SEEE BE E 8 SIS ENE 2ok
R
Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Scien¢e
National Taiwan University
Master Thesis

Mg s PREEAN SR ARNLS T E
DT SUNRTIR %
Vanishing Nodes: The Phenomena That Affects The
Representation Power and The Training Difficulty of Deep

Neural Networks

ik~ 7
Wen-Yu Chang

TEE SRR S
Advisor: Tsung-Nan Lin

PoEA R 108 & 77
July, 2019

doi:10.6342/NTU201901446

Ry K2 (78) B2k
55“?‘5\ @'%/ﬁa

FEILHK - BERBWRERZ KA > 1E L%
VI E &
Vanishing Nodes:
The Phenomena That Affects The Representation Power
and The Training Difficulty of Deep Neural Networks

WX AR X TE (r06942064) AR L EERLZEREIRERAR
PIT % ﬁkzéé (Tﬁ‘?) T2 HRE 108 £ 07 A 10 B AT 74 3%
2R FLRBRORKEM - HFILBEA

== v 3 = I)
A 2B s

(38 F#3%)
0] & L
& 7 > \ ,/ [1
e ({ 7 %‘“K
_p C _\ £
S o P %

7
g R e R TS

doi:10.6342/NTU201901446

3 &

2

HRBRYGNA > - SARE LVHURE A SRE - PR A

ThwmAa APFR- AR E TH 524 (Vanishing Nodes) | <7
TG RS € R R A T A CRBEAER o H S AR
P2 B EIRRRAAM SfAF L ERA LA aip AR &
Bood RARFAGLRREF FRP OH AR §RF o S
i 2B R AEA S T4 S5~ 4 (Vanishing Nodes) j o ¥ 12 %% d A e
Boerdp b S BcR A S AN A PBEMIE BET E IR gAY
AR B RERIERE ST R TR AR Voo KEEAS TS
FRDAFBFEZAVRT A EANAAREERFITLP
BE o A0 35 SR A AR B AR A et DR A

,,,,, SRRy - M o

MeET | FREY PR ABERY LG, AR A SRR,
PRVRN AL, T2 Sl b, AR I AR

il

doi:10.6342/NTU201901446

Abstract

It is well known that the problem of vanishing/exploding gradients creates
a challenge when training deep networks. In this paper, we show another phe-
nomenon, called vanishing nodes, that also increases the difficulty of training
deep neural networks. As the depth of a neural network increases, the net-
work’s hidden nodes show more highly correlated behavior. This correlated
behavior results in great similarity between these nodes. The redundancy of
hidden nodes thus increases as the network becomes deeper. We call this
problem Vanishing Nodes.” This behavior of vanishing nodes can be char-
acterized quantitatively by the network parameters, which is shown analyt-
ically to be proportional to the network depth and inversely proportional to
the network width. The numerical results suggest that the degree of vanishing
nodes will become more evident during back-propagation training. Finally,
we show that vanishing/exploding gradients and vanishing nodes are two dif-

ferent challenges that increase the difficulty of training deep neural networks.

Keywords: Deep learning, Vanishing gradient, Learning theory, Represen-
tation power, Network architecture, Training difficulty, Orthogonal initializa-

tion, Node redundancy, Random matrices

il

doi:10.6342/NTU201901446

Contents

& i
iii
1 Introduction 1
2 Related Work 3
P.1 Difficulties in training deep nerual networks 3
P.2 Representation power of deep neural networkl 3
B Vanishing Nodes: correlation between hidden nodes 5
B.1 Vanishing Node Indicator o v i i 6
B.2 Impacts of back-propagation 14
B.3 Relationship between the VNI and the redundancy of nodes 15
B.4 The vanishing of the representation powetl 18

B.5 The effect of the orthogonal weight matrices to the representation power . 21

B.6 Representation power of residual-like architecture§ 23
4 Variance propagation of deep neural networks 39
#.1 Comparison of exploding/vanishing eradients and vanishing nodes 39
#.2 Norm-preserving weight initialization 41
#.3 The two obstacles for training deep nerual networky 42
5 Experiments 45
5.1 Probability of failed training caused by vanishingnode§ 45
v

doi:10.6342/NTU201901446

5.2 Analyses of failed training caused by vanishing nodes

6 Conclusion

doi:10.6342/NTU201901446

List of Figures

B.1 Scatter plots for the linear activation and the scaled-Gaussian initialization| 8

B.2 Scatter plots for the Hard-Tanh activation and the scaled-Gaussian ini-

.................................. 9
alization]

B.3 Scatter plots for the Re LU activation and the scaled-Gaussian initialization) 10

B.4 Scatter plots for the linear activation and the scaled-uniform initialization| 11

B.5 The results of VNI R,, with respect to network depth L| 27
B.6 The magnitudes of correlation coefficient p,; between output nodes| . . . 28
B.7 The dynamics of VNI R,, of the output layer] 28
B.8 The dynamics of VNI R,, of hidden layers| 29
B.9 The averages of squared correlation coefficients p;; over 50 runs) 30
B.10 The effective number of nodestothe VNI R} 31
B.11 Numerical simulation for eqn. (3.28) 32
B.12 The initial VNI R,, of Gaussian initialized networks| 33
B.13 The initial VNI R,, of orthogonal initialized networks| 34
B.14 The architectures of residual deep networky 35
B.15 The initial VNI R,, of residual networks| 36
B.16 The initial VNI R,, of different network architectures| 37
B.17 The initial VNI R,, of convolutional neural networks) 38
#.1 The schematic diagram for deep neural network architectureg 43
5.1 Probability of successful training for the SGD optimizer| 46
5.2 Probability of successful training for the SGD + Momentum optimizer| . . 47
5.3 Probability of successful training for the Adam optimizer| 48
vi

doi:10.6342/NTU201901446

6.4

5.5
5.6 Box and whisker plot of 02 11, for networks with failed trainit_ﬂgj’if of
5.7 Histogram of R,, of failed/successful networks| | \

vii

doi:10.6342/NTU201901446

List of Tables

B.1 The u of different activation functions) 26

B.2 The s; of different weight distribution) 26

B.3 The maximum depth for different architectures and initializationg 26

5.1 The detailed numbers of successful and failedruns) 52
viii

doi:10.6342/NTU201901446

Chapter 1

Introduction

Deep neural networks (DNN) have succeeded in various fields, including computer vision
[22], speech recognition [|19], machine translation [40], medical analysis [35] and human
games [33]. Some results are comparable to or even better than those of human experts.

State-of-the-art methods in many tasks have recently used increasingly deep neural net-
work architectures. The performance has improved as networks have been made deeper.
For example, some of the best-performing models [[17, 18] in computer vision have in-
cluded hundreds of layers.

Moreover, recent studies have found that as the depth of a neural network increases,
problems such as vanishing or exploding gradients make the training process more chal-
lenging. [9, 16] investigated this problem deeply and suggested that initializing weights
in appropriate scales can prevent gradients from vanishing or exploding exponentially.
[28, 32] also studied how vanishing/exploding gradients arise via mean field theory and
provided a solid theoretical discriminant to determine whether the propagation of gradients
is vanishing/exploding.

Inspired by previous studies, we investigated the correlation between hidden nodes
and discovered that a phenomenon that we call vanishing nodes can also affect the ca-
pability of a neural network. In general, the hidden nodes of a neural network become
highly correlated as the network becomes deeper. The correlation between nodes implies
the similarity between them, and high degree of similarity between nodes produces re-

dundancy. Because a sufficient number of effective nodes is needed to approximate an

doi:10.6342/NTU201901446

arbitrary function, the redundancy of nodes in hidden layers may debilitate the represen-
tation capability of the entire network. Thus, as the depth of the network incteases, the
redundancy of hidden nodes may increase and hence affect the network’s trainab_i_lity. We
name this phenomena as ”Vanishing Nodes.” _ ‘ _

We propose a Vanishing Node Indicator (VNI), which is the weighted averagé of squ'éred
correlation coefficients, as the quantitative metric for vanishing nodes. VNI can be theo-
retically approximated via the results on the spectral density of the end-to-end Jacobian.
The approximation of VNI depends on the network parameters, including the width, the
depth, the distribution of weights, and the activation functions, and it is shown to be simply
proportional to the network depth and inversely proportional to the network width.

In addition, the numerical results show that back-propagation training also intensifies
the correlations of hidden nodes when we consider a deep network. We find that although
we use a relatively large network width, the correlations of hidden nodes may still increase
during the training process.

Finally, we show that vanishing/exploding gradients and vanishing nodes are two dif-
ferent problems, so that the two problems may arise from specific conditions. The ex-
perimental results show that the likelihood of failed training increases as the depth of the
network increases. The training will become much more difficult due to lack of network
representation capability.

This paper is organized as follows: some related works are discussed in Section [,
The vanishing nodes phenomenon is introduced in Section . Theoretical analysis and a
quantitative metric are reported in Section . Section § compares the vanishing nodes with
vanishing/exploding gradients. Section [§ reports the experimental results and Section {

gives our conclusions.

doi:10.6342/NTU201901446

Chapter 2

Related Work

2.1 Difficulties in training deep nerual networks

Problems in the training of deep neural networks have been encountered in several stud-
ies. For example, [9, 16] investigated vanishing/exploding gradient propagation and gave
weight initialization methods as the solution. [[13] suggested that vanishing/exploding gra-
dients might relate to the sum of the reciprocals of the hidden layer widths. [7, [11] stated
that saddle points are more likely than local minima to be a problem for training deep neu-
ral networks. [[15, 17, 34] exposed the degradation problem: the performance of a deep
neural network degrades as the depth increases.

Dynamical isometry is one of the conditions that make ultra-deep network training
more feasible. [31] reported dynamical isometry to theoretically ensure depth-independent
learning speed. [26, 27] suggested several ways to achieve dynamical isometry for various
settings of network architecture, and [4, 41] practically trained ultra-deep networks in

various tasks.

2.2 Representation power of deep neural network

Representation power has been surveyed in many previous works. According to the uni-
versal approximation theorem” proved by [6], a single hidden layer with a finite number

of neurons can approximate any continuous function on compact subsets. However, [38]

doi:10.6342/NTU201901446

states that the network depth of neural networks governs the representation power and
the training performance. Theoretically, [[14, 28, 29, B0] claim the expressive complexity
of a network grows exponentially with its depth but not its width. For R¢LU nﬂ:si:[\fvorks,'
[2, 12, 37] show that the minimal number of nodes to aprroximate any continlléﬁé-:%t;n;gtion
can be reduced if the depth of the network is larger. . |
The correlation between the nodes of hidden layers within a deep neural network is our
main focus. As we know, the correlation between nodes implies the similarity between
them, and high degree of similarity between nodes produces redundancy, hence reduce the
representation power of the network. Several kinds of correlations have been discussed
in the literature. In this work, we proposed a different problem related to the correlation
between two nodes in a hidden layer. [B32] surveyed the propagation of the correlation
between two different inputs after several layers. [24, 39] suggested that the input features
must be whitened (i.e., zero-mean, unit variances and uncorrelated) to achieve a faster

training speed.

doi:10.6342/NTU201901446

Chapter 3

Vanishing Nodes: correlation between

hidden nodes

In this section, the correlation of hidden-layer neurons is investigated. If a pair of neurons
is highly correlated (for example, the correlation coefficient is equal to +1 or —1), one of
the neurons becomes redundant. Great similarity between nodes may reduce the effective
number of neurons within a network. In some cases, the correlation of hidden nodes may
disable the entire network. This phenomenon is called Vanishing Nodes.

First, consider a deep feed-forward neural network with depth L. For simplicity of
analysis, we assume all layers have the same width N. The weight matrix of layer [is
W, € RV*¥ the bias of layer [is b; € R” (a column vector), and the common activation
function of all layers is ¢(-) : R — R. The input of the network is xg, and the nodes at
output layer L denote x;. The pre-activation of layer [is h; € R" (a column vector), and

the post-activation of layer [is x; € R" (a column vector). Thatis, VI € {1, ..., L},

hy = Wix;_ + b, x;=¢(h). (3.1

The variance of node i is defined as o7 2 Ey,[(21(5) — T1(7))?], and the squared correla-

tion coefficient (p?j) between nodes ¢ and j can be computed as

2o & By[(ne) — Tig) (1) — Tiy))?
IE:Xo[(xl(i) - W)Q]]EXO[(xl(j) - T(J))Q}

, (3.2)

doi:10.6342/NTU201901446

where pfj ranges from O to 1. Nodes ;) and x;(;) are highly correlated only if the mag-
nitude of the correlation coefficient between two nodes p;; is nearly 1. pfj indicates the
magnitude of similarity between node 7 and node j. If p;; is close to +1or +1, th_g:_B node\:
can be approximated in a linear fashion by node j. Great similarity indicates r_:edzér;dqncy.
If nodes of hidden layers exhibit great similarity, the effective number of nodes will be
much lower than the original network width. Therefore, we call this phenomena Vanishing
Node Problem.

Figure B.1], B.2, B.3 and B.4 provide intuitives view of the vanishing node problem. The
network architecture is build with depth L = 100, width N € {6, 50, 100} and activation
functions include Linear, Hard-T'anh and ReLU. The weight matrices are initialized
with scaled-Gaussian and scaled-uniform initialization (further discussion will provide
in Section §.2) and the biases are set to zeros. The network is fed with 1000 random
generated data points drawn from the zero-mean white Gaussian distribution. After the
forward propagation, we choose 6 output nodes from the output layer to plot scatter plots
with the first output node. It is obvious that the neurons in four Subfigures (a) are so
linearly correlated that the actual number of effective number of the six nodes is 1, while
the neurons in four Subfigures (c) seem to be uncorrelated to each others. It implies that
if the network width /V is relatively small (compared to the network depth L), the output
nodes may become highly correlated, and hence results in the vanishing node problem.

In the following section, we propose a metric to measure the quantitative property of
vanishing nodes for a deep feed-forward neural network. Theoretical analysis of the metric
indicates that the quantitative property of vanishing nodes is proportional to the network
depth and inversely proportional to the network width. The quantity is shown analytically

to depend on the statistical property of weights and the nonlinear activation function.

3.1 Vanishing Node Indicator

Consider the network architecture defined in eqn. (B.1)). In addition, the following as-
sumptions are made: (1) The input X, is zero-mean, and the features in x; are independent

and identically distributed. (2) All weight matrices W; in each layer are initialized from

6

doi:10.6342/NTU201901446

the same distribution with variance o2 /N. (3) All the bias vectors b; in each layer are
initialized to zero.

RNXN

The input-output Jacobian matrix J & is defined as the first-order pdriial deriva-
==

tive of the output layer with respect to the input layer, which can be rewrittenf as

8X L
L
) o ll 1| LYY, ()

where D, 2 diag(¢’(h;)) is the derivative of point-wise activation function ¢ at layer
[. To conduct a similar analysis as [31]], consider the first-order forward approximation:
X, — Xz, ~ Jxg. Therefore, the covariance matrix of the nodes (C € RY*¥) at the output

layer can be computed as

A

C=E,[(xy —X7)(xp — X0)7] = Ey, [(Ix0) (Ix0)"] = JE,, [XOXOT]JT =23, (3.4)

where o2 is the common variance of features in X, and the expected values are calculated
with respect to the input xy. For notational simplicity, we omit the subscript x, of the ex-
pectations in the following equations. It can be easily derived that the squared covariance

of nodes ¢ and j is equal to the product of the squared correlation coefficient and the two

2,

2
005

2
0—1; j

variances. That is, [C(;;)]* = p

In this paper, we propose the Vanishing Node Indicator (VNI) R, to quantitatively
characterize the degree of vanishing nodes for a given network architecture. It is defined
as follows:

N N 2 2 2
. 1 P;i0;05
qu é szl ijl p] j ' (35)

N N
Zi:1 Zj:l ‘7120]2‘

VNI calculates the weighted average of the squared correlation coefficients pfj be-

tween output layer nodes with non-negative weights afajz-. Basically, VNI R,,, which

ranges from 1/N to 1, summarizes the similarity of the nodes at the output layer. If all

nodes are independent of each other, the correlation coefficients p;; will be 0 (if i # j) or 1

doi:10.6342/NTU201901446

(a) Network width N =6

1e-3 1e-3 1e-3 1e-3 1e-3 1e-3
15 S
| 10 10 10 10 10 =
10 > s s “, v
0s 0s 0s 05 05
- 0 -
<
S o 00 00 00 00 00 [i \
H] ~
3 | el |
2 05 05 -05 -05 05 0.5 112z ‘;||
0 R |
s -10 R -10 K -10 -10 5 -10 |
s 7 i & fm >3
15 . . : 2 s |
1o 65 00 05 10 —To 05 00 05 10 o 05 oo o5 10 1o -05 oo 05 10 o 05 oo 05 10 sy Y }\h 0d.l 05 “E
Neuron 1 -3 Neuron2 12 Neuron 3 13 Neuron 4 13 Neuron 5 b \3 cuOMmE)
10 .. . » ’ »
¢ | 075 % 075 H 075 k! 075 H 075
05 050 050 050 050 050
- 025 025 025 025 025
§ 0o 000 000 000 000 000
H lo2s lo2s 025 025 025
Z o5
os0 os0 0.50 os0 -0.50
.._.’ lo7s Y lo7s Y lo7s v 075 ‘ 075 Fy
EYER 2 3 s g $
L1oo £ L1oo 3 Lioo Y e < 100
1o -05 0o o5 45 00 05 -5 0o [-05 0o s -5 0o 05 45 00 [
Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6
03 100
06
o4 075 02 04
02 0a
o2 0s0 .
. m 02 A
- 025{+ , 0z . “
< . . .
L ow 0o ot . 000 00 d 00 00 L d
Hi . o K ? . a
2 . ¥ . § . 4
o.2s . o VXY .
Z ¢ 024 % SAS
01 —02 < . -01 -02 tI
* loso .
-02 -04
0t lo7s -0z 0
06
03 100

<2 -01 00 o1 o2 <4 02 o0 o0z o4 05 00 05 06 -04 02 00 02 o4 0z -01 oo 01 o2 4 -02 o0 02 o4
Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6

Figure 3.1: To show the output layer correlation, we plot the scatter plots of 6 random
sampled output layer nodes. The network is fed with 1000 random generated data points.
The network architecture is defined with network depth L = 100, linear activation and
scaled-Gaussian weight initialization. The network width N = 6,50, 100 from top to
bottom. We can see that correlations are much higher when the network width N is small.

(if i = j) and R, will become the minimum value of 1/N. Otherwise, if all of the output
nodes are highly correlated, then all squared correlation coefficients pfj will be nearly 1,
and therefore Ry, will reach the maximum value of 1. Note that the weights o707 in the
weighted average can be interpreted as the importance of the output-layer nodes ¢ and ;.
If all of the output layer nodes have equal variances, VNI R, is simply reduced to the
average of the squared correlation coefficients pfj.

With the covariance matrix defined in eqn. (B.4) and the formulas for matrix traces,

doi:10.6342/NTU201901446

(a) Network width N = 6

1e-3 1e-3 1e-3 1e-3 1e-3 le-3

Neuron 1

|

|

Lo
L
Lo

-2 -2 2
-z -1 o 1 2 -2 -1 o 1 2 -2 -1 0 1 2 -2 -1 o 1 2 -50 -25 00 25 50 -2 o 2
Neuron 1 B3 Neuron 2 13 Neuron 3 13 Neuron 4 1e-3 Neuron 5 -3 Neuron 6 -3
06 06 06 06 06
08
04 04 04 04 04
04
- 02 02 02 0z 02 02
c
2w 00 00 00 00 00
F
z 02 02 02 -02 032 -02
04 04 . -04 -04 v 04 04
- Pl
06 3
06 06 —06 0.6 0.6
050 025 000 025 050 04 02 oo 02 08 04 02 00 02 04 04 02 oo 02 08 04 02 00 02 04 04 02 00 0z o4
Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6
08
02
A oz 06 0z .
..-' 04 :
01 o1 5 01
— 02 -yt K
c . 2 S, .
2 00 2| oo S
=1 « I g N
3 : |02 SRRt
— 0.1 -01
0.1 04
0247 02 e -2
—08 -06
-02 -0.1 00 01 0z -02 -01 00 01 02 -075-0.50-0.25 000 025 050 -02 -01 00 01 02 -06 -04 02 00 02 04 -0.50 -0.25 000 025 050
Neuron 1 Neuron 2 Neuron 3 Neuron 4 Neuron 5 Neuron 6

Figure 3.2: To show the output layer correlation, we plot the scatter plots of 6 random
sampled output layer nodes. The network is fed with 1000 random generated data points.
The network architecture is defined with network depth L = 100, Hard-Tanh activation
and scaled-Gaussian weight initialization. The network width N = 6, 50, 100 from top to
bottom. We can see that correlations are much higher when the network width NV is small.

doi:10.6342/NTU201901446

(a) Network width N =6

le—25 le—24 le—24 le-25 le—24 le-24
o
0 02 02 04
" 00 -1 02
00 00
- -2 -2 00
- 02 o2 -02 02
e -3
3 "y 3 -04 P \\ 04 ~. 04 L
= i -~ “ - . S, 05,
s ¢ 064, ~ 06 -
064 # - 08
5] -
0.8 & s |-08 -10
7 08
-6 —4 — o -08 -06 -04 -02 o -10 08 06 —04 -02 00 o 1 2 3 4 5 00 02 04 06 08 10 -125-1.00-075-0.50-0.25 0.00
Neuron1 12 Neuron2 124 Neuron 3~ 1e-2¢ Neuron 4 =25 Neuron 5 124 Neuron 6 1e-2¢
1e-1 1e-1 1e-1 1e-1 1e-1 1e-1
3 4
00 oo
2 2 2 5
o5 1 05
,2 o o 0 (]
S -10 \ / =Y _ -le /
5 R - - .~ . -
% ” -2 . 24w~ -2 . L 8 21
» «.
-15 = 15
-4
-4 4 -4
-20 -z0
= "
20 -Is -lo 05 00 o0 0z 04 05 08 5 4 2 L) 2 4 6 o0 o5 10 1 20 08 06 -04 02 00
Neuron1l 1% Neuron 2 Neuron3 1! Neuron 4 11 Neuron5 1! Neuron 6
1e-1 1e-1 1e-1 1e-1
0o
05
os 00 | s -5
as .
= 0 . -0 -0
5 10 .
15 .
2 15 ol -15 -15
=z # -204 et X
20 K -z54" -20 st -20 o = 20
2o . E
2.5 . . —4 .
25 -25 25
-25 -20 -15 -10 -05 -3 -2 -1 -15 -10 0.5 00 -20 -l -10 -0.5 0.0 1 2 3 1 5 05 10 15 20
Neuron 1 1e-1 Neuron2 =1 Neuron 3 1e-1 Neuron 4 =1 Neuron 5 -1 Neuron 6 1=-1

Figure 3.3: To show the output layer correlation, we plot the scatter plots of 6 random
sampled output layer nodes. The network is fed with 1000 random generated data points.
The network architecture is defined with network depth L = 100, Re LU activation and
scaled-Gaussian weight initialization. The network width N = 6,50, 100 from top to
bottom. We can see that correlations are much higher when the network width NV is small.

10

doi:10.6342/NTU201901446

Neuron 1

Neuron 1

Neuron 1

(a) Network width N = 6

le-3 le-3 le—3 le—3 le-3 le-
o0 { o 100 T 6
10 A 10044
075 o075 a 075
05 0s0 0s0) 2 050
025 025 - *| 025
00 000 0.00 0 /" . / 0.00
025 025 2 025
05 -2
-0.50 -0.50 |-0-50
i -
’, 0.75 0.75 —4 07 ~
10 s ' i -1.00
05 o0 05 10 o5 00 o5 -05 0o [% -z 0 1 a4 - 20 z a -lo -05 00 05
Neuron1l 13 Neuron2 1=3 Neuron3 13 Neuron 4 1=3 Neuron5 13 Neuron 6 1=3
le-1 P P le-1 le:
2 .
o s 3 075 3 - 3 <
-
2 2 2 050 2 2
1 1 025 . rot 1 1
0 0 0 000 . i o 0
- - loas{ PP - -
-z -2 -2 N A E) E) A
.~ = = = = %
" o7s .
-4 -4 —4 —4
1.00
-4 -2 o 2 -2 o 2 -2 0 2 4 -05 0o 05 -2 0 2 -2 0 2
Neuron1l 12 Neuron2 1! Neuron3 1! Neuron 4 Neuron5 1! Neuron6 %1
fe=L 100

-2

-2 0 2 4
Neuron1l 12

-2 o 2
Neuron 2

1
e

1

-2 o 2
Neuron 3

H
e

1

-2

-2 o 2 4
Neuron 4 11

-05 05

oo
Neuron 5

-05

0o o5
Neuron 6

Figure 3.4: To show the output layer correlation, we plot the scatter plots of 6 random
sampled output layer nodes. The network is fed with 1000 random generated data points.
The network architecture is defined with network depth L = 100, linear activation and
scaled-Uniform weight initialization. The network width N = 6,50, 100 from top to
bottom. We can see that correlations are much higher when the network width NV is small.

11

doi:10

.6342/NTU201901446

VNI R,, can be expressed as the formula of the covariance matrix as

> 2 Bl — T2) (1) — 7)) Wz
i 0 Exl(wn) — 726 Bl (eeg) — TZg ||| =|
- LY LlCw (e \ (/B¢
LY CanCyy (O

Ry, =

where ¢r(-) is the matrix trace operation.
From eqn. (B.4), substituting ¢2JJ7 for C in eqn. (B.€), and noting that tr(A*) is equal
to the sum of eigenvalues to the k-th power of symmetric matrix A [§], an approximation

of Ry, can be obtained:

QT SN2 Nemy om
w2 (ol w2 (Nem)? o Nmi

(3.7)

where)\, is the k-th eigenvalue of JJ7, and m, is the i-th moment of eigenvalues of JJ7.

In eqn. (B.7), we show that R, 1s related to the expected moments of the eigen-
values of JJ7. Because the moments of the eigenvalues of JJ7 have been analyzed in
previous studies [27], we can leverage the recent results by [27]: m; = (02 u;)*, and
my = (a?vul)QLL(% +1-1- 51), where o2 /N is the variance of the initial weight
matrices, s; is the first moment of the series expansion of the S-transform associated with
the weight matrices, and y;, are the £-th moments of series expansion of the moment gener-
ating function associated with activation functions. The derivation of i and s; are given
by [27], and the results are provided in Table and B.2. If we insert the expressions of

m4 and m. into eqn. (B.7), we can obtain an approximation of the expected VNI:

Lops 1 L Lps
Rsz—<— - 1-):— —(——1—) 3.8
S AV R)= N T\ o1 S

which shows that VNI is determined by the depth L, the width N, the moments of the
activation functions 1, and the statistical property of weights s;. Because R, ranges from
1/N to 1, the approximation in eqn. (B.8) is more accurate when N >> L. Moreover, it
can be easily seen that the correlation is inversely proportional to the network width /V,

and proportional to the network depth L.

12

doi:10.6342/NTU201901446

To evaluate the accuracy of eqn. (B.8) with respect to the original definition in eqn. (B.3),
we design the following experiments. A network width, N € {200, 500 };'is.set-The net-
work depth L is adjusted from 10 to 100 with the Hard-Tanh activation funct.i,g_r'l: Ong
thousand data points with the distribution xg ~ Gaussian(u, = 0,02 = 0.1)5 andS0,000
training images in MNIST dataset [23] are fed into the network. In each netwcl)fk archﬁec-
ture, the weights are initialized with scaled-Gaussian distribution [9] of various random
seeds for 100 runs. The details of the scaled-Gaussian initialization are provided in Sec-
tion ¢.2. The Ry, calculated from eqn. (B.3) is then recorded to compute the mean and
the standard deviation with respect to various network depths L. The results are shown
in Figure B.9 as the blue and green lines denoted “Simulation i.i.d. inputs” and ”Sim-
ulation MNIST dataset.” The red line denoted as “Theoretical” is the result calculated
from eqn. (B.8). This experiment demonstrates that VNI expressed in terms of the net-
work parameters in eqn. (B.§) is very close to the original definition in eqn. (B.5). Similar
results are obtained with different activations (e.g., Linear, ReLU) and different weight
initialization (e.g., scaled uniform distribution).

Figure .4 plots the squared correlation coefficients between output nodes, which are
evaluated with 50,000 training images in the MNIST dataset [23] for various network
architectures. White indicates no correlation, and black means that p?j = 1. Figure B.6
(a) plots the squared correlation coefficients for four architectures with the same network
width (N = 200) at different depths (5, 50, 300, and 1000). Figure B.6 (b) shows the
architectures with the same depth (L = 100) and difterent widths (5, 50, 200, 1000). This
shows that the vanishing node phenomenon becomes evident with respect to the depth and
inversely proportional to the width.

In each simulation, the weight initialization follows the scaled-Gaussian distribution
with the activation variance-maintaining property as defined by [9, [L6]. The details of the

scaled-Gaussian initialization method will be discussed in Section §.2.

13

doi:10.6342/NTU201901446

3.2 Impacts of back-propagation

In Section .1, we showed that the correlation of a network will increase ashe depth, L
increases; in this section, we exploit the manner in which the back—propagatjof%raining
process will influence the network correlation by the following experiments, | |

First, the same architecture defined in eqn. (B.I]), with L = 100, N ="500; tanh
activation, and scaled Gaussian initialization [9], is used. The network is then trained
on the MNIST dataset [23] and optimized with stochastic gradient descent (SGD) with a
batch size of 100. The network is trained with three different learning rates for different
seeds to initialize the weights for 20 runs. We then record the quartiles of VNI (R,) with
respect to the training epochs, as shown in Figure B.7.

The boundaries of the colored areas represent the first and third quartiles (i.e., the 25th
and 75th percentiles), and the line represents the second quartile (i.e., the median) of R,
over 20 trials. It shows that in some cases, VNI increases to 1 during the training process,
otherwise VNI grows larger initially, and then decreases to a value which is larger than the
initial VNI. Severe intensification of VNI may occur, as shown by the blue line, which is
trained at the learning rate of 10~2. Moreover, we observe that training will become much
more difficult due to a lack of network representation capability as VNI R, approaches
1. Further discussion is provided in Section [§ to investigate the impact of VNI by various
training parameters.

In Figure B.§, the dynamics VNI R, in hidden layers is provided. The depth and the
width of the network is set to L = 100, N = 500. The activation is tanh activation and
the weight matrices are initialized with scaled Gaussian distribution (will be discussed in
Section #.2). The optimization method is SGD with learning rates 10~ in Figure and
1072 in Figure B.8Y. The training is performed on the MNIST dataset, and we evaluate the
averages of hidden layer VNI R, over 50 runs. It shows that if we use a large learning
rate like 10~2 for weight optimization, the VNI of over 70% of hidden layers are highly
intensified in 10 updates. The dynamic of the VNI intensification starts from the output
layer, and then propagated toward the input layer in an infection-like behavior. That is,

the vanishing nodes problem occurs with large learning rate, and if it occurs, most of the

14

doi:10.6342/NTU201901446

hidden layers will be effected.

In Figure 3.9, we present the pairwise averaged squared correlation cogfficients 'p,?j via
its color. The architecture is defined with L = 100, N = 500, tanh activation a[;}fi, __scaled'
Gaussian initialization. Random samples from the distribution x, ~ Gaussm‘w(,ug =
0,02 = 0.1) with batch size 1000 are used as the input data, and the same disfributibﬁ is
used as the output gradients. The network is trained by SGD optimization with learning
rate = 102, The darker pixels represent higher correlations. Note that in Figure .94, the
color of layer 100 is bright because the network width N = 500 is large relative to the

network depth L = 100.

3.3 Relationship between the VNI and the redundancy of
nodes

In this section, we would like to connect the VNI Rz, with the redundancy of nodes. First,
the N random variables of node values in a hidden layer are defined as { X3, X, ..., Xn }.
Without loss of generality, we assume that every X; are following N (0, 1) distribution.

Therefore, the covariance matrix of random vector [X1, Xo, ..., Xn]T is

1 P12 PIN
p 1 P p
C_ 21 2N ’ (3.9)
| PN1 PN2 " 1]

where C;; = E[(X; — X;)(X; — X,)] as defined in eqn. (8.4), p;; is the correlation coef-
ficient between X; and X, and hence C is a symmetric matrix. By the definition of the

VNI Ry, from eqn. (B.3), the R, can be represented as

N N 2 T
SN SN wr(cc 1
—= =1 Z']il p J = T() = _tr(c2) (3'10)
N2 N2 N2

Ry,

Let the eigenvalues of C are \{, A, ..., Ay. By the relationship between matrix trace

15

doi:10.6342/NTU201901446

and eigenvalues, we have

N
Do N=tr(C)=N \

i=1 =

- & Qe
> N =tr(C’) = N’R,,.)

=1

To relate 1?5, with the redundancy of random variables, a method for measuring the
redundancy is needed. From the principle component analysis (PCA), the eigenvalue of C
can represent the energy (i.e. the variance) associated with each eigenvector. Therefore,
we can use the distribution of eigenvalues); to determine the proportion of redundant
components, and hence the effective number of nodes can be evalueated. Similar to PCA,
we first rearange the order of eigenvalues \; such that A\; > Ay > -+ > Ay > 0. We
define a constant ¢ € (0, 1) to be the “effective threshold ratio” of eigenvalues. That is,
if \; >)1, then we say that the i-th component); is e-effective. Otherwise, the ¢-th
component J; is said to be redundant.

We introduce a new metric called ”c-effective number of nodes (s-ENN)” as
e-ENN = N° 2 maz({t € N: \, > e\i}). (3.12)

That is, e-ENN is the maximum number of e-effective nodes. As in eqn. (B.11]), the con-
straints on)\; are already derived. Also, it is intuitive that the maximum in eqn. (3.12)
can simply be attained with eigenvalues {\,e\;,...,eA1,0,...,0...,0}, where there

are (NS — 1) ey and (N — N?) zeros. Insert these eigenvalues into eqn. (B.11]), we have

)\1 + (Ng - 1)8)\1 =N

(3.13)
A+ (N2 = 1)(eM)? = N°Ry,.
Inserting the first equation in eqn. (B.13) into the second one, we can get
N 1+ (Ne —1)e?
1+ (N°—1 2:(-): c , 3.14
[+ (e)6] Al qu ()
16

doi:10.6342/NTU201901446

which is a solvable quadratic equation. The numerical solution of the effective number of

nodes for given ¢ are provided in Figure B.10.

Theorem 1 (Opposite trend between the VNI and the ENN). For any thresho_l;cl%*

I“__,'.:'.- | '.
: | = |1

the e-effective number of nodes strictly decreases as the VNI R, increases: |

Proof. Evaluate the differentiation of both sides of the eqn. (B.14), the derivative of Ry,

with respect to N{ is

dRs, B [14 (NE — 1)6]2 . N§€2 —[1+ (N: — 1)62] - NE - 2e[1 + (NZ — 1)¢]
dNe [1+ (Ns —1)e)*
[1+ (NE—1)g]- Nee — 2[1 + (N¢ — 1)
[1+ (N —1)ef? (3.15)
g—2— (N —1)e?
(Ve - 1)eP

< 0.

Since in eqn. (B.13), the derivative of R, with respect to N; is always negative, the

N¢ 1s strictly decreasing with R,,.

O
Theorem 2 (Network collapsing). For any threshold e,
the e-effective number of nodes N; becomes only 1 when the VNI R, is 1.
Proof. Insert the R, = 1 condition into eqn. (B.14), then we have
[14 (N = 1] =14 (N; — 1)e?
=(N:—1)[(N; —2)e+2]=0 (3.16)

=N =

The solution of N¢ in eqn. (B.14) is 1 (no matter the value of). Therefore, the -

effective number of nodes N; becomes only 1 when the VNI R, is 1. O

By Theorem [I], and Theorem [, we can say that the effective number of nodes in a
layer of a network vanishes to 1 as the VNI R,, increases to 1. If the output layer of a

network has the VNI R, = 1, then we can say that the network suffers from the “network

17

doi:10.6342/NTU201901446

collapsing” problem, which has only 1 effective node at the output layer and hence cannot

solve most of training tasks.

A=Y :1“1 %

3.4 The vanishing of the representation power .

The phenomena that the representation power of a very deep network vanishes is shown
in this section. Recent works [2, [12, [14, 28, 29, 30, 37] put emphasis on the benifit of in-
creasing the depth of a neural network, and claim that the representation power of a neural
network grows exponentially as its depth. However, the representation power discussed
in previous results is mainly the theoretical upper bound of all variable space. Practically,
it has small probability for the representation power to reach the upper bound when the
weight matrices are randomly initialized. In the following, we will show that if the weight
matrices are drawn from a non-orthogonal probability distribution (such as the normal dis-
tribution and the uniform distribution), the VNI R,, increases to 1 as the network goes
deeper. Moreover, as the VNI R, reaches nearly 1, the representation power of the net-
work will vanish.

The VNI R,, has been defined in eqn. (B.3) to measure the correlation between the
output nodes of a network, and hence the VNI can be viewed as a measurement of the level
of redundancy. In Section B.3, the redundant number of nodes has already been connected
to the VNI R,,. Therefore, we can simply use the VNI R, as an approximation of the ratio
of redunt nodes, and the number of effective nodes can be approximated as N - (1 — Ry,) +
1, that is, one node along with other non-redundant nodes. The representation power is
closely related to the effective number of network nodes, and the VNI R, can provide an
estimation of the effective number of nodes (as in Section B.3)).

In Figure .12, the network width IV is set to 500 and the network depth L ranges from
1 to 10000. The network is fed with 1000 randomly generated data point drawn from
zero-mean white Gaussian distribution with standard deviation equals to 0.1. The VNI
R,, are evaluated according to the definition in eqn. (B.5). The weights are initialized
with scaled-Gaussian distribution ([9, [L6]), which will be discussed in Section %.2, and

the biases are initialized to zeros. The activation functions of the networks include tanh,

18

doi:10.6342/NTU201901446

ReLU and linear. Note that for the ReLU case, we add the layer normalization ([3]) blocks
between hidden layers in order to prevent the node values from converging to zeros. If the
node values converges to zeros, the result of eqn. (B.5) become undefined. Also_,-_gote that
since in our case, the layer normalization only rescales the node values, it will n_:ot ;'ﬁn‘ect the
value of VNI evaluated from eqn. (B.3), which is a scale-invariant metric. The sifnulatioh is
repeated for 20 times, and the medians of the VNI over 20 runs are plotted as the solid lines,
and the boundaries of the colored regions are the first and the third quartiles of the VNI.
It is shown that for a feed-forward architecture under a non-orthogonal initialization, the
initial VNI R, increases to 1 as L gets larger. That is, the representation power vanishes
as the network goes deeper. The VNI of ReLLU activation, especially, grows in the steepest
with the network depth, and the reason can be observed from the eqn. (B.§), Table B.1] and
Table B.2. The R,, approximated by eqn. (B.8) for ReLU activation is (2L + 1)/N while
the Ry, for linear and tanh activation is nearly (L +1)/N. Therefore, the ReLU activation
suffers more from the vanishing representation power.

We define the “maximal depth” as the maximal L such that in less than half of 20
runs(i.e. 10 runs), the approximated number of effective nodes achieve greater than 1.
The maximal depths for different activation functions, weight initializations and network
architectures are shown in Table 3.3]. It shows that the maximal depth of ReLU activation is
much less than linear and tanh activations. It has been stated [|10] that the ReLU activation
provides a sparse and distributed representation That is, the ReLU activation selects half
of neurons as the active nodes, which may reduce the effective number of nodes. Since
the maximal depth is closely related to the effective number of nodes, it provides another
aspect explaining that the representation power vansihes faster for the ReLU activation.

Here, we provide a theoretical claim for reasoning the VNI 2, of a Gaussian initial-

ized linear network.

Theorem 3 (The VNI R,, goes to 1 as L — 00). For a linear network with Gaussian
initialized weight matrices W, 1 € {1,2,..., L}, the VNI Ry, of the network goes to 1 as

L — oc.

Proof. Let the product of weight matrices P as the input-output Jacobian (defined in

19

doi:10.6342/NTU201901446

eqn. (B.3)) of the linear network

L
Py EHWz- 3.17)
=1 .

N :,_,-u >
Ek:l)‘i

From eqn. (B.7), we would like to show that Ry = goes to Las'ly ++ 3<; INgfc

(Tl w)?
that the)\, is the k-th eigenvalue of P P? | satisfying \; < Xy < -+ < \p
Considering the asymptotic behavior of eigenvalues)\, when the depth L tends to

infinity, we can apply the Lyapunov exponents to the matrix P, P? as in [21].

lim (PLPY)/2E = e, (3.18)
where H has eigenvalues 1y < ps < --- < puy, which are known as the Lyapunov

exponents.

By the Oseledec’s theorem [25], we have the asymptotic value of eigenvalue
N ~ e2bHk (3.19)
Previous works ([21]) have already derived the value of y

1 1 /k
— log2+ - (—) 2
pe = 5 log +2w2, (3.20)

where 1(+) denotes the digamma function, which is defined as the logarithmic derivative

of the gamma function. As in [|I]], the digamma function has the asymptotic expansion

1
Y(z) ~ logx — % +0(z7?). (3.21)

Therefore, the eigenvalues), has the asymptotic approximation by eqn. (3.19) to

eqn. (B.21))
A, ~ eblogk) — L (3.22)

20

doi:10.6342/NTU201901446

Insert the result of eqn. (3.22) into eqn. (B.7), we have

N N
lim Zk:l)\z — lim Zk:l k2L
'] N 2 o0 N 2 L
L= (Zk:l)‘k) = (Zk:l kL) =
N i1 A
_ lim 2k (BN (25

L= (SO (k/N)E)

=1.

That is, the VNI R, of a linear network with Gaussian initialized weight matrices goes
tolas L — oc.

]

Also, for a nonlinear network with norm-preserving Gaussian initialized weight matri-
ces (see Section @.2 for further discussion), we can perform a linear approximiation on the
input-output Jacobian matrix. That is, replace the product matrix defined in eqn. (B.17)
with the Jacobian matrix defined in eqn. (8.3)). Because the weight matrices are norm-

preserving, then we have the same distribution of D; for all hidden layers. That is,

E[D] = diag(E[¢'(vi1))], E[¢' (212))]; - - - E[¢' (w1vy)]) =~ Y1 (3.24)

where the constant 1/ denote the expected derivative E[¢'(x(;))] for every node 7. After
the linear approximation in eqn. (3.24)), we can apply the similar procedure in the proof
of Theorem [3, and then we can obtain the result for non-linear networks. That is, the VNI
R, of a non-linear network with norm-preserving Gaussian initialized weight matrices

goesto 1 as L — oc.

3.5 The effect of the orthogonal weight matrices to the
representation power

The orthogonal weight initialization [31] is one of methods that train a very deep neural
network successfully. In [41], the trainable depth of a convolutional neural network with

orthogonal initialized weights can reach over 10000 layers. In this section, we will show

21

doi:10.6342/NTU201901446

that the orthogonal weight matrices can prevent the representation power of networks from
vanishing.

In Figure B.13, similar settings to Figure are used excluding the weigh_t_i3 svhich
are initialized with scaled-Orthogonal distribution ([31], further discussion _:i_s ;;r;)yjded
in Section #.2). It is shown that for a feed-forward architecture under the brthogdnal
initialization with linear or tanh activation function, the initial VNI R, remain nearly
minimum (1/N) even when the network depth L gets larger, and that the VNI of ReLU
activation increases to 1 as the network goes deeper.

From eqn. (B.8) and Table B.2, it can be derived that the approximation of the VNI
R, of networks with orthogonal weight matrices is [(% —)L + 1] / N. That is, if an

1

activation function such that Z—% ~ 1 1s chosen, then the VNI R,, can remain in a lower
level even when the network goes much deeper. Therefore, it explains that the network
with linear and tanh activation has a constant VNI R, with respect to the network depth,
and the VNI R, for the network with ReLU activation still increases to 1.

To provide a more intuitive explanation, we first consider the linear activation case.
Because the product of orthogonal matrices remain an orthogonal matrix, the input-output
correlation for a 10000-layer network with orthogonal weights can be reduced to a 1-layer
shallow network with a single orthogonal weight. Therefore for such a network setting,
the representation power remain the same even if the network depth L goes arbitrarily
large.

Consider the ReLU activation network with orthogonal weight matrices. The output
layer is x;, = ¢(Wp...0(W20(WiXg))). Analytically, the ReLU activation function
¢(-) can be taken as a matrix U, with all the off-diagonal elements equal to zeros and the
diagonal elements € {0, 1}, which are dependent to the input data. That is, the output
layer can be expressed as x;, = (UyWp)...(UsW,)(U;Wy)xg. Note that the matrices
(U;W,) can be viewed as the random samples from the row vectors of the orthogonal
matrix W,;. Since the random sample operation is equivalent to the random projection
onto the coordinate hyperplanes, the orthogonal property of W; will be no longer kept

after the multiplication with U;. Therefore, the representation power of the network faced

22

doi:10.6342/NTU201901446

the same problem as stated in Section 3.4,

The maximal depths for different activation functions with orthogonal weight-initial-
izations are also shown in Table B.3. It shows that the maximal depths of lindas _,._ind tanh
activations are more than 10000 layers, but that of ReLU activation is much smaﬁ, which

is consistent to our analysis.

3.6 Representation power of residual-like architectures

Residual network ([|17, [18]) is another example for training very deep nerual networks
successfully. Unlike the orthogonal weight initialization, the residual network is one of an
architecture solution to improve the training performance. In this section, the advantage of
the additional identity skip connections (i.e. residual shortcut connections) and the effect
to the representation power will be discussed.

First, the network architecture to be considered is present in Figure .14, which is
similar to [[18]. For the 1-layer shortcut case in Figure B.14d, we can rewrite the network

equation defined in eqn. (B.1]) as

X =X1 +F(W;,x_1)
-1 (3.25)
=Xp + Z-F(Wi—&-laxz')?

1=0

where F(+) is the residual block function consist of batch normalization ([20]), activation
function and weight multiplication. After the first-order approximation as eqn. (B.4), the
residual block function F (W, x;_1) can be approximated as F;x;_;. Therefore, the input-
output Jacobian matrix J can be expressed as Hlel (I+F;), where I is the identity matrix.
The whole network hence can be viewed as a feed-forward network with weight matrices
F, = (I+F)).

We would like to show that the increasing effect to the VNI R, of fl is much less than
that of F; by comparing the expected cosine similarity between column vectors of F, and
F;. Since the hidden nodes of x; can be approximated as a result of linear transformation

of x;_; with column vectors of fl or F;, the VNI R,, of layer [, which is the weighted

23

doi:10.6342/NTU201901446

average of correlation coefficient of x;, is highly dependent on the magnitude of the cosine
similarity between column vectors of the transformation matrix.

First, the cosine similarity between two vectors is defined as Ry
a’b
[lal] - [[b]]’

>

cos(a,b) (5.26)

where ||v|| denotes the Ly-norm of vector v (i.e. Vv'v). Note that the transformation
matrix F is basically the product of D; (defined in eqn. (3.3))) and W, and therefore the F,
inherits the zero-mean property of W;. Let the ¢-th column vectors of F, and F, be written

as fl and f;(;). By the fact that fl = (I+F;), we have

fi;) = fis) +10,...,0,1,0,...,0]"
G v (3.27)

= [fiiys - - figi—r), (fiagy + 1), fZ(i,i+1),~-->fl(i,N)}T-

Therefore, the cosine similarity between i-th and j-th column vectors of F, can be
expressed as
7 > /t}lI(‘z fl(J
cOoS (fl(z’), fl(j)) —_—
[Ty [T |

_ fiofi) + fuag) + fig
VIE@?2+ 2060 + 1 I+ 2f6,5) + 1

(3.28)

which has a smaller magnitude (compared with cos(f;;), fi(;))) with high probability (as
shown in Figure B.11]). That is, the residual-like transformation is closer to the orthogo-
nality than the vanilla feed-forward transformation.

That is, compared with the original feed-forward network with the layer-by-layer trans-
formation F;, the residual-like architecture with identity shortcut connection has the layer-
by-layer transformation FA‘Z = I + F,;, which is more close to the orthogonality even when
the activation funciton is ReLU. From the results of Section B.3, we can say that the
residual-like architecture suffer less from the vanishing representation power problem.

In Figure .13, similar settings to Figure are used excluding the network architec-

tures, which are defined in Figure B.14. It is shown that for a residual-like architecture, the

24

doi:10.6342/NTU201901446

VNI Ry, grows slowly as the network depth L gets larger. The ReLU activation function,
which results in the vanishing representation power in Section B.4 and B.3; does notmake
the VNI R,, go to 1 in 10000 layers. Instead, the VNI R;, for a IOOOO-layenﬂ:{e_sidual'
ReLU network grows to a relatively small value (~ 0.04), which implies that the}letwork
maintains enough representation power even when the network is very deep.. Also; the
VNI R,, for the 2-layer skip grows more slowly than that for the 1-layer skip. It can be
reasoned that the 2-layer skip architecture, in some sense, reduces the effective network
depth to nearly L /2 because the input-output Jacobian for the 2-layer skip architecture can
be expressed as HZL:/%(I + Fo; 1Fy).

The maximal depths of residual-like network for different activation functions with
scaled-Gaussian weight initialization are also shown in Table 3.3. It shows that no matter
which activation function is chosen, the maximal depths of the networks are more than
10000 layers. That is, the residual-like architecture can prevent the network representation
power from intensely vanishing. Similar results can be observed in Figure B.16.

Also, in Figure B.17, we perform the simulation on convolutional neural networks. The
feature sizes of hidden layers are all the same (32 width, 32 height and 5 channels), and
the network is fed with 1000 randomly generated image following the zero-mean white
Gaussian. The stride and the dilation are set to 1, and pooling layers are not inserted into
the network. The VNI R, is evaluated with flatten vectors. The median, the first and third
quartiles of VNI R, over 20 runs are presented. It shows that the convolution operation
can make the VNI R, increase slower with respect to the network depth L, and similar to
Figure B.16, the residual connection helps the network maintain the representation power.
Also, if tanh activation is chosen, then the orthogonal weight initialization can also keep

the VNI R, at the minimal value, and thus maintain the representation power.

25

doi:10.6342/NTU201901446

Activation | ¢(x) tus | Norm-preseérving o,
Linear x 1 \]
ReLU 2] 1/2 IEs
—3=
Hard Tanh | [z + 1], — [z — 1] — 1 | erf <ﬁ> erf (712;)

Table 3.1: The py, the k-th moments of series expansion of the moment generating func-
tion associated with activation functions, is provided in this table. The derivation is given
by [27]. The rightmost column are the norm-preserving (o2), which will be further dis-
cussed in .2, Note that the o is the variance of the hidden nodes. It shows that the
maximal depth of ReLU activation is much less than linear and tanh activations, and that
the orthogonal weights and the residual architecture can improve the maximal depth of

networks.

Random Matrix W | s
Gaussian -1
Orthogonal 0

Table 3.2: The s; of different activation functions. The derivation is given by [27]. Note
that the s; is invariant to the matrix scale. That is, the results are also suitable for the
scaled-Gaussian and the scaled-orthogonal initializations.

Architecture Weight initialization. | Activation | Maximal depth
tanh 4243

Scaled Gaussian linear 2606

relu 262

Feed-forward network tanh 10000
Orthogonal linear > 10000

relu 325

tanh > 10000

Residual network Scaled Gaussian linear > 10000
relu > 10000

Table 3.3: The maximum depth for representation power. The maximum depth is defined
as the maximal L such that in less than half of 20 runs(i.e. 10 runs), the approximated
number of effective nodes achieve greater than 1.

26

doi:10.6342/NTU201901446

(a) Network width N = 200

—— Theorstical
—+— Simulation: i.i.d. inputs
051 —— simulation: MNIST dataset

0.4 1

0.3 1

0.2 1

Weighted Average of Correlation

0.1 1

0.0 T T T T T
20 40 &0 B0 100

Network Depth

(b) Network width N' = 500

—— Theoretical
—— Simulation: i.i.d. inputs
05 —— Simulation: MMIST dataset

0.4 1

0.3 1

0.2 1

Weighted Average of Correlation

0.1 1

DU T T T T T
20 40 &0 80 100

Network Depth

Figure 3.5: The results of VNI R, with respect to network depth L for the network width
200 and 500. The red line is calculated from eqn. (B.8), the blue line is computed from
eqn. (B.3) with the input data of zero mean and i.i.d input data, and the green line is com-
puted from eqn. (B.5) with MNIST data. The VNI R, expressed in eqn. (B.8) is very close
to the original definition in eqn. (8.5).

27

doi:10.6342/NTU201901446

DepthL=5

100

150

200

100

150 {;

(a) Network width N = 200

Depth L=50

100

| 150

5200

Depth L =300

0 50 100 150 200
P} mean=0.051, std=0.089

Width N =5

0o 1 2 3 4
p}: mean=1.000, std=0.000

200

o

50 100 150 200
pj: mean=0 233, std=0232

o a 150

pj- mean=0 427, std=0319

(b) Network depth L = 100

WidthN =50

o} mean=0.624, std=0328

Width N =200

100

150

200

200

Depth £ =1000

50 100 150 200
pl: mean=0.770, std=0279

Width N = 1000

p}: mean=0.299, std=0.258

20

1000 oses s o CEBIOE 4
0 0 200 400 600 GO0 1000

o}

£} mean=0.100, st=0.120

Figure 3.6: The magnitudes of correlation coefficient p;; between output nodes. The black
color means p?j = 1 while the white color indicates p?j = 0. The top row shows that the
correlation is positive related to the network depth L, and the bottom row presents that the
correlation is negatively related to the network width N. Note that we rearrange the node
index to cluster the correlated nodes.

08

A
o K’_’MM\M

—— Leamning rate = 1.000E-02
Learning rate = 1.000E-03
Learning rate = 1.000E-04

10
Update Epochs

12

Figure 3.7: The dynamics of VNI R, of the output layer. The training is performed on
the MNIST dataset 20 times, and then we evaluate the quartiles of the output VNI Ry,
for different learning rates. Severe intensification of VNI (increases to 1) may occur as
shown by the blue line which is trained with the learning rate of 1072. Otherwise VNI
rises initially, and then decreases to a value which is larger than the initial VNI.

28

doi:10.6342/NTU201901446

(a) Learning rate = 1073

_z»-'f.;'

— Ljpd;ate 5

10

08

06

R

0.4 4

0.2

= Update &
Update 7
Update &
Update 9

0.0

20
Network depth L

(b) Learning rate = 10~2

10

= hitial
= Update 1
= Update 2
= Update 3
= Update 4
= Update 3
—— Update &
* Update 7
Update 8
Update 9
=== Thearetical Initial

08

0.6 1

Rsq

0.4 1

0.2 1

&0
Network depth L

40

00
Figure 3.8: The dynamics of VNI R, of hidden layers. The training is performed on the
MNIST dataset 50 times, and then we evaluate the averages of hidden layer VNI R,, for

learning rates € {1073, 1072}.

29

doi:10.6342/NTU201901446

200 4

300 4

500

200 4

300 4

500

200 4

300 4

500

(a) Initial

Layer 25 Layer 50 Layer 75 Layer 100
0 0 0
100 100 100 +
200 200 200 4
300 300 300 4
400 400 400
T T T T 500 T T T T 500 T 500 T T T T
100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
(b) After 5 updates
Layer 25 Layer 50 Layer 75 Layer 100
0
100
200
300
400
T T T T 500 T T T —
100 200 300 400 500 100 200 300 400 500 0 100 200 300 400 500
(c) After 10 updates
Layer 25 Layer 50 Layer 75 Layer 100
0 : 0 0
100 { | 100 100
200 200 200
300 300 300
400 400 400
T T T T 500 — — 500 500
100 200 300 400 500 200 300 400 500 400 500 o 100 500

Figure 3.9: The averages of squared correlation coefficients pfj over 50 runs. It presents
that overall, the correlation of each hidden layer are highly intensified.

30

doi:10.6342/NTU201901446

500

400 A

300 ~

200 ~

e-effective number of nodes

100 ~

qu

Figure 3.10: The numerical solution of the effective number of nodes for given . It can
be observed that the effective number of nodes vanishes as the VNI R,, increases to 1.
Also, if a stricter (i.e. larger) € is chosen, the e-ENN vansihes much faster. Note that the
number of random variables NNV is set to 500.

31

doi:10.6342/NTU201901446

1.00 4

0.95 1

0.90 4

0.85 1

-~

0.80

Prob{|cos(fiy, fij)| < |cos(Fin. Fiy) |}

0.75 1

0.70 1

0.65 T T T T
104 103 10-2 1071 107 10l

[Fii 1|

Figure 3.11: The probability of]cos(ﬁ(i),ﬁ(j)ﬂ < |cos(fy), fi¢;))| is shown in this figure.
The simulation is performed with 1000 pairs of random vectors drawn from zero-mean
white Gaussian for every ||f;;)||. The network width IV is set to 500. Note that practically,
||fi(i|| is much smaller than 1 because the normalization operation (e.g. batch normaliza-
tion [20]) included in F; will reduce the magnitude of nodes for the residual network. It
shows that with high probability, the residual-like transformation is closer to the orthogo-
nality than the vanilla feed-forward transformation.

32

doi:10.6342/NTU201901446

(a) Network depth L € [1,10000]

1.0

= Linéar
_:.;?‘ . Ta'rl\h F
'— R &'ﬁ | Ii
0.8 L ==
A ||}
= ||
0.6 1 ;
o
w0
o
0.4 1
0.2 1
0.0 1 — : . . . :
0 2000 4000 6000 8000 10000
Number of layers
(b) Network depth L € [1, 500]
1.0
—— Linear
—— Tanh
—— RelLU
0.8 1
0.6 |
o
wn
<
0.4 A
0.2 1
P
001
0 100 200 300 400 500

Number of layers

Figure 3.12: The network width NV is set to 500 and the network depth L ranges from 1 to
10000. The VNI Ry, are evaluated according to the definition in eqn. (B.5). The weights
are initialized with scaled-Gaussian distribution ([9, 16]). The activation functions of the
networks include tanh, ReLU and linear. The simulation is repeated for 20 times, and the
medians of the VNI over 20 runs are plotted as the solid lines, and the boundaries of the
colored regions are the first and the third quartiles of the VNI. It is shown that for a feed-
forward architecture under a non-orthogonal initialization, the initial VNI R,, increases to
1 as L gets larger, and that the VNI of ReLU activation, especially, grows in the steepest
with the network depth.
33

doi:10.6342/NTU201901446

(a) Network depth L € [1, 10000]

1.0 A T = .
[- fodar)
—§, g |
- iyl
0.81 @ N I
0.6
o
w0
[2a
0.4 1
0.2
0.0 1
0 2000 4000 6000 8000 10000
Number of layers
(b) Network depth L € [1, 500]
1.0 1
—— Linear
Tanh
— RelLU
0.8
0.6
o
1%}
<
0.4 1
0.2
0'0 - T T T T T T
0 100 200 300 400 500

Number of layers

Figure 3.13: Similar settings to Figure are used excluding the weights, which are
initialized with scaled-Orthogonal distribution ([31]). It is shown that for a feed-forward
architecture under the orthogonal initialization with linear or tanh activation function, the
initial VNI R, remain nearly minimum (1/N) even when the network depth L gets larger,
and that the VNI of ReLLU activation increases to 1 as the network goes deeper.

34

doi:10.6342/NTU201901446

3 1‘1 1

(a) Residual deep network with 1-layer skip (b) Residual deep network with 2-layer skip

2 X;
y [
Batch
Normalization
Activation
Function ¢ ()
Batch _ v

Normalization Weight W,

Multiplication
Activation
Function ¢ () Bat_ch .
v Normalization

Weight Wy v

Multiplication Activation
Function ¢ (+)

v
Weight W, »
Multiplication
v i,
X1+1 Xj+2

Figure 3.14: The architectures of residual deep networks is presented in this figure. The
network is composed of 4 operations: batch normalization ([20]), activation function,
weight multiplication and the addition with the identity mapping from the skip connection.
The left architecture has the 1-layer skip, and the right one has the 2-layer skip, which is
the original definition in previous works([[18]).

35

doi:10.6342/NTU201901446

(a) 1-layer shortcut defined in Figure

0.040 il &

— Linear A
- Tanh "V ",

—— RelU G

0.035 A

0.030 A

0.025 A

0.020 A

qu

0.015 A

0.010 A

0.005 A

0.000 T T T T T T
0 2000 4000 6000 8000 10000

Number of layers

(b) 2-layer shortcut defined in Figure

0.040
—— Linear

- Tanh
—— RelLU

0.035 A

0.030 A

0.025 A

0.020 A

qu

0.015 A

0.010 A

0.005 A

0.000

0 2000 4000 6000 8000 10000
Number of layers

Figure 3.15: Similar settings to Figure are used excluding the network architectures,
which are defined in Figure B.14. It is shown that for a residual-like architecture, the VNI
R, grows slowly as the network depth L gets larger. Note that for the 2-layer shortcut
architecture, we only perform the simulation with even numbers of hidden layers.

36

doi:10.6342/NTU201901446

1.0 4

0.8 1

0.6

qu

0.4 1

0.2 A

0.0 -

1.04

0.8 A

0.6

qu

0.4 A

0.2 A

0.0 -

(a) Tanh activatoin function

Number of layers

— Feed-forw_ard' :\ AN
—— Residual 1-layer skip'c} |
—— Residual 2-layer sfﬁ?' '||[_
. | = |
0 2000 4000 6000 8000 10000
Number of layers
(b) ReLU activation function
—— Feed-forward
Residual 1-layer skip
—— Residual 2-layer skip
0 2000 4000 6000 8000 10000

Figure 3.16: To compare the VNI R, of different network architectures, we plot the curves
of Figure B.4 and B.€ in the same graph. The weight initialization methods are set to the
same (Gaussian distribution). We can see that for both tanh and ReL.U cases, the residual
architecture has much smaller VNI R, when the network depth L increases. It implies
that the residual skip connections can keep more representation power when a very deep

network is considered.

37

doi:10.6342/NTU201901446

1.0 A

0.8 {

0.6 1

qu

0.4 A

—— Gaussian CNN with tanh
Gaussian CNN with ReLU
0.2 1 * Orthogonal CNN with Tanh
' Orthogonal CNN with ReLU
—— Res-CNN with Tanh

--- Res-CNN with RelLU

0.0 -

0 2000 4000 6000 8000 10000
Number of layers

Figure 3.17: To compare the VNI R, of different network architectures of convolutional
neural networks, we plot the results of architectures with and without residual connection.
The weight initialization methods are set to the same (Gaussian distribution). Similar to
Figure B.16, we can see that for both tanh and ReLU cases, the residual architecture has
much smaller VNI R,, when the network depth L increases. Also, compared with the feed-
forward deep neural network in Figure B.16, the VNI R, increases slower with respect
to the network depth L. It implies that the residual skip connections and the convolution
operation can keep more representation power when a very deep network is considered.

38

doi:10.6342/NTU201901446

Chapter 4

Variance propagation of deep neural

networks

4.1 Comparison of exploding/vanishing gradients and van-
ishing nodes

In this section, we explore whether the vanishing node phenomenon arises from the prob-
lem of exploding/vanishing gradients. Exploding/vanishing gradients in deep neural net-
works are a problem regarding the scale of forward-propagated signals and back-propagated
gradients that exponentially explode/vanish as the networks grows deeper. We perform a
theoretical analysis of exploding/vanishing gradients and show analytically the difference
between them.

As in a previous study [9], we use the variances of hidden nodes to evaluate the scales
of back-propagated gradients. Consider the model and the assumptions in Section 3 and

dCost

an additional assumption: the gradient of output layer <52= is a zero-mean i.i.d. random

(row) vector. That is,
]E[X()XOT] = O'g o |

E{(@C’ost)TﬁCost] 2

Yy)

(4.1)

ox L ox L
where o2 and UZ are defined as the variances of the input layer nodes and output layer

gradients, respectively. Consider the variances of the output nodes Var[x;| and input

39

doi:10.6342/NTU201901446

layer gradients Var [agoﬂ respectively. The exploding/vanishing gradients occur only

if the scales of forward and backward propagation exponentially increase or decrease as
the depth increases. This means that the magnitude of the gradients will be boun;_dedﬁ we
can prevent the scales of forward and backward propagation from exploding o;riva{!ﬁishing.

According to the assumptions in Section [and eqn. (8.4), we can appro.ximatle '.fhe

shared scalar variance of all output nodes Var|[x;] € R as

Var[xy] = E[(x; — Xz)" (x, — X1)]/N = E[(Jxo)" Ixo] /N 42)
= Eltr I Ixox})]/N = o2 - tr(J'J)/N,

and approximation the shared scalar variance of all input gradients Var [agﬁt} € Ras

Va [82’;0575] - (8Cost B 85;%) <8g’;ost B 8g’sost)T]/N
oC oC T
(2 ()] .
-l (ar 00

=o, - tr(J"J)/N,

where the chain rule for back-propagation: 259ost — 9Cost9x, _ 9Costy jq ysed, and the
Oxo oxy, Oxg oxr, ?

shared scalar variance of a vector is the average of the variances of all vector components.
Note that because the product of a row vector and a column vector is a scalar, the product
is equal to its trace. Also, it is already known that tr(J7J) = N -m; = N - (62 ;)"
Thus, we have

Var[xy] = o (w/h)

[aCost

s s (4.4)
aX() i|_ y(o-w:ul))

where 02 = N - Var[W,;], and p is the first moment of the nonlinear activation function.
It is obvious that the variances of both forward and backward propagation will neither
explode nor vanish if and only if (62 y;) = 1.

For the weight gradient of the hidden layer [, the variance can be used to measure the

0Cost 0Cost
scale distribution. Because from eqn. (B.1)) we have ow. = X1 e , and both x;_;

and =2 aCOSt are assumed to be zero-mean and independent of each other, the variance of the

40

doi:10.6342/NTU201901446

weight gradient can be evaluated as

0Cost OC ost
Var[oW, } = Var[x;_] 'Var[h, } Ve
~ o202 m) " - 02 (o) \{| L 4P

= g0 (o)

0Cost

where we can evaluate Var[x;_;] and Var [ot

] using the results of the forward/backward
variance propagation and split the entire network into two sub-networks. One sub-network
has the input layer x, and output layer x;_;, and the other sub-network has the input layer x;
and the output layer x;,. Note that eqn. (4.3) also concludes that if and only if (¢2 1) = 1,
the weight gradients will never explode or vanish.

However, eqn. (B.§) shows that VNI (Rs¢) may still accumulate with the network depth
even if (62 ;) = 1. That is, the characteristic of the vanishing nodes becomes evident
when (o /13 —1—s;) is large, whereas vanishing/exploding gradients occurs when (o2 1)
is far from 1. If the network’s initialization parameter is appropriately set such that (o2 ;)
is close to 1, 175, may still accumulate due to the network depth, the activation function,

and the weight distribution. Therefore, from eqn. (B.§) and eqn. (#.9), it is clear that the

problem of vanishing nodes may occur regardless of exploding/vanishing gradients.

4.2 Norm-preserving weight initialization

In the Section [.1], it is suggested that (o2 1;) = 1 is the condition to prevent the vanish-
ing/exploding gradients problem. Note that the parameter 1, is decided by the activation
function of the network, and the other parameter o can be controlled by the scale of the
initial weight. That is, if the weight matrices are correctly initialized, the gradient flow
will neither vanish nor explode as the network depth L increases. We call this kind of
weight initialization method a “norm-preserving weight initialization”.

In Table B.1], the norm-preserving o2 are provided. Note that in Section B.1), the vari-
ances of weight matrices are defined as 02 /N. Therefore the norm-preserving weight

variance of ReLU activation, for example, is 2//N. For the Gaussian distribution, we

41

doi:10.6342/NTU201901446

can simply set the mean to zero and modify the standard deviation to meet the norm-

preserving condition, and for the uniform distribution, the support should.be setto { =

/302 /N, /302 /N } to achieve the zero-mean and the norm-preserving property, For
the orthogonal initialization, the zero-mean is already achieved, and the Lz—hoflirln o_f e
orthogonal basis should be set to o,,. :

Another point needs to be considered is the network width /V in the variances of weight
matrices 02 /N. When the widths of two adjacent layers are not the same, the IV is sug-
gested to be (IV; + N;_1)/2 as a compromise between forward and backward variance
propagation ([9]). Also in [16], the N for a convolutional layer is suggested to be k?c,
where k denotes the kernel size and ¢ represents the number of channels.

It 1s worth mentioning that for the residual-like architectures, the norm-preserving
weight initialization designed for feed-forward networks ([9, 16]) are not the optimal ini-
tialization methods. Instead, the optimal initialization method should depend on the net-
work depth L ([42]) to prevent exploding values of nodes. The norm-preserving o2 of
a residual architecture is suggested to be O(L™') to avoid explosion ([36]). However,
the residual-like architecture is often combined with batch normalization ([20]), which

reduces the importance of weight initialization.

4.3 The two obstacles for training deep nerual networks

In Figure #.1], we provide a schematic diagram for evaluating architectures of deep neural
networks. The network depth L, the network width IV, the weight initialization scale o2,
the moments associated with weight s; and the moments associated with activation i, are
taken into consideration. For the horizontal axis, we use the metric (02 ;) to determine
whether a network will explode or vanish when the depth L goes deeper. If a network has
(02 1) = 1, then its scales of gradients will neither vanish nor explode even if the depth
L becomes larger. Otherwise, the further (02 ;) is from 1, the more severe gradients
will exponentially explode/vanish. For the vertical axis, we take R, as the metric. From
eqn. (@), we know that Ry, is decided by L, N, p, and s;. If R, can reach exactly

1/N, then by eqn. (B.§), we can show that correlations of output layer nodes will never

42

doi:10.6342/NTU201901446

3 1‘1 1

Vanishing gradients Exploding gradients

> (Cﬁfzﬂﬂ
<1 =1 >1

Figure 4.1: The schematic diagram for deep neural network architectures. To avoid the
deep network gradients from exploding or vanishing, it is suggested that the condition
(62 111) = 1 should be met. For vanishing nodes problem, the VNI R, of the network
shall not increases to 1 as the network depth L goes deeper, otherwise the representation
power of the network will be insufficient for the training task. That is, to overcome the
two obstacles of training a very deep network, the best network setting is located at the
intersection of vertical and horizontal dashed line.

accumulate even if the depth L increases. Therefore by Figure §.1, we can determine
whether a neural network with specific parameters will suffer from exploding/vanishing
gradients and vanishing nodes.

For example in previous works on ultra-deep neural networks, [41]] chose an activation
function that has j»/p? = 1 and initialized the weights via appropriately-scaled orthog-
onal matrices ([31]) which have s; = 0 (from [26]) and (02 ;) = 1. Hence the VNI
R, of the network will reach 1/, which will not accumulate as the depth L increases
according to eqn. (B.7). The parameter setting of the network is located at the intersection
of vertical and horizontal dashed line in Figure }.1], and thus the network does not suffer
from vanishing/exploding gradients and vanishing nodes.

According to eqn. (B.7), if R,, gets larger, then m; is also larger with respect to m?.
Recall that m; is the i-th moment of eigenvalues of JJ”, so the variance of eigenvalues
of JJT is my — m2. Also, eigenvalues of JJ” is equivalent to the squared singular values
of J. Thus, if the variance of eigenvalues of JJ7 is too big, the Jacobian J will become
ill-conditioned. Therefore, we can relate R, to the condition number of Jacobian J, and

thus we can link the vanishing node problem to the ill-conditioned Jacobian, which is

43

doi:10.6342/NTU201901446

emphasized in previous works ([26, 27, 31]]). Moreover, dynamical isometry, a stronger
condition for deep neural networks, is described as “all singular values of thed acobian cofi-
centrate near 17 by [26, 31]. That is, if dynamical isometry is achieved, thén the:siarlance'
of singular values of the input-output Jacobian will approach nearly zero, which nnbhes
mo — ~ 0. Therefore, the R, will also remain nearly 1/N even at a large depth L.

Therefore, we can say that dynamical isometry is not only related to the learning speed

([31]), but also linked to the node correlation ,,, which is closely connected with the

learning capability and the representation power of a deep neural network.

44

doi:10.6342/NTU201901446

Chapter 5

Experiments

5.1 Probability of failed training caused by vanishing nodes

To empirically explore the effects of the phenomenon of vanishing nodes on the training
of deep neural networks, we perform experiments with the training tasks on the MNIST
dataset [23]. Because the purpose is to focus on the vanishing nodes, the networks are
designed such that vanishing/exploding gradients will never occur; that is, they are initial-
ized with weights (0211 = 1). The network is trained with 100 batch size. The number
of successful training for total 20 runs is recorded to reflect the influence of vanishing
nodes on the training process, which may lead to the insufficient network representation
capability as shown in Figure B.7. A successful training is considered to occur when the
training accuracy exceeds 90% within 100 epochs. The network depth L ranges from 25
to 500, and the network width IV is set to 500. The learning rate o ranges from 10~% to
1072 with the SGD algorithm. Both L and « are uniformly distributed on the logarithmic
scale. The experiments are performed on the MXNet framework[J].

Figure shows the results of two different activation functions (Tanh/ReLU) with
two different weight initializations (scaled-Gaussian/orthogonal from [31]]). When a net-
work with tanh activation functions is initialized with orthogonal weights, the term of
(po/1? — 1 — s1) in eqn. (B.8) becomes zero. Therefore, its R, will be the minimum
value (1/N) and will not depend on the network depth. For the other network parameters,

(pa/p3 — 1 — s1) will not equal zero, and R, still depends on the network depth. The ex-

45

doi:10.6342/NTU201901446

(a) Probability of Success (Tanh, (b) Probability of Success (ReLU,

Scaled Gaussian Init.) Scaled Gaussian Init.)
500 500
4 34
10
o 237 o 237
i 8 .
% 163 2 163 E
z - [
£ 1z £ 1z I
e o a
[ﬂ‘ -
(=] [=] °
x 7 ¥ 7 g
o o =
£ E
g2 = 2 =
00
36 36
25 1 25 1
-400 -375 -350 -325 -3.00 -275 -250 -225 -2.00 -400 -375 -350 -325 -300 -275 -250 -225 -2.00
Log Learning Rate logpla) Log Learning Rate logyola)
(c) Probability of Success (Tanh, Or- (d) Probability of Success (ReLU, Or-
thogonal Init.) thogonal Init.)
500 = 500
344 4
10
T 37 T 37
3 8 .
% 163 2 163 E
S - F
£ 112 £ 12 g
= o 2
@ GJ -
[a] o 5
x 7 ¥ 7 g
o o a
2 2
2 = 2 s
00
36 k)
25 T T T T T T T 25 T T T T T T T 1
—-4.00 -37% -350 -325 -3.00 -275 -250 -225 -2.00 —-4.00 -37% -350 -325 -3.00 -275 -250 -225 -2.00

Log Learning Rate logola) Log Learning Rate logiola)

Figure 5.1: Probability of successful training for different network depth L and learning

rate o (the SGD optimizer). The black color denotes zero probability of successful train-
ing.

46

doi:10.6342/NTU201901446

(a) Probability of Success (Tanh, (b) Probability of Success (ReLU,
Scaled Gaussian Init.) Scaled Gaussian Init.)

500 500

344 344

237 37

163 163
1z 1z

77 7

Metwork Depth L {log scale)
Problef Sufcess Tr:

53 53

Network Depth L (log scale)

00

k] 36

25 1 25 1
-400 -375 -350 -325 -3.00 -275 -250 -225 -2.00 -400 -375 -350 -325 -300 -275 -250 -225 -2.00
Log Learning Rate logipla) Log Learning Rate logyola)

(c) Probability of Success (Tanh, Or- (d) Probability of Success (ReLU, Or-
thogonal Init.) thogonal Init.)

500 + 500

344 344
10
237 37

163 163

1z 1z

Network Depth L {log scale)
Network Depth L (log scale)
Prob. of Success Training

00

25 T T T T T T T 1 25 T T T T T T T 1
—-400 -37% -350 -325 -300 -275 -250 -225 200 -400 -375 -350 -325 -300 -275 -250 -2325 -2.00
Log Learning Rate logigla) Log Learning Rate logiola)

Figure 5.2: Probability of successful training for different network depth L and learning
rate « (the SGD + Momentum optimizer). The networks are initialized with scaled Gaus-
sian/orthogonal weights with Tanh/ReLu activation functions.

perimental results show the likelihood of a failed training is high when the depth L and the
learning rate are large. In addition, the corresponding I?,, of failed cases becomes nearly
1, which causes a lack of the network representation power. It implies that the vanishing
nodes problem is the main reason that the training fails. A comparison of Figure
with the other three results shows clearly that the networks with the minimum R, value
have the highest successful training probability.

Shallow network architectures can tolerate a greater learning rate, which is why the
vanishing node problem has been ignored in many networks with small depth. In a deep

network, the learning rate should be set to small value to prevent I?,, from increasing

47

doi:10.6342/NTU201901446

(a) Probability of Success (Tanh, (b) Probability of Success (ReLU,
Scaled Gaussian Init.) Scaled Gaussian Init.)

500 + 500

344 344
237 37
163 163

1z 1z

Problef SyfceSE Training

Metwork Depth L {log scale)
Network Depth L (log scale)

2 1 25 1
-6.00 -575 -550 -525 -500 -475 -450 -425 -4.00 -6.00 -575 -550 -525 -500 -475 -450 -4325 -4.00
Log Learning Rate logiala) Log Learning Rate logiola)

(c) Probability of Success (Tanh, Or- (d) Probability of Success (ReLU, Or-
thogonal Init.) thogonal Init.)

500

500
344 344
10
237 37

163 163

1z 1z

Prob. of Success Training

Network Depth L {log scale)
Network Depth L (log scale)

00

25 T T T T T T T 1 25 T T T T T T T 1
—-6.00 -575 -550 -525 -500 -475 450 -425 400 —-6.00 -575 -550 -525 -500 -475 450 -425 -4.00
Log Learning Rate logigla) Log Learning Rate logiola)

Figure 5.3: Probability of successful training for different network depth L and learning
rate o (the Adam optimizer). The networks are initialized with scaled Gaussian/orthogonal
weights with Tanh/ReLu activation functions.

to 1. The experimental results of various training hyperparameters (Momentum, Adam,
RMSProp) are presented in Figure. 5.2, 5.3 and 5.4. Similar to the results of SGD opti-
mization, networks with tanh activation functions and initialized with orthogonal weights
have the minimum R?,, value, hence can achieve the highest successful training probabil-
ity.

It is worth noting that, if more efficient optimization methods (e.g. Adam, RMSProp)
are used, the feasible learning rate should become smaller. We can see that the boundary
in Figure has the offset to the left about 0.5 log unit comparing with Figure .1, and

that in Figure [5.3 and 5.4 has the offset to the left about 2.0 log unit (note that the range of

48

doi:10.6342/NTU201901446

(a) Probability of Success (Tanh, (b) Probability of Success (ReLU,
Scaled Gaussian Init.) Scaled Gaussian Init.)

500 500

344 344

237 37

163 163

1z 1z

77 7

Problef Sufcess Tr:

Metwork Depth L {log scale)
Network Depth L (log scale)

53 53

00

k] 36

25 1 25 1
-6.00 -575 -550 -525 -5.00 -475 -450 -425 -4.00 -6.00 -575 -550 -525 -5.00 -475 -450 -425 -4.00
Log Learning Rate logipla) Log Learning Rate logyola)

(c) Probability of Success (Tanh, Or- (d) Probability of Success (ReLU, Or-
thogonal Init.) thogonal Init.)

500 + 500

344 344

10

237 37

163 163

1z 1z

Prob. of Success Training

Network Depth L {log scale)
Network Depth L (log scale)

00

5 T T T T T T T 1 25 T T T T T T T 1
—-6.00 -575 -550 -525 -500 -475 450 -425 400 —-6.00 -575 -550 -525 -500 -475 450 -425 -4.00
Log Learning Rate logigla) Log Learning Rate logiola)

Figure 5.4: Probability of successful training for different network depth L and learn-
ing rate « (the RMSProp optimizer). The networks are initialized with scaled Gaus-
sian/orthogonal weights with Tanh/ReLu activation functions.

the horizontal axis is 2.0 less than the range in Figure B.1)). It implies that the scale of the
feasible learning rate for RMSProp and Adam should be roughly 10 smaller than SGD,
and that for SGD+Momentum (with momentum = 0.9) should be about 10%® smaller.
The reason why the behavior of 12, is effected by learning rates o remain unexplained,
suggesting further investigations to better understand the relationship between learning
rates and the dynamics of 125, A high learning rate will cause R, to be severely intensified

to nearly 1, and the representation capability of the network will be reduced, which is the

main reason that the training fails.

49

doi:10.6342/NTU201901446

5.2 Analyses of failed training caused by vanishing nodes

In this section, we analyze the reason why the failed training occurs from the®erspectives
of vanishing/exploding gradients and vanishing nodes respectively. First, the ngﬁtity g
(the variance of weights at each layer) of trained models is collected. The'rfe e:l-re:total
31,680 runs in the experiments, including 13,101 failed and 18,579 successful cases. The
detailed information is presented in Table 5.1. The quantity o2 i, for measuring the degree
of vanishing/exploding gradients is presented in Figure 5.3 and Figure 5.6 for successful
networks and failed networks. The two figures display the box and whisker plot to repre-
sent the distribution of o2 yi; at each network layer, and the horizontal axis indicates the
depth position of the trained networks. The results show that both successful and failed
networks bear the quantity o2 i, near one. It indicates that both successful and failed
models meet the condition of preventing networks from vanishing/exploding gradients.
Second, the difference of R, between successful and failed networks are displayed in
Figure 5.7. The horizontal axis indicates the value of VNI R,, of trained models evaluated
by eqn. (3), and the vertical axis represents the histogram of the VNI R,,. The blue
histogram represents the R, of failed networks, and the orange histogram represents the
R, of successful networks. The R, of failed models ranges from 0.9029 to 1.0000 with
mean 0.9949 and standard deviation 0.0481, and that of successful models ranges from
0.1224 to 0.9865 with mean 0.3207 and standard deviation 0.1690. The figure shows
that Ry, of failed networks mainly locates around 1, and that of successful networks is
widely distributed. From the analysis shown in Figure 5.3, 5.6 and .7, it is clear that the

vanishing nodes (2,, reaches 1) is the main cause which makes the training failed.

50

doi:10.6342/NTU201901446

115

110

H1

lﬂﬂlﬂlanlnln_% _ _ =

2
Uw

0.95

0.85

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 495 500
Layer Index

Figure 5.5: Box and whisker plot of 02 11 for networks with successful training. There
are 18,579 successful runs.

120

110

H1
&
®
[

b
H

100i§'

2
Uw

0495

0.85

0.80

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500
Layer Index

Figure 5.6: Box and whisker plot of o2y, for networks with failed training. There are
13,101 failed runs.

51

doi:10.6342/NTU201901446

200 | '.':
B Failure Reg &
e Success Rsq 181
5 150
o
"6 125
% 100
&
g 75
a
B0
25
: . | | . 1
0.2 04 06 08 10
Rsq
Figure 5.7: Histogram of R, of failed/successful networks.
Optimizer Activation Weight Init. No. of Failure | No. of Success
Tanh . 712 1268
b ReLU Scaled Gaussian 775 205
Tanh Orth) 62 1918
ReLU ogona 882 1098
Tanh) 982 998
ReLU Scaled Gaussian 140 240
SGD+momentum
Tanh Orthosonal 546 1434
ReLU ogona 1044 936
Tanh) 609 1371
Ao ReLU Scaled Gaussian 73 57
Tanh Orth 1 354 1626
ReLU ogona 1465 515
Tanh) 763 1217
RMSPro ReLU Scaled Gaussian 7 1153
p Tanh Orthosonl 453 1527
ReLU 080 764 1216

Table 5.1: The detailed numbers of successful and failed runs.

52

doi:10.6342/NTU201901446

Chapter 6

Conclusion

The phenomenon of vanishing nodes is investigated as another challenge when training
deep networks. Like the vanishing/exploding gradients problem, vanishing nodes also
make training deep networks difficult. The hidden nodes in a deep neural network become
more correlated as the network depth increases, so the similarity between the hidden nodes
increases. Because similarity between nodes results in redundancy, the effective number
of hidden nodes in a network decreases. This phenomenon is called "vanishing nodes”.

To measure the degree of vanishing nodes, the Vanishing Nodes Indicator (VNI) is
proposed. It is shown theoretically that the VNI is proportional to the network depth and
inversely proportional to the network width, which is consistent with the experimental
results. Via this theoretical tool, we proof that the representation power of a network
vanishes as the VNI goes to 1. The effective number of nodes goes to 1 as when the
VNI equals to 1, which is called the “network collapsing”. Also, we show that for a non-
orthogonal initialized network, the VNI increases as the network depth gets larger, and it
asymptotically goes to 1 as the network is very deep. That is, the network collapses when
we consider a very deep feed-forward neural network.

However, if weight matrices are initialized with orthogonal distribution, or if a residual-
like architecture is applied, then the network will not collapse at a large depth. We show
theoretically that orthogonal weight can have small VNI at initial, and that the network
with identity shortcut connection is closer to the orthogonality. Numerical simulations are

also performed on different activation functions, weight initializations and network archi-

53

doi:10.6342/NTU201901446

tectures, which have a consistent result with our derivation. Both theoretical and numerical
results suggest that the weight initialization and the architecture of a netweork determine
its trainable depth. Orthogonal weight initializations and residual-like architec_tu;:c-_c;g_,'from'
this point of view, are relatively better for training a very deep neural networllij 'y
Moreover, we explore the difference between vanishing/exploding gradieﬁts and .\"Ian-
ishing nodes, and suggest a criterion to predict the occurrence of two problems by the
network depth, the network width, the activation, and the weight initialization. Finally,
experimental results show that vanishing/exploding gradients and vanishing nodes are two

different challenges that make training deep neural networks difficult.

54

doi:10.6342/NTU201901446

Bibliography

[1]

[2]

[3]

[4]

[3]

[6]

[7]

M. Abramowitz. Handbook of Mathematical Functions, With Formulas, Graphs,

and Mathematical Tables. Dover Publications, Inc., New York, NY, USA, 1974.

R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural net-

works with rectified linear units. /CLR, 2018.

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv.1607.06450,

2016.

M. Chen, J. Pennington, and S. S. Schoenholz. Dynamical isometry and a mean
field theory of rnns: Gating enables signal propagation in recurrent neural networks.
Proceedings of the 35th International Conference on Machine Learning, 80:873—

882, 2018.

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z.Zhang. Mxnet: A flexible and efficient machine learning library for heterogeneous

distributed systems. CoRR, abs/1512.01274, 2015.

G. Cybenko. Approximations by superpositions of sigmoidal function. Mathematics

of Control, Signals, and Systems, 2(4):303-314, 1989.

Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identi-
fying and attacking the saddle point problem in high-dimensional non-convex opti-
mization. Advances in Neural Information Processing Systems 27, pages 2933-2941,

2014.

55

doi:10.6342/NTU201901446

[8] F. Gantmacher. The theory of matrices. Number 1 in The Theory of Matrices. Chelsea
Pub. Co., 1960.

[9] X. Glorot and Y. Bengio. Understanding the difficulty of training deép f_eé%fbrward
neural networks. Proceedings of the Thirteenth International Conferen'c.fe 0;1 A vAifi-

cial Intelligence and Statistics, 9:249-256, 2010.

[10] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. AIS-
TATS, 15:275, 2011.

[11] L J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively characterizing neural
network optimization problems. ICLR 2015, 2014.

[12] B. Hanin. Universal function approximation by deep neural nets with bounded width

and relu activations. arXiv:1708.02691, 2017.

[13] B. Hanin. Which neural net architectures give rise to exploding and vanishing gradi-

ents? Neural Information Processing Systems, 2018.

[14] B. Hanin and D. Rolnick. Complexity of linear regions in deep networks. ICML,
2019.

[15] K. He and J. Sun. Convolutional neural networks at constrained time cost. CVPR,

2015.

[16] K. He, X.Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. [EEE International Conference on

Computer Vision, 2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770-778, 2016.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks.

European Conference on Computer Vision, pages 630—645, 2016.

56

doi:10.6342/NTU201901446

[19] G. Hinton, G. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, B. Kings-
bury, and T. Sainath. Deep neural networks for acoustic modeling in speech-recog-

nition. /[EEFE Signal Processing Magazine, 29:82-97, 2012.

=4 :1“1 %

[20] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network :‘érain_ing

by reducing internal covariate shift. /ICML, 2015.

[21] J. R. Ipsen. Products of independent gaussian random matrices. arXiv:1510.06128,
2015.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems,

pages 1106-1114, 2012.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[24] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Miiller. Efficient backprop. Neural
Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop,

pages 9-50, 1998.

[25] V.1 Oseledets. Multiplicative ergodic theorem: Characteristic lyapunov exponents

of dynamical systems. Trudy MMO (in Russian), 19:179-210, 1968.

[26] J. Pennington and S. S. Schoenholz. Resurrecting the sigmoid in deep learning
through dynamical isometry: theory and practice. Advances in Neural Information

Processing Systems 30, pages 4788—4798, 2017.

[27] J. Pennington, S. S. Schoenholz, and S. Ganguli. The emergence of spectral uni-
versality in deep networks. International Conference on Artificial Intelligence and
Statistics, AISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands,

Spain, pages 1924—-1932, 2018.

57

doi:10.6342/NTU201901446

[28] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. Exponential ex-
pressivity in deep neural networks through transient chaos. Neural Information Pro-

cessing Systems, 2016.

=4 :1“1 %

[29] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein.<On .fthe:- eXp._res-

sive power of deep neural networks. arXiv:1606.05336, 2016.

[30] D. Rolnick and M. Tegmark. The power of deeper networks for expressing natural

functions. ICLR, 2018.

[31] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear
dynamics of learning in deep linear neural networks. International Conference on

Learning Representations (ICLR), 2013.

[32] S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl-Dickstein. Deep information

propagation. International Conference on Learning Representations (ICLR), 2017.

[33] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, 1. S. Nal Kalchbrenner, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. Mastering the game of go without human knowledge.

Nature, 529(7587):484-489, 2016.

[34] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. ICML 2015

Deep Learning workshop, 2015.

[35] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and
J. Liang. Convolutional neural networks for medical image analysis: Full training

or fine tuning? [/EEFE Transactions on Medical Imaging, 35(5):1299-1312, 2016.
[36] M. Taki. Deep residual networks and weight initialization. arXiv.1709.02956,2017.

[37] M. Telgarsky. Representation benefits of deep feedforward networks. CoRR,
abs/1509.08101, 2015.

58

doi:10.6342/NTU201901446

[38] A. Veit, M. J. Wilber, and S. J. Belongie. Residual networks are exponential ensem-

bles of relatively shallow networks. CoRR, abs/1605.06431, 2016.

[39] S. Wiesler and H. Ney. A convergence analysis of log-linear training, Ad\f?nces in

Neural Information Processing Systems 24, pages 657—-665, 2011.

[40] Y. Wu, M. Schuster, Z. Chen, M. N. Quoc V. Le, W. Macherey, M. Krikun, Y. Cao,
Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws,
Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,
J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean.
Google’s neural machine translation system: Bridging the gap. arXiv:1609.08144,
2016.

[41] L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. S. Schoenholz, and J. Pennington. Dynam-
ical isometry and a mean field theory of cnns: How to train 10,000-layer vanilla
convolutional neural networks. Proceedings of the 35th International Conference

on Machine Learning, 2018.

[42] G. Yang and S. S. Schoenholz. Mean field residual networks: On the edge of chaos.

Advances in neural information processing systems, pages 7103-7114, 2017.

59

doi:10.6342/NTU201901446

	摘要
	Abstract
	Introduction
	Related Work
	Difficulties in training deep nerual networks
	Representation power of deep neural network

	Vanishing Nodes: correlation between hidden nodes
	Vanishing Node Indicator
	Impacts of back-propagation
	Relationship between the VNI and the redundancy of nodes
	The vanishing of the representation power
	The effect of the orthogonal weight matrices to the representation power
	Representation power of residual-like architectures

	Variance propagation of deep neural networks
	Comparison of exploding/vanishing gradients and vanishing nodes
	Norm-preserving weight initialization
	The two obstacles for training deep nerual networks

	Experiments
	Probability of failed training caused by vanishing nodes
	Analyses of failed training caused by vanishing nodes

	Conclusion
	Bibliography

