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中文摘要 

 

由於硬體方面的快速發展，運算資源相較於數十年前更加容易取得。近年來，

壓縮感測藉由運算速度的提升拓展了我們的視野，與限制於著名的夏農取樣定理

(Shannon’s sampling theorem) 的傳統取樣方法有所不同。壓縮感測利用了訊號的稀

疏性來達成突破傳統取樣率的限制，讓我們認為也可以利用其他方面的特性來達

成同樣的效果。因此，我們嘗試使用在信號處理領域常見的時頻分析工具來做為

突破點。眾所周知的是，一個訊號的最低取樣點數限制與時頻分析圖上的面積有

著正相關，而這正是我們要用來設計壓縮演算法的關鍵概念。 

 

在這篇碩士論文中，我們將會運用時頻分析來實作對於壓縮聲音訊號的應用。

不同於廣泛出現在生活中的 MP3 與 M4A 壓縮演算法，被捨棄的資料並非由人類

的聽覺範圍決定，取而代之的是時頻分析圖上小於臨界值的點或是面積較小的區

塊。時頻分析的結果會被分為各個不同的區塊，作為初步的切割結果。接著，我

們將切割完的時頻分析做時頻重配(time-frequency reassignment)，運用提出的預切

法(pre-cut scheme)、間隙連接法(gap connection scheme)、頭尾法(head and tail scheme)

以及頻寬估計(fixed bandwidth estimation)，因而得到更進一步的信號成分分割結

果。 

 

我們的下一步為近似信號成分的分割結果。對於每個信號成分，我們使用一

般化調變(generalized modulation)來進行降頻並且降低單一成分的最大頻寬。接著，

我們使用兩種方法來對調變過後的信號成分近似並壓縮，分別為降採樣法(the 

downsampling method)及勒壤得多項式法(the Legendre polynomial method)。降採樣

法由於信號成分較小的頻寬，可以有效降低所需要的採樣點數，進而達到壓縮的
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效果。勒壤得多項式法則是經由勒壤得多項式來尋找信號成分的稀疏表達方式，

轉換成較少係數的結果。壓縮過後的資料與還原資料所需要的參數共同被編碼為

一個封包，得到最後的壓縮結果。封包結果容易解碼且只需逆向操作即可進行還

原重建。我們所提出的演算法，藉由在時頻分析上切割信號，以降低時頻分析圖

上多餘的空白處，因而減少需要儲存的壓縮信號。雖然運算的時間相對較長，但

在部分信號相較於常見的壓縮格式，可以同時擁有較高壓縮率以及較低重建誤差

率的明顯較佳結果。 

 

關鍵字：壓縮感測、時頻分析、時頻重配、一般化調變、降採樣法、勒壤得多項

式法 
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ABSTRACT 

 

Due to the fast developments in hardware, the computation resources are available 

more easily than decades ago. In recent years, compressive sensing broadens our 

horizons by the promotion of the computation speed, which is different from the 

conventional sampling approaches limited to the celebrated Shannon’s theorem. The 

sparsity properties of signals are utilized by compressive sensing to break thorough the 

limitation of the traditional sampling rate, which makes us consider that the identical 

effect can be achieved by the characteristics in other aspects. As a result, we manage to 

take advantage of the time-frequency analysis tool commonly used in the field of the 

signal processing as a breakthrough point. It is known that the lower bound of the 

number of sampling points is positively associated with the area of the time-frequency 

analysis, which is exactly the key concept of designing our algorithm to compress the 

target signal. 

 

In this master thesis, we use the time-frequency analysis to implement the 

application of the vocal signal compression. Different from the widespread MP3 and 

M4A compression algorithms in life, the data discarded is determined by the pixels 



doi:10.6342/NTU201902199

v 

 

below the threshold or the blocks with small area instead of the human hearing 

capability. The consequence of the time-frequency analysis is divided into several 

blocks as the primary segmentation result. Then, we execute the time-frequency 

reassignment to the segmentation result with proposed schemes, such as the pre-cut 

scheme, the gap connection scheme, the head and tail scheme, and the fixed bandwidth 

estimation, to obtain the further signal components segmentation result.  

 

Our next step is to approximate the segmentation result of the signal components. 

For each component, we utilized the generalized modulation to lower the frequency and 

decrease the maximum bandwidth of single component. Then, we adopt two methods to 

approximate and compress the modulated signal components, which are the 

downsampling method and the Legendre polynomial method. The downsampling 

method can effectively decrease the number of sampling points to compress the data 

due to the smaller bandwidths of the signal component, while the Legendre polynomial 

method manages to find the sparse representations of the signal components by the 

Legendre polynomials and transforms the signal into less coefficients. The compressed 

data and the parameters needed for recovering the data are encoded into a package, 

which is the final compression result. The packages are easily decoded and able to be 
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reconstructed with only reverse operation. Our proposed algorithm divides the target 

signal with the time-frequency analysis to reduce the redundant space on the figure and 

hence decreases the compressed signal for storage. In spite of relatively large 

computation time, the better result of higher compression ratio and lower reconstruction 

error holds in the meanwhile in some cases, compared to common compression formats. 

 

Index term — compressive sensing, time-frequency analysis, time-frequency 

reassignment, generalized modulation, downsampling method, Legendre polynomial 

method. 
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Chapter 1 Introduction 

 

1.1 Motivation 

In data compression area, researchers dedicate to develop a compression algorithm 

to minimize the reconstruction error and maximize the compression ratio. In 1993, a 

coding format for digital audio, the well-known MP3, has been developed as the third 

audio format of the MPEG-1 standard. It encodes data by using inexact approximation 

and getting rid of some data, which is called lossy compression, to reduce the 

components beyond the human hearing capability. Huge reduction in file size and 

acceptable fidelity make the format become a sensation in the distribution of music. 

Few years later, another format called Advanced Audio Coding (AAC) is developed as 

the successor of the MP3 format. However, the compression ratio of AAC is generally 

better than MP3. Both formats are widely used as compression algorithms to reduce the 

file size of original audio signals such like WAV files. 

In recent years, the most famous related field is definitely compressive sensing, 

which is not limited by the Nyquist rate in the conventional sampling theory. As a new 

breakthrough, the idea of reducing the sampling rate can also be implemented in the 

time-frequency analysis without aliasing effect. It is known that the area of the 

time-frequency analysis is concerned with the lower bound of the number of sampling 
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points, which can be utilized to design an algorithm to compress data. If high frequency 

components of a signal can be transformed into low frequency components, or the 

scattered components can be divided and reassigned, the sampling frequency and the 

number of sampling points will be reduced. Moreover, the bases for compressive 

sensing can be also utilized to approximate the signal and find the sparse representation, 

which is able to be viewed as a compression algorithm. 

Based on the above notions, we hope to propose an algorithm to compress data 

from perspective of time-frequency analysis and compressive sensing. Trivially, the 

compression ratio and the reconstruction error are supposed to be the primary measures 

of the algorithm. 

 

 

1.2 Primary Contributions 

In our thesis, we propose an algorithm with two approximation methods. Unlike 

common compression algorithms, we use time-frequency analysis such as the Gabor 

transform and the Wigner distribution function to determine the components which are 

supposed to be neglected. Then we take advantage of time-frequency reassignment to 

distinguish components from each other, narrow the bandwidths by the generalized 

modulation and approximate components by the downsampling method and the 
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Legendre polynomial basis method. The compressed data are simply encoded into a 

package which is able to be decoded easily. 

This thesis is organized as follows. In Chapter 2, we will review some concepts 

like compressive sensing, matching pursuit, basis pursuit, some other expansion 

methods and common bases for expansion. Our proposed work will be introduced in 

Chapter 3, including time-frequency analysis, time-frequency reassignment, signal 

components approximation, and signal reconstruction scheme. In the part of 

time-frequency analysis, we present two practical transforms and the combination of 

them, and the segmentation scheme. The section for time-frequency reassignment 

includes the optional pre-cut scheme, the gap connection scheme, the optional head and 

tail scheme, and the fixed bandwidth estimation. In the section of signal components 

approximation, there are the generalized modulation, the downsampling method, the 

Legendre polynomial basis method, and the encoding scheme. The section for the signal 

reconstruction scheme includes the decoding scheme and the reconstruction of both 

methods. Simulation results are demonstrated in Chapter 4, while the discussion of the 

simulation is provided in Chapter 5. Finally, Chapter 6 concludes this thesis and 

proposes the future work. 
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Chapter 2 Related Work 

In this chapter, we will introduce some concepts related to our work, such as 

compressive sensing, some algorithms or principles for the expansion of signal, and 

some practical bases commonly selected as the dictionary of expansion. Moreover, our 

work can be improved to be adaptive to a numerous variety of signals depending on 

different concepts and methods we will mention in the following. 

 

 

2.1 Compressive Sensing 

Approaches to sampling signals in traditional way are supposed to follow 

Shannon’s theorem: the sampling rate, must be at least twice the maximum frequency 

present in the signal, which is called Nyquist rate. In effect, this famous principle 

applies in most of technologies related to communication engineering. Compressive 

sensing, also known as compressive sampling or CS, is a new notion that goes against 

the conventional knowledge about signal sampling and data acquisition. Compressive 

sensing makes it possible under certain conditions that one can recover signals from 

fewer measurements than conventional methods do. 
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2.1.1 The sensing problem 

The sensing problem is the main idea of compressive sensing that information 

about a signal f(t) is depicted as a linear combination of functions recording the values: 

𝑦𝑘 = 〈𝑓, 𝜑𝑘〉,       𝑘 = 1,2, … 𝑚     (2.1) 

Simply, we correlate a signal f with some sensing waveforms φk(t) to get the 

sampled values. For instance, if the sensing waveforms are Dirac delta function, y is a 

vector of sampled values of f at a certain time in time domain. If φk(t) is sinusoidal 

functions, then y is a vector of Fourier coefficients. The most famous application of this 

principle is magnetic resonance imaging (MRI). 

However, compressive sensing is interested in undersampled situation m ≪ n in 

which the number of measurement m is much smaller than the dimension n of the signal 

f. In order to achieve the goal, compressive sensing relies on two principles: the sparsity 

of the signals and the incoherence of sensing modality. 

 

2.1.2 Sparsity 

Sparsity of the signal expresses that the information of a signal may be much 

smaller than its finite length. In fact, compressive sensing shows that many natural 

signals can be more sparse and compressible when expressed in a proper basis. For 

example, Fig. 2-1 shows that the image has concise representation expressed in its 
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wavelet transform and the difference between the original image and the reconstruction 

image is barely noticeable.  

   

(a)           (b)         (c) 

Fig. 2-1 The example of compressive sensing. (a) Original image with pixel values in 

the range [0,255] (b) Wavelet transform coefficients of the image (c) The reconstruction 

obtained by 25000 largest wavelet coefficients. [1]  

 

Suppose we have a vector f ∈ R
n
. We can express f in an orthonormal basis Ψ = 

[ψ1ψ2…ψn] as follows: 

𝑓(𝑡) = ∑ 𝑥𝑖𝜓𝑖(𝑡)𝑛
𝑖=1 ,       (2.2) 

where we can say that f equals Ψ x, Ψ is the n×n matrix and x is the coefficient 

sequence of f, 𝑥𝑖 = 〈𝑓, 𝜓𝑖〉. Sparsity implies that the small coefficients of the signal can 

be eliminated without perceptual loss if the signal has a sparse expansion. Consider fs(t) 

composed of terms corresponding to the S largest values of x in the expansion. Define fs 

= Ψ xs, where xs is the vector of coefficients of x with all set to zero except for the S 
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largest components. We call S-sparse such objects with at most S nonzero entries. Since 

Ψ is an orthonormal basis, then we have:  

‖𝑓 − 𝑓𝑠‖2 = ‖𝑥 − 𝑥𝑠‖2,        (2.3) 

and if x is sparse, the value would be small because x and xs are approximated. 

 

2.1.3 Incoherence 

The duality between time and frequency domain also exists in the compressive 

sensing theory. Incoherence indicates that the sensing waveforms have a dense 

representation in Ψ while the original signal is spread out in the domain in which it is 

acquired. Suppose we are given a pair (Φ, Ψ) of orthonormal basis of R
n
, which means 

the basis for sensing the signal f and that for representing f. The coherence between the 

sensing basis Φ and the representation basis Ψ is: 

𝜇(Φ, Ψ) = √𝑛 ∙ max1≤𝑘,𝑗≤𝑛|〈𝜑𝑘 , 𝜓𝑗〉|,         (2.4) 

which measures the largest correlation between any two elements of Φ and Ψ. Linear 

algebra implies that μ (Φ, Ψ) ∈ [1, √𝑛]; see also [2]. We mostly concerned with low 

coherence pairs of basis in compressive sensing. For instance, if Φ is the spike basis 

with φk(t) = δ (t-k) and Ψ is the Fourier basis with ψj(t) = n
-1/2

e
 i 2π jt/n

, the situation 

equals to the conventional sampling method in time domain. The basis pair of this 

time-frequency transform conforms to μ (Φ, Ψ) = 1, so called “maximal incoherence” in 
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this example. Another example comes to the wavelet basis for Ψ and noiselet [3] basis 

for Φ. 

 

2.1.4 Sparse signal recovery 

The completion of reconstruction would be done if we can measure all the n 

coefficients of f, but we only observe a subset of them and collect the data 

𝑦𝑘 = 〈𝑓, 𝜑𝑘〉,       𝑘 ∈ 𝑀,           (2.5) 

where M ⸦{1,2,…,n} is a subset of cardinality m < n. The signal is recovered by 

ℓ1-norm minimization and the proposed reconstruction f 
*
= Ψ x

*
, where x

*
 is the 

solution to the convex optimization program 

min𝑥̃∈𝑅𝑛‖𝑥̃‖ℓ1
 subject to 𝑦𝑘 = 〈𝜑𝑘, Ψ𝑥̃〉,   ∀𝑘 ∈ 𝑀    (2.6) 

and ‖𝑥̃‖ℓ1
 is defined as the summation of each component of 𝑥̃: 

‖𝑥̃‖ℓ1
∶= ∑ |𝑥̃𝑖|𝑖 .         (2.7) 

The use of ℓ1-norm as a sparsity-promoting function has a long history, like reflection 

seismology [4]. However, there are other proposed methods such as greedy algorithms 

can be the approach to reconstructing sparse solutions [5]. 

The recovery by ℓ1-norm minimization is exact with overwhelming probability 

when the signal f is sufficiently sparse. Suppose that f ∈ R
n 

and the coefficient 

sequence x of f is S-sparse in the basis Ψ. Given some positive constant C, the solution 
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is exact if 

𝑚 ≥ 𝐶 ∙ 𝜇2(Φ, Ψ) ∙ 𝑆 ∙ log 𝑛      (2.8) 

holds when we select m uniformly random measurements in the Φ domain. Obviously, 

the smaller the coherence, the fewer measurements are needed, which corresponds to 

the importance of incoherence system. In addition, suppose the probability of success Ps, 

it is guaranteed in [6] that 

𝑃𝑠 ≥ 1 − 𝛿 if 𝑚 ≥ 𝐶 ∙ 𝜇2(Φ, Ψ) ∙ 𝑆 ∙ log(
𝑛

𝛿
)     (2.9) 

for nearly all x with a fixed support. 

 

2.1.5 Robustness and Restricted Isometry Property (RIP)  

In this section, we will discuss the robustness of compressive sensing for two 

issues. The first is whether or not it is possible to recover accurately the signal of only 

approximately sparse but not exactly sparse from highly undersampled measurements. 

Second, the measured data is inevitable corrupted by a small amount of noise because of 

no perfect sensing devices. Restricted isometry property (RIP) [7] is very useful as a 

key notion about the robustness of compressive sensing. 

Consider recovering a vector x ∈ R
n
 from data 

𝑦 = 𝐴𝑥 + 𝑧,         (2.10) 

where A is an m×n matrix and z is unknown error term. Since f = Ψ x and y = Φ f, we 
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can write y = A x with A = Φ Ψ. For positive integers S = 1, 2, … , we have the RIP 

inequality 

(1 − 𝛿𝑆)‖𝑥‖ℓ2

2 ≤ ‖𝐴𝑥‖ℓ2

2 ≤ (1 + 𝛿𝑆)‖𝑥‖ℓ2

2 ,     (2.11) 

where the isometry constant δS of a matrix A is the smallest number such that the 

inequality holds for all S-sparse vectors x. In other words, all subsets of S columns from 

A are nearly orthogonal (not exactly since m < n). If the RIP holds, the linear program 

of reconstruction 

min𝑥̃∈𝑅𝑛‖𝑥̃‖ℓ1
 subject to y = 𝐴𝑥̃       (2.12) 

will be accurate. 

With noisy data z and the use of ℓ1-norm minimization for reconstruction, 

min𝑥̃∈𝑅𝑛‖𝑥̃‖ℓ1
 subject to ‖𝑦 − 𝐴𝑥̃‖ℓ2

≤ 𝜖,    (2.13) 

where ϵ bounds the amount of noise, can be solved easily as a second-order cone 

program. Given that δ2S < √2 − 1, for some constants C0 and C1, the solution x
*
 obeys 

‖𝑥∗ − 𝑥‖ℓ2
≤ 𝐶0 ∙

‖𝑥−𝑥𝑆‖ℓ1

√𝑆
+ 𝐶1 ∙ 𝜖,        (2.14) 

which is variated from the result in [8]. Moreover, the constants C0 and C1 are typically 

not large, for example, if δ2S = 0.25, C0 ≤ 5.5 and C1 ≤ 6. Fig. 2-2 shows a simulation 

of reconstruction from a noisy data. The sensing matrix has i.i.d. N(0, 1/m) entries with 

m = 256 and n = 512, and z is Gaussian white noise so that 
‖𝐴𝑥‖ℓ2

‖𝑧‖ℓ2

= 5. The result shows 

that ‖𝑥∗ − 𝑥‖ℓ2
≈ 1.3𝜖 and implies the practicality of compressive sensing with not 
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only sparse signals but the ability against noise.  

 

Fig. 2-2 A signal x and its reconstruction x
*
 recovered by (2.13). [1] 

 

 

2.2 Matching Pursuit and Basis Pursuit 

 Speaking of the reconstruction of compressive sensing, it always comes with a 

solution of an underdetermined system y = D x, where y has less components than x. It 

implies that the system has more unknowns than equations and therefore generally has 

an infinite number of solutions. In order to choose a solution to this system, we must 

add some constraints appropriately, such as the sparsity of the signal in compressive 

sensing. Nevertheless, not all systems have a sparse solution. There are many 

algorithms we can use to solve the underdetermined system. In this section, we will 

introduce some algorithms and optimization principles to recover the signal: matching 

pursuit and basis pursuit [10]. 
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2.2.1 Matching pursuit (MP) 

Matching pursuit is a kind of sparse approximation greedy algorithm which was 

first proposed by Mallat and Zhang [9]. They discussed the decomposition with the 

sparsity issue directly. Similar algorithms were also proposed later by Qian and Chen 

for Gabor dictionaries [10] and by Villemoes for Walsh dictionaries [11]. The basic idea 

is to approximately represent a signal f from Hilbert space H as a linear combination of 

functions 𝑔𝛾𝑛
, which is taken from D and called “atoms,” to find the projections of 

multidimensional data onto the span of a redundant dictionary D.  

Suppose that the atoms are normalized in the dictionary D. A signal can be 

approximated with N atoms by 

𝑓(𝑡) ≈ 𝑓𝑁̂(𝑡) ∶= ∑ 𝑎𝑛
𝑁
𝑛=1 𝑥𝑛(𝑡),        (2.15) 

where an is the coefficients for the atom xn, the n-th column of dictionary D. The 

algorithm starts with finding the atom reducing the most approximation error by inner 

product such that  

|〈𝑓, 𝑥1〉| ≥ α ∙ 𝑠𝑢𝑝𝑗|〈𝑓, 𝑥𝑗〉|,        (2.16) 

where α is an optimality factor that satisfies 0 < α ≤ 1, and the vector f can be 

decomposed into  

𝑓 = 〈𝑓, 𝑥1〉𝑥1 + R1𝑓,         (2.17) 
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where R1f is the residual vector after approximating f in the direction of x1. Then we 

subtract the projection from the signal. Last but not least, given the n-th order residual 

Rnf, for n ≥ 0, repeat the above two steps as follows until the stopping criterion (which 

is usually that the residual is satisfactorily small) is satisfied: 

|〈R𝑛𝑓, 𝑥𝑛+1〉| ≥ α ∙ 𝑠𝑢𝑝𝑗|〈R𝑛𝑓, 𝑥𝑗〉|,     (2.18) 

and the residual Rnf is subdecomposed into  

R𝑛𝑓 = 〈R𝑛𝑓, 𝑥𝑛+1〉𝑥𝑛+1 + R𝑛+1𝑓.     (2.19) 

We decompose f into the concatenated sum, and therefore yield 

𝑓 = ∑ 〈R𝑛−1𝑓, 𝑥𝑛〉𝑁
𝑛=1 𝑥𝑛 + R𝑁𝑓       (2.20) 

and an energy conservation equation 

‖𝑓‖2 = ∑ |〈R𝑛−1𝑓, 𝑥𝑛〉|2𝑁
𝑛=1 + ‖R𝑁𝑓‖2.     (2.21) 

Matching pursuit can produce an approximation of the signal by only a few atoms 

when it is stopped after a few iterations. If the dictionary is orthogonal, the algorithm 

goes perfectly and recovers the sparse signal exactly. However, if the dictionary is not 

orthogonal, things may go wrong in the first few iterations and therefore it spends most 

of time correcting mistakes. The result will be suboptimal in general. Later, a refinement 

of the matching pursuit algorithm with orthogonalization was referred to as orthogonal 

matching pursuit (OMP). 
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2.2.2 Orthogonal matching pursuit (OMP) 

 The modified algorithm of MP called orthogonal matching pursuit (OMP) was first 

proposed by Pati, Rezaiifar, and Krishnaprasad [12]. The main difference between MP 

and OMP is that OMP orthogonalize all chosen atoms in each iteration to converge 

faster and ensure the full backward orthogonality of the error, while OMP requires the 

additional computation. 

Assume that for f ∈ H, we have the k
th
-order model 

𝑓 = ∑ 𝑎𝑛
𝑘𝑘

𝑛=1 𝑥𝑛 + R𝑘𝑓, with 〈R𝑘𝑓, 𝑥𝑛〉 = 0,   𝑛 = 1,2, … , 𝑘    (2.22) 

and the updated (k+1)
th
-order model  

𝑓 = ∑ 𝑎𝑛
𝑘+1𝑘+1

𝑛=1 𝑥𝑛 + R𝑘+1𝑓, with 〈R𝑘+1𝑓, 𝑥𝑛〉 = 0,   𝑛 = 1,2, … , 𝑘 + 1,  (2.23) 

where the superscript k in the coefficients implies the dependence of the model order. 

We subtract one equation from the other and yield 

∑ (𝑎𝑛
𝑘+1 − 𝑎𝑛

𝑘)𝑘
𝑛=1 𝑥𝑛 + 𝑎𝑘+1

𝑘+1𝑥𝑘+1 + R𝑘+1𝑓 − R𝑘𝑓 = 0.   (2.24) 

Here, we decompose xk+1 with an auxiliary model 

𝑥𝑘+1 = ∑ 𝑏𝑛
𝑘𝑘

𝑛=1 𝑥𝑛 + 𝛾𝑘 , with 〈𝛾𝑘 , 𝑥𝑛〉 = 0,   𝑛 = 1,2, … , 𝑘,    (2.25) 

since the dictionary is not orthogonal. If the equation of the difference holds, then the 

following two equations decomposed from it will also hold for sure: 

𝑎𝑛
𝑘+1 = 𝑎𝑛

𝑘 − 𝑎𝑘+1
𝑘+1𝑏𝑛

𝑘       (2.26) 

𝑎𝑘+1
𝑘+1𝛾𝑘 + R𝑘+1𝑓 − R𝑘𝑓 = 0.       (2.27) 
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The only problem remaining is to find the solution of 𝑎𝑘+1
𝑘+1. We arrange the last 

equation and the answer is evident by the inner product with xk+1 on both sides. Since 

xk+1 is orthogonal with Rk+1f, the new coefficient of the new dictionary element for the 

updated model is 

𝑎𝑘+1
𝑘+1 =

〈R𝑘𝑓,𝑥𝑘+1〉

〈𝛾𝑘,𝑥𝑘+1〉
=

〈R𝑘𝑓,𝑥𝑘+1〉

‖𝛾𝑘‖2 .       (2.28) 

We put the solution back to the equation with both sides squared, and it follows that the 

relation between residuals of two iterations 

‖R𝑘𝑓‖2 = ‖R𝑘+1𝑓‖2 +
|〈R𝑘𝑓,𝑥𝑘+1〉|2

‖𝛾𝑘‖2 ,    (2.29) 

since γk and Rk+1f are orthogonal. The residual is updated with a smaller value, which 

shows the convergence of the algorithm. 

The algorithm is constructed by the previous results. First, find xk+1 in (2.18) from 

the dictionary D minus Dk, which means the selected dictionary after k iterations, in 

order not to choose the same elements. Compute {𝑏𝑛
𝑘}𝑛=1

𝑘  and 𝛾𝑘  in (2.25), solve 

(2.28) for 𝑎𝑘+1
𝑘+1 , and then subtract the coefficients {𝑎𝑛

𝑘}𝑛=1
𝑘  from 𝑎𝑘+1

𝑘+1 ∙ {𝑏𝑛
𝑘}𝑛=1

𝑘  

respectively by (2.26), which means the projections of {𝑥𝑛}𝑛=1
𝑘  onto xk+1. Finally, 

update the residual 

R𝑘+1𝑓 = 𝑓 − 𝑓𝑘+1 = 𝑓 − ∑ 𝑎𝑛
𝑘+1𝑘+1

𝑛=1 𝑥𝑛    (2.30) 

and the dictionary 𝐷𝑘+1 = 𝐷𝑘 ⋃{𝑥𝑘+1}, and repeat the process until certain stopping 

criterion is satisfied. 
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 MP and its orthogonal version OMP are both related to the field of compressive 

sensing and have been extended by other researchers, such as [13], [14] and [15]. Some 

modifications are made to improve the efficiency of original algorithms. For instance, 

multipath matching pursuit (MMP) [16], which investigates multiple promising 

candidates to recover sparse signals form CS, compressive sampling matching pursuit 

(CoSaMP) [17], which accelerates the algorithm and provides strong guarantees that 

OMP cannot, generalized OMP (gOMP) [18], which finishes the algorithm with much 

smaller number of iterations when compared to the OMP, and stagewise OMP (StOMP) 

[19], which makes multiple coefficients enter the model at each stage. 

 

2.2.3 Basis pursuit (BP) 

Basis pursuit (BP) is an optimization principle, not an algorithm, which is used to 

solve the problem of overcomplete representations by finding the coefficients with 

minimal ℓ1-norm and described in [20]. Since the dictionary is overcomplete, the signal 

can be represented as 𝑠 = ∑ 𝛼𝛾𝜑𝛾𝛾  in many ways. Mathematically, we solve α ∈ R
p
 

in the equation 

min ‖𝛼‖ℓ1 subject to Φ𝛼 = 𝑠,        (2.31) 

where s is the signal and Φ is the dictionary. The basis pursuit minimization is basically 

a convex but nonquadratic problem with linear equality constraints, and therefore it can 
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be reformulated as a linear programming (LP) problem. The standard form of linear 

programming is a constrained optimization problem with a variable x ∈ R
m
 and the 

objective function c
T
x 

min  𝑐𝑇𝑥 subject to 𝐴𝑥 = 𝑏, 𝑥 ≥ 0,     (2.32) 

where Ax=b is a collection of equality constraints and x ≥ 0 bounds the variable. We 

can reformulate the BP problem as a LP problem by transforming m into 2p, A into (Φ, 

-Φ), b into s, c into (1, 1), x into (u, v), and α into u-v. The equivalence of BP and LP 

leads us to the solution of the equation since early years [21].  

Over past decades, a great amount of work dedicated to the solution of linear 

program has been done. In this section, we will introduce two algorithms for solving the 

BP optimization problem, the simplex method and the interior-point method. For the 

simplex method, we start from a basis B composed of n linearly independent columns of 

A such that B
-1

b in feasible. Iteratively, exchange one atom in the basis from another one 

not in the basis to optimize the objective function. Geometrically, it works by jumping 

from one extreme point of the simplex to another one. Therefore, the convergence is 

guaranteed with a certain way to selecting atoms [22]. In the other hand, the 

interior-point method starts from a point inside the interior of the simplex composed of 

the feasible points set {x | Ax=b, x ≥ 0} instead of on the boundary. As the iteration 

goes, we modify the coefficients with maintaining the feasibility and improve the 
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sparsity of x. While approaching the boundary, one may quit the interior-point method 

and then use the simplex method to find the final extreme point. 

 

2.2.4 Basis pursuit denoising (BPDN) 

One practical extension of basis pursuit is called basis pursuit denoising (BPDN). 

Suppose that we have noisy data 

𝑦 = 𝑠 + 𝜎 𝑧,       (2.33) 

where s is the original signal, z is a white Gaussian noise and σ is the noise level. Here, 

we refer to the solution of  

min𝛼
1

2
‖𝑦 − Φ𝛼‖ℓ2

2 + 𝜆‖𝛼‖ℓ1       (2.34) 

instead of applying basis pursuit directly, where α
(λ)

 is a function of the penalizing 

parameter λ. The empirical value of λ is suggested as 𝜆 𝑝 = 𝜎√2 log 𝑝, where p is the 

cardinality of the dictionary. The equation is equivalent to the perturbed linear program 

with the transformation we mention in the basis pursuit before. Perturbed linear 

program is quadratic but similar to linear program, which leads to similar algorithms, 

BPDN-simplex method and BPDN-interior-point method. Moreover, there is an 

alternative algorithm for minimizing the BPDN function using a block coordinate 

relaxation (BCR) method, which can be extended to complex signals. 
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2.3 Other Expansion Methods 

2.3.1 Method of frames (MOF) 

The MOF considers a quadratic optimization problem whose coefficients have 

minimum ℓ2-norm: 

min ‖𝛼‖ℓ2 subject to Φ𝛼 = 𝑠,        (2.35) 

with linear equality constraints [23]. Geometrically, the MOF chooses the solution 

closest to the origin from an affine subspace in R
p
. The unique solution of the problem 

α
†
 can be expressed as a normal equation 

𝛼† = Φ†𝑠 = (ΦTΦ)−1ΦT𝑠,       (2.36) 

where Φ
†
 is the generalized inverse of Φ. Although it is relatively simple to find the 

solution, there are two primary problems with the MOF, sparsity preservation and 

resolution limitation. First, the coefficients found by MOF usually come from atoms 

that are not orthogonal with the signal, which means that it is hardly sparsity preserving. 

The other problem is that the signal is reconstructed by the operator Φ
†
Φ with limited 

resolution. In other words, the reconstruction with the overcomplete dictionary will be 

spread out since the reconstruction will be Φ
†
Φα instead of α. Fig. 2-3 shows the 

analysis of the signal TwinSine composed of two sinusoids with closely spaced 

frequencies in a fourfold overcomplete cosine dictionary. Evidently, the results presents 

that the MOF finds many frequencies with no sparsity and precision, while MP and BP 
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concludes that the signal may be synthesized from two frequencies, which is relatively 

close to the original signal. 

 
        (a)      (b) 

  

(c)      (d) 

Fig. 2-3 Analysis of TwinSine signal with a fourfold overcomplete cosine dictionary.  

(a) TwinSine signal (b) MOF coefficients (c) MP coefficients (d) BP coefficients. [20]  

 

2.3.2 Best orthogonal basis (BOB) 

Coifman and Wickerhauser have proposed a method of selecting an orthogonal 

basis, which is called the best basis, from a certain dictionary [24]. For instance, cosine 

packet and wavelet packet dictionaries are so special since certain subsets of the atoms 

in the dictionaries form orthogonal bases. It is available that we can develop some 
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programs of decomposition. Define s[B]I as the vector of the coefficients of s in 

orthogonal basis B, and the entropy as ε(𝑠[𝐵]) = ∑ 𝑒(𝑠[𝐵]𝐼)𝐼 , where e(s) is a scalar 

function. A quick algorithm they proposed is to solve 

min { 𝜀(𝑠[𝐵]) | orthogonal basis 𝐵 ⸦ 𝐷}.     (2.37) 

When the signal has an ideal sparse representation in an orthogonal basis, the algorithm 

leads to near-optimal sparse representation and the BOB works well. But, when the 

signal is composed of some nonorthogonal atoms, finding the sparse representation 

seems like a contradiction to finding an orthogonal basis. Fig. 2-4 shows an example of 

BOB with different kinds of entropy. The result implies that BOB finds nothing with the 

signal consisting of chirps and sinusoids. 

    

(a)        (b)        (c) 

Fig. 2-4 Phase plane analysis of WernerSorrows signal by BOB algorithm with a cosine 

packet dictionary. (a) WernerSorrows signal (b) C-W entropy (c) ℓ1-norm entropy. [20] 

 

2.3.3 Total variation denoising (TVDN) 

A denoising method with total variation penalized least squares has been proposed 
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by Rudin, Osher, and Fatemi [25]. Mathematically, the method refers to the 

optimization problem 

ming
1

2
‖𝑦 − g‖ℓ2

2 + 𝜆 ∙ 𝑇𝑉(g),     (2.38) 

where g is the reconstruction of the signal and TV(g) is a discrete measure of the total 

variation of g. The regularization parameter λ plays an important role in the denoising. λ 

= 0 means that the result is the same as minimizing the mean square error, while λ → ∞ 

means that the result is forced to have smaller total variation. For one-dimensional 

signal, there is an interesting implementation of TVDN by applying BPDN with a 

heaviside dictionary {Hi (t) = 1 | t ≥ i, i = 0, 1, …, n}. For any signal s, there is a 

unique decomposition 𝑠 = ∑ 𝛼𝑖𝐻𝑖
𝑛
𝑖=0  in heaviside dictionary, and therefore the total 

variation is given by 𝑇𝑉(𝑠) = ∑ |𝛼𝑖|𝑛
𝑖=1  if s is 0 at t = 0 and t = n. Fig. 2-5 shows an 

example of BPDN with heaviside dictionary. As we can see, the Blocks signal is 

reconstructed well by the total variation method since it is piecewise constant and has a 

very sparse representation in the heaviside dictionary. 

   

(a)         (b)       (c) 

Fig. 2-5  Denoising noisy Blocks signal by total variation method. (a) Blocks signal (b) 

noisy Blocks signal with SNR=7 (c) BPDN with heaviside dictionary. [20] 
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2.3.4 Comparison examples 

In this section, we demonstrate reconstruction results of some signals simulated in 

[20]. First, the synthetic signal Carbon, which is displayed in Fig. 2-6, consists of a 

Dirac, a sinusoid, and four mutually orthogonal wavelet packet atoms. MOF uses basis 

functions that are not orthogonal to the components of the signal, which leads to a 

diffusive result. BOB has a distortion due to the nonorthogonality between the Dirac 

and the sinusoid. MP is good at dealing with the Dirac and the sinusoid, but fails to 

handle the four close wavelet atoms. BP identifies nearly exact components of the 

signal. 

 

  

(a)          (b)        (c) 

 

(d)          (e)        (f) 

Fig. 2-6 Phase plane analysis of Carbon signal with a wavelet packet dictionary. (a) 

Carbon signal (b) ideal (c) MOF (d) BOB (e) MP (f) BP. [20] 
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(a)          (b)        (c) 

 

(d)          (e)        (f) 

Fig. 2-7 Phase plane analysis of FM-Cosine signal with a cosine packet dictionary. (a) 

FM-Cosine signal (b) ideal (c) MOF (d) BOB (e) MP (f) BP. [20] 

 

Second, Fig. 2-7 shows the results of reconstruction for the time-varying signal 

FM-Cosine, which is composed of a frequency modulated sinusoid and a sinusoid. 

Again, MOF spreads the result on the phase plane and BOB fails to handle the 

nonorthogonality between components with the time-varying structure. MP yields a 

basically tragic decomposition, while BP at least resolves a clean representation of two 

structures. 

Finally, the reconstruction of a noisy Gong signal using a cosine packet dictionary 

is shown in Fig. 2-8. The noiseless signal vanishes until time t0 and then acts as a 

decaying sinusoid for t > t0. Results of MOF, BOB, MP, and BP are displayed 

respectively. It seems that the result of BP is still closest to the original signal than 
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others. However, although BP works best among these atomic decomposition 

techniques, the complexity of BP makes it spend the most computation time. BP has a 

quasi-linear complexity, and hence the computation time increases much more than 

others when the problem size and the signal complexity go up. 

 

(a)         (b)        (c) 

 

(d)         (e)        (f) 

Fig. 2-8 Denoising noisy Gong signal with a cosine packet dictionary. (a) Gong signal 

(b) noisy Gong signal with SNR=1 (c) MOF (d) BOB (e) MP (f) BP. [20] 
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2.4 Basis Selection 

In this section, we will present some commonly used atoms, such as famous Gabor 

atoms, chirplet atoms, wavelet atoms, and some of their extended versions. Basically, 

atoms mentioned below are applicable to different situations in practice, which are also 

introduced in the following paragraphs, depending on their characteristics.  

 

2.4.1 Gabor atomic dictionary 

The components of Gabor atom dictionary [9] can be depicted as  

𝑔𝛾𝑛
(𝑡) =

1

√𝑠𝑛
𝑔(

𝑡−𝑢𝑛

𝑠𝑛
)𝑒𝑖𝜉𝑛𝑡,      (2.39) 

where γn=(sn, un, ξn), sn is the scaling factor, un is the translating factor, ξn is the 

modulating factor, and 𝑔(𝑡) = 21/4𝑒−𝜋𝑡2
 is a Gaussian window. In [9], since the 

time-frequency dictionary is complete, the signal 𝑓(𝑡) ∈ 𝐿2(𝐑) can be decomposed by 

matching pursuit and the atoms are chosen to best match the residues of f at each 

iteration. 

 

2.4.2 Chirplet atomic dictionary 

It is well known that the chirp is one of the most critical functions in nature and 

hence it has numerous applications. The chirplet atom dictionary [26] is formed by 

Gabor atoms adapted to linear frequency modulation and is extended to four parameters. 
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The atoms can be described as 

𝑔𝛾𝑛
(𝑡) =

1

√𝑠𝑛
𝑔(

𝑡−𝑢𝑛

𝑠𝑛
)𝑒𝑖(𝜉𝑛𝑡+

1

2
𝑐𝑛𝑡2)

,     (2.40) 

where γn=(sn, un, ξn, cn) and cn is the frequency modulation factor. It is obvious that the 

instantaneous frequencies of atoms are ξn+ cnt and that cn reflects the slope of the linear 

time-frequency relationship. 

 

2.4.3 Advanced chirplet atomic dictionary 

The advanced chirplet atom dictionary [27] is formed by chirplet atoms adapted to 

quadratic frequency modulation and is extended to five parameters. The atoms can be 

described as 

𝑔𝛾𝑛
(𝑡) =

1

√𝑠𝑛
𝑔(

𝑡−𝑢𝑛

𝑠𝑛
)𝑒𝑖(𝜉𝑛𝑡+

1

2
𝑐𝑛𝑡2+

1

3
𝑟𝑛𝑡2)

,     (2.41) 

where γn=(sn, un, ξn, cn, rn) and rn is the curvature factor. It is obvious that the 

instantaneous frequencies of atoms are ξn+ cnt + rnt
2
. The new factor rn reflects the 

nonlinearity of the time-frequency relationship and hence it has been used for the 

separation of radar fuze mixed signal. 

 

2.4.4 Sinusoidal chirplet atomic dictionary 

The sinusoidal chirplet atom dictionary [28] is generated by attaching a sinusoidal 

factor to chirplet atoms and is extended to five parameters. The atoms can be described 



doi:10.6342/NTU201902199

28 

 

as 

𝑔𝛾𝑛
(𝑡) =

1

√𝑠𝑛
𝑔(

𝑡−𝑢𝑛

𝑠𝑛
)𝑒𝑖(𝜉𝑛𝑡+

1

2
𝑐𝑛𝑡2+

1

2
sin 𝜔𝑛𝑡)

,      (2.42) 

where γn=(sn, un, ξn, cn, ωn) and ωn is the sinusoidal modulation angular frequency. It 

is obvious that the instantaneous frequencies of atoms are ξn+ cnt +cos (ωnt)/2. The 

new factor ωn improves the matching performance of the nonlinearity in the 

time-frequency relationship, especially for sinusoidal frequency modulation signals. 

 

2.4.5 FM
m
let atomic dictionary 

Gabor atoms and chirplet atoms are two kinds of existing atoms for parametric 

time-frequency representation. The Gabor atoms are only suitable for signals whose 

frequencies are time-varying while the chirplet atoms are more suitable for signals 

whose frequencies vary linearly with time. However, for signals in nature, both atom 

dictionaries are not enough. In [29], there are dilated and translated windowed 

exponential frequency modulated functions proposed as the atoms to characterizing both 

the linear and nonlinear frequency modulation signals. These atoms can be described as 

follows: 

𝑔𝛾𝑛
(𝑡) =

1

√𝑠𝑛
𝑔(

𝑡−𝑢𝑛

𝑠𝑛
)𝑒𝑖𝜉𝑛𝑡(1+𝑐𝑛𝑡)𝑚

,     (2.43) 

where γn=(sn, un, ξn, cn, m) and m is the frequency modulation exponent. Due to the 

exponential polynomial, it is more flexible to represent the time-varying signals. 
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2.4.6 Wavelet atomic dictionary 

There are numerous types of wavelet dictionaries, depending on the ways of 

definition. For instance, we consider the Haar dictionary [30] with 

𝜓(𝑡) = {

  1,       0 ≤ 𝑡 <
1

2
 

−1,    
1

2
≤ 𝑡 < 1

  0,       otherwise

,    𝜑(𝑡) = {
1,    0 ≤ 𝑡 < 1
 0,    otherwise

 ,     (2.44) 

where ψ(t) is the mother wavelet and φ(t) is the scaling function, which is also called 

father wavelet. The dictionary is a collection of translations and dilations of ψ(t), 

together with translations of φ(t). In other words, atoms are defined as 

𝜓𝑗,𝑘(𝑡) = 2𝑗/2𝜓(2𝑗𝑡 − 𝑘)      (2.45) 

𝜑𝑗,𝑘(𝑡) = 2𝑗/2𝜑(2𝑗𝑡 − 𝑘),      (2.46) 

where j is the parameter about dilation and k is the parameter about translation. With 

these two properties, an orthonormal basis can be constructed and the desired resolution 

can be achieved by adjusting the parameters. This example is so-called stationary Haar 

dictionary since the components are invariant under time shift. However, more wavelet 

bases, such as smooth wavelet basis and Daubechies wavelet basis, are possible. 

Although the restrictions of the reconstruction may be more complicated, the bases still 

have practical structure for decomposition. 
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2.4.7 Dictionary mergers 

A variety of dictionaries are used for decomposition of signals. However, there is a 

critical method to make more expressive dictionaries by merging a dictionary with 

another. The combination of dictionaries may be able to acquire advantages of original 

dictionaries. Fig. 2-9 shows the reconstruction of a noisy Cusp signal, which is 

piecewise smooth rather than piecewise constant. Consider the merged dictionary based 

on a merger of wavelets with tapered heavisides, the result seems better than one only 

using the heaviside dictionary. It implies that the signal has a relatively sparse 

representation with the merged dictionary due to the lack of smooth objects in the 

heaviside dictionary. 

 

         (a)       (b) 

 

(c)       (d) 

Fig. 2-9 Denoising noisy Cusp signal. (a) Cusp signal (b) noisy Cusp signal with 

SNR=7 (c) BPDN with heaviside dictionary (d) BPDN with merged dictionary. [20] 
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2.5 Summary 

In this chapter, we introduce the basic ideas of compressive sensing, including 

principles, restrictions, reconstruction, and robustness. Then, we review the most 

common decomposition methods, matching pursuit and basis pursuit, and their 

extensions. We also review some other algorithms like method of frames, best 

orthogonal basis, and total variation denoising, and compare their reconstruction results. 

Last but not least, we demonstrate some useful atomic dictionaries as decomposition 

bases, such as Gabor atoms, chirplet atoms and their advanced versions, FM
m
let atoms, 

and the basic idea of wavelets. However, the sparse representations of signals in these 

bases are usually utilized for compression. For any compression algorithm, there exists 

a trade-off between data compression ratio and reconstruction error. In next chapter, we 

propose a novel time-frequency analysis method applicable to most signals in nature, 

which may give a high quality result with high compression ratio and low 

reconstruction error under certain circumstances. 
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Chapter 3 Proposed Work 

In this chapter, we will introduce our proposed work and demonstrate the 

implementation of each part in detail. Our work starts with the time-frequency analysis 

of the target signal. Then we rearrange the time-frequency representation by frequency 

reassignment. Finally, we approximate the components of the signal with some bases or 

algorithms and then encode them. The result can be decoded by some rules and thus the 

signal can be recovered. 

 

 

3.1 Time-Frequency Analysis 

In signal processing, time-frequency analysis is composed of techniques that 

resolve signals in both time and frequency domains simultaneously, using a variety of 

time-frequency representations. The most practical motivation of time-frequency 

analysis is that classical Fourier analysis considers the signal as a periodic or infinite 

function, while signals are not like that in practice. 

 

3.1.1 Gabor transform 

One of the most basic forms of time-frequency analysis is the short-time Fourier 

transform (STFT), which divides a longer time signal into shorter pieces of equal length 
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and computes the Fourier transform on each piece of signal respectively. Hence the 

result reveals the frequency spectrum of each piece and the changing spectra as a 

function of time. The continuous STFT can be described as 

𝑋(𝑡, 𝑓) = ∫ 𝑤(𝑡 − 𝜏)𝑥(𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
∞

−∞
,       (3.1) 

where w(t) is the window function or the mask function. Converting it into the discrete 

form by t = nΔt, f = mΔf and τ = pΔt, the equation changes to  

𝑋(𝑛Δ𝑡 , 𝑚Δ𝑓) = ∑ 𝑤((𝑛 − 𝑝)Δ𝑡)𝑥(𝑝Δ𝑡)𝑒−𝑗2𝜋𝑝𝑚Δ𝑡Δ𝑓 Δ𝑡
∞
𝑝=−∞ .    (3.2) 

If we choose the Gaussian function as the window function, the transform is so-called 

the Gabor transform (GT). The generalized Gabor transform is shown as follows: 

𝐺𝑥(𝑡, 𝑓) = √𝜎4
∫ 𝑒−𝜎𝜋(𝜏−𝑡)2

 𝑥(𝜏)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
∞

−∞
.     (3.3) 

Suppose that w(t) ≈ 0 for |t| > B = QΔt, the generalized Gabor transform can be 

rewritten as discrete form  

𝐺𝑥(𝑛Δ𝑡, 𝑚Δ𝑓) = √𝜎
4 ∑ 𝑒−𝜎𝜋((𝑛−𝑝)Δ𝑡)2

𝑥(𝑝Δ𝑡)𝑒−𝑗2𝜋𝑝𝑚Δ𝑡Δ𝑓 Δ𝑡
𝑛+𝑄
𝑝=𝑛−𝑄 .    (3.4) 

Here, we use unbalanced sampling in the implementation to lower the computation time 

and the complexity. 𝐵 = 1.9143/√𝜎 is suggested for decayed edge of the Gaussian 

function. Among all window functions, the Gaussian function has advantages that the 

area in time-frequency distribution is minimal, which means the Gabor transform has 

better clarity than others on both time domain and frequency domain simultaneously. 

Furthermore, the Gabor transform has symmetric properties on time domain and 
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frequency domain since the Gaussian function is the eigenfunction of the Fourier 

transform. 

 

3.1.2 Wigner distribution function 

The Wigner distribution function (WDF) is another commonly used transform in 

time-frequency analysis, which is first proposed for quantum corrections to classical 

statistical mechanics. The Wigner distribution function is defined as 

𝑊𝑥(𝑡, 𝑓) = ∫ 𝑥 (𝑡 +
𝜏

2
) 𝑥∗ (𝑡 +

𝜏

2
) 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏

∞

−∞
,     (3.5) 

where x
*
(t) is the conjugate function of the signal. Converting it into the discrete form 

by t = nΔt, f = mΔf and τ’ = τ/2 = pΔt, the equation changes to 

𝑊𝑥(𝑛Δ𝑡, 𝑚Δ𝑓) = 2 ∑ 𝑥((𝑛 + 𝑝)Δ𝑡) 𝑥∗((𝑛 − 𝑝)Δ𝑡) 𝑒−𝑗4𝜋𝑝𝑚Δ𝑡Δ𝑓 Δ𝑡
∞
𝑝=−∞ .  (3.6) 

Here, we use unbalanced sampling in the implementation to lower the computation time 

and the complexity. The most important advantage of the Wigner distribution function is 

that the clarity is higher comparing to the case of the STFT due to the signal 

autocorrelation function. It reduces to the spectral density function at all times t for 

stationary processes, which is the motivation for it, while it is still equivalent to the 

non-stationary autocorrelation function. There are also some good properties other 

transforms do not have. However, the Wigner distribution function is not a linear 

transform, which implies that the transform of the sum of two functions will not equal 
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to the sum of the transforms of two functions. The disadvantage of the cross term occurs 

when the signal has more than one component. It also needs more computation time 

rather than the STFT. The Wigner distribution function can be generalized to Cohen’s 

class distribution as a more powerful method of time-frequency analysis. 

 

3.1.3 Gabor-Wigner transform 

The Gabor-Wigner transform (GWT) [31] refers to the combination of the Gabor 

transform and the Wigner distribution function, which combines the advantages of both 

transforms. The basic idea is to use the Gabor transform as a filter to mask off the cross 

term of the Wigner distribution function, while the high clarity of the Wigner 

distribution function is preserved. There are a variety of definitions of the 

Gabor-Wigner transform and four examples are given as follows: 

𝐶𝑥(𝑡, 𝑓) = 𝐺𝑥(𝑡, 𝑓) ∙ 𝑊𝑥(𝑡, 𝑓),       (3.7) 

𝐶𝑥(𝑡, 𝑓) = min{|𝐺𝑥(𝑡, 𝑓)|2, |𝑊𝑥(𝑡, 𝑓)|},       (3.8) 

𝐶𝑥(𝑡, 𝑓) = 𝑊𝑥(𝑡, 𝑓) ∙ {|𝐺𝑥(𝑡, 𝑓)| > 𝑡ℎ𝑟},      (3.9) 

𝐶𝑥(𝑡, 𝑓) = 𝐺𝑥
𝛼(𝑡, 𝑓) ∙ 𝑊𝑥

𝛽(𝑡, 𝑓).      (3.10) 

Moreover, the Gabor-Wigner transform also preserves many good properties from the 

Gabor transform and the Wigner distribution function, such as the rotation relation with 

the fractional Fourier transform (FrFT), which is helpful for analyzing the 
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characteristics of targets and modulating signals.  

In our work, we have to decide N first, where N = 1/ΔtΔf, Δt is the time interval and 

Δf is the frequency interval in the implementation of time-frequency analysis. The 

choice of N affects the fineness of the frequency axis and the computation time. Δt can 

be obtained by the reciprocal of the sampling frequency, and thus Δf can also be 

obtained. Before the time-frequency analysis, we convert the signal to the analytic 

signal and modulate it by a quarter of the sampling frequency, which makes the 

observation easier. Here, we use (3.10) as the definition of the Gabor-Wigner transforms 

in order to maintain the flexibility. Fig. 3-1 shows the time-frequency analysis of Cow 

signal, which is the mooing sound from a cow and is composed of several harmonics.  

The alignment of the frequency axis must be completed since the frequency range 

of the Gabor transform and that of the Wigner distribution function are not identical. 

The frequency range of the Wigner distribution function is about half of that of the 

Gabor transform in order to avoid the aliasing effect. After the combination of two 

transforms, we set a threshold thrgwt to filter the noise that may be created by the setting 

issue of the transform parameters. The value of the threshold is given by  

𝑡ℎ𝑟𝑔𝑤𝑡 = (
3 ∑ ∑ 𝐶𝑥(𝑛Δ𝑡 ,𝑚Δ𝑓)

−(𝛼+2𝛽)
𝑚𝑛

∑ ∑ 1𝑚𝑛
)𝛼+2𝛽 ,      (3.11) 

where the exponent (α + 2β) reflects the energy concept. In the following, the 

segmentation of the figure in time-frequency analysis will be done. 
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(a)            (b)       (c) 

Fig. 3-1 Time-frequency analysis of Cow signal. (a) Gabor transform (b) Wigner 

distribution function (c) Gabor-Wigner transform. 

 

3.1.4 Segmentation 

The result of time-frequency analysis is viewed as a figure and dilated with an 

elliptical kernel. The dilation is able to connect neighbor components belonging to the 

same part that may be disconnected accidentally. Then we label connected components 

by bwlabel function, which gives the same numbers to pixels in each connected 

component individually. We set another threshold thrseg to exclude small area 

components that probably come from the noise. The value of the threshold, which is 

associated with the concept of the uncertainty principle, is given in the following: 

𝑡ℎ𝑟𝑠𝑒𝑔 = ⌈
𝐶𝑠𝑒𝑔

Δ𝑡Δ𝑓
⌉,       (3.12) 

where Cseg is a constant. Fig. 3-2 displays the results of the processing of the 

time-frequency analysis. Afterwards, the labels are rearranged from the component with 
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most pixels to that with the least for convenience, as shown in Fig. 3-3.  

 

(a)            (b)       (c)  

Fig. 3-2 Processing of the time-frequency analysis of Cow signal. (a) GWT thresholded 

by thrgwt (b) dilation of thresholded figure with an elliptical kernel (c) labeled signal 

thresholded by thrseg. 

 

Fig. 3-3 Segmentation of the time-frequency analysis of Cow signal. 
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3.2 Time-Frequency Reassignment 

Time-frequency reassignment is a technique that sharpens a blurry time-frequency 

representation by mapping the data to other time-frequency coordinates or relocating the 

data according to local estimates. We will first consider whether the pre-cut scheme is 

suitable to large area components. Then, we find local maximums and local minimums, 

and connect the gap between segmented components which are theoretically linked. 

Another smaller threshold is used to exclude small area components for removing the 

noise. Under some special conditions, we need to separate the head and tail parts of the 

signal. Finally, relabeling the figure is done and the reassignment is completed. 

 

3.2.1 Pre-cut scheme 

For large area components, there is something optional to do with them. In the 

previous section, we dilate the figure with a kernel, which may connect trivially 

separated components. On the other hand, it is known that the area of the 

time-frequency analysis is concerned with the lower bound of the number of sampling 

points. Hence we want to divide each large component rectangularly as much as 

possible to minimize the blank space in the figure. A threshold thrrel is established and 

once the area of components is larger than it, they are supposed to be reassembled and 

relabeled. The threshold is defined as follows:  
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𝑡ℎ𝑟𝑟𝑒𝑙 = ⌈
𝐶𝑟𝑒𝑙

Δ𝑡Δ𝑓
⌉,       (3.13) 

where Crel is a constant.  

The component suitable to the pre-cut scheme is first transformed to an 

accumulated pixel function of time. The function is convolved with a smooth filter, and 

then a matched filter and a moving maximum filter to find the time points where the 

number of pixels drops dramatically. The result time points for the beginning and the 

end of the component should be excluded for sure. Therefore, we cut the component at 

the time points found by filters and the component turns into several smaller 

components. This scheme works well and prevents waste of memory if components are 

close on time domain and be connected by the dilation operation.  

 

3.2.2 Local maximums and local minimums 

For large area components, we consider local maximums and local minimums on 

y-direction as the rule to distinguish different components. The threshold for area of 

components is identical to that in the pre-cut scheme, which is described in (3.13). First, 

we convolve the figure with a Gaussian smooth filter on y-direction, which is shown in 

Fig. 3-4, and then try to find local maximums and local minimums. Here, we adopt two 

thresholds thrmax and thrmin, which are given as 
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𝑡ℎ𝑟𝑚𝑎𝑥 = 𝐶𝑚𝑎𝑥 ∙ max𝑛,𝑚(𝐶𝑥(𝑛Δ𝑡 , 𝑚Δ𝑓)),      (3.14) 

𝑡ℎ𝑟𝑚𝑖𝑛 = 𝐶𝑚𝑖𝑛 ∙ max𝑛,𝑚(𝐶𝑥(𝑛Δ𝑡 , 𝑚Δ𝑓)),      (3.15) 

where Cmax and Cmin are some constants. The threshold thrmax is established for the 

lower bound values of local maximums in order to prevent misidentification of the noise. 

On the other hand, the threshold thrmin is set for difference values between local 

maximums and local minimums in order to prevent successive ups and downs within 

the same components. If the differences between the minimum and maximums near to it 

are smaller than thrmin, only the maximum with largest value will be contained, and the 

maximum mask is formed. After the confirmation of the local maximums, we view the 

remaining maximums as the trunk of the component, as shown in Fig. 3-5. In the next 

step, we will propose a gap connection scheme to connect the pieces that are close on 

the maximum mask. 

 

Fig. 3-4 Gaussian smooth filter. 
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(a) 

 

(b) 

Fig. 3-5 The maximum mask of the first component of Cow signal. (a) The first 

component of Cow signal (b) The maximum mask. (dilated for visibility) 

 

3.2.3 Gap connection scheme 

The maximum mask is helpful for us to decompose the component into pieces. 

Before we do more about the connection, we have to give labels to the maximums on 

the mask, from the left to the right. For every pixel on the mask, we consider whether 

the pixel belongs to the same component with the left neighborhood. The verification 

will be done twice, one for the left pixel and the other for the right pixel. To a selected 

pixel, we first search the left neighborhood and find the nearest one along the frequency 

direction, which may be empty. The searched pixel, if not empty, is called “f-nearest” in 

the neighborhood and should be already labeled. For the searched pixel, we find the 
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f-nearest pixel in the right neighborhood and compare it with the selected pixel. If two 

pixels are identical, we say that these two pixels are in the same component and give the 

same label to the selected pixel; otherwise, a new label is established and assigned to 

the selected pixel. The pixels of the maximum mask are merged and hence transformed 

to the label matrix.  

The resolved pieces of the component are obviously recognized in the label matrix. 

However, the next step is to fill up gaps between close pieces. The values of time and 

frequency of the leftmost and rightmost pixels in each piece are recorded for the gap 

connection scheme. If the leftmost pixel of one piece is close enough to the rightmost 

pixel of another piece within both adjustable time and frequency range, the two pieces 

will be connected by equalizing their labels and the gap is vanished. Last but not least, 

the pieces with small area after the gap connection are viewed as of little importance 

with the component. Therefore, there is a threshold thrcnt that refines the pieces in the 

components by eliminating the small area label. The threshold is given by 

𝑡ℎ𝑟𝑐𝑛𝑡 = ⌈
𝐶𝑐𝑛𝑡

Δ𝑡Δ𝑓
⌉,       (3.16) 

where Ccnt is a constant, and the result in shown in Fig. 3-6. Again, the labels are 

reassigned by sorting the areas of the pieces in descending order, which is shown in Fig. 

3-7. 
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Fig. 3-6 Remaining maximums of the first component of Cow signal after deletion. 

(dilated for visibility) 

  

Fig. 3-7 Result of the gap connection scheme for the first component of Cow signal. 

(dilated for visibility) 
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3.2.4 Head and tail scheme 

In the example of Cow signal, the energy distributed on the time-frequency 

analysis figure acts like harmonics connected in the beginning and the end of the signal. 

Lots of signals in nature have similar property we mentioned above, especially the voice 

of animals. This kind of signals will be considered as a solid component in the previous 

approach and the space between harmonics is filled, which directly leads to redundant 

memory space. Therefore, we add an additional criterion to determine whether the 

above situation happens in the target signal. This segmentation scheme is optional and 

can be used or not used manually, just like the previous pre-cut scheme. The criterion 

for separating the head and the tail depends on two numbers, the number of the pixels 

sepnum(n) and the number of unique labels sepuni(n). Both numbers at n-th time slot are 

given in the following: 

𝑠𝑒𝑝𝑛𝑢𝑚(𝑛) = {
1,      𝑛𝑝(𝑛) > 𝐶𝑛𝑝 ∙ 𝑛𝑝𝑎𝑣𝑔

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,    (3.17) 

𝑠𝑒𝑝𝑢𝑛𝑖(𝑛) = {
1,      𝑢𝑙(𝑛) > 𝐶𝑢𝑙 ∙ 𝑢𝑙𝑎𝑣𝑔

0,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,       (3.18) 

where np(n) is the vertically cumulative number of pixels at n-th time slot, ul(n) is the 

vertically cumulative number of unique labels at n-th time slot, npavg and ulavg are the 

average numbers in the middle one-third time interval, and Cnp and Cul are adjustable 

constants. The criterion is the logical conjunction of these two numbers, which is also 

called “logical AND.” The result at a time slot is true only if both numbers at that are 
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true, which is formulated as  

𝑠𝑒𝑝(𝑛) = 𝑠𝑒𝑝𝑛𝑢𝑚(𝑛) ∧ 𝑠𝑒𝑝𝑢𝑛𝑖(𝑛).    (3.19) 

Suppose that thead is the time at the end of the head part and ttail is the time at the 

beginning of the tail part. The time slots at these two time points 𝑛𝑡ℎ𝑒𝑎𝑑
 and 𝑛𝑡𝑡𝑎𝑖𝑙

 are 

shown as 

𝑛𝑡ℎ𝑒𝑎𝑑
= min (max 𝑛{𝑛 | 𝑠𝑒𝑝(n) = 1} , 𝑛𝑡𝑚𝑖𝑑

),      (3.20) 

𝑛𝑡𝑡𝑎𝑖𝑙
= max (min 𝑛{𝑛 | 𝑠𝑒𝑝(n) = 1} , 𝑛𝑡𝑚𝑖𝑑

+ 1),    (3.21) 

where tmid is the time at the right middle of the component and 𝑛𝑡𝑚𝑖𝑑
 is the time slot at 

it. Once 𝑛𝑡ℎ𝑒𝑎𝑑
 and 𝑛𝑡𝑡𝑎𝑖𝑙

 are determined, the head part and the tail part will be 

segmented from the component as independent components instead of participating in 

the maximums mask and the gap connection scheme. However, the labeled pieces may 

be located completely in the head part and the tail part, which implies that the labels 

will disappear after being cut from the component. Therefore, we check the removing 

labels of the component and rearrange the order of the pieces. While finish reassembling 

the large area component, we relabel the components and the pieces from them in a new 

order. The segmented data for encoding are already labeled and nearly prepared, and the 

only thing remained is to calculate the bandwidth of the harmonics, which will be 

introduced in the next part. 
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3.2.5 Fixed bandwidth estimation 

Although we have an effective method to divide the target signal into components, 

we still have no estimation about the component since the information we used for the 

segmentation is the maximums mask, which is only the trunks of components. However, 

we found that there are similar widths of the harmonics in the harmonic part of the 

component. In the other word, we can combine the trunk with a fixed bandwidth to 

represent the harmonic part. The result is displayed in Fig. 3-8, which looks similar to 

the harmonic part of the component. 

 

Fig. 3-8 Result of the approximation for the harmonic part in the first component of 

Cow signal with fixed bandwidth B = 39.7826. 
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Here, we starts with a small empirical bandwidth and calculate the percentage of 

the overlapping region. If the result is below a certain level of percentage, about ninety 

percent, the bandwidth is revised according to the result iteratively until the stopping 

criterion is achieved. There are partial pixels deleted in the gap connection scheme, 

which means the criterion of the percentage cannot be too high. If the overlapping 

region does not increase anymore before achieving the criterion, we adopt the value of 

the critical point. The maximums mask vertically convolved with the kernel whose 

width equals to the result bandwidth is considered as the substitute of the harmonic part 

to be encoded, and the approximation and the encoding of these components are 

explained in detail in the next section. 

 

 

3.3 Signal Component Approximation 

In the previous section, we have finished the time-frequency reassignment and the 

segmentation of the components, some of them with a fixed bandwidth. The next step is 

to implement compression methods and encoding schemes on each component of 

segmented data. In this section, we use the generalized modulation [32], which is 

proposed by Ding, Pei, and Ko, for the components not reassembled and the head and 

tail parts of the reassembled components to decrease the bandwidths. Then we calculate 
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the minimal bandwidths we need for the modulated components and divide the 

components from the original signal. Here, we have two methods to compress the 

components, the downsampling method and the Legendre polynomial basis method. In 

the downsampling method, the minimums of the number of sampling points are 

acquired and the components are downsampled in order to decrease the storages. In the 

Legendre polynomial basis method, we use Legendre polynomials as the dictionary to 

fit the components of the signal. Finally, we encode the information needed for 

reconstruction into packages, which refers to the encoded data of the target signal. 

 

3.3.1 Generalized modulation 

From Shannon’s sampling theory, the sampling frequency should be larger than the 

Nyquist rate to avoid the aliasing effect; in other words, the sampling interval should be 

smaller than the reciprocal of the Nyquist rate, which is concerned with the vertical 

width on the time-frequency analysis of the signal. The algorithm proposed in [32] is to 

minimize the bandwidth of a signal by a higher order modulation scheme, which is 

called “generalized modulation,” and the combination with the fractional Fourier 

transform. Once the bandwidth is reduced, the sampling interval can be lengthened and 

the amount of data required for recording can be much less. The algorithm is efficient 

for the time-variant signals, especially the voices of animals and the speech signals. 
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Unlike the conventional modulation, the generalized modulation is to multiply the 

signal by a higher order exponential function instead of a linear phase exponential 

function. Suppose that we have a signal x(t), a higher order exponential function m(t), 

and the modulated signal y(t) = m(t) x(t). The time-frequency analysis of x(t) and y(t) are 

Cx(t, f) and Cy(t, f) respectively, and the relation between them is 

𝐶𝑦(𝑡, 𝑓) = 𝐶𝑥(𝑡, 𝑓 + 𝑛𝑎𝑛𝑡𝑛−1 + (𝑛 − 1)𝑎𝑛−1𝑡𝑛−2 + ⋯ + 𝑎1),  (3.22) 

where the higher order exponential function is formulated as 

𝑚(𝑡) = exp [ 𝑗2𝜋(𝑎𝑛𝑡𝑛 + 𝑎𝑛−1𝑡𝑛−1 + ⋯ + 𝑎1𝑡 + 𝑎0) ].   (3.23) 

In our work, we compute the instantaneous central frequency of the component by 

weighted averaging the pixels with their frequency values at each time slot. Then we 

use 4
th
 order polynomial as the higher order exponential function to approximate the 

central frequency, and the first five results is shown in Fig. 3-9. Blue lines are the 

central frequency values and orange lines are the polynomials for fitting the frequency 

curves. Gaps of the components and intervals with no values are all set to zeroes for 

computation convenience. The result implies that 4
th
 order polynomial as the higher 

order exponential function is enough for most situations, while higher order only cost 

more storages and computation sources. Afterwards, we calculate the bandwidths 

needed to include components relative to the central frequencies, which are viewed as 

the cutoff frequencies, and record the beginning times tmin and the end times tmax of all 
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components. 

 

Fig. 3-9 Result of the instantaneous central frequency for the first five components of 

Cow signal. Blue lines are the central frequency values and orange lines are the 

polynomials for fitting the frequency curves. 

 

To calculate the bandwidths, we have three types of computation method, as called 

type A, type B, and type C and shown in Table 3-1. In type A, for the components not 

relabeled and the head and tail parts of relabeled components, we calculate the 

maximum bandwidths needed to include all pixels relative to the central frequencies; 
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otherwise, the fixed bandwidths mentioned before will be adopted. In type B, all 

components apply to the maximum bandwidths needed to include all pixels relative to 

the central frequencies. Last but not least, in type C, the maximum bandwidths needed 

to include all pixels relative to the central frequencies are used for the components not 

relabeled and the head and tail parts of relabeled components, while the other 

components need half of fixed bandwidths more than them. Type A performs well only 

if we have a perfect segmentation result in the previous section, while type B and type C 

are more tolerant to mistakes in the segmentation and reassignment step. If two 

harmonics are labeled to the same component, the instantaneous central frequency will 

be located between them and the following step is far from the correct one with fixed 

bandwidth, which leads to a massive error. For the relabeled components except head 

and tail parts, type B expand the bandwidth for reducing the error to a certain extent 

while type C is the most space-consuming but error-guaranteed. 

Table 3-1 Three types of bandwidth computation methods. 

Bandwidth 

computation 

Components not relabeled and 

head / tail parts of relabeled components 
otherwise 

Type A maximum bandwidths fixed bandwidths 

Type B maximum bandwidths maximum bandwidths 

Type C maximum bandwidths 
maximum bandwidths 

+ fixed bandwidths / 2 
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What we should do next is to divide the desired components from the original 

signal. First, we truncate the signal from the beginning time to the end time recorded 

before, and implement the generalized modulation on the signal with the central 

frequency we want, which makes our target component be modulated to the low 

frequency region. Then, we utilize the bandwidth we calculate as the cutoff frequency to 

cut the component from the signal. The Fourier transform of the truncated signal within 

the cutoff frequency range is divided, and the inverse Fourier transform of the result 

will be the modulated component we want. 

 

3.3.2 Downsampling 

With the cutoff bandwidth, the minimum sampling points can be easily calculated. 

We set a threshold value for normalized mean square error (NMSE) of each component, 

and when the NMSE of the approximation is larger than the error threshold, the number 

of sampling points is increased iteratively to improve the performance. Once the NMSE 

is below the threshold, we compute the downsampling ratio from the length of time 

interval of the component and the number of sampling points. The compressed data will 

be the downsampled version of the components, which can be described as 

𝑥̂𝑑,𝑘(𝑛) = 𝑥̂𝑘(𝑛Δ𝑡),        (3.24) 
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where 𝑥̂𝑑,𝑘(𝑛) is the downsampled data and 𝑥̂𝑘(𝑡) is the modulated component. The 

result of the approximation by the downsampling method is shown in Fig. 3-10, which 

displays the first five components of Cow signal. It is evident that the method performs 

well in the fitting of data. The reconstruction of the component from the compressed 

data will be introduced in the next section. 

 

Fig. 3-10 Result of the approximation for the first five components of Cow signal by the 

downsampling method. Blue lines are the component values and orange lines are the 

fitting results. 
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3.3.3 Legendre polynomial basis 

In this method, we utilize the discrete Legendre polynomials as the basis to expand 

the components. First, we normalize the time intervals of the components into [-1, 1] 

and start with a minimum Legendre order Nmin. The Legendre basis consists of the time 

interval vectors to the power of zero to Nmin, which are linearly independent but not 

orthogonal, and thus we use the Gram-Schmidt process to orthonormalize the basis as 

follows: 

𝑑𝑛 =
𝜓𝑛

‖𝜓𝑛‖
 and 𝜓𝑛 = 𝑏𝑛 − ∑ 〈𝑏𝑛 , 𝑑𝑚〉𝑛−1

𝑚=0 𝑑𝑚 ,      (3.25) 

where dn is the element to be added into the basis and bn is the time interval vector to 

the power of n. 

As the downsampling method, we set a threshold value for NMSE of each 

component, and when the NMSE of the approximation is larger than the error threshold, 

the number of basis is increased iteratively with the Gram-Schmidt process to improve 

the performance. Once the NMSE is below the threshold, we stop adding new elements 

into the basis. The compressed data will be the coefficients of the Legendre expansion 

and can be described as 

𝑥̂𝑑,𝑘(𝑛) = 〈𝑥̂𝑘, 𝑑𝑛〉,         (3.26) 

where 𝑥̂𝑘 is the component to be decomposed. The result of the approximation by the 

Legendre polynomial basis method is shown in Fig. 3-11, which displays the first five 
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components of Cow signal. It is evident that the method performs well in the fitting of 

data. The reconstruction of the component from the compressed data will be introduced 

in the next section. 

 

Fig. 3-11 Result of the approximation for the first five components of Cow signal by the 

Legendre polynomial basis method. Blue lines are the component values and orange 

lines are the fitting results. 

 

3.3.4 Encoding 

The data to be encoded depends on the information we need when the signal is 

recovered. However, the number of components, the minimum time interval of the 
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signal, the beginning time and the end time of each component, the polynomial values 

of the generalized modulation, the downsampling ratios or the order of the Legendre 

polynomials (depends on the method), and the compressed data, are the data we need to 

encode. The encoding scheme is to string up the data directly to a package, which is 

convenient for the decoding. 

Assume that the number of components is S, which is also the first element of the 

package. The next element is the minimum time interval of the signal that is denoted as 

Δt in the previous section. What follows are pairs of time points, the beginning time tmin 

and the end time tmax, with length 2S. For the 4
th

 order polynomials, the following 5S 

elements are concerned with the coefficients of the generalized modulation, which are 

transformed into the polynomial values to avoid the large values. We cut the time 

interval in quarters and the five time points yielded are evaluated with the polynomial 

coefficients to make sure the transformation can be reversed. The S elements in the 

following are the downsampling ratio for the downsampling method, or the order of the 

basis for the Legendre polynomial basis method, of each component. Finally, the 

compressed data of S components is directly attached to all attributes. The structure of 

the encoded data and the length of each part in a package of our work are shown in 

Table 3-2. 
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Table 3-2 Structure of the encoded data in a package. 

Information of components of the signal Length 

Number of components (S) 1 

Minimum time interval (Δt) 1 

Beginning time (tmin) and end time (tmax) 2S 

Polynomial values of the generalized modulation 5S 

Downsampling ratios / Order of the Legendre polynomials S 

Compressed data remaining 

 

 

3.4 Signal Reconstruction Scheme 

In this section, we will introduce the signal reconstruction process to recover the 

signal from the encoded data. When we receive a sequence of encoded data, the 

decoding is definitely the first thing to do in the process. Then, the components in the 

signal are reconstructed separately. Depending on the method used for compression, the 

reconstruction scheme is supposed to be different. Subsequently, the recovered 

components are scrabbled up and the recovered signal is accomplished. 
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3.4.1 Decoding 

The packages are encoded sequences of information about the signal, which are 

arranged in a certain order by the encoding scheme, as shown in Table 3-2. The first 

element in a package will be the number of components S, and the second one will be 

the minimum time interval Δt. The following 2S elements are pairs of the beginning 

time tmin and the end time tmax of each component. The next 5S elements are related to 

the polynomial coefficients of the generalized modulation. Every group of five elements 

is the polynomial values of a component, which is denoted as pv(m) with m = 1, 2, 3, 4, 

5. Since the polynomial values are evaluated from the time points in the time interval of 

the component, the polynomial coefficients are supposed to be the solution of the 

simultaneous linear equations 

𝑝𝑣(𝑚) = 𝑎4𝑡𝑚
4 + 𝑎3𝑡𝑚

3 + 𝑎2𝑡𝑚
2 + 𝑎1𝑡 + 𝑎0,    𝑚 = 1, 2, 3, 4, 5,  (3.27) 

where {an | n = 0, 1, 2, 3, 4} is the set of polynomial coefficients, and { tm | m = 1, 2, 3, 

4, 5} is the set of time points uniformly distributed in the time interval [tmin, tmax] with t1 

= tmin and t5 = tmax. Solving the equations, the higher order exponential function m(t) in 

(3.23) for the generalized modulation is hence acquired. The last sequence of elements 

with fixed length is the downsampling ratios or the order of the Legendre polynomials, 

depending on the compression method. Last but not least, the remaining elements are 

the compressed data of the signal and the length of each component will be calculated 
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respectively in the reconstruction schemes of both methods. 

 

3.4.2 Downsampling 

In the downsampling method, the length of each compressed component can be 

calculated by dividing the length of time interval with the downsampling ratio. Thus, 

the compressed data of each component can be easily split up from the remaining 

encoded data. The components can be reconstructed by upsampling the compressed data 

to the length of the time interval with the equation 

𝑦̂𝑘(𝑡) = ∑ 𝑥̂𝑑,𝑘(𝑛) 𝑠𝑖𝑛𝑐(
𝑡−𝑛Δ𝑡

Δ𝑡
)𝑛 ,     (3.28) 

where 𝑦̂𝑘(𝑡) is the recovered component and 𝑥̂𝑑,𝑘(𝑛) is the compressed data.  

The recovered data is then modulated by the higher order exponential function m(t) 

solved in (3.27) to be recovered from the generalized modulation. Due to the analytic 

signal we use for the time-frequency analysis, the recovered components are combined 

together with double value to generate the complete signal. At last, the recovered signal 

is modulated by a quarter of the sampling frequency and a half of the average value of 

the recovered signal is subtracted from it to deal with the modification of the signal in 

the preprocessing. The reconstruction result of Cow signal by the downsampling method 

is shown in Fig. 3-12, where the compression ratio is 9.912 and the NMSE of the 

reconstruction is 0.03348. 



doi:10.6342/NTU201902199

61 

 

 

Fig. 3-12 Reconstruction result of Cow signal by the downsampling method. 

 

3.4.3 Legendre polynomial basis 

In the Legendre polynomial basis method, the length of each compressed 

component can be calculated by adding the order of the Legendre basis by one since the 

compressed data is the coefficients of the expansion on the basis. Thus, the compressed 

data of each component can be easily split up from the remaining encoded data. The 

components can be reconstructed by multiplying the compressed data by the atoms in 

the dictionary, which is described as 

𝑦̂𝑘(𝑡) = ∑ 𝑥̂𝑑,𝑘(𝑛) 𝑛 𝑑𝑛,      (3.29) 

where 𝑦̂𝑘(𝑡) is the recovered data of the component and 𝑥̂𝑑,𝑘(𝑛) is the compressed 
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data. 

The recovered data is then modulated by the higher order exponential function m(t) 

solved in (3.27). Due to the analytic signal we use for the time-frequency analysis, the 

recovered components are combined together with double value to generate the 

complete signal. At last, the recovered signal is modulated by a quarter of the sampling 

frequency and a half of the average value of the recovered signal is subtracted from it to 

deal with the modification of the signal in the preprocessing. The reconstruction result 

of Cow signal by the Legendre polynomial basis method is shown in Fig. 3-13, where 

the compression ratio is 8.97 and the NMSE of the reconstruction is 0.03558. 

 

Fig. 3-13 Reconstruction result of Cow signal by the Legendre polynomial basis 

method. 
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3.5 Summary 

In this chapter, we introduce the process of our work to compress and encode the 

data into a package by a relatively efficient algorithm with low error rate and efficient 

space. We review the basic form of the time-frequency analysis, the short-time Fourier 

transform, and implement the Gabor-Wigner transform on the signal. The signal is split 

into components according to the time-frequency analysis figure and components with 

large area are divided into pieces by the time-frequency reassignment. Here, we use 

local maximums and local minimums with our proposed gap connection scheme, and 

the segmentation of the head and tail parts, to relabel the components. Then, the 

components of the signal are modulated to minimize the bandwidths by the generalized 

modulation and compressed by two methods, the downsampling method and the 

Legendre polynomial basis method. The attributes and the compressed data of the signal 

are encoded to a package, which is the ultimate form of signal. Finally, we decode and 

decompress the package and recover the signal by the inverse process of the encoding 

and the compression methods. The simulation results of our works will be presented in 

the next chapter.  
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Chapter 4 Simulation Result 

In this chapter, we demonstrate the result and the performance of our work in 

compression ratio (CR), normalized mean square error (NMSE) and computation time 

(CT) measure. In our work, we choose six combinations of parameter settings, which 

are described as two logical numbers followed by a capital letter. The first number 

refers to the optional pre-cut scheme, while the other refers to the optional head and tail 

scheme. The letter means the type of the computation method for calculating 

bandwidths. The existing methods we compare with include MP3 and AAC (M4A) 

compression algorithms, which come from [33] and [34]. Data for simulations are 

downloaded from [35] in three classes of common sounds, animal signals, people, and 

vehicles.  

 

 

4.1 Performance 

In this section, we will compare the compression ratios and the reconstruction 

errors of both existing algorithms and six combinations of our work by two compression 

methods, the downsampling method and the Legendre polynomial basis method. Three 

classes of signals are presented respectively in the following paragraphs. 
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4.1.1 Animal signals dataset 

Table 4-1 Compression ratio for animal signals dataset by the downsampling method. 

Compression 

Ratio 
MP3 M4A 

Downsampling 

1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C 

bear.wav   10.836  11.649  22.131  16.114  12.016  10.090  10.008  9.598  

camel.wav 10.655  24.747  19.530  17.987  13.169  18.666  19.176  13.192  

cat growl.wav 10.885  9.796  19.170  9.734  8.238  8.583  7.825  7.572  

cat meow.wav 10.457  20.222  15.457  26.236  15.668  14.162  20.472  15.382  

chimpanzee.wav   10.852  15.172  13.058  8.340  6.589  5.257  5.074  4.970  

cougar.wav 10.714  22.981  18.710  14.447  10.807  6.638  5.849  5.469  

cow.wav 10.613  12.526  26.726  23.585  16.874  33.037  20.178  15.920  

coyote.wav 10.457  28.106  32.643  18.488  15.075  19.788  17.522  16.089  

crocodile.wav 10.714  25.450  14.358  10.931  8.041  9.113  8.078  7.199  

dog.wav 10.532  8.772  13.182  9.926  7.285  8.877  8.673  7.696  

dolphin.wav 10.167  8.289  10.634  10.456  7.203  10.777  10.096  7.178  

donkey.wav 10.745  9.080  18.933  17.533  13.157  12.608  12.484  12.141  

fox.wav 10.810  21.107  13.910  7.280  5.954  5.373  4.963  4.886  

gorilla.wav 10.779  22.708  26.002  12.188  9.883  36.368  11.932  10.462  

hippo.wav 10.906  15.596  23.481  40.137  23.510  23.998  37.962  23.512  

horse.wav 10.680  13.595  14.283  14.793  10.417  14.244  14.790  10.438  

jaguar.wav 10.627  22.240  22.106  7.867  6.759  8.027  6.067  5.827  

koala.wav 10.758  17.431  12.618  17.423  13.118  12.458  17.033  12.961  

lamb.wav 10.764  20.577  37.287  16.864  14.077  38.083  16.653  13.892  

lion.wav 10.733  9.914  16.343  13.168  9.223  26.764  11.632  9.463  

mouse.wav 10.874  9.481  16.243  11.695  9.212  15.345  11.154  9.021  

panda.wav 10.850  13.374  21.562  18.558  13.693  18.875  16.489  13.097  

rabbit angry.wav 10.571  12.521  14.467  9.168  7.237  13.335  9.226  7.270  

raccoon.wav 10.901  9.784  13.762  8.150  6.641  3.351  3.026  2.898  

seal.wav 10.151  8.059  17.785  22.871  15.208  15.705  15.819  15.645  

sheep.wav 10.358  23.427  17.103  15.296  10.861  17.118  15.362  10.946  

squirrel.wav 10.870  11.153  13.673  10.411  7.418  4.439  4.430  4.372  

tiger.wav 10.824  10.308  21.168  13.134  9.980  3.647  3.345  3.322  

whale.wav 10.787  15.327  29.503  45.451  25.824  46.417  31.406  23.443  

wolf.wav 10.579  9.441  11.540  13.962  9.880  10.374  9.884  8.652  

AVERAGE 10.682 15.428 18.912  16.073 11.434  15.717  12.887 10.417 
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Table 4-2 Reconstruction error for animal signals dataset by the downsampling method. 

Reconstruction 

Error 
MP3 M4A 

Downsampling 

1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C 

bear.wav   0.008  0.011  0.050  0.017  0.003  0.002  0.009  0.001  

camel.wav 0.003  0.009  0.008  0.015  0.002  0.003  0.002  0.001  

cat growl.wav 0.019  0.017  0.288  0.013  0.010  0.013  0.007  0.007  

cat meow.wav 0.005  0.007  0.003  0.008  0.003  0.003  0.008  0.003  

chimpanzee.wav   0.004  0.014  0.145  0.011  0.004  0.015  0.002  0.002  

cougar.wav 0.009  0.012  0.225  0.005  0.003  0.030  0.002  0.002  

cow.wav 0.007  0.008  0.044  0.006  0.002  0.125  0.001  0.001  

coyote.wav 0.003  0.008  0.026  0.001  0.000  0.001  0.000  0.000  

crocodile.wav 0.003  0.009  0.011  0.004  0.003  0.005  0.003  0.003  

dog.wav 0.025  0.013  0.067  0.007  0.005  0.021  0.008  0.005  

dolphin.wav 0.023  0.011  0.062  0.010  0.004  0.061  0.007  0.003  

donkey.wav 0.016  0.012  0.016  0.014  0.004  0.002  0.002  0.002  

fox.wav 0.003  0.007  0.222  0.100  0.005  0.011  0.044  0.001  

gorilla.wav 0.009  0.013  0.235  0.004  0.002  0.417  0.002  0.002  

hippo.wav 0.006  0.006  0.004  0.007  0.003  0.002  0.004  0.002  

horse.wav 0.019  0.011  0.014  0.006  0.002  0.013  0.006  0.002  

jaguar.wav 0.003  0.021  0.532  0.003  0.003  0.108  0.003  0.003  

koala.wav 0.011  0.010  0.004  0.044  0.004  0.005  0.043  0.004  

lamb.wav 0.004  0.014  0.334  0.001  0.001  0.334  0.001  0.001  

lion.wav 0.020  0.011  0.027  0.012  0.002  0.253  0.001  0.001  

mouse.wav 0.068  0.019  0.205  0.016  0.005  0.191  0.015  0.005  

panda.wav 0.004  0.012  0.068  0.012  0.002  0.062  0.006  0.001  

rabbit angry.wav 0.013  0.014  0.050  0.004  0.003  0.031  0.003  0.003  

raccoon.wav 0.021  0.012  0.139  0.005  0.003  0.053  0.002  0.002  

seal.wav 0.018  0.012  0.012  0.041  0.006  0.002  0.002  0.002  

sheep.wav 0.003  0.013  0.051  0.005  0.002  0.050  0.005  0.001  

squirrel.wav 0.073  0.025  0.243  0.014  0.006  0.004  0.005  0.003  

tiger.wav 0.020  0.015  0.135  0.003  0.002  0.137  0.001  0.001  

whale.wav 0.003  0.009  0.019  0.105  0.009  0.031  0.001  0.000  

wolf.wav 0.013  0.010  0.007  0.022  0.002  0.001  0.001  0.001  

AVERAGE 0.014  0.013 0.108  0.014 0.003  0.066  0.005 0.002 
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Table 4-3 Compression ratio for animal signals dataset by the Legendre basis method. 

Compression 

Ratio 
MP3 M4A 

Legendre polynomial basis 

1-0-A 1-0-B 1-0-C 

bear.wav   10.836 11.649 15.827 11.552 9.195 

camel.wav 10.655 24.747 15.116 12.477 10.181 

cat growl.wav 10.885 9.796 13.589 7.113 6.447 

cat meow.wav 10.457 20.222 14.586 18.751 14.929 

chimpanzee.wav   10.852 15.172 9.212 6.132 5.192 

cougar.wav 10.714 22.981 13.828 10.589 8.651 

cow.wav 10.613 12.526 24.389 20.151 13.932 

coyote.wav 10.457 28.106 26.723 16.757 14.124 

crocodile.wav 10.714 25.450 10.240 7.962 6.637 

dog.wav 10.532 8.772 9.551 7.477 6.199 

dolphin.wav 10.167 8.289 7.938 7.338 5.749 

donkey.wav 10.745 9.080 14.411 12.875 10.566 

fox.wav 10.810 21.107 9.794 5.351 4.614 

gorilla.wav 10.779 22.708 18.075 8.945 8.039 

hippo.wav 10.906 15.596 21.161 27.584 19.856 

horse.wav 10.680 13.595 10.322 10.687 8.265 

jaguar.wav 10.627 22.240 15.113 6.351 6.032 

koala.wav 10.758 17.431 10.157 12.849 10.500 

lamb.wav 10.764 20.577 26.521 12.905 11.395 

lion.wav 10.733 9.914 11.797 9.656 7.735 

mouse.wav 10.874 9.481 11.660 8.185 6.836 

panda.wav 10.850 13.374 16.306 13.662 11.202 

rabbit angry.wav 10.571 12.521 10.618 7.090 6.240 

raccoon.wav 10.901 9.784 9.715 5.882 5.227 

seal.wav 10.151 8.059 13.304 15.825 11.541 

sheep.wav 10.358 23.427 12.704 11.116 9.082 

squirrel.wav 10.870 11.153 9.881 7.254 6.181 

tiger.wav 10.824 10.308 14.901 9.888 8.392 

whale.wav 10.787 15.327 24.831 33.034 20.811 

wolf.wav 10.579 9.441 9.277 10.164 7.890 

AVERAGE 10.682 15.428 14.385 11.853 9.388 
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Table 4-4 Reconstruction error for animal signals dataset by the Legendre basis method. 

Reconstruction 

Error 
MP3 M4A 

Legendre polynomial basis 

1-0-A 1-0-B 1-0-C 

bear.wav   0.008 0.011 0.056 0.019 0.012 

camel.wav 0.003 0.009 0.016 0.019 0.010 

cat growl.wav 0.019 0.017 0.292 0.021 0.018 

cat meow.wav 0.005 0.007 0.012 0.017 0.012 

chimpanzee.wav   0.004 0.014 0.148 0.017 0.012 

cougar.wav 0.009 0.012 0.228 0.013 0.012 

cow.wav 0.007 0.008 0.052 0.014 0.010 

coyote.wav 0.003 0.008 0.034 0.008 0.008 

crocodile.wav 0.003 0.009 0.019 0.014 0.013 

dog.wav 0.025 0.013 0.074 0.014 0.013 

dolphin.wav 0.023 0.011 0.064 0.015 0.011 

donkey.wav 0.016 0.012 0.023 0.019 0.011 

fox.wav 0.003 0.007 0.226 0.015 0.013 

gorilla.wav 0.009 0.013 0.239 0.012 0.011 

hippo.wav 0.006 0.006 0.010 0.014 0.011 

horse.wav 0.019 0.011 0.020 0.011 0.008 

jaguar.wav 0.003 0.021 0.533 0.012 0.013 

koala.wav 0.011 0.010 0.009 0.041 0.009 

lamb.wav 0.004 0.014 0.337 0.010 0.010 

lion.wav 0.020 0.011 0.033 0.017 0.010 

mouse.wav 0.068 0.019 0.205 0.022 0.012 

panda.wav 0.004 0.012 0.073 0.019 0.010 

rabbit angry.wav 0.013 0.014 0.055 0.012 0.013 

raccoon.wav 0.021 0.012 0.145 0.013 0.012 

seal.wav 0.018 0.012 0.016 0.042 0.011 

sheep.wav 0.003 0.013 0.054 0.010 0.010 

squirrel.wav 0.073 0.025 0.243 0.021 0.013 

tiger.wav 0.020 0.015 0.143 0.013 0.012 

whale.wav 0.003 0.009 0.024 0.109 0.014 

wolf.wav 0.013 0.010 0.015 0.024 0.009 

AVERAGE 0.014 0.013 0.113 0.020 0.011 

 



doi:10.6342/NTU201902199

69 

 

 

Table 4-1 and Table 4-2 are the compression ratio and the reconstruction error of 

signals by the downsampling method, whereas Table 4-3 and Table 4-4 are the 

compression ratio and the reconstruction error of signals by the Legendre polynomial 

basis method. Results better than both algorithms are highlighted in red, while those 

only better than one of both are highlighted in blue. 

 

 

4.1.2 People dataset 

Table 4-5 and Table 4-6 are the compression ratio and the reconstruction error of 

signals by the downsampling method, whereas Table 4-7 and Table 4-8 are the 

compression ratio and the reconstruction error of signals by the Legendre polynomial 

basis method. Results better than both algorithms are highlighted in red, while those 

only better than one of both are highlighted in blue. 
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Table 4-5 Compression ratio for people dataset by the downsampling method. 

Compression 

Ratio 
MP3 M4A 

Downsampling 

1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C 

applause.wav 10.894  10.741  16.279  10.177  7.682  26.812  8.722  7.567  

baby squeal.wav 10.909  19.825  14.357  10.966  8.083  11.171  9.216  8.392  

belch.wav 10.916  28.925  20.933  12.675  9.905  8.196  7.313  7.046  

breath.wav 10.875  8.925  9.110  5.942  4.818  4.960  4.780  4.566  

cheer.wav 10.869  21.527  15.272  7.923  6.182  33.782  7.334  6.757  

cough.wav 10.426  22.010  12.847  8.772  6.683  5.395  5.395  5.395  

crowd.wav 10.856  13.181  16.587  10.329  7.522  25.153  8.735  6.959  

drink with 

straw.wav 
10.919  10.290  10.018  11.086  7.956  4.490  4.545  4.404  

drink.wav 10.915  9.226  13.866  9.175  7.277  6.890  7.008  6.892  

fart.wav 10.075  23.032  18.976  16.149  12.465  18.976  16.149  12.465  

footsteps in 

leaves.wav 
10.874  8.816  10.369  4.371  3.780  1.469  1.255  1.194  

footsteps in 

mud.wav 
10.899  18.015  10.377  6.217  4.973  3.028  2.980  2.935  

footsteps on 

snow.wav 
10.874  23.659  15.043  10.455  7.861  15.019  10.453  7.851  

footsteps.wav 10.748  12.133  10.138  22.173  12.342  5.613  5.833  5.684  

groan.wav 10.790  9.203  10.415  11.235  8.105  7.422  7.314  6.791  

heartbeat.wav 10.844  16.250  17.043  55.120  22.475  13.942  14.437  14.081  

kiss.wav 9.164  17.423  4.975  6.254  5.072  5.045  6.147  4.991  

laugh.wav 10.639  18.849  7.711  8.855  6.450  5.186  5.153  5.119  

scream.wav 10.661  12.088  9.585  7.130  5.607  9.078  6.490  5.589  

sigh.wav 10.444  20.675  10.801  6.867  5.475  8.527  6.772  5.758  

sneeze.wav 9.989  9.542  9.094  9.264  6.634  4.856  5.031  4.589  

snore.wav 10.933  19.115  12.472  8.918  6.986  5.445  4.821  4.606  

yell.wav 10.436  9.194  12.296  6.421  5.378  5.185  4.650  4.471  

AVERAGE 10.650  15.767  12.546  11.586  7.814  10.245  6.980  6.265  
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Table 4-6 Reconstruction error for people dataset by the downsampling method. 

Reconstruction 

Error 
MP3 M4A 

Downsampling 

1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C 

applause.wav 0.057  0.017  0.112  0.010  0.009  0.412  0.007  0.007  

baby squeal.wav 0.011  0.013  0.075  0.008  0.004  0.039  0.002  0.002  

belch.wav 0.003  0.014  0.079  0.005  0.001  0.030  0.001  0.000  

breath.wav 0.030  0.027  0.286  0.038  0.030  0.039  0.027  0.024  

cheer.wav 0.005  0.020  0.238  0.006  0.006  0.604  0.005  0.005  

cough.wav 0.003  0.017  0.179  0.009  0.004  0.001  0.001  0.001  

crowd.wav 0.013  0.017  0.144  0.010  0.009  0.315  0.007  0.007  

drink with 

straw.wav 
0.016  0.010  0.029  0.011  0.007  0.006  0.005  0.005  

drink.wav 0.014  0.009  0.146  0.012  0.005  0.004  0.004  0.004  

fart.wav 0.019  0.012  0.036  0.005  0.003  0.036  0.005  0.003  

footsteps in 

leaves.wav 
0.081  0.030  0.541  0.025  0.020  0.046  0.007  0.006  

footsteps in 

mud.wav 
0.015  0.017  0.236  0.014  0.008  0.006  0.005  0.004  

footsteps on 

snow.wav 
0.003  0.019  0.197  0.004  0.001  0.197  0.004  0.001  

footsteps.wav 0.015  0.007  0.051  0.104  0.010  0.001  0.001  0.001  

groan.wav 0.014  0.012  0.010  0.019  0.003  0.002  0.002  0.002  

heartbeat.wav 0.003  0.008  0.000  0.013  0.001  0.000  0.001  0.000  

kiss.wav 0.104  0.032  0.126  0.217  0.064  0.140  0.214  0.049  

laugh.wav 0.012  0.014  0.031  0.065  0.011  0.005  0.005  0.005  

scream.wav 0.007  0.013  0.020  0.031  0.006  0.017  0.004  0.004  

sigh.wav 0.027  0.027  0.058  0.006  0.005  0.039  0.006  0.005  

sneeze.wav 0.053  0.016  0.051  0.031  0.006  0.013  0.007  0.003  

snore.wav 0.016  0.011  0.081  0.013  0.009  0.040  0.008  0.007  

yell.wav 0.023  0.017  0.334  0.015  0.014  0.042  0.012  0.012  

AVERAGE 0.024  0.016  0.133  0.029  0.010  0.088  0.015  0.007  
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Table 4-7 Compression ratio for people dataset by the Legendre basis method. 

Compression Ratio MP3 M4A 
Legendre polynomial basis 

1-0-A 1-0-B 1-0-C 

applause.wav 10.894 10.741 10.618 7.283 6.276 

baby squeal.wav 10.909 19.825 9.868 7.515 6.352 

belch.wav 10.916 28.925 13.974 9.209 7.905 

breath.wav 10.875 8.925 6.051 4.047 3.580 

cheer.wav 10.869 21.527 10.233 6.287 5.545 

cough.wav 10.426 22.010 8.682 6.152 5.051 

crowd.wav 10.856 13.181 10.754 7.316 6.247 

drink with straw.wav 10.919 10.290 7.120 7.380 6.028 

drink.wav 10.915 9.226 9.359 6.873 5.709 

fart.wav 10.075 23.032 12.673 11.438 10.115 

footsteps in leaves.wav 10.874 8.816 6.812 3.079 2.779 

footsteps in mud.wav 10.899 18.015 7.193 4.360 3.789 

footsteps on snow.wav 10.874 23.659 9.788 7.090 6.030 

footsteps.wav 10.748 12.133 7.381 12.161 8.646 

groan.wav 10.790 9.203 8.611 7.675 6.315 

heartbeat.wav 10.844 16.250 13.283 29.212 17.212 

kiss.wav 9.164 17.423 3.532 3.406 3.312 

laugh.wav 10.639 18.849 5.563 5.698 4.651 

scream.wav 10.661 12.088 6.592 5.127 4.140 

sigh.wav 10.444 20.675 7.172 5.118 4.200 

sneeze.wav 9.989 9.542 6.394 6.118 4.874 

snore.wav 10.933 19.115 8.354 6.332 5.383 

yell.wav 10.436 9.194 8.021 4.708 4.331 

AVERAGE 10.650 15.767 8.610 7.547 6.021 
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Table 4-8 Reconstruction error for people dataset by the Legendre basis method. 

Reconstruction Error MP3 M4A 
Legendre polynomial basis 

1-0-A 1-0-B 1-0-C 

applause.wav 0.057 0.017 0.111 0.011 0.012 

baby squeal.wav 0.011 0.013 0.075 0.011 0.008 

belch.wav 0.003 0.014 0.079 0.008 0.005 

breath.wav 0.030 0.027 0.283 0.041 0.035 

cheer.wav 0.005 0.020 0.237 0.354 0.354 

cough.wav 0.003 0.017 0.176 0.013 0.008 

crowd.wav 0.013 0.017 0.142 0.012 0.011 

drink with straw.wav 0.016 0.010 0.033 0.015 0.011 

drink.wav 0.014 0.009 0.145 0.015 0.009 

fart.wav 0.019 0.012 0.035 0.006 0.007 

footsteps in leaves.wav 0.081 0.030 0.539 0.028 0.024 

footsteps in mud.wav 0.015 0.017 0.234 0.016 0.011 

footsteps on snow.wav 0.003 0.019 0.194 0.005 0.006 

footsteps.wav 0.015 0.007 0.053 0.104 0.012 

groan.wav 0.014 0.012 0.019 0.026 0.011 

heartbeat.wav 0.003 0.008 0.008 0.015 0.007 

kiss.wav 0.104 0.032 0.123 0.217 0.067 

laugh.wav 0.012 0.014 0.031 0.062 0.015 

scream.wav 0.007 0.013 0.020 0.028 0.007 

sigh.wav 0.027 0.027 0.058 0.010 0.009 

sneeze.wav 0.053 0.016 0.051 0.031 0.011 

snore.wav 0.016 0.011 0.080 0.325 0.325 

yell.wav 0.023 0.017 0.331 0.019 0.020 

AVERAGE 0.024 0.016 0.133 0.060 0.043 
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4.1.3 Vehicles dataset 

Table 4-9 and Table 4-10 are the compression ratio and the reconstruction error of 

signals by the downsampling method, whereas Table 4-11 and Table 4-12 are the 

compression ratio and the reconstruction error of signals by the Legendre polynomial 

basis method. Results better than both algorithms are highlighted in red, while those 

only better than one of both are highlighted in blue. 

 

Table 4-9 Compression ratio for vehicles dataset by the downsampling method. 

Compression 

Ratio 
MP3 M4A 

Downsampling 

1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C 

Ferrari.wav 10.891  12.008  20.577  14.759  10.868  14.704  10.865  10.355  

airplane.wav 10.956  12.107  23.927  8.545  7.131  6.281  5.042  4.935  

ambulance.wav 10.949  11.780  15.494  21.820  15.612  14.441  16.686  13.468  

brakes.wav 10.613  11.676  10.314  28.642  11.207  11.903  17.866  12.882  

bus.wav 10.936  11.936  20.599  13.186  10.347  19.992  10.691  9.617  

helicopter.wav 10.921  11.483  23.817  11.674  9.349  13.328  10.309  9.799  

jet flyby.wav 10.907  10.746  15.659  9.063  7.049  4.741  4.540  4.498  

motor.wav 10.927  7.708  13.939  5.177  4.474  21.233  4.348  4.198  

motorcycle.wav 10.865  12.328  22.400  9.888  8.306  4.173  3.933  3.897  

siren.wav 10.872  13.768  24.567  13.228  10.671  8.082  8.098  8.017  

tank.wav 10.759  12.030  13.542  9.031  6.793  21.870  7.414  5.795  

train steam 

whistle.wav 
10.680  10.106  7.736  11.151  7.648  8.054  10.761  7.811  

train.wav 10.837  10.160  10.896  8.886  6.597  15.776  7.292  5.611  

truck.wav 10.759  11.837  11.632  9.244  6.945  19.449  6.707  6.050  

windshield wiper 

.wav 
10.991  19.575  16.496  12.069  9.158  8.256  7.717  7.483  

AVERAGE 10.858  11.950  16.773  12.424  8.810  12.819  8.818  7.628  
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Table 4-10 Reconstruction error for vehicles dataset by the downsampling method. 

Reconstruction 

Error 
MP3 M4A 

Downsampling 

1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C 

Ferrari.wav 0.011  0.009  0.019  0.012  0.002  0.071  0.001  0.001  

airplane.wav 0.030  0.015  0.332  0.007  0.005  0.033  0.003  0.003  

ambulance.wav 0.010  0.010  0.006  0.019  0.006  0.004  0.008  0.003  

brakes.wav 0.008  0.009  0.001  0.003  0.001  0.001  0.002  0.001  

bus.wav 0.007  0.010  0.079  0.021  0.004  0.186  0.003  0.003  

helicopter.wav 0.026  0.011  0.265  0.006  0.005  0.084  0.005  0.005  

jet flyby.wav 0.045  0.013  0.085  0.010  0.005  0.026  0.002  0.002  

motor.wav 0.043  0.054  0.554  0.187  0.183  0.654  0.178  0.175  

motorcycle.wav 0.018  0.008  0.238  0.004  0.002  0.010  0.001  0.001  

siren.wav 0.003  0.006  0.197  0.003  0.001  0.000  0.001  0.000  

tank.wav 0.020  0.013  0.072  0.033  0.013  0.130  0.010  0.009  

train steam 

whistle.wav 
0.010  0.011  0.033  0.057  0.029  0.027  0.041  0.025  

train.wav 0.020  0.015  0.035  0.041  0.014  0.042  0.013  0.011  

truck.wav 0.017  0.012  0.038  0.036  0.010  0.121  0.005  0.005  

windshield wiper 

.wav 
0.022  0.015  0.165  0.020  0.015  0.030  0.012  0.011  

AVERAGE 0.019  0.014  0.141  0.030  0.020  0.095  0.019  0.017  
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Table 4-11 Compression ratio for vehicles dataset by the Legendre basis method. 

Compression Ratio MP3 M4A 
Legendre polynomial basis 

1-0-A 1-0-B 1-0-C 

Ferrari.wav 10.891 12.008 14.663 10.359 5.709 

airplane.wav 10.956 12.107 16.073 10.743 10.115 

ambulance.wav 10.949 11.780 13.416 16.183 6.315 

brakes.wav 10.613 11.676 8.426 20.266 17.212 

bus.wav 10.936 11.936 13.625 9.665 6.030 

helicopter.wav 10.921 11.483 15.129 9.074 8.646 

jet flyby.wav 10.907 10.746 10.356 7.090 5.051 

motor.wav 10.927 7.708 9.017 8.185 6.247 

motorcycle.wav 10.865 12.328 15.405 13.662 3.312 

siren.wav 10.872 13.768 17.380 12.905 5.709 

tank.wav 10.759 12.030 8.821 9.656 10.115 

train steam whistle.wav 10.680 10.106 5.346 6.592 2.779 

train.wav 10.837 10.160 7.362 6.351 4.874 

truck.wav 10.759 11.837 7.781 7.090 5.383 

windshield wiper.wav 10.991 19.575 11.163 5.882 6.247 

AVERAGE 10.858 11.950 11.597 10.247 6.964 
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Table 4-12 Reconstruction error for vehicles dataset by the Legendre basis method. 

Reconstruction Error MP3 M4A 
Legendre polynomial basis 

1-0-A 1-0-B 1-0-C 

Ferrari.wav 0.057 0.017 0.024 0.014 0.011 

airplane.wav 0.011 0.013 0.334 0.676 0.011 

ambulance.wav 0.003 0.014 0.009 0.021 0.007 

brakes.wav 0.030 0.027 0.010 0.009 0.067 

bus.wav 0.005 0.020 0.081 0.022 0.011 

helicopter.wav 0.003 0.017 0.265 0.564 0.013 

jet flyby.wav 0.013 0.017 0.082 0.015 0.009 

motor.wav 0.016 0.010 0.553 0.104 0.010 

motorcycle.wav 0.014 0.009 0.242 0.028 0.007 

siren.wav 0.019 0.012 0.199 0.016 0.024 

tank.wav 0.081 0.030 0.071 0.005 0.011 

train steam whistle.wav 0.015 0.017 0.034 0.006 0.006 

train.wav 0.003 0.019 0.036 0.026 0.005 

truck.wav 0.015 0.007 0.039 0.015 0.011 

windshield wiper.wav 0.014 0.012 0.164 0.042 0.011 

AVERAGE 0.024 0.016 0.143 0.104 0.014 

 

 

4.2 Computation time 

Table 4-13 and Table 4-14 are the results of computation time. However, the 

computation time depends on the complexity of the algorithm, which trivially leads to 

our time-consuming results. Apparently, different bandwidth computation methods also 

yield different results, For instance, type C is slower than type B and type B is slower 

than type A due to the larger bandwidths for approximation. The relationship between 
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the pre-cut scheme and the head and tail scheme is not definite since the target signals 

may affect the appropriate scheme. 

 

Table 4-13 Average computation time by the downsampling method. 

Average 

Computation 

Time 

MP3 M4A 

Downsampling 

1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C 

Animal signals 0.765 1.943 14.324 25.179 28.630 19.798 27.068 30.678 

People 1.172 1.851 34.145 67.996 77.056 51.912 67.824 74.336 

Vehicles 1.455 2.373 88.516 115.496 136.534 62.249 164.846 175.649 

 

Table 4-14 Average computation time by the Legendre basis method. 

Average 

Computation 

Time 

MP3 M4A 

Legendre polynomial basis 

1-0-A 1-0-B 1-0-C 

Animal signals 0.765 1.943 45.103 148.499 189.082 

People 1.172 1.851 97.236 254.288 301.106 

Vehicles 1.455 2.373 177.446 462.108 512.326 
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Chapter 5 Discussion 

In data compression theory, when the compression ratio increases, the 

reconstruction error also increases and when the compression ratio decreases, the 

reconstruction error also decreases, which implies the compression ratio and the 

reconstruction error are positively correlated. However, we hope the compression ratio 

is as large as possible while the reconstruction error is as small as possible. Hence we 

compare the compression ratio and the reconstruction error respectively and try to find 

the overlapping methods. 

For the comparison groups, MP3 algorithm performs steadily in both the 

compression ratio and the reconstruction error. Although M4A algorithm fluctuates 

more in both the compression ratio and the reconstruction error, the average 

performance is much better than MP3 algorithm. 

For the downsampling method, the results with animal signals dataset are good in 

both measures, and the overlapping methods are 1-0-B, 1-0-C, and 0-1-C, which means 

our proposed algorithm works. Unfortunately, the results with people dataset and the 

results with vehicles dataset seem not so good. 

For the Legendre polynomial basis method, we only test the algorithm with the 

pre-cut scheme since the algorithm without the pre-cut scheme will produce 

components with large time intervals and the approximation for Legendre polynomial 
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basis will never converge or take a very long time. The results with animal signals 

dataset, people dataset, and vehicles dataset are not good, and the reason for this may be 

the boundaries of elements in the Legendre polynomial basis. 

However, there are three primary reasons for the failure of our proposed algorithm. 

First, if we take a close look to signals with bad performance, we can find that most of 

them are far from our ideal target signals. The signals our algorithm intends to deal with 

are signals with harmonics, which look like stripes in the time-frequency analysis and 

are able to be divided into horizontal parallel components, such as Fig. 3-1. Most 

signals in the animal signals dataset conform to the rule while most signals in the people 

dataset and the vehicles dataset do not act like that. The result has shown that the 

algorithm of our work is more applicable to the animal voice signals rather than other 

classes of common signals. 

The second reason is that the time-frequency analysis is not as precise as we think. 

As we mention before, the resolution of the Gabor transform for the time domain and 

the frequency domain totally depends on the parameter σ. If our empirical value of σ is 

not suitable for the signal, the Gabor transform of the signal may produce negative 

effect on the analysis. Despite the combination of the high clarity of the Wigner 

distribution function, the problem of the Gabor transform still exists. On the other hand, 

the cross term problem in the Wigner distribution function may still exist while the 
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mask of the Gabor transform does not work appropriately, which means that the 

combination of the Gabor-Wigner transform becomes meaningless. The unbalanced 

sampling used in the implementation for lowering the computation time and the 

complexity also decreases the resolution of the analysis. 

The last reason is that the time-frequency reassignment does not perform ideally. In 

the observation of the failed examples, plenty of the signals do not carry out as we want 

in this part of the algorithm. In spite of the pre-cut scheme, the gap connection scheme, 

the head and tail scheme and the fixed bandwidth estimation, the results are still not 

identical to those we can trivially predict. The time-frequency reassignment part in the 

algorithm we design is not complete and not able to handle all types of signals. 

To sum up, even though our concept of the time-frequency analysis is reasonable in 

theory, the implementation of the algorithm still encounters numerous difficulties and 

challenges. If all these problems are solved and the computation time can be improved, 

the time-frequency methods for compressive sensing can outperform the existing 

algorithms and be applied practically with a high chance.  
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Chapter 6 Conclusion and Future Work 

In our work, we propose an algorithm to compress data with time-frequency 

analysis method. This thesis consists of four parts, form Chapter 2 to Chapter 5. In 

Chapter 2, we review some related works like compressive sensing, matching pursuit, 

basis pursuit, some other expansion methods and common bases for expansion. In 

Chapter 3, we introduce our proposed work, including time-frequency analysis, 

time-frequency reassignment, signal components approximation, and the signal 

reconstruction scheme. In the section of time-frequency analysis, the target signal is 

transformed by the Gabor transform and the Wigner distribution function, and then the 

segmentation scheme is applied. The section for time-frequency reassignment includes 

the optional pre-cut scheme, the gap connection scheme, the optional head and tail 

scheme, and the fixed bandwidth estimation, which reassign the figure and relabel the 

components of the signal. In the section of signal components approximation, the signal 

is implemented by the generalized modulation, the downsampling method, the Legendre 

polynomial basis method, and the encoding scheme. The section for signal 

reconstruction scheme includes the decoding scheme and the reconstruction of both 

methods. Simulation results are demonstrated in Chapter 4, while the discussion of the 

simulation is provided in Chapter 5.  
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The simulation proves that our work is better than MP3 and M4A algorithms under 

certain circumstances. From the results, the animal voice signals are suitable for our 

proposed algorithm relative to both existing algorithms. However, we do not test our 

work with acoustic signals and speech signals, which are theoretically composed of 

harmonics. We believe that our work can be extended to most of signals if the 

segmentation scheme can handle various types of signals since our proposed algorithm 

can remove the space between components in time-frequency analysis. The 

performance can be further improved by deriving more intelligent time-frequency 

reassignment scheme. Bandwidth computation methods can also be improved to apply 

to most segmentation conditions. 
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