do cannot be 0 and we can see it as the intersection of p(x) and
K

bx
.

7
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Figure 2.2: A geometric solution of do

Lemma 2.2. If 0 < d1 < d2, then d1 p(d2) < d2 p(d1).

Proof. We’re going to prove this lemma with the technique of “change of variables” cov­

ered in the calculus course. Write the probability function in an integral form,

p(d2) =

∫ d2

0

p′(x) dx
x=(d2/d1)u
========

∫ d2· d1d2

0· d1
d2

p′
(
d2
d1

u

)
d

(
d2
d1

u

)
=

d2
d1

∫ d1

0

p′
(
d2
d1

u

)
du,

and it can be rearranged into
d1
d2

p(d2) =

∫ d1

0

p′
(
d2
d1

u

)
du. Compare it with

p(d1) =

∫ d1

0

p′(u) du.

Since d2 > d1 (which implies d2
d1
u > u for u > 0) and p′(x) is decreasing if greater than

zero, we can always pick some d0 ∈ (0, d1) such that p′(u) > 0
(
i.e., p′(u) > p′(d2

d1
u)
)

for all u ∈ (0, d0) and p′(u) = 0
(
i.e., p′(d2

d1
u) = 0

)
for all u ∈ (d0, d1). Hence

d1
d2

p(d2) =

∫ d1

0

p′
(
d2
d1

u

)
du =

∫ d0

0

p′
(
d2
d1

u

)
du+

∫ d1

d0

p′
(
d2
d1

u

)
du

<

∫ d0

0

p′(u) du+

∫ d1

d0

p′
(
d2
d1

u

)
du

=

∫ d0

0

p′(u) du+

∫ d1

d0

p′(u) du

=

∫ d1

0

p′(u) du = p(d1).

We can obtain the result by multiplying both sides of the above inequality by d2.

8
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Corollary 2.3. If d1 p(d2) > d2 p(d1) > 0, then d1 > d2 > 0. If d1 p(d2) = d2 p(d1) > 0,

then d1 = d2 > 0. If 0 < d1 p(d2) < d2 p(d1), then 0 < d1 < d2.

Proof. By the law of trichotomy, exactly one of the three conditions d1 < d2, d1 = d2, or

d1 > d2 is true. Consider the first statement in our corollary. If 0 < d1 < d2, by Lemma

2.2 we can deduce d1 p(d2) < d2 p(d1). If 0 < d1 = d2, then d1 p(d2) = d2 p(d1). Both of

the above assumptions violate the statement, so only d1 > d2 > 0 can be the conclusion

of it. The reader can use the same method to prove the remaining two statements.

Lemma 2.4. If d1 p′(d2) = d2 p
′(d1) > 0, then d1 = d2.

Proof. The structure of this proof is very similar to Corollary 2.3. If 0 < d1 < d2 and

p′(d2) > 0, then p′(d1) > p′(d2) and d2p
′(d1) > d1p

′(d2) since p′(x) is decreasing.

Similarly if 0 < d2 < d1 and p′(d1) > 0, then p′(d2) > p′(d1) and d1p
′(d2) > d2p

′(d1).

The above two cases both violate the lemma assumption. From the above, only d1 = d2 >

0 can satisfy the assumption, so it is our conclusion.

Lemma 2.5. If p(d1) = p(d2) for some d1 < d2, then p(x) = 1 and p′(x) = 0 for all

x ≥ d1.

Proof. Write the probability function p(x) in an integral form.

p(d2)− p(d1) =

∫ d2

0

p′(x) dx−
∫ d1

0

p′(x) dx

=

∫ d2

d1

p′(x) dx = 0. (2.1)

Suppose for contradiction that p′(d1) > 0. Then we can definitely find a dmid ∈ (d1, d2)

such that p′(x) > 0 for all x ∈ (d1, dmid), and

∫ d2

d1

p′(x) dx =

∫ dmid

d1

p′(x) dx+

∫ d2

dmid

p′(x) dx >

∫ d2

dmid

p′(x) dx ≥ 0,

which violates Equation (2.1). Hence p′(d1) = 0 and p′(x) = 0 for all x ≥ d1 since p′(x)

is decreasing. In addition p′(x) = 0 implies p(x) = 1, so p(x) = 1 for all x ≥ d1.

9
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Corollary 2.6. If p(d1) = p(d2), p′(d1) > 0 and p′(d2) > 0, then d1 = d2.

Proof. W.L.O.G., assume d1 ≤ d2. If d1 < d2, then by Lemma 2.5 p′(d1) = p′(d2) = 0

causes a contradiction. Therefore, d1 = d2.

10
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Chapter 3

Nash Equilibrium Analysis for

Two­Player File­Sharing Games

In the previous chapter, we’ve introduced some basic elements of our model. For simplic­

ity, we consider a homogeneous system of two players first. It’s easy to see that the model

can be simplified to the following.


u1(d1) = −d1 +min{K, b d2 p(d1)}

u2(d2) = −d2 +min{K, b d1 p(d2)}

u(d1, d2) = u1(d1) + u2(d2).

We also use the notation u(d) = u(d, d) if both d1 and d2 have the same value of d.

In this chapter, we are going to find all Nash equilibria under different parameter set­

tings, analyze their stability and efficiency (PoA and PoS), and observe how they vary

with system parameters b andK. Before calculating the PoA and PoS, we should find the

points where the maximum total utility occurs.

3.1 Maximum Total Utility

In this section, we hope to find the maximum total utility in different parameter settings.

The method used in this chapter is to calculate the gradient with respect to d1 or d2 at each

point in the domain of u(d1, d2). Since u is bounded above (u ≤ 2K), we can guarantee

11
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the existence of a maximum, and it cannot occur at the points where ( ∂u
∂d1

)+ = ( ∂u
∂d1

)− ̸= 0

or ( ∂u
∂d2

)+ = ( ∂u
∂d2

)− ̸= 0. Based on this observation, we can exclude these points first

(called an elimination procedure), then compare the values of the remaining points, and

then finally choose the optimal points from them.

Observing the formula in this model, the reader may guess that uopt occurs when

bd2p(d1) = K and bd1p(d2) = K. In fact this is true under some “good” parameter

settings. In this section, we will introduce these “good” conditions, and explain why uopt

occurs at such places.

By symmetry, it suffices to consider only the upper left part of the domain of u(d1, d2)

in the following analysis. It can be partitioned into three regions with respect to the two

equations bp(d2) = 1 and bd1p(d2) = K. These regions can be defined formally.

Figure 3.1: A simple diagram of Definition 3.1.
The symbols R2b1 and R2b2 will be defined later.

Definition 3.1. Let region 1 beR1 = { (d1, d2) | 0 ≤ d1 ≤ d2 ∧ bp(d2) ≤ 1 }. Let region

2 be R2 = { (d1, d2) | 0 ≤ d1 ≤ d2 ∧ bp(d2) > 1 ∧ bd1p(d2) ≤ K }. Let region 3 be

R3 = { (d1, d2) | 0 ≤ d1 ≤ d2 ∧ bp(d2) > 1 ∧ bd1p(d2) ≥ K }. LetR2b be the rightmost

boundary of R2. That is, R2b = R2 ∩ { (d1, d2) | d1 = d2 ∨ bd1p(d2) = K }. Let R3b be

the leftmost boundary of R3. That is, R3b = R3 ∩ { (d1, d2) | bd1p(d2) = K } ⊆ R2b. Let

P be the point (d, d) where bdp(d) = K. The letter “b” here means “boundary.”

12
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The reason why we want to partition the domain is explained as follows. Utilities in

R1 are always nonpositive (which will be proven later), which is obviously not better than

the origin (0, 0), so this region will be excluded eventually if we hope that the model has a

positive uopt. We also note that the termmin{K, bd1p(d2)} causes the gradient of u(d1, d2)

to be discontinuous at the curve bd1p(d2) = K, so the values should be calculated in R2

and R3 separately.

In the following several pages we’re going to perform our elimination procedure. The

procedure can be divided into three stages. The first stage is to remove the points where

uopt cannot occur in R2 and R3. By Lemma 3.1 R2 can be minimized to R2b, and by

Lemma 3.2 R3 can be minimized to R3b. Since R2b contains R3b, we only consider the

points where uopt cannot occur in R2b and remove them in the second stage. By Lemma

3.3 and Lemma 3.4R2b can be minimized to the pointP or completely eliminated. Finally,

we’ll show that the maximum total utility withinR1 is exactly 0 and find out circumstances

in which P will be better than R1.

Now we perform the first stage of the elimination procedure.

Lemma 3.1. After we remove these points where uopt cannot occur in R2, the region R2

should be minimized to R2b.

Proof. One property of R2 is the inequality bd1p(d2) ≤ K. According to this, the utility

u = −d1 +min{K, bd1p(d2)} − d2 +min{K, bd2p(d1)} can be simplified to u = −d1 +

bd1p(d2)−d2+min{K, bd2p(d1)}. Since the “min” termmay cause the partial derivatives

to be discontinuous, for simplicity we use the notation of partial derivatives as usual to

represent the less of the left derivative and right derivative.

∵ ∂

∂d1
K = 0 and

∂

∂d1
bd2p(d1) = bd2p

′(d1) ≥ 0. ∴ ∂

∂d1
min{K, bd2p(d1)} ≥ 0.

∴ ∂u

∂d1
= −1 + bp(d2) + 0 +

∂

∂d1
min{K, bd2p(d1)} ≥ −1 + bp(d2) > 0.

According to this derivative, we can say for each pair of points (ℓ, d2) and (r, d2) in R2,

u(ℓ, d2) < u(r, d2) if ℓ < r. Hence the result follows.

13
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Lemma 3.2. After we remove these points where uopt cannot occur in R3, the region R3

should be minimized to R3b.

Proof. One property of R3 is the inequality bd1p(d2) ≥ K. According to this, we can

further deduce bd2p(d1) ≥ bd1p(d2) ≥ K by Lemma 2.2. The utility u = −d1 − d2 +

min{K, bd2p(d1)} + min{K, bd1p(d2)} is then simplified to u = −d1 − d2 + 2K, and

therefore ∂u
∂d1

= −1 in this region. According to this derivative, we say for each pair of

points (ℓ, d2) and (r, d2) in R3, u(ℓ, d2) > u(r, d2) if ℓ < r. Hence the result follows.

Figure 3.2: A simple diagram of the remaining regions
after the first stage of the elimination procedure

Now we perform the second stage of the elimination procedure.

Definition 3.2. Let R2b1 = R2b ∩ { (d1, d2) | d1 = d2 }, and let R2b2 = R2b ∩ { (d1, d2) |

bd1p(d2) = K }. Then R3b = R2b2 and R2b = R2b1 ∪R2b2 .

Lemma 3.3. If R2b1 exists, it should be minimized to the single point P after we remove

these points where uopt cannot occur in R2b1 .

Proof. In R2b1 there is a condition d1 = d2, so bd2p(d1) = bd1p(d2) ≤ K. If we let

d = d1 = d2, then the utility can be simplified to u = −d1 + bd1p(d2)− d2 + bd2p(d1) =

2(bdp(d)− d), and the derivative is

14
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∂u

∂d
= 2

∂

∂d

(
bdp(d)− d

)
= 2

(
bp(d) + bdp′(d)− 1

)
≥ 2

(
bp(d)− 1

)
> 0

by the condition bp(d) > 1 stated in R2. Hence the result follows.

Lemma 3.4. After we remove these points where uopt cannot occur in R2b2 , the region

R2b2 should be minimized to the point P or completely eliminated.

Proof. According to the constraint d1p(d2) = K/b stated in R2b2 , we first differentiate

both sides of the equation with respect to d2, in order to obtain ∂d1/∂d2.

∂

∂d2

(
d1p(d2)

)
=

∂

∂d2

(K
b

)
=⇒ ∂d1

∂d2
p(d2) + d1p

′(d2) = 0.

According to the property bd1p(d2) = K in R2b2 , we can further deduce bd2p(d1) ≥

bd1p(d2) = K by Lemma 2.2, so the utility is then simplified to u = −d1 − d2 + 2K.

Differentiate u with respect to d2.

∂u

∂d2
=

∂

∂d2

(
− d1 − d2 + 2K

)
= −∂d1

∂d2
− 1 =

d1 p
′(d2)

p(d2)
− 1 =

d1 p
′(d2)− p(d2)

p(d2)

=
d1 p

′(d2)−
∫ d2
0

p′(t)dt

p(d2)
<

d1 p
′(d2)− d2 p

′(d2)

p(d2)
=

p′(d2)

p(d2)

(
d1 − d2

)
.

Therefore
∂u

∂d2
< 0 since p′(d2) ≥ 0, p(d2) > 0, and d1 ≤ d2. According to this derivative,

we can increase u only by decreasing d2. As
∂d1
∂d2

≤ 0, only the condition d1 = d2 can

stop our traversal. If this condition is reached, then we arrive the point P . If this condition

can never be reached (i.e., d1 = d2 can only happen when b p(d2) ≤ 1), then the whole

region R2b2 should be eliminated. In this case P ∈ R1. Hence the result follows.

Lemma 3.5. The maximum total utility achieved in R1 is 0.

Proof. We first observe that bp(d1) ≤ bp(d2) ≤ 1 because of our assumption d1 ≤ d2.

Multiplying d2 on both sides of bp(d1) ≤ 1 gives bd2p(d1) ≤ d2. Multiplying d1 on both

sides of bp(d2) ≤ 1 gives bd1p(d2) ≤ d1. Then they can be applied to the following.

u1(d1) = −d1 +min{K, b d2 p(d1)} ≤ −d1 + b d2 p(d1) ≤ −d1 + d2.

u2(d2) = −d2 +min{K, b d1 p(d2)} ≤ −d2 + b d1 p(d2) ≤ −d2 + d1.

15
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Adding these two inequalities together, we’ll discover that

u1(d1) + u2(d2) ≤ (−d1 + d2) + (−d2 + d1) = 0.

Hence the result follows.

Figure 3.3: A simple diagram of the remaining regions
after the second stage of the elimination procedure

The comparison between R1 and P in the final stage is illustrated in the following

theorem.

Theorem 3.6. If do ≥ K, then uopt = 0. If do < K, then uopt = 2(K − do) > 0.

Proof. By Lemma 3.5, the maximum achieved in R1 is 0. If do ≥ K, then the total

utility at the point P is u(do, do) = −do + bdop(do) − do + bdop(do) = 2(K − do) ≤ 0.

∴ uopt = 0 in this case. If do < K, then u(do, do) = 2(K − do) > 0, which is better than

R1. ∴ uopt = 2(K − do) > 0 in this case.

Figure 3.4: A geometric perspective of the
condition do < K such that u(do) > 0

16
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Corollary 3.7. Let dℓ be the less solution to bxp′(x) = 1. If do ≥ dℓ, then uopt = u(do).

Proof. ∵ bp(do) ≥ bp(dℓ) > bdℓp
′(dℓ) = 1 ∴ do < K by Definition 2.6. In this case

uopt > 0 by Theorem 3.6. However the maximum total utility within R1 is not greater

than 0, so uopt can only occur at the point P = (do, do).

We close this section with the following conclusive table.

Table 3.1: The maximum total utility of two­player file­sharing games

Condition Utility
do ≥ K 0
do < K 2(K − do)

3.2 Nash Equilibria

After analyzing the maximum total utility, we still have to find Nash equilibria in order to

analyze the PoA and PoS.

Lemma 3.8. The player Pi does not want to change his/her strategy di if and only if one

of the following cases occurs.

Case I.
(∂ui

∂di

)−
does not exist (i.e., di = 0) and

(∂ui

∂di

)+

≤ 0.

Case II.
(∂ui

∂di

)−
≥ 0 and

(∂ui

∂di

)+

≤ 0 :


(∂ui

∂di

)−
=

(∂ui

∂di

)+

= 0 ..................(A)(∂ui

∂di

)−
≥ 0 and

(∂ui

∂di

)+

= −1 ......(B)

In case I, di = 0 and bdjp
′(0) ≤ 1. In case II­(A), 0 < bdjp(di) < K and bdjp

′(di) = 1.

In case II­(B), bdjp(di) = K and bdjp
′(di) ≥ 1.

Proof. Recall the utility function ui = −di + min{K, bdjp(di)}. Differentiate it with

respect to di.

∂ui

∂di
=


∂

∂di

(
− di + bdjp(di)

)
= bdjp

′(di)− 1 ≥ −1 if bdjp(di) ≤ K

∂

∂di

(
− di +K

)
= −1 if bdjp(di) ≥ K.

Since bdj is a fixed nonnegative number, and p′(x) is a nonnegative non­increasing func­

tion,
∂ui

∂di
is non­increasing for all di ≥ 0. Hence the result follows.
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Now we are going to discuss the places where these Nash equilibria occur by cases in

the following theorems.

Lemma 3.9. In a Nash equilibrium (d1, d2), if a player Pi’s strategy di satisfies case I,

then the other player Pj’s strategy dj must also satisfy case I. That is, d1 = d2 = 0.

Proof. If di = 0, then uj = −dj + min{K, b · 0 · p(dj)} = −dj for all dj ≥ 0, and
∂uj

∂dj
= −1. According to Lemma 3.8, the player Pj can make an optimal strategy only by

letting dj = 0. In this case ∂ui

∂di
is also −1, so the Nash equilibrium can only be (0, 0).

Definition 3.3. If bxp′(x) = 1 has two different solutions, let dℓ be the less one, and let

dh be the greater one. If the equation has only one solution, let dℓ and dh both denote it.

Figure 3.5: A geometric solution of dℓ and dh in Definition 3.3

Theorem 3.10. There exists a Nash equilibrium (d1, d2) such that d1 satisfies case II­(A)

and d2 satisfies case II­(B), if and only if d1 and d2 both satisfy

{
b d2 p

′(d1) = 1 and b d2 p(d1) < K

b d1 p
′(d2) ≥ 1 and b d1 p(d2) = K.

In addition, the Nash equilibrium Nside1 = (d1, d2) is unique and exists if and only if dℓ

and dh both exist and dℓ < do < dh.

Proof. First, we prove necessity by contradiction. Assume neither dℓ nor dh exists, or

both dℓ and dh exist but dℓ = dh, or both dℓ and dh exist, dℓ < dh but do ̸∈ (dℓ, dh). Each

condition implies bdop′(do) ≤ 1. Now we’re going to explain why bd2p
′(d1) < 1 in this

assumption. By Definition 2.6 the point (do, do) must lie on the curve bxp(y) = K, and

18
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by Corollary 2.3 the constraint bd1p(d2) = K > bd2p(d1) tells us d1 > d2. We start from

(x, y) = (do, do) and move along that curve in the correct direction (x ≥ do > y). If

p′(do) = 0, then p′(x) = 0 and byp′(x) = 0. If p′(do) > 0, then byp′(x) ≤ byp′(do) <

bdop
′(do) ≤ 1. ∴ byp′(x) < 1. If (x, y) = (d1, d2), then bd2p′(d1) < 1 is a contradiction.

Nash equilibria cannot exist in this case.

Second, we prove sufficiency. Assume both dℓ and dh exist, and do ∈ (dℓ, dh). This

condition implies bdop′(do) > 1 instead. By Corollary 2.3, we should move from (do, do)

in the same direction (x ≥ do > y) again, so that byp(x) < K and bxp(y) = K always

hold. Besides, we know bxp′(y) ≥ bdop
′(do), and byp′(x) is decreasing, as the point (x, y)

goes far away from (do, do). Since there is a point at infinity lim
xo→∞
yo→0

(xo, yo) on the curve

such that lim
xo→∞
yo→0

byop
′(xo) = 0, by the intermediate value theorem there must exist one

point (x, y) in this direction such that byp′(x) = 1. In this case if (x, y) = (d1, d2), the

Nash equilibrium Nside1 exists. If (x, y) ̸= (d1, d2), then either (x ≥ d1 and y < d2) or

(x ≤ d1 and y > d2) happens. If the former happens and p′(x) > 0, then byp′(x) ≤

byp′(d1) < bd2p
′(d1) = 1. If the former happens and p′(x) = 0, then byp′(x) = 0. If the

latter happens, then byp′(x) ≥ byp′(d1) > bd2p
′(d1) = 1. The reader may discover that

byp′(x) ̸= bd2p
′(d1) = 1 in both cases, so the point is unique.

Figure 3.6: A simple diagram of Nside1 and Nside2 in Theorem 3.10 and its corollary
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Corollary 3.11. The Nash equilibrium Nside2 = (d2, d1) exists if and only if Nside1 =

(d1, d2) exists.

Theorem 3.12. There exists a Nash equilibrium (d1, d2) such that the strategies of both

players satisfy case II­(A), if and only if d1 and d2 both satisfy

{
b d2 p

′(d1) = 1 and b d2 p(d1) < K

b d1 p
′(d2) = 1 and b d1 p(d2) < K.

In addition, the Nash equilibrium Nℓ = (dℓ, dℓ) exists if and only if dℓ exists and dℓ < do.

The Nash equilibrium Nh = (dh, dh) exists if and only if dh exists and dh < do.

Proof. According to the constraints bd2p′(d1) = bd1p
′(d2) > 0, we can deduce d1 = d2 >

0 by Lemma 2.4. Thus, these di’s are in fact the solutions of bxp′(x) = 1, by Definition

3.3 one of which is dℓ and the other dh. Since bdℓp(dℓ) < K = bdop(do) ⇐⇒ dℓ < do,

and bdhp(dh) < K = bdop(do) ⇐⇒ dh < do, the result follows.

Figure 3.7: A simple diagram of Nℓ and Nh in Theorem 3.12

Theorem 3.13. There exists a Nash equilibrium (d1, d2) such that the strategies of both

players satisfy case II­(B), if and only if d1 and d2 both satisfy

{
b d2 p

′(d1) ≥ 1 and b d2 p(d1) = K

b d1 p
′(d2) ≥ 1 and b d1 p(d2) = K.
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In addition, the Nash equilibrium No = (do, do) is unique and exists if and only if dℓ and

dh both exist and dℓ ≤ do ≤ dh.

Proof. According to the constraints bd2p(d1) = bd1p(d2) > 0, we can deduce d1 = d2 > 0

by Corollary 2.3. In this case, these di’s can only be the solution of bxp(x) = K, and by

Definition 2.6 it is do. Since bdop′(do) ≥ 1 ⇐⇒ dℓ ≤ do ≤ dh, the result follows.

Figure 3.8: A simple diagram of No in Theorem 3.13

After discussing conditions for the existence of Nash equilibria, we subsequently want

to discuss their stability.

Theorem 3.14. (0, 0) is always a stable Nash.

Proof. Consider an extremely small rectangular area whose bottom­left corner is (0, 0).

Assume its height is h and its width isw. Wewant to show that in this area both ∂u1

∂d1
and ∂u2

∂d2

are negative if h and w are small enough, and neither of these derivatives converges to 0.

If this is true, then any point in this area must have a tendency to converge to (0, 0) and we

are done. Since this area is extremely small, we assume bd1p(d2) < K and bd2p(d1) < K.

Then
∂u1

∂d1
= bd2p

′(d1)− 1 and
∂u2

∂d2
= bd1p

′(d2)− 1.
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Observing the formula, we discover that the maximum value of ∂u1

∂d1
occurs at the top­left

corner, and the maximum value of ∂u2

∂d2
occurs at the bottom­right corner. To achieve our

goal, we can take h such that bhp′(0) − 1 < 0 and take w such that bwp′(0) − 1 < 0.

Therefore both ∂u1

∂d1
≤ bhp′(0) − 1 and ∂u2

∂d2
≤ bwp′(0) − 1 in the whole area, and neither

of them converges to 0. We can say (0, 0) is a stable Nash.

Figure 3.9: A geometric illustration of Theorem 3.14

Figure 3.10: A geometric illustration of Lemma 3.15
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Lemma 3.15. Suppose there are two nonnegative strategies d1 < d2 ≤ dℓ and the initial

condition bd1p
′(d2) < 1. If we can find two positive numbers ϵ, ϵ0 > 0 such that b(d1 −

ϵ0)p
′(d2 − ϵ) = 1, then ϵ > ϵ0 > 0.

Proof. Since d1 − ϵ0 < dℓ, we deduce b(d1 − ϵ0)p
′(d1 − ϵ0) < bdℓp

′(dℓ) = 1. Compare

it with b(d1 − ϵ0)p
′(d2 − ϵ) = 1, we also deduce p′(d1 − ϵ0) < p′(d2 − ϵ) and therefore

d1 − ϵ0 > d2 − ϵ. This inequality implies ϵ− ϵ0 > d2 − d1 > 0, so ϵ > ϵ0.

Figure 3.11: A geometric illustration of Theorem 3.16

Theorem 3.16. Nℓ, if exists, must be an unstable Nash.

Proof. Consider the starting point (d−ℓ , d
−
ℓ ) where d−ℓ = dℓ − ϵ for an arbitrarily small

ϵ > 0. If Nℓ exists, by Theorem 3.12 bd−ℓ p(d
−
ℓ ) < bdop(do) = K. Therefore if d1 and d2

are non­increasing during the iterative process, then bd1p(d2) < K, bd2p(d1) < K, and

∂u1

∂d1
= bd2p

′(d1)− 1 and
∂u2

∂d2
= bd1p

′(d2)− 1.

At the starting point we have ∂u1

∂d1
= ∂u2

∂d2
≤ bd−ℓ p

′(d−ℓ )−1 < 0. Without loss of generality,

assume d1 decreases first. It should decrease to 0 or the value such that ∂u1

∂d1
= 0. If d1

becomes 0, then ∂u2

∂d2
= b · 0 · p′(d2) − 1 = −1 and therefore the system converges to

(0, 0). If d1 is adjusted to achieve ∂u1

∂d1
= bd2p

′(d1) − 1 = 0, then d1 < d2 and ∂u2

∂d2
=
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bd1p
′(d2) − 1 < 0. It’s d2’s turn to decrease. Since ∂u2

∂d2
< 0, we should decrease d2 to 0

or the value such that ∂u2

∂d2
= bd1p

′(d2)− 1 = 0. By Lemma 3.15, if d2 is not decreased to

0, the decrement of d2 should be greater than that of d1 in the previous round. Hence the

decrement of di in each round cannot converge to 0. Based on this fact, the system must

finally converge to (0, 0) in finitely many rounds. Since (0, 0) is a Nash equilibrium, it’s

impossible for the system to go back to Nℓ again. Therefore Nℓ is unstable.

Figure 3.12: A geometric illustration of Lemma 3.17

Lemma 3.17. If dh ≤ do and the starting point (x, y) satisfies byp′(x) ≥ 1, bxp′(y) ≥ 1,

x > dℓ, and y > dℓ, then it must converge to (dh, dh).

Proof. First, we want to show by contradiction that d1, d2 ≤ dh if bd2p′(d1) ≥ 1 and

bd1p
′(d2) ≥ 1. If d1 > dh and d1 ≥ d2, then bd2p′(d1) ≤ bd1p

′(d1) < bdhp
′(dh) = 1 is a

contradiction. If d2 > dh and d2 ≥ d1, then bd1p
′(d2) ≤ bd2p

′(d2) < bdhp
′(dh) = 1 is a

contradiction. Hence neither d1 nor d2 can be greater than dh.

Second, since x ≤ dh ≤ do and y ≤ dh ≤ do, we deduce bxp(y) ≤ K and byp(x) ≤

K, and
∂u1

∂d1
= bd2p

′(d1)− 1 and
∂u2

∂d2
= bd1p

′(d2)− 1.

Without loss of generality, assume d1 increases first. This move should let ∂u1

∂d1
= 0 and

∂u2

∂d2
> 0. The reader may discover that the move doesn’t leave the area ∂u1

∂d1
≥ 0 and

∂u2

∂d2
≥ 0 and therefore d1, d2 ≤ dh ≤ do and the derivatives are not affected by the bound

K. It’s d2’s turn to increase. The two players will take turn increasing their contributions.
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Finally, since d1 and d2 are both monotonic (increasing) and bounded above (not

greater than dh), by the monotone convergence theorem they must converge eventually.

The system converges only if ∂u1

∂d1
= ∂u2

∂d2
= 0. By Lemma 2.4 both d1 and d2 can only be

dℓ or dh at the same time. Since x > dℓ and y > dℓ, according to monotonicity the system

must converge to (dh, dh).

Figure 3.13: A geometric illustration of Lemma 3.18

Lemma 3.18. If dh < do and the starting point (x, y) which is arbitrarily close to (dh, dh)

satisfies byp′(x) ≤ 1, bxp′(y) ≤ 1, and x, y ≥ dh, then it must converge to (dh, dh).

Proof. The proof is very similar to Lemma 3.17. Since (x, y) is arbitrarily close to (dh, dh),

we deduce bxp(y) < K and byp(x) < K, and

∂u1

∂d1
= bd2p

′(d1)− 1 and
∂u2

∂d2
= bd1p

′(d2)− 1.

Without loss of generality, assume d2 decreases first. This move should let ∂u2

∂d2
= 0 and

∂u1

∂d1
< 0. After that it’s d1’s turn to decrease to let ∂u1

∂d1
= 0 and ∂u2

∂d2
< 0. The two players

will take turn decreasing their contributions (strategies). The reader may discover that

none of the moves leaves the area ∂u1

∂d1
≤ 0 and ∂u2

∂d2
≤ 0. Based on this fact, we want to

show by contradiction that d1, d2 ≥ dh during the iterative process.
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If it’s d2’s turn to decrease and after that d1 ≥ dh > d2, then ∂u2

∂d2
= bd1p

′(d2) − 1 ≥

bdhp
′(d2) − 1 > bdhp

′(dh) − 1 = 0 which leaves the area ∂u2

∂d2
≤ 0. Therefore d2 should

be greater than or equal to dh. This argument can also be applied to the case when it’s d1’s

turn to decrease.

Finally, since d1 and d2 are both monotonic (decreasing) and bounded below (not less

than dh), by the monotone convergence theorem they must converge eventually. The sys­

tem converges only if ∂u1

∂d1
= ∂u2

∂d2
= 0. By Lemma 2.4 both d1 and d2 can only be dℓ or dh

at the same time. Since d1 ≥ dh and d2 ≥ dh, the system must converge to (dh, dh).

Figure 3.14: A geometric illustration of Theorem 3.19

Theorem 3.19. Nh, if exists, must be a stable Nash equilibrium if dℓ < dh, and be unstable

if dℓ = dh.

Proof. If dℓ = dh, then Nh and Nℓ are the same. By Theorem 3.16 Nh is unstable. If

dℓ < dh, we can consider an extremely small region centered at (dh, dh). By Theorem

3.12 dh < do, we deduce bd1p(d2) < K and bd2p(d1) < K, and

∂u1

∂d1
= bd2p

′(d1)− 1 and
∂u2

∂d2
= bd1p

′(d2)− 1.

Consider an arbitrary starting point (x, y) in the area. If (x, y) satisfies ∂u1

∂d1
≥ 0∧ ∂u2

∂d2
≤ 0,
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then (a) ∂u1

∂d1
= 0∧ ∂u2

∂d2
≤ 0 or (b) ∂u1

∂d1
= 0∧ ∂u2

∂d2
≥ 0 happens after we increase d1 a little, or

(c) ∂u2

∂d2
= 0∧ ∂u1

∂d1
≤ 0 or (d) ∂u2

∂d2
= 0∧ ∂u1

∂d1
≥ 0 happens after we decrease d2 a little. If (a)

happens, then bd2p′(d1) = 1 and bd1p′(d2) ≤ 1. The constraint gives d2 ≥ d1. Suppose for

contradiction that dℓ < d1 < dh. Then bd2p′(d1) ≥ bd1p
′(d1) > bdhp

′(dh) = 1 contradicts

bd2p
′(d1) = 1. Hence d2 ≥ d1 ≥ dh, and by Lemma 3.18 the system converges toNh. By

symmetry, the same conclusion holds for (c). If (b) happens, we can simply use Lemma

3.17 to show that the system converges to Nh. By symmetry, the same conclusion holds

for (d). To sum up, the system converges to Nh if (x, y) satisfies ∂u1

∂d1
≥ 0 ∧ ∂u2

∂d2
≤ 0.

By symmetry, we can also say the system converges to Nh if (x, y) satisfies ∂u1

∂d1
≤

0 ∧ ∂u2

∂d2
≥ 0. According to Lemma 3.17, the same conclusion also holds if (x, y) satisfies

∂u1

∂d1
≥ 0 ∧ ∂u2

∂d2
≥ 0. Now we consider the last case when ∂u1

∂d1
≤ 0 ∧ ∂u2

∂d2
≤ 0. Suppose for

contradiction that dℓ < d1 < dh and d1 ≤ d2. Then bd2p′(d1) ≥ bd1p
′(d1) > bdhp

′(dh) =

1 contradicts bd2p′(d1) ≤ 1. Hence d1, d2 ≥ dh in this case. By Lemma 3.18 the system

also converges to Nh. Therefore all points very close to (dh, dh) will converge to Nh. It

is stable.

Theorem 3.20. No, if exists, is unstable when dℓ ≤ do < dh or dℓ = do = dh, and is

stable when dℓ < do = dh.

Proof. If dℓ = do, then we can repeat the proof in Theorem 3.16 to say No is unstable.

If dℓ < do < dh, we want to show that in any arbitrarily small region centered at No,

there must exist at least one point which will converge to Nside1 (or Nside2). Consider

the iterative process in the reverse direction (starting from Nside1). We want to construct

a path from Nside1 to No with the following procedure. Recall the constraint of Nside1:

(b d2 p(d1) < K) ∧ (b d1 p(d2) = K). Let d2 increase first such that (b d2 p(d1) =

K) ∧ (b d1 p(d2) ≥ K) and we say the system arrives at the point P1. Then d1 decreases

such that (b d2 p(d1) ≤ K) ∧ (b d1 p(d2) = K) and the system arrives at the point P2.

The two players will take turn making an ultimate adjustment of their strategies under the

constraint (b d2 p(d1) ≤ K) ∧ (b d1 p(d2) ≥ K) and obtain the subsequent points P3, P4,

P5, and so on. In the following paragraphs we want to show this procedure will converge

to (do, do) eventually.
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First, we show the boundedness. Consider the constraint b d1 p(d2) ≥ K ≥ b d2 p(d1).

By Corollary 2.3, we deduce d1 ≥ d2. Then we want to prove d1 ≥ do ≥ d2 by contra­

diction. If do > d1 ≥ d2, then bd1p(d2) < bdop(do) = K contradicts b d1 p(d2) ≥ K. If

d1 ≥ d2 > do, then bd2p(d1) > bdop(do) = K contradicts b d2 p(d1) ≤ K. Hence d1 is

bounded below by do, and d2 is bounded above by do.

Second, we show the monotonicity. Recall the inequality bd2p
′(d1) ≥ 1 of the con­

straint ofNside1. Since in our iterative process d1 is non­increasing and d2 is non­decreasing,

bd2p
′(d1) ≥ 1 is always true. Since d1 ≥ do ≥ d2, we have bd1p′(d2) ≥ bdop

′(do) > 1.

Therefore p′(d1) > 0 and p′(d2) > 0. It means that neither of p(d1) and p(d2) reaches

1 during the iterative process, and either (b d2 p(d1) = K) ∧ (b d1 p(d2) > K) or

(b d2 p(d1) < K) ∧ (b d1 p(d2) = K) happens in each move. In fact it also implies

that d1 is “strictly decreasing” and d2 is “strictly increasing.” The monotonicity is proven.

By the monotone convergence theorem, the procedure must eventually converge to

some point. If it converges, then solving the equation bd1p(d2) = K = bd2p(d1) by

Corollary 2.3 gives us d1 = d2 = do and we can say the procedure finally converges to

(do, do). It means that in any arbitrarily small region centered at No, we can always find

some point PN for a sufficiently large N . Since bd2p(d1) ≤ K and bd2p′(d1) ≥ 1 in this

area, we deduce ∂u1

∂d1
≥ 0. Since bd1p(d2) ≥ K in this area, we deduce ∂u2

∂d2
= −1. We can

guarantee that the system naturally goes from PN to PN−1, and goes from PN−1 to PN−2,

and so on. Finally it reaches Nside1 and can never go back to No. No is unstable.

Figure 3.15: A geometric illustration of the case dℓ < do < dh
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If dℓ < do = dh, then there must be some point around Nh that causes bd1p(d2) > K

or bd2p(d1) > K. If one of these inequalities holds, the corresponding player should

decrease his/her contribution (strategy) such that bd1p(d2) ≤ K and bd2p(d1) ≤ K. In

this case one of d1 ≤ dh and d2 ≤ dh must hold. Otherwise, both d1 and d2 are larger

than dh which causes bd1p(d2) and bd2p(d1) to be larger than K. This is a contradiction.

Without loss of generality, we only assume d1 ≤ dh in our proof. Since the points are

arbitrarily close to Nh, we should always keep in mind that d1, d2 > dℓ. This section can

be split into two cases d1 ≥ d2 and d1 < d2.

If d1 ≥ d2, then we deduce bd1p′(d2) ≥ bd1p
′(d1) ≥ 1. Since bd1p′(d2) ≥ bd2p

′(d1)

must hold when d1 ≥ d2, either bd1p′(d2) ≥ bd2p
′(d1) ≥ 1 or bd1p′(d2) > 1 ≥ bd2p

′(d1)

happens. If the former happens, the system will automatically converge toNh by Lemma

3.17. If the latter happens, we can either decrease d1 to reach bd2p
′(d1) = 1 or increase

d2 to reach bd1p
′(d2) = 1. If we can decrease d1 to x, then x must be larger than d2.

Otherwise, bd2p′(x) ≥ bd2p
′(d2) > 1 is a contradiction. Since x > d2, we deduce

bxp′(d2) > bd2p
′(d2) ≥ 1. By Lemma 3.17 the system will automatically converge

to Nh. If we can increase d2 to x, then x must be larger than or equal to d1. Other­

wise, bd1p′(x) > bd1p
′(d1) ≥ 1 is a contradiction. Additionally, x ≤ dh. Otherwise,

bd1p
′(x) < bd1p

′(dh) ≤ bdhp
′(dh) = 1 is a contradiction. Since d1 ≤ x (new d2) ≤ dh,

neither bd1p(x) nor bxp(d1) exceedsK, ∂u2

∂d2
is not affected byK, and therefore increasing

d2 is possible. We reach bxp′(d1) ≥ bd1p
′(x) = 1 and by Lemma 3.17 the system will

automatically converge to Nh.

If d1 < d2, then we deduce bd2p′(d1) > bd1p
′(d1) > 1. Since bd2p′(d1) > bd1p

′(d2)

must hold when d1 < d2, either bd2p′(d1) > bd1p
′(d2) > 1 or bd2p′(d1) > 1 ≥ bd1p

′(d2)

happens. If bd2p′(d1) > bd1p
′(d2) ≥ 1 happens, the system will automatically converge

toNh by Lemma 3.17. If bd2p′(d1) > 1 > bd1p
′(d2) happens, we can either decrease d2 to

reach bd1p′(d2) = 1 or increase d1 to reach bd2p′(d1) = 1. If we want to decrease d2 now,

the argument of the case to decrease d1 in the previous paragraph can also be used to show

the convergence. If we want to increase d1 instead, then either (a) bd2p(d1) = K or (b)

bd2p
′(d1) = 1 happens first. If (a) happens first, then this step fails to satisfy bd2p′(d1) = 1.
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It implies bd2p′(d1) > 1 still remains. In this case if bd1p′(d2) ≥ 1, we simply use Lemma

3.17 to show that the systemwill finally converge toNh. If bd1p′(d2) < 1, we can decrease

d2 again and use the previous argument of the case bd2p′(d1) > 1 > bd1p
′(d2) to show

the convergence. If (b) happens first, then we can also use the argument of the case to

increase d2 in the previous paragraph to show the convergence. Hence we are done.

Figure 3.16: A geometric illustration of the case dℓ < do = dh

We close this section with the following conclusive table.

Table 3.2: Summary of Nash equilibria of two­player
file­sharing games in ascending order of their total utility

Point Stability Condition
(0, 0) YES ­
Nℓ NO dℓ < do

Nside1, Nside2 unknown dℓ < do < dh
No (almost) NO dℓ ≤ do ≤ dh
Nh (almost) YES dh < do

3.3 The PoA and PoS

Finally, we’re going to calculate the PoS and PoA and observe their properties. Our anal­

ysis is split into three different cases depending on the value of do. Before the analysis,

we give two definitions to show that we don’t care about the origin.
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Definition 3.4. ANash equilibrium not on the origin is a non­collapsingNash equilibrium.

Definition 3.5. If we only consider these non­collapsing Nash equilibria when calculating

a PoA, the result is a non­collapsing PoA. In this section we only care about the non­

collapsing PoA.

The objective of Lemma 3.21, Lemma 3.22, and Theorem 3.23 is to sort all the Nash

equilibria by the total utility function.

Lemma 3.21. Given two Nash equilibria Nx = (dx1 , dx2) and Ny = (dy1 , dy2), if dx1 ≥

dy1 ≥ dℓ and dx2 ≥ dy2 ≥ dℓ, then u(Nx) ≥ u(Ny) .

Proof. Since bp(dℓ) ≥ bdℓp
′(dℓ) = 1, we ensure that bp(dxi

)− 1 ≥ 0 and bp(dyi)− 1 ≥ 0

are always true for all parameters not less than dℓ. In addition, bdxi
p(dxj

) ≤ K and

bdyip(dyj) ≤ K are always true for all parameters becauseNx andNy are Nash equilibria.

We can write
u(Nx) = dx1

(
bp(dx2)− 1

)
+ dx2

(
bp(dx1)− 1

)
, and

u(Ny) = dy1

(
bp(dy2)− 1

)
+ dy2

(
bp(dy1)− 1

)
.

It is clear to see that bp(dx2)− 1 ≥ bp(dy2)− 1 ≥ 0 and bp(dx1)− 1 ≥ bp(dy1)− 1 ≥ 0,

so u(Nx) ≥ u(Ny).

Lemma 3.22. If Nside1 = (d1, d2) exists, then the order of the parameters should be the

following: dℓ < d2 < do < d1 < dh.

Proof. Recall the constraint of Nside1:

{
b d2 p

′(d1) = 1 and b d2 p(d1) < K

b d1 p
′(d2) ≥ 1 and b d1 p(d2) = K.

Since b d1 p(d2) = b do p(do) > b d2 p(d1), by Theorem 2.3 we deduce d2 < do < d1.

Compare b d2 p′(d1) = 1 with b dh p′(dh) = 1. If d1 ≥ dh, then p′(d1) ≤ p′(dh).

The inequality along with d2 < do < dh together implies b d2 p′(d1) < 1 which is a

contradiction. Therefore d1 < dh. Compare b d2 p′(d1) = 1 with b dℓ p
′(dℓ) = 1. If

d2 ≤ dℓ, then dℓ < do < d1 implies p′(d1) < p′(dℓ) and therefore b d2 p′(d1) < 1 which is
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a contradiction. Therefore dℓ < d2. Combining dℓ < d2, d2 < do < d1, and d1 < dh, we

obtain our final result.

Theorem 3.23. If do = dℓ, then the order of existing Nash equilibria should be u(O) <

u(No). If dℓ < do < dh, then the order of existing Nash equilibria should be u(O) <

u(Nℓ) < u(Nside1) = u(Nside2) ≤ u(No). If do = dh, then u(O) < u(Nℓ) ≤ u(No). If

do > dh, then u(O) < u(Nℓ) ≤ u(Nh).

Proof. Since dℓ > 0 and bp(dℓ) > bdℓp
′(dℓ) = 1, we deduce u(0, 0) = 0 < 2dℓ

(
bp(dℓ)−

1
)
= u(Nℓ). If Nside1 = (d1, d2) exists, then dℓ < d2 < do < d1 < dh by Lemma 3.22.

We can deduce u(Nside1) = 2d2
[
bp(d1) − 1

]
> 2dℓ

(
bp(dℓ) − 1

)
= u(Nℓ) by Lemma

3.21. Besides, u(Nside1) = u(Nside2) by symmetry. No exists only if dℓ ≤ do. According

to this inequality, we deduce bp(do) ≥ bp(dℓ) > 1 and therefore do < K. By Theorem

3.6, No has the maximum total utility if it exists. Since Nside1 exists only if No exists, we

can say u(Nside1) ≤ u(No). If do ≥ dh, the result also follows from Lemma 3.21.

Theorem 3.24 states the conclusion when neither dℓ nor dh exists, or both exist but

do < dℓ.

Theorem 3.24. If neither dℓ nor dh exists, or both exist but do < dℓ, then the maximum

total utility of all existing Nash equilibria must be 0.

Proof. Since in this case the only existing Nash equilibrium is (0, 0) and u(0, 0) = 0, the

result follows.

Lemma 3.25 is an auxiliary proposition helping us in observing how the PoA, PoS

vary with the parameters b.

Lemma 3.25. If K and p(x) remain fixed, and b is the only varying parameter, then:

(a)
∂do
∂b

< 0, (b)
∂dℓ

(
bp(dℓ)− 1

)
∂b

< 0, and (c)
∂dℓ
∂b

<
∂do
∂b

when dℓ = do.

Proof. Part (a) can be directly deduced from the definition bdop(do) = K. For part (b),

recall the definition bdℓp
′(dℓ) = 1 first. Since dℓ is the less solution to bdℓp

′(dℓ) = 1, by

Lemma 2.1 we have ∂dℓ/∂b < 0. It means that when b increases, dℓ decreases, p′(dℓ)
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increases,
1

p′(dℓ)
decreases, and therefore

∂

∂b

( 1

p′(dℓ)

)
< 0. Also write

∂

∂b

( 1

p′(dℓ)

)
=

∂(bdℓ)

∂b
= dℓ + b

∂dℓ
∂b

, so dℓ + b
∂dℓ
∂b

< 0.

∂
(
bdℓp(dℓ)− dℓ

)
∂b

= dℓp(dℓ) + b
∂dℓ
∂b

p(dℓ) + bdℓp
′(dℓ)

∂dℓ
∂b

− ∂dℓ
∂b

= dℓp(dℓ) + b
∂dℓ
∂b

p(dℓ)

= p(dℓ)
(
dℓ + b

∂dℓ
∂b

)
< 0.

For part (c), we go back to bdop(do) = K. According to this equality,
∂

∂b

( K

p(do)

)
=

∂(bdo)

∂b
= do + b

∂do
∂b

> 0. Comparing with dℓ + b
∂dℓ
∂b

< 0 from (b), we obtain (c).

Theorem 3.26 states the relationship between the PoA, PoS and the parameters b, K

when dℓ ≤ do ≤ dh.

Theorem 3.26. If both dℓ and dh exist, and dℓ ≤ do ≤ dh, then the PoS = 1 and the

PoA =
uopt

u(dℓ)
=

u(No)

u(dℓ)
=

do

(
bp(do)− 1

)
dℓ

(
bp(dℓ)− 1

) . Furthermore, when b and p(x) are fixed,

andK is the only varying parameter, the PoA approaches 1 asK decreases such that do

approaches dℓ, and the PoA approaches its maximum
dh

(
bp(dh)− 1

)
dℓ

(
bp(dℓ)− 1

) as K increases

such that do approaches dh. When K and p(x) are fixed, and b is the only varying pa­

rameter, the PoA approaches infinity as b keeps increasing, and the PoA approaches its

minimum as b decreases such that do approaches dh.

Proof. By Corollary 3.7 uopt = u(No), so the PoS = 1. By Theorem 3.23, the worst non­

collapsing Nash equilibrium is the point (dℓ, dℓ). Hence the PoA =
u(do)

u(dℓ)
. If b, p(x) are

fixed and only K varies, then only do varies with it and the denominator doesn’t change.

Since bp(do) ≥ bp(dℓ) > 1, the PoA increases with do (and K).

Consider the case when b is the only varying parameter. We should also note that the

PoA can bewritten as
K − do

dℓ

(
bp(dℓ)− 1

) . By Lemma 3.25 ∂do
∂b

< 0 and
∂dℓ

(
bp(dℓ)− 1

)
∂b

<

0, so the numerator increases, the denominator decreases, and the PoA increases with b.

IfK, p(x) are fixed and b is the only increasing parameter, by part (c) of Lemma 3.25 the
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inequality dℓ ≤ do ≤ dh always remains, so the PoA increases unboundedly. If K, p(x)

are fixed and b is the only decreasing parameter, by part (c) of Lemma 3.25 the inequality

dℓ ≤ do remains, but do may exceed dh. Therefore the PoA achieves its minimum as do

achieves its maximum (dh).

Theorem 3.27 states how the side Nash equilibria affect the “stable” PoS and PoA.

Theorem 3.27. If Nside1 and Nside2 both exist and are stable Nash equilibria, then the

“stable” PoS and PoA are
uopt

u(Nside1)
=

u(do)

u(Nside1)
< 2.

Proof. The side Nash equilibria exist only if dℓ < do < dh, in this case other existing non­

collapsing Nash equilibria are unstable. Hence if these side Nash equilibria are stable,

the “stable” PoS and PoA should be
uopt

u(Nside1)
=

u(do)

u(Nside1)
. Let Nside1 = (d1, d2).

Recall the constraint of Nside1:


bd1p(d2) = K

bd2p
′(d1) = 1.

Then the ratio can also be written as

do

(
bp(do)− 1

)
+ do

(
bp(do)− 1

)
d1

(
bp(d2)− 1

)
+ d2

(
bp(d1)− 1

) =
2 (K − do)

K − d1 +
p(d1)
p′(d1)

− d2
. As long as we can prove

K−d1+
p(d1)
p′(d1)

−d2 > K−do, then we are done. Since p(d1) > d1p
′(d1), we first deduce

K − d1 +
p(d1)
p′(d1)

− d2 > K − d2. Since d1 ≥ d2, we also deduce d1 ≥ do ≥ d2 from the

definition bdop(do) = K, and therefore K − d2 ≥ K − do. Hence we are done.

Theorem 3.28 states the relationship between the PoA, PoS and the parameters b, K

when dh < do.

Theorem3.28. If both dℓ and dh exist, and dh < do, thePoS =
uopt

u(Nh)
=

do

(
bp(do)− 1

)
dh

(
bp(dh)− 1

)
and the PoA =

uopt

u(Nℓ)
=

do

(
bp(do)− 1

)
dℓ

(
bp(dℓ)− 1

) . If we only consider the non­collapsing sta­

ble Nash equilibria, then the “stable” PoA becomes
uopt

u(Nh)
. Furthermore, when b and

p(x) are fixed, andK is the only varying parameter, the PoS approaches 1 and the PoA

approaches its greatest lower bound
dh

(
bp(dh)− 1

)
dℓ

(
bp(dℓ)− 1

) as K decreases such that do ap­

proaches dh, and both the PoS = Θ(K) and PoA = Θ(K) approach infinity as K
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keeps increasing. When K and p(x) are fixed, and b is the only varying parameter, the

PoS approaches 1 and the PoA approaches its least upper bound as b increases such

that do approaches dh, and the PoS approaches its maximum and the PoA approaches

its minimum as b keeps decreasing until dh does not exist.

Proof. By Corollary 3.7, uopt occurs at u(do). By Theorem 3.23, Nh has the maximum

total utility, and Nℓ has the minimum total utility among all existing non­collapsing Nash

equilibria. Hence the PoS and PoA in our theorem follow. If we only consider the non­

collapsing stable Nash equilibria, thenNh is the only one. Hence the “stable” PoA in our

theorem follows.

According to the proof in Theorem 3.26, the PoS and PoA both increase with do (and

K). We should also note that the numerator can be expressed asK − do. WhenK is very

large, p(do) approaches 1 and therefore do =
K

bp(do)
≈ K

b
, so K − do ≈ K − K

b
=

K(1− 1

b
) = Θ(K).

According to the proof in Theorem 3.26, the PoA increases with b. We should also

note that the PoS can be written as
do
dh

· p(do)− 1/b

p(dh)− 1/b
. IfK, p(x) are fixed and b is the only

increasing parameter, then do and p(do) decrease, and dh and p(dh) increase. In addition,

adding the same quantity to both the numerator and denominator of an improper fraction

decreases its value. Therefore we can deduce the PoS decreases with b instead.

We close this chapter with the following tables concluding Theorem 3.24, Theorem

3.26, and Theorem 3.28.

Table 3.3: Summary of the PoS and PoA withK as the only varying parameter.
We assume do starts at dℓ and keeps increasing.

Condition dℓ ≤ do ≤ dh
(Phase 1)

dh < do
(Phase 2)

PoS 1 u(do)/u(dh)
(stable PoA)

Monotonicity ­ increasing
Starting at 1 ­ Yes

PoA u(do)/u(dℓ)
Monotonicity increasing
Starting at 1 Yes
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Table 3.4: Summary of the PoS and PoA with b as the only varying parameter.
We assume b starts at its valid minimum value (i.e. bxp′(x) = 1 has exactly one

solution.) and keeps increasing.

Condition do > dh
(Phase 1)

dh ≥ do ≥ dℓ
(Phase 2)

PoS u(do)/u(dh)
(stable PoA) 1

Monotonicity decreasing ­
Terminating at 1 YES ­

PoA u(do)/u(dℓ)
Monotonicity increasing
Starting at 1 No

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r
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Chapter 4

Nash Equilibrium Analysis for

Three­Player File­Sharing Games

After the analysis of two­player file­sharing games, we want to consider a three­player

file­sharing game. Like Chapter 3, the model can be simplified to the following again.



u1(d1) = −d1 +min{K, b d2 p(d1)}+min{K, b d3 p(d1)}

u2(d2) = −d2 +min{K, b d1 p(d2)}+min{K, b d3 p(d2)}

u3(d3) = −d3 +min{K, b d1 p(d3)}+min{K, b d2 p(d3)}

u = u1(d1) + u2(d2) + u3(d3).

We also use the notation u(d) = u(d, d, d) if d1, d2, and d3 have the same value of d.

In this chapter, we do almost the same thing as in Chapter 3, including finding all

Nash equilibria under different parameter settings, analyzing their efficiency (PoA and

PoS), and observing how they vary with system parameters b and K. The only exception

is that we don’t care about their stability here. Similarly, we begin with the section which

aims to find the maximum total utility.

4.1 Maximum Total Utility

Although for two­player games we detailedly analyzed gradients of almost all points in

the domain, the technique is too complicated to apply to the three­player games. In the
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light of this, we use another way in this chapter to prove that the point where uopt occurs

can still be (d, d, d) where b d p(d) = K under some particular parameter settings.

The structure of our proof is illustrated below. Observing the formula of our model,

we can split u into two parts.

u =
∑

1≤i,j≤3,
i̸=j

min{K, b di p(dj)} − (d1 + d2 + d3).

After that, we want to show for each surface
∑

1≤i,j≤3,
i̸=j

b di p(dj) = C decided by a constant

C, the point where both the (part 1)
∑

1≤i,j≤3,
i̸=j

min{K, b di p(dj)} and (part 2) d1 + d2 + d3

attain their “own”maximum andminimumvalue respectively is (d, d, d)where 6 b d p(d) =

C. Hence the maximum u “within that surface” occurs on the diagonal. According to this

conclusion, we also partition the whole domain (the positive first octant of R3) into in­

finitely many surfaces of the same type (corresponding to different C), apply Lemma 4.1

and Lemma 4.7, and then obtain the same conclusion for each surface. Therefore uopt

must occur (at least) at some point on the diagonal.

The following are some lemmas and theorems related to the proof.

Lemma 4.1. In any surface
∑

1≤i,j≤3,
i̸=j

bdip(dj) = C ≥ 0,
∑

1≤i,j≤3,
i̸=j

min{K, bdip(dj)} attains

its maximum value on (but not limited to) the diagonal.

Proof. Consider the point (d, d, d) on the diagonal. This point makes all bdip(dj) have

the same value of C/6. If C/6 ≤ K, then

∑
1≤i,j≤3,

i̸=j

min{K, b di p(dj)} =
∑

1≤i,j≤3,
i̸=j

C/6 = C.

Since
∑

1≤i,j≤3,
i̸=j

min{K, b di p(dj)} ≤
∑

1≤i,j≤3,
i̸=j

b di p(dj) = C, it attains its maximum. If

C/6 > K, then min{K, b di p(dj)} = K. By definition, it also attains its maximum.

Hence the result follows.
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Lemma 4.2. In any straight line d1 + d2 = C > 0, the value of p(d1) + p(d2) is (non­

strictly) decreasing with d1 when d1 > d2, and is (non­strictly) increasing with d1 when

d1 < d2.

Proof. Differentiate the value with respect to d1.

∂

∂d1

(
p(d1) + p(d2)

)
= p′(d1) + p′(d2)

∂d2
∂d1

= p′(d1)− p′(d2).

If d1 > d2, then p′(d1) ≤ p′(d2). If d1 < d2, then p′(d1) ≥ p′(d2). Hence the result

follows.

Lemma 4.3. In any straight line d1 + d2 = C > 0, the value of d1p(d2) + d2p(d1) is

(non­strictly) decreasing with d1 when d1 > d2, and is (non­strictly) increasing with d1

when d1 < d2.

Proof. Differentiate the value with respect to d1.

∂

∂d1

(
d1p(d2) + d2p(d1)

)
= p(d2) + d1p

′(d2)
∂d2
∂d1

+
∂d2
∂d1

p(d1) + d2p
′(d1)

= p(d2)− p(d1) + d2p
′(d1)− d1p

′(d2).

If d1 > d2, then p(d2) ≤ p(d1) and d2p
′(d1) ≤ d1p

′(d2). ∴ p(d2) − p(d1) + d2p
′(d1) −

d1p
′(d2) ≤ 0. If d1 < d2, then p(d2) ≥ p(d1) and d2p′(d1) ≥ d1p

′(d2). ∴ p(d2)− p(d1) +

d2p
′(d1)− d1p

′(d2) ≥ 0. Hence the result follows.

Lemma 4.4. In any plane d1 + d2 + d3 = C > 0, if dx ≥ dy for some players Px and Py

at a point, it always has a value of
∑

1≤i,j≤3,
i̸=j

di p(dj) greater than or equal to another point

where dx is increased by δ and dy is decreased by δ, for any δ > 0.

Proof. W.L.O.G., take x = 1 and y = 2. We can expand the formula as the following.

∑
1≤i,j≤3,

i̸=j

di p(dj) = p(d3) · (d1 + d2) +
(
d1p(d2) + d2p(d1)

)
+ d3 ·

(
p(d1) + p(d2)

)
.
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By Lemma 4.3, (d1, d2, d3) has a value of d1p(d2) + d2p(d1) greater than or equal to

(d1 + δ, d2 − δ, d3). By Lemma 4.2, (d1, d2, d3) has a value of p(d1) + p(d2) greater than

or equal to (d1 + δ, d2 − δ, d3). Since the other terms don’t change, we are done.

Lemma 4.5. In any plane d1 + d2 + d3 = C > 0, the maximum value of
∑

1≤i,j≤3,
i̸=j

di p(dj)

can occur at the point where d1 = d2 = d3 = C/3.

Proof. Define the function f(d1, d2, d3) =
∑

1≤i,j≤3,
i̸=j

b di p(dj) first for simplicity. In this

proof, we want to compare (C
3
, C
3
, C
3
) with another arbitrary point (C

3
+ δ1,

C
3
+ δ2,

C
3
−

(δ1 + δ2)) on the same plane, and deduce f(C3 ,
C
3
, C
3
) ≥ f(C

3
+ δ1,

C
3
+ δ2,

C
3
− (δ1 + δ2)).

Without loss of generality, we can consider only two cases.

Case 1. δ1 ≥ δ2 ≥ 0

By Lemma 4.4, f(C
3
, C
3
+ δ2,

C
3
− δ2) ≥ f(C

3
+ δ1,

C
3
+ δ2,

C
3
− (δ1 + δ2)). By

applying the same lemma again we deduce f(C
3
, C
3
, C
3
) ≥ f(C

3
, C
3
+ δ2,

C
3
− δ2).

∴ f(C
3
, C
3
, C
3
) ≥ f(C

3
+ δ1,

C
3
+ δ2,

C
3
− (δ1 + δ2)).

Case 2. δ1 ≥ 0 ≥ δ2 ≥ −δ1

By Lemma 4.4, f(C
3
+δ1+δ2,

C
3
, C
3
−(δ1+δ2)) ≥ f(C

3
+δ1,

C
3
+δ2,

C
3
−(δ1+δ2)).

By applying the same lemma againwe deduce f(C
3
, C
3
, C
3
) ≥ f(C

3
+δ1+δ2,

C
3
, C
3
−

(δ1 + δ2)). ∴ f(C
3
, C
3
, C
3
) ≥ f(C

3
+ δ1,

C
3
+ δ2,

C
3
− (δ1 + δ2)).

Since the inequality holds for both cases, the result follows.

Lemma 4.6. If x > y ≥ 0 and the values of d1 and d2 are not both 0, (d1, d2, x) always

has a value of
∑

1≤i,j≤3,
i̸=j

di p(dj) greater than (d1, d2, y).

Proof. Expand
∑

1≤i,j≤3,
i̸=j

di p(dj) again to observe which terms are affected by d3.

∑
1≤i,j≤3,

i̸=j

di p(dj) = p(d3) · (d1 + d2) +
(
d1p(d2) + d2p(d1)

)
+ d3 ·

(
p(d1) + p(d2)

)
.
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Focus on the first term. ∵ d1 + d2 > 0. ∴ p(x) · (d1 + d2) ≥ p(y) · (d1 + d2).

Focus on the last term. ∵ p(d1)+p(d2) > 0. ∴ x·
(
p(d1)+p(d2)

)
> y·

(
p(d1)+p(d2)

)
.

Hence the result follows.

Lemma 4.7. In any surface
∑

1≤i,j≤3,
i̸=j

b di p(dj) = C > 0, d1 + d2 + d3 attains its minimum

value on (but not limited to) the diagonal.

Proof. Define two functions f(d1, d2, d3) =
∑

1≤i,j≤3,
i̸=j

b di p(dj) and g(d1, d2, d3) = d1 +

d2 + d3. Pick one point (d, d, d) and another arbitrary point (d+ δ1, d+ δ2, d+ δ3) on the

same surface. If we can prove g(d, d, d) ≤ g(d+ δ1, d+ δ2, d+ δ3), then we are done.

We first introduce an auxiliary point (d + δ1, d + δ2, d− (δ1 + δ2)) which lies on the

same plane as (d, d, d). By Lemma 4.5, f(d, d, d) ≥ f(d+ δ1, d+ δ2, d− (δ1 + δ2)).

∵ (d, d, d) and (d+δ1, d+δ2, d+δ3) lie on the same surface. ∴ f(d, d, d) = f(d+δ1, d+

δ2, d+δ3). That is, f(d+δ1, d+δ2, d+δ3) ≥ f(d+δ1, d+δ2, d−(δ1+δ2)). According to this

inequality, we can deduce d+δ3 ≥ d−(δ1+δ2) by Lemma 4.6. Since d+δ3 ≥ d−(δ1+δ2),

it is obvious that g(d+ δ1, d+ δ2, d+ δ3) ≥ g(d+ δ1, d+ δ2, d− (δ1 + δ2)) = g(d, d, d).

This inequality is our goal. Hence the result follows.

Figure 4.1: A geometric illustration of Lemma 4.7

By Lemma 4.1 and Lemma 4.7, there must be a point on the diagonal where uopt occurs

under some parameter settings. The following theorem tells us what the settings are.
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Theorem 4.8. If do ≥ 2K, then uopt = 0. If do < 2K, then uopt = 3(2K − do) > 0.

Proof. Recall the utility formula of the point (d, d, d) on the diagonal. We should note

that d ≤ do ⇐⇒ b d p(d) ≤ K, and d ≥ do ⇐⇒ b d p(d) ≥ K.

u = 3 ·
(
− d+ 2 ·min{K, b d p(d)}

)
=

3 d
(
2 b p(d)− 1

)
if d ≤ do

3
(
2K − d

)
if d ≥ do.

If do ≥ 2K, then 2bp(do) ≤ 1. In this case u(do) ≤ 0. When d < do, 2bp(d) ≤

2bp(do) ≤ 1 and therefore u(d) ≤ 0. When d > do, 2K − d < 2K − do and therefore

u(d) < u(do) ≤ 0. Hence uopt = 0. If do < 2K, then 2bp(do) > 1. In this case

u(do) > 0. When d < do, 2bp(d) ≤ 2bp(do) and therefore u(d) ≤ u(do). When d > do,

2K − d < 2K − do and therefore u(d) < u(do). Hence uopt = u(do) > 0.

Corollary 4.9. Let dℓℓ be the less solution to bxp′(x) =
1

2
. If do ≥ dℓℓ, then uopt = u(do).

Proof. ∵ bp(do) ≥ bp(dℓℓ) > bdℓℓp
′(dℓℓ) =

1

2
∴ do < 2K by Definition 2.6. In this

case uopt = u(do) > 0 by Theorem 4.8.

We close this section with the following conclusive table.

Table 4.1: The maximum total utility of three­player games.

Condition Utility
do ≥ 2K 0
do < 2K 3(2K − do)

4.2 Nash Equilibria

As in the previous chapter, we are going to find Nash equilibria in order to calculate the

PoA and PoS in the next section.

Lemma 4.10. The player Pi does not want to change his/her strategy di if and only if one

of the following cases occurs.

Case I.
(∂ui

∂di

)−
does not exist (i.e., di = 0) and

(∂ui

∂di

)+

≤ 0.

Case II.
(∂ui

∂di

)−
≥ 0 and

(∂ui

∂di

)+

≤ 0.

42



doi:10.6342/NTU201901991

Proof. Assume the other two players are Pj and Pk whose strategies are dj and dk, respec­

tively. Recall the utility function ui = −di + min{K, bdjp(di)} + min{K, bdkp(di)}.

Differentiate it with respect to di. W.L.O.G., we let dj ≥ dk.

∂ui

∂di
=



∂

∂di

(
− di + bdjp(di) + bdkp(di)

)
= b(dj + dk)p

′(di)− 1 iif bdjp(di) ≤ K

∂

∂di

(
− di +K + bdkp(di)

)
= bdkp

′(di)− 1
if bdjp(di) ≥ K,

and bdkp(di) ≤ K

∂

∂di

(
− di +K +K

)
= −1 iif bdkp(di) ≥ K.

Since bdj and bdk are fixed nonnegative numbers, and p′(x) is a nonnegative non­increasing

function,
∂ui

∂di
is non­increasing for all di ≥ 0. Hence the result follows.

Lemma 4.11. In a Nash equilibrium (d1, d2, d3), if a player Pi’s strategy di satisfies case

I, then so do such strategies dj and dk of the other players Pj and Pk. That is, d1 = d2 =

d3 = 0.

Proof. If di = 0, then the other players Pj and Pk fall into the case discussed in the

previous chapter. In this case bdjp(di) = bdkp(di) = 0, so ∂ui

∂di
= b(dj + dk)p

′(0) − 1.

To ensure Pi is in case I , we must guarantee ∂ui

∂di
≤ 0. Now we want to collect all Nash

equilibria in the two­player file­sharing game and find those which can make ∂ui

∂di
≤ 0.

Consider any Nash equilibrium (dj, dk) except (0, 0). By the theorems related to Nash

equilibria in Chapter 3, the strategies dj, dk ∈ [dℓ, dh]. It implies b dj p
′(dj) ≥ 1 and

b dk p′(dk) ≥ 1, and therefore b dj p′(0) ≥ 1 and b dk p′(0) ≥ 1. The inequality b(dj +

dk)p
′(0) ≥ 2 implies ∂ui

∂di
≥ 2 − 1 = 1 > 0 which is a contradiction. If (dj, dk) = (0, 0),

then ∂ui

∂di
= −1 ≤ 0 which is what we need. Therefore, only di = dj = dk = 0 satisfies

our conclusion.

Corollary 4.12. In a Nash equilibrium (d1, d2, d3), if a player Pi’s strategy di satisfies

case II, then so do such strategies dj and dk of the other players Pj and Pk. That is,

d1, d2, d3 > 0.

In the remaining of this section we are going to discuss the Nash equilibria mentioned

in Corollary 4.12. W.L.O.G., assume d1 ≥ d2 ≥ d3. According to the derivative stated

43



doi:10.6342/NTU201901991

in Lemma 4.10, all conditions of possible Nash equilibria are listed below. Take P1 for

example.

Case 1. bd2p(d1) < K =⇒ bd2p
′(d1) + bd3p

′(d1) = 1.

Case 2. bd2p(d1) = K and bd3p(d1) < K =⇒


bd2p

′(d1) + bd3p
′(d1) ≥ 1

bd3p
′(d1) ≤ 1.

Case 3. bd2p(d1) = K and bd3p(d1) = K =⇒ bd2p
′(d1) + bd3p

′(d1) ≥ 1.

Case 4. bd2p(d1) > K and bd3p(d1) < K =⇒ bd3p
′(d1) = 1.

Case 5. bd2p(d1) > K and bd3p(d1) = K =⇒ bd3p
′(d1) ≥ 1.

Case 6. bd2p(d1) > K and bd3p(d1) > K =⇒ ∂u1

∂d1
= −1 (impossible).

We can write down the conditions for all players and arrange them into the following table.

In this table, two adjacent cells are connected together if they do not contradict each other,

but the validity of a whole combination (from column A to column C) still remains to be

verified.

Table 4.2: Condition matching for each Nash equilibrium.

First Player (Column A) Second Player (Column B) Third Player (Column C)

1 * bd2p(d1) < K
=⇒ bd2p

′(d1) + bd3p
′(d1) = 1

* bd1p(d2) < K
=⇒ bd1p

′(d2) + bd3p
′(d2) = 1

* bd1p(d3) < K
=⇒ bd1p

′(d3) + bd2p
′(d3) = 1

2

* bd2p(d1) = K and bd3p(d1) < K

=⇒
{
bd2p

′
(d1) + bd3p

′
(d1) ≥ 1

bd3p
′
(d1) ≤ 1

* bd1p(d2) = K and bd3p(d2) < K

=⇒
{
bd1p

′
(d2) + bd3p

′
(d2) ≥ 1

bd3p
′
(d2) ≤ 1

* bd1p(d3) = K and bd2p(d3) < K

=⇒
{
bd1p

′
(d3) + bd2p

′
(d3) ≥ 1

bd2p
′
(d3) ≤ 1

3 * bd2p(d1) = K and bd3p(d1) = K
=⇒ bd2p

′(d1) + bd3p
′(d1) ≥ 1

* bd1p(d2) = K and bd3p(d2) = K
=⇒ bd1p

′(d2) + bd3p
′(d2) ≥ 1

* bd1p(d3) = K and bd2p(d3) = K
=⇒ bd1p

′(d3) + bd2p
′(d3) ≥ 1

4 * bd2p(d1) > K and bd3p(d1) < K
=⇒ bd3p

′(d1) = 1
* bd1p(d2) > K and bd3p(d2) < K
=⇒ bd3p

′(d2) = 1
* bd1p(d3) > K and bd2p(d3) < K
=⇒ bd2p

′(d3) = 1

5 * bd2p(d1) > K and bd3p(d1) = K
=⇒ bd3p

′(d1) ≥ 1
* bd1p(d2) > K and bd3p(d2) = K
=⇒ bd3p

′(d2) ≥ 1
* bd1p(d3) > K and bd2p(d3) = K
=⇒ bd2p

′(d3) ≥ 1

Definition 4.1. Let (Ax,By, Cz) denote a combination in Table 4.2 which contains the

x­th row of column A, the y­th row of column B, and the z­th row of column C. If some

specific entry is dropped, it means that the corresponding column is not important (don’t

care).

The following lemma shows that the matchings not shown in the table are invalid.
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Lemma 4.13. (A1, B1, C1), (A1, B2, C2), (A1, B4, C4), (A3, B3, C3), (A3, B4, C4), (A4,

B4, C3) are the only valid combinations in Table 4.2.

Proof. In this proof, we first investigate the valid matchings between column A and col­

umnB, then columnB and columnC, and finally betweenA and columnC or the validity

of the whole combinations.

Let’s see the first part. A1 says bd2p(d1) < K, andB3 andB5 both say bd3p(d2) = K.

Connecting these cells together will result in a contradiction bd2p(d1) < bd3p(d2) be­

cause our assumption d1 ≥ d2 ≥ d3 should imply bd2p(d1) ≥ bd3p(d2). ∴ (A1, B3) and

(A1, B5) are invalid. Both A2 and A3 say bd2p(d1) = K, and B1 says bd1p(d2) < K.

Connecting these cells together will result in a contradiction bd1p(d2) < bd2p(d1) be­

cause our assumption d1 ≥ d2 should imply bd1p(d2) ≥ bd2p(d1) by Lemma 2.2. ∴

(A2, B1) and (A3, B1) are invalid. Both A2 and A4 say bd3p(d1) < K, and both B3

and B5 say bd3p(d2) = K. Connecting these cells together will result in a contradic­

tion bd3p(d1) < bd3p(d2) because our assumption d1 ≥ d2 should imply bd3p(d1) ≥

bd3p(d2). ∴ (A2, B3), (A2, B5), (A4, B3), and (A4, B5) are invalid. If we connect A3

toB2, then the constraints bd2p(d1) = K and bd1p(d2) = K will result in d1 = d2, and the

constraints bd3p(d1) = K and bd3p(d2) < K will result in d1 > d2. They contradict each

other. ∴ (A3, B2) is invalid. If we connect A3 to B5, then the constraints bd2p(d1) = K

and bd1p(d2) > K will result in d1 > d2 by Corollary 2.3, and the constraints bd3p(d1) =

K and bd3p(d2) = K along with p′(d1) > 0 and p′(d2) > 0will result in d1 = d2 by Corol­

lary 2.6. The two constraints contradict each other. ∴ (A3, B5) is invalid. Both A4 and

A5 say bd2p(d1) > K, and B1, B2, and B3 says bd1p(d2) ≤ K. Connecting these cells to­

gether will result in a contradiction bd2p(d1) > bd1p(d2) because our assumption d1 ≥ d2

should imply bd1p(d2) ≥ bd2p(d1). ∴ (A4, B1), (A4, B2), (A4, B3), (A5, B1), (A5, B2),

and (A5, B3) are invalid.

Now we consider the second part. B1 says bd1p(d2) < K, and C2, C3, C4, and

C5 say bd1p(d3) ≥ K. Connecting these cells together will result in a contradiction

bd1p(d3) > bd1p(d2) because our assumption d2 ≥ d3 should imply bd1p(d2) ≥ bd1p(d3).
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∴ (B1, C2), (B1, C3), (B1, C4), and (B1, C5) are invalid. If we connect B2 and B3 to

C1, then the constraints bd1p′(d2) + bd3p
′(d2) ≥ 1 and bd1p

′(d3) + bd2p
′(d3) = 1 will

result in bd1p
′(d2) = bd1p

′(d3) and bd3p
′(d2) = bd2p

′(d3) since bd1p′(d2) ≤ bd1p
′(d3)

and bd3p′(d2) ≤ bd2p
′(d3). According to bd1p

′(d2) = bd1p
′(d3), d1 > 0, p′(d2) > 0, and

p′(d3) > 0, we can deduce p′(d2) = p′(d3) > 0 and therefore d2 = d3. If bd1p(d2) = K

(in B2 and B3), then bd1p(d3) = K which contradicts bd1p(d3) < K in C1. ∴ (B2, C1)

and (B3, C1) are invalid. BothB4 andB5 say bd3p′(d2) ≥ 1, andC1 says 0 ≤ bd1p
′(d3) =

1 − bd2p
′(d3) ≤ 1 − bd3p

′(d2). If we connect B4 and B5 to C1, then bd3p
′(d2) = 1 and

bd1p
′(d3) = 0. The latter implies d1 = 0 or p′(d3) = 0. However, d1 = 0 contra­

dicts bd1p(d2) > K, and p′(d3) = 0 contradicts b(d1 + d2)p
′(d3) = 1. ∴ (B4, C1) and

(B5, C1) are invalid. B2 says bd1p(d2) = K and p′(d2) > 0, and C3 says bd1p(d3) = K

and p′(d3) > 0. By Corollary 2.6, we deduce d2 = d3, but this contradicts bd3p(d2) <

K = bd2p(d3). ∴ (B2, C3) is invalid. Both B3 and B5 say bd3p(d2) = K, and both C2

and C4 say bd2p(d3) < K. Connecting these cells together will result in a contradiction

bd2p(d3) < bd3p(d2) because our assumption d2 ≥ d3 should imply bd2p(d3) ≥ bd3p(d2)

by Lemma 2.2. ∴ (B3, C2), (B3, C4), (B5, C2) and (B5, C4) are invalid. Both B2 and

B3 say bd1p(d2) = K, and both C4 and C5 say bd1p(d3) > K. Connecting these cells to­

gether will result in a contradiction bd1p(d2) < bd1p(d3) because our assumption d2 ≥ d3

should imply bd1p(d2) ≥ bd1p(d3) by Lemma 2.2. ∴ (B2, C4), (B2, C5), (B3, C4) and

(B3, C5) are invalid. If we connect B4 to C2, then 1 = bd3p
′(d2) ≤ bd2p

′(d3) ≤ 1 and it

implies d2 = d3 by Lemma 2.4. However it contradicts bd1p(d2) > K = bd1p(d3). ∴

(B4, C2) is invalid.

Finally we check the validity between column B and column C or the whole com­

bination. A1 says bd2p(d1) < K, and C3 and C5 say bd2p(d3) = K. Connecting

these cells together will result in a contradiction bd2p(d1) < bd2p(d3) because our as­

sumption d1 ≥ d3 should imply bd2p(d1) ≥ bd2p(d3) by Lemma 2.2. ∴ (A1, C3)

and (A1, C5) are invalid. If we connect B2 to C2, then the argument in the connection

(B2, C3) mentioned in the previous paragraph can be used to deduce d2 = d3. This con­

tradicts bd2p(d1) = K > bd3p(d1) in A2. ∴ (A2, B2, C2) is invalid. In C3, the con­
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straint bd1p(d3) = bd2p(d3) = K implies d1 = d2. If we connect A2 and A3 to B4, then

bd1p(d2) > K = bd2p(d1) contradicts d1 = d2. ∴ (A2, B4, C3) and (A3, B4, C3) are in­

valid. A2 says bd2p(d1) = K and p′(d1) > 0, and C5 says bd2p(d3) = K and p′(d3) > 0.

If we connect A2 to C5, by Corollary 2.6 we deduce d1 = d3. However this contradicts

bd1p(d3) > K > bd3p(d1). ∴ (A2, C5) is invalid. In A3, bd2p(d1) = K = bd3p(d1)

implies d2 = d3. If we connect B4 and C5, then bd3p(d2) < K = bd2p(d3) contra­

dicts d2 = d3. ∴ (A3, B4, C5) is invalid. If we connect B4 to C4, then by Lemma

2.4 bd3p
′(d2) = bd2p

′(d3) = 1 implies d2 = d3. However this contradicts bd2p(d1) ≥

K > bd3p(d1) in A2 and A4. ∴ (A2, B4, C4) and (A4, B4, C4) are invalid. If we con­

nect A4 to B4, then bd3p′(d1) = bd3p
′(d2) = 1 implies d1 = d2. However this contradicts

bd1p(d3) > K = bd2p(d3) inC5. ∴ (A4, B4, C5) is invalid. If we connectB5 toC5, then

bd3p(d2) = K = bd2p(d3) implies d2 = d3 by Corollary 2.3. However this contradicts

bd2p(d1) > K = bd3p(d1) in A5. ∴ (A5, B5, C5) is invalid.

After checking all combinations, we can deduce that the remaining valid ones are

(A1, B1, C1), (A1, B2, C2), (A1, B4, C4), (A3, B3, C3), (A3, B4, C4), (A4, B4, C3).

Figure 4.2: A geometric illustration of Definition 4.2

Before finding all Nash equilibria according to these combinations, we must define

some variables beforehand.
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Definition 4.2. If bxp′(x) = 1

2
has two different solutions, let dℓℓ be the less one, and let

dhh be the greater one. If the equation has only one solution, let dℓℓ and dhh both denote

it. If bxp′(x) = 1 has two different solutions, let dℓh be the less one, and let dhℓ be the

greater one. If the equation has only one solution, let dℓh and dhℓ both denote it. Let do

be the unique solution to the equation bxp(x) = K. Let d+ℓh be the unique solution to

bdℓhp
′(x) =

1

2
. Let d+hℓ be the unique solution to bdhℓp′(x) =

1

2
. Let d144ℓℓ be the unique

solution to bxp(x) = bdℓhp(d
+
ℓh). Let d144ℓh be the unique solution to bxp(x) = bd+ℓhp(dℓh).

Let d144hℓ be the unique solution to bxp(x) = bdhℓp(d
+
hℓ). Let d144hh be the unique solution

to bxp(x) = bd+hℓp(dhℓ).

Lemma 4.14. The parameters in Definition 4.2, if exist, have the partial order shown in

the following directed acyclic graph, where A → B means A < B.

dℓℓ dℓh

dhℓ

d144ℓℓ

d144ℓh

d144hh

d144hℓ

d+ℓh

d+hℓ

dhh

Proof. We first focus on the parameters related to bdp′(d). By the property of dp′(d), dℓℓ <

dℓh < dhℓ < dhh. Besides,
p′(dℓh)

p′(d+ℓh)
=

bdℓhp
′(dℓh)

bdℓhp′(d
+
ℓh)

=
1

1/2
= 2. ∴ p′(dℓh) > p′(d+ℓh) and

dℓh < d+ℓh. By a similar argument, dhℓ < d+hℓ. If d144ℓℓ ≤ dℓh, then bd144ℓℓp(d144ℓℓ)

≤ bdℓhp(dℓh) < bdℓhp(d
+
ℓh), with the latter inequality coming from p′(d+ℓh) > 0, is a

contradiction. If d144ℓℓ ≥ d+ℓh, then bd144ℓℓp(d144ℓℓ) ≥ bd+ℓhp(d
+
ℓh) > bdℓhp(d

+
ℓh) is also a

contradiction. Hence dℓh < d144ℓℓ < d+ℓh. By a similar argument, we can deduce dℓh <

d144ℓh < d+ℓh, dhℓ < d144hℓ < d+hℓ, and dhℓ < d144hh < d+hℓ. By definition bdℓhp
′(d+ℓh) =

1

2
= bdhhp

′(dhh), and
p′(d+ℓh)

p′(dhh)
=

dhh
dℓh

> 1 implies d+ℓh < dhh. By a similar argument,

d+hℓ < dhh.

After variable definitions, we can formally define all Nash equilibria and discuss the

ranges of these parameters.
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Theorem 4.15. The Nash equilibria corresponding to the combination (A1, B1, C1) can

only be N111ℓ = (dℓℓ, dℓℓ, dℓℓ) and N111h = (dhh, dhh, dhh). N111ℓ exists if and only if

dℓℓ < do, and N111h exists if and only if dhh < do.

Proof. The “derivatives” in (A1, B1, C1) can be organized as

b(d2 + d3)p
′(d1) = 1, b(d1 + d3)p

′(d2) = 1, and b(d1 + d2)p
′(d3) = 1.

From the first two equations, since d2 + d3 ≤ d1 + d3 and p′(d1) ≤ p′(d2), then p′(d1) =

p′(d2) > 0 and d1 = d2. From the last two equations, we also deduce d2 = d3 by a similar

argument. Therefore d1 = d2 = d3 = d and the equality becomes b(2d)p′(d) = 1. The

utilities in (A1, B1, C1) become bdp(d) < K.

The solutions to bdp′(d) =
1

2
are only dℓℓ and dhh. It’s obvious that bdℓℓp(dℓℓ) < K =

bdop(do) ⇐⇒ dℓℓ < do, and bdhhp(dhh) < K = bdop(do) ⇐⇒ dhh < do. Hence the

result follows.

Theorem 4.16. The Nash equilibria corresponding to the combination (A1, B2, C2) can

only beN122ℓ = (d122ℓx, d122ℓy, d122ℓy) andN122h = (d122hx, d122hy, d122hy). IfN122ℓ exists,

then dℓℓ < d122ℓx ≤ d+ℓh and dℓℓ < d122ℓy ≤ dℓh. If N122h exists, then d+hℓ ≤ d122hx < dhh

and dhℓ ≤ d122hy < dhh.

Proof. Since b(d2 + d3)p
′(d1) ≤ b(d1 + d3)p

′(d2) ≤ b(d1 + d2)p
′(d3) and bd2p

′(d3) ≥

bd3p
′(d2), the derivatives in (A1, B2, C2) can be simplified to b(d2 + d3)p

′(d1) = 1 and

bd2p
′(d3) ≤ 1. Observe the utility constraints. bd1p(d2) = K = bd1p(d3) along with

p′(d2) > 0 and p′(d3) > 0 gives d2 = d3 by Corollary 2.6. Besides, bd1p(d2) = K >

bd2p(d1) implies d1 > d2 by Corollary 2.3. Therefore d1 > d2 = d3 and b(d2+d3)p
′(d1) =

1 becomes bd2p′(d1) =
1

2
. In addition, we deduce bd2p′(d1) < bd2p

′(d3) because d1 > d3

and p′(d1) > 0, so the constraint bd2p′(d3) ≤ 1 can be extended to
1

2
< bd2p

′(d3) ≤ 1.

Let d2 = d3 = dy. Then
1

2
< bdyp

′(dy) ≤ 1 implies dℓℓ < dy ≤ dℓh ∨ dhℓ ≤ dy < dhh

by the property of dp′(d). If the less solution is d122ℓy, then dℓℓ < d122ℓy ≤ dℓh is proven.

If the greater solution is d122hy, then dhℓ ≤ d122hy < dhh is proven.

The constraint bd2p′(d1) =
1

2
, according to our setting, becomes bd122ℓyp′(d122ℓx) =

1

2

and bd122hyp′(d122hx) =
1

2
. Since p′(x) is decreasing when it is greater than 0, d122ℓy and
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d122ℓx both increase or decrease together, and so do d122hy and d122hx. Observing the ranges

of d122ℓy and d122hy and their corresponding solutions, we finally deduce dℓℓ < d122ℓx ≤

d+ℓh and d
+
hℓ ≤ d122hx < dhh.

Theorem 4.17. The Nash equilibria corresponding to the combination (A1, B4, C4) can

only be N144ℓ = (d+ℓh, dℓh, dℓh) and N144h = (d+hℓ, dhℓ, dhℓ).

Proof. The equalities bd3p′(d2) = 1 and bd2p
′(d3) = 1 together implies d2 = d3 by

Lemma 2.4. By Definition 4.2, d2 (= d3) can only be dℓh or dhℓ. Substituting it into

bd2p
′(d1) + bd3p

′(d1) = 1 gives bd2p′(d1) = bd3p
′(d1) =

1

2
. If bdℓhp′(d1) =

1

2
, then

d1 = d+ℓh. If bdhℓp′(d1) =
1

2
, then d1 = d+hℓ. ThereforeN144ℓ andN144h are our results.

Theorem 4.18. The Nash equilibria corresponding to the combination (A3, B3, C3) can

only be N333 = (do, do, do). N333 exists if and only if dℓℓ ≤ do ≤ dhh.

Proof. From the utility equalities, it’s clear to conclude that d1 = d2 = d3 by Corollary

2.3, and it is also equal to do by Definition 2.6. We can deduce bdop′(do) ≥
1

2
from the

derivative inequalities. By the property of dp′(d), the inequality is equivalent to dℓℓ ≤

do ≤ dhh.

Theorem 4.19. The Nash equilibria corresponding to the combination (A3, B4, C4) can

only beN344ℓ = (d344ℓx, d344ℓy, d344ℓy) andN344h = (d344hx, d344hy, d344hy). IfN344ℓ exists,

then dℓh < d344ℓx ≤ d+ℓh and d344ℓy = dℓh. If N344h exists, then dhℓ < d344hx ≤ d+hℓ and

d344hy = dhℓ.

Proof. The equalities bd3p′(d2) = 1 and bd2p
′(d3) = 1 together implies d2 = d3 by

Lemma 2.4, and the utility constraint bd1p(d2) > K = bd2p(d1) gives d1 > d2 by Corol­

lary 2.3. Therefore d1 > d2 = d3, and b(d2+d3)p
′(d1) ≥ 1 becomes bd2p′(d1) ≥

1

2
. Since

d1 > d2 and p′(d2) > 0 together implies p′(d1) < p′(d2), 1 = bd2p
′(d2) > bd2p

′(d1). If

we let dx = d1 and dy = d2 = d3, then the constraints become
1

2
≤ bdyp

′(dx) < 1 and

bdyp
′(dy) = 1. By Definition 4.2, dy can only be dℓh and dhℓ. If

1

2
≤ bdℓhp

′(dx) < 1,

then dℓh < dx ≤ d+ℓh. If
1

2
≤ bdhℓp

′(dx) < 1, then dhℓ < dx ≤ d+hℓ. Hence the result

follows.

50



doi:10.6342/NTU201901991

Theorem 4.20. The Nash equilibria corresponding to the combination (A4, B4, C3) can

only be N443 = (d443x, d443x, d443y). If N443 exists, then dℓh ≤ d443x ≤ dhℓ and dℓh ≤

d443y ≤ dhℓ.

Proof. From C3’s derivative constraint bd3p′(d1) = 1 = bd3p
′(d2), we know d1 = d2. Let

it be d443x and let d3 be d443y. Then the equality becomes bd443yp′(d443x) = 1. Since p′(x)

is decreasing when it is greater than 0, d443y and d443x both increase or decrease together.

By the property of dp′(d), their minimum is dℓh and their maximum is dhℓ. Hence the

result follows.

4.3 The PoA and PoS

Now we similarly want to calculate the PoA and PoS. The analysis in this section is still

split into three different cases depending on the value of do, and we still ignore the col­

lapsing Nash equilibrium (0, 0, 0).

The objective of Lemma 4.21 and Theorem 4.22 is to sort all the Nash equilibria by

the total utility function.

Lemma 4.21 (Generalized Lemma 3.21). Given two pointsX = (dx1 , dx2 , dx3) and Y =

(dy1 , dy2 , dy3), if dxi
≥ dyi ≥ dℓℓ for 1 ≤ i ≤ 3, all terms in the form of bdxi

p(dxj
) ≤ K

for i ̸= j in u(X), and all terms in the form of bdyip(dyj) ≤ K for i ̸= j in u(Y ), then

u(X) ≥ u(Y ).

Proof. Since bp(dℓℓ) ≥ bdℓℓp
′(dℓℓ) =

1

2
, then bp(dxi

) + bp(dxj
) − 1 ≥ 0 and bp(dyi) +

bp(dyj)− 1 ≥ 0 are always true for all parameters not less than dℓℓ. We can write

u(X) = dx1

(
bp(dx2)+bp(dx3)−1

)
+dx2

(
bp(dx1)+bp(dx3)−1

)
+dx3

(
bp(dx1)+bp(dx2)−1

)
, and

u(Y ) = dy1

(
bp(dy2)+bp(dy3)−1

)
+dy2

(
bp(dy1)+bp(dy3)−1

)
+dy3

(
bp(dy1)+bp(dy2)−1

)
.

It is clear to see that bp(dx2)+bp(dx3)−1 ≥ bp(dy2)+bp(dy3)−1 ≥ 0, bp(dx1)+bp(dx3)−

1 ≥ bp(dy1) + bp(dy3)− 1 ≥ 0, and bp(dx1) + bp(dx2)− 1 ≥ bp(dy1) + bp(dy2)− 1 ≥ 0,

so u(X) ≥ u(Y ).
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Theorem 4.22. N111ℓ, if exists, has the minimum total utility, and N111h, if exists, has the

maximum total utility among all existing Nash equilibria discussed above.

Proof. Recall all previous theorems about Nash equilibria from Theorem 4.15 to Theorem

4.20. None of the strategies of these points are less than dℓℓ. If N111h exists, then by

Theorem 4.15 dhh < do and none of these strategies are greater than do. That is, bdip(dj) ≤

K for these strategies. SinceN111h has the greatest contributions (strategies) of each player

among all possible Nash equilibria, by Lemma 4.21 N111h has the maximum total utility.

Now we’re going to show N111ℓ has the minimum total utility. If some Nash equilib­

rium other than (0, 0, 0) exists, it implies bdip(dj) ≤ K for some di, dj ≥ dℓℓ. Therefore

bdℓℓp(dℓℓ) ≤ K and dℓℓ ≤ do. N111ℓ must also exist. For Nash equilibria corresponding to

the combinations (A1, B1, C1), (A1, B2, C2), and (A3, B3, C3), they all have the property

bdip(dj) ≤ K for all parameters di and dj . We can simply use Lemma 4.21 to show that

the total utilities of these Nash equilibria are greater than that of N111ℓ. For other combi­

nations (A1, B4, C4), (A3, B4, C4), and (A4, B4, C3), we discuss them by cases. Consider

N144ℓ = (d+ℓh, dℓh, dℓh) of (A1, B4, C4) first. This combination implies bd+ℓhp(dℓh) ≥ K

and bdℓhp(d+ℓh) ≤ K. Therefore we can say

u(N144ℓ) = 2K − d+ℓh + 2bdℓhp(d
+
ℓh) + 2bdℓhp(dℓh)− 2dℓh

≥ 2bdℓhp(d
+
ℓh)− d+ℓh + 2bdℓhp(d

+
ℓh) + 2bdℓhp(dℓh)− 2dℓh

= 4bdℓhp(x)− x+ 2bdℓhp(dℓh)− 2dℓh

∣∣∣ x=d+ℓh.

Consider the auxiliary function f(x) = 4bdℓhp(x)−x+2bdℓhp(dℓh)−2dℓh and its deriva­

tive f ′(x) = 4bdℓhp
′(x) − 1. By definition f ′(d+ℓh) = 4bdℓhp

′(d+ℓh) − 1 = 4 · 1
2
− 1 = 1

and therefore f ′(x) ≥ 1 for all 0 ≤ x ≤ d+ℓh. We deduce u(N144ℓ) ≥ u(dℓh, dℓh, dℓh)

from this and deduce u(dℓh, dℓh, dℓh) ≥ u(N111ℓ) from Lemma 4.21. Similarly, we can

say u(N144h) ≥ u(N111ℓ) if replacing d+ℓh with d
+
hℓ and replacing dℓh with dhℓ in the above

argument. Also, this argument can be used to explain why u(N344ℓ) ≥ u(N111ℓ) and

u(N344h) ≥ u(N111ℓ). Finally we consider N443 = (d443x, d443x, d443y) of (A4, B4, C3).

This combination implies bd443xp(d443x) ≥ K and bd443xp(d443y) ≤ K, so we can say
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ru(N443) = 2(K − d443x) + 2bd443xp(bd443y) + 2bd443yp(bd443x)− d443y

≥ 2(bd443xp(d443y)− d443x) + 2bd443xp(bd443y) + 2bd443yp(bd443x)− d443y

= 2d443x(2bp(d443y)− 1) + d443y(2bp(bd443x)− 1)

≥ 2d443y(2bp(d443y)− 1) + d443y(2bp(bd443y)− 1) (∵ bp(d443y) ≥ bp(dℓh) ≥ 1)

= u(d443y, d443y, d443y).

Since bd443yp(d443y) ≤ K, we also deduce u(d443y, d443y, d443y) ≥ u(N111ℓ) by Lemma

4.21. In the end, we can say N111ℓ, if exists, has the minimum total utility.

After clearly comparing the total utilities of all possible Nash equilibria, we can discuss

the PoS and the non­collapsing PoA in the following three cases.

Lemma 4.23 and Theorem 4.24 together states the conclusion when neither dℓℓ nor dhh

exists, or both exist but do < dℓℓ.

Lemma 4.23. When do < dℓℓ, there are no non­collapsing Nash equilibria. When do =

dℓℓ, the only non­collapsing Nash equilibrium is N333.

Proof. We go through all Nash equilibria mentioned in several previous theorems here.

By Theorem 4.15, N111ℓ and N111h cannot exist since do ̸> dℓℓ and do ̸> dhh. By The­

orem 4.16, all the strategies d122ℓx, d122ℓy, d122hx and d122hy are greater than dℓℓ (and do).

Therefore bd122ℓxp(d122ℓy) = bd122hxp(d122hy) > bdℓℓp(dℓℓ) ≥ bdop(do) = K and the con­

straint bd1p(d2) = K cannot be satisfied. N122ℓ and N122h cannot exist. We also figure

out that the least contribution (strategy) in Theorem 4.17 is dℓh which is greater than do,

so bd2p(d1) > bdop(do) = K and the constraint bd2p(d1) < K cannot be satisfied. N144ℓ

and N144h cannot exist. Similarly, all strategies in Theorem 4.19 and Theorem 4.20 are

not less than dℓh, so bd2p(d1) > bdop(do) = K violates the constraint bd2p(d1) = K

in (A3, B4, C4), and bd1p(d3) > bdop(do) = K violates the constraint bd1p(d3) = K in

(A4, B4, C3). N344ℓ,N344h, andN443 cannot exist. Finally, Theorem 4.18 saysN333 exists

if and only if dℓℓ ≤ do ≤ dhh, so we are done.

Theorem 4.24. If neither dℓℓ nor dhh exists, or both exist but do < dℓℓ, then the maximum

total utility of all existing Nash equilibria must be 0.
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Proof. By Lemma 4.11 and Lemma 4.23, the only existing Nash equilibrium in this case

is (0, 0, 0) and u(0, 0, 0) = 0. The result follows.

Lemma 4.25 is an auxiliary proposition helping us in observing how the PoA, PoS

vary with the parameters b.

Lemma 4.25 (Generalized Lemma 3.25). If K and p(x) remain fixed, and b is the only

varying parameter, then (a)
∂do
∂b

< 0, (b)
∂dℓℓ

(
2bp(dℓℓ)− 1

)
∂b

< 0, and (c)
∂dℓℓ
∂b

<
∂do
∂b

when dℓℓ = do.

Proof. Part (a) can be directly deduced from the definition bdop(do) = K. For part (b),

recall the definition bdℓℓp′(dℓℓ) =
1

2
first. Since dℓℓ is the less solution to bdℓℓp′(dℓℓ) =

1

2
,

by Lemma 2.1 we have ∂dℓℓ/∂b < 0. It means that when b increases, dℓℓ decreases, p′(dℓℓ)

increases,
1/2

p′(dℓℓ)
decreases, and therefore

∂

∂b

( 1/2

p′(dℓℓ)

)
< 0. Also write

∂

∂b

( 1/2

p′(dℓℓ)

)
=

∂(bdℓℓ)

∂b
= dℓℓ + b

∂dℓℓ
∂b

, so dℓℓ + b
∂dℓℓ
∂b

< 0.

∂
(
2bdℓℓp(dℓℓ)− dℓℓ

)
∂b

= 2dℓℓp(dℓℓ) + 2b
∂dℓℓ
∂b

p(dℓℓ) + 2bdℓℓp
′(dℓℓ)

∂dℓℓ
∂b

− ∂dℓℓ
∂b

= 2dℓℓp(dℓℓ) + 2b
∂dℓℓ
∂b

p(dℓℓ)

= 2p(dℓℓ)
(
dℓℓ + b

∂dℓℓ
∂b

)
< 0.

For part (c), we go back to bdop(do) = K. According to this equality,
∂

∂b

( K

p(do)

)
=

∂(bdo)

∂b
= do + b

∂do
∂b

> 0. Comparing with dℓℓ + b
∂dℓℓ
∂b

< 0 deduced above, we obtain

part (c).

Theorem 4.26 states the relationship between the PoA, PoS and the parameters b, K

when dℓℓ ≤ do ≤ dhh.

Theorem 4.26 (Generalized Theorem 3.26). If both dℓℓ and dhh exist, and dℓℓ ≤ do ≤

dhh, then thePoS = 1 and thePoA =
uopt

u(dℓℓ)
=

u(N333)

u(dℓℓ)
=

do

(
2bp(do)− 1

)
dℓℓ

(
2bp(dℓℓ)− 1

) . Further­
more, when b, p(x) are fixed, and K is the only varying parameter, the PoA approaches

1 as K decreases such that do approaches dℓℓ, and the PoA approaches its maximum
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dhh

(
bp(dhh)− 1

)
dℓℓ

(
bp(dℓℓ)− 1

) asK increases such that do approaches dhh. WhenK, p(x) are fixed,

and b is the only varying parameter, the PoA approaches infinity as b keeps increasing,

and the PoA approaches its minimum as b decreases such that do approaches dhh.

Proof. By Corollary 4.9 uopt = u(N333), so the PoS = 1. By Theorem 4.22, the worst

non­collapsing Nash equilibrium is the point (dℓℓ, dℓℓ, dℓℓ). Hence the PoA =
u(do)

u(dℓℓ)
. If b,

p(x) are fixed and onlyK varies, then only do varies with it and the denominator doesn’t

change. Since 2bp(do) ≥ 2bp(dℓℓ) > 2bdℓℓp
′(dℓℓ) = 1, the PoA increases with do (K).

Consider the case when b is the only varying parameter. We should also note that the

PoA can bewritten as
2K − do

dℓℓ

(
2bp(dℓℓ)− 1

) . By Lemma 4.25 ∂do
∂b

< 0 and
∂dℓℓ

(
2bp(dℓℓ)− 1

)
∂b

< 0, so the numerator increases, the denominator decreases, and the PoA increases with b.

IfK, p(x) are fixed and b is the only increasing parameter, by part (c) of Lemma 4.25 the

inequality dℓℓ ≤ do ≤ dhh always remains, so the PoA increases unboundedly. IfK, p(x)

are fixed and b is the only decreasing parameter, by part (c) of Lemma 4.25 the inequality

dℓℓ ≤ do remains, but do may exceed dhh. Therefore the PoA achieves its minimum as do

achieves its maximum (dhh).

Theorem 4.27 states the relationship between the PoA, PoS and the parameters b, K

when dhh < do.

Theorem 4.27 (Generalized Theorem 3.28). If both dℓℓ and dhh exist, and dhh < do, then

thePoS =
uopt

u(N111h)
=

do

(
2bp(do)− 1

)
dhh

(
2bp(dhh)− 1

) and thePoA =
uopt

u(N111ℓ)
=

do

(
2bp(do)− 1

)
dℓℓ

(
2bp(dℓℓ)− 1

) .
If we only consider the non­collapsing stable Nash equilibria, then the “stable” PoA

becomes
uopt

u(N111h)
. Furthermore, when b and p(x) are fixed, and K is the only vary­

ing parameter, the PoS approaches 1 and the PoA approaches its greatest lower bound
dhh

(
bp(dhh)− 1

)
dℓℓ

(
bp(dℓℓ)− 1

) as K decreases such that do approaches dhh, and both the PoS =

Θ(K) and PoA = Θ(K) approach infinity asK keeps increasing. WhenK and p(x) are

fixed, and b is the only varying parameter, the PoS approaches 1 and the PoA approaches

its least upper bound as b increases such that do approaches dhh, and the PoS approaches
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its maximum and the PoA approaches its minimum as b keeps decreasing until dhh does

not exist.

Proof. By Corollary 4.9, uopt occurs at u(do). By Theorem 4.22,N111h has the maximum

total utility, and N111ℓ has the minimum total utility among all existing non­collapsing

Nash equilibria. Hence the PoS and PoA in our theorem follow. If we only consider the

non­collapsing stable Nash equilibria, thenN111h is the only one. Hence the “stable” PoA

in our theorem follows.

According to the proof in Theorem 4.26, the PoS and PoA both increase with do (and

K). We should also note that the numerator can be expressed as 2K−do. WhenK is very

large, p(do) approaches 1 and therefore do =
K

bp(do)
≈ K

b
, so 2K − do ≈ 2K − K

b
=

K(2− 1

b
) = Θ(K).

According to the proof in Theorem 4.26, the PoA increases with b. We should also

note that the PoS can be written as
do
dhh

· 2p(do)− 1/b

2p(dhh)− 1/b
. IfK, p(x) are fixed and b is the

only increasing parameter, then do and 2p(do) decrease, and dhh and 2p(dhh) increase. In

addition, adding the same quantity to both the numerator and denominator of an improper

fraction decreases its value. Therefore we can deduce the PoS decreases with b instead.

We close this chapter with the following tables concluding Theorem 4.24, Theorem

4.26, and Theorem 4.27.

Table 4.3: Summary of the PoS and PoA withK as the only varying parameter.
We assume do starts at dℓℓ and keeps increasing.

Condition dℓℓ ≤ do ≤ dhh
(Phase 1)

dhh < do
(Phase 2)

PoS 1 u(do)/u(dhh)
(stable PoA)

Monotonicity ­ increasing
Starting at 1 ­ Yes

PoA u(do)/u(dℓℓ)
Monotonicity increasing
Starting at 1 Yes
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Table 4.4: Summary of the PoS and PoA with b as the only varying parameter.
We assume b starts at its valid minimum value (i.e. bxp′(x) =

1

2
has exactly one

solution.) and keeps increasing.

Condition do > dhh
(Phase 1)

dhh ≥ do ≥ dℓℓ
(Phase 2)

PoS u(do)/u(dhh)
(stable PoA) 1

Monotonicity decreasing ­
Terminating at 1 YES ­

PoA u(do)/u(dℓℓ)
Monotonicity increasing
Starting at 1 No

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r
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Chapter 5

Nash Equilibrium Analysis for

Multi­Player File­Sharing Games

After the analysis of three­player file­sharing games, we eventually want to generalize the

result to n­player file­sharing games. In this chapter the model is exactly in the form of

what we’ve described in Chapter 2, and n denotes the number of players.


ui(di) = −di +

∑
k ̸=i
k ̸=i

min{K, b dk p(di)}, for 1 ≤ i ≤ n

u(d1, d2, ..., dn) =
n∑

i=1

ui(di).

We also use the notation u(d) = u(d, d, ..., d) if all the di’s have the same value of d.

In this chapter, we still do almost the same thing as in Chapter 4. The difference is

that we only consider the “symmetric” Nash equilibria (i.e., the same contribution for all

players) here, and we don’t care about their stability either.

5.1 Maximum Total Utility

The structure of the proof is exactly the same as that in Chapter 4. The following are some

related lemmas and theorems.
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Lemma 5.1 (Generalized Lemma 4.1). In any surface
∑

1≤i,j≤n,
i̸=j

bdip(dj) = C ≥ 0,

∑
1≤i,j≤n,

i̸=j

min{K, bdip(dj)} attains its maximum value on (but not limited to) the diago­

nal.

Proof. Consider the case when all di’s are the same. This case makes all bdip(dj) have

the same value of C/(n(n− 1)). If C/(n(n− 1)) ≤ K, then

∑
1≤i,j≤n,

i̸=j

min{K, b di p(dj)} =
∑

1≤i,j≤n,
i̸=j

C/(n(n− 1)) = C.

Since
∑

1≤i,j≤n,
i̸=j

min{K, b di p(dj)} ≤
∑

1≤i,j≤n,
i̸=j

b di p(dj) = C, it attains its maximum. If

C/(n(n − 1)) > K, then min{K, b di p(dj)} = K. By definition, it also attains its

maximum. Hence the result follows.

Lemma 5.2 (Generalized Lemma 4.4). In any plane
n∑

i=1

di = C > 0, if dx ≥ dy for

some players Px and Py at a point, it always has a value of
∑

1≤i,j≤n,
i̸=j

di p(dj) greater than

or equal to another point where dx is increased by δ and dy is decreased by δ, for any

δ > 0.

Proof. W.L.O.G., take x = 1 and y = 2. We can expand the formula as the following.

∑
1≤i,j≤n,

i̸=j

di p(dj) = (d1 + d2) ·
n∑

i=3

p(di) +
∑

3≤i,j≤n,
i̸=j

di p(dj)

+
(
d1p(d2) + d2p(d1)

)
+
(
p(d1) + p(d2)

)
·

n∑
i=3

di.

By Lemma 4.3, d1p(d2) + d2p(d1) ≥ (d1 + δ)p(d2 − δ) + (d2 − δ)p(d1 + δ). By Lemma

4.2, p(d1) + p(d2) ≥ p(d1 + δ) + p(d2 − δ). Since the other terms don’t change, then we

are done.
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Lemma 5.3 (Generalized Lemma 4.5). In any plane
n∑

i=1

di = C > 0, the maximum

value of
∑

1≤i,j≤n,
i̸=j

di p(dj) can occur at the point where di = C/n for all 1 ≤ i ≤ n.

Proof. Define the function f(d1, d2, ..., dn) =
∑

1≤i,j≤n,
i̸=j

b di p(dj) first for simplicity. In this

proof, wewant to compare (C
n
, C
n
, ..., C

n
)with another arbitrary point (C

n
+δ1,

C
n
+δ2, ...,

C
n
+

δn−1,
C
n
−

n−1∑
i=1

δi) on the same plane, and deduce f(Cn ,
C
n
, ..., C

n
) ≥ f(C

n
+δ1,

C
n
+δ2, ...,

C
n
+

δn−1,
C
n
−

n−1∑
i=1

δi). Consider the following argument. If a pointP (d1, d2, ..., dn) on the same

plane is not (C
n
, C
n
, ..., C

n
), there must be some di > C

n
and some dj < C

n
. If |di − C

n
| ≥

|dj− C
n
|, then we can adjust the point to a new oneQwhere di becomes di−(C

n
−dj) ≥ C

n

and dj becomes C
n
. In this case f(P ) ≤ f(Q). If |di − C

n
| ≤ |dj − C

n
|, then we can adjust

the point to another one R where di becomes C
n
and dj becomes dj + (di − C

n
) ≤ C

n
. In

this case f(P ) ≤ f(R). Then we can repeat the above procedure until the point becomes

(C
n
, C
n
, ..., C

n
). The procedure will be executed only at most n times since in each iteration

there must exist at least one di which becomes C
n
. Hence f(C

n
, C
n
, ..., C

n
) is the maximum

value on the plane.

Lemma 5.4 (Generalized Lemma 4.6). If the strategies di’s of all players Pi’s (except

for Pk’s dk) are not all 0, then the value of
∑

1≤i,j≤n,
i̸=j

di p(dj) increases with dk.

Proof. Expand
∑

1≤i,j≤n,
i̸=j

di p(dj) again to observe which terms are affected by dk.

∑
1≤i,j≤n,

i̸=j

di p(dj) = p(dk) ·
(∑

i̸=k

di

)
+
( ∑

1≤i,j≤n,
i̸=j, i̸=k, j ̸=k

di p(dj)
)
+ dk ·

(∑
i̸=k

p(di)
)
.

Focus on the first term.

∵
∑
i̸=k

di > 0. ∴ p(dk + δ) ·
(∑

i̸=k

di

)
≥ p(dk) ·

(∑
i̸=k

di

)
for δ > 0.
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Focus on the last term.

∵
∑
i̸=k

p(di) > 0. ∴ (dk + δ) ·
(∑

i̸=k

p(di)
)
> dk ·

(∑
i̸=k

p(di)
)
for δ > 0.

Hence the result follows.

Lemma 5.5 (Generalized Lemma 4.7). In any surface
∑

1≤i,j≤n,
i̸=j

b di p(dj) = C > 0,
n∑

i=1

di

attains its minimum value on (but not limited to) the diagonal.

Proof. Define two functions f(d1, d2, ..., dn) =
∑

1≤i,j≤n,
i̸=j

b di p(dj) and g(d1, d2, ..., dn) =

n∑
i=1

di. Pick one point (d, d, ..., d) and another arbitrary point (d + δ1, d + δ2, ..., d + δn)

on the same surface. If we can prove g(d, d, ..., d) ≤ g(d+ δ1, d+ δ2, ..., d+ δn), then we

are done.

We first introduce an auxiliary point (d+δ1, d+δ2, ..., d+δn−1, d−
n−1∑
i=1

δi)which lies

on the same plane as (d, d, d). By Lemma 5.3, f(d, d, ..., d) ≥ f(d + δ1, d + δ2, ..., d +

δn−1, d −
n−1∑
i=1

δi). ∵ (d, d, ..., d) and (d + δ1, d + δ2, ..., d + δn) lie on the same surface.

∴ f(d, d, ..., d) = f(d + δ1, d + δ2, ..., d + δn). That is, f(d + δ1, d + δ2, ..., d + δn) ≥

f(d + δ1, d + δ2, ..., d + δn−1, d −
n−1∑
i=1

δi). According to this inequality, we can deduce

d + δn ≥ d −
n−1∑
i=1

δi by Lemma 5.4. Since d + δn ≥ d −
n−1∑
i=1

δi, it is obvious that

g(d + δ1, d + δ2, ..., d + δn) ≥ g(d + δ1, ..., d + δn−1, d −
n−1∑
i=1

δi) = g(d, d, ..., d). This

inequality is our goal. Hence the result follows.

By Lemma 5.5, there must be a point on the diagonal where uopt occurs under some

parameter settings. The following theorem tells us what the settings are.

Theorem 5.6 (Generalized Theorem 4.8). If do ≥ (n − 1)K, then uopt = 0. If do <

(n− 1)K, then uopt = n
(
(n− 1)K − do

)
> 0.

Proof. Recall the utility formula of the point (d, d, ..., d) on the diagonal. We should note

that d ≤ do ⇐⇒ b d p(d) ≤ K, and d ≥ do ⇐⇒ b d p(d) ≥ K.
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u = n ·
(
−d+(n−1) ·min{K, b d p(d)}

)
=


n d

(
(n− 1) b p(d)− 1

)
if d ≤ do

n
(
(n− 1)K − d

)
if d ≥ do.

If do ≥ (n − 1)K, then (n − 1)bp(do) ≤ 1. In this case u(do) ≤ 0. When d < do,

(n−1)bp(d) ≤ (n−1)bp(do) ≤ 1 and therefore u(d) ≤ 0. When d > do, (n−1)K−d <

(n− 1)K − do and therefore u(d) < u(do) ≤ 0. Hence uopt = 0. If do < (n− 1)K, then

(n− 1)bp(do) > 1. In this case u(do) > 0. When d < do, (n− 1)bp(d) ≤ (n− 1)bp(do)

and therefore u(d) ≤ u(do). When d > do, (n− 1)K − d < (n− 1)K − do and therefore

u(d) < u(do). Hence uopt = u(do) > 0.

Corollary 5.7 (Generalized Corollary 4.9). Let dL be the less solution to bxp′(x) =

1

n− 1
. If do ≥ dL, then uopt = u(do).

Proof. ∵ bp(do) ≥ bp(dL) > bdLp
′(dL) =

1

n− 1
∴ do < (n− 1)K by Definition 2.6.

In this case uopt = u(do) > 0 by Theorem 5.6.

We close this section with the following conclusive table.

Table 5.1: The maximum total utility of multi­player games.

Condition Utility
do ≥ (n− 1)K 0
do < (n− 1)K n

(
(n− 1)K − do

)

5.2 Nash Equilibria

Before calculating the PoA and PoS, it is necessary to generalize some theorems in the

previous chapter first.

Lemma 5.8 (Generalized Lemma 4.10). The player Pi does not want to change his/her

strategy di if and only if one of the following cases occurs.

Case I.
(∂ui

∂di

)−
does not exist (i.e., di = 0) and

(∂ui

∂di

)+

≤ 0.

Case II.
(∂ui

∂di

)−
≥ 0 and

(∂ui

∂di

)+

≤ 0.
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Proof. Assume there are n playersP1 toPn whose strategies are d1 to dn. Recall the utility

function ui = −di+
∑
k ̸=i

min{K, bdkp(di)}. Differentiate it with respect to di. W.L.O.G.,

we assume the strategies d1 to dn (except for di) are in ascending order. If there exists

some 1 ≤ j ≤ n such that bdkp(di) ≤ K for all 1 ≤ k ≤ j (but k ̸= i) and bdkp(di) ≥ K

for all j + 1 ≤ k ≤ n (but k ̸= i), then

∂ui

∂di
=

∂

∂di

(
− di +

∑
1≤k≤j
k ̸=i

bdkp(di) + (n− j)K
)
= −1 +

∑
1≤k≤j
k ̸=i

bdkp
′(di).

If bdkp(di) ≥ K for all k ̸= i, then

∂ui

∂di
=

∂

∂di

(
− di + (n− 1)K

)
= −1.

Since bdk’s (for all k ̸= i) are fixed nonnegative numbers, p′(x) is a nonnegative non­

increasing function, and j cannot be incremented as di goes up, ∂ui

∂di
is non­increasing for

all di ≥ 0. Hence the result follows.

However, since the Nash equilibria in which at least two players have different strate­

gies are too difficult to analyze, we simply assume strategies of players are all the same

in this section. The derivative of utility is shown below.

∂ui

∂di
=



∂

∂di

(
− di +

∑
k ̸=i

bdkp(di)
)
= b

(∑
k ̸=i

dk

)
p′(di)− 1

= (n− 1)bdip
′(di)− 1 if bdip(di) ≤ K

∂

∂di

(
− di + (n− 1)K

)
= −1 if bdip(di) ≥ K.

According to the above conclusion, all possible Nash equilibria we care about in this

section can only be O (the origin), NL, No, and NH stated in the following theorems.

Definition 5.1. If bxp′(x) = 1

n− 1
has two different solutions, let dL be the less one, and

let dH be the greater one. If it has only one solution, let dL and dH both denote it.
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Theorem 5.9. The Nash equilibrium NL, where all players have the same strategy dL,

exists if and only if dL < do. The Nash equilibrium NH , where all players have the same

strategy dH , exists if and only if dH < do.

Proof. The two points correspond to the case when (n−1)bdip
′(di)−1 = 0 and bdip(di) <

K. Since bdip(di) < K = bdop(do) if and only if di < do, the result follows.

Theorem 5.10. No exists if and only if dL ≤ do ≤ dH .

Proof. The point corresponds to the case when (n−1)bdip
′(di)−1 ≥ 0 and bdip(di) = K.

Since bdop′(do) ≥
1

n− 1
if and only if dL ≤ do ≤ dH , the result follows.

5.3 The Symmetric PoA and PoS

We can eventually discuss the PoS and non­collapsing PoA. Since we assume all play­

ers have the same strategy, the definitions of the PoS and non­collapsing PoA should be

modified a little.

Definition 5.2. We say a Nash equilibrium is “symmetric” if all players have the same

contribution on that point.

Definition 5.3. Let the symmetric PoS = uopt

u(the best symmetric Nash equilibrium)
.

Definition 5.4. Let the non­collapsing symmetric PoA

rrrrrrrrrrrrrrrrrrr=
uopt

u(the worst symmetric Nash equilibrium except for the origin)
.

Lemma 5.11 is convenient for us to compare the values of total utility of two different

symmetric Nash equilibria.

Lemma 5.11 (Generalized Lemma 4.21). Given two points X = (dx1 , dx2 , ..., dxn) and

Y = (dy1 , dy2 , ..., dyn), we can deduce u(X) ≥ u(Y ) if do ≥ dxi
≥ dyi ≥ dL for

1 ≤ i ≤ n.

Proof. Since bp(dL) ≥ bdLp
′(dL) =

1

n− 1
, then

∑
i ̸= some fixed k

bp(dxi
)− 1 ≥ 0 and∑

i̸= some fixed k

bp(dyi)−1 ≥ 0 are always true for all parameters not less than dL. In addition,
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bdxi
p(dxj

) ≤ K and bdyip(dyj) ≤ K are always true for all parameters not greater than

do. We can write

u(X) =
n∑

k=1

dxk
·
(∑

i̸=k

bp(dxi
)− 1

)
, and

u(Y ) =
n∑

k=1

dyk ·
(∑

i̸=k

bp(dyi)− 1
)
.

It is clear to see that
∑
i̸=k

bp(dxi
) − 1 ≥

∑
i̸=k

bp(dyi) − 1 ≥ 0 for all 1 ≤ k ≤ n, so

u(X) ≥ u(Y ).

Theorem 5.12 states the conclusion when neither dL nor dH exists, or both exist but

do < dL.

Theorem 5.12. If neither dL nor dH exists, or both exist but do < dL, then the maximum

total utility of all existing Nash equilibria must be 0.

Proof. Since in this case the only existing symmetric Nash equilibrium is the originO and

u(O) = 0, the result follows.

Lemma 5.13 is an auxiliary proposition helping us in observing how the PoA, PoS

vary with the parameters b.

Lemma 5.13 (Generalized Lemma 4.25). If b is the only varying parameter and all the

other parameters are fixed, then (a)
∂do
∂b

< 0, (b)
∂dL

(
(n− 1)bp(dL)− 1

)
∂b

< 0, and

(c)
∂dL
∂b

<
∂do
∂b

when dL = do.

Proof. Part (a) can be directly deduced from the definition bdop(do) = K. For part (b),

recall the definition bdLp′(dL) =
1

n− 1
first. Since dL is the less solution to bdLp′(dL) =

1

n− 1
, by Lemma 2.1 we have ∂dL/∂b < 0. It means that when b increases, dL decreases,

p′(dL) increases,
1/(n− 1)

p′(dL)
decreases, and therefore

∂

∂b

(1/(n− 1)

p′(dL)

)
< 0. Also write

∂

∂b

(1/(n− 1)

p′(dL)

)
=

∂(bdL)

∂b
= dL + b

∂dL
∂b

, so dL + b
∂dL
∂b

< 0.
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∂
(
(n− 1)bdLp(dL)− dL

)
∂b

= (n− 1)dLp(dL) + (n− 1)b
∂dL
∂b

p(dL)

= (n− 1)dLp(dL) + (n− 1)bdLp
′(dL)

∂dL
∂b

− ∂dL
∂b

= (n− 1)dLp(dL) + (n− 1)b
∂dL
∂b

p(dL)

= (n− 1)p(dL)
(
dL + b

∂dL
∂b

)
< 0.

For part (c), we go back to bdop(do) = K. According to this equality,
∂

∂b

( K

p(do)

)
=

∂(bdo)

∂b
= do + b

∂do
∂b

> 0. Comparing with dL + b
∂dL
∂b

< 0 deduced above, we obtain

part (c).

Lemma 5.14 is an auxiliary proposition helping us in observing how the PoA, PoS

vary with the parameters n.

Lemma 5.14. If n is the only varying parameter and all the other parameters are fixed,

then
∂dL

(
(n− 1)bp(dL)− 1

)
∂n

< 0.

Proof. Recall the definition (n − 1)dLp
′(dL) =

1

b
first. Since dL is the less solution to

(n− 1)dLp
′(dL) =

1

b
, by Lemma 2.1 we have ∂dL/∂n < 0. Differentiating both sides of

the equation with respect to n gives

dLp
′(dL) + (n− 1)

∂dL
∂n

p′(dL) + (n− 1)dLp
′′(dL)

∂dL
∂n

= 0.

p′(dL) ·
(
dL + (n− 1)

∂dL
∂n

)
= −(n− 1)dLp

′′(dL)
∂dL
∂n

< 0.

Since p′(dL) > 0, we deduce dL + (n− 1)
∂dL
∂n

< 0.

∂
(
(n− 1)bdLp(dL)− dL

)
∂n

= bdLp(dL) + b(n− 1)
∂dL
∂n

p(dL)

= bdLp(dL) + (n− 1)bdLp
′(dL)

∂dL
∂n

− ∂dL
∂n

= bdLp(dL) + b(n− 1)
∂dL
∂n

p(dL)

= bp(dL)
(
dL + (n− 1)

∂dL
∂n

)
< 0.
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Theorem 5.15 states the relationship between the PoA, PoS and the parameters b, K,

n when dL ≤ do ≤ dH .

Theorem 5.15 (Generalized Theorem 4.26). If both dL and dH exist, and dL ≤ do ≤

dH , then the PoS = 1 and the PoA =
uopt

u(dL)
=

u(No)

u(dL)
=

do

(
(n− 1)bp(do)− 1

)
dL

(
(n− 1)bp(dL)− 1

) .
Furthermore, when K is the only varying parameter and all the other parameters are

fixed, the PoA approaches 1 as K decreases such that do approaches dL, and the PoA

approaches its maximum
dH

(
bp(dH)− 1

)
dL

(
bp(dL)− 1

) as K increases such that do approaches dH .

When b is the only varying parameter and all the other parameters are fixed, the PoA

approaches infinity as b keeps increasing, and the PoA approaches its minimum as b

decreases such that do approaches dH . When n is the only varying parameter and all the

other parameters are fixed, the PoA approaches infinity as n keeps increasing, and the

PoA approaches its minimum as n decreases such that dH approaches do.

Proof. By Corollary 5.7 uopt = u(No), so the PoS = 1. By Lemma 5.11, the worst

non­collapsing Nash equilibrium is the point (dL, dL, ..., dL). Hence the PoA =
u(do)

u(dL)
.

If onlyK varies and all the other parameters are fixed, then only do varies with it and the

denominator doesn’t change. Since (n−1)bp(do) ≥ (n−1)bp(dL) > (n−1)bdLp
′(dL) =

1, the PoA increases with do (andK).

Consider the case when b is the only varying parameter. We should also note that

the PoA can be written as
(n− 1)K − do

dL

(
(n− 1)bp(dL)− 1

) . By Lemma 5.13
∂do
∂b

< 0 and

∂dL

(
(n− 1)bp(dL)− 1

)
∂b

< 0, so the numerator increases, the denominator decreases,

and the PoA increases with b. If b is the only increasing parameter and all the other

parameters are fixed, by part (c) of Lemma 5.13 the inequality dL ≤ do ≤ dH always

remains, so the PoA increases unboundedly. If b is the only decreasing parameter and

all the other parameters are fixed, by part (c) of Lemma 5.13 the inequality dL ≤ do re­

mains, but do may exceed dH . Therefore the PoA achieves its minimum as do achieves

its maximum (dH).

Consider the case when n is the only varying parameter. The PoA can be written as
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(n− 1)K − do

dL

(
(n− 1)bp(dL)− 1

) . By Lemma 5.14 ∂dL

(
(n− 1)bp(dL)− 1

)
∂n

< 0, so the numer­

ator increases, the denominator decreases, and the PoA increases with n. If n is the only

increasing parameter and all the other parameters are fixed, it is obvious that the inequal­

ity dL ≤ do ≤ dH always remains, so the PoA increases unboundedly. If n is the only

decreasing parameter and all the other parameters are fixed, then dL may exceed do or dH

may fall below do. Therefore the PoA achieves its minimum as dL achieves its maximum

(do) first or dH achieves its minimum (do) first.

Theorem 5.16 states the relationship between the PoA, PoS and the parameters b, K,

n when dH < do.

Theorem 5.16 (Generalized Theorem 4.27). If both dL and dH exist, and dH < do, then

thePoS =
uopt

u(NH)
=

do

(
(n− 1)bp(do)− 1

)
dH

(
(n− 1)bp(dH)− 1

) and thePoA =
uopt

u(NL)
=

do

(
(n− 1)bp(do)− 1

)
dL

(
(n− 1)bp(dL)− 1

) .
If we only consider the non­collapsing stable Nash equilibria, then the “stable” PoA be­

comes
uopt

u(NH)
. Furthermore, when K is the only varying parameter and all the other

parameters are fixed, the PoS approaches 1 and the PoA approaches its greatest lower

bound
dH

(
bp(dH)− 1

)
dL

(
bp(dL)− 1

) asK decreases such that do approaches dH , and both thePoS =

Θ(K) and PoA = Θ(K) approach infinity as K keeps increasing. When b is the only

varying parameter and all the other parameters are fixed, the PoS approaches 1 and the

PoA approaches its least upper bound as b increases such that do approaches dH , and the

PoS approaches its maximum and thePoA approaches its minimum as b keeps decreasing

until dH does not exist. When n is the only varying parameter and all the other param­

eters are fixed, the PoS approaches 1 and the PoA approaches its least upper bound as

n increases such that dH approaches do, and the PoS approaches its maximum and the

PoA approaches its minimum as n keeps decreasing until dH does not exist.

Proof. By Corollary 5.7, uopt occurs at u(do). By Lemma 5.11, NH has the maximum

total utility, andNL has the minimum total utility among all existing non­collapsing Nash

equilibria. Hence the PoS and PoA in our theorem follow. If we only consider the non­

collapsing stable Nash equilibria, thenNH is the only one. Hence the “stable” PoA in our
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theorem follows.

According to the proof in Theorem 5.15, the PoS and PoA both increase with do (and

K). We should also note that the numerator can be expressed as (n− 1)K − do. WhenK

is very large, p(do) approaches 1 and therefore do =
K

bp(do)
≈ K

b
, so (n − 1)K − do ≈

(n− 1)K − K

b
= K((n− 1)− 1

b
) = Θ(K).

According to the proof in Theorem 5.15, the PoA increases with b. We should also

note that the PoS can be written as
do
dH

· (n− 1)p(do)− 1/b

(n− 1)p(dH)− 1/b
. If b is the only increasing

parameter and all the other parameters are fixed, do and (n − 1)p(do) decrease, and dH

and (n − 1)p(dH) increase. In addition, adding the same quantity to both the numerator

and denominator of an improper fraction decreases its value. Therefore we can deduce

the PoS decreases with b instead.

According to the proof in Theorem 5.15, the PoA increases with n. We should also

note that the PoS can be written as
do
dH

· bp(do)− 1/(n− 1)

bp(dH)− 1/(n− 1)
. If n is the only increasing

parameter and all the other parameters are fixed, then dH increases and so does the de­

nominator. In addition, adding the same quantity to both the numerator and denominator

of an improper fraction decreases its value. Therefore we can deduce the PoS decreases

with n instead.

We close this chapter with the following tables concluding Theorem 5.12, Theorem

5.15, and Theorem 5.16.

Table 5.2: Summary of the PoS and PoA withK as the only varying parameter.
We assume do starts at dL and keeps increasing.

Condition dL ≤ do ≤ dH
(Phase 1)

dH < do
(Phase 2)

PoS 1 u(do)/u(dH)
(stable PoA)

Monotonicity ­ increasing
Starting at 1 ­ Yes

PoA u(do)/u(dL)
Monotonicity increasing
Starting at 1 Yes

r

69



doi:10.6342/NTU201901991

Table 5.3: Summary of the PoS and PoA with b as the only varying parameter.
We assume b starts at its valid minimum value (i.e. bxp′(x) =

1

n− 1
has exactly one

solution.) and keeps increasing.

Condition do > dH
(Phase 1)

dH ≥ do ≥ dL
(Phase 2)

PoS u(do)/u(dH)
(stable PoA) 1

Monotonicity decreasing ­
Terminating at 1 YES ­

PoA u(do)/u(dL)
Monotonicity increasing
Starting at 1 No

Table 5.4: Summary of the PoS and PoA with n as the only varying parameter.
We assume n starts at its valid minimum value (i.e. bxp′(x) =

1

n− 1
has exactly one

solution.) and keeps increasing.

Condition dH < do
(Phase 1)

dL ≤ do ≤ dH
(Phase 2)

PoS u(do)/u(dH)
(stable PoA) 1

Monotonicity decreasing ­
Terminating at 1 uncertain ­

PoA u(do)/u(dL)
Monotonicity increasing
Starting at 1 No

r

r

r

r

r
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Chapter 6

Conclusion and Future Work

In the last chapter, we’re going to briefly conclude our analysis, describe additional pos­

sibly extended models, and discuss some aspects that can be improved in the future.

In a two­player file­sharing game, we detailedly examine all Nash equilibria includ­

ing their stability. When the need for resources is almost not limited, there are two non­

collapsing Nash equilibria, one of which with a greater contribution is stable. When the

need is a little limited, the contribution of the Nash equilibrium with a greater contribu­

tion will be lowered and it will become unstable. Besides, there exist two additional side

Nash equilibria in this case. When the limitation is drastic, the system will collapse. In a

three­player file­sharing game, we still examine all Nash equilibria, yet without stability.

In a multi­player file­sharing game, we only examine symmetric Nash equilibria without

stability. The conclusion of the PoA and PoS remains the same when the number of play­

ers increases from two to three. It remains the same for an arbitrary number of players if

we only consider the symmetric Nash equilibria.

We give an intuitive explanation of the PoS and PoA here. The PoS and PoA both

increase with K since the Nash equilibria (the consequence of selfishness) naturally falls

behind the maximum total utility (which increases with the amount of resources). We also

discover that the two parameters b and n both represent the flexibility of the model. If we

increase b and n, ideally the best Nash equilibrium will be improved and the worst Nash

equilibrium will be deteriorated. Hence the PoS decreases with b, n but the PoA increases

with b, n. When the need for resources is a little limited, the PoS can remain 1 because
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the maximum total utility is not too far away such that the best Nash equilibrium is able

to catch up.

After the analysis in multi­player file­sharing games, the reader may make a guess of

the following conjectures. First, (dL, dL, ..., dL) is always unstable, and (dH , dH , ..., dH)

is always stable in a multi­player file­sharing game. Second, u(dL, dL, ..., dL) is the least

among all non­collapsing Nash equilibria, and u(dH , dH , ..., dH) is the greatest among all

non­collapsing Nash equilibria. If the second conjecture is true, the PoA and PoS derived

in multi­player file­sharing games are always true even if we take all Nash equilibria into

consideration.

In this thesis, we assume each player can provide at most the benefit K of resources

to all other players. This is a simple assumption. If we further consider a more realistic

situation where they have different limitationsKj , the utility function becomes

ui(di) = −di +
∑
j ̸=i

min{Kj, b dj p(di)}, for 1 ≤ i ≤ n.

If each player has his/her own desired resources of the “total” benefitK distributed on all

the other players, the utility function becomes

ui(di) = −di +min{K, b p(di)
∑
j ̸=i

dj}, for 1 ≤ i ≤ n.

If the benefits of these resources (Ki) are different, the utility function becomes

ui(di) = −di +min{Ki, b p(di)
∑
j ̸=i

dj}, for 1 ≤ i ≤ n.

If all players have their unique “files” of different benefits (Kj) and each player will try

their best to retrieve all files from all the other players, the utility function becomes

ui(di) = −di +
∑
j ̸=i

if {b dj p(di) ≥ Kj} ·Kj, for 1 ≤ i ≤ n,

where the value of the “if” function is defined to be 1 if the condition is true, and defined

72



doi:10.6342/NTU201901991

to be 0 if the condition is false. Since a file is valid only if all portions of it are retrieved,

we use the “if” function here. They are also good research problems.

Finally, the reader may discover that in the results of [2] and our thesis, the common

problems of P2P such as whitewashing attacks and sybil attacks from malicious users are

still not taken into consideration. In fact there are many studies [1, 4, 11, 13, 15] focusing

on these problems. Maybe we can study these papers in the future and improve our models

to concretely solve the problems.
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