
doi:10.6342/NTU201901446

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文
Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

神經元消失：影響深層神經網路之表現能力，並使其

難以訓練的新現象

Vanishing Nodes: The Phenomena That Affects The
Representation Power and The Training Difficulty of Deep

Neural Networks

張文于

Wen­Yu Chang

指導教授：林宗男

Advisor: Tsung­Nan Lin

中華民國 108年 7月
July, 2019

doi:10.6342/NTU201901446

doi:10.6342/NTU201901446

摘要

梯度爆炸/消失，一直被認為是訓練深層神經網路的一大挑戰。在

這篇論文裡，我們發現一種被稱為「神經元消失 (Vanishing Nodes)」的

新現象同樣也會使訓練更加困難。當神經網路的深度增加，神經元彼

此之間的會呈現高度相關。這種行為會導致神經元之間的相似程度提

高。也就是隨著神經網路變深，網路內的神經元冗餘程度會提高。我

們把這個問題稱為「神經元消失 (Vanishing Nodes)」。可以藉由神經網

路的相關參數來對神經元消失的程度做推算；結果可以得出神經元消

失的程度與網路深度成正比、與網路寬度成反比。從數值分析的結果

呈現出：在反向傳播算法的訓練下，神經元消失的現象會變得更明

顯。我們也提出：神經元消失是除了梯度爆炸/消失以外，訓練深層神

經網路的另一道難關。

關鍵字： 深度學習,梯度消失,機器學習理論,表現能力,神經網路架構,

網路訓練問題,正交參數初始化,冗餘神經元,隨機矩陣

ii

doi:10.6342/NTU201901446

Abstract

It is well known that the problem of vanishing/exploding gradients creates

a challenge when training deep networks. In this paper, we show another phe­

nomenon, called vanishing nodes, that also increases the difficulty of training

deep neural networks. As the depth of a neural network increases, the net­

work’s hidden nodes show more highly correlated behavior. This correlated

behavior results in great similarity between these nodes. The redundancy of

hidden nodes thus increases as the network becomes deeper. We call this

problem ”Vanishing Nodes.” This behavior of vanishing nodes can be char­

acterized quantitatively by the network parameters, which is shown analyt­

ically to be proportional to the network depth and inversely proportional to

the network width. The numerical results suggest that the degree of vanishing

nodes will become more evident during back­propagation training. Finally,

we show that vanishing/exploding gradients and vanishing nodes are two dif­

ferent challenges that increase the difficulty of training deep neural networks.

Keywords: Deep learning, Vanishing gradient, Learning theory, Represen­

tation power, Network architecture, Training difficulty, Orthogonal initializa­

tion, Node redundancy, Random matrices

iii

doi:10.6342/NTU201901446

Contents

摘要 ii

Abstract iii

1 Introduction 1

2 Related Work 3

2.1 Difficulties in training deep nerual networks 3

2.2 Representation power of deep neural network 3

3 Vanishing Nodes: correlation between hidden nodes 5

3.1 Vanishing Node Indicator . 6

3.2 Impacts of back­propagation . 14

3.3 Relationship between the VNI and the redundancy of nodes 15

3.4 The vanishing of the representation power 18

3.5 The effect of the orthogonal weight matrices to the representation power . 21

3.6 Representation power of residual­like architectures 23

4 Variance propagation of deep neural networks 39

4.1 Comparison of exploding/vanishing gradients and vanishing nodes 39

4.2 Norm­preserving weight initialization 41

4.3 The two obstacles for training deep nerual networks 42

5 Experiments 45

5.1 Probability of failed training caused by vanishing nodes 45

iv

doi:10.6342/NTU201901446

5.2 Analyses of failed training caused by vanishing nodes 50

6 Conclusion 53

Bibliography 55

v

doi:10.6342/NTU201901446

List of Figures

3.1 Scatter plots for the linear activation and the scaled­Gaussian initialization. 8

3.2 Scatter plots for the Hard­Tanh activation and the scaled­Gaussian ini­

tialization. 9

3.3 Scatter plots for the ReLU activation and the scaled­Gaussian initialization. 10

3.4 Scatter plots for the linear activation and the scaled­uniform initialization. 11

3.5 The results of VNI Rsq with respect to network depth L. 27

3.6 The magnitudes of correlation coefficient ρij between output nodes. . . . 28

3.7 The dynamics of VNI Rsq of the output layer. 28

3.8 The dynamics of VNI Rsq of hidden layers. 29

3.9 The averages of squared correlation coefficients ρ2ij over 50 runs. 30

3.10 The effective number of nodes to the VNI Rsq 31

3.11 Numerical simulation for eqn. (3.28) . 32

3.12 The initial VNI Rsq of Gaussian initialized networks. 33

3.13 The initial VNI Rsq of orthogonal initialized networks. 34

3.14 The architectures of residual deep networks 35

3.15 The initial VNI Rsq of residual networks. 36

3.16 The initial VNI Rsq of different network architectures. 37

3.17 The initial VNI Rsq of convolutional neural networks. 38

4.1 The schematic diagram for deep neural network architectures 43

5.1 Probability of successful training for the SGD optimizer. 46

5.2 Probability of successful training for the SGD + Momentum optimizer. . . 47

5.3 Probability of successful training for the Adam optimizer. 48

vi

doi:10.6342/NTU201901446

5.4 Probability of successful training for the RMSProp optimizer. 49

5.5 Box and whisker plot of σ2
wµ1 for networks with successful training. . . . 51

5.6 Box and whisker plot of σ2
wµ1 for networks with failed training. 51

5.7 Histogram of Rsq of failed/successful networks. 52

vii

doi:10.6342/NTU201901446

List of Tables

3.1 The µk of different activation functions. 26

3.2 The s1 of different weight distribution. 26

3.3 The maximum depth for different architectures and initializations 26

5.1 The detailed numbers of successful and failed runs. 52

viii

doi:10.6342/NTU201901446

Chapter 1

Introduction

Deep neural networks (DNN) have succeeded in various fields, including computer vision

[22], speech recognition [19], machine translation [40], medical analysis [35] and human

games [33]. Some results are comparable to or even better than those of human experts.

State­of­the­art methods inmany tasks have recently used increasingly deep neural net­

work architectures. The performance has improved as networks have been made deeper.

For example, some of the best­performing models [17, 18] in computer vision have in­

cluded hundreds of layers.

Moreover, recent studies have found that as the depth of a neural network increases,

problems such as vanishing or exploding gradients make the training process more chal­

lenging. [9, 16] investigated this problem deeply and suggested that initializing weights

in appropriate scales can prevent gradients from vanishing or exploding exponentially.

[28, 32] also studied how vanishing/exploding gradients arise via mean field theory and

provided a solid theoretical discriminant to determinewhether the propagation of gradients

is vanishing/exploding.

Inspired by previous studies, we investigated the correlation between hidden nodes

and discovered that a phenomenon that we call vanishing nodes can also affect the ca­

pability of a neural network. In general, the hidden nodes of a neural network become

highly correlated as the network becomes deeper. The correlation between nodes implies

the similarity between them, and high degree of similarity between nodes produces re­

dundancy. Because a sufficient number of effective nodes is needed to approximate an

1

doi:10.6342/NTU201901446

arbitrary function, the redundancy of nodes in hidden layers may debilitate the represen­

tation capability of the entire network. Thus, as the depth of the network increases, the

redundancy of hidden nodes may increase and hence affect the network’s trainability. We

name this phenomena as ”Vanishing Nodes.”

We propose aVanishingNode Indicator (VNI), which is theweighted average of squared

correlation coefficients, as the quantitative metric for vanishing nodes. VNI can be theo­

retically approximated via the results on the spectral density of the end­to­end Jacobian.

The approximation of VNI depends on the network parameters, including the width, the

depth, the distribution of weights, and the activation functions, and it is shown to be simply

proportional to the network depth and inversely proportional to the network width.

In addition, the numerical results show that back­propagation training also intensifies

the correlations of hidden nodes when we consider a deep network. We find that although

we use a relatively large network width, the correlations of hidden nodes may still increase

during the training process.

Finally, we show that vanishing/exploding gradients and vanishing nodes are two dif­

ferent problems, so that the two problems may arise from specific conditions. The ex­

perimental results show that the likelihood of failed training increases as the depth of the

network increases. The training will become much more difficult due to lack of network

representation capability.

This paper is organized as follows: some related works are discussed in Section 2.

The vanishing nodes phenomenon is introduced in Section 3. Theoretical analysis and a

quantitative metric are reported in Section 3. Section 4 compares the vanishing nodes with

vanishing/exploding gradients. Section 5 reports the experimental results and Section 6

gives our conclusions.

2

doi:10.6342/NTU201901446

Chapter 2

Related Work

2.1 Difficulties in training deep nerual networks

Problems in the training of deep neural networks have been encountered in several stud­

ies. For example, [9, 16] investigated vanishing/exploding gradient propagation and gave

weight initialization methods as the solution. [13] suggested that vanishing/exploding gra­

dients might relate to the sum of the reciprocals of the hidden layer widths. [7, 11] stated

that saddle points are more likely than local minima to be a problem for training deep neu­

ral networks. [15, 17, 34] exposed the degradation problem: the performance of a deep

neural network degrades as the depth increases.

Dynamical isometry is one of the conditions that make ultra­deep network training

more feasible. [31] reported dynamical isometry to theoretically ensure depth­independent

learning speed. [26, 27] suggested several ways to achieve dynamical isometry for various

settings of network architecture, and [4, 41] practically trained ultra­deep networks in

various tasks.

2.2 Representation power of deep neural network

Representation power has been surveyed in many previous works. According to the ”uni­

versal approximation theorem” proved by [6], a single hidden layer with a finite number

of neurons can approximate any continuous function on compact subsets. However, [38]

3

doi:10.6342/NTU201901446

states that the network depth of neural networks governs the representation power and

the training performance. Theoretically, [14, 28, 29, 30] claim the expressive complexity

of a network grows exponentially with its depth but not its width. For ReLU networks,

[2, 12, 37] show that the minimal number of nodes to aprroximate any continuous function

can be reduced if the depth of the network is larger.

The correlation between the nodes of hidden layers within a deep neural network is our

main focus. As we know, the correlation between nodes implies the similarity between

them, and high degree of similarity between nodes produces redundancy, hence reduce the

representation power of the network. Several kinds of correlations have been discussed

in the literature. In this work, we proposed a different problem related to the correlation

between two nodes in a hidden layer. [32] surveyed the propagation of the correlation

between two different inputs after several layers. [24, 39] suggested that the input features

must be whitened (i.e., zero­mean, unit variances and uncorrelated) to achieve a faster

training speed.

4

doi:10.6342/NTU201901446

Chapter 3

Vanishing Nodes: correlation between

hidden nodes

In this section, the correlation of hidden­layer neurons is investigated. If a pair of neurons

is highly correlated (for example, the correlation coefficient is equal to +1 or −1), one of

the neurons becomes redundant. Great similarity between nodes may reduce the effective

number of neurons within a network. In some cases, the correlation of hidden nodes may

disable the entire network. This phenomenon is called Vanishing Nodes.

First, consider a deep feed­forward neural network with depth L. For simplicity of

analysis, we assume all layers have the same width N . The weight matrix of layer l is

Wl ∈ RN×N , the bias of layer l is bl ∈ RN (a column vector), and the common activation

function of all layers is ϕ(·) : R → R. The input of the network is x0, and the nodes at

output layer L denote xL. The pre­activation of layer l is hl ∈ RN (a column vector), and

the post­activation of layer l is xl ∈ RN (a column vector). That is, ∀l ∈ {1, ..., L},

hl = Wlxl−1 + bl, xl = ϕ(hl). (3.1)

The variance of node i is defined as σ2
i

∆
= Ex0 [(xl(i) − xl(i))

2], and the squared correla­

tion coefficient (ρ2ij) between nodes i and j can be computed as

ρ2ij
∆
=

Ex0 [(xl(i) − xl(i))(xl(j) − xl(j))]
2

Ex0 [(xl(i) − xl(i))2]Ex0 [(xl(j) − xl(j))2]
, (3.2)

5

doi:10.6342/NTU201901446

where ρ2ij ranges from 0 to 1. Nodes xl(i) and xl(j) are highly correlated only if the mag­

nitude of the correlation coefficient between two nodes ρij is nearly 1. ρ2ij indicates the

magnitude of similarity between node i and node j. If ρij is close to+1 or−1, then node i

can be approximated in a linear fashion by node j. Great similarity indicates redundancy.

If nodes of hidden layers exhibit great similarity, the effective number of nodes will be

much lower than the original network width. Therefore, we call this phenomena Vanishing

Node Problem.

Figure 3.1, 3.2, 3.3 and 3.4 provide intuitives view of the vanishing node problem. The

network architecture is build with depth L = 100, width N ∈ {6, 50, 100} and activation

functions include Linear, Hard­Tanh and ReLU . The weight matrices are initialized

with scaled­Gaussian and scaled­uniform initialization (further discussion will provide

in Section 4.2) and the biases are set to zeros. The network is fed with 1000 random

generated data points drawn from the zero­mean white Gaussian distribution. After the

forward propagation, we choose 6 output nodes from the output layer to plot scatter plots

with the first output node. It is obvious that the neurons in four Subfigures (a) are so

linearly correlated that the actual number of effective number of the six nodes is 1, while

the neurons in four Subfigures (c) seem to be uncorrelated to each others. It implies that

if the network width N is relatively small (compared to the network depth L), the output

nodes may become highly correlated, and hence results in the vanishing node problem.

In the following section, we propose a metric to measure the quantitative property of

vanishing nodes for a deep feed­forward neural network. Theoretical analysis of themetric

indicates that the quantitative property of vanishing nodes is proportional to the network

depth and inversely proportional to the network width. The quantity is shown analytically

to depend on the statistical property of weights and the nonlinear activation function.

3.1 Vanishing Node Indicator

Consider the network architecture defined in eqn. (3.1). In addition, the following as­

sumptions are made: (1) The input x0 is zero­mean, and the features in x0 are independent

and identically distributed. (2) All weight matrices Wl in each layer are initialized from

6

doi:10.6342/NTU201901446

the same distribution with variance σ2
w/N . (3) All the bias vectors bl in each layer are

initialized to zero.

The input­output Jacobian matrix J ∈ RN×N is defined as the first­order partial deriva­

tive of the output layer with respect to the input layer, which can be rewritten as

∂xL
∂x0

=
L∏
l=1

DlWl, (3.3)

where Dl
∆
= diag(ϕ′(hl)) is the derivative of point­wise activation function ϕ at layer

l. To conduct a similar analysis as [31], consider the first­order forward approximation:

xL − xL ≈ Jx0. Therefore, the covariance matrix of the nodes (C ∈ RN×N) at the output

layer can be computed as

C ∆
= Ex0 [(xL − xL)(xL − xL)T] ≈ Ex0 [(Jx0)(Jx0)T] = JEx0 [x0xT0]JT = σ2

xJJT , (3.4)

where σ2
x is the common variance of features in x0, and the expected values are calculated

with respect to the input x0. For notational simplicity, we omit the subscript x0 of the ex­

pectations in the following equations. It can be easily derived that the squared covariance

of nodes i and j is equal to the product of the squared correlation coefficient and the two

variances. That is, [C(ij)]
2 = ρ2ijσ

2
i σ

2
j .

In this paper, we propose the Vanishing Node Indicator (VNI) Rsq to quantitatively

characterize the degree of vanishing nodes for a given network architecture. It is defined

as follows:

Rsq
∆
=

∑N
i=1

∑N
j=1 ρ

2
ijσ

2
i σ

2
j∑N

i=1

∑N
j=1 σ

2
i σ

2
j

. (3.5)

VNI calculates the weighted average of the squared correlation coefficients ρ2ij be­

tween output layer nodes with non­negative weights σ2
i σ

2
j . Basically, VNI Rsq, which

ranges from 1/N to 1, summarizes the similarity of the nodes at the output layer. If all

nodes are independent of each other, the correlation coefficients ρij will be 0 (if i ̸= j) or 1

7

doi:10.6342/NTU201901446

(a) Network width N = 6

(b) Network width N = 50

(c) Network width N = 100

Figure 3.1: To show the output layer correlation, we plot the scatter plots of 6 random
sampled output layer nodes. The network is fed with 1000 random generated data points.
The network architecture is defined with network depth L = 100, linear activation and
scaled­Gaussian weight initialization. The network width N = 6, 50, 100 from top to
bottom. We can see that correlations are much higher when the network widthN is small.

(if i = j) and Rsq will become the minimum value of 1/N . Otherwise, if all of the output

nodes are highly correlated, then all squared correlation coefficients ρ2ij will be nearly 1,

and therefore Rsq will reach the maximum value of 1. Note that the weights σ2
i σ

2
j in the

weighted average can be interpreted as the importance of the output­layer nodes i and j.

If all of the output layer nodes have equal variances, VNI Rsq is simply reduced to the

average of the squared correlation coefficients ρ2ij .

With the covariance matrix defined in eqn. (3.4) and the formulas for matrix traces,

8

doi:10.6342/NTU201901446

(a) Network width N = 6

(b) Network width N = 50

(c) Network width N = 100

Figure 3.2: To show the output layer correlation, we plot the scatter plots of 6 random
sampled output layer nodes. The network is fed with 1000 random generated data points.
The network architecture is defined with network depth L = 100,Hard­Tanh activation
and scaled­Gaussian weight initialization. The network widthN = 6, 50, 100 from top to
bottom. We can see that correlations are much higher when the network widthN is small.

9

doi:10.6342/NTU201901446

(a) Network width N = 6

(b) Network width N = 50

(c) Network width N = 100

Figure 3.3: To show the output layer correlation, we plot the scatter plots of 6 random
sampled output layer nodes. The network is fed with 1000 random generated data points.
The network architecture is defined with network depth L = 100, ReLU activation and
scaled­Gaussian weight initialization. The network width N = 6, 50, 100 from top to
bottom. We can see that correlations are much higher when the network widthN is small.

10

doi:10.6342/NTU201901446

(a) Network width N = 6

(b) Network width N = 50

(c) Network width N = 100

Figure 3.4: To show the output layer correlation, we plot the scatter plots of 6 random
sampled output layer nodes. The network is fed with 1000 random generated data points.
The network architecture is defined with network depth L = 100, linear activation and
scaled­Uniform weight initialization. The network width N = 6, 50, 100 from top to
bottom. We can see that correlations are much higher when the network widthN is small.

11

doi:10.6342/NTU201901446

VNI Rsq can be expressed as the formula of the covariance matrix as

Rsq =

∑N
i=1

∑N
j=1 Ex0 [(xL(i) − xL(i))(xL(j) − xL(j))]

2∑N
i=1

∑N
j=1 Ex0 [(xL(i) − xL(i))2]E[(xL(j) − xL(j))2]

=

∑N
i=1

∑N
j=1[C(ij)]

2∑N
i=1

∑N
j=1C(ii)C(jj)

=
tr(CCT)

tr(C)2
,

(3.6)

where tr(·) is the matrix trace operation.

From eqn. (3.4), substituting σ2
xJJT forC in eqn. (3.6), and noting that tr(Ak) is equal

to the sum of eigenvalues to the k­th power of symmetric matrix A [8], an approximation

of Rsq can be obtained:

Rsq ≈
tr(JJTJJT)
tr(JJT)2

=

∑N
k=1 λ

2
k

(
∑N

k=1 λk)
2
=

N ·m2

(N ·m1)2
=

m2

Nm2
1

, (3.7)

where λk is the k­th eigenvalue of JJT , andmi is the i­th moment of eigenvalues of JJT .

In eqn. (3.7), we show that Rsq is related to the expected moments of the eigen­

values of JJT . Because the moments of the eigenvalues of JJT have been analyzed in

previous studies [27], we can leverage the recent results by [27]: m1 = (σ2
wµ1)

L, and

m2 = (σ2
wµ1)

2LL
(

µ2

µ2
1
+ 1

L
− 1 − s1

)
, where σ2

w/N is the variance of the initial weight

matrices, s1 is the first moment of the series expansion of the S­transform associated with

the weight matrices, and µk are the k­th moments of series expansion of the moment gener­

ating function associated with activation functions. The derivation of µk and s1 are given

by [27], and the results are provided in Table 3.1 and 3.2. If we insert the expressions of

m1 andm2 into eqn. (3.7), we can obtain an approximation of the expected VNI:

Rsq ≈
L

N

(µ2

µ2
1

+
1

L
− 1− s1

)
=

1

N
+
L

N

(µ2

µ2
1

− 1− s1

)
, (3.8)

which shows that VNI is determined by the depth L, the width N , the moments of the

activation functions µk and the statistical property of weights s1. BecauseRsq ranges from

1/N to 1, the approximation in eqn. (3.8) is more accurate when N >> L. Moreover, it

can be easily seen that the correlation is inversely proportional to the network width N ,

and proportional to the network depth L.

12

doi:10.6342/NTU201901446

To evaluate the accuracy of eqn. (3.8) with respect to the original definition in eqn. (3.5),

we design the following experiments. A network width, N ∈ {200, 500}, is set. The net­

work depth L is adjusted from 10 to 100 with the Hard­Tanh activation function. One

thousand data points with the distribution x0 ∼ Gaussian(µx = 0, σ2
x = 0.1) and 50,000

training images in MNIST dataset [23] are fed into the network. In each network architec­

ture, the weights are initialized with scaled­Gaussian distribution [9] of various random

seeds for 100 runs. The details of the scaled­Gaussian initialization are provided in Sec­

tion 4.2. The Rsq calculated from eqn. (3.5) is then recorded to compute the mean and

the standard deviation with respect to various network depths L. The results are shown

in Figure 3.5 as the blue and green lines denoted “Simulation i.i.d. inputs＂and ”Sim­

ulation MNIST dataset.” The red line denoted as“Theoretical＂is the result calculated

from eqn. (3.8). This experiment demonstrates that VNI expressed in terms of the net­

work parameters in eqn. (3.8) is very close to the original definition in eqn. (3.5). Similar

results are obtained with different activations (e.g., Linear, ReLU) and different weight

initialization (e.g., scaled uniform distribution).

Figure 3.6 plots the squared correlation coefficients between output nodes, which are

evaluated with 50,000 training images in the MNIST dataset [23] for various network

architectures. White indicates no correlation, and black means that ρ2ij = 1. Figure 3.6

(a) plots the squared correlation coefficients for four architectures with the same network

width (N = 200) at different depths (5, 50, 300, and 1000). Figure 3.6 (b) shows the

architectures with the same depth (L = 100) and different widths (5, 50, 200, 1000). This

shows that the vanishing node phenomenon becomes evident with respect to the depth and

inversely proportional to the width.

In each simulation, the weight initialization follows the scaled­Gaussian distribution

with the activation variance­maintaining property as defined by [9, 16]. The details of the

scaled­Gaussian initialization method will be discussed in Section 4.2.

13

doi:10.6342/NTU201901446

3.2 Impacts of back­propagation

In Section 3.1, we showed that the correlation of a network will increase as the depth L

increases; in this section, we exploit the manner in which the back­propagation training

process will influence the network correlation by the following experiments.

First, the same architecture defined in eqn. (3.1), with L = 100, N = 500, tanh

activation, and scaled Gaussian initialization [9], is used. The network is then trained

on the MNIST dataset [23] and optimized with stochastic gradient descent (SGD) with a

batch size of 100. The network is trained with three different learning rates for different

seeds to initialize the weights for 20 runs. We then record the quartiles of VNI (Rsq) with

respect to the training epochs, as shown in Figure 3.7.

The boundaries of the colored areas represent the first and third quartiles (i.e., the 25th

and 75th percentiles), and the line represents the second quartile (i.e., the median) of Rsq

over 20 trials. It shows that in some cases, VNI increases to 1 during the training process,

otherwise VNI grows larger initially, and then decreases to a value which is larger than the

initial VNI. Severe intensification of VNI may occur, as shown by the blue line, which is

trained at the learning rate of 10−2. Moreover, we observe that training will become much

more difficult due to a lack of network representation capability as VNI Rsq approaches

1. Further discussion is provided in Section 5 to investigate the impact of VNI by various

training parameters.

In Figure 3.8, the dynamics VNI Rsq in hidden layers is provided. The depth and the

width of the network is set to L = 100, N = 500. The activation is tanh activation and

the weight matrices are initialized with scaled Gaussian distribution (will be discussed in

Section 4.2). The optimization method is SGD with learning rates 10−3 in Figure 3.8a and

10−2 in Figure 3.8b. The training is performed on the MNIST dataset, and we evaluate the

averages of hidden layer VNI Rsq over 50 runs. It shows that if we use a large learning

rate like 10−2 for weight optimization, the VNI of over 70% of hidden layers are highly

intensified in 10 updates. The dynamic of the VNI intensification starts from the output

layer, and then propagated toward the input layer in an infection­like behavior. That is,

the vanishing nodes problem occurs with large learning rate, and if it occurs, most of the

14

doi:10.6342/NTU201901446

hidden layers will be effected.

In Figure 3.9, we present the pairwise averaged squared correlation coefficients ρ2ij via

its color. The architecture is defined with L = 100, N = 500, tanh activation and scaled

Gaussian initialization. Random samples from the distribution x0 ∼ Gaussian(µx =

0, σ2
x = 0.1) with batch size 1000 are used as the input data, and the same distribution is

used as the output gradients. The network is trained by SGD optimization with learning

rate= 10−2. The darker pixels represent higher correlations. Note that in Figure 3.9a, the

color of layer 100 is bright because the network width N = 500 is large relative to the

network depth L = 100.

3.3 Relationship between the VNI and the redundancy of

nodes

In this section, we would like to connect the VNIRsq with the redundancy of nodes. First,

theN random variables of node values in a hidden layer are defined as {X1, X2, ..., XN}.

Without loss of generality, we assume that every Xi are following N (0, 1) distribution.

Therefore, the covariance matrix of random vector [X1, X2, ..., XN]
T is

C =



1 ρ12 · · · ρ1N

ρ21 1 · · · ρ2N
...

...

ρN1 ρN2 · · · 1


, (3.9)

where Cij = E[(Xi −Xi)(Xj −Xj)] as defined in eqn. (3.4), ρij is the correlation coef­

ficient between Xi and Xj , and hence C is a symmetric matrix. By the definition of the

VNI Rsq from eqn. (3.5), the Rsq can be represented as

Rsq =

∑N
i=1

∑N
j=1 ρ

2
ij

N2
=
tr(CCT)

N2
=

1

N2
tr(C2). (3.10)

Let the eigenvalues of C are λ1, λ2, . . . , λN . By the relationship between matrix trace

15

doi:10.6342/NTU201901446

and eigenvalues, we have

N∑
i=1

λi = tr(C) = N

N∑
i=1

λ2i = tr(C2) = N2Rsq.

(3.11)

To relate Rsq with the redundancy of random variables, a method for measuring the

redundancy is needed. From the principle component analysis (PCA), the eigenvalue ofC

can represent the energy (i.e. the variance) associated with each eigenvector. Therefore,

we can use the distribution of eigenvalues λi to determine the proportion of redundant

components, and hence the effective number of nodes can be evalueated. Similar to PCA,

we first rearange the order of eigenvalues λi such that λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. We

define a constant ε ∈ (0, 1) to be the ”effective threshold ratio” of eigenvalues. That is,

if λi ≥ ελ1, then we say that the i­th component λi is ε­effective. Otherwise, the i­th

component λi is said to be redundant.

We introduce a new metric called ”ε­effective number of nodes (ε­ENN)” as

ε­ENN ≡ N ε
e

∆
= max({t ∈ N : λt ≥ ελ1}). (3.12)

That is, ε­ENN is the maximum number of ε­effective nodes. As in eqn. (3.11), the con­

straints on λi are already derived. Also, it is intuitive that the maximum in eqn. (3.12)

can simply be attained with eigenvalues {λ1, ελ1, . . . , ελ1, 0, . . . , 0 . . . , 0}, where there

are (N ε
e − 1) ελ1 and (N −N ε

e) zeros. Insert these eigenvalues into eqn. (3.11), we have

λ1 + (N ε
e − 1)ελ1 = N

λ21 + (N ε
e − 1)(ελ1)

2 = N2Rsq.

(3.13)

Inserting the first equation in eqn. (3.13) into the second one, we can get

[1 + (N ε
e − 1)ε]2 =

(N
λ1

)
=

1 + (N ε
e − 1)ε2

Rsq

, (3.14)

16

doi:10.6342/NTU201901446

which is a solvable quadratic equation. The numerical solution of the effective number of

nodes for given ε are provided in Figure 3.10.

Theorem 1 (Opposite trend between the VNI and the ENN). For any threshold ε,

the ε­effective number of nodes strictly decreases as the VNI Rsq increases.

Proof. Evaluate the differentiation of both sides of the eqn. (3.14), the derivative of Rsq

with respect to N ε
e is

dRsq

dN ε
e

=
[1 + (N ε

e − 1)ε]2 ·N ε
e ε

2 − [1 + (N ε
e − 1)ε2] ·N ε

e · 2ε[1 + (N ε
e − 1)ε]

[1 + (N ε
e − 1)ε]4

= ε · [1 + (N ε
e − 1)ε] ·N ε

e ε− 2[1 + (N ε
e − 1)ε2]

[1 + (N ε
e − 1)ε]3

= ε · ε− 2− (N ε
e − 1)ε2

[1 + (N ε
e − 1)ε]3

< 0.

(3.15)

Since in eqn. (3.15), the derivative of Rsq with respect to N ε
e is always negative, the

N ε
e is strictly decreasing with Rsq.

Theorem 2 (Network collapsing). For any threshold ε,

the ε­effective number of nodes N ε
e becomes only 1 when the VNI Rsq is 1.

Proof. Insert the Rsq = 1 condition into eqn. (3.14), then we have

[1 + (N ε
e − 1)ε]2 = 1 + (N ε

e − 1)ε2

⇒(N ε
e − 1)[(N ε

e − 2)ε+ 2] = 0

⇒N ε
e = 1

(3.16)

The solution of N ε
e in eqn. (3.14) is 1 (no matter the value of ε). Therefore, the ε­

effective number of nodes N ε
e becomes only 1 when the VNI Rsq is 1.

By Theorem 1, and Theorem 2, we can say that the effective number of nodes in a

layer of a network vanishes to 1 as the VNI Rsq increases to 1. If the output layer of a

network has the VNIRsq = 1, then we can say that the network suffers from the ”network

17

doi:10.6342/NTU201901446

collapsing” problem, which has only 1 effective node at the output layer and hence cannot

solve most of training tasks.

3.4 The vanishing of the representation power

The phenomena that the representation power of a very deep network vanishes is shown

in this section. Recent works [2, 12, 14, 28, 29, 30, 37] put emphasis on the benifit of in­

creasing the depth of a neural network, and claim that the representation power of a neural

network grows exponentially as its depth. However, the representation power discussed

in previous results is mainly the theoretical upper bound of all variable space. Practically,

it has small probability for the representation power to reach the upper bound when the

weight matrices are randomly initialized. In the following, we will show that if the weight

matrices are drawn from a non­orthogonal probability distribution (such as the normal dis­

tribution and the uniform distribution), the VNI Rsq increases to 1 as the network goes

deeper. Moreover, as the VNI Rsq reaches nearly 1, the representation power of the net­

work will vanish.

The VNI Rsq has been defined in eqn. (3.5) to measure the correlation between the

output nodes of a network, and hence the VNI can be viewed as a measurement of the level

of redundancy. In Section 3.3, the redundant number of nodes has already been connected

to the VNIRsq. Therefore, we can simply use the VNIRsq as an approximation of the ratio

of redunt nodes, and the number of effective nodes can be approximated asN · (1−Rsq)+

1, that is, one node along with other non­redundant nodes. The representation power is

closely related to the effective number of network nodes, and the VNI Rsq can provide an

estimation of the effective number of nodes (as in Section 3.3).

In Figure 3.12, the network widthN is set to 500 and the network depth L ranges from

1 to 10000. The network is fed with 1000 randomly generated data point drawn from

zero­mean white Gaussian distribution with standard deviation equals to 0.1. The VNI

Rsq are evaluated according to the definition in eqn. (3.5). The weights are initialized

with scaled­Gaussian distribution ([9, 16]), which will be discussed in Section 4.2, and

the biases are initialized to zeros. The activation functions of the networks include tanh,

18

doi:10.6342/NTU201901446

ReLU and linear. Note that for the ReLU case, we add the layer normalization ([3]) blocks

between hidden layers in order to prevent the node values from converging to zeros. If the

node values converges to zeros, the result of eqn. (3.5) become undefined. Also note that

since in our case, the layer normalization only rescales the node values, it will not affect the

value ofVNI evaluated from eqn. (3.5), which is a scale­invariantmetric. The simulation is

repeated for 20 times, and themedians of theVNI over 20 runs are plotted as the solid lines,

and the boundaries of the colored regions are the first and the third quartiles of the VNI.

It is shown that for a feed­forward architecture under a non­orthogonal initialization, the

initial VNI Rsq increases to 1 as L gets larger. That is, the representation power vanishes

as the network goes deeper. The VNI of ReLU activation, especially, grows in the steepest

with the network depth, and the reason can be observed from the eqn. (3.8), Table 3.1 and

Table 3.2. The Rsq approximated by eqn. (3.8) for ReLU activation is (2L+ 1)/N while

theRsq for linear and tanh activation is nearly (L+1)/N . Therefore, the ReLU activation

suffers more from the vanishing representation power.

We define the ”maximal depth” as the maximal L such that in less than half of 20

runs(i.e. 10 runs), the approximated number of effective nodes achieve greater than 1.

The maximal depths for different activation functions, weight initializations and network

architectures are shown in Table 3.3. It shows that themaximal depth of ReLU activation is

much less than linear and tanh activations. It has been stated [10] that the ReLU activation

provides a sparse and distributed representation That is, the ReLU activation selects half

of neurons as the active nodes, which may reduce the effective number of nodes. Since

the maximal depth is closely related to the effective number of nodes, it provides another

aspect explaining that the representation power vansihes faster for the ReLU activation.

Here, we provide a theoretical claim for reasoning the VNI Rsq of a Gaussian initial­

ized linear network.

Theorem 3 (The VNI Rsq goes to 1 as L → ∞). For a linear network with Gaussian

initialized weight matricesWl, l ∈ {1, 2, . . . , L}, the VNI Rsq of the network goes to 1 as

L→ ∞.

Proof. Let the product of weight matrices P as the input­output Jacobian (defined in

19

doi:10.6342/NTU201901446

eqn. (3.3)) of the linear network

PL ≡
L∏
l=1

Wl. (3.17)

From eqn. (3.7), we would like to show that Rsq =
∑N

k=1 λ
2
k

(
∑N

k=1 λk)2
goes to 1 as L → ∞. Note

that the λk is the k­th eigenvalue of PLPT
L, satisfying λ1 ≤ λ2 ≤ · · · ≤ λN .

Considering the asymptotic behavior of eigenvalues λk when the depth L tends to

infinity, we can apply the Lyapunov exponents to the matrix PLPT
L as in [21].

lim
L→∞

(PLPT
L)

1/2L = eH, (3.18)

where H has eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µN , which are known as the Lyapunov

exponents.

By the Oseledec’s theorem [25], we have the asymptotic value of eigenvalue

λk ∼ e2Lµk . (3.19)

Previous works ([21]) have already derived the value of µk

µk =
1

2
log 2 +

1

2
ψ
(k
2

)
, (3.20)

where ψ(·) denotes the digamma function, which is defined as the logarithmic derivative

of the gamma function. As in [1], the digamma function has the asymptotic expansion

ψ(x) ∼ logx− 1

2x
+O(x−2). (3.21)

Therefore, the eigenvalues λk has the asymptotic approximation by eqn. (3.19) to

eqn. (3.21)

λk ∼ eL(log k) = kL. (3.22)

20

doi:10.6342/NTU201901446

Insert the result of eqn. (3.22) into eqn. (3.7), we have

lim
L→∞

∑N
k=1 λ

2
k(∑N

k=1 λk
)2 = lim

L→∞

∑N
k=1 k

2L(∑N
k=1 k

L
)2

= lim
L→∞

∑N
k=1(k/N)2L(∑N
k=1(k/N)L

)2
= 1.

(3.23)

That is, the VNIRsq of a linear network with Gaussian initialized weight matrices goes

to 1 as L→ ∞.

Also, for a nonlinear network with norm­preserving Gaussian initialized weight matri­

ces (see Section 4.2 for further discussion), we can perform a linear approximiation on the

input­output Jacobian matrix. That is, replace the product matrix defined in eqn. (3.17)

with the Jacobian matrix defined in eqn. (3.3). Because the weight matrices are norm­

preserving, then we have the same distribution of Dl for all hidden layers. That is,

E[Dl] = diag(E[ϕ′(xl(1))],E[ϕ′(xl(2))], . . . ,E[ϕ′(xl(N))]) ≈ ψI (3.24)

where the constant ψ denote the expected derivative E[ϕ′(xl(i))] for every node i. After

the linear approximation in eqn. (3.24), we can apply the similar procedure in the proof

of Theorem 3, and then we can obtain the result for non­linear networks. That is, the VNI

Rsq of a non­linear network with norm­preserving Gaussian initialized weight matrices

goes to 1 as L→ ∞.

3.5 The effect of the orthogonal weight matrices to the

representation power

The orthogonal weight initialization [31] is one of methods that train a very deep neural

network successfully. In [41], the trainable depth of a convolutional neural network with

orthogonal initialized weights can reach over 10000 layers. In this section, we will show

21

doi:10.6342/NTU201901446

that the orthogonal weight matrices can prevent the representation power of networks from

vanishing.

In Figure 3.13, similar settings to Figure 3.12 are used excluding the weights, which

are initialized with scaled­Orthogonal distribution ([31], further discussion is provided

in Section 4.2). It is shown that for a feed­forward architecture under the orthogonal

initialization with linear or tanh activation function, the initial VNI Rsq remain nearly

minimum (1/N) even when the network depth L gets larger, and that the VNI of ReLU

activation increases to 1 as the network goes deeper.

From eqn. (3.8) and Table 3.2, it can be derived that the approximation of the VNI

Rsq of networks with orthogonal weight matrices is
[(

µ2

µ2
1
− 1

)
L + 1

]/
N . That is, if an

activation function such that µ2

µ2
1
∼ 1 is chosen, then the VNI Rsq can remain in a lower

level even when the network goes much deeper. Therefore, it explains that the network

with linear and tanh activation has a constant VNI Rsq with respect to the network depth,

and the VNI Rsq for the network with ReLU activation still increases to 1.

To provide a more intuitive explanation, we first consider the linear activation case.

Because the product of orthogonal matrices remain an orthogonal matrix, the input­output

correlation for a 10000­layer network with orthogonal weights can be reduced to a 1­layer

shallow network with a single orthogonal weight. Therefore for such a network setting,

the representation power remain the same even if the network depth L goes arbitrarily

large.

Consider the ReLU activation network with orthogonal weight matrices. The output

layer is xL = ϕ(WL . . . ϕ(W2ϕ(W1x0))). Analytically, the ReLU activation function

ϕ(·) can be taken as a matrix Ul with all the off­diagonal elements equal to zeros and the

diagonal elements ∈ {0, 1}, which are dependent to the input data. That is, the output

layer can be expressed as xL = (ULWL) . . . (U2W2)(U1W1)x0. Note that the matrices

(UlWl) can be viewed as the random samples from the row vectors of the orthogonal

matrix Wl. Since the random sample operation is equivalent to the random projection

onto the coordinate hyperplanes, the orthogonal property of Wl will be no longer kept

after the multiplication with Ul. Therefore, the representation power of the network faced

22

doi:10.6342/NTU201901446

the same problem as stated in Section 3.4.

The maximal depths for different activation functions with orthogonal weight initial­

izations are also shown in Table 3.3. It shows that the maximal depths of linear and tanh

activations are more than 10000 layers, but that of ReLU activation is much small, which

is consistent to our analysis.

3.6 Representation power of residual­like architectures

Residual network ([17, 18]) is another example for training very deep nerual networks

successfully. Unlike the orthogonal weight initialization, the residual network is one of an

architecture solution to improve the training performance. In this section, the advantage of

the additional identity skip connections (i.e. residual shortcut connections) and the effect

to the representation power will be discussed.

First, the network architecture to be considered is present in Figure 3.14, which is

similar to [18]. For the 1­layer shortcut case in Figure 3.14a, we can rewrite the network

equation defined in eqn. (3.1) as

xl = xl−1 + F(Wl, xl−1)

= x0 +
l−1∑
i=0

F(Wi+1, xi),
(3.25)

where F(·) is the residual block function consist of batch normalization ([20]), activation

function and weight multiplication. After the first­order approximation as eqn. (3.4), the

residual block function F(Wl, xl−1) can be approximated as Flxl−1. Therefore, the input­

output Jacobian matrix J can be expressed as
∏L

l=1(I+Fl), where I is the identity matrix.

The whole network hence can be viewed as a feed­forward network with weight matrices

F̂l ≡ (I+ Fl).

We would like to show that the increasing effect to the VNIRsq of F̂l is much less than

that of Fl by comparing the expected cosine similarity between column vectors of F̂l and

Fl. Since the hidden nodes of xl can be approximated as a result of linear transformation

of xl−1 with column vectors of F̂l or Fl, the VNI Rsq of layer l, which is the weighted

23

doi:10.6342/NTU201901446

average of correlation coefficient of xl, is highly dependent on the magnitude of the cosine

similarity between column vectors of the transformation matrix.

First, the cosine similarity between two vectors is defined as

cos(a,b) ∆
=

aTb
||a|| · ||b||

, (3.26)

where ||v|| denotes the L2­norm of vector v (i.e.
√
vTv). Note that the transformation

matrix Fl is basically the product ofDl (defined in eqn. (3.3)) andWl, and therefore the Fl

inherits the zero­mean property ofWl. Let the i­th column vectors of F̂l and Fl be written

as f̂l(i) and fl(i). By the fact that F̂l ≡ (I+ Fl), we have

f̂l(i) = fl(i) + [0, . . . , 0
(i−1)

, 1, 0, . . . , 0
(N−i)

]T

= [fl(i,1), . . . , fl(i,i−1), (fl(i,i) + 1), fl(i,i+1), . . . , fl(i,N)]
T .

(3.27)

Therefore, the cosine similarity between i­th and j­th column vectors of F̂l can be

expressed as

cos(̂fl(i), f̂l(j)) ≡
f̂Tl(i)̂fl(j)

||̂fl(i)|| · ||̂fl(j)||

=
fTl(i)fl(j) + fl(i,j) + fl(j,i)√

||fl(i)||2 + 2fl(i,i) + 1 ·
√

||fl(j)||2 + 2fl(j,j) + 1
,

(3.28)

which has a smaller magnitude (compared with cos(fl(i), fl(j))) with high probability (as

shown in Figure 3.11). That is, the residual­like transformation is closer to the orthogo­

nality than the vanilla feed­forward transformation.

That is, compared with the original feed­forward network with the layer­by­layer trans­

formation Fl, the residual­like architecture with identity shortcut connection has the layer­

by­layer transformation F̂l = I+ Fl, which is more close to the orthogonality even when

the activation funciton is ReLU. From the results of Section 3.5, we can say that the

residual­like architecture suffer less from the vanishing representation power problem.

In Figure 3.15, similar settings to Figure 3.12 are used excluding the network architec­

tures, which are defined in Figure 3.14. It is shown that for a residual­like architecture, the

24

doi:10.6342/NTU201901446

VNI Rsq grows slowly as the network depth L gets larger. The ReLU activation function,

which results in the vanishing representation power in Section 3.4 and 3.5, does not make

the VNI Rsq go to 1 in 10000 layers. Instead, the VNI Rsq for a 10000­layer residual

ReLU network grows to a relatively small value (∼ 0.04), which implies that the network

maintains enough representation power even when the network is very deep. Also, the

VNI Rsq for the 2­layer skip grows more slowly than that for the 1­layer skip. It can be

reasoned that the 2­layer skip architecture, in some sense, reduces the effective network

depth to nearlyL/2 because the input­output Jacobian for the 2­layer skip architecture can

be expressed as
∏L/2

i=1(I+ F2i−1F2i).

The maximal depths of residual­like network for different activation functions with

scaled­Gaussian weight initialization are also shown in Table 3.3. It shows that no matter

which activation function is chosen, the maximal depths of the networks are more than

10000 layers. That is, the residual­like architecture can prevent the network representation

power from intensely vanishing. Similar results can be observed in Figure 3.16.

Also, in Figure 3.17, we perform the simulation on convolutional neural networks. The

feature sizes of hidden layers are all the same (32 width, 32 height and 5 channels), and

the network is fed with 1000 randomly generated image following the zero­mean white

Gaussian. The stride and the dilation are set to 1, and pooling layers are not inserted into

the network. The VNIRsq is evaluated with flatten vectors. The median, the first and third

quartiles of VNI Rsq over 20 runs are presented. It shows that the convolution operation

can make the VNI Rsq increase slower with respect to the network depth L, and similar to

Figure 3.16, the residual connection helps the network maintain the representation power.

Also, if tanh activation is chosen, then the orthogonal weight initialization can also keep

the VNI Rsq at the minimal value, and thus maintain the representation power.

25

doi:10.6342/NTU201901446

Activation ϕ(x) µk Norm­preserving σ2
w

Linear x 1 1
ReLU [x]+ 1/2 2

Hard Tanh [x+ 1]+ − [x− 1]+ − 1 erf
(

1√
2σ

)
erf

(
1√
2σ

)−1

Table 3.1: The µk, the k­th moments of series expansion of the moment generating func­
tion associated with activation functions, is provided in this table. The derivation is given
by [27]. The rightmost column are the norm­preserving (σ2

w), which will be further dis­
cussed in 4.2. Note that the σ2 is the variance of the hidden nodes. It shows that the
maximal depth of ReLU activation is much less than linear and tanh activations, and that
the orthogonal weights and the residual architecture can improve the maximal depth of
networks.

Random MatrixW s1
Gaussian −1
Orthogonal 0

Table 3.2: The s1 of different activation functions. The derivation is given by [27]. Note
that the s1 is invariant to the matrix scale. That is, the results are also suitable for the
scaled­Gaussian and the scaled­orthogonal initializations.

Architecture Weight initialization. Activation Maximal depth

Feed­forward network

Scaled Gaussian
tanh 4243
linear 2606
relu 262

Orthogonal
tanh > 10000
linear > 10000
relu 325

Residual network Scaled Gaussian
tanh > 10000
linear > 10000
relu > 10000

Table 3.3: The maximum depth for representation power. The maximum depth is defined
as the maximal L such that in less than half of 20 runs(i.e. 10 runs), the approximated
number of effective nodes achieve greater than 1.

26

doi:10.6342/NTU201901446

(a) Network width N = 200

(b) Network width N = 500

Figure 3.5: The results of VNI Rsq with respect to network depth L for the network width
200 and 500. The red line is calculated from eqn. (3.8), the blue line is computed from
eqn. (3.5) with the input data of zero mean and i.i.d input data, and the green line is com­
puted from eqn. (3.5) with MNIST data. The VNIRsq expressed in eqn. (3.8) is very close
to the original definition in eqn. (3.5).

27

doi:10.6342/NTU201901446

(a) Network width N = 200

(b) Network depth L = 100

Figure 3.6: The magnitudes of correlation coefficient ρij between output nodes. The black
color means ρ2ij = 1 while the white color indicates ρ2ij = 0. The top row shows that the
correlation is positive related to the network depth L, and the bottom row presents that the
correlation is negatively related to the network width N . Note that we rearrange the node
index to cluster the correlated nodes.

Figure 3.7: The dynamics of VNI Rsq of the output layer. The training is performed on
the MNIST dataset 20 times, and then we evaluate the quartiles of the output VNI Rsq

for different learning rates. Severe intensification of VNI (increases to 1) may occur as
shown by the blue line which is trained with the learning rate of 10−2. Otherwise VNI
rises initially, and then decreases to a value which is larger than the initial VNI.

28

doi:10.6342/NTU201901446

(a) Learning rate = 10−3

(b) Learning rate = 10−2

Figure 3.8: The dynamics of VNI Rsq of hidden layers. The training is performed on the
MNIST dataset 50 times, and then we evaluate the averages of hidden layer VNI Rsq for
learning rates ∈ {10−3, 10−2}.

29

doi:10.6342/NTU201901446

(a) Initial

(b) After 5 updates

(c) After 10 updates

Figure 3.9: The averages of squared correlation coefficients ρ2ij over 50 runs. It presents
that overall, the correlation of each hidden layer are highly intensified.

30

doi:10.6342/NTU201901446

Figure 3.10: The numerical solution of the effective number of nodes for given ε. It can
be observed that the effective number of nodes vanishes as the VNI Rsq increases to 1.
Also, if a stricter (i.e. larger) ε is chosen, the ε­ENN vansihes much faster. Note that the
number of random variables N is set to 500.

31

doi:10.6342/NTU201901446

Figure 3.11: The probability of |cos(̂fl(i), f̂l(j))| < |cos(fl(i), fl(j))| is shown in this figure.
The simulation is performed with 1000 pairs of random vectors drawn from zero­mean
white Gaussian for every ||fl(i)||. The network widthN is set to 500. Note that practically,
||fl(i)|| is much smaller than 1 because the normalization operation (e.g. batch normaliza­
tion [20]) included in Fl will reduce the magnitude of nodes for the residual network. It
shows that with high probability, the residual­like transformation is closer to the orthogo­
nality than the vanilla feed­forward transformation.

32

doi:10.6342/NTU201901446

(a) Network depth L ∈ [1, 10000]

(b) Network depth L ∈ [1, 500]

Figure 3.12: The network widthN is set to 500 and the network depth L ranges from 1 to
10000. The VNI Rsq are evaluated according to the definition in eqn. (3.5). The weights
are initialized with scaled­Gaussian distribution ([9, 16]). The activation functions of the
networks include tanh, ReLU and linear. The simulation is repeated for 20 times, and the
medians of the VNI over 20 runs are plotted as the solid lines, and the boundaries of the
colored regions are the first and the third quartiles of the VNI. It is shown that for a feed­
forward architecture under a non­orthogonal initialization, the initial VNIRsq increases to
1 as L gets larger, and that the VNI of ReLU activation, especially, grows in the steepest
with the network depth.

33

doi:10.6342/NTU201901446

(a) Network depth L ∈ [1, 10000]

(b) Network depth L ∈ [1, 500]

Figure 3.13: Similar settings to Figure 3.12 are used excluding the weights, which are
initialized with scaled­Orthogonal distribution ([31]). It is shown that for a feed­forward
architecture under the orthogonal initialization with linear or tanh activation function, the
initial VNIRsq remain nearly minimum (1/N) even when the network depth L gets larger,
and that the VNI of ReLU activation increases to 1 as the network goes deeper.

34

doi:10.6342/NTU201901446

(a) Residual deep network with 1­layer skip (b) Residual deep network with 2­layer skip

Figure 3.14: The architectures of residual deep networks is presented in this figure. The
network is composed of 4 operations: batch normalization ([20]), activation function,
weight multiplication and the addition with the identity mapping from the skip connection.
The left architecture has the 1­layer skip, and the right one has the 2­layer skip, which is
the original definition in previous works([18]).

35

doi:10.6342/NTU201901446

(a) 1­layer shortcut defined in Figure 3.14a

(b) 2­layer shortcut defined in Figure 3.14b

Figure 3.15: Similar settings to Figure 3.12 are used excluding the network architectures,
which are defined in Figure 3.14. It is shown that for a residual­like architecture, the VNI
Rsq grows slowly as the network depth L gets larger. Note that for the 2­layer shortcut
architecture, we only perform the simulation with even numbers of hidden layers.

36

doi:10.6342/NTU201901446

(a) Tanh activatoin function

(b) ReLU activation function

Figure 3.16: To compare theVNIRsq of different network architectures, we plot the curves
of Figure 3.4 and 3.6 in the same graph. The weight initialization methods are set to the
same (Gaussian distribution). We can see that for both tanh and ReLU cases, the residual
architecture has much smaller VNI Rsq when the network depth L increases. It implies
that the residual skip connections can keep more representation power when a very deep
network is considered.

37

doi:10.6342/NTU201901446

Figure 3.17: To compare the VNI Rsq of different network architectures of convolutional
neural networks, we plot the results of architectures with and without residual connection.
The weight initialization methods are set to the same (Gaussian distribution). Similar to
Figure 3.16, we can see that for both tanh and ReLU cases, the residual architecture has
much smaller VNIRsq when the network depthL increases. Also, compared with the feed­
forward deep neural network in Figure 3.16, the VNI Rsq increases slower with respect
to the network depth L. It implies that the residual skip connections and the convolution
operation can keep more representation power when a very deep network is considered.

38

doi:10.6342/NTU201901446

Chapter 4

Variance propagation of deep neural

networks

4.1 Comparison of exploding/vanishing gradients and van­

ishing nodes

In this section, we explore whether the vanishing node phenomenon arises from the prob­

lem of exploding/vanishing gradients. Exploding/vanishing gradients in deep neural net­

works are a problem regarding the scale of forward­propagated signals and back­propagated

gradients that exponentially explode/vanish as the networks grows deeper. We perform a

theoretical analysis of exploding/vanishing gradients and show analytically the difference

between them.

As in a previous study [9], we use the variances of hidden nodes to evaluate the scales

of back­propagated gradients. Consider the model and the assumptions in Section 3 and

an additional assumption: the gradient of output layer ∂Cost
∂xL

is a zero­mean i.i.d. random

(row) vector. That is,

E[x0x0T] = σ2
x · I

E
[(∂Cost

∂xL

)T ∂Cost

∂xL

]
= σ2

y · I,
(4.1)

where σ2
x and σ2

y are defined as the variances of the input layer nodes and output layer

gradients, respectively. Consider the variances of the output nodes V ar[xL] and input

39

doi:10.6342/NTU201901446

layer gradients V ar
[
∂Cost
∂x0

]
, respectively. The exploding/vanishing gradients occur only

if the scales of forward and backward propagation exponentially increase or decrease as

the depth increases. This means that the magnitude of the gradients will be bounded if we

can prevent the scales of forward and backward propagation from exploding or vanishing.

According to the assumptions in Section 3 and eqn. (3.4), we can approximate the

shared scalar variance of all output nodes V ar[xL] ∈ R as

V ar[xL] = E[(xL − xL)T (xL − xL)]/N ≈ E[(Jx0)TJx0]/N

= E[tr(JTJx0xT0)]/N = σ2
x · tr(JTJ)/N,

(4.2)

and approximation the shared scalar variance of all input gradients V ar
[
∂Cost
∂x0

]
∈ R as

V ar
[∂Cost
∂x0

]
= E

[(∂Cost
∂x0

− ∂Cost

∂x0

)(∂Cost
∂x0

− ∂Cost

∂x0

)T]/
N

= E
[(∂Cost

∂xL
J
)(∂Cost

∂xL
J
)T]/

N

= E
[
tr
(
JJT

∂Cost

∂xL

T ∂Cost

∂xL

)]
/N

= σ2
y · tr(JTJ)/N,

(4.3)

where the chain rule for back­propagation: ∂Cost
∂x0 = ∂Cost

∂xL
∂xL
∂x0 = ∂Cost

∂xL
J is used, and the

shared scalar variance of a vector is the average of the variances of all vector components.

Note that because the product of a row vector and a column vector is a scalar, the product

is equal to its trace. Also, it is already known that tr(JTJ) = N · m1 = N · (σ2
wµ1)

L.

Thus, we have

V ar[xL] ≈ σ2
x(σ

2
wµ1)

L

V ar
[∂Cost
∂x0

]
= σ2

y(σ
2
wµ1)

L,
(4.4)

where σ2
w = N ·V ar[Wij], and µ1 is the first moment of the nonlinear activation function.

It is obvious that the variances of both forward and backward propagation will neither

explode nor vanish if and only if (σ2
wµ1) = 1.

For the weight gradient of the hidden layer l, the variance can be used to measure the

scale distribution. Because from eqn. (3.1) we have ∂Cost
∂Wl

= xl−1 · ∂Cost
∂hl

, and both xl−1

and ∂Cost
∂hl

are assumed to be zero­mean and independent of each other, the variance of the

40

doi:10.6342/NTU201901446

weight gradient can be evaluated as

V ar
[∂Cost
∂Wl

]
= V ar[xl−1] · V ar

[∂Cost
∂hl

]
≈ σ2

x(σ
2
wµ1)

l−1 · σ2
y(σ

2
wµ1)

L−l

= σ2
xσ

2
y(σ

2
wµ1)

L−1,

(4.5)

wherewe can evaluateV ar[xl−1] andV ar
[
∂Cost
∂hl

]
using the results of the forward/backward

variance propagation and split the entire network into two sub­networks. One sub­network

has the input layer x0 and output layer xl−1, and the other sub­network has the input layer xl

and the output layer xL. Note that eqn. (4.5) also concludes that if and only if (σ2
wµ1) = 1,

the weight gradients will never explode or vanish.

However, eqn. (3.8) shows that VNI (Rsq) may still accumulate with the network depth

even if (σ2
wµ1) = 1. That is, the characteristic of the vanishing nodes becomes evident

when (µ2/µ
2
1−1−s1) is large, whereas vanishing/exploding gradients occurs when (σ2

wµ1)

is far from 1. If the network’s initialization parameter is appropriately set such that (σ2
wµ1)

is close to 1, Rsq may still accumulate due to the network depth, the activation function,

and the weight distribution. Therefore, from eqn. (3.8) and eqn. (4.5), it is clear that the

problem of vanishing nodes may occur regardless of exploding/vanishing gradients.

4.2 Norm­preserving weight initialization

In the Section 4.1, it is suggested that (σ2
wµ1) = 1 is the condition to prevent the vanish­

ing/exploding gradients problem. Note that the parameter µ1 is decided by the activation

function of the network, and the other parameter σ2
w can be controlled by the scale of the

initial weight. That is, if the weight matrices are correctly initialized, the gradient flow

will neither vanish nor explode as the network depth L increases. We call this kind of

weight initialization method a ”norm­preserving weight initialization”.

In Table 3.1, the norm­preserving σ2
w are provided. Note that in Section 3.1, the vari­

ances of weight matrices are defined as σ2
w/N . Therefore the norm­preserving weight

variance of ReLU activation, for example, is 2/N . For the Gaussian distribution, we

41

doi:10.6342/NTU201901446

can simply set the mean to zero and modify the standard deviation to meet the norm­

preserving condition, and for the uniform distribution, the support should be set to
[
−√

3σ2
w/N,

√
3σ2

w/N
]
to achieve the zero­mean and the norm­preserving property. For

the orthogonal initialization, the zero­mean is already achieved, and the L2­norm of the

orthogonal basis should be set to σw.

Another point needs to be considered is the network widthN in the variances of weight

matrices σ2
w/N . When the widths of two adjacent layers are not the same, the N is sug­

gested to be (Nl + Nl−1)/2 as a compromise between forward and backward variance

propagation ([9]). Also in [16], the N for a convolutional layer is suggested to be k2c,

where k denotes the kernel size and c represents the number of channels.

It is worth mentioning that for the residual­like architectures, the norm­preserving

weight initialization designed for feed­forward networks ([9, 16]) are not the optimal ini­

tialization methods. Instead, the optimal initialization method should depend on the net­

work depth L ([42]) to prevent exploding values of nodes. The norm­preserving σ2
w of

a residual architecture is suggested to be O(L−1) to avoid explosion ([36]). However,

the residual­like architecture is often combined with batch normalization ([20]), which

reduces the importance of weight initialization.

4.3 The two obstacles for training deep nerual networks

In Figure 4.1, we provide a schematic diagram for evaluating architectures of deep neural

networks. The network depth L, the network width N , the weight initialization scale σ2
w,

the moments associated with weight s1 and the moments associated with activation µk are

taken into consideration. For the horizontal axis, we use the metric (σ2
wµ1) to determine

whether a network will explode or vanish when the depth L goes deeper. If a network has

(σ2
wµ1) = 1, then its scales of gradients will neither vanish nor explode even if the depth

L becomes larger. Otherwise, the further (σ2
wµ1) is from 1, the more severe gradients

will exponentially explode/vanish. For the vertical axis, we take Rsq as the metric. From

eqn. (3.8), we know that Rsq is decided by L, N , µk and s1. If Rsq can reach exactly

1/N , then by eqn. (3.8), we can show that correlations of output layer nodes will never

42

doi:10.6342/NTU201901446

Figure 4.1: The schematic diagram for deep neural network architectures. To avoid the
deep network gradients from exploding or vanishing, it is suggested that the condition
(σ2

wµ1) = 1 should be met. For vanishing nodes problem, the VNI Rsq of the network
shall not increases to 1 as the network depth L goes deeper, otherwise the representation
power of the network will be insufficient for the training task. That is, to overcome the
two obstacles of training a very deep network, the best network setting is located at the
intersection of vertical and horizontal dashed line.

accumulate even if the depth L increases. Therefore by Figure 4.1, we can determine

whether a neural network with specific parameters will suffer from exploding/vanishing

gradients and vanishing nodes.

For example in previous works on ultra­deep neural networks, [41] chose an activation

function that has µ2/µ
2
1 ≈ 1 and initialized the weights via appropriately­scaled orthog­

onal matrices ([31]) which have s1 = 0 (from [26]) and (σ2
wµ1) = 1. Hence the VNI

Rsq of the network will reach 1/N , which will not accumulate as the depth L increases

according to eqn. (3.7). The parameter setting of the network is located at the intersection

of vertical and horizontal dashed line in Figure 4.1, and thus the network does not suffer

from vanishing/exploding gradients and vanishing nodes.

According to eqn. (3.7), if Rsq gets larger, then m2 is also larger with respect to m2
1.

Recall that mi is the i­th moment of eigenvalues of JJT , so the variance of eigenvalues

of JJT ism2 −m2
1. Also, eigenvalues of JJT is equivalent to the squared singular values

of J. Thus, if the variance of eigenvalues of JJT is too big, the Jacobian J will become

ill­conditioned. Therefore, we can relate Rsq to the condition number of Jacobian J, and

thus we can link the vanishing node problem to the ill­conditioned Jacobian, which is

43

doi:10.6342/NTU201901446

emphasized in previous works ([26, 27, 31]). Moreover, dynamical isometry, a stronger

condition for deep neural networks, is described as ”all singular values of the Jacobian con­

centrate near 1” by [26, 31]. That is, if dynamical isometry is achieved, then the variance

of singular values of the input­output Jacobian will approach nearly zero, which implies

m2 −m2
1 ≈ 0. Therefore, the Rsq will also remain nearly 1/N even at a large depth L.

Therefore, we can say that dynamical isometry is not only related to the learning speed

([31]), but also linked to the node correlation Rsq, which is closely connected with the

learning capability and the representation power of a deep neural network.

44

doi:10.6342/NTU201901446

Chapter 5

Experiments

5.1 Probability of failed training caused by vanishing nodes

To empirically explore the effects of the phenomenon of vanishing nodes on the training

of deep neural networks, we perform experiments with the training tasks on the MNIST

dataset [23]. Because the purpose is to focus on the vanishing nodes, the networks are

designed such that vanishing/exploding gradients will never occur; that is, they are initial­

ized with weights (σ2
wµ1 = 1). The network is trained with 100 batch size. The number

of successful training for total 20 runs is recorded to reflect the influence of vanishing

nodes on the training process, which may lead to the insufficient network representation

capability as shown in Figure 3.7. A successful training is considered to occur when the

training accuracy exceeds 90% within 100 epochs. The network depth L ranges from 25

to 500, and the network width N is set to 500. The learning rate α ranges from 10−4 to

10−2 with the SGD algorithm. Both L and α are uniformly distributed on the logarithmic

scale. The experiments are performed on the MXNet framework[5].

Figure 5.1 shows the results of two different activation functions (Tanh/ReLU) with

two different weight initializations (scaled­Gaussian/orthogonal from [31]). When a net­

work with tanh activation functions is initialized with orthogonal weights, the term of

(µ2/µ
2
1 − 1 − s1) in eqn. (3.8) becomes zero. Therefore, its Rsq will be the minimum

value (1/N) and will not depend on the network depth. For the other network parameters,

(µ2/µ
2
1 − 1− s1) will not equal zero, and Rsq still depends on the network depth. The ex­

45

doi:10.6342/NTU201901446

(a) Probability of Success (Tanh,
Scaled Gaussian Init.)

(b) Probability of Success (ReLU,
Scaled Gaussian Init.)

(c) Probability of Success (Tanh, Or­
thogonal Init.)

(d) Probability of Success (ReLU, Or­
thogonal Init.)

Figure 5.1: Probability of successful training for different network depth L and learning
rate α (the SGD optimizer). The black color denotes zero probability of successful train­
ing.

46

doi:10.6342/NTU201901446

(a) Probability of Success (Tanh,
Scaled Gaussian Init.)

(b) Probability of Success (ReLU,
Scaled Gaussian Init.)

(c) Probability of Success (Tanh, Or­
thogonal Init.)

(d) Probability of Success (ReLU, Or­
thogonal Init.)

Figure 5.2: Probability of successful training for different network depth L and learning
rate α (the SGD + Momentum optimizer). The networks are initialized with scaled Gaus­
sian/orthogonal weights with Tanh/ReLu activation functions.

perimental results show the likelihood of a failed training is high when the depthL and the

learning rate are large. In addition, the corresponding Rsq of failed cases becomes nearly

1, which causes a lack of the network representation power. It implies that the vanishing

nodes problem is the main reason that the training fails. A comparison of Figure 5.1c

with the other three results shows clearly that the networks with the minimum Rsq value

have the highest successful training probability.

Shallow network architectures can tolerate a greater learning rate, which is why the

vanishing node problem has been ignored in many networks with small depth. In a deep

network, the learning rate should be set to small value to prevent Rsq from increasing

47

doi:10.6342/NTU201901446

(a) Probability of Success (Tanh,
Scaled Gaussian Init.)

(b) Probability of Success (ReLU,
Scaled Gaussian Init.)

(c) Probability of Success (Tanh, Or­
thogonal Init.)

(d) Probability of Success (ReLU, Or­
thogonal Init.)

Figure 5.3: Probability of successful training for different network depth L and learning
rateα (the Adam optimizer). The networks are initializedwith scaledGaussian/orthogonal
weights with Tanh/ReLu activation functions.

to 1. The experimental results of various training hyperparameters (Momentum, Adam,

RMSProp) are presented in Figure. 5.2, 5.3 and 5.4. Similar to the results of SGD opti­

mization, networks with tanh activation functions and initialized with orthogonal weights

have the minimum Rsq value, hence can achieve the highest successful training probabil­

ity.

It is worth noting that, if more efficient optimization methods (e.g. Adam, RMSProp)

are used, the feasible learning rate should become smaller. We can see that the boundary

in Figure 5.2 has the offset to the left about 0.5 log unit comparing with Figure 5.1, and

that in Figure 5.3 and 5.4 has the offset to the left about 2.0 log unit (note that the range of

48

doi:10.6342/NTU201901446

(a) Probability of Success (Tanh,
Scaled Gaussian Init.)

(b) Probability of Success (ReLU,
Scaled Gaussian Init.)

(c) Probability of Success (Tanh, Or­
thogonal Init.)

(d) Probability of Success (ReLU, Or­
thogonal Init.)

Figure 5.4: Probability of successful training for different network depth L and learn­
ing rate α (the RMSProp optimizer). The networks are initialized with scaled Gaus­
sian/orthogonal weights with Tanh/ReLu activation functions.

the horizontal axis is 2.0 less than the range in Figure 5.1). It implies that the scale of the

feasible learning rate for RMSProp and Adam should be roughly 102 smaller than SGD,

and that for SGD+Momentum (with momentum = 0.9) should be about 100.5 smaller.

The reason why the behavior ofRsq is effected by learning ratesα remain unexplained,

suggesting further investigations to better understand the relationship between learning

rates and the dynamics ofRsq A high learning rate will causeRsq to be severely intensified

to nearly 1, and the representation capability of the network will be reduced, which is the

main reason that the training fails.

49

doi:10.6342/NTU201901446

5.2 Analyses of failed training caused by vanishing nodes

In this section, we analyze the reason why the failed training occurs from the perspectives

of vanishing/exploding gradients and vanishing nodes respectively. First, the quantity σ2
w

(the variance of weights at each layer) of trained models is collected. There are total

31,680 runs in the experiments, including 13,101 failed and 18,579 successful cases. The

detailed information is presented in Table 5.1. The quantity σ2
wµ1 for measuring the degree

of vanishing/exploding gradients is presented in Figure 5.5 and Figure 5.6 for successful

networks and failed networks. The two figures display the box and whisker plot to repre­

sent the distribution of σ2
wµ1 at each network layer, and the horizontal axis indicates the

depth position of the trained networks. The results show that both successful and failed

networks bear the quantity σ2
wµ1 near one. It indicates that both successful and failed

models meet the condition of preventing networks from vanishing/exploding gradients.

Second, the difference ofRsq between successful and failed networks are displayed in

Figure 5.7. The horizontal axis indicates the value of VNIRsq of trained models evaluated

by eqn. (3), and the vertical axis represents the histogram of the VNI Rsq. The blue

histogram represents the Rsq of failed networks, and the orange histogram represents the

Rsq of successful networks. The Rsq of failed models ranges from 0.9029 to 1.0000 with

mean 0.9949 and standard deviation 0.0481, and that of successful models ranges from

0.1224 to 0.9865 with mean 0.3207 and standard deviation 0.1690. The figure shows

that Rsq of failed networks mainly locates around 1, and that of successful networks is

widely distributed. From the analysis shown in Figure 5.5, 5.6 and 5.7, it is clear that the

vanishing nodes (Rsq reaches 1) is the main cause which makes the training failed.

50

doi:10.6342/NTU201901446

Figure 5.5: Box and whisker plot of σ2
wµ1 for networks with successful training. There

are 18,579 successful runs.

Figure 5.6: Box and whisker plot of σ2
wµ1 for networks with failed training. There are

13,101 failed runs.

51

doi:10.6342/NTU201901446

Figure 5.7: Histogram of Rsq of failed/successful networks.

Optimizer Activation Weight Init. No. of Failure No. of Success

SGD

Tanh Scaled Gaussian 712 1268
ReLU 1775 205
Tanh Orthogonal 62 1918
ReLU 882 1098

SGD+momentum

Tanh Scaled Gaussian 982 998
ReLU 1140 840
Tanh Orthogonal 546 1434
ReLU 1044 936

Adam

Tanh Scaled Gaussian 609 1371
ReLU 723 1257
Tanh Orthogonal 354 1626
ReLU 1465 515

RMSProp

Tanh Scaled Gaussian 763 1217
ReLU 827 1153
Tanh Orthogonal 453 1527
ReLU 764 1216

Table 5.1: The detailed numbers of successful and failed runs.

52

doi:10.6342/NTU201901446

Chapter 6

Conclusion

The phenomenon of vanishing nodes is investigated as another challenge when training

deep networks. Like the vanishing/exploding gradients problem, vanishing nodes also

make training deep networks difficult. The hidden nodes in a deep neural network become

more correlated as the network depth increases, so the similarity between the hidden nodes

increases. Because similarity between nodes results in redundancy, the effective number

of hidden nodes in a network decreases. This phenomenon is called”vanishing nodes”.

To measure the degree of vanishing nodes, the Vanishing Nodes Indicator (VNI) is

proposed. It is shown theoretically that the VNI is proportional to the network depth and

inversely proportional to the network width, which is consistent with the experimental

results. Via this theoretical tool, we proof that the representation power of a network

vanishes as the VNI goes to 1. The effective number of nodes goes to 1 as when the

VNI equals to 1, which is called the ”network collapsing”. Also, we show that for a non­

orthogonal initialized network, the VNI increases as the network depth gets larger, and it

asymptotically goes to 1 as the network is very deep. That is, the network collapses when

we consider a very deep feed­forward neural network.

However, if weightmatrices are initializedwith orthogonal distribution, or if a residual­

like architecture is applied, then the network will not collapse at a large depth. We show

theoretically that orthogonal weight can have small VNI at initial, and that the network

with identity shortcut connection is closer to the orthogonality. Numerical simulations are

also performed on different activation functions, weight initializations and network archi­

53

doi:10.6342/NTU201901446

tectures, which have a consistent result with our derivation. Both theoretical and numerical

results suggest that the weight initialization and the architecture of a network determine

its trainable depth. Orthogonal weight initializations and residual­like architectures, from

this point of view, are relatively better for training a very deep neural network.

Moreover, we explore the difference between vanishing/exploding gradients and van­

ishing nodes, and suggest a criterion to predict the occurrence of two problems by the

network depth, the network width, the activation, and the weight initialization. Finally,

experimental results show that vanishing/exploding gradients and vanishing nodes are two

different challenges that make training deep neural networks difficult.

54

doi:10.6342/NTU201901446

Bibliography

[1] M. Abramowitz. Handbook of Mathematical Functions, With Formulas, Graphs,

and Mathematical Tables. Dover Publications, Inc., New York, NY, USA, 1974.

[2] R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding deep neural net­

works with rectified linear units. ICLR, 2018.

[3] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv:1607.06450,

2016.

[4] M. Chen, J. Pennington, and S. S. Schoenholz. Dynamical isometry and a mean

field theory of rnns: Gating enables signal propagation in recurrent neural networks.

Proceedings of the 35th International Conference on Machine Learning, 80:873–

882, 2018.

[5] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and

Z. Zhang. Mxnet: A flexible and efficientmachine learning library for heterogeneous

distributed systems. CoRR, abs/1512.01274, 2015.

[6] G. Cybenko. Approximations by superpositions of sigmoidal function. Mathematics

of Control, Signals, and Systems, 2(4):303–314, 1989.

[7] Y. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio. Identi­

fying and attacking the saddle point problem in high­dimensional non­convex opti­

mization. Advances in Neural Information Processing Systems 27, pages 2933–2941,

2014.

55

doi:10.6342/NTU201901446

[8] F. Gantmacher. The theory of matrices. Number 1 in The Theory ofMatrices. Chelsea

Pub. Co., 1960.

[9] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward

neural networks. Proceedings of the Thirteenth International Conference on Artifi­

cial Intelligence and Statistics, 9:249–256, 2010.

[10] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. AIS­

TATS, 15:275, 2011.

[11] I. J. Goodfellow, O. Vinyals, and A. M. Saxe. Qualitatively characterizing neural

network optimization problems. ICLR 2015, 2014.

[12] B. Hanin. Universal function approximation by deep neural nets with bounded width

and relu activations. arXiv:1708.02691, 2017.

[13] B. Hanin. Which neural net architectures give rise to exploding and vanishing gradi­

ents? Neural Information Processing Systems, 2018.

[14] B. Hanin and D. Rolnick. Complexity of linear regions in deep networks. ICML,

2019.

[15] K. He and J. Sun. Convolutional neural networks at constrained time cost. CVPR,

2015.

[16] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human­

level performance on imagenet classification. IEEE International Conference on

Computer Vision, 2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.

Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770–778, 2016.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks.

European Conference on Computer Vision, pages 630–645, 2016.

56

doi:10.6342/NTU201901446

[19] G. Hinton, G. Dahl, A.­r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, B. Kings­

bury, and T. Sainath. Deep neural networks for acoustic modeling in speech recog­

nition. IEEE Signal Processing Magazine, 29:82–97, 2012.

[20] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. ICML, 2015.

[21] J. R. Ipsen. Products of independent gaussian random matrices. arXiv:1510.06128,

2015.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. Advances in Neural Information Processing Systems,

pages 1106–1114, 2012.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient­based learning applied to

document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[24] Y. LeCun, L. Bottou, G. B. Orr, and K.­R. Müller. Efficient backprop. Neural

Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPSWorkshop,

pages 9–50, 1998.

[25] V. I. Oseledets. Multiplicative ergodic theorem: Characteristic lyapunov exponents

of dynamical systems. Trudy MMO (in Russian), 19:179–210, 1968.

[26] J. Pennington and S. S. Schoenholz. Resurrecting the sigmoid in deep learning

through dynamical isometry: theory and practice. Advances in Neural Information

Processing Systems 30, pages 4788–4798, 2017.

[27] J. Pennington, S. S. Schoenholz, and S. Ganguli. The emergence of spectral uni­

versality in deep networks. International Conference on Artificial Intelligence and

Statistics, AISTATS 2018, 9­11 April 2018, Playa Blanca, Lanzarote, Canary Islands,

Spain, pages 1924–1932, 2018.

57

doi:10.6342/NTU201901446

[28] B. Poole, S. Lahiri, M. Raghu, J. Sohl­Dickstein, and S. Ganguli. Exponential ex­

pressivity in deep neural networks through transient chaos. Neural Information Pro­

cessing Systems, 2016.

[29] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl­Dickstein. On the expres­

sive power of deep neural networks. arXiv:1606.05336, 2016.

[30] D. Rolnick and M. Tegmark. The power of deeper networks for expressing natural

functions. ICLR, 2018.

[31] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear

dynamics of learning in deep linear neural networks. International Conference on

Learning Representations (ICLR), 2013.

[32] S. S. Schoenholz, J. Gilmer, S. Ganguli, and J. Sohl­Dickstein. Deep information

propagation. International Conference on Learning Representations (ICLR), 2017.

[33] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, I. S. Nal Kalchbrenner, T. Lillicrap, M. Leach, K. Kavukcuoglu,

T. Graepel, and D. Hassabis. Mastering the game of go without human knowledge.

Nature, 529(7587):484–489, 2016.

[34] R. K. Srivastava, K. Greff, and J. Schmidhuber. Highway networks. ICML 2015

Deep Learning workshop, 2015.

[35] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B. Gotway, and

J. Liang. Convolutional neural networks for medical image analysis: Full training

or fine tuning? IEEE Transactions on Medical Imaging, 35(5):1299–1312, 2016.

[36] M. Taki. Deep residual networks and weight initialization. arXiv:1709.02956, 2017.

[37] M. Telgarsky. Representation benefits of deep feedforward networks. CoRR,

abs/1509.08101, 2015.

58

doi:10.6342/NTU201901446

[38] A. Veit, M. J. Wilber, and S. J. Belongie. Residual networks are exponential ensem­

bles of relatively shallow networks. CoRR, abs/1605.06431, 2016.

[39] S. Wiesler and H. Ney. A convergence analysis of log­linear training. Advances in

Neural Information Processing Systems 24, pages 657–665, 2011.

[40] Y. Wu, M. Schuster, Z. Chen, M. N. Quoc V. Le, W. Macherey, M. Krikun, Y. Cao,

Q. Gao, K.Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser, S. Gouws,

Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young,

J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean.

Google’s neural machine translation system: Bridging the gap. arXiv:1609.08144,

2016.

[41] L. Xiao, Y. Bahri, J. Sohl­Dickstein, S. S. Schoenholz, and J. Pennington. Dynam­

ical isometry and a mean field theory of cnns: How to train 10,000­layer vanilla

convolutional neural networks. Proceedings of the 35th International Conference

on Machine Learning, 2018.

[42] G. Yang and S. S. Schoenholz. Mean field residual networks: On the edge of chaos.

Advances in neural information processing systems, pages 7103–7114, 2017.

59

	摘要
	Abstract
	Introduction
	Related Work
	Difficulties in training deep nerual networks
	Representation power of deep neural network

	Vanishing Nodes: correlation between hidden nodes
	Vanishing Node Indicator
	Impacts of back-propagation
	Relationship between the VNI and the redundancy of nodes
	The vanishing of the representation power
	The effect of the orthogonal weight matrices to the representation power
	Representation power of residual-like architectures

	Variance propagation of deep neural networks
	Comparison of exploding/vanishing gradients and vanishing nodes
	Norm-preserving weight initialization
	The two obstacles for training deep nerual networks

	Experiments
	Probability of failed training caused by vanishing nodes
	Analyses of failed training caused by vanishing nodes

	Conclusion
	Bibliography

