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Abstract

A peer-to-peer (P2P) network is commonly used for file-sharing among
different users. This kind of structure can solve some common problems of
centralized networks. However, experiments show that free-riding is a major
problem for the P2P networks, so we have to design a good incentive mech-
anism with the help of game theory in order to encourage users to contribute

to the community and maintain the network [|16].

We use the model proposed by Buragohain et al. [2] in 2003. In the orig-
inal paper, the author determines the probability function, from the contri-
bution of each user, which controls the probability that a user can retrieve
resources from the community. The probability increases with the contribu-
tion. The utility function is determined by the retrieved resources with the
contribution cost subtracted. In a two-player file-sharing game, there are two
non-collapsing Nash equilibria, one of which with a greater contribution is
stable. In our thesis, we further consider a multi-player file-sharing game
where the need for resources of each user is limited. In this game, we’ve dis-
covered that when the limitation is not obvious, the original Nash equilibria
are not affected. When the limitation is a little influential, the contribution
of the Nash equilibrium with a greater contribution will be lowered and it
will become unstable. When the limitation is drastic, the system will col-
lapse. Besides, we’ve also observed how the efficiency of Nash equilibria
changes with system parameters under different conditions. The parameters
include the benefit drawn by one unit of resources, the limitation of need for

v
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resources, and the number of users in the network which will be defined later.

Keywords: Game Theory, Nash Equilibrium, Peer-to-Peer, File-Sharing, In-

centive Mechanism
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Chapter 1

Introduction

A peer-to-peer (P2P) network is a distributed system that consists of many users which
are often directly connected to each other, and they can be both providers and consumers
of resources at the same time in the network. In constrast to P2P networks, a centralized
network also consists of many users, but only servers provide all the resources and are con-
nected to clients. The clients can only consume the resources and they are not necessarily
connected to each other.

The most significant advantages of P2P networks over centralized networks are scal-
ability and robustness. When a new user joins a P2P network, he/she not only increases
the network load but also provides some resources to the system (as a small server), so
the network load is usually balanced and the P2P network is scalable. When a node is
attacked or fails to work for some reason, the other parts of the network can still work as
usual because only a very small part of the system is affected. In a centralized network,
an attack against one of the main servers can severely reduce the performance since the
resources are completely on the servers. Therefore P2P networks are more robust than
centralized networks.

However, a major problem for the P2P networks is “free-riding.” Free-riding means
that most users only consume the resources but forget to provide enough resources to
maintain the network. Since making contribution definitely takes some cost, it is intuitive
that free-riding is a dominant strategy. Unfortunately, if everyone chooses this dominant

strategy, there will be no resources in the network and therefore the system will collapse.
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Experiments in [9] showed this phenomenon. Hence, some incentive mechanisms are

needed to overcome this free-riding problem.

Incentive mechanisms incorporated by the P2P file-sharing networks in the past were
mainly based on monetary payment schemes or reciprocity-based schemes [5]. In mon-
etary payment schemes, users must pay money before consuming resources and can get
paid when providing resources to others. Mojonation and Karma [[12], and some stud-
ies such as [0, [10, [14, [17] used this kind of schemes. The implementation is not easy in
practice since it requires infrastructure for accounting and micropayments. Contrary to
monetary payment schemes, we can also use reciprocity-based schemes. They include
direct reciprocity and indirect reciprocity. In direct reciprocity schemes, the quality of re-
sources user A wants to provide to user B is based on the quality of resources A retrieved
from B in the past. BitTorrent [3] uses this kind of schemes based on the tit-for-tat strat-
egy. In indirect reciprocity schemes, also called reputation based schemes, the quality of
resources a user deserves to obtain highly depends on his/her “overall” generosity. The
word “overall” here means that as long as user A’s reputation is high, it is not necessary for
A to provide good quality resources to user B even if A wants to retrieve good quality re-
sources from B. Some studies such as [2, [7] used this kind of schemes. We should note that
this is an advantage when a user is not interested in anything the other one can offer. It is
the only difference between direct reciprocity and indirect reciprocity. Nowadays, the in-
centive mechanisms are further enhanced. For example, Hu et al. [8] combined monetary
payment schemes and indirect reciprocity schemes. Zhang et al. [18] used a Blockchain-
based mechanism to resolve the difficulty of finding a trusted third party (TTP) in a real

P2P system.

[2] is a representative paper about reputation based schemes. In [2] the authors pro-
posed a differential service-based incentive scheme to improve the system’s performance
(i.e., reduce free-riding). First, they considered the case of a “homogeneous” system where
the value of resources is independent of users who own them and users who retrieve them.
In this case, there exists two non-collapsing Nash equilibria with different contribution

levels. Only the one resulting in the better overall performance is stable (i.e., easily real-

2
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ized). Second, they studied the case of a “heterogenous” system through simulation, since
no closed form solution is possible. In this case, the numerical experiments showed that
the system also converges to the desirable Nash equilibrium if a good initial condition is
given, and that the average contribution is almost independent of the number of users. Fi-
nally, they gave some suggestions on how to modify current P2P systems to implement the
proposed incentive scheme. We need a function of the contribution level of user A to con-
trol the probability that A can retrieve resources from another user B. Also, the probability
function should be a part of the system’s architecture. It means that the setting should be
exactly the same for all users and cannot be modified by them. In order to prevent users
from reporting their contribution levels incorrectly, a neighbour audit scheme in which
users can verify the information of their neighbors is required. In order to encourage new

users to join the system, they can be given a default contribution level at the beginning.

Our research is continued from [2]. In the original paper, the resources a player pos-
sesses are not limited. To our best knowledge, there are almost no research papers dis-
cussing the case of limited resources, so we will consider this environment in our thesis.
We only study the case of a homogeneous system of two players, three players, and mul-
tiple players, but with a fixed maximum benefit of resources from each player, and the
probability function satisfying some “good” assumptions that we will introduce in the next
chapter. Our main contribution is to find some important Nash equilibria under different
parameter settings, analyze their stability and efficiency including the price of anarchy
(PoA) and price of stability (PoS), and observe how they vary with related parameters.
We define the PoA to be the ratio of the maximum total utility among all possibilities to
that of the “worst” Nash equilibrium, and define the PoS to be the ratio of the maximum

total utility among all possibilities to that of the “best” Nash equilibrium.

The rest of the thesis is organized as follows. In Chapter P, we explain the meaning of
our newly proposed model and introduce the related parameters. In Chapter [§, we analyze
a homogeneous system of two players. In Chapter l, we analyze a homogeneous system
of three players, but without considering the stability of Nash equilibria. In Chapter §, we

analyze a homogeneous system of multiple players, but only considering symmetric Nash
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equilibria. That is, all players have the same strategy. Finally in Chapter [, we conclude
our analysis, describe additional possibly extended models, and discuss some aspects that

can be improved in the future.
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Chapter 2

Model

In this chapter, we’re going to introduce the system parameters inherited from [2] that will
be used in this thesis. Assume that there are N players (users) Py, P, ..., Py in the system.

All parameters, as in the original paper, are dimensionless.

Definition 2.1 (Contribution). Let d; be the contribution of P, which is a nonnegative
number. The meaning of the contribution can be very widespread. For example, [2] says
we may think of d; as the disk space contribution integrated over a fixed period of time,
or the number of downloads served by this peer to other peers. In this thesis, we usually
see d; as the amount of downloadable resources owned by F;. Since this parameter is also
a strategy one player can decide, the term “strategy” and “contribution” have the same

meaning in this thesis.

Definition 2.2 (Benefit). The value of resources owned by a player may vary depending
mainly on other users who retrieve them. For example, if Alice has lots of music, whereas
Bob has lots of Japanese animation, I may prefer Bob’s resources to Alice’s. Hence we let
b denote how much the “unit” contribution made by one player is worth to another player
in a homogeneous system. That is, if a player P; retrieves one unit of contribution from
another player P;, then P;’s utility will increase by b. Details of the utility function will

be introduced later.

Definition 2.3 (Probability as Service Differentiator). In a differential service, the prob-

ability that a player P; can retrieve resources from other players should increase with
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his/her contribution d;. This mechanism encourages the players to share their file re-
sources. In this thesis, a player P; can retrieve resources from other players with proba-

bility p(d;), and is rejected with probability 1—p(d;).

Proposition 2.1. To achieve the goal of a service differentiator, the probability function
p(d) must be non-decreasing (i.e., p’(d) > 0 for d > 0). To meet the definition of “prob-
ability,” p should satisfy p(0) = 0 and dli_}nolo p(d) = 1. To ensure each player has only one
best strategy in each iteration, we assume p’(d) to be decreasing (i.e., p”(d) < 0 when
0 < p(d) < 1). To ensure bdp'(d) = C has at most two solutions for every constant

C > 0, we also assume dp’(d) = dlim dp'(d) = 0, and there exists a threshold dj such
—00

that (dp/(d))’ > 0 for d < dy and (dp'(d))’ < 0 for d > dy. We assume all probability

functions p(d) satisfy all our assumptions in this proposition unless otherwise specified.

Definition 2.4 (Utility). Let the total utility u; that P; will derive in the homogeneous sys-
tembe u; = —d; —|—Z min{ K, bd;p(d;)}. The term —d, is the cost of P, to join the system,
which is pI‘OpOI‘tiOI::I to his/her contribution. The other term Z min{ K, bd;p(d;)} is the
total expected benefit of P;. It is obvious that min{ K, bdﬂ;@,)} for some j is the ex-
pected benefit gained from some player P;. In this term, d; is the amount of resources
P; can provide, so multiplying it by p(d;) gives the expected amount of resources P; can
acquire. Multiplying it by b again obtains the expected “benefit.” In that term K denotes

the maximum benefit one player can derive from another player. Normally K is greater

than 0.

Proposition 2.2. Suppose all d;’s have the same value of d. If b <

1
, the utility
n—1
function wu; is therefore not greater than (n — 1) bd p(d) —d = d ((n —1)bp(d) — 1) <
d <(n —1)b— 1) < d (1 —1) = 0. This means that any homogeneous solution is not

better than the origin. It may cause the system to collapse. To avoid this problem, we

should assume b > in this thesis.

n —
After the definitions and propositions, here is one important lemma about Proposition

that will commonly be referred to when the parameter b varies.
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Lemma 2.1. Assume the two equations bixp'(z) = C and bexp'(z) = C, where 0 < by <
by, have solutions. Let the solutions to byxp'(x) = C be dyy and dyy,, where dyp < dyy,.
Let the solutions to byxp'(x) = C be dyy and dap, where doy < dap,. Then dyy < dyp and

dop, > dip.

Proof. Since xp/(z) = Oand xp/(z) = (C'/by, by the intermediate value theorem
0

= r=dqy

there must exist at least one x, < d;, such that xp’(x)‘ = C/by (" by > by). Since

T=xy

xp (x) = (C/b; and zlggo xp/(x) = 0, by the intermediate value theorem there must

x:dlh

exist at least one x;, > dy;, such that zp’(x)

= C/by (" by > by). Therefore z, <

T=x

diy < dyp, < xp. Since byzp'(z) = C has at most two solutions, we can simply say

T = doy and Ty = dop. . dap < dyy and dop, > dip,. ]
y = baap’(x)
y = bap/(z)
y=0C

\

dae dyg dip day,

Figure 2.1: A geometric illustration of Lemma

After introducing the system parameters, we’re going to derive some important lem-

mas related to the probability function that will be heavily used in the later chapters.

2.1 Useful Properties

Before the lemmas, we also define two symbols that will be used in the whole thesis.

Definition 2.5. Let u,, be the maximum total utility in an n-player file-sharing game.

That is, o, = max u(dy,ds, ..., d,).
d;>0
for 1<i<n

Definition 2.6. Let d, be the unique solution to the equation bzp(x) = K. Since K > 0,

. ) . K
d, cannot be 0 and we can see it as the intersection of p(z) and e
T
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y = p(x)

d,

Figure 2.2: A geometric solution of d,

Lemma 2.2. ]fO <d; < dg, then dl p(dg) < dg p(dl)

Proof. We’re going to prove this lemma with the technique of “change of variables” cov-

ered in the calculus course. Write the probability function in an integral form,

do d2~d—1 di
z=(d2/d1)u da da doy do do
d =/ '(z) dx 47/ '(—u) d(—u) :—/ '(—u du,
plda) 0 ple) o.% b dy dy di Jo P dy

d o rd
and it can be rearranged into d—lp(dg) = / P (d—2u> du. Compare it with
2 0 1

pa = [ v an

Since dy > d; (which implies fl—fu > u for u > 0) and p/(x) is decreasing if greater than
zero, we can always pick some dy € (0, d;) such that p’(u) > 0 <i.e., p(u) > p’(j—fu))

forall uw € (0,dp) and p/(u) =0 (i.e.,p’(g—fu) = O) for all u € (dy, d;). Hence

dy /dl /(d2 ) /dO /(d2 ) /dl ,<d2 )
—(ds) = —u | du = —u | du —u | du
d2p( 2) i P\ q i P\ a + A P\a
do dq d2
</ p'(u) du—l—/ p'(—u) du
0 do dy
do dl
—/ p'(u) du—l—/ p'(u) du
0 do

dy
= /0 p'(u) du = p(dy).

We can obtain the result by multiplying both sides of the above inequality by ds. [
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Corollary 2.3. ]fdl p(dg) > dg p(dl) > 0, then dl > dg > 0. [fdl p(dg) = dQ p(dl) > 0,
then dy = dy > 0. ]f‘O < d p(dg) < dy p(d1>, then 0 < dy < do.

Proof. By the law of trichotomy, exactly one of the three conditions d; < ds, dy = ds, or
dy > ds is true. Consider the first statement in our corollary. If 0 < d; < d5, by Lemma
.2 we can deduce d, p(dy) < dy p(dy). If0 < dy = ds, then d; p(ds) = dy p(dy). Both of
the above assumptions violate the statement, so only d; > dy > 0 can be the conclusion

of it. The reader can use the same method to prove the remaining two statements. [
Lemma 2.4. Ifd; p'(ds) = dy p'(d1) > 0, then dy = ds.

Proof. The structure of this proof is very similar to Corollary R.3. If 0 < d; < d, and
p'(dy) > 0, then p'(dy) > p'(da) and dop/(dy) > dip'(dz) since p/(x) is decreasing.
Similarly if 0 < dy < d; and p/(dy) > 0, then p/(ds) > p'(dy1) and d1p'(da) > dap/(dy).
The above two cases both violate the lemma assumption. From the above, only d; = dy >

0 can satisfy the assumption, so it is our conclusion. O

Lemma 2.5. If p(dy) = p(ds) for some d; < ds, then p(z) = 1 and p'(x) = 0 for all

l’Zdl

Proof. Write the probability function p(z) in an integral form.

do dy
p(ds) — p(dy) = / P(z) dr — / P(x) de

da
= / p'(z) dx = 0. (2.1)

d1

Suppose for contradiction that p’(d;) > 0. Then we can definitely find a d,,;q € (dy,d>)

such that p'(z) > 0 for all z € (dy, dia), and

dy dy dmid dmid

which violates Equation (2.1)). Hence p/(d;) = 0 and p/(z) = 0 for all = > d; since p/(z)

is decreasing. In addition p/(z) = 0 implies p(z) = 1, so p(x) = 1 for all z > d;. O
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Corollary 2.6. If p(dy) = p(dz), p'(d1) > 0 and p'(dy) > 0, then dy = ds.

Proof. W.L.O.G., assume d; < dy. If d; < ds, then by Lemma @p’(dl) ' (d s 0

causes a contradiction. Therefore, d; = d». [l

10
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Chapter 3

Nash Equilibrium Analysis for

Two-Player File-Sharing Games

In the previous chapter, we’ve introduced some basic elements of our model. For simplic-
ity, we consider a homogeneous system of two players first. It’s easy to see that the model

can be simplified to the following.

ul(d1> = —d1 + min{K, b dQ p(dl)}
Ug(dg) = _d2 + min{K, b d1 p(dg)}

U(dl, dg) = ul(d1> + u2(d2).

We also use the notation u(d) = u(d, d) if both d; and d, have the same value of d.

In this chapter, we are going to find all Nash equilibria under different parameter set-
tings, analyze their stability and efficiency (PoA and PoS), and observe how they vary
with system parameters b and K. Before calculating the PoA and PoS, we should find the

points where the maximum total utility occurs.

3.1 Maximum Total Utility

In this section, we hope to find the maximum total utility in different parameter settings.
The method used in this chapter is to calculate the gradient with respect to d; or ds at each

point in the domain of u(d;, ds). Since u is bounded above (u < 2K), we can guarantee

11
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the existence of a maximum, and it cannot occur at the points where ((,;97“1)* = ({;97“1)* # 0

or (g—dZ)J“ = (g—dq“;)_ # 0. Based on this observation, we can exclude these points first
(called an elimination procedure), then compare the values of the remaining points, and
then finally choose the optimal points from them.

Observing the formula in this model, the reader may guess that u,, occurs when
bdap(dy) = K and bdip(dy) = K. In fact this is true under some “good” parameter
settings. In this section, we will introduce these “good” conditions, and explain why
occurs at such places.

By symmetry, it suffices to consider only the upper left part of the domain of u(d;, d»)

in the following analysis. It can be partitioned into three regions with respect to the two

equations bp(dy) = 1 and bd;p(d2) = K. These regions can be defined formally.

Figure 3.1: A simple diagram of Definition B.1.
The symbols Ry, and Ry, will be defined later.

Definition 3.1. Letregion 1 be Ry = { (d1,d2) |0 < d; < dy A bp(dy) <1 }. Letregion
2be Ry = { (d1,d2) |0 < dy < dy A bp(ds) >1 A bdyp(ds) < K }. Let region 3 be
Rs ={(d1,ds) |0 < dy <dy A bp(dy) > 1 A bdyp(ds) > K }. Let Ry, be the rightmost
boundary of Ry. Thatis, Ry, = Re N { (d1,ds) | di = dy V bdip(dy) = K }. Let Rg;, be
the leftmost boundary of Rj3. Thatis, Rs, = R3N{ (dy,ds) | bdip(ds) = K } C Ray. Let
P be the point (d, d) where bdp(d) = K. The letter “b” here means “boundary.”

12
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The reason why we want to partition the domain is explained as follows. Ultilities in
R, are always nonpositive (which will be proven later), which is obviously not better than
the origin (0, 0), so this region will be excluded eventually if we hope that the model has a
positive u,,;. We also note that the term min{ K, bd,p(ds)} causes the gradient of u(d;, ds)
to be discontinuous at the curve bd;p(ds) = K, so the values should be calculated in R»
and Rj separately.

In the following several pages we’re going to perform our elimination procedure. The
procedure can be divided into three stages. The first stage is to remove the points where
Uept cannot occur in Iy and 3. By Lemma Ry can be minimized to R, and by
Lemma R3 can be minimized to Rs3,. Since Ry, contains Rs3,, we only consider the
points where u,,; cannot occur in 7y, and remove them in the second stage. By Lemma
B.3 and Lemma .4 Ry, can be minimized to the point P or completely eliminated. Finally,
we’ll show that the maximum total utility within R, is exactly 0 and find out circumstances

in which P will be better than R;.

Now we perform the first stage of the elimination procedure.

Lemma 3.1. After we remove these points where u,, cannot occur in Ry, the region Ry

should be minimized to Rgy,.

Proof. One property of Ry is the inequality bd;p(dy) < K. According to this, the utility
u = —dy + min{ K, bd,p(d2)} — ds + min{ K, bdop(d;)} can be simplified to u = —d; +
bdip(dy) —de+min{ K, bdap(dy)}. Since the “min” term may cause the partial derivatives
to be discontinuous, for simplicity we use the notation of partial derivatives as usual to

represent the less of the left derivative and right derivative.

a a , 8 .
a0 =0 and  o-bdsp(dy) = bdop/ () 2 0. . o= min{K, blyp(dy)} 2 0.

0 o
U 14 bp(ds) + 0+ — min{ K, bdop(d1)} > —1 + bp(dz) > 0.
od, dd,

According to this derivative, we can say for each pair of points (¢, ds) and (r, dy) in Ra,

u(l,dy) < u(r,ds) if £ < r. Hence the result follows. O

13
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Lemma 3.2. After we remove these points where u,,, cannot occur in Rg, the region I3

should be minimized to Rs,.

Proof. One property of Rj is the inequality bd;p(dy) > K. According to this, we can
further deduce bdsp(dy) > bdip(ds) > K by Lemma R.2. The utility u = —d; — dy +
min{ K, bdop(dy)} + min{ K, bdyp(dy)} is then simplified to u = —d; — dy + 2K, and
therefore g—;l = —1 in this region. According to this derivative, we say for each pair of

points (¢, dy) and (7, dz) in R, u(¢, ds) > u(r,dy) if ¢ < r. Hence the result follows. [

Figure 3.2: A simple diagram of the remaining regions
after the first stage of the elimination procedure

Now we perform the second stage of the elimination procedure.

Definition 3.2. Let Ry, = Ry, N { (d1,dz) | d1 = ds }, and let Ry, = Rop, N { (d1,ds) |
bdip(ds) = K }. Then Ry, = Rayp, and Ro, = Rap, U Rap,-

Lemma 3.3. If Ry, exists, it should be minimized to the single point P after we remove
these points where ., cannot occur in Ry, .

Proof. In Ry, there is a condition d; = da, so bdap(dy) = bdip(ds) < K. If we let
d = dy = ds, then the utility can be simplified to u = —d; + bd;p(dy) — da + bdap(dy) =
2(bdp(d) — d), and the derivative is

14
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% _ 28% <bdp(d) _ d) _ z(bp(d) + bdp'(d) — 1) > 2(bp(d) . 1) >0

by the condition bp(d) > 1 stated in R,. Hence the result follows. O

Lemma 3.4. After we remove these points where u,, cannot occur in Ry, the region

Ray, should be minimized to the point P or completely eliminated.

Proof. According to the constraint dp(ds) = K /b stated in Ro,,, we first differentiate

both sides of the equation with respect to ds, in order to obtain dd; /dds.

0

0 (K ddy oo
8_d2(d1p(d2)) = 24, ( b ) = 8d2p(d2) + dyp'(dy) = 0.

According to the property bdip(d;) = K in Ry, we can further deduce bdap(d;) >
bd,p(dy) = K by Lemma .2, so the utility is then simplified to v = —d, — dy + 2K.

Differentiate u with respect to ds.

ou 0 _ 0dy _ dip'(do) _ dip/(ds) — p(dy)
5 = 5~ b+ = g - 1= S a R - 1= S

L dip(da) = [P At dip(dy) —dap(dy)  Pdy),,

= 2(ds) = p(ds) = oy )

0
Therefore 87“ < Osincep'(dy) > 0,p(d2) > 0,and d; < dy. According to this derivative,
2

. . od ...
we can increase u only by decreasing d,. As 8_(11 < 0, only the condition d; = dy can
2
stop our traversal. If this condition is reached, then we arrive the point P. If this condition
can never be reached (i.e., d; = ds can only happen when b p(dy) < 1), then the whole

region Ry, should be eliminated. In this case P € R;. Hence the result follows. ]
Lemma 3.5. The maximum total utility achieved in R; is 0.

Proof. We first observe that bp(d;) < bp(dy) < 1 because of our assumption d; < d.
Multiplying dy on both sides of bp(d;) < 1 gives bdop(d;) < ds. Multiplying d; on both

sides of bp(ds) < 1 gives bdip(dy) < d;. Then they can be applied to the following.

U,l(dl) = —d1 + min{K, b d2 p(dl)} S —dl + b dg p(dl) S —d1 + dg.
Ug(dg) = —dz + min{K, b d1 p(dg)} < —dz +b d1 p(dQ) < —d2 + dl.

15
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Adding these two inequalities together, we’ll discover that
U1<d1) + UQ(d2> S (-dl + d2) + (-dg + dl) = 0.

Hence the result follows. "l

u(R;) <0

Figure 3.3: A simple diagram of the remaining regions
after the second stage of the elimination procedure

The comparison between R; and P in the final stage is illustrated in the following

theorem.
Theorem 3.6. If d, > K, then uyy = 0. If d, < K, then u,, = 2(K —d,) > 0.

Proof. By Lemma @, the maximum achieved in R; is 0. If d, > K, then the total
utility at the point P is u(d,,d,) = —d, + bd,p(d,) — d, + bd,p(d,) = 2(K — d,) < 0.

. Uyt = 0 in this case. If d, < K, then u(d,, d,) = 2(K — d,) > 0, which is better than

Ry. gy = 2(K —d,) > 0 in this case. O
y = p(x)
N
Y70
_K
v= bx
d, K

Figure 3.4: A geometric perspective of the
condition d, < K such that u(d,) > 0

16
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Corollary 3.7. Let d; be the less solution to bxp'(x) = 1. If d, > dy, then uyy = u(d,).

Proof. - bp(d,) > bp(ds) > bdyp'(ds) =1 . d, < K by Definition 2.6. In this case
Ugpr > 0 by Theorem B.6. However the maximum total utility within R; is not greater

than 0, so u,,: can only occur at the point P = (d,, d,). ]

We close this section with the following conclusive table.
Table 3.1: The maximum total utility of two-player file-sharing games

Condition |  Utility
do > K 0
do < K | 2(K —d,)

3.2 Nash Equilibria

After analyzing the maximum total utility, we still have to find Nash equilibria in order to

analyze the PoA and PoS.

Lemma 3.8. The player P; does not want to change his/her strategy d; if and only if one

of the following cases occurs.

Case L. (g?)_ does not exist (i.e., d; = 0) and <8ui>+ <0.

i od,) =

Oui\~  (Ou\*t
Case II (Zi;)zo o <%>+§O: <8di>__ (5a) _0; ................. (A)
| Sy v () =

In case I, d; = 0 and bd;p'(0) < 1. In case II-(4), 0 < bd;p(d;) < K and bd;p'(d;) = 1.
In case II-(B), bd;p(d;) = K and bd;p'(d;) > 1.

Proof. Recall the utility function u; = —d; + min{K, bd;p(d;)}. Differentiate it with

respect to d;.

0 .
o | a7 (—dibdipd)) = bdpf(d) =1 = 1 if bdjp(d;) < K
o 83 ( —d; + K) =1 if bd;p(d;) > K.

Since bd; is a fixed nonnegative number, and p’(z) is a nonnegative non-increasing func-

tion, 8—22 is non-increasing for all d; > 0. Hence the result follows. O
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Now we are going to discuss the places where these Nash equilibria occur by cases in

the following theorems.

Lemma 3.9. In a Nash equilibrium (dy, ds), if a player P;s strategy d; satisfies case I,

then the other player P; s strategy d; must also satisfy case I. That is, dy = dy = 0.

Proof. If d; = 0, then u; = —d; + min{K, b-0-p(d;)} = —d; forall d; > 0, and

% — —1. According to Lemma [3.§, the player P; can make an optimal strategy only by
letting d; = 0. In this case ng is also —1, so the Nash equilibrium can only be (0,0). [

Definition 3.3. If bzp’(x) = 1 has two different solutions, let d; be the less one, and let

dy, be the greater one. If the equation has only one solution, let d, and dj, both denote it.

y = bap’(x)

dy dy,

Figure 3.5: A geometric solution of d; and d}, in Definition 3.3

Theorem 3.10. There exists a Nash equilibrium (dy, dy) such that d, satisfies case II-(A)
and dy satisfies case II-(B), if and only if d, and ds both satisfy

{bd2 p(d) =1 and bdyp(d)) < K

b dl p/(dg) > 1 and b dl p(dg) = K.

In addition, the Nash equilibrium N1 = (dy,ds) is unique and exists if and only if d,

and dy, both exist and d, < d, < dj,

Proof. First, we prove necessity by contradiction. Assume neither d, nor d; exists, or
both d, and d}, exist but d;, = d, or both d, and d, exist, d, < dj, but d, & (dy,d). Each
condition implies bd,p’(d,) < 1. Now we’re going to explain why bdsp’(dy) < 1 in this

assumption. By Definition R.6 the point (d,, d,) must lie on the curve bzp(y) = K, and

18
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by Corollary .3 the constraint bd,p(dy) = K > bdyp(dy) tells us dy > dy. We start from
(x,y) = (do,d,) and move along that curve in the correct direction (z > d, > y). If
p'(d,) = 0, then p/(x) = 0 and byp'(x) = 0. If p’(d,) > 0, then byp'(z) < byp'(d,) <
bd,p'(d,) < 1. . byp'(x) < 1. If (x,y) = (di, d2), then bdop'(d;) < 11is-a contradiction.
Nash equilibria cannot exist in this case.

Second, we prove sufficiency. Assume both d, and dj, exist, and d, € (d, dp,). This
condition implies bd,p’(d,) > 1 instead. By Corollary R.3, we should move from (d,, d,)
in the same direction (z > d, > y) again, so that byp(x) < K and bxp(y) = K always
hold. Besides, we know bxp'(y) > bd,p'(d,), and byp'(x) is decreasing, as the point (x, y)
goes far away from (d,,d,). Since there is a point at infinity Il@w(xo, o) on the curve
such that xignoo byop'(z,) = 0, by the intermediate value theol‘;(:;r(l) there must exist one
point (z, yz)/();lothis direction such that byp’(x) = 1. In this case if (z,y) = (dy,ds), the
Nash equilibrium Ny exists. If (x,y) # (dy, ds), then either (x > d; and y < ds) or
(r < dy and y > dy) happens. If the former happens and p'(x) > 0, then byp'(z) <
byp'(dy) < bdsp'(dy) = 1. If the former happens and p/(x) = 0, then byp'(z) = 0. If the
latter happens, then byp'(x) > byp'(dy) > bdep'(di) = 1. The reader may discover that

byp'(x) # bdyp'(dy) = 1 in both cases, so the point is unique. O

b p'(ds) =1 e
=¥ (i dy)

— bdap/(dy) = 1

. T dedy)
bdap(dy) = K

;'\"T””II 1= [:I."J'T] . f.fg]

4"\"'_.,!;, 9 = (Eig. f.j.[]]

bl p(ds) = K

Figure 3.6: A simple diagram of N;4.1 and N;4e2 in Theorem and its corollary
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Corollary 3.11. The Nash equilibrium Ngg4eo = (do,dy) exists if and only if Ngge1 =

(dq,dy) exists.

Theorem 3.12. There exists a Nash equilibrium (dy, ds) such that the strategies of both

players satisfy case II-(A), if and only if d, and dy both satisfy

{ b dg pl(dl) =1 and b dg p(dl) < K

b d1 p,(dg) =1 and b dl p(dQ) < K.

In addition, the Nash equilibrium N, = (dy, dy) exists if and only if d, exists and d; < d,,.

The Nash equilibrium Ny, = (dy,, dy,) exists if and only if d;, exists and d;, < d,.

Proof. According to the constraints bdyp'(d;) = bdip'(d2) > 0, we can deduce d; = dy >
0 by Lemma R.4. Thus, these d;’s are in fact the solutions of bxp’(z) = 1, by Definition
B.3 one of which is d; and the other d,. Since bdyp(dy) < K = bdop(d,) <= dy < d,,
and bd,p(d,) < K = bd,p(d,) < d} < d,, the result follows. O

bop(dy) = K (d,.d,)

bp () = 1 N = (dy, dy)

bdsp'(dy) = 1

bdyp(do) = K
Ny = (dy, dy)

Figure 3.7: A simple diagram of N, and N}, in Theorem

Theorem 3.13. There exists a Nash equilibrium (dy, ds) such that the strategies of both

players satisfy case II-(B), if and only if d, and dy both satisfy

{ b dg p/(d1> Z 1 and b dg p(dl) =K
bdl p/(dg) Z 1 and bdl p(dz) = K.
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In addition, the Nash equilibrium N, = (d,,d,) is unique and exists if and only if d, and

dy, both exist and d, < d, < dj,.

Proof. According to the constraints bdap(dy ) = bdip(dy) > 0, we candeduce d; = dy > 0
by Corollary 2.3 In this case, these d;’s can only be the solution of bzp(z) = K, and by

Definition .4 it is d,. Since bd,p’ (d,) > 1 < d; < d, < dp, the result follows. O

b p(ds) = 1 L
| i

'— belop'(dy) = 1

bop(dy) = K

bdyplds) = K

Figure 3.8: A simple diagram of N, in Theorem

After discussing conditions for the existence of Nash equilibria, we subsequently want

to discuss their stability.
Theorem 3.14. (0,0) is always a stable Nash.

Proof. Consider an extremely small rectangular area whose bottom-left corner is (0, 0).
Assume its height is 4 and its width is w. We want to show that in this area both ‘g—gi and g—;‘;
are negative if A and w are small enough, and neither of these derivatives converges to 0.
If this is true, then any point in this area must have a tendency to converge to (0, 0) and we
are done. Since this area is extremely small, we assume bd;p(d2) < K and bdaop(dy) < K.
Then

ouy

/ au /
a, = bap (dy) —1 and 8_612 = bdyp'(dy) — 1.
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Quy

Observing the formula, we discover that the maximum value of 57

occurs at the top-left

Qua

corner, and the maximum value of 3 &

occurs at the bottom-right corner. To achieve our
goal, we can take h such that bhp'(0) — 1 < 0 and take w such that bwp’(0) — 1 < 0.
Therefore both g—g; < bhp/(0) — 1 and g—fi‘; < bwp'(0) — 1 in the whole area, and neither

of them converges to 0. We can say (0, 0) is a stable Nash. O

blap' (dy) = 1

Juy
maxag, < (0,h)

b, p'(ds) = 1

Figure 3.9: A geometric illustration of Theorem .14

(di,ds) =] (dy,dy)

(dy — g, dy — €0)
Kl

bep'(y) =1

(dy — €, do — €)

Figure 3.10: A geometric illustration of Lemma .15

22

d0i:10.6342/NTU201901991



Lemma 3.15. Suppose there are two nonnegative strategies d, < dy < dy and the initial
condition bd,p'(dy) < 1. If we can find two positive numbers €, €y > 0 such that b(d; —

€0)p' (dy — €) =1, then € > ¢y > 0.

Proof. Since d; — ¢y < dy, we deduce b(dy — €)p'(d1 — €) < bdp'(dg) = 1. Compare
it with b(dy — €o)p'(d2 — €) = 1, we also deduce p'(d; — €y) < p'(d2 — €) and therefore

dy — €9 > dy — €. This inequality implies € — €y > dy — dy > 0, s0 € > €. ]

(ey, dy)

belop'(dy) = 1 (di — €,dy — €)

(0,0) bdyp'(dy) =1

Figure 3.11: A geometric illustration of Theorem

Theorem 3.16. N, if exists, must be an unstable Nash.

Proof. Consider the starting point (d, ,d, ) where d, = d, — € for an arbitrarily small
¢ > 0. If N, exists, by Theorem B.12 bd, p(d, ) < bd,p(d,) = K. Therefore if d, and d;

are non-increasing during the iterative process, then bd;p(ds) < K, bdsp(d;) < K, and

8%1 8u
9, = bdyp'(dy) —1 and ady bdip'(ds) —

At the starting point we have ggl = ng < bd, p'(d,) —1 < 0. Without loss of generality,
assume d; decreases first. It should decrease to O or the value such that g—iﬁ =0. Ifd;
becomes 0, then 3“2 =0-0-p(ds) — 1 = —1 and therefore the system converges to

(0,0). If d; is adjusted to achieve 8"“ = bdyp'(dy) — 1 = 0, then d; < dy and 8“2 =
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bdyp'(dy) — 1 < 0. It’s dy’s turn to decrease. Since g_Zj < 0, we should decrease d to 0
or the value such that g—g; = bdip'(ds) — 1 = 0. By Lemma , if dy 1s not decreased to
0, the decrement of ds should be greater than that of d; in the previous round. Hence the
decrement of d; in each round cannot converge to 0. Based on this fact, the system must
finally converge to (0, 0) in finitely many rounds. Since (0, 0) is a Nash equilibrium, it’s

impossible for the system to go back to N, again. Therefore IV, is unstable. ]

(dy, i)

bdp'(ds) =1

bidop!(dy) = 1

7

Figure 3.12: A geometric illustration of Lemma

Lemma 3.17. If d;, < d, and the starting point (z,y) satisfies byp'(z) > 1, bzp'(y) > 1,

x > dy, and y > dy, then it must converge to (dy,, dy,).

Proof. First, we want to show by contradiction that dy,dy < dj, if bdsp/(dy) > 1 and
bd,p'(dg) > 1. If dy > dj, and dy > da, then bdyp'(dy) < bdip'(dy) < bdpp'(dp) = 1lisa
contradiction. If dy > dj, and dy > dy, then bdyp'(dy) < bdop'(ds) < bdpp'(dy) = lis a
contradiction. Hence neither d; nor d, can be greater than dj,.
Second, since < dj, < d, and y < d, < d,, we deduce bxp(y) < K and byp(z) <
K, and
Juy Ug

0
Fre bdap(di) — 1 and ol bdap'(da) — 1.

Without loss of generality, assume d; increases first. This move should let g—gi = 0 and

g—g > 0. The reader may discover that the move doesn’t leave the area g—iﬁ > (0 and
g—z > 0 and therefore dy, dy < d;, < d, and the derivatives are not affected by the bound

K. It’s dy’s turn to increase. The two players will take turn increasing their contributions.
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Finally, since d; and dy are both monotonic (increasing) and bounded above (not
greater than d;), by the monotone convergence theorem they must converge eventually.
The system converges only if g—zﬁ = g—'g; = 0. By Lemma .4 both d; and d, can only be

dy or dj, at the same time. Since x > dy and y > dj, according to monotonicity the system

must converge to (dp, dy,). O

belsp'(dy) = 1

beyp'(ds) = 1

(i, dy)

Figure 3.13: A geometric illustration of Lemma [3.18

Lemma 3.18. Ifd;, < d, and the starting point (x,y) which is arbitrarily close to (dy, d},)

satisfies byp' (x) < 1, bap'(y) < 1, and x,y > dy, then it must converge to (dy, dy).

Proof. The proofis very similar to Lemmaf.17. Since (z, y) is arbitrarily close to (dy,, dy,),

we deduce bzp(y) < K and byp(z) < K, and

Ouy , Ous /
ad, bdap'(dy) and ad, bdp'(da)

Without loss of generality, assume ds decreases first. This move should let g—zz = 0 and
% < 0. After that it’s d;’s turn to decrease to let % = (0 and g—g; < 0. The two players
will take turn decreasing their contributions (strategies). The reader may discover that
none of the moves leaves the area g%ﬁ < 0and g—Zj < 0. Based on this fact, we want to

show by contradiction that d;, dy > dj, during the iterative process.
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If it’s dy’s turn to decrease and after that d; > dj, > d», then g—zg = bdyp'(dy) — 1 >
bdpp'(dy) — 1 > bdpp'(dy) — 1 = 0 which leaves the area 8“2 < 0. Therefore dy should
be greater than or equal to d,. This argument can also be applied to the case when it’s d;’s
turn to decrease.

Finally, since d; and d5 are both monotonic (decreasing) and bounded below (not less
than dj,), by the monotone convergence theorem they must converge eventually. The sys-
tem converges only if ‘9“1 = ‘9“2 = 0. By Lemma .4 both d; and d; can only be d; or d),

at the same time. Since d; > dj, and dy > dj,, the system must converge to (dp,,dy). [

Lemma 3.18

Lemma 3.17

Figure 3.14: A geometric illustration of Theorem

Theorem 3.19. N,, if exists, must be a stable Nash equilibrium if d;, < dj, and be unstable
ifd; = dj,

Proof. 1f d; = dj, then N, and N, are the same. By Theorem N, 1s unstable. If
dy < dj, we can consider an extremely small region centered at (dy,, dy,). By Theorem

dy, < d,, we deduce bd,p(dy) < K and bdyp(d;) < K, and

ou ou
8d1 = bdop/(dy) — 1 and a_dz = bdyp'(ds) — 1.

Consider an arbitrary starting point (x, y) in the area. If (z, y) satisfies 8“1 >0A% 8“2 <0,
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then (a) g—fﬂ =0A g—gg < 0or(b) g%i =0A g% > (0 happens after we increase d; a little, or
(c) g—g; =0A 3_28 < 0Oor(d) g—g; =0A g—iﬁ > 0 happens after we decrease d a little. If (a)
happens, then bdyp’(d1) = 1and bdp'(dy) < 1. The constraint gives d; > d;. Suppose for
contradiction that d;, < d; < dj,. Then bdap'(dy) > bdip'(dy) > bdpp'(dy) = 1 contradicts
bdyp'(dy) = 1. Hence dy > dy > dj,, and by Lemma the system converges to /V},. By
symmetry, the same conclusion holds for (¢). If (b) happens, we can simply use Lemma
to show that the system converges to N;,. By symmetry, the same conclusion holds
for (d). To sum up, the system converges to N, if (x, y) satisfies g% >0A g—si <0.

By symmetry, we can also say the system converges to N, if (x,y) satisfies % <
0A g—z > 0. According to Lemma .17, the same conclusion also holds if (x, ) satisfies
g—zi >0A g—fﬁ > 0. Now we consider the last case when g—gi < 0OA g%; < 0. Suppose for
contradiction that d, < dy < dj, and d; < ds. Then bdsp'(dy) > bdip'(dy) > bdpp'(dy) =
1 contradicts bdsp’(d;) < 1. Hence dy, ds > dj, in this case. By Lemma the system

also converges to N,. Therefore all points very close to (dy,, dj,) will converge to NVy,. It

is stable. O]

Theorem 3.20. N,, if exists, is unstable when dy < d, < dj or dy = d, = dj,, and is

stable when d, < d, = dj,.

Proof. 1f dy = d,, then we can repeat the proof in Theorem to say [V, is unstable.
Ifd, < d, < dj, we want to show that in any arbitrarily small region centered at NV,
there must exist at least one point which will converge to Ny;4.1 (or N;ge2). Consider
the iterative process in the reverse direction (starting from Ng;4.1). We want to construct
a path from Ng;4. to N, with the following procedure. Recall the constraint of N;ge1:
(bdy p(dy) < K) A (bdy p(dy) = K). Let dy increase first such that (b dy p(d;) =
K) A (bd; p(dy) > K) and we say the system arrives at the point P;. Then d; decreases
such that (b dy p(dy) < K) A (b dy p(de) = K) and the system arrives at the point P,.
The two players will take turn making an ultimate adjustment of their strategies under the
constraint (b dy p(d;) < K) A (b d; p(dy) > K) and obtain the subsequent points Ps, P,
Ps, and so on. In the following paragraphs we want to show this procedure will converge

to (d,, d,) eventually.
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First, we show the boundedness. Consider the constraint b d; p(ds) > K > bds p(dy).
By Corollary B, we deduce d; > d,. Then we want to prove d; > d, > dy by contra-
diction. If d, > dy > ds, then bd;p(dy) < bd,p(d,) = K contradicts b dy p(dy) > K. If
dy > dy > d,, then bdop(dy) > bd,p(d,) = K contradicts b dy p(d;) < K. Hence d; is
bounded below by d,, and d; is bounded above by d,.

Second, we show the monotonicity. Recall the inequality bdsp’(d;) > 1 of the con-
straint of V;4.1. Since in our iterative process d; is non-increasing and d, is non-decreasing,
bdyp'(dy) > 1 is always true. Since d; > d, > ds, we have bdyp'(dy) > bd,p'(d,) > 1.
Therefore p'(d;) > 0 and p'(dy) > 0. It means that neither of p(d;) and p(ds) reaches
1 during the iterative process, and either (b ds p(dy) = K) A (b dy p(d2) > K) or
(b dy p(dy) < K) A (bdy p(dy) = K) happens in each move. In fact it also implies
that d; is “strictly decreasing” and ds is “strictly increasing.” The monotonicity is proven.

By the monotone convergence theorem, the procedure must eventually converge to
some point. If it converges, then solving the equation bd;p(dy) = K = bdyp(d;) by
Corollary R.3 gives us d; = d» = d, and we can say the procedure finally converges to
(d,,d,). It means that in any arbitrarily small region centered at N,, we can always find
some point Py for a sufficiently large N. Since bdop(d;) < K and bdsp’(dy) > 1 in this
area, we deduce g—zﬁ > 0. Since bd;p(dy) > K in this area, we deduce g—g; = —1. We can

guarantee that the system naturally goes from Py to Py_1, and goes from Py_; to Py _o,

and so on. Finally it reaches N;4.1 and can never go back to N,. IV, is unstable.

N, = (d,,d,) P,
Py

Py

P, bdap(dy) = K

bedpldy) = K bilap/(dy) = 1

Nyjaer = (i, o)

Figure 3.15: A geometric illustration of the case dy < d, < d,
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If dy < d, = d}, then there must be some point around N, that causes bd;p(dy) > K
or bdsp(d;) > K. If one of these inequalities holds, the corresponding player should
decrease his/her contribution (strategy) such that bd;p(dy) < K and bdyp(d;) < K. In
this case one of d; < dj, and dy < dj, must hold. Otherwise, both d; and ds are larger
than d;, which causes bd;p(ds) and bdayp(d;) to be larger than K. This is a contradiction.
Without loss of generality, we only assume d; < dj, in our proof. Since the points are
arbitrarily close to /Vy, we should always keep in mind that d;, dy > dy. This section can

be split into two cases d; > ds and d; < ds.

If d; > ds, then we deduce bdp'(dy) > bdip'(dy) > 1. Since bdyp'(da) > bdap'(dy)
must hold when d; > ds, either bdyp'(dy) > bdap'(dy) > 1 or bdyp'(dy) > 1 > bdap'(dy)
happens. If the former happens, the system will automatically converge to /V;, by Lemma
. If the latter happens, we can either decrease d; to reach bdyp’(dy) = 1 or increase
ds to reach bdp'(dy) = 1. If we can decrease d; to x, then = must be larger than ds.
Otherwise, bdap'(x) > bdsp/(dy) > 1 is a contradiction. Since x > dy, we deduce
brp'(dy) > bdyp'(de) > 1. By Lemma the system will automatically converge
to NV,. If we can increase dsy to z, then  must be larger than or equal to d;. Other-
wise, bdp'(x) > bdip'(dy) > 1 is a contradiction. Additionally, x < dj. Otherwise,

bdyp'(z) < bdip'(dp) < bdpp'(dy) = 1 is a contradiction. Since d; < x (new ds) < dp,

OQug
> Oda

ds is possible. We reach bxp'(dy) > bdyp’(z) = 1 and by Lemma the system will

neither bd,p(z) nor bxp(d;) exceeds K is not affected by /K, and therefore increasing

automatically converge to N,.

If d; < dy, then we deduce bdsp/(dy) > bdip'(dy) > 1. Since bdyp'(dy) > bdyp'(ds)
must hold when d; < dy, either bdop'(dy) > bdyp'(dy) > 1 or bdsp'(dy) > 1 > bdip'(ds)
happens. If bdop/(dy) > bdyp’(d2) > 1 happens, the system will automatically converge
to N;, by Lemma B.17. If bdyp/(dy) > 1 > bd,p'(d5) happens, we can either decrease d; to
reach bd;p’(dy) = 1 or increase d; to reach bdsp’(d;) = 1. If we want to decrease dy now,
the argument of the case to decrease d; in the previous paragraph can also be used to show
the convergence. If we want to increase d; instead, then either (a) bdap(d;) = K or (b)

bdyp'(dy) = 1 happens first. If (a) happens first, then this step fails to satisfy bdyp/(d;) = 1.
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It implies bdsp’(dy) > 1 still remains. In this case if bd;p’(dy) > 1, we simply use Lemma
to show that the system will finally converge to N;,. If bd,p’(dy) < 1, we can decrease
dy again and use the previous argument of the case bdsp'(dy) > 1 > bdip/(dy) to show
the convergence. If (b) happens first, then we can also use the argument of the case to

increase ds in the previous paragraph to show the convergence. Hence we are done.

i

increase d;.

but bdsp(d,) = K happens first. bdap(dy) = K

decrease ds

K

Dayplda) =

Lemma 3.17

b p'(ds) = 1

increase ds

increase d;,

but bdsp'(d;) = 1 happens first.

bdop'(dy) = 1

decrease d,

Figure 3.16: A geometric illustration of the case dy < d, = d,

We close this section with the following conclusive table.

Table 3.2: Summary of Nash equilibria of two-player
file-sharing games in ascending order of their total utility

Point Stability Condition
(0,0) YES -
Ny NO dy < d,
Nide1s Nside2 unknown | dy < d, < dp,
N, (almost) NO | dy < d, < dj,
Nj, (almost) YES dy, < d,

3.3 The PoA and PoS

Finally, we’re going to calculate the PoS and PoA and observe their properties. Our anal-
ysis is split into three different cases depending on the value of d,. Before the analysis,

we give two definitions to show that we don’t care about the origin.
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Definition 3.4. A Nash equilibrium not on the origin is a non-collapsing Nash equilibrium.

Definition 3.5. If we only consider these non-collapsing Nash equilibria when calculating
a PoA, the result is a non-collapsing PoA. In this section we only care about the non-

collapsing PoA.

The objective of Lemma B.21], Lemma .22, and Theorem is to sort all the Nash

equilibria by the total utility function.

Lemma 3.21. Given two Nash equilibria N, = (d,,d,,) and N, = (d,,dy,), if dy, >
dy, > dyand d,, > d,, > dy, then u(N,) > u(N,) .

Proof. Since bp(dy) > bdgp'(d;) = 1, we ensure that bp(d,,) —1 > 0 and bp(d,,) —1 > 0
are always true for all parameters not less than d,. In addition, bd,,p(d,,) < K and
bdy,p(d,;) < K are always true for all parameters because N, and NN, are Nash equilibria.

We can write

w(N,) = do, (bp(dm) . 1) +d,, (bp(dxl) _ 1), and
U(Ny) = dy1 (bp<dy2) - 1) + dyz <bp(dy1) - 1)-

It is clear to see that bp(d,,) — 1 > bp(d,,) —1 > 0 and bp(d,,) — 1 > bp(d,,) —1 >0

— 2

50 u(Ny) > u(Ny). O

Lemma 3.22. If N1 = (dy, d2) exists, then the order of the parameters should be the

following: dy < dy < d, < dy < dp,.
Proof. Recall the constraint of Ng;ge1:

{ b dy p/<d1) =1 and bds p(d1> < K

b d1 p,<d2) 2 1 and b d1 p(dg) = K.

Since b dy p(dy) = b d, p(d,) > b ds p(dy), by Theorem R.3 we deduce dy < d, < d;.
Compare b dy p'(dy) = 1 with b dy, p/'(dp) = 1. If dy > dy, then p/(dy) < p'(dp).
The inequality along with ds < d, < dj, together implies b dy p/(d;) < 1 which is a
contradiction. Therefore d; < dj,. Compare b dy p'(dy) = 1 with b dy p'(d;) = 1. If

dy < dy, then dy < d, < dy implies p'(d;) < p'(dy) and therefore b ds p'(d;) < 1 which is
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a contradiction. Therefore dy < dy. Combining d; < ds, dy < d, < dy, and d; < dj, we

obtain our final result. O

Theorem 3.23. If'd, = dy, then the order of existing Nash equilibria should be u(O) <
w(Ny). If dy < d, < dy, then the order of existing Nash equilibria should be u(O) <
u(Ny) < u(Nsige1) = u(Nsidge2) < u(Ny). If dp = dp, then u(O) < u(Ny) < u(N,). If
do > dp, then u(O) < u(Ng) < u(Ny).

Proof. Since d; > 0 and bp(d,) > bdyp'(dy) = 1, we deduce u(0,0) = 0 < 2d, (bp(dg) -
1) = u(Ng). If Nyger = (dy, ds) exists, then d; < dy < d, < dy < dj, by Lemma B.22.
We can deduce u(Nyige1) = 2ds [bp(di) — 1] > 2d, (bp(dg) - 1) = u(N,;) by Lemma
B.21|. Besides, U(Nsige1) = u(Ngige2) by symmetry. N, exists only if dy < d,. According
to this inequality, we deduce bp(d,) > bp(d,) > 1 and therefore d, < K. By Theorem
@, N, has the maximum total utility if it exists. Since N;q.1 exists only if N, exists, we

can say u(Nsige1) < u(N,). If d, > dp, the result also follows from Lemma B.21. O

Theorem states the conclusion when neither d, nor d;, exists, or both exist but

do < dg.

Theorem 3.24. [f neither d, nor dj, exists, or both exist but d, < d,, then the maximum

total utility of all existing Nash equilibria must be 0.

Proof. Since in this case the only existing Nash equilibrium is (0, 0) and «(0,0) = 0, the

result follows. U

Lemma is an auxiliary proposition helping us in observing how the PoA, PoS

vary with the parameters b.

Lemma 3.25. If K and p(x) remain fixed, and b is the only varying parameter, then:

ado adg <bp(dg) —1 ado

hen d, = d,
o =0 ® ab ap e

(a) < 0, and (c)% <

Proof. Part (a) can be directly deduced from the definition bd,p(d,) = K. For part (b),
recall the definition bd,p’(d,) = 1 first. Since d is the less solution to bdyp'(d;) = 1, by

Lemma 2.1 we have 0d,/0b < 0. It means that when b increases, d, decreases, p'(dy)
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0 1 0 1
increases, ——— decreases, and therefore — < 0. Also write — =
B(bd) p'(de)ad o ob (p'(de)> db <P'(dz)>

£ _ a2 e
9% —dg—l—bab,sodg—l—bab < 0.
3(bdﬂ?<dz> - df) ad od,  dd
— hhal] ) 2=t 27
5% = dyp(dg) +b o p(de) + bdep'(de) % b
Ody
= dyp(dy) + b%p(de)
od
— p(dy) (d@ + ba_zf) <0.

0/ K
For part (c), we go back to bd,p(d,) = K. According to this equality, —( ) =

ob\p(d,)
a(gZ‘)) 38620 > (. Comparing with d, + b% < 0 from (b), we obtain (¢). [

=d,+0b

Theorem states the relationship between the PoA, PoS and the parameters b, K

when d, < d, < dj,.

Theorem 3.26. If both d, and d), exist, and d; < d, < dj,, then the PoS = 1 and the

w () _ do(tplde) 1)
PoA = = =

uld) — ulde) g, <bp(de) - 1)
and K is the only varying parameter, the PoA approaches 1 as K decreases such that d,,
dp (bp(dh) - 1)
d (bp(dg) - 1)
such that d, approaches dy,. When K and p(x) are fixed, and b is the only varying pa-

. Furthermore, when b and p(x) are fixed,

approaches d,;, and the PoA approaches its maximum as K increases

rameter, the PoA approaches infinity as b keeps increasing, and the PoA approaches its

minimum as b decreases such that d, approaches dj,.

Proof. By Corollary B.7 u,, = u(N,), so the PoS = 1. By Theorem B.23, the worst non-
u(d,)
u(dy)

fixed and only K varies, then only d, varies with it and the denominator doesn’t change.

collapsing Nash equilibrium is the point (dy, dy). Hence the PoA = I b, p(z) are

Since bp(d,) > bp(dy) > 1, the PoA increases with d,, (and K).

Consider the case when b is the only varying parameter. We should also note that the

_ ody (bp(dy) — 1
do . By Lemma[3.25 %Céo < 0and < 0 )
e (bp(de) — 1)

0, so the numerator increases, the denominator decreases, and the PoA increases with b.

PoA can be written as

<

If K, p(z) are fixed and b is the only increasing parameter, by part (c) of Lemma the
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inequality d; < d, < d}, always remains, so the PoA increases unboundedly. If K, p(x)
are fixed and b is the only decreasing parameter, by part (c) of Lemma the inequality
dy, < d, remains, but d, may exceed dj,. Therefore the PoA achieves its minimum as d,,

achieves its maximum (d). ]
Theorem states how the side Nash equilibria affect the “stable” PoS and PoA.

Theorem 3.27. If Ng;4e1 and Ngqeo both exist and are stable Nash equilibria, then the
Uopt u(d,)
U(Nsidel) u(Nsidel)

“stable” PoS and PoA are < 2

Proof. The side Nash equilibria exist only if d; < d, < dp, in this case other existing non-

collapsing Nash equilibria are unstable. Hence if these side Nash equilibria are stable,

Uy u(d,
the “stable” PoS and PoA should be U(st;l) = u(]\(fsidl). Let Ngge1 = (dy,da).
] bdip(dy) = K . .
Recall the constraint of Ng;ge1: Then the ratio can also be written as
bdgp/(dl) =1
d, <bp(do) . 1) +d, <bp(do) - 1) 2 (K — d,)

As long as we can prove

dy (bp(d2) — 1) + ds (b (dy) — 1) K —d; + p(tjlll) . d2
K—d, + L D dl) —dy > K —d,, then we are done. Since p(d;) > dyp'(dy), we first deduce

K—d +2 —dy > K — dy. Since dy > dj, we also deduce d; > d, > dy from the

’(d

definition bd,p(d,) = K, and therefore K — dy > K — d,. Hence we are done. O

Theorem states the relationship between the PoA, PoS and the parameters b, K

when d;, < d,.

wy  o(b0(de) 1)
Theorem 3.28. Ifboth d, and d), exist, and d;, < d,, the PoS = r_ =
) ay (bp(dn) — 1)

A CICARSY
u(Ne) e (bp(ds) — 1)

ble Nash equilibria, then the “stable” PoA becomes

and the PoA = . If we only consider the non-collapsing sta-

Furthermore, when b and

uopt
u(Np)’
p(x) are fixed, and K is the only varying parameter, the PoS approaches 1 and the PoA
dn (bp(dn) — 1)
approaches its greatest lower bound as K decreases such that d, ap-

dy (bp(de) - 1)
proaches dy,, and both the PoS = ©O(K) and PoA = O(K) approach infinity as K
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keeps increasing. When K and p(x) are fixed, and b is the only varying parameter, the
PoS approaches 1 and the PoA approaches its least upper bound as b increases such
that d, approaches dy, and the PoS approaches its maximum and the PoA approaches

its minimum as b keeps decreasing until dy, does not exist.

Proof. By Corollary B.7, Uopt OCcurs at u(d,). By Theorem B.23, N, has the maximum
total utility, and /Ny, has the minimum total utility among all existing non-collapsing Nash
equilibria. Hence the PoS and PoA in our theorem follow. If we only consider the non-
collapsing stable Nash equilibria, then V,, is the only one. Hence the “stable” PoA in our
theorem follows.

According to the proof in Theorem B.26, the PoS and PoA both increase with d,, (and

K). We should also note that the numerator can be expressed as K — d,. When K is very

K K K
large, p(d,) approaches 1 and therefore d, = () ~ 7 so K —d, ~ K — 7=
1
K(1- E) = O(K).
According to the proof in Theorem .26, the PoA increases with b. We should also
do p(d,) —1/b

note that the PoS can be written as — - —2 "
dn p(dy) —1/b
increasing parameter, then d, and p(d,) decrease, and d, and p(d},) increase. In addition,

If K, p(x) are fixed and b is the only

adding the same quantity to both the numerator and denominator of an improper fraction

decreases its value. Therefore we can deduce the PoS decreases with b instead. O]

We close this chapter with the following tables concluding Theorem .24, Theorem
B.26, and Theorem [3.28.

Table 3.3: Summary of the PoS and PoA with K as the only varying parameter.
We assume d,, starts at d, and keeps increasing.

.pe dy < d, < dp dp < d,
Condition | = b s 1) | (Phase2)
u(dy) [u(dy)
PoS ! (stable PoA)
Monotonicity - increasing
Starting at 1 - Yes
PoA u(dy)/u(dy)
Monotonicity increasing
Starting at 1 Yes
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Table 3.4: Summary of the PoS and PoA with b as the only varying parameter.
We assume b starts at its valid minimum value (i.e. bxp/(x) = 1 has exactly one
solution.) and keeps increasing.

.o d, > dp, dy > d, > dy
Condition (Phase 1) (Phase 2)
u(do)/uldn)

PoS (stable PoA) !
Monotonicity decreasing -

Terminating at 1 YES -

PoA u(d,) /u(dy)
Monotonicity increasing
Starting at 1 No
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Chapter 4

Nash Equilibrium Analysis for
Three-Player File-Sharing Games

After the analysis of two-player file-sharing games, we want to consider a three-player

file-sharing game. Like Chapter 3|, the model can be simplified to the following again.
Ul(dl) = —dl + min{K, b dQ p(dl)} + min{K, b d3 p(dl)}
Uz(dz) = —dg + min{K, b d1 p(dQ)} + min{K, b d3 p(dz)}

Ug(dg) = —dg + min{K, b d1 p<d3)} + min{K, b dg p(dg)}

U = ul(dl) + Ug(dg) + U3(d3).

We also use the notation u(d) = u(d, d, d) if dy, d3, and d3 have the same value of d.

In this chapter, we do almost the same thing as in Chapter [§, including finding all
Nash equilibria under different parameter settings, analyzing their efficiency (PoA and
PoS), and observing how they vary with system parameters b and K. The only exception
is that we don’t care about their stability here. Similarly, we begin with the section which

aims to find the maximum total utility.

4.1 Maximum Total Utility

Although for two-player games we detailedly analyzed gradients of almost all points in

the domain, the technique is too complicated to apply to the three-player games. In the

37

d0i:10.6342/NTU201901991



light of this, we use another way in this chapter to prove that the point where u,,; occurs
can still be (d, d, d) where b d p(d) = K under some particular parameter settings.
The structure of our proof is illustrated below. Observing the formula of our model,

we can split u into two parts.

15843
£

After that, we want to show for each surface Z bd; p(d;) = C decided by a constant

15?;297
i#j
C, the point where both the (part 1) Z min{ K, bd; p(d;)} and (part 2) d; + dz + d3
1§?;Z.§37
i#j

attain their “own” maximum and minimum value respectively is (d, d, d) where 6 bd p(d) =
C'. Hence the maximum u “within that surface” occurs on the diagonal. According to this
conclusion, we also partition the whole domain (the positive first octant of R?) into in-
finitely many surfaces of the same type (corresponding to different C'), apply Lemma
and Lemma @, and then obtain the same conclusion for each surface. Therefore

must occur (at least) at some point on the diagonal.

The following are some lemmas and theorems related to the proof.

Lemma 4.1. In any surface Z bd;p(d;) = C >0, Z min{ K, bd;p(d;)} attains

1<4,5<3, 1<4,5<3,
i£] i#]
its maximum value on (but not limited to) the diagonal.

Proof. Consider the point (d, d, d) on the diagonal. This point makes all bd;p(d;) have
the same value of C'/6. If C'/6 < K, then

> min{K, bd;p(d)}= > C/6=C.
1<i,j<3, 1<4,5<3,
i#] i#]

Since Y min{K, bd; p(d;)} < Y bd;p(d;) = C, it attains its maximum. If
1<i,j<3, 1<1,5<3,
i#] i#]
C/6 > K, then min{K, bd; p(d;)} = K. By definition, it also attains its maximum.

Hence the result follows. O]
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Lemma 4.2. [n any straight line dy + dy = C > 0, the value of p(d) + p(dy) is (non-
strictly) decreasing with dy when dy > ds, and is (non-strictly) increasing with dy when

dy < ds.

Proof. Differentiate the value with respect to d;.

Ody

3%1 (p(dl) + p(d2)> =p'(di) + p'(ab)a—d1 = p/(dy) — p/(dy).

If dy > dy, then p'(dy) < p/(dy). If dy < dy, then p'(dy) > p/(dy). Hence the result

follows. L

Lemma 4.3. In any straight line d; + dy = C' > 0, the value of dip(dy) + dap(dy) is
(non-strictly) decreasing with d,; when d; > dy, and is (non-strictly) increasing with d;

when d; < ds.

Proof. Differentiate the value with respect to d;.

Ody  0Ody

a / /
% (dlp(d2> + dzp(d1)> = p(dy) + dip (dz)a—d1 + a—dlp(dl) + dop/(dy)

= p(da) — p(dr) + dop'(dy) — drp'(da).

If dl > dg, then p(dg) < p(d1> and dgp,(dl) < dlp/<d2). p(dg) — p(dl) + dgp/(dl) —
dlp/(dQ) S 0. Ifdl < dg, then p(dg) Z p(dl) and dzp/(dl) Z d1p'(d2). p(dz) —p(dl) +
dop'(dy) — dip'(dy) > 0. Hence the result follows. O

Lemma 4.4. In any plane d, + dy + d3 = C > 0, if d, > d,, for some players P, and P,

at a point, it always has a value of Z d; p(d;) greater than or equal to another point
1<i,j<3,

i#]
where d, is increased by § and d,, is decreased by 0, for any 6 > 0.

Proof. W.L.O.G., take x = 1 and y = 2. We can expand the formula as the following.

D= dipldy) = p(ds) - (dy + ) + (dip(d) + dap(dh)) + ds - (p(e) + plde)).
132;%53,
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By Lemma 4.3, (d;, ds,ds) has a value of dyp(ds) + dap(d,) greater than or equal to
(dy + 6,dy — 6,ds). By Lemma §.2, (dy, ds, ds) has a value of p(d;) + p(ds) greater than

or equal to (d; + 0, dy — d, d3). Since the other terms don’t change, we are done. O

Lemma 4.5. In any plane d, + dy + d3 = C > 0, the maximum value of Z d; p(d;)

IS?;Z.S&
i#]
can occur at the point where dy = dy = d3 = C'/3.
Proof. Define the function f(d;,dy,ds) = Z b d; p(d;) first for simplicity. In this
1<?7z{3
i#]

proof, we want to compare (%, %, %) with another arbitrary point (% + 41, % + 0o, % —
(61 + 0)) on the same plane, and deduce f($,$,$) > f($ 4+ 61,5 + 02, S — (61 +02)).

Without loss of generality, we can consider only two cases.

Casel. 6 > 05 >0
By Lemma ft4, f(£,$ +6,,S — 85) > f(§ +61,$ 4+ 02,5 — (61 + 05)). By
c
3

applying the same lemma again we deduce f($,5,$) > f(5,$ + 65, S — 02).

37
(66,9 > F(S 61, S 482, — (61 + ).

Case 2. 51 Z 0 Z (52 2 —51
By Lemma.4, (3 € 16140, 3,——(51—1-52)) > f(%+51>§+52, %—(51+52))-
By applying the same lemma again we deduce f($,$,$) > f($401402, 5, S —
01+62). -~ f(5.99 > F(E+61,S 40,5 — (61 +62)).

Since the inequality holds for both cases, the result follows. [

Lemma 4.6. If © > y > 0 and the values of d, and dy are not both 0, (dy, ds, x) always
has a value of Z d; p(d;) greater than (dy, da, y).

1<i,j<3,
i#]

Proof. Expand Z d; p(d;) again to observe which terms are affected by ds.

1<4,5<3,

i#]

D= dipldy) = p(ds) - (dy + ) + (dip(d) + dap(dh)) +ds - (p(d) + plde) ).
132;%53,
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Focus on the first term. " dy +dy > 0. . p(x) - (dy +d2) > p(y) - (d1 + da).
Focusonthe lastterm. - p(d;)+p(dy) > 0. .. x-(p(dl)—l—p(dg)) >y (p(d1)+p(d2)>.

Hence the result follows. 1

Lemma 4.7. In any surface Z bd; p(d;) = C >0, dy + dy + d3 attains its minimum

1<4,5<3,
i#]
value on (but not limited to) the diagonal.

Proof. Define two functions f(dy,da,ds) = > bd; p(d;) and g(dy,dp, ds) = dy +

1<4,5<3,

dy + d3. Pick one point (d, d, d) and another arb;‘?r;ry point (d + d1,d + 92, d + J3) on the
same surface. If we can prove ¢g(d, d,d) < g(d + 01,d + 62, d + J3), then we are done.

We first introduce an auxiliary point (d + 61, d + d2,d — (61 + 92)) which lies on the
same plane as (d, d, d). By Lemma .9, f(d,d,d) > f(d + 01, d + 0y, d — (6, + 05)).
" (d,d,d)and (d+91, d+ 92, d+393) lie on the same surface. .. f(d,d,d) = f(d+d1,d+
02, d+03). Thatis, f(d+6, d+0d2, d+03) > f(d+01,d+062, d—(d1+02)). According to this
inequality, we can deduce d+05 > d— (8, +0,) by Lemma.g. Since d+03 > d— (6, +05),
it is obvious that g(d 4 61, d + 02, d + 63) > g(d+ d1,d + 02, d — (61 + 92)) = g(d, d, d).

This inequality is our goal. Hence the result follows. [

Z bd; p(d;)=C4

1<ij <3,
i#]

(d + &y,d + da. d + db3)

&
(d + &y, d+ do, d — (81 + d2)) (d,d,d) r+y+z=05

Figure 4.1: A geometric illustration of Lemma .7

By Lemma }.1| and Lemma }.7, there must be a point on the diagonal where Ugpt OCCUT'S

under some parameter settings. The following theorem tells us what the settings are.
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Theorem 4.8. If'd, > 2K, then u.y, = 0. If d, < 2K, then u,y, = 3(2K —d,) > 0.

Proof. Recall the utility formula of the point (d, d, d) on the diagonal. We should note
thatd < d, <= bdp(d) < K,and d > d, <= bdp(d) > K.

3d(2bp(d)—1) il S

u=3-(—d+2 -min{K, bdp(d)}) =

3(2K—d) if d>d,.
If d, > 2K, then 2bp(d,) < 1. In this case u(d,) < 0. When d < d,, 2bp(d) <
2bp(d,) < 1 and therefore u(d) < 0. Whend > d,, 2K — d < 2K — d, and therefore
u(d) < u(d,) < 0. Hence uyy = 0. If d, < 2K, then 2bp(d,) > 1. In this case
u(d,) > 0. When d < d,, 2bp(d) < 2bp(d,) and therefore u(d) < u(d,). When d > d,,
2K — d < 2K — d, and therefore u(d) < u(d,). Hence u,y; = u(d,) > 0. O

1
Corollary 4.9. Let dy be the less solution to bxp' (x) = 5 Ifd, > dy, then uoy = u(d,).

1
Proof. . bp(d,) > bp(dy) > bdyp'(dy) = 7 d, < 2K by Definition 2.6. In this
case Uy = u(d,) > 0 by Theorem 4.g. O

We close this section with the following conclusive table.
Table 4.1: The maximum total utility of three-player games.

Condition |  Utility
dy > 2K 0
do < 2K | 3(2K —d,)

4.2 Nash Equilibria

As in the previous chapter, we are going to find Nash equilibria in order to calculate the

PoA and PoS in the next section.

Lemma 4.10. The player P; does not want to change his/her strategy d; if and only if one

of the following cases occurs.

<0.

aui>+

8 i\
Case L. ( h ) does not exist (i.e., d; = 0) and <8d4

ad,;

Case II. (g?) > 0 and (ggl>+ <0.
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Proof. Assume the other two players are P; and P, whose strategies are d; and dj,, respec-
tively. Recall the utility function u; = —d; + min{ K, bd;p(d;)} + min{K, bdxp(d;)}.

Differentiate it with respect to d;. W.L.O.G., we let d; > dj..

(
) \
o ( — d; + bd;p(d;) + bdkp(dl-)) =b(d; +dp)p'(d;) — 1 if bd;p(d;) < K
| if bd;p(d;) > K,
ZZ? = a?z. ( —di+ K + bdkp(di>> = bdip'(d;) — 1 ]
z ) and bdyp(d;) < K
) .
. _ > K.
5 ( di+ K + K) 1 if bdyp(di) > K

Since bd; and bd), are fixed nonnegative numbers, and p(z) is a nonnegative non-increasing

ou; . ) .
function, 8_2 is non-increasing for all d; > 0. Hence the result follows. L]

Lemma 4.11. In a Nash equilibrium (dy, dy, d3), if a player P; s strategy d; satisfies case
I, then so do such strategies d; and dy, of the other players P; and Py. That is, di = dy =
ds = 0.

Proof. 1f d; = 0, then the other players P; and P} fall into the case discussed in the

previous chapter. In this case bd;p(d;) = bdip(d;) = 0, so g—zz = b(d; + di)p'(0) — 1.

Ou;
od;

To ensure P, is in case I, we must guarantee < 0. Now we want to collect all Nash

equilibria in the two-player file-sharing game and find those which can make g—iZ < 0.
Consider any Nash equilibrium (d;, di) except (0,0). By the theorems related to Nash
equilibria in Chapter 3, the strategies d;, dy € [dy, dy). Tt implies b d; p'(d;) > 1 and
b dy p'(dy) > 1, and therefore b d; p’(0) > 1 and b dj, p'(0) > 1. The inequality b(d; +

d)p'(0) > 2 implies 3325 > 2 —1 =1 > 0 which is a contradiction. If (d;,d;) = (0,0),

then % = —1 < 0 which is what we need. Therefore, only d; = d; = d;, = 0 satisfies

our conclusion. O

Corollary 4.12. In a Nash equilibrium (dy, dy, ds3), if a player P;’s strategy d; satisfies
case I, then so do such strategies d; and dj, of the other players P; and Py. That is,

dl,dg,dg > 0.

In the remaining of this section we are going to discuss the Nash equilibria mentioned

in Corollary #.12. W.L.O.G., assume d; > d» > ds. According to the derivative stated
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in Lemma [4.10, all conditions of possible Nash equilibria are listed below. Take P; for

example.
Case 1. bdop(dy) < K = bdep/(dy) + bdsp'(dy) = 1.

bdgp/(dl) + bdgp/(dl) 2 1

Case 2. bdyp(dy) = K and bdsp(dy) < K =
bdsp'(dy) < 1.
Case 3. bdyp(dy) = K and bdsp(dy) = K = bdap'(dy) + bdsp'(dy) > 1.
Case 4. bdsp(dy) > K and bdsp(dy) < K = bdsp/(dy) = 1.
Case 5. bdap(dy) > K and bdsp(dy) = K = bdsp'(dy) > 1.
Case 6. bdyop(dy) > K and bdsp(dy) > K = g—gi = —1 (impossible).

We can write down the conditions for all players and arrange them into the following table.
In this table, two adjacent cells are connected together if they do not contradict each other,

but the validity of a whole combination (from column A to column C) still remains to be

verified.
Table 4.2: Condition matching for each Nash equilibrium.
First Player (Column A) Second Player (Column B) Third Player (Column C)

| *bdop(d1) < K *bdyp(de) < K *bdip(dz) < K
e bdap’(dy) + bdzp’(d1) =1 - bd1p’ (d2) + bdzp’(d2) = 1 - bdyp’(d3) + bdap’(d3) =1
*bdop(dy) = K and bd3zp(d1) < K *bdyp(de) = K and bdzp(da) < K *bdip(ds) = K and bdap(ds) < K
2 bdap'(d1) + bdzp’(d1) > 1 bd1p’ (d2) + bdzp’ (d2) > 1 bd1p' (d3) + bdap’ (d3) > 1

=3 , > , =3 ,

bdsp'(dy) <1 bdzp (d2) <1 bdop'(d3) <1
3 * bdop(d1) = K and bdzp(di) = K *bd1p(de) = K and bd3p(da) = K *bdip(dz) = K and bdap(ds) = K
- bdap’(dy) + bdzp’(d1) > 1 - bdyp’(da) + bdzp’(d2) > 1 - bdyp’(d3) + bdap’(d3) > 1
4 | *bdzp(d) > K and bdsp(dy) < K * bdyp(dy) > K and bdgp(ds) < K * bdyp(ds) > K and bdap(ds) < K
= bdzp’(d1) =1 = bdzp'(dg) =1 = bdap’(dz) =1
s | *bd2p(di) > K and bdzp(d1) = K * bdyp(dg) > K and bdgp(da) = K * bdyp(ds) > K and bdgp(ds) = K
= bdzp’(d1) > 1 = bdzp' (d2) > 1 = bdap'(dz) > 1

Definition 4.1. Let (Axz, By, C'z) denote a combination in Table #.2 which contains the
x-th row of column A, the y-th row of column B, and the z-th row of column C'. If some
specific entry is dropped, it means that the corresponding column is not important (don’t

care).

The following lemma shows that the matchings not shown in the table are invalid.
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Lemma 4.13. (Ay, By, Ch), (A1, By, C2), (A, By, Cy), (A3, B3, C3), (Asz, By, Cy), (Ag,
By, C3) are the only valid combinations in Table .2,

Proof. In this proof, we first investigate the valid matchings between column A and col-
umn B, then column B and column C, and finally between A and column C' or the validity
of the whole combinations.

Let’s see the first part. A says bdop(d;) < K, and B and B; both say bdsp(ds) = K.
Connecting these cells together will result in a contradiction bdsp(d;) < bdsp(dz) be-
cause our assumption d; > dy > ds3 should imply bdap(dy) > bdsp(ds). .. (A, B3) and
(A1, Bs) are invalid. Both A and Aj say bdsp(di) = K, and B; says bdip(ds) < K.
Connecting these cells together will result in a contradiction bd;p(ds) < bdap(d;) be-
cause our assumption d; > ds should imply bdip(ds) > bdap(d;) by Lemma .2
(As, By) and (As, By) are invalid. Both A, and A4 say bdsp(d;) < K, and both Bj
and Bj say bdsp(ds) = K. Connecting these cells together will result in a contradic-
tion bdsp(dy) < bdsp(ds) because our assumption d; > dy should imply bdsp(d;) >
bdsp(dy). .. (Ag, Bs), (As, Bs), (A4, Bs), and (A4, Bs) are invalid. If we connect A3
to By, then the constraints bdsp(d;) = K and bdyp(ds) = K will resultin d; = ds, and the
constraints bdsp(d;) = K and bdsp(dy) < K will result in d; > ds. They contradict each
other. .. (A3, Bs) is invalid. If we connect A3 to Bs, then the constraints bdap(d;) = K
and bd,p(d,) > K will result in d; > dy by Corollary 2.3, and the constraints bdsp(dy) =
K and bdsp(ds) = K along with p/(d;) > 0and p/(dy) > O will resultind; = dy by Corol-
lary R.6. The two constraints contradict each other. .. (A3, Bs) is invalid. Both A4 and
Ajs say bdyp(dy) > K, and By, Bs, and Bs says bd;p(dy) < K. Connecting these cells to-
gether will result in a contradiction bdap(d;) > bdip(ds) because our assumption dy > dy
should imply bd1p(dy) > bdap(dy). .. (A4, By), (A4, Ba), (A4, Bs), (A4s, B1), (As, By),
and (As, Bs) are invalid.

Now we consider the second part. Bj says bdip(ds) < K, and Cy, C3, Cy, and
C5 say bdip(ds) > K. Connecting these cells together will result in a contradiction

bdyp(ds) > bdyp(ds) because our assumption dy > d3 should imply bd;p(d2) > bdip(ds).
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o (B, Cy), (By,Cs), (By,Cy), and (By, Cs) are invalid. If we connect B, and Bs to
C1, then the constraints bd,p’(ds) + bdsp’(d2) > 1 and bdyp'(ds) + bdap'(d3) = 1 will
result in bd,p'(d2) = bdip'(ds) and bdsp'(dy) = bdsp'(ds) since bdip/(dy) < bdip'(ds)
and bdzp'(ds) < bdsp'(ds). According to bdyp'(dy) = bdyp'(ds), dy > 0, p'(dz) > 0, and
p'(d3) > 0, we can deduce p'(dy) = p'(d3) > 0 and therefore dy = ds. If bdyp(dy) = K
(in By and Bs), then bd;p(ds) = K which contradicts bd;p(d3) < K in Cy. .. (Bs,C})
and (Bs, C1) are invalid. Both B, and Bs say bdsp/(ds) > 1, and C says 0 < bdip/(d3) =
1 — bdop'(d3) < 1 — bdsp'(dy). If we connect By and Bs to C1, then bdsp’(dy) = 1 and
bd,p'(ds) = 0. The latter implies d; = 0 or p’(d3) = 0. However, d; = 0 contra-
dicts bdyp(dy) > K, and p/(d3) = 0 contradicts b(dy + d2)p'(ds) = 1. .. (B4, Cy) and
(Bs, C1) are invalid. By says bd;p(dy) = K and p'(dy) > 0, and Cj says bd;p(ds) = K
and p/(d3) > 0. By Corollary R.6, we deduce dy = ds, but this contradicts bdsp(ds) <
K = bdyp(ds). .. (Bg,Cs) is invalid. Both B; and Bj say bdsp(ds) = K, and both Cy
and C} say bdyp(ds) < K. Connecting these cells together will result in a contradiction
bdap(ds) < bdsp(ds) because our assumption dy > ds should imply bdap(ds) > bdsp(dz)
by LemmaR.2. - (B3, Cy), (Bs, Cy), (Bs,C3) and (Bs, Cy) are invalid. Both B, and
Bs say bdip(dy) = K, and both C and C5 say bdp(ds) > K. Connecting these cells to-
gether will result in a contradiction bd;p(ds) < bdyp(ds) because our assumption dy > d
should imply bdip(ds) > bdip(ds) by LemmaR.2. -, (Bs,Cy), (By,C5), (Bs,Cy) and
(B3, Cs) are invalid. If we connect By to Cs, then 1 = bdsp/(dy) < bdap'(d3) < 1 and it
implies dy = ds by Lemma R.4. However it contradicts bd,p(dy) > K = bdip(ds).
(By, Cy) is invalid.

Finally we check the validity between column B and column C' or the whole com-
bination. A; says bdop(d;) < K, and Cj and Cj say bdop(ds) = K. Connecting
these cells together will result in a contradiction bdop(di) < bdap(ds) because our as-
sumption d; > ds should imply bdaop(dy) > bdop(ds) by Lemma R.2. . (A1, Cs)
and (A;, Cs) are invalid. If we connect By to Cs, then the argument in the connection
(B2, C'3) mentioned in the previous paragraph can be used to deduce dy = d3. This con-

tradicts bdap(dy) = K > bdsp(dy) in As. .. (Ag, By, Cy) is invalid. In Cj, the con-
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straint bd,p(d3) = bdsp(ds) = K implies d; = dy. If we connect A, and Aj to By, then
bdyp(dsy) > K = bdap(dy) contradicts d; = dy. .. (Ag, By, C3) and (A3, By, C3) are in-
valid. A, says bdop(dy) = K and p/(dy) > 0, and C5 says bdap(ds) = K and p/(ds) > 0.
If we connect A, to Cj5, by Corollary @ we deduce d; = ds. However this contradicts
bdip(ds) > K > bdsp(dy). .. (A3, C5) is invalid. In As, bdap(dy) = K = bdsp(dy)
implies dy = ds. If we connect By and Cs, then bdsp(dy) < K = bdyp(ds) contra-
dicts dy = ds. .. (As, By, Cs) is invalid. If we connect By to Cj, then by Lemma
R.4 bdsp/(dy) = bdyp'(ds) = 1 implies dy = ds. However this contradicts bdop(dy) >
K > bdsp(dy) in Ay and Ay. . (As, By, Cy) and (A4, By, Cy) are invalid. If we con-
nect Ay to By, then bdsp’(d;) = bdsp'(ds) = 1 implies d; = ds. However this contradicts
bdp(ds) > K = bdap(ds) in Cs. .. (A4, By, Cs) is invalid. If we connect Bs to Cs, then
bdsp(dy) = K = bdyp(ds) implies dy = ds by Corollary .3, However this contradicts
bdap(dy) > K = bdsp(dy) in As. .. (As, Bs, C5) is invalid.

After checking all combinations, we can deduce that the remaining valid ones are

(Ah B17 Cl)u (A17 BQ; C?)? (Al) B47 C4>7 (A37 B37 03)7 (A37 B47 C’4)7 <A47 B47 03) D

bdspldy) = Cy

beop'(dy) = 1

beyplds) = C

L bidopl (dy) =

b | =

belap(dy) = C4

by p(ds) = Cy

Figure 4.2: A geometric illustration of Definition

Before finding all Nash equilibria according to these combinations, we must define

some variables beforehand.
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Definition 4.2. If bxp'(x) = % has two different solutions, let d,, be the less one, and let
dpn, be the greater one. If the equation has only one solution, let dy, and dj;, both denote
it. If bzp’(xz) = 1 has two different solutions, let dg, be the less one, and let djy; be the
greater one. If the equation has only one solution, let dy, and dp, both denote it. Let d,
be the unique solution to the equation bzp(x) = K. Let dj, be the unique solution to
bdpnp' () = % Let d;f, be the unique solution to bdyp' (z) = % Let dy44¢0 be the unique
solution to bxp(z) = bdy,p(d},). Let dyaen be the unique solution to bap(z) = bd}, p(du).

Let dy445¢ be the unique solution to bxp(x) = bdyep(dy,). Let diaans be the unique solution

to brp(x) = bd},p(dne).

Lemma 4.14. The parameters in Definition §.3, if exist, have the partial order shown in

the following directed acyclic graph, where A — B means A < B.

dy440¢

N

dep — dgr, — _ s dy — dp

d144h£ —_ d+

.

d144hh

Proof. We first focus on the parameters related to bdp’(d). By the property of dp'(d), dg <
P'(dem) _ bdepp'(den) 1
p(dg)  bdep'(dg)  1/2
don, < df,. By a similar argument, dp,, < d,. If dyaaee < dop, then bdyaeep(diaaee)

der, < dpe < dy;,. Besides,

=2. . p,<dgh) > p/(dZL> and

< bdyp(de) < bdeyp(dy,), with the latter inequality coming from p/(d},) > 0, is a
contradiction. If dygaee > djf, then bdisaeep(diaaee) > bdfp(dy,) > bdep(dy,) is also a
contradiction. Hence dy, < dygape < djh. By a similar argument, we can deduce dg, <
dyaaen, < dZiN Are < digane < d;lrz, and djy < digapy < dZE By definition bdghp/(dzl) =
L / p’(dﬁ) _ dp
= = bdppp (dhh)a and ———= -

2 P () don
d;@ < dhh- L]

> 1 implies d}, < dp;. By a similar argument,

After variable definitions, we can formally define all Nash equilibria and discuss the

ranges of these parameters.
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Theorem 4.15. The Nash equilibria corresponding to the combination (A1, By, C1) can
Ol’lly be Nulg = (dgg,dgg,dgg) and Nlllh = (dhhadhh;dhh)- Nulg exists lfand Ol’lly lf

de < d,, and Ni11p, exists if and only if dpy, < d,.

Proof. The “derivatives” in (A;, By, C) can be organized as
b(dQ + dg)p/(dl) = 1, b(dl + d3>p/(d2) = 1, and b(dl + d2)p,<d3) = 1

From the first two equations, since dy + d3 < d; + d3 and p'(d;) < p/(dz), then p/(d;) =
p'(dy) > 0and d; = dy. From the last two equations, we also deduce dy = d3 by a similar
argument. Therefore d; = dy = d3 = d and the equality becomes b(2d)p’(d) = 1. The
utilities in (Ay, By, C) become bdp(d) < K.

The solutions to bdp'(d) = % are only dyy and dy,,. It’s obvious that bdyp(dy) < K =
bd,p(d,) <= dw < d,, and bdp,p(dp,) < K = bd,p(d,) <= dpy < d,. Hence the

result follows. O]

Theorem 4.16. The Nash equilibria corresponding to the combination (Ay, By, Cs) can

only be Nigop = (d122€xa d122£y, d122£y) and Nigop, = (d122h:c7 d122hy7 d122hy)' IfN1224 exists,
then dy < digop, < dz;l and dy < dlgggy < dyp,. Ileggh exists, then d;@ < dyoonz < dpp,

and dpy < digopy < dpp.

Proof. Since b(ds + ds)p'(dy) < b(dy + d3)p'(d2) < b(dy + d2)p'(ds) and bdyp'(ds) >
bdsp'(ds), the derivatives in (A;, Bs, Cy) can be simplified to b(ds + d3)p'(dy) = 1 and
bdap'(ds) < 1. Observe the utility constraints. bdip(de) = K = bd;p(ds) along with
p'(dy) > 0and p/(ds) > 0 gives dy = ds by Corollary R.6. Besides, bdip(ds) = K >
bdyp(dy) implies d; > dy by Corollary R.3. Therefore d; > dy = ds and b(dy+ds)p/(dy) =
1 becomes bdsp'(dy) = % In addition, we deduce bdyp' (dy) < bdyp'(ds) because di > d3
and p(d;) > 0, so the constraint bdyp’(d3) < 1 can be extended to % < bdyp'(d3) < 1.
Let dy = d3 = d,,. Then % < bdyp'(d,) < 1implies dy < dy < dgp, V dpe < dy < dpp,
by the property of dp'(d). If the less solution is dj224y, then dyy < di226, < dyy, is proven.

If the greater solution is di224,, then dyy < di221, < dpp 1s proven.

1 1
The constraint bdyp’(d;) = —, according to our setting, becomes bd 907, p (d12202) = =
2 Y 2

1 ..
and bdy22n, 0 (di22hs) = 5 Since p'(x) is decreasing when it is greater than 0, d;22¢, and
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dy22¢, both increase or decrease together, and so do dy22p,, and dy22p,,,. Observing the ranges
of di22¢, and di22, and their corresponding solutions, we finally deduce dy < di92¢, <

d?h and d;é < di29pz < dpp. ]

Theorem 4.17. The Nash equilibria corresponding to the combination (A, By, Cy) can

only be Ny = (dZw dop, dm) and Nigap = (d;p dhe, dhz)~

Proof. The equalities bdsp’(dy) = 1 and bdep'(d3) = 1 together implies do = d3 by

Lemma @ By Definition , dy (= d3) can only be dy, or dp,. Substituting it into
1 1

bdgp,<d1) + bdgp/(d1> =1 gives bdgp/(dl) = bdgp/(dl) = 5 If bdghp,(dl) = 5, then

1
dy = dj,. Ifbdpep/ (dv) = > then d; = d;f,. Therefore N144¢ and Nyyyp, are our results. [

Theorem 4.18. The Nash equilibria corresponding to the combination (As, By, Cs) can

only be N333 = (d,,d,,d,). Nas3 exists if and only if dgy < d, < dpp.

Proof. From the utility equalities, it’s clear to conclude that d; = dy = d3 by Corollary
1

R.3, and it is also equal to d, by Definition R.6. We can deduce bd,p'(d,) > 3 from the

derivative inequalities. By the property of dp’(d), the inequality is equivalent to dy, <

d, < dpp,. O

Theorem 4.19. The Nash equilibria corresponding to the combination (As, By, Cy) can
only be N3yyy = (d344£x7 d344€y; d3441zy) and N3y, = (d344hx> d344hy7 d344hy)- If N3y exists,
then dp, < dsgaes < dZL and d344gy = dyp,. [fN344h exists, then dyy < dsgaps < d;e and

d3aahy = dps.

Proof. The equalities bdsp’(dy) = 1 and bdop'(d3) = 1 together implies do = d3 by
Lemma P.4, and the utility constraint bdip(dy) > K = bdsp(dy) gives d; > ds by Corol-
lary .3. Therefore d; > dy = ds, and b(dy+d3)p'(dy) > 1 becomes bdyp'(d;) > % Since
dy > dy and p'(d2) > 0 together implies p'(dy) < p'(ds), 1 = bdap'(ds) > bdop'(dy). If
we let d, = d; and d, = dy = dg, then the constraints become % < bd,p'(d;) < 1and
bd,p'(d,) = 1. By Definition 4.2, d, can only be dg, and dj,. If% < bdgpp'(d,) < 1,
then dy, < d, < dj,. If% < bdpep'(d,) < 1, then dy, < d, < df,. Hence the result

follows. O]
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Theorem 4.20. The Nash equilibria corresponding to the combination (A4, By, C3) can
OI’lly be N443 = (d443$7d443md443y). If‘N443 exists, then dgh S d443m S dhg and dgh S

daazy < dpe.

Proof. From C}’s derivative constraint bdsp’(dy) = 1 = bdsp'(dz), we know dy = d». Let
it be dys3, and let d3 be dyy3,. Then the equality becomes bd sz, p’ (dass,) = 1. Since p'(z)
is decreasing when it is greater than 0, dy43, and du43, both increase or decrease together.
By the property of dp'(d), their minimum is dy, and their maximum is d;,. Hence the

result follows. [

4.3 The PoA and PoS

Now we similarly want to calculate the PoA and PoS. The analysis in this section is still
split into three different cases depending on the value of d,, and we still ignore the col-

lapsing Nash equilibrium (0, 0, 0).

The objective of Lemma and Theorem is to sort all the Nash equilibria by

the total utility function.

Lemma 4.21 (Generalized Lemma B.21)). Given two points X = (d,, d,, d,,) andY =
(dy,,dy,, dys), if dey > dy, > dyg for 1 < i < 3, all terms in the form of bd,,p(d,,) < K
fori # jinu(X), and all terms in the form of bd,,p(d,,) < K fori # j in u(Y'), then
u(X) > u(Y).

Proof. Since bp(dy) > bdep' (de) = %, then bp(d,,) + bp(d.,) — 1 > 0 and bp(d,,) +
bp(dyj) — 1 > 0 are always true for all parameters not less than dy. We can write

U(X) = day, (00} 40p(dy)—1 )+ (Bp(dey)+p(dy) 1) ey (p(d, ) +bp(d;) 1), and
u(Y) = dy, (bp(dy) +0p(dy) ~1) +dy, (Bp(dy,)+0p(dy) 1) by, (p(dy,)+bp(dy,) 1)

It is clear to see that bp(d,;, ) +bp(d,, ) —1 > bp(d,,)+bp(d,,) —1 > 0, bp(d,, ) +bp(dy,) —

1> bp(dm) + bp(dyg) —12>0,and bp(d,,) + bp(ds,) — 1 > bp(dy1) + bp(dy2> -12>0,
so u(X) > u(Y). O
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Theorem 4.22. Nyyyy, if exists, has the minimum total utility, and Ni11p, if exists, has the

maximum total utility among all existing Nash equilibria discussed above.

Proof. Recall all previous theorems about Nash equilibria from Theorem to Theorem
. None of the strategies of these points are less than dy. If Nyp1, exists, then by
Theorem dnn, < d, and none of these strategies are greater than d,,. That s, bd;p(d;) <
K for these strategies. Since N111;, has the greatest contributions (strategies) of each player

among all possible Nash equilibria, by Lemma Ni11p, has the maximum total utility.

Now we’re going to show Nj;q, has the minimum total utility. If some Nash equilib-
rium other than (0, 0, 0) exists, it implies bd;p(d;) < K for some d;, d; > dy. Therefore
bdyp(de) < K and dyy < d,. Ny11, must also exist. For Nash equilibria corresponding to
the combinations (A;, By, Cy), (A1, B2, Cs), and (As, Bs, C3), they all have the property
bd;p(d;) < K for all parameters d; and d;. We can simply use Lemma to show that
the total utilities of these Nash equilibria are greater than that of Ny;1,. For other combi-
nations (A1, By, Cy), (As, By, Cy), and (A4, By, C3), we discuss them by cases. Consider
Nisae = (dfy, don, dr) of (A1, By, Cy) first. This combination implies bd}, p(dp,) > K

and bd,p(d},) < K. Therefore we can say

U(N144g) =2K — dz;l + 2bdghp(dz;l) -+ deghp(dgh) — 2dgh
> deghp(dz_h) — dz_h + defhp(dz_h) + deghp(dgh) — 2d,

= dbdenp(x) — & + 2bdgnp(den) — 2dgn | o gt

Consider the auxiliary function f(x) = 4bdy,p(x) — 2+ 2bdenp(den ) — 2d, and its deriva-
tive f'(x) = 4bde,p' (z) — 1. By definition f'(d},) = 4bduyp'(d},) — 1 = 4 - % —-1=1
and therefore f'(z) > 1forall 0 < z < dj,. We deduce u(Nis) > u(den, den, den)
from this and deduce u(dg, dgn, dgr,) > w(Ni11¢) from Lemma §.21. Similarly, we can
say u(N1aan) > u(Nq11e) if replacing dzrh with dzﬁ and replacing dy;, with dy, in the above
argument. Also, this argument can be used to explain why w(N34e) > w(N111¢) and
w(Nsa4p) > u(Ni11¢). Finally we consider Nyys = (dyass, daasgs, daasy) of (Ag, By, Cs).

This combination implies bdyss,p(dasz,) > K and bdyys,p(dassy) < K, so we can say
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Uw(Nyaz) = 2(K — duazy) + 20dsa3:p(bdassy) + 2bdaasyp(bdasss) — daasy
> 2(bdaazzp(daasy) — daase) + 2bdaaseD(bdaazy) + 2bdaszyp(bdasss) — daasy
= 2d4432(2bp(daazy) — 1) + daazy (20p(bdaaz.) — 1)
> 2d 443, (20p(daszy) — 1) + daazy (2bp(bdasz,) — 1) (. bp(daszy) = bp(den) > 1)

= U(d443y; d443y7 d443y)-

Since bd443yp<d443y) S K, we also deduce U(d443y, d443y, d443y) Z U(NHM) by Lemma

. In the end, we can say V114, if exists, has the minimum total utility. ]

After clearly comparing the total utilities of all possible Nash equilibria, we can discuss
the PoS and the non-collapsing PoA in the following three cases.
Lemma and Theorem together states the conclusion when neither dy, nor dp,,

exists, or both exist but d, < dy,.

Lemma 4.23. When d, < dy, there are no non-collapsing Nash equilibria. When d, =

dye, the only non-collapsing Nash equilibrium is N333.

Proof. We go through all Nash equilibria mentioned in several previous theorems here.
By Theorem , Ni11¢ and Nypyp, cannot exist since d, # dy and d, # dp,. By The-
orem , all the strategies di22¢z, d122¢y, di220 and di20p, are greater than dy, (and d,).
Therefore bdy220:p(d1220y) = bdi22naD(d122ny) > bdep(der) > bd,p(d,) = K and the con-
straint bd;p(dy) = K cannot be satisfied. Niso, and Npggy, cannot exist. We also figure
out that the least contribution (strategy) in Theorem is dg, which is greater than d,,
s0 bdap(dy) > bd,p(d,) = K and the constraint bdyp(d;) < K cannot be satisfied. Njg4¢
and N4, cannot exist. Similarly, all strategies in Theorem and Theorem are
not less than dyy,, so bdap(dy) > bd,p(d,) = K violates the constraint bdop(d;) = K
in (As, By, Cy), and bdyp(ds) > bd,p(d,) = K violates the constraint bdp(d;) = K in
(A4, By, C3). Niggp, N3gap, and Nyy3 cannot exist. Finally, Theorem says N333 exists

if and only if dyy < d, < djp, SO we are done. ]
Theorem 4.24. [f neither dy nor dyy, exists, or both exist but d, < dy, then the maximum
total utility of all existing Nash equilibria must be 0.
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Proof. By Lemma and Lemma [#.23), the only existing Nash equilibrium in this case
is (0,0,0) and u(0,0,0) = 0. The result follows. O

Lemma is an auxiliary proposition helping us in observing how the PoA, PoS

vary with the parameters b.

Lemma 4.25 (Generalized Lemma B.25). If K and p(x) remain fixed, and b is the only

adgg(2bp(dgg) — 1) ~ 0 d()% _ 8do
ab C ey S o

varying parameter, then (a)a—bo < 0, (b)

when dy = d,.

Proof. Part (a) can be directly deduced from the definition bd,p(d,) = K. For part (b),
1 1

recall the definition bdp'(de) = 5 first. Since dy is the less solution to bdyp' (dg) = >

by Lemma 2.1 we have ddy,/0b < 0. It means that when b increases, dy, decreases, p'(dy)

increases,

1/2
1/2 decreases, and therefore 2( 1/2 ) < 0. Also write 2( / > —

(bele) P/ (dec) 9 Ob \p/(der) Ob \p'(dec)

0 bd@g . adgg dM

o —dﬁé—i—bab,sodgg-i-bab < 0.

O( 2bdeep(dee) — dee od od od
( m > = 2dyep(dye) + Qba—;g (dee) + deap/(dﬁz)a—bw - a_;e
od

= Qngp(dM) + 2b8_b“p<dﬁ>
_ Ody,
= Qp(dgg) (dgg + b%) < 0.

K
For part (c), we go back to bd,p(d,) = K. According to this equality, % (m> =
a(bd,) od Odyg

= d, + ba—bo > (. Comparing with dy; + b% < 0 deduced above, we obtain

part (c). [

Theorem states the relationship between the PoA, PoS and the parameters b, K

when dy < d, < dpp,.

Theorem 4.26 (Generalized Theorem ). If both dyy and dyy, exist, and dgyy < d, <

. N d, | 20p(d,) — 1
dun, then the PoS = 1 and the PoA = Yont u(Nags) = < ) . Further-
u(dg) u(dgr) dye <2()p(dw) _ 1)

more, when b, p(x) are fixed, and K is the only varying parameter, the PoA approaches

1 as K decreases such that d, approaches dy, and the PoA approaches its maximum
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dnn (bp(dhh) — 1)

dog (bp(dze) - 1)
and b is the only varying parameter, the PoA approaches infinity as b keeps increasing,

as K increases such that d, approaches dp,,. When K, p(x) are fixed,

and the PoA approaches its minimum as b decreases such that d, approaches dpj,.

Proof. By Corollary §.9 Uopt = U(N333), so the PoS = 1. By Theorem 4.22, the worst

d,
non-collapsing Nash equilibrium is the point (dy, dg, dgr). Hence the PoA = u(( 7 )) . Ifb,
u(dge

p(z) are fixed and only K varies, then only d,, varies with it and the denominator doesn’t
change. Since 2bp(d,) > 2bp(dg) > 2bdgp’(de) = 1, the PoA increases with d,, (K).

Consider the case when b is the only varying parameter. We should also note that the

2K — Odye | 2bp(dye) — 1
4o . By Lemma}.25 38020 < 0and ( 50 )
dgg <2bp(dgg) — 1)

< 0, so the numerator increases, the denominator decreases, and the PoA increases with b.

PoA can be written as

If K, p(z) are fixed and b is the only increasing parameter, by part (c) of Lemma the
inequality dy < d, < dp,), always remains, so the PoA increases unboundedly. If K, p(x)
are fixed and b is the only decreasing parameter, by part (c) of Lemma the inequality
dge < d, remains, but d, may exceed dy;,. Therefore the PoA achieves its minimum as d,,

achieves its maximum (dj,). O

Theorem states the relationship between the PoA, PoS and the parameters b, K

when dy,;, < d,.

Theorem 4.27 (Generalized Theorem ). If both dg and dy,), exist, and dyy, < d,, then

do(2bp(do) 1 d, <2bp(do) - 1)
the PoS = ——#t__ _ and the PoA = — 2t _ .

u(N111n) din, (pr(dhh) _ 1) w(N111e) dys (sz(dm) — 1)
If we only consider the non-collapsing stable Nash equilibria, then the “stable” PoA

uopt
u(N 111h)'
ing parameter, the PoS approaches 1 and the PoA approaches its greatest lower bound

dnn (bp(dhh) - 1)

doe (bp(da;) - 1)
O(K) and PoA = ©(K) approach infinity as K keeps increasing. When K and p(x) are

becomes Furthermore, when b and p(x) are fixed, and K is the only vary-

as K decreases such that d, approaches dyy,, and both the PoS =

fixed, and b is the only varying parameter, the PoS approaches 1 and the Po A approaches

its least upper bound as b increases such that d, approaches dy;,, and the PoS approaches
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its maximum and the PoA approaches its minimum as b keeps decreasing until dy;, does

not exist.

Proof. By Corollary 4.9, Ugpt OCcurs at u(d,). By Theorem K.22, N1, has the maximum
total utility, and 711, has the minimum total utility among all existing non-collapsing
Nash equilibria. Hence the PoS and PoA in our theorem follow. If we only consider the
non-collapsing stable Nash equilibria, then N1y is the only one. Hence the “stable” PoA
in our theorem follows.

According to the proof in Theorem #.26, the PoS and PoA both increase with d,, (and

K). We should also note that the numerator can be expressed as 2K —d,. When K is very

K K K
large, p(d,) approaches 1 and therefore d, = () R s S0 2K —d, ~ 2K — 7 =
1

According to the proof in Theorem §.26, the PoA increases with b. We should also

d, 2p(d,)—1/b
dhh Qp(dhh) — 1/b

only increasing parameter, then d, and 2p(d,) decrease, and dy,;, and 2p(dp,,) increase. In

note that the PoS can be written as

If K, p(z) are fixed and b is the

addition, adding the same quantity to both the numerator and denominator of an improper
fraction decreases its value. Therefore we can deduce the PoS decreases with b instead.

]

We close this chapter with the following tables concluding Theorem §#.24, Theorem
4.26, and Theorem #.27.

Table 4.3: Summary of the PoS and PoA with K as the only varying parameter.
We assume d,, starts at dy, and keeps increasing.

. dy < do < dpp | dpn < d,
Condition (Phase 1) (Phase 2)
u(do) /u(dnn)
PoS ! (stable PoA)
Monotonicity - increasing
Starting at 1 - Yes
PoA u(d,) /u(der)
Monotonicity increasing
Starting at 1 Yes
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Table 4.4: Summary of the PoS and PoA with b as the only varying parameter.

We assume b starts at its valid minimum value (i.e. bxp/(x)

solution.) and keeps increasing.

" do > dpp | dpp > do > dy
Condition (Phase 1) (Phase 2)
u(do) /u(dnn)

PoS (stable PoA) !

Monotonicity decreasing -
Terminating at 1 YES -

PoA u(dy)/u(dg)
Monotonicity increasing
Starting at 1 No
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Chapter 5

Nash Equilibrium Analysis for

Multi-Player File-Sharing Games

After the analysis of three-player file-sharing games, we eventually want to generalize the
result to n-player file-sharing games. In this chapter the model is exactly in the form of

what we’ve described in Chapter £, and n denotes the number of players.

wi(dy) = —d; + Y _min{K, bdy p(d;)}, for 1 <i<n
ki

u(dy, dy, ..oy dn) = ui(dy).
=1

We also use the notation u(d) = u(d, d, ..., d) if all the d;’s have the same value of d.

In this chapter, we still do almost the same thing as in Chapter @ The difference is
that we only consider the “symmetric”” Nash equilibria (i.e., the same contribution for all

players) here, and we don’t care about their stability either.

5.1 Maximum Total Utility

The structure of the proof is exactly the same as that in Chapter 4. The following are some

related lemmas and theorems.
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Lemma 5.1 (Generalized Lemma U.1)). In any surface Z bdip(d;)) = C > 0,

1<i,j<n,
i#]
Z min{ K, bd;p(d;)} attains its maximum value on (but not limited to) the diago-
1<i,j<n,
1#j
nal.

Proof. Consider the case when all d;’s are the same. This case makes all bd;p(d;) have

the same value of C'/(n(n —1)). If C'/(n(n — 1)) < K, then

Z min{ K, bd; p(d; Z C/(n(n—1))=C
1<4,5<n, 1<4,5<n,
i#] ]

Since Y min{K, bd; p(d;)} < > bd;p(d;) = C, it attains its maximum. If
1<i,j<n, 1<i,j<n,
i#] i#]
C/(n(n — 1)) > K, then min{K, b d; p(d;)} = K. By definition, it also attains its

maximum. Hence the result follows. O]

Lemma 5.2 (Generalized Lemma W.4). In any plane Z d = C >0, ifd, > d, for
i=1
some players P, and P, at a point, it always has a value of Z d; p(d;) greater than

1<i,j<n,
i#]
or equal to another point where d,, is increased by ¢ and d,, is decreased by 6, for any

6> 0.

Proof. W.L.O.G., take x = 1 and y = 2. We can expand the formula as the following.

> dip(dy) = (dy+do)- Y pldi)+ Y dipl(dy)

1<i,j<n, 1=3 3<i,j<n,
i#] ]

+ <d1p(d2) +d2p(d1)) ( (d1) + p(dy ) Zd

By Lemma [{.3, dyp(ds) + dap(dy) > (dy + 6)p(da — &) + (da — &)p(dy + &). By Lemma
B2, p(dy) + p(ds) > p(dy + 6) + p(dy — 6). Since the other terms don’t change, then we

are done. O]
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Lemma 5.3 (Generalized Lemma {.5). In any plane Z d; = C' > 0, the maximum
i=1
value of Z d; p(d;) can occur at the point where d; = C/n for all 1 <i < n.

1<4,5<n,
i#]

Proof. Define the function f(dy, ds, ..., d,) Z bd; p(d;) first for simplicity. In this
1<4,5<n,
i#]
(C’ c

proof, we want to compare (£, €, ..., €) with another arbitrary point (£+8;, £+, ..., €+

n—1

On1, %—Z §;) on the same plane, and deduce f(£, <€, ..., €) > f(£+61, S 465, ..., S+

i=1
n—1

On—1, %—Z d;). Consider the following argument. If a point P(d;, ds, ..., d,,) on the same
i=1
plane is not (£, €, ..., €), there must be some d; > < and some d; < £. If |[d; — £| >

|d; — %], then we can adjust the point to a new one () where d; becomes d; — (% —d;) >

3|Q

and d; becomes <. In this case f(P) < f(Q). If |[d; — £| < |d; — £, then we can adjust
the point to another one R where d; becomes % and d; becomes d; + (d; — %) < % In

this case f(P) < f(R). Then we can repeat the above procedure until the point becomes

(%, %, o Q). The procedure will be executed only at most n times since in each iteration
there must exist at least one d; which becomes ¢ Hence f(¢ o n, e %) is the maximum
value on the plane. [

Lemma 5.4 (Generalized Lemma [{.6). If the strategies d; s of all players P;’s (except
for P, 5 dy) are not all 0, then the value of Z d; p(d;) increases with dj.

1<4,5<n,
]

Proof. Expand Z d; p(d;) again to observe which terms are affected by dy.

1<¢,5<n,
i
> dz‘p(dj):p<dk)'<zdi>+( > dip >+dk (Zp )
1<ij<n, itk 1<i,j<n, itk
i i#j, ik, jih

Focus on the first term.

'.'Zdi>0- cop(dg +90) - (Zd>>pdk (Zd)for(5>0

itk i#k i#k
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Focus on the last term.

= STp(d) > 0. (d+6) (Zp >>dk-<2p(di)>for5>0.

itk itk itk
Hence the result follows. [
Lemma 5.5 (Generalized Lemma §.7). In any surface Z bd;p(d;) =C >0, Z d;
1<4,5<n,
i#j

attains its minimum value on (but not limited to) the diagonal.

Proof. Define two functions f(dy,dy, ....d,) = Y bd; p(d;) and g(dy, dy, ..., d,) =

Z d;. Pick one point (d, d, ..., d) and another arbitrary point (d + d1,d + s, ..., d + ;)
i=1
on the same surface. If we can prove g(d, d, ...,d) < g(d+ 61,d+ 0s, ...,d+ 0,,), then we

are done.

n—1

We first introduce an auxiliary point (d 4 d1,d+ 9, ..., d+ 6,1, d — Z 9;) which lies
on the same plane as (d,d, d). By Lemma 5.3, f(d,d,...,d) > f(d + gild + 09, ..., d +
Op—1,d — nzjlél) o (d,d,...,d) and (d 4+ d1,d + ds, ...,d + 0,,) lie on the same surface.
. f(d,d, Z:,Id) = f(d+ 61,d + 0g,...,d + 6,). Thatis, f(d+ 01,d + b,...,d + ) >

n—1

fld+61,d+ 09y..cd + 6p1,d — Z d;). According to this inequality, we can deduce

i=1
n—1 n—1

d+9, > d-— Z 6; by Lemma [.4. Since d + 6, > d — Zéi, it is obvious that

i=1 i=1
n—1

g(d+ 6v,d + 6y, .id + 6,) = g(d + 61, d + 6,1,d — Y ;) = g(d.d, ...,d). This
i=1
inequality is our goal. Hence the result follows. U

By Lemma 5.9, there must be a point on the diagonal where Uopt OCCUTS under some

parameter settings. The following theorem tells us what the settings are.

Theorem 5.6 (Generalized Theorem {.8). If d, > (n — 1)K, then Upt = 0. If d, <
(n— 1)K, then ugy =n ((n — 1)K —d, ) > 0.

Proof. Recall the utility formula of the point (d, d, ..., d) on the diagonal. We should note
thatd < d, <= bdp(d) < K,and d > d, <= bdp(d) > K.
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nd((n—1)bpd)—1) if d<d,
u=n-(—d+(n—1)-min{K, bdp(d)}) = (4 Jbpid) ) =

n((n—1)K-d) if d>d,

If d, > (n — 1)K, then (n — 1)bp(d,) < 1. In this case u(d,) < 0. When d < d,,
(n—1)bp(d) < (n—1)bp(d,) < 1 and therefore u(d) < 0. Whend > d,, (n—1)K —d <
(n — 1)K — d, and therefore u(d) < u(d,) < 0. Hence u,,; = 0. If d, < (n — 1)K, then
(n —1)bp(d,) > 1. In this case u(d,) > 0. When d < d,, (n — 1)bp(d) < (n — 1)bp(d,)
and therefore u(d) < u(d,). Whend > d,, (n — 1)K —d < (n— 1)K — d, and therefore
u(d) < u(d,). Hence uyp = u(d,) > 0. O

Corollary 5.7 (Generalized Corollary #.9). Let d;, be the less solution to bxp'(x) =
1

— Ifd, > dy, then uy, = u(d,).

n JR—

1
Proof. - bp(d,) > bp(dy) > bdpp'(dy) = — do< (n — 1)K by Definition 2.6,
n p—

In this case u,, = u(d,) > 0 by Theorem 5.4. O
We close this section with the following conclusive table.
Table 5.1: The maximum total utility of multi-player games.
Condition | Utility

do > (n—1)K 0
do<(n—=1K |n((n—1)K—d,)

5.2 Nash Equilibria

Before calculating the PoA and PoS, it is necessary to generalize some theorems in the

previous chapter first.

Lemma 5.8 (Generalized Lemma §.10). The player P; does not want to change his/her
strategy d; if and only if one of the following cases occurs.

- o\ +
gz» does not exist (i.e., d; = 0) and (gzz) =0

Case I (

Case II. (g?) > 0 and (ggl>+ <0.
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Proof. Assume there are n players P, to P,, whose strategies are d; to d,,. Recall the utility

function u; = —d; + Z min{ K, bdyp(d;)}. Differentiate it with respect to d;. W.L.O.G.,
ki

we assume the strategies d; to d,, (except for d;) are in ascending order. If there exists

some 1 < j < n such that bdyp(d;) < K forall 1 < k < j (but k # ¢) and bdyp(d;) > K

forall j +1 < k < n (but k # 1), then

aui 0 ] .
od, ~ od, ( —d; + Z 'bdkp(di) + (n —j)K> =—-1+ Zlbdkp (dy).

If bdkp(d;) > K for all k # 4, then

R

Since bdy,’s (for all k& # i) are fixed nonnegative numbers, p’(z) is a nonnegative non-

ou;
od;

increasing function, and j cannot be incremented as d; goes up, is non-increasing for

all d; > 0. Hence the result follows. ]

However, since the Nash equilibria in which at least two players have different strate-
gies are too difficult to analyze, we simply assume strategies of players are all the same

in this section. The derivative of utility is shown below.

,
0 /
2, ( —d; + Z bdkp(di>) = b( Z dk)p (di) =1
ki k#i
8ui
od; = (n = Dbdip'(d;) =1 if bdip(di) < K
0
\ 8dl

(— d; + (n — 1)K> — 1 if bdyp(dy) > K.

According to the above conclusion, all possible Nash equilibria we care about in this

section can only be O (the origin), N, N,, and Ny stated in the following theorems.

Definition 5.1. If bzp'(z) = 1 has two different solutions, let d;, be the less one, and

let dy; be the greater one. If it has only one solution, let d;, and dy both denote it.
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Theorem 5.9. The Nash equilibrium Ny, where all players have the same strategy d,
exists if and only if d, < d,. The Nash equilibrium Ny, where all players have the same

strategy dy, exists if and only if dy < d,.

Proof. The two points correspond to the case when (n—1)bd;p’(d;)—1 = 0 and bd;p(d;) <
K. Since bd;p(d;) < K = bd,p(d,) if and only if d; < d,, the result follows.

Theorem 5.10. N, exists if and only if d;, < d, < dp.

Proof. The point corresponds to the case when (n—1)bd;p'(d;) —1 > 0 and bd;p(d;) = K.

Since bd,p'(d,) >

1
] ifand only if d;, < d, < dp, the result follows. ]

5.3 The Symmetric PoA and PoS

We can eventually discuss the PoS and non-collapsing PoA. Since we assume all play-
ers have the same strategy, the definitions of the PoS and non-collapsing PoA should be

modified a little.

Definition 5.2. We say a Nash equilibrium is “symmetric” if all players have the same

contribution on that point.

uopt
u(the best symmetric Nash equilibrium)

Definition 5.3. Let the symmetric PoS =

Definition 5.4. Let the non-collapsing symmetric PoA

U'opt
u(the worst symmetric Nash equilibrium except for the origin)

Lemma is convenient for us to compare the values of total utility of two different

symmetric Nash equilibria.

Lemma 5.11 (Generalized Lemma §4.21). Given two points X = (d,,,d.,, ..., d,, ) and
>

Y = (d,,d ,dy,), we can deduce w(X) > w(Y) ifd, > d,;, > d,, dy, for

Y1y Yyzs o0 n )’ -

1< <n.

1
Proof. Since bp(dy) > bdpp'(dL) = 7 then E bp(d,,) —1 > 0 and
n —
i# some fixed k

Z bp(d,,) —1 > 0 are always true for all parameters not less than d;,. In addition,
1% some fixed k
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bdy;p(d,;) < K and bd,,p(d,,) < K are always true for all parameters not greater than

d,. We can write

u(X) = idzk : (pr(d%) - 1), and
k=1

ik
u(Y) = zn:dyk ' (Z bp(dy,) — 1)-
k=1 i#k

It is clear to see that pr(dwi) -1 > pr(dw) —1>0foralll < k < n, so
i#k i#k
w(X) > u(Y). O

Theorem states the conclusion when neither d;, nor dy exists, or both exist but

d, < dj.

Theorem 5.12. If neither d;, nor dy exists, or both exist but d, < dy, then the maximum

total utility of all existing Nash equilibria must be 0.

Proof. Since in this case the only existing symmetric Nash equilibrium is the origin O and

u(O) = 0, the result follows. O

Lemma is an auxiliary proposition helping us in observing how the PoA, PoS

vary with the parameters b.

Lemma 5.13 (Generalized Lemma §.25). If b is the only varying parameter and all the
ody ((n = Lbp(ds) — 1)

% < 0, and

ad,
other parameters are fixed, then (a) < 0, (b)

od od, o
L 1o)
5 <o

when d;, = d,,.

Proof. Part (a) can be directly deduced from the definition bd,p(d,) = K. For part (b),

1
recall the definition bd p'(dy) = . first. Since d, is the less solution to bdp'(dy) =
n —

1
T by Lemma R2.1| we have 0d;,/0b < 0. It means that when b increases, d;, decreases,
n JE—

: 1/(n—1) 0 /1/(n—1) :
'(d;) increases, ———— decreases, and therefore — ( ————%~) < 0. Also write
pa( L>/( ) ’ aab< .
1/(n—1 bdy, dr, dr,
il = =d; +b——=,s0d; +b—= .
i V(dy) )= =g, = o by so di b <0
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a((n — D)bdyp(dy) — dL>

- = (n — 1)dpp(dp) + (n — 1)5%17(@)
+(n— 1)dep’(dL)aa—dbL T %L
= (n — 1)dpp(dp) + (n — 1)5%1?(%)
— (n— 1)p(dy) (dL + b%) <0.

. : . 0/ K
For part (c), we go back to bd,p(d,) = K. According to this equality, — <—> =

9b\p(d,)
a(bd,) ad, . . L .
% do + b o > (. Comparing with d + b% < 0 deduced above, we obtain
part (c). [

Lemma is an auxiliary proposition helping us in observing how the PoA, PoS
vary with the parameters n.

Lemma 5.14. If n is the only varying parameter and all the other parameters are fixed,
6dL((n — Dbp(dy) — 1)
on

1
Proof. Recall the definition (n — 1)dp/(dy) = 5 first. Since d, is the less solution to

then < 0.

1
(n—1)dpp'(dr) = > by Lemma 2.1 we have dd; /On < 0. Differentiating both sides of

the equation with respect to n gives

od o od
dep/(dp) + (n = 1) 2p/(dr) + (n = 1)dyp"(d) 5 = = 0.
, adry " ody,
p'(dr) - <dL +(n— 1)%) = —(n—1)drp (dL)% <0.
o ady,
Since p/(dy) > 0, we deduce dj, + (n — 1)% <0.
a((n — 1)bdrp(dp) — dL> o o,
o = bdp(dy) + b(n — 1)%29( L)
o ad,  ody,
ody,
= bdrp(d) + b(n — 1)%29(%)

— bp(dL)<dL +(n— 1)%) <0.
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Theorem states the relationship between the PoA, PoS and the parameters b, K,

nwhend; <d, < dg.

Theorem 5.15 (Generalized Theorem U.26). If both d;, and dy exist, and d; < d, <
wp u(Ny) (0= Dlpld) 1)
u(dy,) u(dr,) dr, <(n — Dbp(dy) — 1)

Furthermore, when K is the only varying parameter and all the other parameters are

dg, then the PoS = 1 and the PoA =

fixed, the PoA approaches 1 as K decreases such that d, approaches dy, and the PoA
du (bp(dH) - 1)

dr, (bp(dL) - 1)
When b is the only varying parameter and all the other parameters are fixed, the PoA

approaches its maximum as K increases such that d, approaches dy.

approaches infinity as b keeps increasing, and the PoA approaches its minimum as b
decreases such that d, approaches dy. When n is the only varying parameter and all the
other parameters are fixed, the PoA approaches infinity as n keeps increasing, and the

PoA approaches its minimum as n decreases such that dy approaches d,,.

Proof. By Corollary (.7 Uopt = u(N,), so the PoS = 1. By Lemma B.11], the worst
u(d,)
If only K varies and all the other parameters are fixed, then only d,, varies with it and the

non-collapsing Nash equilibrium is the point (dy,dy, ...,d). Hence the PoA =

denominator doesn’t change. Since (n—1)bp(d,) > (n—1)bp(dL) > (n—1)bdp'(dL) =
1, the PoA increases with d,, (and K).

Consider the case when b is the only varying parameter. We should also note that

(n— DK —d, . By Lemma% < 0 and
dL<(n —1)bp(dy) — 1)

0b

the PoA can be written as

8dL<(n — 1)bp(dy) — 1)
0b
and the PoA increases with b. If b is the only increasing parameter and all the other

< 0, so the numerator increases, the denominator decreases,

parameters are fixed, by part (c) of Lemma the inequality d;, < d, < dy always
remains, so the PoA increases unboundedly. If b is the only decreasing parameter and
all the other parameters are fixed, by part (¢) of Lemma the inequality d;, < d, re-
mains, but d, may exceed dy. Therefore the PoA achieves its minimum as d,, achieves
its maximum (dg).

Consider the case when n is the only varying parameter. The PoA can be written as
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VK —d, ody, ((n — 1)bp(dy) — 1)
(n ) . By Lemma
dr, ((n — D)bp(dy) — 1) on
ator increases, the denominator decreases, and the PoA increases with n. If n is the only

< 0, so the numer-

increasing parameter and all the other parameters are fixed, it is obvious that the inequal-
ity d;, < d, < dy always remains, so the PoA increases unboundedly. If n is the only
decreasing parameter and all the other parameters are fixed, then d; may exceed d, or dy
may fall below d,. Therefore the PoA achieves its minimum as d;, achieves its maximum

(d,) first or dp achieves its minimum (d,,) first. [

Theorem states the relationship between the PoA, PoS and the parameters b, K,

n when dyg < d,.

Theorem 5.16 (Generalized Theorem §.27). If both d;, and dy exist, and dy < d,, then

the Po§ — —pt_ _ d0(<n_ Hoptde) ~ 1 dihe PoA — ot _ d0<(”_ Lbp(do) - 1)
e PoS = u(Ny) dH<(n  )bpldn) — 1) and the PoA = u(Np) dL((n  1yop(dy) 1).

If we only consider the non-collapsing stable Nash equilibria, then the “stable” PoA be-

uopt
parameters are fixed, the PoS approaches 1 and the PoA approaches its greatest lower
dy (bp(dH) 1
bound as K decreases such that d, approaches dy, and both the PoS =
dr (bp(dL) - 1)
O(K) and PoA = O(K) approach infinity as K keeps increasing. When b is the only

comes Furthermore, when K is the only varying parameter and all the other

varying parameter and all the other parameters are fixed, the PoS approaches 1 and the
PoA approaches its least upper bound as b increases such that d, approaches dy, and the
PoS approaches its maximum and the Po A approaches its minimum as b keeps decreasing
until dy does not exist. When n is the only varying parameter and all the other param-
eters are fixed, the PoS approaches 1 and the PoA approaches its least upper bound as
n increases such that dy approaches d,, and the PoS approaches its maximum and the

PoA approaches its minimum as n keeps decreasing until dg does not exist.

Proof. By Corollary .7, Uopt Occurs at u(d,). By Lemma B.11, Ny has the maximum
total utility, and N, has the minimum total utility among all existing non-collapsing Nash
equilibria. Hence the PoS and PoA in our theorem follow. If we only consider the non-

collapsing stable Nash equilibria, then Ny is the only one. Hence the “stable” PoA in our
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theorem follows.
According to the proof in Theorem .13, the PoS and PoA both increase with d,, (and

K). We should also note that the numerator can be expressed as (n — 1) K — d,. When K
K

bp(d,)

is very large, p(d,) approaches 1 and therefore d, =

K 1
(n— 1K =5 = K((n—1) = 3) = O(K),

K
%?,so(n—l)K—dOz

According to the proof in Theorem .15, the PoA increases with b. We should also

note that the PoS can be written as ﬁ . (n— Dp(d,) — 1/ .
dn (n—Dpldn) — 1/b

parameter and all the other parameters are fixed, d, and (n — 1)p(d,) decrease, and dy

If b is the only increasing

and (n — 1)p(dy) increase. In addition, adding the same quantity to both the numerator
and denominator of an improper fraction decreases its value. Therefore we can deduce
the PoS decreases with b instead.

According to the proof in Theorem (.13, the PoA increases with n. We should also

note that the PoS can be written as @ . bp(do) — 1/(n — 1)
dg bp(dg) —1/(n—1)

parameter and all the other parameters are fixed, then dy increases and so does the de-

. If n is the only increasing

nominator. In addition, adding the same quantity to both the numerator and denominator
of an improper fraction decreases its value. Therefore we can deduce the PoS decreases

with n instead. U

We close this chapter with the following tables concluding Theorem 5.12], Theorem
.13, and Theorem B.16.

Table 5.2: Summary of the PoS and PoA with K as the only varying parameter.
We assume d,, starts at d;, and keeps increasing.

egs dLSdOSdH dH<do
Condition (Phase 1) (Phase 2)
u(d,)/u(dp)
PoS ! (stable PoA)
Monotonicity - increasing
Starting at 1 - Yes
PoA u(d,)/u(dr)
Monotonicity increasing
Starting at 1 Yes
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Table 5.3: Summary of the PoS and PoA with b as the only varying parameter.

We assume b starts at its valid minimum value (i.e. bxp/(x) =
n

solution.) and keeps increasing.

-1

oo do > dp dg > do > dp,
Condition (Phase 1) (Phase 2)
u(d,) [uldi)

PoS (stable PoA) !

Monotonicity decreasing -
Terminating at 1 YES -

PoA u(d,)/u(dr)
Monotonicity increasing
Starting at 1 No

has exactly one

Table 5.4: Summary of the PoS and PoA with n as the only varying parameter.

We assume 7 starts at its valid minimum value (i.e. bxp'(x) =
n J—

solution.) and keeps increasing.

.o dH<do dLSdogdH
Condition (Phase 1) | (Phase 2)
u(dy) [uldi)

PoS (stable PoA) !

Monotonicity decreasing -
Terminating at 1 uncertain -

PoA u(dy) /u(dy)
Monotonicity increasing
Starting at 1 No
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Chapter 6

Conclusion and Future Work

In the last chapter, we’re going to briefly conclude our analysis, describe additional pos-
sibly extended models, and discuss some aspects that can be improved in the future.

In a two-player file-sharing game, we detailedly examine all Nash equilibria includ-
ing their stability. When the need for resources is almost not limited, there are two non-
collapsing Nash equilibria, one of which with a greater contribution is stable. When the
need is a little limited, the contribution of the Nash equilibrium with a greater contribu-
tion will be lowered and it will become unstable. Besides, there exist two additional side
Nash equilibria in this case. When the limitation is drastic, the system will collapse. In a
three-player file-sharing game, we still examine all Nash equilibria, yet without stability.
In a multi-player file-sharing game, we only examine symmetric Nash equilibria without
stability. The conclusion of the PoA and PoS remains the same when the number of play-
ers increases from two to three. It remains the same for an arbitrary number of players if
we only consider the symmetric Nash equilibria.

We give an intuitive explanation of the PoS and PoA here. The PoS and PoA both
increase with K since the Nash equilibria (the consequence of selfishness) naturally falls
behind the maximum total utility (which increases with the amount of resources). We also
discover that the two parameters b and n both represent the flexibility of the model. If we
increase b and n, ideally the best Nash equilibrium will be improved and the worst Nash
equilibrium will be deteriorated. Hence the PoS decreases with b, n but the PoA increases

with b, n. When the need for resources is a little limited, the PoS can remain 1 because
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the maximum total utility is not too far away such that the best Nash equilibrium is able

to catch up.

After the analysis in multi-player file-sharing games, the reader may make a guess of
the following conjectures. First, (dr,dy, ..., dy) is always unstable, and (dy,dy, ..., dy)
is always stable in a multi-player file-sharing game. Second, u(dy,dy, ..., dy) is the least
among all non-collapsing Nash equilibria, and u(dy, dy, ..., dy) is the greatest among all
non-collapsing Nash equilibria. If the second conjecture is true, the PoA and PoS derived
in multi-player file-sharing games are always true even if we take all Nash equilibria into

consideration.

In this thesis, we assume each player can provide at most the benefit K of resources
to all other players. This is a simple assumption. If we further consider a more realistic

situation where they have different limitations K, the utility function becomes
wi(d) = —d; + > _min{K;, bd; p(d;)}, for 1 <i<n.
J#

If each player has his/her own desired resources of the “total” benefit K distributed on all

the other players, the utility function becomes
wi(d;) = —d; + min{K, bp(d;) Y _d;}, for 1 <i<mn.
J#
If the benefits of these resources (K;) are different, the utility function becomes
J#i
If all players have their unique “files” of different benefits (K ;) and each player will try

their best to retrieve all files from all the other players, the utility function becomes
wi(d;) = —d; + Y _if {bd; p(d;) > K;} - K, for 1 <i<n,
J#
where the value of the “if” function is defined to be 1 if the condition is true, and defined
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to be 0 if the condition is false. Since a file is valid only if all portions of it are retrieved,
we use the “if” function here. They are also good research problems.

Finally, the reader may discover that in the results of [2] and our thesis, the common
problems of P2P such as whitewashing attacks and sybil attacks from malicious users are
still not taken into consideration. In fact there are many studies [|1, 4, 11, [13, [15] focusing
on these problems. Maybe we can study these papers in the future and improve our models

to concretely solve the problems.
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