
doi:10.6342/NTU201902129

國立臺灣大學 電機資訊學院 資訊網路與多媒體研究所

碩士論文

Graduate Institute of Networking and Multimedia
College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

Ꮃὡ䑵䨬 HQEMU ૂངᮍଃ䑵ຫ⿻၏䗞ོ

Dynamic Binary Vectorization in Enhanced HQEMU

⃲㟚ⓗ

Chih-Min Lin

ᴁᜭἌᵵ効ᨔᮮત Ἄᵵ

Advisor: Wei-Chung Hsu, Ph.D.

ત 㦤 ⓗ 國 ੷⸌䩿෢ ᤘ ෤ ⁱ

June, 2019

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Ꮃὡ䑵䨬 HQEMU ૂངᮍଃ䑵ຫ⿻၏䗞ོ

ḵ㺕

在平行處理中，自動向量化技術已被編譯器用來善用資料層級的平行化。然而，

因為處理器架構一直在提升向量處理 (Vector) 或單指令多資料流 (SIMD) 的能力，

所以舊的應用程式沒辦法善用新的 Vector/SIMD 的能力。例如舊的 ARMv7 二進

制執行檔不能從 ARMv8 的雙精度浮點運算的 SIMD 得到好處，舊的 x86 二進制

執行檔沒辦法享受 AVX-512 的新功能。

在這篇論文中，我們探討在跨指令集架構動態二進制碼轉譯器的基礎問題，

該如何將非向量化的迴圈轉換成 Vector/SIMD 的形式，使得應用程式在新的處

理器上可以獲得更高的計算輸出量。核心概念是從這些應用程式的二進制檔還

原重要的迴圈資訊，使得迴圈可以被自動向量化。實驗結果顯示，對於不同的

benchmark，我們的方法可以在 ARMv7 到 ARMv8 的動態二進制碼轉譯中相較於

ARMv7 Native 獲得 1.42 倍的效能提升。

䝻䕃ᑺ垨動態二進制碼轉譯, 虛擬暫存器推廣化, 單指令多資料流, 向量處理, 自動

向量化

ii

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Dynamic Binary Vectorization in Enhanced HQEMU

Abstract

Auto vectorization techniques have been adopted by compilers to exploit data-

level parallelism in parallel processing for decades. However, since processor architec-

tures have kept enhancing with new features to improve vector/SIMD performance,

legacy application binaries failed to fully exploit new vector/SIMD capabilities in

modern architectures. For example, legacy ARMv7 binaries cannot benefit from

ARMv8 SIMD double precision capability, and legacy x86 binaries cannot enjoy the

power of AVX-512 extensions.

In this thesis, we study the fundamental issues involved in cross-ISA Dynamic

Binary Translation (DBT) to convert non-vectorized loops to vector/SIMD forms to

achieve greater computation throughput available in newer processor architectures.

The key idea is to recover critical loop information from those application binaries

in order to carry out vectorization at runtime. Experiment results show that our

approach achieves an average speedup of 1.42x compared to ARMv7 native run

across various benchmarks in an ARMv7-to-ARMv8 dynamic binary translation

system.

Keywords: Dynamic Binary Translation,Virtual Register Promotion,SIMD,Vector,Auto

Vectorization

iii

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Contents

page

ᰡ要 ii

Abstract iii

Contents iv

1 Introduction 1

2 Background 5

2.1 Cross-ISA Dynamic Binary Translation . 5

2.2 Issues of Loop Analysis for Binary . 6

3 Methodology 9

3.1 Overview . 9

3.2 Issue of Virtual Register Promotion . 10

3.3 Algorithm of Virtual Register Promotion . 13

3.4 Speculative Execution. 19

4 Performance Evaluation 22

4.1 Overall Performance . 24

4.2 Evaluation of Virtual Register Promotion . 25

5 Related Work 29

6 Conclusion and Future Work 32

Reference 34

iv

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

List of Figures

page

2.1 Example of binary translation and vectorization 6

3.1 Workflow of optimization approach 10

3.2 Example of vectorization with virtual register promotion 11

3.3 Runtime Check for Virtual Register Promotion 17

3.4 Rewrite Control Flow for Vectorization 20

4.1 Performance results of ARMv7-to-ARMv8 Translation 24

4.2 Evaluation results of virtual register promotion 26

v

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

List of Tables

page

4.1 Benchmark Kernels from SPEC . 23

4.2 Number of Loops with Register Spilling in Kernels 24

vi

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Chapter 1

Introduction

Vector processing has been adopted in parallel processing for decades. For vec-

tor supercomputers, Cray-1 and Cyber205 were representative in the late 70’s, and

followed by Cray X-MP/Y-MP, Cray-2, Fujitsu VP200/400, and NEC SX-2 into the

’80s. In the late ’90s, in order to support real-time gaming and audio/video process-

ing, HP PA added MAX instructions and SUN included VIS instructions in their

processors. Intel x86 also started to support the MMX extension and followed with

SSE extensions later to provide greater SIMD computing throughput. The type of

supporting multimedia processing with SIMD in modern microprocessors is often

referred to as Sub-word Level Parallelism (SLP) [1]. Nowadays, almost all micro-

processors provide support for SIMD processing. Many of them are exploiting more

advanced SIMD features, such as x86 AVX-512 extensions, ARM SVE (Scalable

Vector Extension) and RISC-V Vector Extension.

Newer microprocessors will provide stronger and more powerful SIMD capabili-

ties. At the same time, most popular ISAs support backward compatibility in that

legacy binaries could run directly on the same processor family, including newer

processors. Unlike the scalar counterpart of an ISA, SIMD enhancements often give

a more significant performance boost to the data parallel portion of the application.

For example, AVX-512 has the potential to increase SIMD performance by 4X over

x86 SSE, where the improvement from the scalar ISA enhancements would be much

less significant. When running the legacy application binaries on a newer micro-

processor, there is a rich opportunity to increase the effective utilization of SIMD

resources and boost performance via Dynamic Binary Translation (DBT).

1

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

DBT is a common technique used for legacy application migration [2]. Legacy

application binary migration is typically applied when the guest machine and the

host machine are in different ISAs. For example, HP’s Aries [3] migrates HP PA ap-

plications to the Itanium architecture, Apple’s Rosetta [4] migrates Power PC code

to Intel x86 architecture, Intel IA-32/EL migrates x86 binaries to run on Itanium

processors, and MAMBO-x64 [5] migrates ARMv7 binaries to ARMv8 processors.

However, there are cases where the legacy application binaries can run directly on

the host machines, for example, Intel SSE binaries can run directly on AVX-2/

AVX-512 based processors, and ARMv7 binaries can run on some ARMv8 based

processors with 32-bit support. Under such scenarios, DBT could still be deployed,

for the purpose of exploiting new architecture/micro-architecture features, rather

than meeting the compatibility requirements. In such a case, this DBT is often

referred to as Dynamic Binary Optimizer (DBO) instead of DBT.

To exploit new and more powerful SIMD features in the host machine, a DBO

could attempt two obvious directions, one is to exploit wider computational lanes

and the other is to vectorize scalar loops in the legacy binary using new SIMD

features. For the former case, if an application was compiled for Intel SSE ISA, the

binary could only utilize 128 bits of SIMD width. When this binary is running on a

new AVX-512 based processor, which supports 512-bit wide computation, the loop

could be reorganized to increase benefit from the greater computational throughput.

For the latter case, a loop with double precision computation in an application might

not get vectorized on ARMv7 due to the lack of double precision NEON support.

When this binary is running on an ARMv8 processor, such a scalar loop could

possibly be vectorized with the new NEON double precision instructions. These

scenarios are becoming more commonplace for the coming future. For instance,

some early RISC-V processors do not have vector extension ISA, so many loops

could not get vectorized. When newer RISC-V machines equipped with vector units

appear on the market, such legacy binaries with the scalar only code could exploit

new SIMD capabilities via DBO.

For the two directions of exploiting new SIMD capability via DBO, prior re-

search has reported preliminary results [6], [7]. However, we attempt to address the

fundamental issues with the runtime vectorization problems. The first problem is

2

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

how to recover loop information from the binary so that prior auto-vectorization

compiler techniques could be applied. For example, some induction variables might

have been spilled from a register to the stack, making it difficult to perform typical

vectorization. Memory accesses instead of registers often confuse the Scalar Evolu-

tion Analysis to identify the vectoriable patterns of the loops, such as array base

addresses, induction variables, loop boundaries, constant variables, and so on. This

is particularly difficult since stripped application binaries lack high-level semantic

information and may not have symbol table information. Compile time aliasing

analyses are often not applicable here. Although some prior work proposed to apply

symbolic promotion to recover such information, yet the proposed approaches are in

static binary translation domains. Most legacy binary migrations are based on DBT

due to the code discovery and code location issues [2]. The other issue is the pos-

sible memory dependence that could prevent a full vectorization of the loop. This

is still true even for loops already vectorized in the first place. In order to exploit

the increased computational lanes available on the host, the reorganized loop would

use a larger strip than the one used in the legacy code. Such a change in strip size

might invalidate the data dependence checked at compile time.

We propose virtual register promotion with runtime aliasing checks to ensure

effective and safe optimizations. The number one priority for any optimization

system is a safe and correct transformation (except for approximate computing

where precise computational results are not absolutely required). Our proposed

approach ensures safe transformation while exploiting new SIMD capabilities in

DBT/DBO. The key contributions of this work are as follows:

• We identify the issues of applying vectorization techniques on binaries in DBT/

DBO systems. We address the analysis issues of register spilling when vector-

izing loops in legacy binaries and propose virtual register promotion to recover

critical loop vectorization information.

• We also identify the required safety issues of virtual register promotion for

vectorization in DBT/DBO. To overcome the challenges of memory analyses

in DBT/DBO, we propose the new approach to verify the correctness of virtual

register promotion with a lightweight aliasing detection to significantly reduce

overhead.

3

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

• We implemented our approach in a retargetable cross-ISA DBT to vector-

ize legacy binary code. We choose the benchmark kernels across scientific

computing and linear algebra with double precision computations, and select

ARMv7 scalar to ARMv8 NEON SIMD translation as our evaluation platform

to demonstrate the effectiveness of our approach. The benchmark results show

that our approach achieves 1.42X speedup, on average, compared to ARMv7

native runs, on the ARMv8 Cortex-A53 processor.

The remainder of this thesis is organized as follows. Chapter 2 provides an

overview of cross-ISA DBTs and explain the conditions of auto vectorization tech-

niques in static compiler and DBTs. In chapter 3, we propose and design an approach

of loop transformation in DBT and then report the evaluation results in chapter 4.

Chapter 5 describes related work, and chapter 6 concludes with future work.

4

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Chapter 2

Background

This chapter briefly reviews Dynamic Binary Translation (DBT) techniques and

traditional auto vectorization techniques. We also illustrate the issues of loop anal-

yses for vectorization in DBTs.

2.1 Cross-ISA Dynamic Binary Translation

Modern cross-ISA DBTs translate guest binaries in the scope of code fragment

to intermediate representation (IR), re-optimize binary code targeting the host ma-

chine and maintain guest architectural states at code fragment boundaries to ensure

the correct code emulation. Since aggressive optimization in DBTs requires more

translation time, part of the runtime, DBT/DBOes typically select a smaller gran-

ularity of hot regions to optimize instead of a larger granularity. For instance, Next

Executing Tail (NET) [8], adopted in MAMBO-X64 [5] and HQEMU [9], selects

a ring (i.e. loops) or a strip of execution path (e.g. a trace) as the optimization

candidate.

This work is based on HQEMU, a hybrid QEMU [10] and LLVM [11] Dynamic

Binary Translator. A guest binary trace is first translated to LLVM IR. After

several phases of optimizations, the trace of IR will go through the LLVM Just-in-

Time compiler (MCJIT) to generate host binaries. Figure 2.1 shows the steps of

translating the ARMv7 scalar code to ARMv8 double precision NEON SIMD code.

Figure 2.1a shows the DAXPY kernel function. This function is compiled to ARMv7

binaries, as shown in Figure 2.1b, and translated via HQEMU to LLVM IRs, shown

in Figure 2.1c. Vectorization to LLVM IRs is shown in Figure 2.1d. Finally, the

5

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

2.2. ISSUES OF LOOP ANALYSIS FOR BINARY

void daxpy(double da,
 double *dx,
 double *dy, int n, ...)
{
 ...
 for (int i = 0; i < n; ++i)
 dy[i] += dx[i] * da;
}

(a) C Source Code

Loop: vldr d1, [r0] ; dx[i] Ⓐ
 vldr d2, [r1] ; dy[i] Ⓑ
 add r0, r0, #8 ; i=i+1 Ⓒ
 vmul d1, d1, d0 ; tmp=dx[i]*da Ⓓ
 vadd d2, d2, d1 ; +dy[i] Ⓔ
 vstr d2, [r1] ; dy[i]=tmp Ⓕ
 add r1, r1, #8 ; i=i+1 Ⓖ
 cmp r1, r2 ; i<n Ⓗ
 bne Loop

(b) ARMv7 guest binary

Entry: load %r0.cpu %r1.cpu %r2 %d0
Loop:
 Ⓒ %r0 = phi i32 [%r0.cpu],[%r0.a]
 Ⓖ %r1 = phi i32 [%r1.cpu],[%r1.a]
 Ⓐ %d1 = load double* %r0
 Ⓑ %d2 = load double* %r1
 Ⓒ %r0.a = add i32 %r0, 8
 Ⓓ %d1.a = fmul double %d1, %d0
 Ⓔ %d2.a = fadd double %d2, %d1.a
 Ⓕ store %d2.a, double* %r1
 Ⓖ %r1.a = add i32 %r1, 8
 Ⓗ %cmp = cmp ne %r1.a, %r2
 br %cmp, %Loop, %Exit

Exit: store %r0.a %r1.a %d2.a %d1.a

(c) Translate ARMv7 binary to IRs

Entry: load %r0.cpu %r1.cpu %r2 %d0
Loop: Ⓒ %r0 = phi i32 [%r0.cpu],[%r0.a]
 Ⓖ %r1 = phi i32 [%r1.cpu],[%r1.a]
 Ⓐ %v1 = load <2 x double>* %r0
 Ⓑ %v2 = load <2 x double>* %r1
 Ⓒ %r0.a = add i32 %r0, 16
 Ⓓ %v1.a = fmul <2 x double> %v1, %d0
 Ⓔ %v2.a = fadd <2 x double> %v2, %v1.a
 Ⓕ store %v2.a, <2 x double>* %r1
 Ⓖ %r1.a = add i32 %r1, 16
 Ⓗ %cmp = cmp ne %r1.a, %r2
 br %cmp, %Loop, %Exit
Exit: %d1 = extract <2 x double> %v1.a
 %d2 = extract <2 x double> %v2.a
 store %r0.a %r1.a %d1 %d2

(d) Vectorized IRs

Figure 2.1: Example of binary translation and vectorization

LLVM IRs are turned into ARMv8 NEON binary with the LLVM-JIT compiler. Our

binary vectorization work is between stage 2.1c and 2.1d. In Figure 2.1d, Entry basic

block (BB) loads the architectural states from registers (i.e., via register mapping)

or memory into virtual registers (i.e., load r0 into %r0.cpu). Here, Loop BB implies

the loop body translated from Figure 2.1b, and Exit BB keeps architectural states

in sync (i.e., store %r0.a to r0, %r1.a to r1) after executing the loop.

2.2 Issues of Loop Analysis for Binary

Scalar Evolution Analysis has been adopted in modern compilers (e.g., GCC,

LLVM) to understand loop-oriented expressions and the changes in the value of

scalar variables over iterations of the loop. Such analysis approach is commonly used

in loop strength reduction, induction variable simplification, loop vectorization, loop

access analysis, and dependence analysis, evaluating the evolved values of scalars in

a canonical loop. For loop vectorization, illustrated in Figure 2.1b and 2.1c, Scalar

Evolution Analysis assists in exposing data dependence (A , B , and F) induction

variables and stride distance (C and G), and loop trip-count analysis (H) to ensure

6

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

2.2. ISSUES OF LOOP ANALYSIS FOR BINARY

the legality after fusing iterations with vector operations.

Nevertheless, Scalar Evolution Analysis has a critical issue in DBTs. Scalar

variables in binaries may not always be in the form of scalars, but in the form

of memory references because of register spilling. Register spilling is common in

real-world applications containing loop bodies with a large number of variables and

longer use-define chains such as Mgrid in SPEC2000 [12], Leslie3d in SPEC2006 [13],

and Roms in SPEC2017 [14]. Such spilled variables would make Scalar Evolution

Analysis difficult since they would confuse scalars with loop invariants (i.e., memory

access to stack) and cripple vectorization capability in DBTs.

Figure 3.2 and 3.2a show a simple case for register spilling in ARMv7 scalar

binary of daxpy kernel. 0 loads induction variables from stack to register, 3 adds

the value for induction variable, and 6 stores the variable back to the stack. After

translating to IRs, however, 0 6 7 would be viewed as loop invariant with memory

references to stack instead of an induction variable. For another example, 7 loads

the loop boundary from the stack into register r0, and 10 compares loop boundary

r0 with induction variables r1. In the form of IRs, 7 cause troubles in determining

loop trip-count (10) in Scalar Evolution Analysis for a similar reason. Furthermore,

it is also possible to spill the arbitrary variables from register to memory such as

array base address and constant stride in binaries.

Hence, we adopt virtual register promotion, which promotes spilled variables to

virtual registers, to simplify loop analysis and enable vectorizations. The loop body

in Figure 3.2b would be simplified to the code sequence in Figure 3.2c, and such code

avoids confusing memory references and enables DBTs to conduct loop vectoriza-

tion (Figure 3.2d). For instance, as shown in Figure 3.2c and 3.2d, promoting spilled

variables 0 and 7 to virtual registers %r0 and %r0.b in VRP (i.e., Virtual Register

Promotion) basic block before Loop (i.e., loop body) BB, store the virtual registers

back to stack in STVR (i.e., STore Virtual Register) BB, and then transform the

loop from scalar to vector form. However, promoting the spilled variables to virtual

registers has potential aliasing issues. Spilled variables 0 6 7 may alias to memory

reference instructions (1 , 2 , and 8). Aliasing analysis in DBT is very restricted in

that (1) The scope is limited to a trace, not a function or the whole program as in a

static compiler, (2) Application binaries are often stripped, no symbol table informa-

7

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

2.2. ISSUES OF LOOP ANALYSIS FOR BINARY

tion available, (3) For DBT/DBO, analysis time is also part of the runtime, DBT/

DBO cannot afford comprehensive aliasing analysis. This thesis provides detailed

solutions to our safe virtual register promotion approach in chapter 3.2.

8

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Chapter 3

Methodology

In this chapter, we present our approaches to assist DBTs in vectorization. First,

we address the challenges of virtual register promotion, provide the detailed solution

of the problems, and prove the validity of this approach after vectorizing the loops.

Second, we propose a new approach of loop rewriting to increase the vectorization

coverage of binary loop vectorization. Third, we present a new method of runtime

checks to ensure the correctness of code emulation after applying above optimizations

and vectorization in DBTs. In the following sections, we choose the simplified case

of ARMv7 double precision floating point scalar loop to ARMv8 NEON (i.e., 128-

bit SIMD register) translation and adopt loop-based vectorization with contiguous

memory accesses to illustrate our optimization approach.

3.1 Overview

Figure 3.1 illustrates the workflow of our rewriting approach, which targets a

translated code fragment of the innermost loop containing neither divergent code

paths nor indirect memory accesses in the loop body (step 1). Our translator detects

whether the loop contains spilled variables (step 2). If the loop has register spilling,

the translator conducts virtual register promotion to assist loop analysis for vector-

ization (step 3 and step 4). Next, our translator has to determine which variables

need to check against aliasing (step 5) if the loop is able to be vectorized. Then,

the translator creates two versions of the loop into a scalar-loop and a vector-loop,

and then insert runtime checking codes before entering the vector-loop (step 6).

Finally, the translator applies vectorization (step 7), rewrites the control flow, and

9

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.2. ISSUE OF VIRTUAL REGISTER PROMOTION

Scalar-Loop

Has
Register Spilling

?

Yes

Virtual Register
Promotion

CanVectorize
?

No

Scalar-Loop
Recovery

No

Need
Speculation

?

Yes

Add checks and
duplicate the loop

Vectorize Loops

No

Yes

Done

1.

2.

3.

4.

8.

5.

6.

7.

Figure 3.1: Workflow of optimization approach

recovers the scalar-loop back to non-promoted form (step 8) to ensure the validity

of code emulation. The following sections would provide more details for each step

to rewrite the loop.

3.2 Issue of Virtual Register Promotion

This section focus on the challenges and solutions of safe virtual register pro-

motion. There are two types of spilled variables. One is Program Counter (PC)

relative data, and the other one is stack variable. The former is a simple case of

spilled variables since such type of variables is usually read-only for constant data

and embedded in the code section, and DBTs are capable of handling the modified

constant variables by re-translating guest binaries. The latter, however, is more

challenging for virtual register promotion since such variables can be modified by

arbitrary memory reference instructions. For example, as illustrated in Figure 3.2b

and 3.2c, 0 6 7 are stack variables promoted to virtual registers %r0, %r0.b, and

%r0.c, respectively. Such spilled variables may be aliased to memory locations ref-

erenced by instructions 1 2 8 because it is possible for the store instruction 8 to

modify the spilled variables 0 6 7 in memory address %sp (i.e., stack pointer regis-

ter) and %sp+4 such that the data may not be consistent between virtual registers

10

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.2. ISSUE OF VIRTUAL REGISTER PROMOTION

Loop: ldr r0, [sp] ; load i from stack ⓪
 vldr d1, [r0] ; dx[i] ➀
 vldr d2, [r1] ; dy[i] ➁
 add r0, r0, #8 ; i=i+1 ➂
 vmul d1, d1, d0 ; tmp=dx[i]*da ➃
 vadd d2, d2, d1 ; +dy[i] ➄
 str r0, [sp] ; store i to stack ➅
 ldr r0, [sp, #4] ; load n from stack ➆
 vstr d2, [r1] ; dy[i]=tmp ➇
 add r1, r1, #8 ; i=i+1 ➈
 cmp r0, r1 ; i < n ➉
 bne Loop

(a) ARMv7 guest binary with register spilling

Entry: load %sp %r1.cpu %d0
Loop: ➇ %r1 = phi [%r1.cpu],[%r1.a]
 ⓪ %r0 = load i32* %sp
 ➀ %d1 = load double* %r0
 ➁ %d2 = load double* %r1
 ➂ %r0.a = add i32 %r0, 8
 ➃ %d1.a = fmul %d1, %d0
 ➄ %d2.a = fadd %d1, %d1.a
 ➅ store %r0.a, i32* %sp
 ➆ %r0.b = load i32* [%sp+4]
 ➇ store %d2.a, double* %r1
 ➈ %r1.a = add i32 %r1, 8
 ➉ %cmp = cmp ne %r0.b, %r1.a
 br %cmp, %Loop, %Exit
Exit: store %r0.b %r1.a %d2.b %d1.a

(b) IRs with register spilling
Entry: load %sp %r1.cpu %d0
VRP: ⓪ %r0 = load i32* %sp
 ➆ %r0.b = load i32* [%sp+4]
Loop: ➅ %r0.c = phi [%r0],[r0.a]
 ➇ %r1 = phi [%r1.cpu],[%r1.a]
 ➀ %d1 = load double* %r0.c
 ➁ %d2 = load double* %r1
 ➂ %r0.a = add i32 %r0.c, 8
 ➃ %d1.a = fmul %d1, %d0
 ➄ %d2.a = fadd %d1, %d1.a
 ➇ store %d2.a, double* %r1
 ➈ %r1.a = add i32 %r1, 8
 ➉ %cmp = cmp ne %r0.b, %r1.a
 br %cmp, %Loop, %STVR
STVR: ➅ store %r0.a, i32* %sp
Exit: store %r0.b %r1.a %d2.b %d1.a

(c) IRs with virtual register promotion

Entry: load %sp %r1.cpu %d0
VRP: ⓪ %r0 = load i32* %sp
 ➆ %r0.b = load i32* [%sp+4]
Loop: ➅ %r0.c = phi [%r0],[r0.a]
 ➇ %r1 = phi [%r1.cpu],[%r1.a]
 ➀ %v1 = load <2 x double>* %r0.c
 ➁ %v2 = load <2 x double>* %r1
 ➂ %r0.a = add i32 %r0.c, 16
 ➃ %v1.a = fmul <2 x double> %v1, %d0
 ➄ %v2.a = fadd <2 x double> %v1, %v1.a
 ➇ store %v2.a, <2 x double>* %r1
 ➈ %r1.a = add i32 %r1, 16
 ➉ %cmp = cmp ne %r0.b, %r1.a
 br %cmp, %Loop, %STVR
STVR: ➅ store %r0.a, i32* %sp
Exit: %d1 = extract <2 x double>* %v1.a
 %d2 = extract <2 x double>* %v2.a
 store %r0.b %r1.a %d1 %d2

(d) IRs with promotion and vectorization

Figure 3.2: Example of vectorization with virtual register promotion

11

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.2. ISSUE OF VIRTUAL REGISTER PROMOTION

and memory. As another example, the spilled variable 6 in address %sp may be

aliased to memory locations referenced by the loads 1 2 . In this case, when 6 up-

dates the value for virtual register %r0.c with PHI node, the data in memory %r0.c

or %r1 would be inconsistent.

To solve the problems, DBTs should ensure no aliasing between spilled variables

and other memory references. Nevertheless, DBTs cannot determine the aliasing

when translating guest binaries since both the address of memory accesses (e.g., r1

and r0) and the value in stack pointer register (i.e., sp) can only be identified at

run time. Hence, runtime aliasing check is required to prove the validity of vir-

tual register promotion before entering the loop with promoted spilled variables. A

naive approach for aliasing check is to insert the checking code before each potential

aliasing instructions. However, such an approach is not feasible after the loop is

vectorized. Loop-based vectorization changes the order of instructions across iter-

ations and fuses scalar operations into a vector such that DBTs cannot ensure the

legality of virtual register promotion after the loop is vectorized.

For instance, as illustrated in Figure 3.2d, if 1 2 have no aliasing but the store

8 aliases to the memory address %sp with spilled variable 6 , DBT should rollback

and recover the states for instructions 1 ∼ 7 because 6 is an induction variable

leading the loads 1 2 with memory location %r0.c and %r1. In this case, DBTs

should re-execute the instructions in scalar-loop and reload the data from memory

to recover the states. Nevertheless, a loop does not always contain only one store

instruction. If a valid store instruction is successfully executed before the store 8

but the spilled variable 6 still alias to 8 , DBTs cannot recover the original states

because incorrect results have already been written back to memory.

One possible solution is recording all the changes in both registers and memory

before storing the data back to memory. However, recording the data changes in

memory usually needs hardware to assist DBTs in state recovery (e.g., Transmeta

CMS [15]), and most modern processors do not provide such supports. Another pos-

sible solution is moving all checking codes from memory reference instructions to the

head of the loop body and check all possible aliasing pairs between virtual registers

and memory references before executing any instruction in each iteration. Never-

theless, such a solution would cause higher overhead when detecting the aliasing in

12

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.3. ALGORITHM OF VIRTUAL REGISTER PROMOTION

each iteration and impede the performance improvement. Consequently, overhead

reduction of runtime aliasing check is crucial for virtual register promotion.

3.3 Algorithm of Virtual Register Promotion

A spilled variable may be viewed as a loop invariant stored on the stack. The
stack location is usually a constant address, which is calculated as stack pointer plus
offset (i.e., sp of 0 6 7 in Figure 3.2). DBTs are capable of detecting whether the
value of stack pointer is modified in the loop. Therefore, it is possible to validate the
correctness of virtual register promotion after vectorization. Runtime aliasing check
ensures the virtual register promotion performed is legal. The checking conditions
are given below:

addr(m) : address of memory reference m

size(m) : access type of memory reference m

ssi : store ith of spilled variable sli : load ith of spilled variable

sti : store ith of non-spilled variable tci : ith of loop trip-count

ldi : load ith of non-spilled variable di : ith of stride distance

nss : number of ssi nsl : number of sli nl : number of ldi

ns : number of sti SS : set of ssi address SL : set of sli address

ST : set of sti address LD : set of ldi address

A : set of aliasing address

On the field (Z+)

SS := {a|addr(ssi) ≤ a < addr(ssi) + size(ssi), 1 ≤ i ≤ nss} (3.1)

SL := {a|addr(sli) ≤ a < addr(sli) + size(sli), 1 ≤ i ≤ nsl} (3.2)

ST := {a|addr(sti) ≤ a < addr(sti) + tci × di, 1 ≤ i ≤ ns} (3.3)

LD := {a|addr(ldi) ≤ a < addr(ldi) + tci × di, 1 ≤ i ≤ nl} (3.4)

A = (SS ∩ (ST ∪ LD)) ∪ (SL ∩ ST) (3.5)

Legality =


true, ifA = ϕ

false, otherwise
(3.6)

13

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.3. ALGORITHM OF VIRTUAL REGISTER PROMOTION

Runtime aliasing check ensures no spilled variables alias to regular memory reference

(i.e., load/store non-spilled variables) across all iterations. First, eq 3.1 and 3.2

respectively scan the addresses of all spilled variables stored to stack (SS) and loaded

from stack (SL) with the specific size of data type (e.g., size of double is 8 bytes, float

is 4 bytes, etc). Second, identify the address range of non-spilled variables across

all iterations. Because Scalar Evolution Analysis can expose loop trip-count and

stride distance, DBTs can employ such information to calculate the loop boundary

(i.e., tci × di) in step 3.3 and 3.4. Besides, the loop trip-count and stride distance

may be different among all memory references (i.e., vector loads/stores v.s. loop

invariants). Finally, the checking in eq 3.5 and 3.6 guarantees the address set of

stored spilled variables (SS) do not overlap with the address set of both non-spilled

loads (LD) and stores (ST), and all spilled loads do not overlap with the non-spilled

stores (ST).

The complete description of virtual register promotion is shown in Algorithm

1. The input VRP, Loop, and STVR represent the three marked basic blocks in

Figure 3.2. In the initial state, VRP and STVR BB do not contain any instruction.

VRP BB is used to preload the spilled variables to virtual registers, and STVR BB

stores the data back to the stack. Loop BB is the loop body containing spilled

variables. The output RTCheck is used to record which addresses need runtime

aliasing check, and one address maps to one instruction accessing it. All BBs (VRP,

Loop, Loop) would be modified by virtual register promotion. The intermediate

variable SVLookup (Spilled Variable Lookup Table) is a table used to record which

instruction first accesses the address in stack, and which one access as a key-value

pair (address ← (first instruction, last instruction)). UpdateOperand tracks the

data changes among the spilled variables and annotates which instruction should be

updated.

The following steps show how our DBT promotes spilled variables to virtual

registers, and we follow the format of LLVM IR to illustrate the algorithm. The

algorithm tracks the data flow of spilled variables at the same position in the stack.

PromoteSpilledVariable(VRP, Loop, STVR) (lines 20 to 38) is the main function of

this optimization. BuildSpilledVariableTable (line 21 and line 1) creates the table of

spilled variables to determine which operand should be replaced (UpdateOperand),

14

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.3. ALGORITHM OF VIRTUAL REGISTER PROMOTION

and record which variable needs runtime aliasing check (RTCheck). We consider

several cases of register spilling to specific stack address: a) loads only, b) loads

first then stores, c) stores first then loads, and d) stores only. The cases of memory

references to spilled variables have multiple combinations, so DBTs need a more

general approach to conquer the problem. First, our DBT scans all instructions in

Loop (line 2) BB and determines whether an instruction is memory access to the

stack (line 3). If current instruction (Insti) loads the data from the stack, our DBT

would determine whether the memory address is referenced by prior instructions.

If such an address does not appear before, the current load should be promoted

(lines 11 to 12). Otherwise, the operands containing current instruction should be

replaced with the last modified operand (line 9). On the other hand, if the store

moves the data to the stack, our DBT should mark the address touched by store

instruction even though such position is accessed by prior loads (line 15) and extract

the operand to update the last operands corresponding to the target address (line 17

and 19).

It is possible for the application binary to update variables spilled to stack. Here

is a simple case shown in Figure 3.2b, 0 3 6 is an example that an induction variable

loads the data from address sp, increments the value, and then stores the data back

to the same position in the stack. In this case, DBTs should update the data changes

in the loop. For the loads first accessing the stack address, we preload the data in

VRP BB before entering Loop BB (line 24). If DBTs detect data changes in such

position, DBTs would create a Phi Node in Loop BB to update the value from both

VRP BB and Loop BB (lines 25 to 27). Figure 3.2c shows the value update in

the induction variable (0 3 6) with a Phi Node after promotion. Lastly, update all

operands in each instruction where such operand is filled in UpdateOperand (lines 35

to 38), remove the spilled loads which do not need to be promoted (line 31), and then

store the spilled variables back to the stack in STVR BB when exiting the Loop BB

(line 34). After successfully vectorizing the loop (Figure 3.2d), DBTs would insert

the checking code according to RTCheck table and follow the rules we present in

the previous paragraph. The elements in set SS and SL will be defined by RTCheck.

SS = {a|addr ≤ a < addr + size(ss), (addr, ss) ∈ RTCheck, ss ∈ Store}, SL =

{a|addr ≤ a < addr + size(sl), (addr, sl) ∈ RTCheck, sl ∈ Load}

15

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.3. ALGORITHM OF VIRTUAL REGISTER PROMOTION

Consequently, our DBT needs to insert (nss×(nl+ns)+nsl×ns) checking pairs
to validate the legality of promotion since the access range of each spilled variable
is independent. Nevertheless, the more spilled variables a DBT promotes, the more
checking pairs the DBT should insert. Even though DBTs only check aliasing once
before entering Loop BB, such aliasing check still could be costly when there are
many checking pairs inserted. To further reduce such overhead, we present a trade-
off aliasing detection between checking overhead and checking granularity. We know
that a stack variable access consists of stack pointer register and an offset, so a DBT
is able to check whether operands are both constant beforehand. Hence, a DBT can
only check the access range of spilled variables from the lowest to the highest address,
where a DBT checks only one pair for each regular memory reference. The following
equation shows the modified checking function of virtual register promotion:

SV = {a|min{SS ∪ SL} ≤ a ≤max{SS ∪ SL}} (3.7)

Legality =


true, if SV ∩ (LD ∪ ST) = ϕ

false, otherwise
(3.8)

We define a new access set SV for spilled variables (eq. 3.7) and the legality of

virtual register promotion (eq. 3.8). The new-defined validation (eq. 3.8) is more

restricted than the original one (eq. 3.6) because set A (eq. 3.5) is a subset of SV.

False positives may exist. For example, if non-aliased memory access to a position

in this range (eq. 3.8), it will fail the legality check even if this reference is harmless.

However, in practice, the checking range is usually small because the compilers spill

variables to a small, consecutive area. Therefore, the new and improved rule is more

cost effective as our benchmark results shown.

Figure 3.3 shows an example of two different approaches of aliasing check. As-

sume we have two non-spilled loads and one non-spilled store (i.e., memory reference

from addr to addr + tc), and six 4-byte spilled variables with two stores and four

loads. Figure 3.3a shows a DBT needs to do 10 pairs of aliasing check for each

spilled variable to satisfy the original rule in equation 3.6. Although such aliasing

check satisfies the requirements of validation but causes more too much checking

overhead. On the other hand, Figure 3.3b shows a DBT only needs to do 3 pairs

using the new rule since we are able to figure out the maximum and minimum ad-

16

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.3. ALGORITHM OF VIRTUAL REGISTER PROMOTION

Load Load Store
addr1 addr1+tc1 addr2 addr2+tc2 addr3 addr3+tc3

Store Store Load Load Load Load
sp+4 sp+16 sp+32 sp+48 sp+60 sp+72

(a) Compare the range of each spilled variable

Load Load Store
addr1 addr1+tc1 addr2 addr2+tc2 addr3 addr3+tc3

sp+4(min) sp+72(max)
{SV}

(b) Compare the min/max range of all spilled variables

Figure 3.3: Runtime Check for Virtual Register Promotion

dress of both spilled loads and stores from sp+4 to sp+72, and thus we check such

access ranges for max/min address of all spilled variables rather than each individ-

ual ones. Such aliasing detection (eq. 3.8) is lightweight but more conservative than

Figure 3.3a. Although there is a corner case of unknown offset values, a DBT can

directly compare such memory access to all non-spilled loads and stores.

17

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.3. ALGORITHM OF VIRTUAL REGISTER PROMOTION

Algorithm 1: Virtual Register Promotion
input : VRP, Loop, STVR
output: RTCheck, VRP, Loop, STVR

1 Function BuildSpilledVariableTable(Loop)
2 for i← 1 to Loop.Size(), ∀Insti ∈ Loop do
3 if Insti /∈ SpilledV ariables then
4 continue
5 Addr ← GetLoadStoreAddress(Insti)
6 (BeginInst, LastInst)← SV Lookup[Addr]
7 if Insti ∈ Load then
8 if Addr ∈ SV Lookup then
9 UpdateOperand[Insti]← LastInst

10 else
11 SV Lookup[Addr]← (Insti, Insti)
12 RTCheck[Addr]← Insti

13 else if Insti ∈ Store then
14 Operand← GetStoreOperand(Insti)
15 RTCheck[Addr]← Insti
16 if Addr ∈ SV Lookup then
17 SV Lookup[Addr]← (BeginInst,Operand)
18 else
19 SV Lookup[Addr]← (Insti, Operand)

20 Function PromoteSpilledVariable(VRP, Loop, STVR)
21 BuildSpilledV araibleTable(Loop)
22 foreach (∼, (BeginInst, LastInst)) ∈ SV Lookup do
23 if BeginInst ∈ Load then
24 BeginInst.MoveTo(V RP)
25 if BeginInst ̸= LastInst then
26 Phi← CreatePHI(Loop,BeginInst, LastInst)
27 UpdateOperand[BeginInst]← Phi

28 for i← 1 to Loop.Size(), ∀Insti ∈ Loop do
29 if Insti ∈ SpilledV ariables then
30 if Insti ∈ Load then
31 Insti.Remove()
32 continue
33 else if Insti ∈ Store then
34 Insti.MoveTo(STV R)

35 foreach Operand ∈ Insti.GetAllOperands() do
36 NewOperand← UpdateOperand[Operand]
37 if NewOperand ̸= ϕ then
38 Operand← NewOperand

18

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.4. SPECULATIVE EXECUTION

3.4 Speculative Execution

In addition to the issue of spilled variables, vectorizing a binary loop still has
other issues of memory aliasing. With high-level information, static compilers can
identify the array base address of memory references to specific positions. However,
DBTs cannot obtain such information when translating guest binaries because such
addresses are generally put in registers, where the access positions can only be
determined at run time. For instance, as illustrated in Figure 2.1c, the compilers
usually place the addresses of memory reference A B in registers (r0 and r1). If
DBTs vectorize the loop, such memory accesses following induction variables may
be aliased to each other since DBTs cannot figure out whether the access ranges
of vector memory references overlap with the other one. Therefore, DBTs should
check the dependency at run time among memory references. The equation below
shows the complete runtime check of such memory aliasing, and we follow the same
definition for some variables mentioned in the previous section:

VL: vector length

V ec(I) =
[
addr(I), addr(I) + V L× size(I)

)
, ∀I ∈ Vectors

Inv(I) =
[
addr(I), addr(I) + size(I)

)
, ∀I ∈ Loop Invariants

AliasV ector =

i=ns−1,j=ns,k=nl∪
i=1,j>i,k=1

(
V ec(sti) ∩

(
V ec(stj) ∪ V ec(ldk)

))
(3.9)

AliasInv =

i=ns∪
i=1

(
Inv(sti) ∩ (ST ∪ LD)

)
∪

i=nl∪
i=1

(
Inv(ldi) ∩ ST)

)
(3.10)

Legality =


true, if AliasV ector ∪AliasInv = ϕ

false, otherwise
(3.11)

We consider two cases of memory aliasing, respectively shown in eq. 3.9 and 3.10.

One is aliasing between memory references with vector operations, and the other

is aliasing between loop invariants and other memory references. The former is

a simple case, where DBTs can take advantage of vector properties to check if

memory accesses with vector are overlapping after vectorizing the loop. The latter,

19

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.4. SPECULATIVE EXECUTION

Scalar-Loop

RTCheck

Vector-Loop

Exit

(a) With no register spilling

Scalar-Loop
(no VRP & stride voting)

Promote SV

RTCheck

Vector-Loop

Exit

Store Virtual Regs

(b) With register spilling

Figure 3.4: Rewrite Control Flow for Vectorization

however, DBTs should guarantee the data in such positions cannot be modified by

other memory references. In this case, DBTs would check whether such positions

are touched across all iterations and ensure no aliasing exists when executing the

vectorized loop.

Moreover, modern compilers (e.g., GCC) sometimes do not encode constant

stride within instructions but move it to the registers or stack (i.e, register spilling),

such as Roms in SPEC2017. Fortunately, we still have opportunities to determine

the distance of strides because the strides are not always placed in registers or stack.

To pursue more vectorization capability, we adopt ”stride distance voting,” voting

for the step distance of memory references following the induction variables, and

DBTs would check whether the stride distance matches the real one at runtime

after successfully vectorizing the loops. For instance, as illustrated in Figure 3.2c,

assume the constant stride ’8’ is spilled to stack, and a DBT has already promoted

such a constant variable to a virtual register. Since the constant value in such a

register can only be determined at run time, DBTs would create a voting box for

other induction variables (e.g., 6) to figure out which stride distance is in majority.

Then, DBTs would patch the unknown stride to the voting result and insert the

checking code to verify whether the voting result is the same as the constant value

in registers.

To guarantee the correctness of code execution, DBTs need to verify the legal-

20

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

3.4. SPECULATIVE EXECUTION

ity of virtual register promotion, detect data dependence among general memory

references, and compare the voted stride at run time. Next, DBTs would employ

both runtime check and loop vectorization to rewrite the control flow composed of

the basic blocks in Figure 3.4 to execute the vectorized loop, and then go through

the remaining iterations in the scalar loop. This is because DBTs need to synchro-

nize architecture states in Exit BB. For a simplified implementation, we employ

the mechanism of state synchronization of scalar loop rather than extract the ele-

ments from vector register in the vectorized loop to maintain consistent states. In

addition, we define two different vectorization approaches in DBTs. If there is no

register spilling in a loop, DBTs just need to transform the scalar loop into Fig-

ure 3.4a, which only checks the data dependence and voted stride distance. If a

loop contains spilled variables, we provide another transformation approach shown

in Figure 3.4b. The rewriting steps would be: a) Promote spilled variables (SV) to

virtual registers. b) Check all possible aliasing mentioned in the previous section at

run time. If the verification failed, then just store the virtual register back to the

stack and execute the scalar loop with no promoted variables. c) If the validation

is successful, just execute the vectorized loop with register promotion. d) After the

execution of the vectorized loop is done, store the data from virtual registers back

to the stack and then execute the remaining iterations in the scalar loop.

21

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Chapter 4

Performance Evaluation

We implement our optimization approach in HQEMU, a cross-ISA DBT system

based on the LLVM 6.0 JIT compiler, and evaluate the effectiveness with ARMv7

scalar to ARMv8 vector (NEON with 128-bit SIMD registers) translation with dou-

ble precision computation. Although ARMv7 and ARMv8 may sound like a com-

patible processor family, so a DBO may seem more appropriate. In fact, ARMv7

and ARMv8 are incompatible ISAs. So a DBT is selected for our testbed. HQEMU

first translates ARMv7 scalar binary to LLVM IR, transformed by our optimiza-

tion approach to apply vectorization, and then LLVM backend generates the host

ARMv8 binary. The host system for ARMv7 to ARMv8 translation is Odroid-C2

with ARM Cortex-A53 CPU at 1.5Ghz with 2GB of RAM running Linux 3.14.79,

and such platform supports legacy 32-bit (AArch32) execution mode for ARMv7

binaries. Therefore, we could run both ARMv7 and ARMv8 binaries on the same

platform.

We select several benchmark kernels, in which the time-consuming loops are

vectorizable, from various benchmark suites across scientific computing and linear

algebra, such as Livermore Loops (LL), PolyBench (POLY), Netlib BLAS (BLAS),

SPEC2000, SPEC2006, and SPEC2017 (SPEC), to evaluate the vectorization ca-

pability and performance improvement in our DBT. Register spilling often occurs

in real-world applications containing big loops with longer define-use chains. We

observe such loops in SPEC suites and show the percentage of execution time and

the ratio of loops with register spilling for those kernels in Table 4.1 and 4.2, where

the large applications contain more register spilling in innermost loops. All bench-

22

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Table 4.1: Benchmark Kernels from SPEC

Kernel Name Version
SPEC

Name
Benchmark

Time(%)
Execution Source

SPEC-psinv 2000 172.mgrid 24.53% mgrid.f: PSINV()
SPEC-resid 2000 172.mgrid 54.88% mgrid.f: RESID()
SPEC-calc2 2000 171.swim 32.40% swim.f: CALC2()
SPEC-fluxi 2006 437.lesli3d 11.97% tml.f: FLUXI()
SPEC-fluxj 2006 437.lesli3d 13.26% tml.f: FLUXJ()
SPEC-fluxk 2006 437.lesli3d 16.83% tml.f: FLUXK()
SPEC-extrapi 2006 437.lesli3d 14.55% tml.f: EXTRAPI()
SPEC-extrapj 2006 437.lesli3d 13.80% tml.f: EXTRAPJ()
SPEC-extrapk 2006 437.lesli3d 9.55% tml.f: EXTRAPK()
SPEC-setbc 2006 437.lesli3d 13.94% tml.f: SETBC()

SPEC-step2d 2017 654.roms_r 28.78% lines:989-2284
step2d_LF_AM3.h:

SPEC-uv3dmix2 2017 654.roms_r 6.23% uv3dmix2_tile()
uv3dmix_2.h:

marks were compiled using GCC 5.4.1 with flags ”-O2 -ftree-vectorize -ffast-math.”

The ARMv7 binaries do not contain vector operations because ARMv7 does not

support NEON SIMD with double precision computation, so the compilers would

not vectorize the loops. In contrast, ARMv8 has such support, so compilers could

exploit NEON SIMD with double precision. When translating ARMv7 scalar bi-

naries to ARMv8, we vectorize the binaries at the same time. The theoretical

performance speedup would achieve 2x with register width from 64-bits (scalar) to

128-bits (NEON SIMD).

23

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

4.1. OVERALL PERFORMANCE

Table 4.2: Number of Loops with Register Spilling in Kernels

Kernel Name Total Num of Loops
Register Spilling

with
Num of Loops

BLAS-symm 2 1
LL-adi_integ 1 1
LL-diff_pred 1 1
LL-2d_frag 3 1
SPEC-psinv 1 1
SPEC-resid 1 1
SPEC-calc2 1 1
SPEC-fluxi 9 4
SPEC-fluxj 10 4
SPEC-fluxk 10 3
SPEC-setbc 6 6
SPEC-step2d 20 6
SPEC-uv3dmix2 4 4

4.1 Overall Performance

We report the performance results in Figure 4.1 to show our vectorization capa-

bility in our DBT, and the baseline is normalized to ARMv7 native run (ARMv7-

Scalar-Native) with scalar operations. DBT-Vec means the best performance im-

provement of our approach, which adopts lightweight aliasing detection (i.e., Fig-

ure 3.3b), and ARMv8-Vec-native is ARMv8 binaries natively run on the host with

NEON SIMD. We choose ARMv8 NEON native run as our reference of maximum

performance speedup since ARMv8 NEON supports 128-bit SIMD width.

On average, DBT-Vec could achieve 1.42x performance speedup in comparison

BLAS-gemm

BLAS-sy
mm

BLAS-trm
m

LL-2d fra
g

LL-adi integ

LL-diff
pred

LL-eq fra
g

LL-fir
st

diff

LL-hydro

LL-in
t pred

LL-m
at mul

POLY-fd
td-2d

POLY-heat-3
d

POLY-ja
cobi-1

d

SPEC-extr
api

SPEC-extr
apj

SPEC-extr
apk

SPEC-flu
xi

SPEC-flu
xj

SPEC-flu
xk

SPEC-se
tbc

SPEC-psin
v

SPEC-re
sid

SPEC-st
ep2d

SPEC-uv3dmix2

SPEC-ca
lc2

Geomean
0

0.5

1

1.5

2

1.42

S
pe

ed
up

ARMv7-Scalar-Native DBT-Vec ARMv8-Vec-Native

Figure 4.1: Performance results of ARMv7-to-ARMv8 Translation

24

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

4.2. EVALUATION OF VIRTUAL REGISTER PROMOTION

with ARMv7-Scalar-Native and is close to ARMv8-Vec-Native. Besides, DBT-Vec

has even more performance improvement than ARMv8-Vec-Native in several kernels,

such as the kernels in leslie3d. For kernel SPEC-extrapj and SPEC-extrapk, ARMv8-

Vec-Native obtains less performance gain than DBT-Vec. This is because ARMv8-

Vec-Native contains more spilled variables than DBT-Vec does and causes more

memory reference overhead for data movement between registers and stack. The

rules of register spilling follow register allocation in different compiler backends, and

such rules in GCC and LLVM backends are different. As for another reason, the

granularity of code segment also affects the ratio of register spilling in loops. For

ARMv8-Vec-Native, the GCC backend needs to consider the life range of variables

across basic blocks in a function for register allocation. For DBT-Vec, however, the

LLVM backend only needs to consider the scope of the innermost loop with a smaller

range to allocate registers. Such behaviors could also be found in SPEC-calc2 for

ARMv8-Vec-Native, which has performance loss due to unwanted register spilling.

For SPEC-setbc and POLY-head3d, GCC does not successfully vectorize the

loops in such kernels for ARMv8-Vec-Native because the vectorizable loops do not

cross the default threshold of cost model in GCC. In this case, if we force GCC to vec-

torize the loops by passing the flag ”-fvect-cost-model=unlimited,” the performance

improvement of ARMv8-Vec-Native would be close to DBT-Vec. As for bench-

mark LL-diff_pred, however, DBT-Vec has a performance gap between ARMv8-

Vec-native because of runtime check overhead for virtual register promotion, and

we would report such detailed information in chapter 4.2.

4.2 Evaluation of Virtual Register Promotion

There are 13 benchmark kernels containing spilled variables, and thus we further

evaluate the performance improvement and overheads for virtual register promotion.

Figure 4.2a shows the performance results for different vectorization approaches.

Such improvement results would correspond to the number of loops containing

spilled variables as shown in Table 4.2. For noVRP, our DBT does not promote

spilled variables to virtual registers, so the loops containing spilled variables would

not be vectorized. On the other hand, VRP-RT1 checks aliasing for each spilled

25

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

4.2. EVALUATION OF VIRTUAL REGISTER PROMOTION

BLAS-sy
mm

LL-2d fra
g

LL-adi integ

LL-diff
pred

SPEC-flu
xi

SPEC-flu
xj

SPEC-flu
xk

SPEC-se
tbc

SPEC-psin
v

SPEC-re
sid

SPEC-st
ep2d

SPEC-uv3dmix2

SPEC-ca
lc2

0

0.5

1

1.5

S
pe

ed
up

ARMv7-Scalar-Native noVRP VRP-RT1 VRP-RT2

(a) Performance of virtual register promotion

BLAS-sy
mm

LL-2d fra
g

LL-adi integ

LL-diff
pred

SPEC-flu
xi

SPEC-flu
xj

SPEC-flu
xk

SPEC-se
tbc

SPEC-psin
v

SPEC-re
sid

SPEC-st
ep2d

SPEC-uv3dmix2

SPEC-ca
lc2

0

10

20

30

O
ve

rh
ea

ds
(%

)

VRP-RT1 VRP-RT2

(b) Overheads (%) of two runtime aliasing checks

Figure 4.2: Evaluation results of virtual register promotion

26

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

4.2. EVALUATION OF VIRTUAL REGISTER PROMOTION

variables (i.e., Figure 3.3a), and VRP-RT2 is a trade-off approach of runtime alias-

ing check (i.e., Figure 3.3b). The overhead report of those different aliasing check

policies is also shown in Figure 4.2b. (i.e., VRP-RT2 in Figure 4.2 is the same result

as DBT-Vec in Figure 4.1.)

Because of registers spilling in guest binaries, noVRP cannot vectorize the loops

with spilled variables. Therefore, VRP-RT1 generally achieves greater performance

gain than noVRP since VRP-RT1 has a higher vectorization ratio. However, SPEC-

fluxi and SPEC-fluxj still have lower performance improvement than noVRP does.

The reason is our DBT has to check aliasing for a large number of spilled variables

at run time, and the checking overhead degrades the performance. The results are

shown in Figure 4.2b, SPEC-fluxi and SPEC-fluxj respectively spend 11% and 15%

of execution time to perform alias checking. Hence, lightweight aliasing detection

(VRP-RT2) is crucial for virtual register promotion. As the results show, the over-

head of SPEC-fluxi and SPEC-fluxj in VRP-RT2 has been respectively decreased

to 2.6% and 0.46%, and the performance improvement of VRP-RT2 is more than

noVRP.

For other benchmark kernels, SPEC-fluxk, SPEC-psinv, and SPEC-resid, VRP-

RT2 achieves greater performance gain than VRP-RT1. Especially for benchmark

kernel SPEC-resid, VRP-RT2 reduces the overhead from 27% down to 3.7% and

achieves nearly 1.3x speedup in comparison with VRP-RT1. This is because VRP-

RT1 inserts 233 aliasing check pairs to satisfy the rule in Figure 4a. In contrast,

VRP-RT2 only creates 29 checking pairs for the same loop with much reduced

checking overhead. For kernels LL-2d_frag, SPEC-calc2, LL-adi_integ, and LL-

diff_pred, the difference in performance improvement and overheads are not no-

table because our DBT checks fewer spilled variables for those kernels. As for kernel

LL-diff_pred, mentioned in chapter 4.1, DBT-Vec has a gap of performance im-

provement between ARMv8 native run because DBTs should pay 15% checking

overhead to detect aliasing (VRP-RT2 in Figure 4.2b) for spilled variables. On

the other hand, the constant stride in kernels SPEC-step2d and SPEC-uv3dmix are

commonly allocated to registers or stack rather than encoded in instructions. In this

case, DBTs would patch the unknown constant stride and attempt to vectorize the

loops. As a result, our DBT successfully vectorizes the loops and obtain significant

27

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

4.2. EVALUATION OF VIRTUAL REGISTER PROMOTION

performance gain in these kernels.

28

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Chapter 5

Related Work

For cross-ISA DBTs, QEMU [10] emulates both user space program and full sys-

tem including operating system, where DBT translates guest binaries to TCG-IR

and then generate host binaries for various target machines. MAMBO-X64 [5] is

an ARMv7 to ARMv8 DBT, migrating legacy ARMv7 applications to the ARMv8

platform with no 32-bit hardware support. Transmeta CMS [15] could migrate IA-

32 applications to their Crusoe VLIW architecture and exploit hardware to solve

the issues of memory ordering after executing aggressive re-optimized code. On the

other hand, PIN [16] and Valgrind [17] conduct dynamic binary instrumentation

to collect profiles and program detailed behavior information. Dynamo [18], Dy-

namoRIO [19] and Adore [20] exploit software and hardware profiling to figure out

the time-consuming code segments and rewrite the binary for better performance.

Auto vectorization could be classified in two categories: loop-based vectoriza-

tion [21]–[23] and basic block vectorization [24]–[26]. The former exploits loop infor-

mation to widen the computation across iterations and combine them with vector

operations. Inspired by these approaches, such techniques could also be used to

migrate scalar binaries to hosts with SIMD capability. Unlike loop-based vectoriza-

tion, the latter combines multiple statements with isomorphic operations in basic

blocks into SIMD operations, such as SLP [24], PSLP [27], and Partial SIMD par-

allelism [28].

For binary level vectorization, several approaches have been proposed to improve

DLP for binaries without high-level information. Hong. [6] and Liu. [7] presented

short-vector to long-vector to exploit longer SIMD lanes in cross-ISA DBTs. The

29

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

former re-vectorizes the loops containing short vectors to longer vectors in DBTs.

The latter translates guest codes to hosts with the wider but fewer number of SIMD

registers to resolve the issues of asymmetric SIMD configuration between different

ISAs. Besides, they consider input binaries with unrolled SIMD loops and try to

reduce SIMD register spilling in the translated host codes. In contrast, we consider

register spilling in the input binaries prohibiting DBT vectorization. The other re-

lated works are [29], [30], translating non-vectorized x86 binaries to SIMD with both

SSE and AVX2 on same-ISA DBT. The former employs McSema [31] to translate

x86 binaries to LLVM IR and then exploit the Polly framework [32] to re-vectorize

the code. However, they do not illustrate how to deal with data dependency when

applying vectorization on binary loops with Polly. The Janus Triad [30] uses static

binary analysis to determine whether runtime check is needed to enable the vector-

ization of a loop. In addition, none of these works mentioned the issues of register

spilling caused failed vectorization.

As for register promotion, Li. [33] promotes stack variables to additional general-

purpose registers in order to exploit the increased number of registers when migrating

the legacy x86 applications from IA32 machines to x64 machines. This work employs

shared memory protection mechanisms with a two thread execution model to detect

possible aliasing on the stack. When true aliasing is detected, a DBT would recover

the architecture states and resume execution. Such an approach employs hardware

support to achieve low overhead for aliasing detection. Nevertheless, the mechanism

of data recovery cannot be applied on loop vectorization because loop vectorization

would aggressively reorder the instructions across iterations and require a different

approach for aliasing check.

SecondWrite [34] is a static binary analysis framework presenting a software-

based aliasing check for symbol promotion of stack variables to ensure the correct-

ness of code execution and binary rewriting, where such framework synchronizes

the promoted stack variables before/after memory instructions whose access range

is not statically determinable. In contrast, our approach exploits loop informa-

tions to assist DBTs in aliasing detection before entering the loops so that DBTs

could achieve lower overheads of runtime check and perform vectorization. Besides,

SecondWrite is based on the static binary translation, difficult to handle the self-

30

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

modified code, code discovery, and code location problems. Our approach does not

have such limitations because it is based on DBT.

For auto parallelization for binaries, [35], [36] also address the issue of auto

parallelization in a static binary translator, and they also try to solve the problem if a

affine loop does not contain symbolic information. However, they do not cover issues

of parallelization or vectorization capability if the binary loops have register spilling.

In contract, our approach is auto vectorization in dynamic binary translation, and

we carefully consider the issues of register spilling when conducting Scalar Evolution

Analysis for auto vectorization.

31

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Chapter 6

Conclusion and Future Work

SIMD processing capability is increasingly important in microprocessor architec-

tures. New microprocessors often come up with enhanced and more powerful SIMD

capabilities. However, legacy application binaries may not benefit from such newly

delivered performance. Dynamic binary translation or optimization could apply

some transformations to turn scalar loops in legacy application binaries into vector

or SIMD forms. Prior work has been successful in expanding short SIMD to longer

SIMD. However, vectorizing scalar loops in legacy binaries has not been very success-

ful. One of the main reasons is that some critical information for vectorization has

been lost due to register spilling. One way to recover such important information

is to promote spilled variables back to register and enable effective vectorization.

This is rather challenging since the binary translator must deal with possible mem-

ory aliasing to the stack such as local scalar and array accesses. Although runtime

checking could be applied to ensure the correctness of virtual register promotion,

previously proposed checking could often require excessive overhead and diminish

the benefit of vectorization.

This work proposes using virtual register promotion to recover critical informa-

tion for scalar loop vectorization. It also comes up with a cost-effective aliasing

check for stack variables and spilled variables so that the runtime checking would

not block the way to efficient SIMD execution. The evaluation of our approach

is based on HQEMU, and our DBT translates ARMv7 application binaries to run

on the ARMv8 Cortex-A53 processor. The set of benchmark kernels have shown

1.42x speedup over native runs of ARMv7 binaries on ARMv8. We have success-

32

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

fully demonstrated that scalar legacy code could effectively be vectorized to exploit

new SIMD capabilities available on the host machine.

Currently, we only consider the cases of innermost loops with a single exit point.

In the future, we would like to extend the vectorization scope to include outer loops

or unrolled loops where the register spilling caused troubles would be even more

common in preventing scalar loops in legacy application binaries to be vectorized

via DBT.

33

http://dx.doi.org/10.6342/NTU201902129

doi:10.6342/NTU201902129

Reference

[1] R. B. Lee, “Subword parallelism with max-2,” IEEE Micro, 1996.

[2] J. E. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems and
Processes. Jan. 2005.

[3] C. Zheng and C. Thompson, “Pa-risc to ia-64: Transparent execution, no recompi-
lation,” Computer, 2000.

[4] Apple’s rosetta, https://www.apple.com/rosetta/index.html, 2006.

[5] A. D’Antras, C. Gorgovan, J. Garside, and M. Luján, “Low overhead dynamic binary
translation on arm,” ser. PLDI’17, 2017.

[6] D. Hong et al., “Exploiting longer simd lanes in dynamic binary translation,” in
ICPADS, 2016.

[7] Y. Liu et al., “Exploiting asymmetric simd register configurations in arm-to-x86
dynamic binary translation,” ser. PACT, 2017.

[8] E. Duesterwald and V. Bala, “Software profiling for hot path prediction: Less is
more,” SIGPLAN Not., 2000.

[9] D. Hong et al., “Hqemu: A multi-threaded and retargetable dynamic binary trans-
lator on multicores,” ser. CGO’12, 2012.

[10] F. Bellard, “Qemu, a fast and portable dynamic translator,” ser. USENIX ATC’05,
2005.

[11] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program
analysis & transformation,” ser. CGO ’04, Mar. 2004.

[12] J. L. Henning, “Spec cpu2000: Measuring cpu performance in the new millennium,”
Computer, vol. 33, no. 7, pp. 28–35, Jul. 2000, issn: 0018-9162.

[13] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH Comput. Archit.
News, vol. 34, no. 4, pp. 1–17, Sep. 2006, issn: 0163-5964.

[14] Spec cpu 2017 , https://www.spec.org/cpu2017/, 2017.

[15] J. Dehnert et al., “The transmeta code morphing software: Using speculation, recov-
ery, and adaptive retranslation to address real-life challenges,” ser. CGO’03, 2003.

[16] C. Luk et al., “Pin: Building customized program analysis tools with dynamic in-
strumentation,” ser. PLDI ’05, 2005.

34

http://dx.doi.org/10.6342/NTU201902129
https://www.apple.com/rosetta/index.html
https://www.spec.org/cpu2017/

doi:10.6342/NTU201902129

[17] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic
binary instrumentation,” SIGPLAN Not., 2007.

[18] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent dynamic opti-
mization system,” SIGPLAN Not., vol. 35, no. 5, pp. 1–12, May 2000, issn: 0362-
1340.

[19] D. Bruening, E. Duesterwald, and S. Amarasinghe, “Design and implementation of
a dynamic optimization framework for windows,” Jan. 2002.

[20] J. Lu et al., “Design and implementation of a lightweight dynamic optimization
system,” JILP, 2004.

[21] A. J. C. Bik, M. Girkar, P. M. Grey, and X. Tian, “Automatic intra-register vector-
ization for the intel architecture,” Int. J. Parallel Program., vol. 30, no. 2, pp. 65–98,
Apr. 2002, issn: 0885-7458. [Online]. Available: http://dl.acm.org/citation.
cfm?id=586554.586555.

[22] D. Naishlos, “Autovectorization in gcc,” Proceedings of the 2004 GCC Developers
Summit, pp. 105–118, 2004. [Online]. Available: ftp://gcc.gnu.org/pub/gcc/
summit/2004/Autovectorization.pdf.

[23] N. Sreraman and R. Govindarajan, “A vectorizing compiler for multimedia exten-
sions,” Int. J. Parallel Program., vol. 28, no. 4, pp. 363–400, Aug. 2000, issn: 0885-
7458. doi: 10.1023/A:1007559022013. [Online]. Available: http://dx.doi.org/
10.1023/A:1007559022013.

[24] S. Larsen and S. Amarasinghe, “Exploiting superword level parallelism with mul-
timedia instruction sets,” in Proceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation, ser. PLDI ’00, Vancou-
ver, British Columbia, Canada: ACM, 2000, pp. 145–156, isbn: 1-58113-199-2. doi:
10.1145/349299.349320. [Online]. Available: http://doi.acm.org/10.1145/
349299.349320.

[25] R. L. Leupers and S. Bashford, “Graph-based code selection techniques for embed-
ded processors,” ACM Trans. Des. Autom. Electron. Syst., vol. 5, no. 4, pp. 794–
814, Oct. 2000, issn: 1084-4309. doi: 10.1145/362652.362661. [Online]. Available:
http://doi.acm.org/10.1145/362652.362661.

[26] S. Kral, F. Franchetti, J. Lorenz, and C. Ueberhuber, “Simd vectorization of straight
line fft code, euro-par 2003. parallel processing, 9th international euro-par confer-
ence, klagenfurt, austria, august 26-29, 2003. proceedings,” vol. 2790, Aug. 2003,
pp. 251–260. doi: 10.1007/978-3-540-45209-6_39.

[27] V. Porpodas, A. Magni, and T. M. Jones, “Pslp: Padded slp automatic vector-
ization,” in 2015 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), Feb. 2015, pp. 190–201. doi: 10.1109/CGO.2015.7054199.

[28] H. Zhou and J. Xue, “A compiler approach for exploiting partial simd parallelism,”
ACM Trans. Archit. Code Optim., 2016.

35

http://dx.doi.org/10.6342/NTU201902129
http://dl.acm.org/citation.cfm?id=586554.586555
http://dl.acm.org/citation.cfm?id=586554.586555
ftp://gcc.gnu.org/pub/gcc/summit/2004/Autovectorization.pdf
ftp://gcc.gnu.org/pub/gcc/summit/2004/Autovectorization.pdf
https://doi.org/10.1023/A:1007559022013
http://dx.doi.org/10.1023/A:1007559022013
http://dx.doi.org/10.1023/A:1007559022013
https://doi.org/10.1145/349299.349320
http://doi.acm.org/10.1145/349299.349320
http://doi.acm.org/10.1145/349299.349320
https://doi.org/10.1145/362652.362661
http://doi.acm.org/10.1145/362652.362661
https://doi.org/10.1007/978-3-540-45209-6_39
https://doi.org/10.1109/CGO.2015.7054199

doi:10.6342/NTU201902129

[29] N. Hallou et al., “Runtime vectorization transformations of binary code,” IJPP,
2017.

[30] R. Zhou, G. Wort, M. Erdős, and T. M. Jones, “The janus triad: Exploiting paral-
lelism through dynamic binary modification,” ser. VEE 2019, 2019.

[31] Mcsema, https://github.com/trailofbits/mcsema, 2014.

[32] C. Lengauer, “Polly—performing polyhedral optimizations on a low-level interme-
diate representation,” Parallel Processing Letters, 2012.

[33] J. Li et al., “Dynamic register promotion of stack variables,” ser. CGO’11, 2011.

[34] K. Anand et al., “A compiler-level intermediate representation based binary analysis
and rewriting system,” ser. EuroSys ’13, 2013.

[35] A. Kotha et al., “Automatic parallelization in a binary rewriter,” ser. MICRO’43,
2010.

[36] A. Kotha, K. Anand, T. Creech, K. Elwazeer, M. Smithson, and R. Barua, “Affine
parallelization of loops with run-time dependent bounds from binaries,” ser. EOSP’14,
Apr. 2014.

36

http://dx.doi.org/10.6342/NTU201902129
https://github.com/trailofbits/mcsema

	摘要
	Abstract
	Contents
	Introduction
	Background
	Cross-ISA Dynamic Binary Translation
	Issues of Loop Analysis for Binary

	Methodology
	Overview
	Issue of Virtual Register Promotion
	Algorithm of Virtual Register Promotion
	Speculative Execution

	Performance Evaluation
	Overall Performance
	Evaluation of Virtual Register Promotion

	Related Work
	Conclusion and Future Work
	Reference

