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摘要

本論文旨在研究多代理人系統 (MAS)的編隊調控，近年來其因應

用之普及，如：物體承載、海洋探勘及無人機偵查等而備受關注。以

下我們枚舉本論文之部分目標。首先，我們的目標是設計各式調動

控制以達成各種任務，包括軌跡追蹤、隊形旋轉，及更重要的線上調

整。線上適應意味著可動態調整編隊，此為至關重要的問題，因其可

防止於動態或未知之環境中產生碰撞。此外，我們還考慮了非完全運

動約束、通信限制及輸入飽和，這ㄧ方面大幅提高了控制器設計之難

度，卻也是對於將控制器付諸實踐不可或缺的。同時，我們採用本地

參考座標 (local reference frame)來取代一般研究所需之全域參考座標

(global refernce frame)以提高通訊品質 (QoS)。其次，我們提出新穎設

計使其能掌控 MAS於軌跡循跡時之隊形方位，並提出了比現有結果

更自然的軌跡循跡運動。再者，我們設計了“相位償罰流交換機制”

以處理旋轉編隊中的順序問題而無需有所限制或假設；相對來說，現

有研究結果通常需要各式條件以解決順序問題。最後，我們提供一些

模擬場景與模擬結果以驗證理論推導。

關鍵字： 編隊控制、多代理人系統、動態編隊、飽和輸入、自然追蹤

軌跡、有序性旋轉編隊
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Abstract

This thesis considers maneuver control of Multi-Agent System (MAS),

which has drawn significant attention recently for its wide applications, such

as object carrying, ocean exploring, and UAV scouting. The main objectives

of this thesis are listed as follows. First of all, we aim to design general ma-

neuver control law to support various tasks, including tracking, rotating, and

especially, online adaptation. Online adaptation means that the formation

can be dynamically adjusted, which is a crucial issue for preventing colli-

sions in dynamic or unknown environments. Moreover, we take nonholo-

nomic, communication, and input saturation constraints into account, which

dramatically raise the difficulty of design but are crucial to put the design in

practice. Meanwhile, we relax the requirement of global reference frame in-

formation for communication. Alternatively, local reference frame is adopted

to enhance the quality of service. Furthermore, the orientation of MAS while

tracking is designed in our novel method, and particularly, a more natural

tracking movement than existing results is proposed. In addition, we devise a

“phase penalty flow exchange mechanism” to deal with the issue of order in

rotating formation without additional restrictions or assumptions, while ex-

isting results usually require various conditions to achieve it. Finally, several

simulation scenarios are provided to validate our results.

Keywords: Maneuver control, Multi-Agent System (MAS), dynamic for-

mation, input saturation, natural tracking, ordered rotating
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Chapter 1

Introduction

In this chapter, we briefly introduce the motivations, importances, and objectives of

this thesis. The organization in this chapter is as follows: Section 1.1 demonstrates some

motivations for study of Multi-Agent System (MAS) formation control. Then, in Sec-

tion 1.2, comprehensive literature survey are given to catch up with state of the art results.

Based on the review of literature, in Section 1.3, we itemize some of the main contribu-

tions of this thesis compared with existing works. At last, in Section 1.4, we provide the

organization of this thesis.

1.1 Motivation

The researches about control of Multi-Agent Systems (MAS) have attracted signifi-

cant attention for its wide applications in the past two decades. One of the main reasons

to this phenomenon is the rapid developments of robotics and unmanned aerial vehicles

(UAVs) and their remarkable falling price. Thus, a large diversity of applications is car-

ried out by the robots and UAVs emerge. Among these applications, Multi-Agent System

(MAS) formation control is regarded as one of the most potential topic due to its value

1
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of facilitating real-life tasks. The definition of formation control from [1] states that for-

mation control aims to drive multiple agents to achieve prescribed constraints on their

states. Generally speaking, the problem of formation control is to design the controller to

steer a group of agents to form into a desired geometric pattern and complete various tasks

cooperatively. The backgrounds of formation controller design cover not only control en-

gineering but also consensus algorithm [2–7], algebraic graph theory [8–11], and matrix

theory [8, 12–14], to name a few. As its rapid developments and wide coverage, we will

provide a comprehensive literature review in next section.

“Maneuver control” is a related term to formation control. Though the term is some-

how interchangeable with formation control in some existing works, it mainly emphasizes

the functionalities of MAS instead of forming a static geometric pattern. According to the

definition from [14], maneuver control refers that the centroid, orientation, scale, and other

geometric parameters of the formation can be changed continuously. These maneuver ac-

tions supports various tasks and we will exemplify a few in the following. For example,

in [3, 9, 15], the authors design maneuver control to steer the centroid of the formation

to track a reference trajectory in addition to pattern formation. Such function supports

the applications of surveillance or navigation. Besides, scaling the formation shape with

predefined commands is considered in [9, 16, 17]. The scaling can help the MAS to pre-

vent from colliding with obstacles. Still, authors in [18, 19] deal with rotating formation,

that is, rotate around the centroid of MAS. This scenario is suitable for data collection or

measurements due to bias reduction or denser scanned area.

In this thesis, we aim to design general dynamic maneuver control which enlarges and

improves the aforementioned functionalities so that the MAS can compete for general real-

life tasks. Such tasks cover surveillance, navigation, sensor measurement, resource dis-

2
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pense, environment detection, data collection, source seeking, secure and rescue (SAR),

etc, where some of the tasks are demonstrated in Figure 1.1. In the following, in order to

provide more details of our objectives and validate our contributions compared with ex-

isting results, we first comprehensively review the literature about MAS formation (and

maneuver) control in Section 1.2 and then summarize our contributions in Section 1.3.

(a) surveillance (b) resource delivery

(c) source seeking (d) secure and rescue

Figure 1.1: Some applications

1.2 Literature Review

Formation (Maneuver) control as one of the popular topics of MAS possesses great po-

tential in practical applications. Its objective is to steer a group of agents to form into some

predefined geometric pattern. The main components in formation control includes the

agents’ dynamic model, communication properties, and additional functionalities. These

settings vary from paper to paper, and thus we will provide more details to some of the

state of the art results in the following.

3
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In practice, the dynamic models for robots, autonomous underwater vehicles (AUVs)

or UAVs are all somehow complicated. As a result, simplified models are adopted for the

controller design. The most common models are the integrator model, double-integrator

model, and unicycle model. In [8, 15, 20], an integrator dynamic model is utilized due to

its simplicity. However, the main shortcoming of such model is that it sometimes loses

system characteristics such as the nonholonomic constraint. In other words, the heading

information of the robots are lost. Therefore, unicycle model is adopted to address the

issue, as in [21, 22], to name a few.

Communication links is another main factor of MAS, which is basically represented by

a graph. In [8,11,14], the authors assume the bidirectional capability of exchanging infor-

mation which is delineated by undirected graph. Nevertheless, this assumption is demand-

ing in reality due to the sensing abilities, disturbances or delays. Thus, some authors relax

the requirement and consider the directed graph, e.g., in [13,23]. No matter it is directed or

not, the communication scenario can be separated into global (centralized) communication

and local (distributed) communication. Centralized communication refers that the agents

can have information of all the other agents, for example, [20,24]. Since the global circu-

lation of information generates huge computation burden, the global communication has

become out of date. While global or centralized communications are assumed in earlier

papers, local or distributed communication receives more attention recently. Distributed

communication refers that each agent can only get information from their communicable

agents and their local reference frame in the formation process, e.g., [11, 13, 17, 25–28].

Instead of general distributed communication, some works consider special types of dis-

tributed communication topology due to the distance-based property or rigidity issue [8,9].

Another classification of communication graph is static versus switching. Static graph

4
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as in [14, 26, 29], which is usually distributed, states that each agent communicates with

fixed neighbors. Though such scenario has improved computation burden compared to the

centralized one, they do not consider the distance for communication. Since the distance

affects the quality of service, the works [10, 23] extend the fixed communication to the

switching case where agents communicate with each other based on the sensing range.

Still another issue is the global reference frame versus local reference frame. In [16,

17, 22, 23], the authors consider controllers that employ the absolute information of the

MAS, which means the global reference frame is needed; in [3, 30], the desired relative

position vectors are defined with respect to the global reference frame; in [31, 32], the

information is measured in the aligned frame. In fact, to maintain a common reference

frame in reality is challenging, and the obtained information is often noisy due to long

range delivery. Thus, the control law based on each agent’s local frame has drawn more

attention and is discussed in some recent works [13, 15, 25, 28, 33, 34]. Such local frame

scenario relaxes the requirements of advanced sensing capability; however, the controller

design is more involved compared with the global reference frame case.

For additional functionalities of formation control, different tasks are considered in

various works such as tracking the reference trajectory for surveillance or navigation

[3, 9, 15], scaling the formation shape for obstacle avoidance or environment adapta-

tion [9, 16, 17], rotating around a center for data collection or measurement [18, 19], etc.

Early researches of formation control consider static formation at fixed desired positions

without additional functionalities, as in [8,13,28]. Nevertheless, most of the applications

require formation with movements. Thus, the controller is further designed such that the

agents can track the trajectory in addition to static formation such as that in [3, 9, 15].

Some works further consider the case that the system has circular motion [12,35] and the

5
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formation shape can be further adjusted by affine transformation [9, 16, 17]. Moreover,

the so-called rotating formation is studied in [16, 31, 35], where the MAS is designed to

additionally rotate at a given angular velocity in addition to tracking. Overall speaking,

the existing proposed functionalities include the objectives such as rotation [29], obstacle

avoidance [21], constrained inputs [6,21,36], time-varying shape [17,26], or connectivity

preservation [27], to name a few.

A brief review of existing results is given above, while more discussions about some

closely related works will be provided with comparisons in Section 3.2 and Section 4.2,

where the problems are described specifically.

1.3 Contribution

Based on the survey of the state of the art results, we enumerate some merits of the

proposed design over existing works. The main contributions of this thesis is that we

propose a general design of maneuver control which has the following 4 novelties:

[C1] The general maneuver control covers tracking, rotating, and transforming. More-

over, we endow the formation with ability of online adaptation.

[C2] We take three kinds of constraints into account, nonholonomic, communication, and

input saturation, which dramatically raise the difficulty of controller design.

[C3] In our design, the MAS orientation can be generally designed while tracking, and a

more natural tracking movement compared with existing works is proposed. More-

over, the existing tracking results can be regarded as special cases in our design.

[C4] We propose a “phase penalty flow exchange mechanism” to ensure the order rela-

tion in rotating formation, while existing papers require various conditions, such as

6



doi:10.6342/NTU201902617

special initial conditions or requiring the global reference frame, to achieve it.

In this paragraph, we provide more discussions about the significances of [C1] - [C4].

For [C1], we call it general since most existing maneuver actions, such as tracking, rotat-

ing, and transforming, are dealt with in this thesis. In addition, online adaptation refers

to the dynamic adjustments to the formation, such as scaling and shearing. Adjusting for-

mation is vital since the environments are varying where the formation should adapt to.

Among the few results dealing with this crucial issue, most of them as [9,17] assume that

all agents have access to the adjustment command in advance which is fixed thereafter.

While in our design, the assumption is relaxed, and thus the formation can be adjusted

online. For [C2], three main kinds of real-world constraints are considered to make the

design more feasible. Especially for the input saturation, most existing papers of forma-

tion control, as in [13,15,17,23,26,29,30], to name a few, neglect the physical limitation

of actuators and allow arbitrary magnitudes of inputs. Furthermore, some results such

as [16, 17], overlooks the issue of singularity. As for the communication constraints, we

consider distributed switching case, which in reality can maintain better quality of service

than the fixed one as in [14, 26, 29]. Additionally, we relax the requirement of global

reference frame so that agents can implement the control locally instead of communicat-

ing far way to global frame with noisy signals and spending lots of efforts maintaining

shared information, as mentioned in [1]. Most existing results which consider distributed

case and local reference frame at the same time have limited functionalities, while we can

cover most existing maneuver actions. For [C3], our approach can generally design the

orientation motions of MAS while tracking. Particularly, “natural tracking movements”

is proposed so that tasks like object tracking can be achieved more natural than existing

tracking results, since the orientation of MAS is aligned with moving direction in our de-

7
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sign. Besides, the existing tracking results can be regarded as special cases of our general

design. For [C4], the order refers to the relation among positions of agents, and such issue

of order arises when the functionality is extended to rotation. To guarantee the agents form

in pre-specified order, [25,28] impose restrictions on initial conditions, [23,31] require the

global reference frame, and specific communication topology is assumed in [12,24,32]. In

contrast to the existing results, we achieve pre-specified order via our proposed mechanism

without imposing restrictions to initial conditions, requiring global frame information, or

assuming specific communication scenario.

1.4 Thesis Organization

The remaining part of this thesis is organized as follows. In Chapter 2, some prelim-

inaries are introduced which include algebraic graph theory for communication between

agents and descriptions of desired geometric pattern. When in Chapter 3 and Chapter 4,

these tools can facilitate to formulate the proposed problems. In order to deal with general

maneuver control of Multi-Agent System, we first focus on tracking formation in Chapter 3

and then extend to tracking with rotation in Chapter 4. In Chapter 3, a concept called

natural tracking is proposed to generalize the existing tracking results. Moreover, online

adaptation of formation is realized by our design, which can avoid collisions with the en-

vironments. In Chapter 4, we consider the tracking with rotation case to further cover

the existing applications. In the case of tracking with rotation, an issue of order between

agents arises, which motivates us to propose the “phase penalty flow exchange mecha-

nism” such that agents can rotate in a pre-specified order. Moreover, online adaptation

is considered once again to achieve collision avoidance. In Chapter 5, we provide some

simulation results for “Natural Tracking” designed in Chapter 3 and “Ordered Rotating”

8



doi:10.6342/NTU201902617

designed in Chapter 4. At last, in Chapter 6, the conclusion of this thesis and some future

works are stated.

9
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Chapter 2

Preliminaries

In this chapter, we provide some preliminaries and concepts which will be mentioned

frequently. Section 2.1 is about Algebraic Graph Theory which relates to communica-

tions in MAS. Then, affine transformation is introduced in Section 2.2, which facilitates

the dynamic adjustment of the desired formation. In Section 2.3, we propose a novel de-

scription for desired formation utilized throughout this thesis. In Section 2.4, the concept

of switching communications is introduced with some notations.

2.1 Algebraic Graph Theory

Algebraic graph theory is commonly used to represent the communication links of

MAS. A directed graph G = (V,E) consists of a set of nodes V and a set of directed edges

E. Suppose there are N nodes indexed from 1 to N and denoted as Vi for i = 1, . . . , N .

A directed edge pointing from Vj to Vi ∈ V is denoted as (i, j) ∈ E.

11
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Definition 2.1 (Adjacency matrix).

Adjacency matrix A ∈ RN×N with elements aij :=


1, if (i, j) ∈ E

0, otherwise

Definition 2.2 (in-Degree matrix).

in-Degree matrix D ∈ RN×N with elements dij :=


∑N

k=1 aik, if i = j

0, otherwise

Definition 2.3 (Laplacian matrix). Laplacian matrix L ∈ RN×N := D −A.

Here we provide an graph instance, Figure 2.1, to explicitly define the matrices:

A =


0 0 1 1

1 0 0 0

0 1 0 0

1 0 0 0

 ,D =


2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,L =


2 0 −1 −1

−1 1 0 0

0 −1 1 0

−1 0 0 1

 .

Figure 2.1: Directed graph

Definition 2.4 (Path). Given a directed graph G = (V,E), we say that there exists a path

from Vi ∈ V to Vj ∈ V if there is a series of directed edges belong to E which connects

from Vi to Vj .

12
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Definition 2.5 (Strongly Connected). A directed graph G = (V,E) is strongly connected

if given any two nodes Vi, Vj ∈ V , there exists a path from Vi to Vj and also a path from

Vj to Vi.

In this thesis, directed graph G represents the directed communication where nodes

V and edges E represent the agents and the information passing directions, respectively.

Define Nk as the set of nodes with edge pointing toward agent-k, i.e., the neighbors that

the agent-k can receive information from, and |Nk| as the total number of neighbors of

agent-k. For example, in Figure 2.1, N1 = {agent-3, agent-4} and |N1| = 2.

2.2 Affine Transformation

An affine transformation is a function with preservation of lines, points, and planes.

Afterwards in our design, we will use it for implementation of formation with online ad-

justment. More rigorously, consider the Euclidean Space, and the mathematical definition

is given as follows.

Definition 2.6 (Affine Transformation). Consider two spacesX ∈ RN and Y ∈ RM . An

affine transformation f : X 7→ Y is defined as x 7→ Tx+ b, where T ∈ RM×N is a linear

transformation and b ∈ RM is a translation.

In our applications, we focus on the cases that N = M = 2 and N = M = 3, where

the former is called 2D case and the latter is a 3D one. Some common 2D linear trans-

formations are listed in Table 2.1. Applying such transformations to a planar geometric

shape results in another shape, for example, a unit circle by the scaling matrix in Table 2.1

becomes an ellipse, as shown in Figure 2.2. As for the 3D linear transformation, e.g., in

Table 2.2, they act on the spatial space.

13
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Table 2.1: Examples for Linear Transformation T ∈ R2×2

scaling reflection rotation shear[
3 0
0 2

] [
1 0
0 −1

] [
cosϕ − sinϕ
sinϕ cosϕ

] [
1 2
0 1

]

Figure 2.2: Applying scaling matrix to a circle (solid line) becomes an ellipse (dashed line).

2.3 Descriptions of the Desired Geometric Pattern

We propose a frame-invariant descriptions of the desired geometric pattern in this sec-

tion, where the frame-invariant property facilitates the realization of the controller in each

agent’s local frame. The descriptions are constructed as follows: given anyN -vertices de-

sired geometric pattern, say Figure 2.3, draw the vectors from the centroid to each agent

and denote as the center vectors ck ∈ R2 for k = 1, . . . , N . Then, define d∗k as the length

of ck and ϕ∗
kj as the desired relative phase (angle) between ck and cj , where the term phase

implies sign sensitivity, i.e., ϕ∗
kj = −ϕ∗

jk. Note that ϕ∗
kj is defined within (−π, π]. By the

constructions, {d∗k, ϕ∗
kj|∀k, j = 1, . . . , N} can describe a desired geometric pattern with-

out considering a specific reference frame. Moreover, when the MAS forms into desired

geometric pattern and rotates around the centroid, although ck keeps varying (rotating),

the descriptions {d∗k, ϕ∗
kj} still remain. As a result, instead of describing the formation

Table 2.2: Examples for Linear Transformation T ∈ R3×3

scaling rotation w.r.t x-axis rotation w.r.t y-axis rotation w.r.t z-axis3 0 0
0 2 0
0 0 1

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

  cosϕ 0 sinϕ
0 1 0

− sinϕ 0 cosϕ

 cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1


14
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in terms of vectors ck, we will consider the proposed descriptions of desired geometric

pattern, {d∗k, ϕ∗
kj|∀k, j = 1, . . . , N}.

Figure 2.3: The desired formation shape is given in dash line with counter-clockwise order: 1-2-3-4-5. The
square is the centroid. The arrowed vectors are center vectors, ck, with lengths d∗k, for k = 1, . . . , 5. ϕ∗

kj is
the signed relative angle between ck and cj , e.g., ϕ∗

12 < 0 and ϕ∗
53 > 0.

To systematically construct the descriptions tuple {d∗k, ϕ∗
kj}, we utilize the frame-

invariant property and consider the polar coordinate system. Given any desired geometric

pattern, translate the centroid to the origin, then we can get each agent’s polar coordinate

denoted as (d∗k, ϕr
k) for k = 1, . . . , N , as exemplified in Figure 2.4. Although the constant

ϕr
k varies due to the rotations of same desired geometric pattern, as shown in Figure 2.4(a)

and Figure 2.4(b), the relative phase ϕr
kj := ϕr

k − ϕr
j always equals to ϕ∗

kj . As a result, in

real implementation, agent-k equips with d∗k and ϕr
k, and when ϕ∗

kj is needed, the calcula-

tion of ϕr
k − ϕr

j supports. In such implementation, agents carry their own θrk instead of a

table of ϕ∗
kj , which can save lots of memories.

2.4 Switching Communication

Switching communication means that the communication graphs may vary within a set

of communication graphs. To describe when the communication graph is changed, a so-

called switching signal is introduced. In the following, we provide the rigorous definition

of related terms to switching communications.

15
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(a) (b)

Figure 2.4: (a) ϕr
1 = π

2 , ϕr
2 = 7π

6 , and ϕr
3 = 11π

6 . (b) ϕr
1 = 0, ϕr

2 = 2π
3 , and ϕr

3 = 4π
3 .

Consider s strongly connected graphs indexed from 1 to s and denote the set S =

{1, . . . , s}. Then, we can define the following notations.

Definition 2.7 (Switching signal σ(t)). A switching signal σ(t) : [0,+∞) → S indicates

the corresponding indexed communication graph at time t.

Definition 2.8 (Switching Sequence). A switching sequence {tn}n∈N is a monotonically

increasing sequence which collects the switching time instants tn, n ∈ N.

Definition 2.9 (Dwell Time τ0). Given a switching sequence {tn}n∈N, a dwell time τ0 is

the infimum of the switching period between two contiguous switching time instants, i.e.,

τ0 ≤ tn+1 − tn,∀n ∈ N.

Note that τ0 plays a crucial role when analyzing the stability of switching system.

16
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Chapter 3

Natural Tracking Movements for MAS

with Online adaptation

In this chapter, we propose a design such that the MAS can track a given reference tra-

jectory with “natural” movements and be able to dynamically adjust the formation. The

organization in this chapter is as follows: Section 3.1 explains the meaning of “natural”

tracking movements. In Section 3.2, we describe the problem with discussion of its in-

sights, and provide some state of the art related works. Then, the problem is formulated

mathematically in Section 3.3. The next step is to design the controller, which is derived

with stability analysis in Section 3.4. At last, in Section 3.5, our results are extended to

switching communications.

3.1 Natural Tracking Movements

To seize the concept of “natural” tracking movements, one can first refer to Figure 3.1.

In Figure 3.1(a), when the MAS tracks alone the reference centroid trajectory, each agent

is at a fixed displacement with respect to the centroid in the global reference frame. In

17
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other words, when tracking, the MAS is merely translating from a global viewpoint. Thus,

the orientation of the geometric pattern keeps in the same direction without aligning to the

tangent line of the trajectory. For example, the MAS orientation keeps heading North in

Figure 3.1(a).

In contrast, the MAS orientation is aligned to tangent line of the trajectory in Fig-

ure 3.1(b), which we believe to be a more “natural” way when tracking. If from a global

viewpoint, in addition to translation, the MAS is required to rotate with specific angular

velocities at different positions. Such additional rotation remains a difficulty in existing

results since the desired angular velocity is position-varying, while in our design, we uti-

lize descriptions of geometric pattern proposed in Section 2.3 to help achieving “natural”

tracking. Moreover, we can still achieve movements in Figure 3.1(a), since we propose a

novel approach which can generally design the orientation while tracking.

(a) Fixed MAS orientation (b) Aligned MAS orientation

Figure 3.1: (a) The desired vectors from the centroid to agents are fixed with respect to the global frame,
which results in fixed MAS orientation during tracking. (b) The desired vectors from the centroid to agents
are fixed with respect to the Frenet-Serret frame, and this aligns the MAS orientation with centroid’s velocity
direction. In this case, a more “natural” tracking movement for MAS is achieved.

18
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3.2 Problem Descriptions and Related Works

Before proceeding to the mathematical problem formulation and controller design,

we first describe the goals in this chapter and provide some discussions about the related

works. In this chapter, consider a MAS with numbered agents, the objective is to design a

controller which is constrained to a specified input range to achieve the following tasks:

(i) Desired numbered formation: To form into a predefined geometric pattern repre-

sented by a polygon where each vertex is labeled with a number, and the numbered

agents will converge to the positions of their corresponding vertices.

(ii) Tracking: To steer the centroid of the MAS to track a given reference trajectory.

(iii) MAS orientation alignment: To keep the desired position of each agent fixed to

the Frenet-Serret (TNB) frame of reference centroid during tracking, as depicted

in Figure 3.1(b). From viewpoint in global frame, the MAS will move along the

reference centroid trajectory and meanwhile rotate around the reference centroid

at the specific angular velocity which equals to the turning rate of the reference

trajectory.

(iv) Formation with online adaptation: To avoid collisions with surroundings via dy-

namical adjustments of formation.

In addition, we will realize the controller in a distributed manner via the communication

links and in each agent’s local frame instead of the global reference frame, which implies

that only relative measurements are used instead of absolute ones due to the lack of the

global reference frame.

To highlight the appealing attribute of our design, which is “natural” tracking move-

ments by task (iii) as depicted in Figure 3.1(b), we discuss more related works in the
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following where most of the results move in the way as shown in Figure 3.1(a).

In [22, 37–39], they require a global reference frame to achieve desired numbered

formation by assigning a constant displacement vector to each agent in advance. Thus,

the desired formation cannot be online adjusted and the MAS orientation is fixed without

aligning to centroid’s velocity direction, which is the case in Figure 3.1(a). In [23,26,40],

to achieve predefined time-varying formation, they require simultaneous clocks and a

global reference frame to assign time-varying displacement vectors in advance. Since the

time-varying displacement vectors are pre-given, the online adaptation is still not avail-

able. Note that suppose each displacement vector is designed properly based on the whole

centroid trajectory in advance, then MAS orientation alignment may be achieved. Un-

fortunately, this cannot happen since the centroid trajectory is not known in advance nor

globally accessible. In [13, 28], controller is designed in agents’ local frames; however,

the desired numbered formation is only static without considering tracking.

3.3 Problem Formulation

The problem described in Section 3.2 is formulated mathematically in this section.

Consider a MAS composed of N numbered agents with unicycle model

ṙk = vk[cosψk, sinψk]
T

ψ̇k = ωk, (3.1)

where k = 1, 2, . . . , N , rk ∈ R2 and ψk ∈ (−π, π] are agent-k’s position and heading, vk

and ωk are scalar inputs controlling linear velocity and angular velocity, respectively, as

shown in Figure 3.2.
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Figure 3.2: Unicycle model

Denote the index set N = {1, . . . , N} and index-0 is reserved for representing ex-

ogenous reference signals afterwards. Given a directed communication graph G and the

following predefined information for corresponding tasks:

(i) Desired numbered formation: descriptions of the desired numbered formation {d∗k,

ϕ∗
kj|∀k, j ∈ N , k ̸= j} which is introduced in Section 2.3,

(ii) Tracking: a smooth reference centroid trajectory r0 ∈ R2 with scalar inputs v0 and

ω0 which satisfies ṙ0 = v0[cosψ0, sinψ0]
T , ψ̇0 = ω0,

(iii) MAS orientation alignment: desired constant relative phase ϕ∗
k required to maintain

between ṙ0 and ck (introduced in Section 2.3), for k ∈ N , where ϕ∗
k and ϕ∗

j need to

satisfy ϕ∗
k−ϕ∗

j = ϕ∗
kj,∀k, j ∈ N , k ̸= j, as shown in Figure 3.3, i.e., we aim to align

ck to the direction of desired unit center vector c∗k := [cos (ψ0 + ϕ∗
k), sin (ψ0 + ϕ∗

k)]
T ,

(iv) Formationwith online adaptation: a reference affine transformation commandG0(t)

∈ R2×2 which is a series products of transformation matrices, such as scaling, rota-

tion, and shear matrix, as introduced in Section 2.2.

Then, we aim to design the constrained control inputs vk and ωk with locally and

relatively measurable information through G such that

rk → r0 + d∗kG0[cos (ψ0 + ϕ∗
k), sin (ψ0 + ϕ∗

k)]
T (= r0 + d∗kG0c

∗
k) (3.2)
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Figure 3.3: Definition of ϕ∗
k in natural tracking

asymptotically, for k ∈ N . Moreover, the control inputs are constrained to specific input

ranges, that is, for k ∈ N , vk ∈ [v−, v+] and ωk ∈ [ω−, ω+] with predefined constants

v−, ω− < 0 and v+, ω+ > 0.

A key note is that the information given in (ii) - (iv) are ‘not’ accessible to all agents,

since we consider the communication constraints. In general, only one agent will receive

these exogenous information, while the rest of agents is required to estimate them. As a

result, in the later design, lots of estimation laws will be proposed.

It is worth mentioning that three kinds of practical constraints are included in the con-

sidered problem. First, the dynamics of the agents are modeled by unicycle model, which

takes nonholonomic constraints into account. Second, the controller inputs are constrained

within a limited range due to the physical limitations, such as velocity saturation. Third,

the communication constraints are considered, such as distributed links and local reference

frames which ease the computation load and relax the requirements for advanced sensing

capabilities of long-distance measurements, respectively.

Remark 3.1. The right hand side of (3.2) is agent-k’s desired trajectory which includes

the four tasks. More precisely, d∗k and ϕ∗
k relate to task (i), r0 relates to task (ii), ψ0 + ϕ∗

k

relates to task (iii), and G0 relates to task (iv).
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Remark 3.2. c∗k = [cos (ψ0 + ϕ∗
k), sin (ψ0 + ϕ∗

k)]
T relates to the MAS orientation align-

ment task. Most of the existing results can be transformed into our formulation with ψ0 be-

ing a pre-given constant. Thus, in the existing results, the MASs move as in Figure 3.1(a),

while in our design, we additionally consider tracking of ψ0 from ṙ0, which leads to the

more “natural ” tracking movements as shown in Figure 3.1(b). In other words, most of

the existing results can be regarded as the special cases of ours where ψ0 is a constant or

predefined signal.

To solve the proposed problems, some reasonable assumptions, which will be dis-

cussed later in Remark 3.3, are made as follows:

Assumption 3.1. The directed graph G is strongly connected. Moreover, at least one

agent can receive the reference signals, r0, ψ0, and the corresponding ϕ∗
k.

Note that from Assumption 3.1, a diagonal matrix B is introduced where entries bkk

is 1 if agent-k can access to reference and 0 otherwise.

Assumption 3.2. The reference linear velocity v0 and angular velocity ω0 are smooth and

bounded: v0 ∈ [v−0 , v
+
0 ] and ω0 ∈ [ω−

0 , ω
+
0 ] with constants v−0 , ω−

0 < 0 and v+0 , ω+
0 >

0. Moreover, v−0 > v−, v+0 < v+ and ω−
0 > ω−, ω+

0 < ω+, where v−, v+, ω−, ω+ are

constants specified in Assumption 3.5.

Assumption 3.3. v̇0, ω̇0 are bounded ∀t ≥ 0.

Assumption 3.4. G0, Ġ0, G̈0 are bounded ∀t ≥ 0.

Assumption 3.5. || d
dt
(r0+ d∗kG0[cos (ψ0 + ϕ∗

k), sin (ψ0 + ϕ∗
k)]

T )|| ̸= 0 for k ∈ N , t ≥ 0.

Moreover, assume that

v+ > supk∈N ,t≥0 [vmax + d∗kσ(Ġ0) + d∗kωmaxσ(G0)] := v̌+
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ω+ > supk∈N ,t≥0 Fk(t) := ω̌+

v− < − supk∈N ,t≥0 [vmax + d∗kσ(Ġ0) + d∗kωmaxσ(G0)] := v̌−

ω− < infk∈N ,t≥0 Fk(t) := ω̌−,

where vmax = max(|v−0 |, |v+0 |), σ(G0) is the largest singular value of G0, ωmax = max(

|ω−
0 |, |ω+

0 |), and Fk =
r̈∗Tk R(π

2
)ṙ∗k

ṙ∗Tk ṙ∗k
, R(π

2
) is 90◦ counter clock wise rotation matrix and

ṙ∗
k =

d
dt
(r0 + d∗kG0[cos (ψ0 + ϕ∗

k), sin (ψ0 + ϕ∗
k)]

T ).

Note that ṙ∗
k and Fk are agent-k’s desired velocity and angular velocity, respectively,

where ṙ∗
k is from 3.2 and the derivation of Fk refers to [35].

Remark 3.3. Assumption 3.1 ensures that the reference information can be passed on to

each agent. Assumption 3.2-Assumption 3.4 provide feasibility condition for tracking. The

first inequality in Assumption 3.5 states that the agents’ desired velocities never vanish

which prevents the occurrence of singularities along agents’ desired trajectories. More-

over, the inequalities of v+, ω+, v−, ω− in Assumption 3.5 are used to guarantee that the

agents can track their desired trajectories based on larger input ranges.

3.4 Controller Design and Stability Analysis

The considered problem will be solved with three steps in the following subsections,

respectively. First, in Section 3.4.1, we propose a distributed adaptive estimation of the

desired unit center vectors c∗k for k ∈ N . Recall that c∗k is for MAS orientation alignment

task, while it contains ψ0 which is only accessible to few agents under Assumption 3.1.

Thus, a distributed adaptive estimation is designed to estimate c∗k from the given ϕ∗
kj . Sec-

ond, in Section 3.4.2, we design distributed consensus algorithms and an observer for each
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agent to estimate the reference centroid velocity ṙ0, reference affine transformation com-

mand G0, and the position errors with respect to desired position. At last, in Section 3.4.3,

we derive a constrained controller based on coordinate transformation to achieve (3.2)

based on the estimations in the first and second steps.

For consistence, we denote the reference information as agent-0 whose dynamics is

ṙ0 = v0[cosψ0, sinψ0]
T , ψ̇0 = ω0. Then, define N̄k as the extended set of Nk which addi-

tionally considers whether agent-k can receive information from agent-0 or not. Besides,

let R(ϕ) ∈ R2×2 be counterclockwise planar rotation matrix with given angle ϕ, I2 be the

2-by-2 identity matrix, and ⊗ be the Kronecker product. Before proceeding to the three

design steps, we first state the following lemma which is a byproduct of Assumption 3.1

and will be used in the stability proof of our design.

Lemma 3.1. Given a directed communication graph G with its corresponding Laplacian

matrix L and the diagonal matrix B where entries bkk is 1 if agent-k can access to the

reference signals and 0 otherwise. Then, under Assumption 3.1, all eigenvalues of L̄ :=

L+B are positive.

Proof. First, from the Gershgorin’s Theorem, all of the eigenvalues of L and L+B are at

least nonnegative. As a result, it’s sufficient to prove that no eigenvalue of L+B equals

0. In the following, we prove it by contra-positive.

Suppose there exists an eigenvector v ̸= 0 such that (L+B)v = 0. This implies that

vT (LT + BT + L + B)v = 0. Since LT + L is irreducible and BT + B(= 2B) has

at least one positive diagonal entry, by Lemma 4 of [41], LT +BT + L +B is positive

definite which leads to the conclusion of v = 0. We have a contradiction. ■

Now, we are ready to give the three design steps in the following subsections.
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3.4.1 Adaptive Estimation of Desired Unit Center Vector c∗k

Recall that c∗k = [cos (ψ0 + ϕ∗
k), sin (ψ0 + ϕ∗

k)]
T stands for the MAS orientation align-

ment task, where c∗k cannot be pre-given since it varies with ψ0. With distributed links and

Assumption 3.1, ψ0 is not accessible to all agents, as a result, we need to estimate c∗k. Let

ĉk ∈ R2 be the estimation of c∗k for k ∈ N . Observe that c∗k and c∗j have desired relative

phase ϕ∗
kj which is the known description of desired geometric pattern. As a result, one

can feedback the estimation errors between ĉk and neighbors’ estimations rotating with

phases of ϕ∗
kj . In the following lemma, a distributed adaptive estimation of ĉk is proposed

based on available measurements through G and ϕ∗
kj .

Lemma 3.2. Given the communication graph G, ψ0, and constant ϕ∗
k for k ∈ N . With

Assumption 3.1-Assumption 3.3, and the distributed update law

˙̂ck = ẑk

˙̂zk =
1

|N̄k|
∑
j∈N̄k

R(ϕ∗
kj)

˙̂zj +
α1

|N̄k|
∑
j∈N̄k

(R(ϕ∗
kj)ẑj − ẑk)

+
α2

|N̄k|
∑
j∈N̄k

(R(ϕ∗
kj)ĉj − ĉk), (3.3)

ĉk will converge to [cos (ψ0 + ϕ∗
k), sin (ψ0 + ϕ∗

k)]
T (= c∗k) exponentially, for k ∈ N , where

αi > 0, i = 1, 2 are arbitrarily chosen constants. Moreover, ϕ∗
k0 = ϕ∗

k, ẑ0 = ˙̂c0, ˙̂z0 = ¨̂c0,

and ĉ0 = [cosψ0, sinψ0]
T , since agent-0 represents the reference information.

Proof. Let pk = R(−ϕ∗
k)ĉk and qk = R(−ϕ∗

k)
˙̂ck,∀k ∈ N . Pre-multiply R(−ϕ∗

k) to

both sides of (3.3), then (3.3) is transformed into

ṗk = qk
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q̇k =
1

|N̄k|
∑
j∈N̄k

[q̇j + α1(qj − qk) + α2(pj − pk)] . (3.4)

Slightly abuse the notation p0 := R(0)ĉ0 = [cosψ0, sinψ0]
T , and define the transformed

estimation error p̄k = pk − p0,∀k ∈ N . Stack the errors into the error vector p̄ :=

[p̄T
1 , . . . , p̄

T
N ]

T ∈ R2N . Then, we define the relative error vector, p̃ = (L̄ ⊗ I2)p̄ ∈

R2N , which refers to the communications. With these definitions, (3.4) is expressed as

¨̃p+α1
˙̃p+α2p̃ = 0. Due to Hurwitz property, p̃ converges to 0 exponentially. Moreover,

Lemma 3.1 states that L̄ is invertible which leads to the exponential convergence of p̄ →

0. As a result, ĉk → [cos (ψ0 + ϕ∗
k), sin (ψ0 + ϕ∗

k)]
T exponentially. ■

Remark 3.4. In Lemma 3.2, we set ĉ0 to be [cosψ0, sinψ0]
T which is the unit reference

trajectory velocity, and this leads to the natural tracking movement scenario. More gen-

erally, in fact, the variable ψ0 in ĉ0 can be arbitrarily assigned, such as a constant, a

predefined signal, or a signal related to ψ0, as long as it is common among agents. For

example, the constant case cover the results in [22,37–39], and the predefined signal case

covers the results in [23, 26, 40]. In other words, our novel approach can determine the

MAS movements in general while tracking.

3.4.2 Consensus Algorithms and Distributed Observer

The desired center vector c∗k is estimated by ĉk in previous section, which is used to

determine the desired position error in this section. Recall the objective (3.2), then define

desired position error

ek := r0 − rk + d∗kG0c
∗
k, (3.5)

for k ∈ N . Again consider the distributed links under Assumption 3.1, since the reference

velocity v0, ψ0, and the reference affine transformation G0 are only accessible to a few
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agents, as a result, v̂k, ψ̂k, and Ĝk are introduced to estimate v0, ψ0, and G0, respectively.

Note that with the above estimations, we can have the estimation of error dynamics ėk.

Thus, the estimated desired position error êk is introduced with a distributed observer to

estimate ek. The distributed consensus algorithms and the observer are derived in the

following lemma.

Lemma 3.3. Given the graph G, the descriptions of desired geometric pattern {d∗k, ϕ∗
kj},

the smooth reference centroid trajectory r0, and the smooth reference affine transforma-

tion command G0. With Assumption 3.1-Assumption 3.3, the distributed control laws

˙̂vk =
1

|N̄k|
∑
j∈N̄k

˙̂vj +
β1
|N̄k|

∑
j∈N̄k

(v̂j − v̂k) (3.6)

˙̂
ψk =

1

|N̄k|
∑
j∈N̄k

˙̂
ψj +

β2
|N̄k|

∑
j∈N̄k

(ψ̂j − ψ̂k) (3.7)

¨̂
Gk =

1

|N̄k|
∑
j∈N̄k

[ ¨̂
Gj + β3(

˙̂
Gj − ˙̂

Gk) + β4(Ĝj − Ĝk)
]

(3.8)

˙̂ek = β5
∑
j∈N̄k

[
êj − êk + rj − rk + d∗kĜkĉk − d∗jĜj ĉj

]
+ v̂ku(ψ̂k)− vku(ψk) + d∗kĜk

˙̂ck + d∗k
˙̂
Gkĉk (3.9)

drive v̂k → v0, ψ̂k → ψ0,
˙̂
ψk → ω0, Ĝk → G0,

˙̂
Gk → Ġ0, and êk → ek exponentially,

for k ∈ N , where u(ψ) = [cosψ, sinψ]T , βi > 0, i = 1, . . . , 5. Moreover, ˙̂v0, v̂0,
˙̂
ψ0,

ψ̂0,
¨̂
G0,

˙̂
G0, Ĝ0, ê0, d∗0 equal to v̇0, v0, ψ̇0, ψ0, G̈0, Ġ0,G0, [0, 0]

T , 0, respectively, since

agent-0 represents the reference information.

Proof. Define estimated linear velocity error v̄k = v̂k − v0,∀k ∈ N , and stack the errors

into the vector v̄ = [v̄1, . . . , v̄N ]
T ∈ RN . Then, we define the relative linear velocity error

vector ṽ = L̄v̄ ∈ RN . With these definitions, (3.6) is expressed as ˙̃v + β1ṽ = 0, which

implies ṽ → 0 exponentially. Moreover, Lemma 3.1 states that L̄ is invertible which leads
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to v̄ → 0 exponentially. Similarly, (3.7) and (3.8) prove that ψ̂k → ψ0 and Ĝk → G0

exponentially, respectively.

Base on above convergence analysis, Lemma 3.2, and eq. (3.9), now we are ready

to prove that êk → ek exponentially. Define ϵ = [ϵT1 , . . . , ϵ
T
N ]

T ∈ R2N where ϵk =

êk −ek −d∗k(Ĝkĉk −G0c
∗
k) ∈ R2 and δ = [δT

1 , . . . , δ
T
N ]

T ∈ R2N where δk = v̂ku(ψ̂k)−

v0u(ψ0) ∈ R2 for k ∈ N . Then, (3.9) can be expressed as

ϵ̇ = −β5(L̄⊗ I2)ϵ+ δ, (3.10)

with the following property:

||δk|| = ||(v̂k − v0)u(ψ̂k)− v0(u(ψ0)− u(ψ̂k))|| ≤ ||v̂k − v0||+ |v0|||u(ψ0)− u(ψ̂k)||

≤ ||v̂k − v0||+
√
2v+||ψ̂k − ψ0||, (3.11)

where the last inequality is by Assumption 3.2 and Lipschitz continuous of sin, cos. As

a result, δ → 0 exponentially due to exponential convergences of v̂k and ψ̂k. Moreover,

by Lemma 3.1, −(L̄ ⊗ I2) is Hurwitz. These two facts ensure ϵ → 0 exponentially by

(3.10). Recall that ĉk → c∗k exponentially by Lemma 3.2 and Ĝk → G0. Thus, from the

definition of ϵk, we prove that êk → ek exponentially. ■

Remark 3.5. In fact, (3.3), (3.6), (3.7), (3.8), and (3.9) are given and analyzed in a global

reference frame. Here, we demonstrate that the control laws can be equivalently realized

in agents’ local frames. Suppose agent-k’s local frame has a “unknown” orientation Ok

relative to the global frame, and denote superscript k as the obtainable measurements

for agent-k in its local frame, which has the relation to measurement in global refer-

ence frame: ẑk
k = R(−Ok)ẑk. Then, we have the coordinate transform relations, e.g.,
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˙̂zk
j = R(−Okj) ˙̂z

j
j and Ĝk

j = R(−Okj)Ĝ
j
jR(Okj), where Okj = Ok − Oj is the rel-

ative orientation accessible to agent-k. Thanks to these relations, agent-j’s information

measured in agent-k’s local frame is obtainable through communications andOkj without

requiring Ok. Pre-multiply R(−Ok) or post-multiply R(Ok) to both sides of the control

laws (3.3), (3.6), (3.7), (3.8), and (3.9), then the control laws are equivalently realized in

each agent’s local frame as

˙̂ckk = ẑk
k

˙̂zk
k =

1

|N̄k|
∑
j∈N̄k

R(ϕ∗
kj)

˙̂zk
j +

α1

|N̄k|
∑
j∈N̄k

(R(ϕ∗
kj)ẑ

k
j − ẑk

k)

+
α2

|N̄k|
∑
j∈N̄k

(R(ϕ∗
kj)ĉ

k
j − ĉkk) (3.12)

˙̂vk =
1

|N̄k|
∑
j∈N̄k

˙̂vj +
β1
|N̄k|

∑
j∈N̄k

(v̂j − v̂k) (3.13)

˙̂
ψk
k =

1

|N̄k|
∑
j∈N̄k

˙̂
ψk
j +

β2
|N̄k|

∑
j∈N̄k

(ψ̂k
j − ψ̂k

k) (3.14)

¨̂
Gk

k =
1

|N̄k|
∑
j∈N̄k

[ ¨̂
Gk

j + β3(
˙̂
Gk

j −
˙̂
Gk

k) + β4(Ĝ
k
j − Ĝk

k)
]

(3.15)

˙̂ek
k = β5

∑
j∈N̄k

[
êk
j − êk

k + rk
jk + d∗kĜ

k
kĉ

k
k − d∗jĜ

k
j ĉ

k
j

]
+ v̂ku(ψ̂

k
k)− vku(ψ

k
k) + d∗kĜ

k
k
˙̂ckk + d∗k

˙̂
Gk

kĉ
k
k , (3.16)

respectively, where all the signals are obtainable locally or through G. Note that in (3.13),

we omit the superscript since the velocity magnitude is irrelevant to frames.

3.4.3 Lyapunov-Based Constrained Controller

Our last step is to design the constrained control law which steers the estimated position

error êk → 0 for k ∈ N . Then, with the aid of êk → ek in Lemma 3.3, ek → 0 is
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achieved. A design method is by second order dynamics equation, ¨̂ek + a1 ˙̂ek + a2êk = 0

with a1, a2 > 0, as in [17]. The feasibility is guaranteed because the equation can be

rearranged into v̇ku(ψk)+ωkvkR(π
2
)u(ψk) = f(·) where f(·) is not a function of v̇k and

ωk. Thus, v̇k and ωk are designed as fTu and 1
vk
fT (Ru), respectively. However, vk may

be close to 0 which makes ωk large, namely, saturation is not addressed in such design. As

a result, a coordination transformation is applied in our design where the saturation of vk

and ωk can be directly dealt with, since the transformation decouples control inputs vk and

ωk. To facilitate the design, we first recall agent-k’s desired velocity ṙ∗
k =

d
dt
(r0+d

∗
kG0c

∗
k)

defined in Assumption 3.5 and transform it into unicycle model form.

Let v̌∗k[cos ψ̌∗
k, sin ψ̌∗

k]
T with ˙̌ψ∗

k(= ω̌∗
k) be the unicycle form of agent-k’s desired ve-

locity v0u(ψ0) + d∗kG0ċ
∗
k + d∗kĠkc

∗
k. Besides, let v̌k[cos ψ̌k, sin ψ̌k]

T with ˙̌ψk(= ω̌k) be

the unicycle form of v̂ku(ψ̂k) + d∗kĜk
˙̂ck + d∗k

˙̂
Gkĉk. While desired v̌∗k and ω̌∗

k are not ob-

tainable, v̌k and ω̌k are the accessible estimated signals which will exponentially converge

to v̌∗k and ω̌∗
k, respectively, since v̂ku(ψ̂k) + d∗kĜk

˙̂ck + d∗k
˙̂
Gkĉk exponentially converges

to v0u(ψ0) + d∗kG0ċ
∗
k + d∗kĠkc

∗
k by Lemma 3.2 and Lemma 3.3.

Remark 3.6. If v̂ku(ψ̂k) + d∗kĜk
˙̂ck + d∗k

˙̂
Gkĉk does not vanish, then ω̌k exists. Due to

its exponential convergence to agent-k’s desired reference velocity c∗k, which satisfies

Assumption 3.5, there exists a finite time T such that ||v̂ku(ψ̂k) + d∗kĜk
˙̂ck + d∗k

˙̂
Gkĉk|| >

0 for t ≥ T . Moreover, a small compensate signal ∆ with bounded ∆̇ can add to

v̂ku(ψ̂k) + d∗kĜk
˙̂ck + d∗k

˙̂
Gkĉk to prevent it from vanishing for t < T and guarantee

the existence of ω̌k. As a result, an analysis of small perturbation in finite time period will

be involved in Theorem 3.1.

With the unicycle form of agents’ desired velocities, we can derive the transformation

as follows. Define [x̃k, ỹk]T := R(−ψk)êk ∈ R2 as the transformed desired position error
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with respect to agent-k’s moving direction modeled in (3.1), and ψ̃k := ψ̌k − ψk ∈ R as

agent-k’s heading error. Then, the error dynamics of [x̃k, ỹk, ψ̃k]
T is derived with (3.9) as


˙̃xk

˙̃yk

˙̃ψk

 =


ωkỹk + v̌k cos ψ̃k − vk

−ωkx̃k + v̌k sin ψ̃k

ω̌k − ωk

+


gxk

gyk

0

 , (3.17)

where [gxk , g
y
k ]

T = β5R(−ψk)
∑

j∈N̄k
(êj − êk + rj − rk + d∗kĜkĉk − d∗jĜj ĉj) ∈ R2, for

k ∈ N . Define the considered space χ for the error state [x̃k, ỹk, ψ̃k]
T :

χ =
{
(x̃k, ỹk, ψ̃k)|x̃k ∈ R, ỹk ∈ R, ψ̃k ∈ (−π, π]

}
(3.18)

As shorthands, the first and second part in the right hand side of (3.17) are denoted as

Fk(·) and gk(·), respectively. In the following, we first consider gk(·) as a perturbation

and design vk and ωk in (3.17) with gk(·) ≡ 0. Then, we prove that gk(·) asymptotically

converges. Note that the perturbation term contains state information, to rigorously prove

the convergence of (3.17), a supporting lemma is given as follows.

Lemma 3.4 ( [42]). Consider (3.17). Suppose (i) the unforced system, i.e., with gk(·) ≡ 0,

is GAS in χ, (ii) gk(·) globally asymptotically converges to 0 in χ, and (iii) the solution of

(3.17) is bounded. Then, the system (3.17) is globally asymptotically stable (GAS) in χ.

Proof. By Converging Input Bounded State (CIBS) property in [42]. ■

Now, the main controller design is stated in the following theorem.

Theorem 3.1. Given the communication graph G, the descriptions of desired geometric

pattern {d∗k, ϕ∗
kj}, the smooth reference centroid trajectory r0, the desired relative phase

ϕ∗
k between ck and ṙ0, ∀k ∈ N , and the smooth reference affine transformation command
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G0. If Assumption 3.1-Assumption 3.5 are hold, then by the control laws (3.12)-(3.16),

and the constrained control input

ωk = satW(ω̌k) +
satV(v̌k)ỹk(2− cos ψ̃k)

γ1 +
1
2
x̃2k +

1
2
ỹ2k

+ satϑ(γ2 sin ψ̃k)

vk = satV(v̌k) cos ψ̃k + satX (γ3x̃k), (3.19)

the control objective (3.2) is achieved via distributed measurements in each agent’s local

frame, for k ∈ N , where satI(c) is a saturation function which projects scalar c into the

saturated interval I = [I−, I+], that is,

satI(c) =



I−, if c < I−

c, if I− ≤ c ≤ I+

I+, if c > I+

.

The intervals in (3.19) are given as W = [ω̌−, ω̌+], V = [v̌−, v̌+], X = [−vgap, vgap]

where vgap = min {v̌− − v−, v+ − v̌+}. Besides, γ2, γ3 are arbitrary positive constants,

while interval ϑ and positive constant γ1 are design parameters to ensure ωk ∈ [ω−, ω+].

Before proceeding to the proof, we provide two notes. The first is that the bound

of the term ỹk
γ1+

1
2
x̃2
k+

1
2
ỹ2k

in angular velocity input ωk can be designed in advance based

on γ1. The other is that the saturation function to ω̌k and v̌k may be active, since they

are alternatives to ω̌∗
k and v̌rk, respectively, which are not the same initially and thus may

exceed the saturation intervals.

Proof. Rewrite (3.17) and add a small perturbation ∆̃k with bounded ˙̃∆k in finite time
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period as mentioned in Remark 3.6, then we have


˙̃xk

˙̃yk

˙̃ψk

 =


ωkỹk + satV(v̌k) cos ψ̃k − vk

−ωkx̃k + satV(v̌k) sin ψ̃k

satW(ω̌k)− ωk

+


gxk

gyk

0

+


[v̌k − satV(v̌k)] cos ψ̃k

[v̌k − satV(v̌k)] sin ψ̃k

ω̌k − satW(ω̌k)

+ ∆̃k

:= fk(·) + gk(·) + sk(·) + ∆̃k(·), (3.20)

where the first term fk(·) is viewed as the unforced system with the rest three being per-

turbed inputs, gk(·), sk(·), and ∆̃k(·). Note that the perturbed error gk comes from estima-

tion error, the perturbed error sk is due to saturation, and the perturbed error ∆̃k derives

from singularity error. In the following, the proof is given in three steps. First, we prove

that the unforced system is GAS by constrained control law (3.19) with gk(·) = sk(·) =

∆̃k(·) ≡ 0, that is, the three kinds of error are reduced to 0. Second, the asymptotically

convergences of three perturbed inputs are proved. Third, we derive the boundedness of

solutions to (3.20). Then, Lemma 3.4 is applied to prove the GAS of (3.20) in χ.

Consider the unforced system of (3.20), i.e., with gk(·) = sk(·) = ∆̃k(·) ≡ 0, and

propose a Lyapunov function candidate Vk:

Vk =
1

2
(x̃2k + ỹ2k) + (γ1 +

1

2
x̃2k +

1

2
ỹ2k)(1− cos ψ̃k), (3.21)

to prove GAS of unforced system. Derive its derivatives

V̇k =
[
satV(v̌k) cos ψ̃k − vk

]
akx̃k + bk sin ψ̃k

[
satW(ω̌k)− ωk +

satV(v̌k)akỹk
bk

]
= −akx̃ksatX (γ3x̃k)− bk sin ψ̃ksatϑ(γ2 sin ψ̃k), (3.22)
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where ak = 2 − cos ψ̃k > 0, bk = (γ1 +
1
2
x̃2k +

1
2
ỹ2k) > 0. Suppose the interval I lies

from negative to positive, then csatI(c) ≥ 0 and csatI(c) = 0 if and only if c = 0.

Thus, Vk is lower bounded and V̇k ≤ 0. Moreover, the function f(x) := xsatI(x) is

proved to be uniformly continuous by the definition, which leads to uniform continuity of

V̇k. As a result, by Lyapunov-like lemma, V̇k → 0 is guaranteed which implies x̃k → 0

and ψ̃k → 0. Now, because x̃k → 0 states that the limit exists, once again consider the

uniformly continuity of ˙̃xk. Then, by Barbalat’s lemma, ˙̃xk → 0 which results in ỹk → 0.

Therefore, the unforced system is proved to be GAS in χ.

The next step is to prove the convergence to 0 of the perturbed inputs, gk, sk, and ∆̃k,

which come from estimation error, saturation error, and singularity error, respectively.

For gk(·) term, consider its magnitude

||gk|| = β5||
∑
j∈N̄k

(êj − êk + rj − rk + d∗kĜkĉk − d∗jĜj ĉj)|| = β5||
∑
j∈N̄k

(ϵj − ϵk)||,

where ϵ0 is slightly abused notation defined as 0 and ϵk has been proved to exponentially

converge to 0 by (3.10). As a result, ||gk|| → 0 exponentially.

For sk(·) term, consider its magnitude,

||sk|| = ||[v̌k − satV(v̌k), ω̌k − satW(ω̌k)]
T || ≤ ||[v̌k − v̌∗k, ω̌k − ω̌∗

k]
T ||.

The inequality holds because v̌∗k ∈ V and ω̌∗
k ∈ W . By Lemma 3.2 and Lemma 3.3,

v̂ku(ψ̂k)+d
∗
kĜk

˙̂ck+d
∗
k
˙̂
Gkĉk → v0u(ψ0)+d

∗
kG0ċ

∗
k+d

∗
kĠkc

∗
k exponentially, i.e., v̌k → v̌∗k

and ω̌k → ω̌∗
k exponentially. Thus, ||sk|| → 0 exponentially.

For ∆̃k(·) term, it exists within finite time period, i.e., ∆̃k ≡ 0 ∀t ≥ T , as mentioned in

Remark 3.6, where the relation between ∆̃k and ∆k is that ∆̃k =
[
[R(−ψk)∆k]

T , 0
]T .
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The final step is to prove the boundedness of solutions to (3.20). Consider (3.21) again

but differentiate it along the whole system (3.20), then we have

V̇k = −akx̃ksatX (γ3x̃k)− bk sin ψ̃ksatϑ(γ2 sin ψ̃k) +∇VkT (gk + sk + ∆̃k), (3.23)

where ∇Vk = [akx̃k, akỹk, bk sin ψ̃k]
T with loose bound:

||∇Vk|| ≤
√

9(x̃2k + ỹ2k) +
(
γ1 +

1

2
x̃2k +

1

2
ỹ2k
)2 ≤ √

9

x̃2k + ỹ2k
+
( γ1
x̃2k + ỹ2k

+
1

2

)2

Vk.

Thus, ||∇Vk|| ≤ c1 if x̃2k + ỹ2k ≤ µ and ||∇Vk|| ≤ c2Vk if x̃2k + ỹ2k >= µ from the first

and second inequality, respectively, for some positive constants c1, c2, µ. Combine two

results, then we have ||∇Vk|| ≤ c2Vk + c1, and by (3.23), we have

V̇k ≤ (c2Vk + c1)||gk + sk + ∆̃k||. (3.24)

Rearrange and integrate both side from 0 to t as follows:

∫ t

0

V̇k
c2Vk + c1

dτ ≤
∫ t

0

||gk + sk + ∆̃k|| dτ

1

c2

[
ln (c2Vk + c1)

]t
0
≤

∫ ∞

0

||gk + sk + ∆̃k|| dτ (3.25)

Recall that ||gk|| → 0, ||sk|| → 0 exponentially and ||∆̃k|| → 0 in finite time with small

∆̃k and bounded derivative when t < T . Thus, all of them are absolute integrable, i.e.,∫∞
0

||gk + sk + ∆̃k|| dτ = c3 <∞. Then by (3.25),

Vk(t) ≤
[c2Vk(0) + c1]e

c2c3 − c1
c2

(3.26)
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proves the boundedness of (3.20) in χ.

By the three steps and Lemma 3.4, the system (3.20) is GAS in χ which implies that

êk converges to 0. Moreover, by Lemma 3.2 and Lemma 3.3, êk → ek is proved. As a

result, ek asymptotically converges to 0 for all k, which completes the proof. ■

Remark 3.7. Since the requirement of a global reference frame is relaxed in our settings,

there is no common reference point among agents. To achieve localizations, the estimated

ĉk serves as the alternatives to the common global frame. More specifically, ĉk → c∗k

for k ∈ N by (3.12), and the designed control laws ensure the direction of ĉk for k ∈ N

to direct toward a point which will be the MAS centroid, and it becomes the common

reference point among agents.

To end this section, we elaborate some appealing attributes in our control laws. In

[22, 37], the authors describe their desired geometric pattern via fixed desired displace-

ment vectors in global reference frame. In addition to the shortcomings of requirement of

global reference frame, fixed desired displacements between agents imply that the MAS

merely translates while tracking, which results in the “unnatural” tracking movements as

shown in Figure 3.1(a). Though authors in [23,26,40] consider time-varying desired dis-

placements, the information is pre-given. Thus, the “natural” tracking movements still

cannot be achieved, unless the reference centroid trajectory is available in advance and is

known to all agents so that the varying displacements can be designed accordingly in ad-

vance. In fact, “natural” tracking movements require additional rotation other than trans-

lation. As a result, while using the displacement vectors to describe desired geometric

pattern requires variation with rotation from perspective of global reference frame, by our

design based on proposed descriptions of desired geometric pattern, the frame-invariant

nature simplifies such issue. Moreover, G0 or r0 are not assumed globally accessible as
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in [17], in our design, each agent track G0 by (3.15) through communications. As a result,

G0 can be online adjusted which provides the ability of formation with online adaptation.

3.5 Extension to Switching Communications

In the previous sections, the discussions are based on fixed communication graph.

However, in reality, communication range may be limited due to quality of service. Thus,

deciding neighbors based on distance is more reasonable, which is a case of switching

communications. As a result, we extend our results to the switching case in this section.

Consider s strongly connected graphs indexed from 1 to s and denote the set S =

{1, . . . , s}. Then, define a switching signal σ(t) : [0,+∞) → S which indicates the

corresponding communication graph at time t. With σ(t) in mind, the neighbors of agent-k

at time t is defined asNσ(t)
k , and define the extended set N̄σ(t)

k which additionally consider

agent-0. Recall the switching sequence and dwell time τ0 mentioned in Section 2.4, which

serves as the lower bound of switching period, and it will play a crucial role in stability

analysis.

Now, we extend (3.12)-(3.16) to the switching case as follows:

˙̂ckk = ẑk
k

˙̂zk
k =

1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

R(ϕ∗
kj)

˙̂zk
j +

α1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

(R(ϕ∗
kj)ẑ

k
j − ẑk

k)

+
α2

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

(R(ϕ∗
kj)ĉ

k
j − ĉkk) (3.27)

˙̂vk =
1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

˙̂vj +
β1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

(v̂j − v̂k) (3.28)

˙̂
ψk
k =

1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

˙̂
ψk
j +

β2

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

(ψ̂k
j − ψ̂k

k) (3.29)
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¨̂
Gk

k =
1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

[ ¨̂
Gk

j + β3(
˙̂
Gk

j −
˙̂
Gk

k) + β4(Ĝ
k
j − Ĝk

k)
]

(3.30)

˙̂ek
k = β5

∑
j∈N̄σ(t)

k

[
êk
j − êk

k + rk
jk + d∗kĜ

k
kĉ

k
k − d∗jĜ

k
j ĉ

k
j

]
+ v̂ku(ψ̂

k
k)− vku(ψ

k
k) + d∗kĜ

k
k
˙̂ckk + d∗k

˙̂
Gk

kĉ
k
k , (3.31)

respectively. N̄k is replaced with N̄σ(t)
k which coincides with intuitions. Nevertheless, to

achieve the objective (3.2), conditions on dwell time τ0 are required. In the following, we

provide the assumption of τ0 and prove the convergence. Note that (3.27)-(3.31) are in

agents’ local frames, since they can be transformed to global reference frame as discussed

in Remark 3.5, we will analyze the convergence in global reference frame with following

global version of control laws:

˙̂ck = ẑk

˙̂zk =
1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

R(ϕ∗
kj)

˙̂zj +
α1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

(R(ϕ∗
kj)ẑj − ẑk)

+
α2

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

(R(ϕ∗
kj)ĉj − ĉk) (3.32)

˙̂vk =
1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

˙̂vj +
β1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

(v̂j − v̂k) (3.33)

˙̂
ψk =

1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

˙̂
ψj +

β2

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

(ψ̂j − ψ̂k) (3.34)

¨̂
Gk =

1

|N̄σ(t)
k |

∑
j∈N̄σ(t)

k

[ ¨̂
Gj + β3(

˙̂
Gj − ˙̂

Gk) + β4(Ĝj − Ĝk)
]

(3.35)

˙̂ek = β5
∑

j∈N̄σ(t)
k

[
êj − êk + rjk + d∗kĜkĉk − d∗jĜj ĉj

]
+ v̂ku(ψ̂k)− vku(ψk) + d∗kĜk

˙̂ck + d∗k
˙̂
Gkĉk . (3.36)
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In the following, two lemmas similar to Lemma 3.2 and Lemma 3.3 are proposed to

prove the convergence. Denote σ(M ), σmin(M ), and σmax(M ) as the singular values,

minimum of singular values, and maximum of singular values of matrix M , respectively.

Lemma 3.5. Given a switching signal σ(t), ψ0, and ϕ∗
k,∀k ∈ N . With Assumption 3.1-

Assumption 3.3, if the dwell-time

τ0 >
lnCmax

τc
,

where Cmax =
supi∈S σmax(L̄i)

infi∈S σmin(L̄i)
and τc = σmin(Q)

σmax(P )
, then the distributed update law (3.32) will

drive ĉk → c∗k exponentially, for k ∈ N , where α1, α2 > 0. Moreover, ϕ∗
k0 = ϕ∗

k, ĉ0 =

[cosψ0, sinψ0]
T , ẑ0 = ˙̂c0, ˙̂z0 = ¨̂c0, since agent-0 represents the reference information.

Proof. Follow the definitions in Lemma 3.2, such as pk, qk, p0, p̄k, and p̄, then define

p̃σ(t) = (L̄σ(t) ⊗ I2)p̄ ∈ R2N . With the variables, (3.4) is equivalent to

 ˙̃pσ(t)

¨̃pσ(t)

 =


 0 1

−α2 −α1

⊗ I2


p̃σ(t)

˙̃pσ(t)

 := A

p̃σ(t)

˙̃pσ(t)

 . (3.37)

Since A is Hurwitz, it ensures the existence of positive definite matrices P ,Q ∈ R4×4

such that ATP +PA = −Q. Denote [p̃σ(t)T , ˙̃pσ(t)T ]T as x ∈ R4 and consider Lyapunov

function candidate V = xTPx. Since the digraph is fixed during [tk, tk+1), ∀k ∈ N, we

have V̇ = −xTQx ≤ −τcV for t ∈ [tk, tk+1). At tk+1, x jumps due to the switching of

L̄σ(t) which leads to jump of V . Such jump is utmost a factor of Cmax, that is, V (tk+1) ≤

CmaxV (t−k+1). Thus, we can derive the relations

V (tk+1) < Cmaxe
−τc(tk+1−tk)V (tk) < elnCmax−τcτ0V (tk),∀k ∈ N (3.38)
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V (t) < e−τc(t−tk) ,∀t ∈ [tk, tk+1), (3.39)

that is, p̃σ(t) exponentially converges to 0. Moreover, L̄σ(t) is invertible which states

p̄ → 0. As a result, we have ĉk → c∗k exponentially. ■

Lemma 3.6. Given the switching signal σ(t), the descriptions of desired geometric pattern

{d∗k, ϕ∗
kj}, the smooth reference centroid trajectory r0, and the smooth reference affine

transformation G∗. With Assumption 3.1-Assumption 3.3, if the dwell time

τ0 > max

(
lnCmax

β1
,

lnCmax

β2
,

lnCmax

τG

)
,

then the distributed control laws (3.32)-(3.36) will drive v̂k → v0, ψ̂k → ψ0,
˙̂
ψk →

ω0, Ĝk → G0,
˙̂
Gk → Ġ0, and êk → ek, exponentially, for k ∈ N , where u(ψ) =

[cosψ, sinψ]T , βi > 0, i = 1, . . . , 5. Moreover, ˙̂v0, v̂0,
˙̂
ψ0, ψ̂0,

¨̂
G0,

˙̂
G0, Ĝ0, ê0, d∗0 equal

to v̇0, v0, ψ̇0, ψ0, G̈0, Ġ0,G0, [0, 0]
T , 0, respectively, since agent-0 is the reference.

Proof. Follow the definitions in Lemma 3.3, such as v̄k and v̄, then define ṽ = L̄σ(t)v̄ ∈

RN . With the variables, (3.33) is equivalent to ˙̃v = −β1ṽ which has the similar form as

(3.37). As a result, v̄ → 0 exponentially can be derived. Similarly, (3.34) and (3.35) steer

ψ̂k → ψ0 and Ĝk → G0 exponentially, respectively.

With same definitions of ϵ and δ as in Lemma 3.3, we obtain

ϵ̇ = −β5(L̄σ(t) ⊗ I2)ϵ+ δ, (3.40)

where δ → 0 exponentially. Consider Lyapunov function candidate V = 1
2
ϵTϵ which has
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no “jump” as in the case of Lemma 3.5 since ϵ does not vary with switching. Then,

V̇ = −β5ϵT (L̄σ(t) ⊗ I2)ϵ+ ϵTδ ≤ −kϵTϵ+ ϵTδ, (3.41)

where k = β5 infi∈S σmin(L̄
i) > 0, is obtained, which is input-to-state stable with respect

to δ. Thus, ϵ is bounded due to the boundedness of δ. Moreover, with the exponential

convergence of δ, we have |ϵTδ| ≤ ae−bt with positive constants a, b, that is,

V̇ ≤ −2kV + ae−bt. (3.42)

Rearrange into V̇ + 2kV ≤ ae−bt, multiply e2kt to both sides and do the integration, then

we have V → 0 exponentially, i.e., ϵ → 0 exponentially. ■

In this section, we successfully design the control laws (3.27)-(3.31) for switching

case, and provide the stability analysis.
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In Chapter 3, we consider a group of numbered agents subject to motion constraints,

which are nonholonomic constraints, linear velocity constraints and angular velocity con-

straints. We design the adaptive estimation law, the distributed consensus algorithms,

the distributed observer, and the constrained control inputs which are all realized in a

distributed manner and in each agent’s local frame with relative measurements. By our

design, the MAS can achieve the desired geometric pattern, track a reference centroid tra-

jectory, and align the MAS orientation to moving direction of the reference centroid as

shown in Figure 3.1(b), a more “natural” way of tracking. Moreover, the formation can

be dynamically adjusted to avoid collisions by affine transformation commands.

In reality, in addition to the tracking tasks as we focus on in Chapter 3, some applica-

tions additionally require the geometric pattern, which the MAS forms, to do self-rotating

motion around its centroid. Especially when executing tasks about exploring or data col-

lection, such self-rotating motion can increase the searching area and eliminate sensing

bias. Therefore, the so-called rotating formation control is originated. As a result, to

complete this thesis, we turn to study of rotating formation in the next chapter.
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Chapter 4

Ordered Rotating Formation Control of

MAS with Online Adaptation

In this chapter, we design controllers to make a MAS form into predefined ordered

formation with rotation around the centroid and be able to dynamically adjust the forma-

tion. The organization in this chapter is as follows: Section 4.1 explains the term “ordered

rotating formation”. In Section 4.2, we describe the problem which is similar to that in

Section 3.2 but focusing on the ordered rotating formation, and compare with some state

of the art related works. Then, the problem is formulated mathematically in Section 4.3.

The controller design based on our proposed “phase penalty flow exchange mechanism”

is discussed in Section 4.4.

4.1 Ordered Rotating Formation

To seize the concept of ordered rotating formation, one can first refer to Figure 4.1,

where the two subfigures are said to be with different order. In Figure 4.1(a), when the

formed desired geometric pattern tracks with rotation around the centroid, the agents’
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order relation is 1-2-3-4-5 in counter clock wise. While in Figure 4.1(b), although the

MAS forms the same geometric pattern, the order relation is 1-4-2-5-3 in counter clock

wise. In other words, ordered rotating formation determines not only the geometric pattern

but also the order relation.

(a) order:1-2-3-4-5 (b) order:1-4-2-5-3

Figure 4.1: Ordered rotating formation determines the geometric pattern and is order-sensitive. That is, (a)
and (b) though are with same geometric pattern, they are actually different ordered formation.

If a task only cares the formation with symmetric geometric pattern, e.g., to form

a evenly distributed circle, then the order relation is irrelevant. However, the order is-

sue matters when forming into non-symmetric shapes, or more crucially, when merging

groups of MASs into a larger synthesized structure. In Figure 4.2(a) and Figure 4.2(b),

two formations are with the same geometric pattern but different order relation. While

combining with other groups, e.g., combining A to 3 and B to 4, such variation results

in different synthesized pattern as shown in Figure 4.2(c) and Figure 4.2(d), respectively.

Moreover, in data collection missions, when receiving local data indexed by agent num-

bers, we can reconstruct the global measurements by combining the indexed local data

based on the order relation.
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(a) Order relation: 1-2-3-4-5 (b) Order relation: 1-4-2-5-3

(c) Synthesis from (a) (d) Synthesis from (b)

Figure 4.2: When combining A to 3 and B to 4, case (a) results in (c) while case (b) results in (d). As one
can see, the order relation is crucial to achieve specified synthesis pattern.

4.2 Problem Descriptions and Related Works

Before proceeding to the mathematical problem formulation and controller design,

we first describe the goals in this chapter and provide some discussions about the related

works. In this chapter, consider a MAS with numbered agents, the objective is to design

a controller which is constrained to a specified input to achieve the following tasks:

(i) Desired numbered formation: To form into a predefined geometric pattern.
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(ii) Tracking: To steer the centroid of the MAS to track a given reference trajectory.

(iii) Ordered Rotating: To keep the formed geometric pattern rotating around its centroid

with predefined order.

(iv) Formation with online adaptation: To avoid collisions with surroundings via dy-

namical adjustments of formation.

In addition, we will realize the controller in a distributed manner and in each agent’s local

frame instead of the global reference frame, which implies only relative measurements are

used instead of absolute ones due to the lack of the global reference frame.

Recall that we aim to integrate non-rotating formation in Chapter 3 and rotating for-

mation in Chapter 4, as a result, the concepts in Chapter 4 will refer that in Chapter 3.

The proposed problem is basically the same as in Chapter 3 except for task (iii) there:

orientation alignment task, since we focus on rotating formation in this chapter where

the alignment issue no longer exists. As a derivative, the issue of ordered rotating, i.e.,

task (iii) in this chapter, pops up. To deal with the issue, we propose “phase penalty ex-

change mechanism” to facilitate our design.

To highlight the hardness of issue of order, we discuss more related works in the fol-

lowing with their requirements and assumptions. In [12,32], the authors propose a simple

strategy where each agent pursues its front agent cyclically to form into ordered circular

pattern. In such case, the formation is vulnerable due to merely single link for each agent.

Note that though authors in [32] prove various ordered stable patterns, the order in forma-

tion may be affected by initial conditions, that is, pre-given order can not be achieved by

their design. In [23, 31], the global reference frame is required to represent the displace-

ment vector h which describes the vector from centroid to each agent and aids to achieve

desired formation. In addition, [31] requires well-designed time-varying h(t) in advance
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to do rotating formation, which decreases flexibility. While [23] utilizes constant h, some

ordered patterns may fail for violating their assumptions. In [25, 28], their design allows

formation to achieve specific order without global reference frame, but requires impos-

ing restrictions on initial conditions. They assume close initial headings to prevent from

forming with incorrect order.

As a comparison, in our design which benefits from proposed “penalty phase exchange

mechanism”, the issue of order can be solved in distributed manners and in agents’ local

reference frames without assumptions for initial conditions or pre-given h(t).

4.3 Problem Formulation

The problem described in Section 4.2 is formulated mathematically in this section.

Consider a MAS composed of N numbered agents with unicycle model

ṙk = vk[cosψk, sinψk]
T

ψ̇k = ωk, (4.1)

where k = 1, 2, . . . , N , rk ∈ R2 and ψk ∈ (−π, π] are agent-k’s position and heading, vk

and ωk are scalar inputs controlling linear and angular velocity, respectively.

Denote the index set N = {1, . . . , N} and index-0 is reserved for representing ex-

ogenous reference signals afterwards. Given a directed communication graph G and the

following predefined information for corresponding tasks:

(i) Desired numbered formation: descriptions of the desired numbered formation {d∗k,

ϕ∗
kj|∀k, j ∈ N , k ̸= j} which is introduced in Section 2.3,

(ii) Tracking: a smooth reference centroid trajectory r0 ∈ R2 with scalar inputs v0 and
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ω0 which satisfies ṙ0 = v0[cosψ0, sinψ0]
T , ψ̇0 = ω0,

(iii) Ordered Rotating: an constant angular velocityϖ0, and the relative phasesϕ∗
kj,∀k, j

∈ N which are as in task (i),

(iv) Formationwith online adaptation: a reference affine transformation commandG0(t)

∈ R2×2 which is a series products of transformation matrices, such as scaling, rota-

tion, and shear matrix, as introduced in Section 2.2.

Then, we want to design the constrained control inputs vk and ωk with locally and

relatively measurable information through G such that

rk → r0 + d∗kG0[cos θ∗k, sin θ∗k]
T where θ̇∗k = ϖ0, θ

∗
k − θ∗j = ϕ∗

kj, (4.2)

asymptotically, for k, j ∈ N . Moreover, the control inputs are constrained to specific input

ranges, that is, for k ∈ N , vk ∈ [v−r , v
+
r ] and ωk ∈ [ω−

r , ω
+
r ] with predefined constants

v−r , ω
−
r < 0 and v+r , ω+

r > 0. Note that θ∗k can be arbitrarily rotating signal as long as it

satisfies the differential and relative constraints.

As the considered problem in Chapter 3, the key note is that the information given

in (ii) - (iv) are ‘not’ accessible to all agents, since we consider the communication con-

straints. In general, only one agent will receive these exogenous information, while the

rest of agents is required to estimate them. As a result, in the later design, lots of estimation

laws will be proposed.

Remark 4.1. Once again, the right hand side of (4.2) is agent-k’s desired trajectory which

includes the four tasks. More precisely, d∗k and ϕ∗
kj relate to task (i), r0 relates to task (ii),

θ∗k relates to task (iii), and G0 relates to task (iv).

50



doi:10.6342/NTU201902617

To clarify the reason we redesign in Chapter 4 compared to Chapter 3, we focus on

the objectives 3.2 and 4.2. The intrinsic difference between problems in Chapter 3 and

Chapter 4 is that having exogenous reference guidance signal or not. In 3.2, ψ0 is an ex-

ogenous signal served as a guidance signal to MAS. In contrast, θ∗k in 4.2 is an endogenous

signal generated within agents, namely, there is no guidance in this case. As a result, such

difference leads to the different design of controllers.

To solve the proposed problems, some reasonable assumptions, which are similar in

Section 3.3, are made as follows:

Assumption 4.1. The directed graph G is strongly connected. Moreover, at least one

agent can receive the reference signals, r0, and ψ0.

Note that from Assumption 4.1, a diagonal matrix B is introduced where entries bkk

is 1 if agent-k can access to reference and 0 otherwise.

Assumption 4.2. The reference linear velocity v0 and angular velocity ω0 are smooth and

bounded: v0 ∈ [v−0 , v
+
0 ] and ω0 ∈ [ω−

0 , ω
+
0 ] with constants v−0 , ω−

0 < 0 and v+0 , ω+
0 >

0. Moreover, v−0 > v−r , v
+
0 < v+r and ω−

0 > ω−
r , ω

+
0 < ω+

r , where v−r , v+r , ω−
r , ω

+
r are

specified constants in Assumption 4.5.

Assumption 4.3. v̇0, ω̇0 are bounded ∀t ≥ 0.

Assumption 4.4. G0, Ġ0, G̈0 are bounded ∀t ≥ 0.

Assumption 4.5. || d
dt
(r0 + d∗kG0[cos θ∗k, sin θ∗k]T )|| ̸= 0 for k ∈ N , t ≥ 0. Moreover,

assume that

v+r > supk∈N ,t≥0 [vmax + 2d∗kσ(Ġ0) + 2d∗kϖ0σ(G0)] := v̌+r

ω+
r > supk∈N ,t≥0 Fk(t) := ω̌+

r
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v−r < − supk∈N ,t≥0 [vmax + 2d∗kσ(Ġ0) + 2d∗kϖ0σ(G0)] := v̌−r

ω−
r < infk∈N ,t≥0 Fk(t) := ω̌−

r ,

where vmax = max(|v−0 |, |v+0 |), σ(G0) is the largest singular value of G0, and Fk =

r̈∗Tk R(π
2
)ṙ∗k

ṙ∗Tk ṙ∗k
with ṙ∗

k = d
dt
(r0 + d∗kG0[cos θ∗k, sin θ∗k]T ) and R(π

2
) is 90◦ counter clock wise

rotation matrix.

Remark 4.2. Assumption 4.1-Assumption 4.4 are similar to Assumption 3.1-Assumption 3.4,

respectively, except for the subscripted r which stands for “rotating” case. Basically,

Assumption 4.5 is also similar to Assumption 3.5, except that the desired velocity for agent-

k, ṙ∗
k, is the rotating case here.

4.4 Controller Design and Stability Analysis

The considered problem is solved in this section, where we divide into three sub-

sections. In Section 4.4.1, we demonstrate some present works with failure of ordered

rotating. Then, the motivated concept of “phase penalty flow exchange mechanism” is

illustrated. In Section 4.4.2, the estimated law is designed based on “phase penalty flow

exchange mechanism” so that the estimations have ordered rotating property. Thank to

the estimations, in Section 4.4.3, the controller is proposed based on such estimations with

stability analysis, which is similar to the one in Section 3.4.3.

Before proceeding to the three subsections, we provide a further discussion. To solve

the ordered rotating formation problem in this chapter, one may first try to extend the

concepts of adaptive estimations in Section 3.4.1 with additional rotational motion, e.g.,

things like ˙̂ck = ϖR(π
2
)ĉk. In fact, however, the intrinsic difference is the exogenous
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signal, which involves in adaptive estimations in Section 3.4.1 but not in rotating case.

More precisely, the exogenous reference signal, c0, which serves as a guidance, partici-

pates the adaptive estimations in Lemma 3.2, while the rotating case has no such guidance

since desired relative relations of θ∗k − θ∗j in (4.2) are considered within agents and not

with an exogenous signal. Without an exogenous reference, the agents may be stuck at

some unwilling formation which will soon be exemplified in Section 4.4.1 and motivates

the concept of “phase penalty flow exchange mechanism”.

4.4.1 Phase Penalty Flow Exchange Mechanism

Recall that θ∗k in objective (4.2) is actually unknown, as a result, we introduce θ̂k and

aim to design control law such that θ̂kj := θ̂k − θ̂j converges to ϕ∗
kj , ∀k, j ∈ N , and

meanwhile, ˙̂θk converges to ϖ0, ∀k ∈ N .

Consider a strongly connected communication graph G and let θ̃kj = θ̂kj − ϕ∗
kj be the

relative phase error between agent-k and j. A direct thought to achieve correct phase (or

order) within agents, i.e., θ̃kj → 0, ∀k, j ∈ N , is to feedback the phase error θ̃kj,∀k, ∀j ∈

Nk, to the control. However, it is possible that the agents will stuck at positions which

forms the right formation but does not have the right order relation. For example, given

a 5-agent desired ordered geometric pattern as in Figure 4.3(a), a pentagon, and suppose

that each agent’s neighbors are the two adjacent numbered agents, that is, N1 = {2, 5},

N2 = {3, 1}, N3 = {4, 2}, N4 = {5, 3}, N5 = {1, 4}. Now consider a special case

with agents positions illustrated as in Figure 4.3(b), a pentagon with wrong order. Since

agent-2 is one of the two neighbors of agent-1, the phase error between them is θ̃21 =

4π
5
− 2π

5
implies that agent-2 will attract agent-1 counter clock wise as in Figure 4.3(c).

Likewise, the other neighbor, agent-5, will attract agent-1 clock wise as in Figure 4.3(d).
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Unfortunately, these two attractions result in cancellation, since θ̃21 = −θ̃51 leads addition

to 0. As a result, agent-1 will stop moving due to the cancellation of two phase errors at

the time instant. In fact, in Figure 4.3(d), all agents are stuck due to the cancellations,

which makes the formation fixed in the wrong order relation. More rigorous derivation of

this phenomenon will be provided mathematically in the proof of control design.

(a) Desired ordered geometric pattern (b) Special initial positions

(c) Agent-1 is attracted by agent-2 (d) Two attractions cancel out

Figure 4.3: An example motivates the propose of phase penalty exchange mechanism to resolve cancellation.

To solve the above issue, we define the phase weighting parameterwk(t) of agent-k to

avoid the agents from being trapped in an incorrect order due to error cancellations. The

idea is to utilize the positive time varying parameterwk(t) as a weighting of the phase error,

and thus the phase cancellation effect will not sustain since the value of wk(t) will change

at the next time instant. To implement this idea, we first introduce some variables, and
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then propose the phase penalty exchange mechanism. At last, the update law of weighting

signal wk is constructed accordingly. Suppose that wk(t) > 0 is lower bounded by a

positive constant wk, which will be examined after designing the update law ẇk.

Definition 4.1 (Phase Penalty). The phase penalty of agent-k is defined as

ζk =
∑
j∈Nk

(1− cos θ̃kj) ≥ 0

Note that phase penalty is an index about phase error. Once ζk = 0, the agent-k forms

correctly in order with its neighbors, i.e., θ̃kj = 0, ∀j ∈ Nk.

Definition 4.2 (Phase Penalty Flow). The phase penalty flow of agent-k is defined as

Φk = (wk − wk)ζk ≥ 0

Note that the term flow implies the fluidity. More precisely, the constructed virtual phase

penalty flow is able to be distributed through communication links.

The phase penalty flow exchange mechanism is to distribute the agent’s phase penalty

flow to its neighbors, that is, for agent-k, Φk =
∑

j∈Nk
fkj , where fkj ≥ 0 is the value

that agent-k distributes to its neighbor agent-j. The distributed rule here is via randomly

partitioning the phase penalty flow Φk into |Nk| parts and then distribute to its neighbors.

By the above distribution process, the net flow of agent-k after an exchange iteration is

−Φk +
∑

j∈Nk
fjk, which includes distributing Φk out and receiving the penalty flow

from its neighbors. During the formation process, if ζk = 0, then agent-k is in a correct

order with its neighbors and thus agent-k will be removed from the penalty flow exchange

mechanism at the time instant. Note that fkj and fjk are not necessarily equal and in fact

are usually different. Moreover, the distributed rule is not necessarily to be random.
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Now, we design the update law of wk(t) according to the phase exchange mechanism.

Consider the scenario that all agents are fixed at some positions and the flow exchanging

mechanism is operating. Since the routed out flows are received by neighbors, the total

net flow of the MAS is 0 for all time instant, i.e.,

N∑
k=1

(
− Φk +

∑
j∈Nk

fjk

)
= 0, ∀t. (4.3)

Moreover, since the formation shape remains unchanged, the time derivative of sum of

phase penalty flow of all agents should be 0, that is, d
dt
(
∑N

k=1Φk) = 0, which leads to

constraints to ẇk. Particularly, ζ̇k = 0 since the formation is fixed. As a result, we have

d
dt
(
∑N

k=1Φk) =
∑N

k=1 ẇkζk = 0. To satisfy the equality, we design an update law of wk

based on (4.3):

ẇk =


δ
ζk

{
−Φk +

∑
j∈Nk

fjk

}
, if ζk ̸= 0,

0 , if ζk = 0,

(4.4)

for k ∈ N , where δ is a positive constant that can be arbitrarily chosen. Here, to complete

the mechanism, we verify the assumption that wk(t) is lower bounded by wk. It can be

seen by the fact that once wk decreases to wk, then Φk = (wk −wk)ζk becomes 0 and this

leads to ẇk ≥ 0 by (4.4).

The concepts of the time-varying wk and its update law from phase penalty flow ex-

change mechanism are clearly illustrated in this subsection to prevent from being stuck

due to the error cancellations. Moreover, it serves as the foundation of the design of update

law for θ̂k in the next subsection.
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4.4.2 Design for Order Estimator

In this subsection, the update law of θ̂k is designed so that ˙̂
θk → ϖ0 and θ̂kj → ϕ∗

kj ,

for all k, j ∈ N , are achieved.

Lemma 4.1. Consider a strongly connected graph G. With the control law

˙̂
θk = ϖ̂k

˙̂ϖk = −c1(ϖ̂k −ϖ0)− c2
∑
j∈Nk

(wk + wj) sin θ̃kj, (4.5)

where c1, c2 > 0 and wk is the phase weighting parameter with (4.4), for all k ∈ N , that

˙̂
θk → ϖ0 and θ̂kj → ϕ∗

kj , for all k, j ∈ N are achieved.

Proof. Consider Lyapunov function candidate

V =
1

2

∑
k∈N

(ϖ̂k −ϖ0)
2 + c2

∑
k∈N

∑
j∈Nk

wk(1− cos θ̃kj), (4.6)

then we have the time derivative

V̇ =
∑
k∈N

˙̂ϖk(ϖ̂k −ϖ0) + c2
∑
k∈N

∑
j∈Nk

ẇk(1− cos θ̃kj) + c2
∑
k∈N

∑
j∈Nk

wk
˙̃θkj sin θ̃kj

=
∑
k∈N

˙̂ϖk(ϖ̂k −ϖ0) + c2
∑
k∈N

ẇkζk

+ c2
∑
k∈N

∑
j∈Nk

[
wk(

˙̂
θk −ϖ0) sin θ̃kj + wk(

˙̂
θj −ϖ0) sin θ̃jk

]
=
∑
k∈N

˙̂ϖk(ϖ̂k −ϖ0) + 0 + c2
∑
k∈N

(ϖ̂k −ϖ0)
∑
j∈Nk

(wk + wj) sin θ̃kj

=− c1
∑
k∈N

(ϖ̂k −ϖ0)
2 ≤ 0 (4.7)
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By Invariance Principle, we have ˙̂
θk → ϖ0, which further leads to

∑
j∈Nk

(wk + wj) sin θ̃kj → 0 (4.8)

by (4.5), for all k ∈ N , and all relative phases θ̃kj,∀k, j ∈ N , converge to some constants.

Moreover, the weightings wk,∀k, keep updating. Overall speaking, we have constants θ̃kj

with time-varying coefficients summing to 0. As a result, the only constant solution to

that is θ̃kj → 0,∀k, ∀j ∈ Nk. ■

In fact, though the phase weighting parameter wk updates via design law (4.4), we

can further make the weighting be upper bounded by some predefined constant w̄k. This

is realized by resetting the weighting parameter wk to a number within range [wk, wk)

whenever wk reaches the upper bound wk. One can switch the weighting parameter lower

without disturbing the convergence of θ̃kj since such switching lowers down the value of

Lyapunov function proposed in (4.6).

Remark 4.3. Suppose without our proposed exchange mechanism, that is, the weightings

wk,∀k ∈ N are constants, then we can still follow the proof of Lemma 4.1 and obtain the

same equation (4.8) but with constant coefficients. In such case, whether θ̃kj → 0 or not

remains inconclusive. For example, in the motivation example Figure 4.3 where wk are

the same constants. We will have sin θ̃12 + sin θ̃15 = 0 as shown in Figure 4.3(d), which

satisfies (4.8) but without θ̃kj converging to 0. As a result, the introduced time-varying

weighting parameter wk with the update law (4.4) is the key to resolve order issue.

Essentially, Lemma 4.1 plays the same role as in Lemma 3.2. More precisely, the

vector [cos θ̂k, sin θ̂k]T indicates the estimated direction of centroid in the rotating case as

ĉk of Lemma 3.2 in tracking case. Once the estimated direction is obtained, the remaining
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design follows the process in Section 3.4. Therefore, in the next section, the consensus

algorithms and distributed observer are first proposed, then the formation controller is

designed in subsequence.

4.4.3 Lyapunov-Based Constrained Controller

To design the control inputs vk and ωk, we first recall the objective (4.2) and de-

fine position error accordingly, ek := r0 − rk + d∗kG0[cos θ∗k, sin θ∗k]T . Note that by

Assumption 4.1, v0, ψ0 for reference velocity, and G0 for reference affine transformation

are only accessible to a few agents, as a result, v̂k, ψ̂k, and Ĝk are introduced to estimate

v0, ψ0, and G0, respectively. Further with the above estimations, we have the estimation

of error dynamics ėk. Thus, the estimated desired position error êk is introduced with a

distributed observer to estimate ek. As one can examine, these design concepts follow

exactly as in Section 3.4.2, which motivates the following lemma.

Lemma 4.2. Given the graph G, the descriptions of desired geometric pattern {d∗k, ϕ∗
kj},

the smooth reference centroid trajectory r0, and the smooth reference affine transforma-

tion command G0. With Assumption 4.1-Assumption 4.3, the distributed control laws

˙̂vk =
1

|N̄k|
∑
j∈N̄k

˙̂vj +
β1
|N̄k|

∑
j∈N̄k

(v̂j − v̂k) (4.9)

˙̂
ψk =

1

|N̄k|
∑
j∈N̄k

˙̂
ψj +

β2
|N̄k|

∑
j∈N̄k

(ψ̂j − ψ̂k) (4.10)

¨̂
Gk =

1

|N̄k|
∑
j∈N̄k

[ ¨̂
Gj + β3(

˙̂
Gj − ˙̂

Gk) + β4(Ĝj − Ĝk)
]

(4.11)

˙̂ek = β5
∑
j∈N̄k

[
êj − êk + rj − rk + d∗kĜku(θ̂k)− d∗jĜju(θ̂j)

]
+ v̂ku(ψ̂k)− vku(ψk) + ϖ̂kd

∗
kĜkR(

π

2
)u(θ̂k) + d∗k

˙̂
Gku(θ̂k) (4.12)
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drive v̂k → v0, ψ̂k → ψ0,
˙̂
ψk → ω0, Ĝk → G0,

˙̂
Gk → Ġ0, and êk → ek exponentially,

for k ∈ N , where u(ψ) = [cosψ, sinψ]T , θ̂k and ϖ̂k follow (4.5), and βi > 0, i =

1, . . . , 5. Moreover, ˙̂v0, v̂0,
˙̂
ψ0, ψ̂0,

¨̂
G0,

˙̂
G0, Ĝ0, ê0, d∗0 equal to v̇0, v0, ψ̇0, ψ0, G̈0, Ġ0,G0,

[0, 0]T , 0, respectively, since agent-0 represents the reference information.

Proof. Refer to the proof of Lemma 3.3. ■

In fact, if one denotes u(θ̂k) as ĉk, then Lemma 4.2 becomes exactly the same as

Lemma 3.3. This implies that the remaining designs can directly utilize the ones proposed

in Section 3.4.3, such as coordinate transformation and constrained controller design. As

a result, we let

ĉk = u(θ̂k) (4.13)

so that the proposed control law (3.19) remains valid. In the following, the main theorem

for ordered rotating is proposed which states exactly the same as in Theorem 3.1 by virtue

of the re-definition of ĉk in (4.13).

Theorem 4.1. Given the communication graph G, the descriptions of desired geomet-

ric pattern {d∗k, ϕ∗
kj}, the smooth reference centroid trajectory r0, the desired constant

angular velocity ϖ0, and the smooth reference affine transformation command G0. If

Assumption 4.1-Assumption 4.5 are hold, then by the designed laws (4.4), (4.5), (4.9)-

(4.12), and the re-definition (4.13) for deriving the constrained control input

ωk = satW(ω̌k) +
satV(v̌k)ỹk(2− cos ψ̃k)

γ1 +
1
2
x̃2k +

1
2
ỹ2k

+ satϑ(γ2 sin ψ̃k)

vk = satV(v̌k) cos ψ̃k + satX (γ3x̃k), (4.14)

the control objective (4.2) is achieved via distributed measurements, for k ∈ N , where
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satI(c) is a saturation function which projects scalar c into the saturated interval I =

[I−, I+], that is,

satI(c) =



I−, if c < I−

c, if I− ≤ c ≤ I+

I+, if c > I+

.

The intervals in (4.14) are given as W = [ω̌−, ω̌+], V = [v̌−, v̌+], X = [−vgap, vgap]

where vgap = min {v̌− − v−, v+ − v̌+}. Besides, γ2, γ3 are arbitrary positive constants,

while interval ϑ and positive constant γ1 are design parameters to ensure ωk ∈ [ω−, ω+].

Proof. Refer to the proof of Theorem 3.1. ■

In addition, as mentioned in Remark 3.5, the designed control laws, (4.9)-(4.12), can

be realized in agent’s local frames. As a result, we state a corollary of Theorem 4.1 which

realizes the control laws in agents’ local frames in the following.

Corollary 4.1.1. Given the communication graph G, the descriptions of desired geomet-

ric pattern {d∗k, ϕ∗
kj}, the smooth reference centroid trajectory r0, the desired constant

angular velocity ϖ0, and the smooth reference affine transformation command G0. If

Assumption 4.1-Assumption 4.5 are hold, then by the control laws (4.5),

˙̂vk =
1

|N̄k|
∑
j∈N̄k

˙̂vj +
β1
|N̄k|

∑
j∈N̄k

(v̂j − v̂k) (4.15)

˙̂
ψk
k =

1

|N̄k|
∑
j∈N̄k

˙̂
ψk
j +

β2
|N̄k|

∑
j∈N̄k

(ψ̂k
j − ψ̂k

k) (4.16)

¨̂
Gk

k =
1

|N̄k|
∑
j∈N̄k

[ ¨̂
Gk

j + β3(
˙̂
Gk

j −
˙̂
Gk

k) + β4(Ĝ
k
j − Ĝk

k)
]

(4.17)
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˙̂ek
k = β5

∑
j∈N̄k

[
êk
j − êk

k + rk
jk + d∗kĜ

k
ku(θ̂k)− d∗jĜ

k
ju(θ̂j)

]
+ v̂ku(ψ̂

k
k)− vku(ψ

k
k) + ϖ̂kd

∗
kĜ

k
kR(

π

2
)u(θ̂k) + d∗k

˙̂
Gk

ku(θ̂k), (4.18)

and the re-definition (4.13) for deriving the constrained control input (4.14), for k ∈ N ,

the control objective (4.2) is achieved via distributed measurements in each agent’s local

frame.

Remark 4.4. The high similarity of Corollary 4.1.1 and Theorem 3.1 is due to consistent

design concepts. As a byproduct, tasks can be easily altered between two major classes

of literature about Multi-Agent System formation control, tracking and tracking with ro-

tation. While most of the existing results focus on merely one of the two major classes and

even have inconsistent dynamic models or design concepts, we readily integrate the major

classes due to the consistent design process, as a side-benefit.
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Chapter 5

Simulation Results

In this chapter, we provide some simulation scenarios to validate our design results

which include Natural Tracking designed in Chapter 3 and Ordered Rotating designed in

Chapter 4. The organization in this chapter is as follows: in Section 5.1, we focus on

results for natural tracking. Moreover, we show that existing works serve as special cases

of ours. In Section 5.2, the results of ordered rotating is demonstrated and compared with

existing works which are most disordered cases.

5.1 Results for Natural Tracking

Recall the considered problem in Chapter 3: we aim to design control law such that

the objective (3.2), which includes four tasks, desired numbered formation, tracking, MAS

orientation alignment, and formation with online adaptation, can be achieved. In the

following, we will provide several simulation results to validate the novelty and generality

of our design for natural tracking movements.

• Simulation I: results of Theorem 3.1

In this simulation, we provide the overall results for considered problem in Chapter 3.
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Then, in the following simulation scenarios, we will demonstrate the novelty and gener-

ality of our design over existing works.

Consider a MAS with 5 numbered agents with the desired numbered geometric pattern

as shown in Figure 5.1, where d∗1 = 5.6, d∗2 = 4.1, d∗3 = 6, d∗4 = 6, d∗5 = 4.1, and ϕr
1 = 1.6,

ϕr
2 = 2.6, ϕr

3 = −2.2, ϕr
4 = −1, ϕr

5 = 0.5, as defined in Section 2.3. Besides, the

switching signal is depicted in Figure 5.2, where the 4 strongly connected communication

graphs are shown in Figure 5.3. Given initial conditions of tracking trajectory: r0(0) =

[7.1, 3.4]T and ψ0(0) = 0.15 with inputs v0 = 0.4 + 0.2 cos (0.2t) and ω0 = 0.015 −

0.01 sin (0.2t), where t ∈ [0, 200] is the simulation time, the relative phase for orientation

alignment: ϕ∗
1 = 0, ϕ∗

2 = 1, ϕ∗
3 = 2.5, ϕ∗

4 = −2.5, ϕ∗
5 = −1, and the reference affine

transformation command G0 = (1+0.4 sin (0.02t))I2, where I2 is 2-by-2 identity matrix.

Note that these information are ‘not’ globally accessible.

Figure 5.1: Desired numbered geometric pattern Figure 5.2: Switching signal

(a) G1 (b) G2 (c) G3 (d) G4

Figure 5.3: Four strongly connected communication graphs (agent-0 denotes exogenous reference)

The parameters in control laws are selected as α1 = 2, α2 = 1, β1 = 3, β2 = 3,
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β3 = 2, β4 = 1, β5 = 5, γ1 = 2, γ2 = 0.8, γ3 = 1. Then, with the proposed distributed

control laws (3.27) - (3.31) and the constrained control inputs (3.19), the simulation result

is demonstrated in Figure 5.4. As one can see, the MAS forms into the desired numbered

geometric pattern, keeps its centroid tracking r0, aligns the orientation to thee direction

of ṙ0 during tracking which results in natural tracking, and dynamically scales smaller to

safely pass through the valley by G0. We emphasize that our designed control laws, (3.27)

- (3.31) and (3.19), are distributed and realized in each agent’s local reference frame.

In the following, we demonstrate the adaptive estimation process of c∗k, which is pro-

posed in Lemma 3.5, in Figure 5.5, where the straight lines are the directions of estimated

ĉk,∀k = 1, . . . , 5. By our adaptive estimation law (3.32), the estimated directions will

intersect to a point, the centroid, at the fourth sampling time in Figure 5.5.

Figure 5.4: Overall results of natural tracking Figure 5.5: Adaptive estimation process

In addition, since we consider saturation constraints of control inputs vk and ωk, the

saturated linear velocity command and saturated angular velocity command are shown

in Figure 5.6(a) and Figure 5.6(b), respectively, to validate our design. The simulation

results display that the control inputs are more likely to be constrained in early stage due

to the random initial estimations which lead to larger errors.
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(a) linear velocity input, vk (b) angular velocity input, ωk

Figure 5.6: Inputs are within saturation ranges

To sum up, the proposed control laws, which are distributed and realized in each

agent’s local reference frame, are validated by simulation that the considered problem in

Chapter 3 is solved. To further demonstrate that our control laws support various desired

geometric patterns and reference trajectories, we provide another example with different

geometric pattern from Figure 5.1 and different r0. Then, the following simulation sce-

narios II - IV that compares with existing works will base on this example.

Consider a MAS with 5 numbered agents with the desired numbered geometric pattern

as shown in Figure 5.7, where d∗1 = 8.4, d∗2 = 4, d∗3 = 4.7, d∗4 = 4, d∗5 = 8.4, and

ϕr
1 = 0, ϕr

2 = 0.6, ϕr
3 = 2, ϕr

4 = 3.3, ϕr
5 = 3.9. Given initial conditions of tracking

trajectory: r0(0) = [1.8, 5]T and ψ0(0) = 0.8 with inputs v0 = 0.4 + 0.2 cos (0.2t) and

ω0 = 0.015 − 0.01 sin (0.2t) − t/4000, where t ∈ [0, 200] is the simulation time, the

relative phase for orientation alignment: ϕ∗
1 = −2, ϕ∗

2 = −1.4, ϕ∗
3 = 0, ϕ∗

4 = 1.4, ϕ∗
5 = 2,

and the reference affine transformation command G0 = (1 + 0.4 sin (0.02t))I2. Then,

with proposed design, the results are demonstrated in Figure 5.8, where the MAS forms

into desired numbered geometric pattern, keeps the centroid tracking r0, achieves natural

tracking, and adapts to the environments by G0.

In the following, we will demonstrate via simulation II - IV based on this example that

some of the existing works are special cases of ours.

• Simulation II: achieving fixed orientation as existing woks
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Figure 5.7: Desired numbered geometric pattern Figure 5.8: Overall natural tracking results

In this simulation, we will demonstrate that the existing works [22, 37–39], which

consider tracking with fixed orientation, are special cases in our design. In contrast, their

design cannot achieve natural tracking movements as ours.

The results of their design are depicted in Figure 5.9, where the formation is merely

translated with fixed orientation but not interacting with trajectory while tracking. More

specifically, no matter where the formation is and how the reference trajectory changes, the

MAS orientation remains directing toward northwest. To achieve the case of tracking with

fixed orientation, we can simply replaceψ0 in the desired center vector c∗k by a constant, as

claimed in Remark 3.2. In this example, c∗k is changed to [cos (3π
4
+ ϕ∗

k), sin (3π
4
+ ϕ∗

k)]
T ,

for k = 1, . . . , 5, such that the MAS orientation points to northwest invariantly. The re-

sult of our method is demonstrated in Figure 5.10, where tracking with fixed orientation

is successfully achieved. Moreover, the rest of features, such as saturated inputs, online

adaptation, still remain. As a result, their results as in Figure 5.9 may collide with the

environments, while ours in Figure 5.10 do not. Note that compare Figure 5.8 with Fig-

ure 5.10, we believe the former is with more natural movements while tracking.

• Simulation III: achieving pre-defined orientation as existing works
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Figure 5.9: Tracking with fixed orientation by
existing works

Figure 5.10: Tracking with fixed orientation by
our design

In this simulation, we will illustrate that the existing works [23,26,40], which consider

tracking with pre-defined orientation, are still special cases in our design. Likewise, their

design still cannot achieve natural tracking movements as ours.

Similar to simulation II, to achieve the case of tracking with pre-defined orientation,

we can simply replace ψ0 in the desired center vector c∗k by the pre-defined signal, as

claimed in Remark 3.2. For example, we changeψ0 to be pre-defined signal 3π
4

cos (0.05t),

that is, c∗k = [cos (3π
4

cos (0.05t) + ϕ∗
k), sin (3π

4
cos (0.05t) + ϕ∗

k)]. Then, the simulation

result is provided in Figure 5.11, where the MAS orientation is varying according to the

pre-defined signal while tracking. Once again, the rest of features, such as distributed

communications, realizing in local reference frames, still remain. In contrast, the existing

works require a global reference frame and simultaneous clock to achieve the result as in

Figure 5.11, since they directly design the desired position of each agent with respect to

the global reference frame at each time instant without or with scarce cooperation.

Moreover, it seems that natural tracking can be achieved by designing the pre-defined

signal manually according to the reference trajectory. However, in fact, their design can-
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not achieve natural tracking neither, since the trajectory is neither globally accessible nor

known in advance, or say, may dynamically changes. As a result, the pre-defined signal

cannot incorporate information of the reference trajectory in advance. In other words, the

natural tracking cannot be achieved by manually designing the pre-defined signal.

Figure 5.11: Tracking with pre-defined orientation by our design

• Simulation IV: affine transformation of desired geometric pattern

In this simulation, we will show that our design also has the capability of supporting

affine transformation for desired geometric pattern as in [14]. Moreover, we relax the

requirements of special assumptions on communications they impose.

Given the reference affine transformation G0 ∈ R2×2 defined as

G0 = b(t)I2 + (a(t)− b(t))[cosψ0, sinψ0]
T [cosψ0, sinψ0],

where a(t) = 1 + 0.25 sin (0.08t− 4.4) and b(t) = 0.6 + 0.4 cos (0.08t− 4.4). Note

that G0 requires information of ψ0, and since both of them are accessible to the agent

communicates with ‘agent-0’, it is feasible in our settings. The reason of including ψ0 is to
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make the affine transformation act on the moving direction, which coordinates with natural

tracking movements. The result carried out by our design is demonstrated in Figure 5.12,

where the desired geometric pattern is scaling and transforming such that the spreading

angle of the pattern is altering.

As mentioned in the first paragraph, [14, 43] can achieve such affine transformation

as depicted in Figure 5.12. However, they require the communication graph to be rigid,

be undirected, and have at least three agents to receive reference information. Even more,

they assume the communication graph is known in advance, and cannot be altered after

the controller is designed. More specifically, since their design requires the knowledge

of communication graph, once the controller is designed, it can merely support the only

communication. While in our design, the controller can support all directed and undi-

rected communications as long as satisfying Assumption 3.1. In addition, case of switch-

ing communication is considered in our design, while the result in [14] sticks to fixed

communication since the controller is only valid to the communication graph.

Figure 5.12: Affine transformation coordinating with natural tracking by our design

• Simulation V: inputs with saturation versus inputs without saturation
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In this simulation, we will focus on the issue of input saturation which is crucial but

most existing works ignore. The comparison between inputs with saturation and inputs

without saturation by our method is demonstrated in Figure 5.13, where Figure 5.13(a) is

the same as Figure 5.8. Note that the inputs without saturation by our method means that

the saturation function constrained on (3.19) is removed.

(a) Results of inputs with saturation (b) Results of inputs without saturation

Figure 5.13: The results of inputs with and without saturation are provided in (a) and (b), respectively, where
the case of inputs without saturation has faster convergence.

As one can see from the results in Figure 5.13, the case of inputs without saturation has

faster convergence. Such acceleration of convergence is expected due to the larger gain,

larger inputs range. As a result, the control inputs of both cases are provided in Figure 5.14

to validate the speculation. Despite that larger inputs lead to the faster convergence, satu-

ration constraints are crucial in reality due to the physical limitations. As a result, clinging

the inputs to constrained ranges is the more feasible design.
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(a) Magnitude of inputs with saturation (b) Magnitude of inputs without saturation

Figure 5.14: The magnitudes of inputs are much larger in the case of without saturation, which results in
the faster convergence.

5.2 Results for Ordered Rotating

In this section, we will provide simulation for the design in Chapter 4, where the MAS

is extended to the case of tracking with incessant rotation. Since most of the features of our

design have been demonstrated in Section 5.1, we will focus on the property of ordered

rotating formation in the following.

• Simulation VI: results of Theorem 4.1

In this simulation, we provide the overall results for considered problem in Chapter 4.

Then, in the following simulation scenarios, we will demonstrate the novelty of ordered

rotating formation over existing works.

Consider a MAS with 5 numbered agents with the desired numbered geometric pattern

as shown in Figure 5.1, where d∗k = 5 for k = 1, . . . , 5, and ϕr
1 = 0, ϕr

2 = 2π
5

, ϕr
3 = 4π

5
,

ϕr
4 = 6π

5
, ϕr

5 = 8π
5

, as defined in Section 2.3. Besides, the switching signal is depicted

in Figure 5.16, where the 4 strongly connected communication graphs are shown in Fig-

ure 5.17. Given initial conditions of tracking trajectory: r0(0) = [1.8, 4.9]T and ψ0(0) =
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0.77 with inputs v0 = 0.4 + 0.2 cos (0.2t) and ω0 = 0.015 − 0.01 sin (0.2t) − t/4000,

where t ∈ [0, 200] is the simulation time, the desired angular velocity ϖ0 = 0.1, and the

reference affine transformation command G0 = (1+0.4 sin (0.02t))I2, where I2 is 2-by-2

identity matrix. Note that these information are ‘not’ globally accessible.

Figure 5.15: Desired numbered geometric pattern for
ordered rotating

Figure 5.16: Switching signal for ordered rotat-
ing

(a) G1 (b) G2 (c) G3 (d) G4

Figure 5.17: Four strongly connected communication graphs (agent-0 denotes exogenous reference)

The parameters in control laws are selected as c1 = 2, c2 = 1, β1 = 3, β2 = 3, δ = 0.3,

β3 = 2, β4 = 1, β5 = 5, γ1 = 2, γ2 = 0.8, γ3 = 1. Then, with the update law (4.4), the

proposed distributed control laws (4.5), (4.15) - (4.18) and the constrained control inputs

(4.14), the simulation result is demonstrated in Figure 5.18. As one can see, the MAS

forms into the desired numbered geometric pattern, keeps its centroid tracking r0, rotates

around the centroid, and dynamically scales smaller to safely pass through the valley by

G0. We emphasize that our designed control laws, (4.5), (4.15) - (4.18) and (4.14), are

distributed and realized in each agent’s local reference frame.

Once again, since we consider saturation constraints of control inputs vk and ωk, the
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Figure 5.18: Overall results of ordered rotating

saturated linear velocity command and saturated angular velocity command are shown in

Figure 5.19(a) and Figure 5.19(b), respectively, to validate our design.

(a) linear velocity input, vk (b) angular velocity input, ωk

Figure 5.19: Inputs are within saturation ranges

• Simulation VII: ordered rotating by our design vs. non-ordered cases in existing works

In this simulation, we will compare our design for ordered rotating with existing works,

such as [25, 28, 32], which mostly do not consider the issue of order. In the following,

we will provide two scenarios with different initial agents’ positions but the same of rest

settings, and then show that existing works will lead to different order cases, while by or

design, the same pre-defined order can be guaranteed.

Consider two cases of initial conditions: (1) r1(0) = [5.6,−6.2]T , r2(0) = [−4.8, 8]T ,
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r3(0) = [1.9, 0.1]T , r4(0) = [2.3, 6.4]T , r5(0) = [0.6,−6]T , and (2) r1(0) = [−8.6, 4.1]T ,

r2(0) = [8.6,−3.8]T , r3(0) = [3,−7]T , r4(0) = [3.9, 2.5]T , r5(0) = [−9.1, 6]T . With the

rest of signals and parameters as given in Simulation VI, the results are demonstrated in

Figure 5.20 and Figure 5.21, which are by our design and existing works, respectively. By

our design, the formation is guaranteed to achieve ordered pentagon in both cases. While

by existing works, though the patterns are correctly formed, the orders are not guaranteed

as depicted in Figure 5.21(a) and Figure 5.21(b). In other words, the order of formation

by their designs is affected by initial conditions, and thus cannot be predicted.

(a) result of case (1) by our design (b) result of case (2) by our design

Figure 5.20: Results of two initial positions by our design, where the order is guaranteed

(a) result of case (1) by existing works (b) result of case (2) by existing works

Figure 5.21: Results of two initial positions by existing works, where the order alters
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• Simulation VIII: issue of online adaptation and constrained inputs

In this simulation, since few existing works, such as [16,17], consider transformation

of desired geometric pattern, we will provide some discussions and comparisons in the

following. The results by our design and by their controllers are shown in Figure 5.22(a)

and Figure 5.22(b), respectively.

(a) result of our design (b) result of existing works

Figure 5.22: Results of our design and existing works in ordered rotating with transformation

It seems that the results in Figure 5.22 have no much difference. In fact, from one

aspect, the results of existing works cannot achieve ordered rotating as depicted in Fig-

ure 5.22(b). From another aspect, the control inputs have remarkable differences, as shown

in Figure 5.23. The reason is that the authors in [16,17] apply model transformation from

integrator model to unicycle model, where the singularity may happen. As a result, the

control inputs of their design may lead to large magnitudes as drawn in Figure 5.23(b).
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(a) Magnitude of inputs by our design (b) Magnitude of inputs by existing works

Figure 5.23: The magnitudes of inputs are much larger in the case of existing works.
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Chapter 6

Conclusion

In this thesis, we consider general dynamic maneuver control of Multi-Agent System,

which includes tracking, rotating, and transforming. Moreover, the designed approach

endows the formation with ability of online adaptation. In contrast to most existing works

which neglect physical limitations, we consider nonholonomic constraints, communica-

tion constraints, and input saturation, which makes our design more feasible in reality. In

other words, our proposed control laws are in distributed manners and realized in agents’

local reference frames; in addition, the linear and angular velocity inputs are constrained

within specified ranges which reflect physical restrictions.

The main results are given in Chapter 3 and Chapter 4. In Chapter 3, the constrained

controls are designed such that the MAS can track a reference trajectory with online adap-

tation via affine transformation of desired geometric pattern. An appealing attribute of our

design is that the MAS orientation while tracking is generally designed, and particularly,

the concept of natural tracking movements is proposed which is a more natural motion

compared with existing works. In Chapter 4, to cover more maneuver actions which then

supports more real applications, we extend the tracking results to the case of tracking with
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rotation around centroid of MAS. The controls such that the MAS can track a reference

trajectory with online adaptation and meanwhile rotate around the centroid are designed.

Moreover, the issue of ordered rotating is solved by our proposed ‘phase penalty flow

exchange mechanism’.

In the future work, we may consider communication delays which is a realistic issue

when considering communication constraints.
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