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ABSTRACT

Due to the fast developments in hardware, the computation resources are available
more easily than decades ago. In recent years, compressive sensing broadens our
horizons by the promotion of the computation speed, which is different from the
conventional sampling approaches limited to the celebrated Shannon’s theorem. The
sparsity properties of signals are utilized by compressive sensing to break thorough the
limitation of the traditional sampling rate, which makes us consider that the identical
effect can be achieved by the characteristics in other aspects. As a result, we manage to
take advantage of the time-frequency analysis tool commonly used in the field of the
signal processing as a breakthrough point. It is known that the lower bound of the
number of sampling points is positively associated with the area of the time-frequency
analysis, which is exactly the key concept of designing our algorithm to compress the

target signal.

In this master thesis, we use the time-frequency analysis to implement the

application of the vocal signal compression. Different from the widespread MP3 and

M4A compression algorithms in life, the data discarded is determined by the pixels
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below the threshold or the blocks with small area instead of the human hearing

capability. The consequence of the time-frequency analysis is divided into several

blocks as the primary segmentation result. Then, we execute the time-frequency

reassignment to the segmentation result with proposed schemes, such as the pre-cut

scheme, the gap connection scheme, the head and tail scheme, and the fixed bandwidth

estimation, to obtain the further signal components segmentation result.

Our next step is to approximate the segmentation result of the signal components.

For each component, we utilized the generalized modulation to lower the frequency and

decrease the maximum bandwidth of single component. Then, we adopt two methods to

approximate and compress the modulated signal components, which are the

downsampling method and the Legendre polynomial method. The downsampling

method can effectively decrease the number of sampling points to compress the data

due to the smaller bandwidths of the signal component, while the Legendre polynomial

method manages to find the sparse representations of the signal components by the

Legendre polynomials and transforms the signal into less coefficients. The compressed

data and the parameters needed for recovering the data are encoded into a package,

which is the final compression result. The packages are easily decoded and able to be
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reconstructed with only reverse operation. Our proposed algorithm divides the target
signal with the time-frequency analysis to reduce the redundant space on the figure and
hence decreases the compressed signal for storage. In spite of relatively large
computation time, the better result of higher compression ratio and lower reconstruction

error holds in the meanwhile in some cases, compared to common compression formats.

Index term — compressive sensing, time-frequency analysis, time-frequency
reassignment, generalized modulation, downsampling method, Legendre polynomial

method.

Vi
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Chapter 1  Introduction

1.1 Motivation

In data compression area, researchers dedicate to develop a compression algorithm
to minimize the reconstruction error and maximize the compression ratio. In 1993, a
coding format for digital audio, the well-known MP3, has been developed as the third
audio format of the MPEG-1 standard. It encodes data by using inexact approximation
and getting rid of some data, which is called lossy compression, to reduce the
components beyond the human hearing capability. Huge reduction in file size and
acceptable fidelity make the format become a sensation in the distribution of music.
Few years later, another format called Advanced Audio Coding (AAC) is developed as
the successor of the MP3 format. However, the compression ratio of AAC is generally
better than MP3. Both formats are widely used as compression algorithms to reduce the
file size of original audio signals such like WAV files.

In recent years, the most famous related field is definitely compressive sensing,
which is not limited by the Nyquist rate in the conventional sampling theory. As a new
breakthrough, the idea of reducing the sampling rate can also be implemented in the
time-frequency analysis without aliasing effect. It is known that the area of the

time-frequency analysis is concerned with the lower bound of the number of sampling
1
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points, which can be utilized to design an algorithm to compress data. If high frequency
components of a signal can be transformed into low frequency components, or the
scattered components can be divided and reassigned, the sampling frequency and the
number of sampling points will be reduced. Moreover, the bases for compressive
sensing can be also utilized to approximate the signal and find the sparse representation,
which is able to be viewed as a compression algorithm.

Based on the above notions, we hope to propose an algorithm to compress data
from perspective of time-frequency analysis and compressive sensing. Trivially, the
compression ratio and the reconstruction error are supposed to be the primary measures

of the algorithm.

1.2 Primary Contributions

In our thesis, we propose an algorithm with two approximation methods. Unlike
common compression algorithms, we use time-frequency analysis such as the Gabor
transform and the Wigner distribution function to determine the components which are
supposed to be neglected. Then we take advantage of time-frequency reassignment to
distinguish components from each other, narrow the bandwidths by the generalized

modulation and approximate components by the downsampling method and the
2
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Legendre polynomial basis method. The compressed data are simply encoded into a
package which is able to be decoded easily.

This thesis is organized as follows. In Chapter 2, we will review some concepts
like compressive sensing, matching pursuit, basis pursuit, some other expansion
methods and common bases for expansion. Our proposed work will be introduced in
Chapter 3, including time-frequency analysis, time-frequency reassignment, signal
components approximation, and signal reconstruction scheme. In the part of
time-frequency analysis, we present two practical transforms and the combination of
them, and the segmentation scheme. The section for time-frequency reassignment
includes the optional pre-cut scheme, the gap connection scheme, the optional head and
tail scheme, and the fixed bandwidth estimation. In the section of signal components
approximation, there are the generalized modulation, the downsampling method, the
Legendre polynomial basis method, and the encoding scheme. The section for the signal
reconstruction scheme includes the decoding scheme and the reconstruction of both
methods. Simulation results are demonstrated in Chapter 4, while the discussion of the
simulation is provided in Chapter 5. Finally, Chapter 6 concludes this thesis and

proposes the future work.
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Chapter 2 Related Work

In this chapter, we will introduce some concepts related to our work, such as
compressive sensing, some algorithms or principles for the expansion of signal, and
some practical bases commonly selected as the dictionary of expansion. Moreover, our
work can be improved to be adaptive to a numerous variety of signals depending on

different concepts and methods we will mention in the following.

2.1 Compressive Sensing

Approaches to sampling signals in traditional way are supposed to follow
Shannon’s theorem: the sampling rate, must be at least twice the maximum frequency
present in the signal, which is called Nyquist rate. In effect, this famous principle
applies in most of technologies related to communication engineering. Compressive
sensing, also known as compressive sampling or CS, is a new notion that goes against
the conventional knowledge about signal sampling and data acquisition. Compressive
sensing makes it possible under certain conditions that one can recover signals from

fewer measurements than conventional methods do.

do0i:10.6342/NTU201902199



2.1.1 The sensing problem

The sensing problem is the main idea of compressive sensing that information
about a signal f(t) is depicted as a linear combination of functions recording the values:

v ={for), k=12,.m (2.1)

Simply, we correlate a signal f with some sensing waveforms ¢(t) to get the
sampled values. For instance, if the sensing waveforms are Dirac delta function, y is a
vector of sampled values of f at a certain time in time domain. If ¢(t) is sinusoidal
functions, then y is a vector of Fourier coefficients. The most famous application of this
principle is magnetic resonance imaging (MRI).

However, compressive sensing is interested in undersampled situation m <« n in
which the number of measurement m is much smaller than the dimension n of the signal
f. In order to achieve the goal, compressive sensing relies on two principles: the sparsity

of the signals and the incoherence of sensing modality.

2.1.2 Sparsity

Sparsity of the signal expresses that the information of a signal may be much
smaller than its finite length. In fact, compressive sensing shows that many natural
signals can be more sparse and compressible when expressed in a proper basis. For

example, Fig. 2-1 shows that the image has concise representation expressed in its
5
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wavelet transform and the difference between the original image and the reconstruction

image is barely noticeable.

Wavelet
x 10* Coefficients

(b)

Fig. 2-1 The example of compressive sensing. (a) Original image with pixel values in
the range [0,255] (b) Wavelet transform coefficients of the image (c) The reconstruction

obtained by 25000 largest wavelet coefficients. [1]

Suppose we have a vector f € R". We can express f in an orthonormal basis ¥ =
[w1y2...yy] as follows:

f@) = Xiog % (D), (2.2)
where we can say that f equals W x, ¥ is the nxn matrix and x is the coefficient
sequence of f, x; = (f, ;). Sparsity implies that the small coefficients of the signal can
be eliminated without perceptual loss if the signal has a sparse expansion. Consider fs(t)
composed of terms corresponding to the S largest values of x in the expansion. Define f,

= ¥ X, where xs is the vector of coefficients of x with all set to zero except for the S
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largest components. We call S-sparse such objects with at most S nonzero entries. Since
Y is an orthonormal basis, then we have:

If = fsllz = Tl — xsl2, (2.3)

and if x is sparse, the value would be small because x and xs are approximated.

2.1.3 Incoherence

The duality between time and frequency domain also exists in the compressive
sensing theory. Incoherence indicates that the sensing waveforms have a dense
representation in ¥ while the original signal is spread out in the domain in which it is
acquired. Suppose we are given a pair (@, ¥) of orthonormal basis of R", which means
the basis for sensing the signal f and that for representing f. The coherence between the
sensing basis @ and the representation basis WV is:

(@ %) =n- maxlsk,j5n|(§0k:lpj>|’ (2.4)
which measures the largest correlation between any two elements of ® and ¥. Linear
algebra implies that u (@, V) € [1,\/5]; see also [2]. We mostly concerned with low
coherence pairs of basis in compressive sensing. For instance, if @ is the spike basis
with g(t) = 6 (t-k) and W is the Fourier basis with yj(t) = n™%e'# ™ the situation
equals to the conventional sampling method in time domain. The basis pair of this

time-frequency transform conforms to u (®, W) = 1, so called “maximal incoherence” in
7
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this example. Another example comes to the wavelet basis for ¥ and noiselet [3] basis

for @.

2.1.4 Sparse signal recovery
The completion of reconstruction would be done if we can measure all the n
coefficients of f, but we only observe a subset of them and collect the data
i ={frok), kEM, (2.5)
where M <{1,2,...,n} is a subset of cardinality m < n. The signal is recovered by
1-norm minimization and the proposed reconstruction f '= ¥ X', where X" is the
solution to the convex optimization program
mingegn||X||,, subject to y, = (@, ¥X), Vk € M (2.6)
and [[%]l,, is defined as the summation of each component of %:
IZ1le, == Xl%;]. (2.7)
The use of £;-norm as a sparsity-promoting function has a long history, like reflection
seismology [4]. However, there are other proposed methods such as greedy algorithms
can be the approach to reconstructing sparse solutions [5].
The recovery by £;-norm minimization is exact with overwhelming probability
when the signal f is sufficiently sparse. Suppose that f € R" and the coefficient

sequence x of f is S-sparse in the basis ¥. Given some positive constant C, the solution
8
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is exact if
m=C-u?(®,¥)-S-logn (2.8)
holds when we select m uniformly random measurements in the ® domain. Obviously,
the smaller the coherence, the fewer measurements are needed, which corresponds to
the importance of incoherence system. In addition, suppose the probability of success P,
it is guaranteed in [6] that
P>1-6if mzc-MZ(qa,qJ)-s-log(g) (2.9)

for nearly all x with a fixed support.

2.1.5 Robustness and Restricted Isometry Property (RIP)

In this section, we will discuss the robustness of compressive sensing for two
issues. The first is whether or not it is possible to recover accurately the signal of only
approximately sparse but not exactly sparse from highly undersampled measurements.
Second, the measured data is inevitable corrupted by a small amount of noise because of
no perfect sensing devices. Restricted isometry property (RIP) [7] is very useful as a
key notion about the robustness of compressive sensing.

Consider recovering a vector x € R" from data

y = Ax + z, (2.10)

where A is an mxn matrix and z is unknown error term. Since f =¥ x and y = ® f, we
9
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can write y = A x with A = ® V. For positive integers S = 1, 2, ... , we have the RIP
inequality
(1= 8)llxll7, < lAxIIZ, < (1 + 85)lIxI,, (2.12)
where the isometry constant ds of a matrix A is the smallest number such that the
inequality holds for all S-sparse vectors x. In other words, all subsets of S columns from
A are nearly orthogonal (not exactly since m < n). If the RIP holds, the linear program
of reconstruction
mingegn||X|l,, subjectto y = A% (2.12)
will be accurate.
With noisy data z and the use of £;-norm minimization for reconstruction,
mingegn||Z|l,, subjectto [ly — A%|l,, <e, (2.13)
where ¢ bounds the amount of noise, can be solved easily as a second-order cone
program. Given that d,s < v/2 — 1, for some constants Co and Cy, the solution x” obeys
llx* = xll,, < Co -%+ C,- e (2.14)
which is variated from the result in [8]. Moreover, the constants Co and C; are typically
not large, for example, if d2s = 0.25, Co < 5.5and C; < 6. Fig. 2-2 shows a simulation
of reconstruction from a noisy data. The sensing matrix has i.i.d. N(0, 1/m) entries with

|axlle,

m =256 and n = 512, and z is Gaussian white noise so that | = 5. The result shows

Izlle,

that |lx* — x||,, = 1.3e and implies the practicality of compressive sensing with not
10
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only sparse signals but the ability against noise.

Fig. 2-2 Asignal x and its reconstruction x™ recovered by (2.13). [1]

2.2  Matching Pursuit and Basis Pursuit

Speaking of the reconstruction of compressive sensing, it always comes with a
solution of an underdetermined system y = D x, where y has less components than x. It
implies that the system has more unknowns than equations and therefore generally has
an infinite number of solutions. In order to choose a solution to this system, we must
add some constraints appropriately, such as the sparsity of the signal in compressive
sensing. Nevertheless, not all systems have a sparse solution. There are many
algorithms we can use to solve the underdetermined system. In this section, we will
introduce some algorithms and optimization principles to recover the signal: matching

pursuit and basis pursuit [10].
11
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2.2.1 Matching pursuit (MP)

Matching pursuit is a kind of sparse approximation greedy algorithm which was
first proposed by Mallat and Zhang [9]. They discussed the decomposition with the
sparsity issue directly. Similar algorithms were also proposed later by Qian and Chen
for Gabor dictionaries [10] and by Villemoes for Walsh dictionaries [11]. The basic idea
is to approximately represent a signal f from Hilbert space H as a linear combination of
functions g, , which is taken from D and called “atoms,” to find the projections of
multidimensional data onto the span of a redundant dictionary D.

Suppose that the atoms are normalized in the dictionary D. A signal can be
approximated with N atoms by

f(®) = fu(t) = EN=1 an Xn (D), (2.15)
where a, is the coefficients for the atom x,, the n-th column of dictionary D. The
algorithm starts with finding the atom reducing the most approximation error by inner
product such that

IKf, x)| = a- supj|(f, x;)], (2.16)
where o is an optimality factor that satisfies 0 < o < 1, and the vector f can be

decomposed into

f={f,x)x + RS, (2.17)
12
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where R;f is the residual vector after approximating f in the direction of x;. Then we
subtract the projection from the signal. Last but not least, given the n-th order residual
Ruf, for n > 0, repeat the above two steps as follows until the stopping criterion (which
is usually that the residual is satisfactorily small) is satisfied:
[(Rnf, %ns1)l = o sup;[(Rf, x;)], (2.18)
and the residual R,f is subdecomposed into
Rnf = (Ruf, Xn41)Xne1 + Rpga f (2.19)
We decompose f into the concatenated sum, and therefore yield
f=2n=1(Ru_af, X3) xn + Ry f (2.20)
and an energy conservation equation
117 = ZR=1KRus fr 260012 + IRy £1IZ. (2.21)
Matching pursuit can produce an approximation of the signal by only a few atoms
when it is stopped after a few iterations. If the dictionary is orthogonal, the algorithm
goes perfectly and recovers the sparse signal exactly. However, if the dictionary is not
orthogonal, things may go wrong in the first few iterations and therefore it spends most
of time correcting mistakes. The result will be suboptimal in general. Later, a refinement
of the matching pursuit algorithm with orthogonalization was referred to as orthogonal

matching pursuit (OMP).

13
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2.2.2 Orthogonal matching pursuit (OMP)

The modified algorithm of MP called orthogonal matching pursuit (OMP) was first
proposed by Pati, Rezaiifar, and Krishnaprasad [12]. The main difference between MP
and OMP is that OMP orthogonalize all chosen atoms in each iteration to converge
faster and ensure the full backward orthogonality of the error, while OMP requires the
additional computation.

Assume that for f € H, we have the k™-order model

f=Yk_akx, + Ref, with (Rif,x,) =0, n=1.2,...,k (2.22)
and the updated (k+1)"™-order model

f =Ykt ak ¥ x + Rppif  With (Rps1f,x,) =0, n=12,..,k+1, (2.23)
where the superscript k in the coefficients implies the dependence of the model order.

We subtract one equation from the other and yield
K 1@kt — ak) x, + altxess + Resaf — Ref = 0. (2.24)

Here, we decompose Xk+1 With an auxiliary model
Xpp1 = DK _1bE x, + vk, With (y,x,) =0, n=12,..,k, (2.25)
since the dictionary is not orthogonal. If the equation of the difference holds, then the

following two equations decomposed from it will also hold for sure:

aptt = af — agiibs (2.26)
afiive + Resaf —Ref = 0. (2.27)
14

do0i:10.6342/NTU201902199



The only problem remaining is to find the solution of a¥fl. We arrange the last
equation and the answer is evident by the inner product with xq+1 on both sides. Since
Xk+1 1S orthogonal with Ry:1f, the new coefficient of the new dictionary element for the

updated model is

k+1 — (ka:xk+1> — (ka:xk+1> 2 28
fe+1 ViXk+1) lyell? ( . )

We put the solution back to the equation with both sides squared, and it follows that the
relation between residuals of two iterations

IRFIZ = Ry 112 + LRl (2:29)
since y and Rysf are orthogonal. The residual is updated with a smaller value, which
shows the convergence of the algorithm.

The algorithm is constructed by the previous results. First, find X1 in (2.18) from
the dictionary D minus Dy, which means the selected dictionary after k iterations, in
order not to choose the same elements. Compute {bX3}k_, and y, in (2.25), solve
(2.28) for aktl and then subtract the coefficients {ak}c_, from akil-{pk}k_,
respectively by (2.26), which means the projections of {x,}t_, onto X1 Finally,
update the residual

Resaf = f = fir = f — Tkt altix, (2.30)
and the dictionary D,,, = D, U{x,+,}, and repeat the process until certain stopping

criterion is satisfied.
15
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MP and its orthogonal version OMP are both related to the field of compressive
sensing and have been extended by other researchers, such as [13], [14] and [15]. Some
modifications are made to improve the efficiency of original algorithms. For instance,
multipath matching pursuit (MMP) [16], which investigates multiple promising
candidates to recover sparse signals form CS, compressive sampling matching pursuit
(CoSaMP) [17], which accelerates the algorithm and provides strong guarantees that
OMP cannot, generalized OMP (gOMP) [18], which finishes the algorithm with much
smaller number of iterations when compared to the OMP, and stagewise OMP (StOMP)

[19], which makes multiple coefficients enter the model at each stage.

2.2.3 Basis pursuit (BP)

Basis pursuit (BP) is an optimization principle, not an algorithm, which is used to
solve the problem of overcomplete representations by finding the coefficients with
minimal £;-norm and described in [20]. Since the dictionary is overcomplete, the signal
can be represented as s = Y., a, ¢, in many ways. Mathematically, we solve o € R”
in the equation

min ||a||,; subject to ®a =s, (2.31)
where s is the signal and @ is the dictionary. The basis pursuit minimization is basically

a convex but nonquadratic problem with linear equality constraints, and therefore it can
16
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be reformulated as a linear programming (LP) problem. The standard form of linear
programming is a constrained optimization problem with a variable x € R™ and the
objective function c'x

min cTx subjectto Ax =b, x =0, (2.32)
where Ax=b is a collection of equality constraints and x > 0 bounds the variable. We
can reformulate the BP problem as a LP problem by transforming m into 2p, A into (®,
-®), b into s, ¢ into (1, 1), x into (u, v), and « into u-v. The equivalence of BP and LP
leads us to the solution of the equation since early years [21].

Over past decades, a great amount of work dedicated to the solution of linear
program has been done. In this section, we will introduce two algorithms for solving the
BP optimization problem, the simplex method and the interior-point method. For the
simplex method, we start from a basis B composed of n linearly independent columns of
A such that Bb in feasible. Iteratively, exchange one atom in the basis from another one
not in the basis to optimize the objective function. Geometrically, it works by jumping
from one extreme point of the simplex to another one. Therefore, the convergence is
guaranteed with a certain way to selecting atoms [22]. In the other hand, the
interior-point method starts from a point inside the interior of the simplex composed of

the feasible points set {x | Ax=Db, x > 0} instead of on the boundary. As the iteration

goes, we modify the coefficients with maintaining the feasibility and improve the
17
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sparsity of x. While approaching the boundary, one may quit the interior-point method

and then use the simplex method to find the final extreme point.

2.2.4 Basis pursuit denoising (BPDN)
One practical extension of basis pursuit is called basis pursuit denoising (BPDN).
Suppose that we have noisy data
y=s+toz, (2.33)
where s is the original signal, z is a white Gaussian noise and o is the noise level. Here,
we refer to the solution of
min  lly — ®all?, + Allall (2.34)
instead of applying basis pursuit directly, where o is a function of the penalizing
parameter A. The empirical value of A is suggested as A, = a\/m, where p is the
cardinality of the dictionary. The equation is equivalent to the perturbed linear program
with the transformation we mention in the basis pursuit before. Perturbed linear
program is quadratic but similar to linear program, which leads to similar algorithms,
BPDN-simplex method and BPDN-interior-point method. Moreover, there is an
alternative algorithm for minimizing the BPDN function using a block coordinate

relaxation (BCR) method, which can be extended to complex signals.

18

do0i:10.6342/NTU201902199



2.3  Other Expansion Methods
2.3.1 Method of frames (MOF)
The MOF considers a quadratic optimization problem whose coefficients have
minimum £z-norm:
min ||«a||,, subject to ®a =s, (2.35)
with linear equality constraints [23]. Geometrically, the MOF chooses the solution
closest to the origin from an affine subspace in RP. The unique solution of the problem
o' can be expressed as a normal equation
at = dTs = (OTD) 1Ty, (2.36)
where @' is the generalized inverse of ®. Although it is relatively simple to find the
solution, there are two primary problems with the MOF, sparsity preservation and
resolution limitation. First, the coefficients found by MOF usually come from atoms
that are not orthogonal with the signal, which means that it is hardly sparsity preserving.
The other problem is that the signal is reconstructed by the operator ®'® with limited
resolution. In other words, the reconstruction with the overcomplete dictionary will be
spread out since the reconstruction will be ®'®a instead of o. Fig. 2-3 shows the
analysis of the signal TwinSine composed of two sinusoids with closely spaced
frequencies in a fourfold overcomplete cosine dictionary. Evidently, the results presents

that the MOF finds many frequencies with no sparsity and precision, while MP and BP
19
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concludes that the signal may be synthesized from two frequencies, which is relatively

close to the original signal.
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Fig. 2-3 Analysis of TwinSine signal with a fourfold overcomplete cosine dictionary.

(a) TwinSine signal (b) MOF coefficients (c) MP coefficients (d) BP coefficients. [20]

2.3.2 Best orthogonal basis (BOB)

Coifman and Wickerhauser have proposed a method of selecting an orthogonal
basis, which is called the best basis, from a certain dictionary [24]. For instance, cosine
packet and wavelet packet dictionaries are so special since certain subsets of the atoms
in the dictionaries form orthogonal bases. It is available that we can develop some
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programs of decomposition. Define s[B], as the vector of the coefficients of s in
orthogonal basis B, and the entropy as e(s[B]) = )., e(s[B];), where ¢(s) is a scalar
function. A quick algorithm they proposed is to solve

min { e(s[B]) | orthogonal basis B & D}. (2.37)
When the signal has an ideal sparse representation in an orthogonal basis, the algorithm
leads to near-optimal sparse representation and the BOB works well. But, when the
signal is composed of some nonorthogonal atoms, finding the sparse representation
seems like a contradiction to finding an orthogonal basis. Fig. 2-4 shows an example of
BOB with different kinds of entropy. The result implies that BOB finds nothing with the

signal consisting of chirps and sinusoids.
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Fig. 2-4 Phase plane analysis of WernerSorrows signal by BOB algorithm with a cosine

packet dictionary. (a) WernerSorrows signal (b) C-W entropy (c) £;-norm entropy. [20]

2.3.3 Total variation denoising (TVDN)

A denoising method with total variation penalized least squares has been proposed
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by Rudin, Osher, and Fatemi [25]. Mathematically, the method refers to the
optimization problem

ming - Ily — gll%, + A- TV (g), (2.38)
where g is the reconstruction of the signal and TV(g) is a discrete measure of the total
variation of g. The regularization parameter A plays an important role in the denoising. A
= 0 means that the result is the same as minimizing the mean square error, while A — o
means that the result is forced to have smaller total variation. For one-dimensional
signal, there is an interesting implementation of TVDN by applying BPDN with a
heaviside dictionary {H; (t) =1 |t > 1,1 =0, 1, ..., n}. For any signal s, there is a
unique decomposition s = };i*,a;H; in heaviside dictionary, and therefore the total
variation is given by TV(s) = X, |la;| ifsisOatt=0and t = n. Fig. 2-5 shows an
example of BPDN with heaviside dictionary. As we can see, the Blocks signal is
reconstructed well by the total variation method since it is piecewise constant and has a

very sparse representation in the heaviside dictionary.
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Fig. 2-5 Denoising noisy Blocks signal by total variation method. (a) Blocks signal (b)
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noisy Blocks signal with SNR=7 (c) BPDN with heaviside dictionary. [20]
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2.3.4 Comparison examples

In this section, we demonstrate reconstruction results of some signals simulated in
[20]. First, the synthetic signal Carbon, which is displayed in Fig. 2-6, consists of a
Dirac, a sinusoid, and four mutually orthogonal wavelet packet atoms. MOF uses basis
functions that are not orthogonal to the components of the signal, which leads to a
diffusive result. BOB has a distortion due to the nonorthogonality between the Dirac
and the sinusoid. MP is good at dealing with the Dirac and the sinusoid, but fails to
handle the four close wavelet atoms. BP identifies nearly exact components of the

signal.
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Fig. 2-6 Phase plane analysis of Carbon signal with a wavelet packet dictionary. (a)

Carbon signal (b) ideal (c) MOF (d) BOB (e) MP (f) BP. [20]
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Fig. 2-7 Phase plane analysis of FM-Cosine signal with a cosine packet dictionary. (a)
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FM-Cosine signal (b) ideal (¢) MOF (d) BOB (e) MP (f) BP. [20]

Second, Fig. 2-7 shows the results of reconstruction for the time-varying signal
FM-Cosine, which is composed of a frequency modulated sinusoid and a sinusoid.
Again, MOF spreads the result on the phase plane and BOB fails to handle the
nonorthogonality between components with the time-varying structure. MP vyields a
basically tragic decomposition, while BP at least resolves a clean representation of two
structures.

Finally, the reconstruction of a noisy Gong signal using a cosine packet dictionary
is shown in Fig. 2-8. The noiseless signal vanishes until time t, and then acts as a
decaying sinusoid for t > to. Results of MOF, BOB, MP, and BP are displayed

respectively. It seems that the result of BP is still closest to the original signal than
24
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others. However, although BP works best among these atomic decomposition

techniques, the complexity of BP makes it spend the most computation time. BP has a

quasi-linear complexity, and hence the computation time increases much more than

others when the problem size and the signal complexity go up.
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Fig. 2-8 Denoising noisy Gong signal with a cosine packet dictionary. (a) Gong signal

(b) noisy Gong signal with SNR=1 (c) MOF (d) BOB (e) MP (f) BP. [20]
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2.4  Basis Selection

In this section, we will present some commonly used atoms, such as famous Gabor
atoms, chirplet atoms, wavelet atoms, and some of their extended versions. Basically,
atoms mentioned below are applicable to different situations in practice, which are also

introduced in the following paragraphs, depending on their characteristics.

2.4.1 Gabor atomic dictionary
The components of Gabor atom dictionary [9] can be depicted as
Ira(®) = 7= g (B)eton, (2.39)
where y,=(Sn, Un, &), Sn IS the scaling factor, u, is the translating factor, &, is the
modulating factor, and g(t) = 2%/4e~"*" is a Gaussian window. In [9], since the
time-frequency dictionary is complete, the signal f(t) € L2(R) can be decomposed by
matching pursuit and the atoms are chosen to best match the residues of f at each

iteration.

2.4.2 Chirplet atomic dictionary
It is well known that the chirp is one of the most critical functions in nature and
hence it has numerous applications. The chirplet atom dictionary [26] is formed by

Gabor atoms adapted to linear frequency modulation and is extended to four parameters.
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The atoms can be described as
_ , 1
Gy, () = 7= g (e e, (2.40)
where y,=(Sn, Un, &n, Cn) and ¢, is the frequency modulation factor. It is obvious that the

instantaneous frequencies of atoms are &+ cqt and that c, reflects the slope of the linear

time-frequency relationship.

2.4.3 Advanced chirplet atomic dictionary
The advanced chirplet atom dictionary [27] is formed by chirplet atoms adapted to
quadratic frequency modulation and is extended to five parameters. The atoms can be
described as
gy, () = \/%_ng(%)ei(fnt%cnthgrntz)’ (2.41)
where yn=(Sn, Un, &, Cn, 1) @and ry is the curvature factor. It is obvious that the
instantaneous frequencies of atoms are &+ cqt + rot>. The new factor r,, reflects the

nonlinearity of the time-frequency relationship and hence it has been used for the

separation of radar fuze mixed signal.

2.4.4  Sinusoidal chirplet atomic dictionary
The sinusoidal chirplet atom dictionary [28] is generated by attaching a sinusoidal

factor to chirplet atoms and is extended to five parameters. The atoms can be described
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as

_ . 1 1.
gyn (t) — \/%_ng(%)el(fnt*'gﬂntz*'g sin (l)nt), (242)
where yn=(Sn, Un, &, Cn, wn) @nd wy, is the sinusoidal modulation angular frequency. It

is obvious that the instantaneous frequencies of atoms are &+ cpt +coS (wnt)/2. The

new factor w, improves the matching performance of the nonlinearity in the

time-frequency relationship, especially for sinusoidal frequency modulation signals.

2.45 FM"let atomic dictionary

Gabor atoms and chirplet atoms are two kinds of existing atoms for parametric
time-frequency representation. The Gabor atoms are only suitable for signals whose
frequencies are time-varying while the chirplet atoms are more suitable for signals
whose frequencies vary linearly with time. However, for signals in nature, both atom
dictionaries are not enough. In [29], there are dilated and translated windowed
exponential frequency modulated functions proposed as the atoms to characterizing both
the linear and nonlinear frequency modulation signals. These atoms can be described as
follows:

t_

91 () = =g (el e, (2.43)

S

where y,=(Sn, Un, &, Ch, M) and m is the frequency modulation exponent. Due to the

exponential polynomial, it is more flexible to represent the time-varying signals.
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2.4.6 Wavelet atomic dictionary
There are numerous types of wavelet dictionaries, depending on the ways of

definition. For instance, we consider the Haar dictionary [30] with

1, 0<t<s
1, 0<t<1
= 1 = ’ .
Y(t) -1, -<t<1l: 40 {0, otherwise

0, otherwise

, (2.44)

where w(t) is the mother wavelet and ¢(t) is the scaling function, which is also called
father wavelet. The dictionary is a collection of translations and dilations of w(t),
together with translations of ¢(t). In other words, atoms are defined as

Y (8) = 27227t — k) (2.45)

@) = 212027t — k), (2.46)
where j is the parameter about dilation and k is the parameter about translation. With
these two properties, an orthonormal basis can be constructed and the desired resolution
can be achieved by adjusting the parameters. This example is so-called stationary Haar
dictionary since the components are invariant under time shift. However, more wavelet
bases, such as smooth wavelet basis and Daubechies wavelet basis, are possible.
Although the restrictions of the reconstruction may be more complicated, the bases still

have practical structure for decomposition.
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2.4.7 Dictionary mergers

A variety of dictionaries are used for decomposition of signals. However, there is a
critical method to make more expressive dictionaries by merging a dictionary with
another. The combination of dictionaries may be able to acquire advantages of original
dictionaries. Fig. 2-9 shows the reconstruction of a noisy Cusp signal, which is
piecewise smooth rather than piecewise constant. Consider the merged dictionary based
on a merger of wavelets with tapered heavisides, the result seems better than one only
using the heaviside dictionary. It implies that the signal has a relatively sparse
representation with the merged dictionary due to the lack of smooth objects in the

heaviside dictionary.
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Fig. 2-9 Denoising noisy Cusp signal. (a) Cusp signal (b) noisy Cusp signal with

SNR=7 (c) BPDN with heaviside dictionary (d) BPDN with merged dictionary. [20]
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2.5 Summary

In this chapter, we introduce the basic ideas of compressive sensing, including
principles, restrictions, reconstruction, and robustness. Then, we review the most
common decomposition methods, matching pursuit and basis pursuit, and their
extensions. We also review some other algorithms like method of frames, best
orthogonal basis, and total variation denoising, and compare their reconstruction results.
Last but not least, we demonstrate some useful atomic dictionaries as decomposition
bases, such as Gabor atoms, chirplet atoms and their advanced versions, FM™let atoms,
and the basic idea of wavelets. However, the sparse representations of signals in these
bases are usually utilized for compression. For any compression algorithm, there exists
a trade-off between data compression ratio and reconstruction error. In next chapter, we
propose a novel time-frequency analysis method applicable to most signals in nature,
which may give a high quality result with high compression ratio and low

reconstruction error under certain circumstances.
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Chapter 3  Proposed Work

In this chapter, we will introduce our proposed work and demonstrate the
implementation of each part in detail. Our work starts with the time-frequency analysis
of the target signal. Then we rearrange the time-frequency representation by frequency
reassignment. Finally, we approximate the components of the signal with some bases or
algorithms and then encode them. The result can be decoded by some rules and thus the

signal can be recovered.

3.1 Time-Frequency Analysis

In signal processing, time-frequency analysis is composed of techniques that
resolve signals in both time and frequency domains simultaneously, using a variety of
time-frequency representations. The most practical motivation of time-frequency
analysis is that classical Fourier analysis considers the signal as a periodic or infinite

function, while signals are not like that in practice.

3.1.1 Gabor transform
One of the most basic forms of time-frequency analysis is the short-time Fourier

transform (STFT), which divides a longer time signal into shorter pieces of equal length
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and computes the Fourier transform on each piece of signal respectively. Hence the
result reveals the frequency spectrum of each piece and the changing spectra as a
function of time. The continuous STFT can be described as
X, ) =" wlt-ox@)e*dr, (3.1)
where w(t) is the window function or the mask function. Converting it into the discrete
form by t = nA;, f = mAs and = = pA,, the equation changes to
X(nAt,mAf) =Yoo w((n —p)A,)x(pA,)e /2mPmAdrA,, (3.2)
If we choose the Gaussian function as the window function, the transform is so-called
the Gabor transform (GT). The generalized Gabor transform is shown as follows:
Ge(t, ) = Vo [ e om=0% x(v)e 12"/ qx, (3.3)
Suppose that w(t) = 0 for |t| > B = QA the generalized Gabor transform can be
rewritten as discrete form
Gy(nA, mAs) = %ZZIS_Q e~ om(=PIA? x (pA,)e TIZTPMALAL A (3.4)
Here, we use unbalanced sampling in the implementation to lower the computation time
and the complexity. B = 1.9143/+/c is suggested for decayed edge of the Gaussian
function. Among all window functions, the Gaussian function has advantages that the
area in time-frequency distribution is minimal, which means the Gabor transform has

better clarity than others on both time domain and frequency domain simultaneously.

Furthermore, the Gabor transform has symmetric properties on time domain and
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frequency domain since the Gaussian function is the eigenfunction of the Fourier

transform.

3.1.2 Wigner distribution function
The Wigner distribution function (WDF) is another commonly used transform in
time-frequency analysis, which is first proposed for quantum corrections to classical
statistical mechanics. The Wigner distribution function is defined as
W, (¢, f) = ffooox(t +§)x* (t+§)e‘j2”ffdr, (3.5)
where x(t) is the conjugate function of the signal. Converting it into the discrete form
by t = nA;, f = mAsand t” = 7/2 = pA,, the equation changes to
W (na, mas) =232 x((n+p)A) x*((n— p)A,) e /4PmALIA L (3.6)
Here, we use unbalanced sampling in the implementation to lower the computation time
and the complexity. The most important advantage of the Wigner distribution function is
that the clarity is higher comparing to the case of the STFT due to the signal
autocorrelation function. It reduces to the spectral density function at all times t for
stationary processes, which is the motivation for it, while it is still equivalent to the
non-stationary autocorrelation function. There are also some good properties other
transforms do not have. However, the Wigner distribution function is not a linear

transform, which implies that the transform of the sum of two functions will not equal
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to the sum of the transforms of two functions. The disadvantage of the cross term occurs
when the signal has more than one component. It also needs more computation time
rather than the STFT. The Wigner distribution function can be generalized to Cohen’s

class distribution as a more powerful method of time-frequency analysis.

3.1.3 Gabor-Wigner transform

The Gabor-Wigner transform (GWT) [31] refers to the combination of the Gabor
transform and the Wigner distribution function, which combines the advantages of both
transforms. The basic idea is to use the Gabor transform as a filter to mask off the cross
term of the Wigner distribution function, while the high clarity of the Wigner
distribution function is preserved. There are a variety of definitions of the

Gabor-Wigner transform and four examples are given as follows:

Co(t,f) = Ge(t, ) - Wae(t, f), (3.7)
C(t,£) = min{lG,(t, /)12, W, (¢, )1}, (3.8)
Colt, f) = We(t, ) - (G (£, ) > thr}, (3.9)

Co(t, f) = GE(t, ) - WE L 1. (3.10)

Moreover, the Gabor-Wigner transform also preserves many good properties from the

Gabor transform and the Wigner distribution function, such as the rotation relation with

the fractional Fourier transform (FrFT), which is helpful for analyzing the
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characteristics of targets and modulating signals.

In our work, we have to decide N first, where N = 1/AAs, A is the time interval and
As is the frequency interval in the implementation of time-frequency analysis. The
choice of N affects the fineness of the frequency axis and the computation time. A; can
be obtained by the reciprocal of the sampling frequency, and thus A; can also be
obtained. Before the time-frequency analysis, we convert the signal to the analytic
signal and modulate it by a quarter of the sampling frequency, which makes the
observation easier. Here, we use (3.10) as the definition of the Gabor-Wigner transforms
in order to maintain the flexibility. Fig. 3-1 shows the time-frequency analysis of Cow
signal, which is the mooing sound from a cow and is composed of several harmonics.

The alignment of the frequency axis must be completed since the frequency range
of the Gabor transform and that of the Wigner distribution function are not identical.
The frequency range of the Wigner distribution function is about half of that of the
Gabor transform in order to avoid the aliasing effect. After the combination of two
transforms, we set a threshold thrg to filter the noise that may be created by the setting
issue of the transform parameters. The value of the threshold is given by

(a+2p)

330 Sm C(nAeymag)”
thrgwt =( ;nztml r) )a+2ﬁ’ (3.11)

where the exponent (a + 2p) reflects the energy concept. In the following, the

segmentation of the figure in time-frequency analysis will be done.
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Fig. 3-1 Time-frequency analysis of Cow signal. (a) Gabor transform (b) Wigner

distribution function (c) Gabor-Wigner transform.

3.1.4 Segmentation

The result of time-frequency analysis is viewed as a figure and dilated with an
elliptical kernel. The dilation is able to connect neighbor components belonging to the
same part that may be disconnected accidentally. Then we label connected components
by bwlabel function, which gives the same numbers to pixels in each connected
component individually. We set another threshold thrsey to exclude small area
components that probably come from the noise. The value of the threshold, which is

associated with the concept of the uncertainty principle, is given in the following:

CSE
thryeg = [At:; ] (3.12)

where Csqg IS a constant. Fig. 3-2 displays the results of the processing of the

time-frequency analysis. Afterwards, the labels are rearranged from the component with
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most pixels to that with the least for convenience, as shown in Fig. 3-3.

Thresholding Rseg(t,f) (thr = 1.9094e-07 ) Morphology Rmor(t,f) Labeled signal ( thr = 455)

2000 2000

1000 1000
-1000 -1000

-2000 -2000

(a) (b) ()

Fig. 3-2 Processing of the time-frequency analysis of Cow signal. (a) GWT thresholded

by thrgw: (b) dilation of thresholded figure with an elliptical kernel (c) labeled signal

thresholded by threeg.
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Fig. 3-3 Segmentation of the time-frequency analysis of Cow signal.
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3.2 Time-Frequency Reassignment

Time-frequency reassignment is a technique that sharpens a blurry time-frequency
representation by mapping the data to other time-frequency coordinates or relocating the
data according to local estimates. We will first consider whether the pre-cut scheme is
suitable to large area components. Then, we find local maximums and local minimums,
and connect the gap between segmented components which are theoretically linked.
Another smaller threshold is used to exclude small area components for removing the
noise. Under some special conditions, we need to separate the head and tail parts of the

signal. Finally, relabeling the figure is done and the reassignment is completed.

3.2.1 Pre-cut scheme

For large area components, there is something optional to do with them. In the
previous section, we dilate the figure with a kernel, which may connect trivially
separated components. On the other hand, it is known that the area of the
time-frequency analysis is concerned with the lower bound of the number of sampling
points. Hence we want to divide each large component rectangularly as much as
possible to minimize the blank space in the figure. A threshold thr is established and
once the area of components is larger than it, they are supposed to be reassembled and

relabeled. The threshold is defined as follows:
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thry, = [ACA;] (3.13)
where Cy IS a constant.

The component suitable to the pre-cut scheme is first transformed to an
accumulated pixel function of time. The function is convolved with a smooth filter, and
then a matched filter and a moving maximum filter to find the time points where the
number of pixels drops dramatically. The result time points for the beginning and the
end of the component should be excluded for sure. Therefore, we cut the component at
the time points found by filters and the component turns into several smaller

components. This scheme works well and prevents waste of memory if components are

close on time domain and be connected by the dilation operation.

3.2.2  Local maximums and local minimums

For large area components, we consider local maximums and local minimums on
y-direction as the rule to distinguish different components. The threshold for area of
components is identical to that in the pre-cut scheme, which is described in (3.13). First,
we convolve the figure with a Gaussian smooth filter on y-direction, which is shown in
Fig. 3-4, and then try to find local maximums and local minimums. Here, we adopt two

thresholds thrmax and thrmyin, which are given as
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thtmax = Cmax * MaXp, 1 (Cr(nA, mAy)), (3.14)

thryin = Chin maxn,m(Cx(nAt,mAf)), (3.15)
where Cpax and Cpin are some constants. The threshold thryax is established for the
lower bound values of local maximums in order to prevent misidentification of the noise.
On the other hand, the threshold thryi, is set for difference values between local
maximums and local minimums in order to prevent successive ups and downs within
the same components. If the differences between the minimum and maximums near to it
are smaller than thrpy,, only the maximum with largest value will be contained, and the
maximum mask is formed. After the confirmation of the local maximums, we view the
remaining maximums as the trunk of the component, as shown in Fig. 3-5. In the next
step, we will propose a gap connection scheme to connect the pieces that are close on

the maximum mask.

] smooth filter

Magnitude
e e o
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T T T
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A
3

Fig. 3-4 Gaussian smooth filter.
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Fig. 3-5 The maximum mask of the first component of Cow signal. (a) The first

component of Cow signal (b) The maximum mask. (dilated for visibility)

3.2.3 Gap connection scheme

The maximum mask is helpful for us to decompose the component into pieces.
Before we do more about the connection, we have to give labels to the maximums on
the mask, from the left to the right. For every pixel on the mask, we consider whether
the pixel belongs to the same component with the left neighborhood. The verification
will be done twice, one for the left pixel and the other for the right pixel. To a selected
pixel, we first search the left neighborhood and find the nearest one along the frequency
direction, which may be empty. The searched pixel, if not empty, is called “f-nearest” in

the neighborhood and should be already labeled. For the searched pixel, we find the
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f-nearest pixel in the right neighborhood and compare it with the selected pixel. If two

pixels are identical, we say that these two pixels are in the same component and give the

same label to the selected pixel; otherwise, a new label is established and assigned to

the selected pixel. The pixels of the maximum mask are merged and hence transformed

to the label matrix.

The resolved pieces of the component are obviously recognized in the label matrix.

However, the next step is to fill up gaps between close pieces. The values of time and

frequency of the leftmost and rightmost pixels in each piece are recorded for the gap

connection scheme. If the leftmost pixel of one piece is close enough to the rightmost

pixel of another piece within both adjustable time and frequency range, the two pieces

will be connected by equalizing their labels and the gap is vanished. Last but not least,

the pieces with small area after the gap connection are viewed as of little importance

with the component. Therefore, there is a threshold thrc, that refines the pieces in the

components by eliminating the small area label. The threshold is given by

_ Ccnt
thr,,, = [Mf], (3.16)
where C.n is a constant, and the result in shown in Fig. 3-6. Again, the labels are

reassigned by sorting the areas of the pieces in descending order, which is shown in Fig.

3-7.
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Fig. 3-6 Remaining maximums of the first component of Cow signal after deletion.

(dilated for visibility)
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Fig. 3-7 Result of the gap connection scheme for the first component of Cow signal.

(dilated for visibility)
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3.2.4 Head and tail scheme

In the example of Cow signal, the energy distributed on the time-frequency

analysis figure acts like harmonics connected in the beginning and the end of the signal.

Lots of signals in nature have similar property we mentioned above, especially the voice

of animals. This kind of signals will be considered as a solid component in the previous

approach and the space between harmonics is filled, which directly leads to redundant

memory space. Therefore, we add an additional criterion to determine whether the

above situation happens in the target signal. This segmentation scheme is optional and

can be used or not used manually, just like the previous pre-cut scheme. The criterion

for separating the head and the tail depends on two numbers, the number of the pixels

sepnum(n) and the number of unique labels sepyni(n). Both numbers at n-th time slot are

given in the following:

1, np(n) > Cnp "NMPavg
- , 3.17
S€Pnum (1) { 0, otherwise (3.17)
1, ul(n) > Cy - ulgyy
; = , 3.18
S€Puni(n) {0, otherwise (3.18)

where np(n) is the vertically cumulative number of pixels at n-th time slot, ul(n) is the
vertically cumulative number of unique labels at n-th time slot, npayg and ula,y are the
average numbers in the middle one-third time interval, and C,, and Cy are adjustable
constants. The criterion is the logical conjunction of these two numbers, which is also

called “logical AND.” The result at a time slot is true only if both numbers at that are
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true, which is formulated as
sep(n) = seppum(n) A sepyn; (). (3.19)
Suppose that theaq IS the time at the end of the head part and ti,; is the time at the
beginning of the tail part. The time slots at these two time points n,, . and n . are
shown as
Ntpoaq = Min(max ,{n | sep(n) = 1},n, ), (3.20)
ng,,, = max(min ,{n | sep(n) = 1},n, .+ 1), (3.21)
where tmig is the time at the right middle of the component and n, . is the time slot at
it. Once n;, . and n;  are determined, the head part and the tail part will be
segmented from the component as independent components instead of participating in
the maximums mask and the gap connection scheme. However, the labeled pieces may
be located completely in the head part and the tail part, which implies that the labels
will disappear after being cut from the component. Therefore, we check the removing
labels of the component and rearrange the order of the pieces. While finish reassembling
the large area component, we relabel the components and the pieces from them in a new
order. The segmented data for encoding are already labeled and nearly prepared, and the

only thing remained is to calculate the bandwidth of the harmonics, which will be

introduced in the next part.
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3.2.5 Fixed bandwidth estimation

Although we have an effective method to divide the target signal into components,

we still have no estimation about the component since the information we used for the

segmentation is the maximums mask, which is only the trunks of components. However,

we found that there are similar widths of the harmonics in the harmonic part of the

component. In the other word, we can combine the trunk with a fixed bandwidth to

represent the harmonic part. The result is displayed in Fig. 3-8, which looks similar to

the harmonic part of the component.
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Fig. 3-8 Result of the approximation for the harmonic part in the first component of

Cow signal with fixed bandwidth B = 39.7826.
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Here, we starts with a small empirical bandwidth and calculate the percentage of
the overlapping region. If the result is below a certain level of percentage, about ninety
percent, the bandwidth is revised according to the result iteratively until the stopping
criterion is achieved. There are partial pixels deleted in the gap connection scheme,
which means the criterion of the percentage cannot be too high. If the overlapping
region does not increase anymore before achieving the criterion, we adopt the value of
the critical point. The maximums mask vertically convolved with the kernel whose
width equals to the result bandwidth is considered as the substitute of the harmonic part
to be encoded, and the approximation and the encoding of these components are

explained in detail in the next section.

3.3 Signal Component Approximation

In the previous section, we have finished the time-frequency reassignment and the
segmentation of the components, some of them with a fixed bandwidth. The next step is
to implement compression methods and encoding schemes on each component of
segmented data. In this section, we use the generalized modulation [32], which is
proposed by Ding, Pei, and Ko, for the components not reassembled and the head and

tail parts of the reassembled components to decrease the bandwidths. Then we calculate
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the minimal bandwidths we need for the modulated components and divide the

components from the original signal. Here, we have two methods to compress the

components, the downsampling method and the Legendre polynomial basis method. In

the downsampling method, the minimums of the number of sampling points are

acquired and the components are downsampled in order to decrease the storages. In the

Legendre polynomial basis method, we use Legendre polynomials as the dictionary to

fit the components of the signal. Finally, we encode the information needed for

reconstruction into packages, which refers to the encoded data of the target signal.

3.3.1 Generalized modulation

From Shannon’s sampling theory, the sampling frequency should be larger than the

Nyquist rate to avoid the aliasing effect; in other words, the sampling interval should be

smaller than the reciprocal of the Nyquist rate, which is concerned with the vertical

width on the time-frequency analysis of the signal. The algorithm proposed in [32] is to

minimize the bandwidth of a signal by a higher order modulation scheme, which is

called “generalized modulation,” and the combination with the fractional Fourier

transform. Once the bandwidth is reduced, the sampling interval can be lengthened and

the amount of data required for recording can be much less. The algorithm is efficient

for the time-variant signals, especially the voices of animals and the speech signals.
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Unlike the conventional modulation, the generalized modulation is to multiply the
signal by a higher order exponential function instead of a linear phase exponential
function. Suppose that we have a signal x(t), a higher order exponential function m(t),
and the modulated signal y(t) = m(t) x(t). The time-frequency analysis of x(t) and y(t) are
Cx(t, f) and C,(t, f) respectively, and the relation between them is

Cy(t,f) = C(t, f +na,t™t + (n— Dap_1t" 2 + -+ ay), (3.22)
where the higher order exponential function is formulated as
m(t) = exp[ j2n(a,t™ + a1t 1+ -+ a;t +ag) 1. (3.23)

In our work, we compute the instantaneous central frequency of the component by
weighted averaging the pixels with their frequency values at each time slot. Then we
use 4™ order polynomial as the higher order exponential function to approximate the
central frequency, and the first five results is shown in Fig. 3-9. Blue lines are the
central frequency values and orange lines are the polynomials for fitting the frequency
curves. Gaps of the components and intervals with no values are all set to zeroes for
computation convenience. The result implies that 4™ order polynomial as the higher
order exponential function is enough for most situations, while higher order only cost
more storages and computation sources. Afterwards, we calculate the bandwidths
needed to include components relative to the central frequencies, which are viewed as

the cutoff frequencies, and record the beginning times tmi, and the end times tmax of all
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components.
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Fig. 3-9 Result of the instantaneous central frequency for the first five components of

Cow signal. Blue lines are the central frequency values and orange lines are the

polynomials for fitting the frequency curves.

To calculate the bandwidths, we have three types of computation method, as called

type A, type B, and type C and shown in Table 3-1. In type A, for the components not

relabeled and the head and tail parts of relabeled components, we calculate the

maximum bandwidths needed to include all pixels relative to the central frequencies;
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otherwise, the fixed bandwidths mentioned before will be adopted. In type B, all

components apply to the maximum bandwidths needed to include all pixels relative to

the central frequencies. Last but not least, in type C, the maximum bandwidths needed

to include all pixels relative to the central frequencies are used for the components not

relabeled and the head and tail parts of relabeled components, while the other

components need half of fixed bandwidths more than them. Type A performs well only

if we have a perfect segmentation result in the previous section, while type B and type C

are more tolerant to mistakes in the segmentation and reassignment step. If two

harmonics are labeled to the same component, the instantaneous central frequency will

be located between them and the following step is far from the correct one with fixed

bandwidth, which leads to a massive error. For the relabeled components except head

and tail parts, type B expand the bandwidth for reducing the error to a certain extent

while type C is the most space-consuming but error-guaranteed.

Table 3-1 Three types of bandwidth computation methods.

Bandwidth Components not relabeled and
otherwise
computation | head / tail parts of relabeled components
Type A maximum bandwidths fixed bandwidths
Type B maximum bandwidths maximum bandwidths

maximum bandwidths
Type C maximum bandwidths
+ fixed bandwidths / 2
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What we should do next is to divide the desired components from the original
signal. First, we truncate the signal from the beginning time to the end time recorded
before, and implement the generalized modulation on the signal with the central
frequency we want, which makes our target component be modulated to the low
frequency region. Then, we utilize the bandwidth we calculate as the cutoff frequency to
cut the component from the signal. The Fourier transform of the truncated signal within
the cutoff frequency range is divided, and the inverse Fourier transform of the result

will be the modulated component we want.

3.3.2 Downsampling

With the cutoff bandwidth, the minimum sampling points can be easily calculated.
We set a threshold value for normalized mean square error (NMSE) of each component,
and when the NMSE of the approximation is larger than the error threshold, the number
of sampling points is increased iteratively to improve the performance. Once the NMSE
is below the threshold, we compute the downsampling ratio from the length of time
interval of the component and the number of sampling points. The compressed data will
be the downsampled version of the components, which can be described as

Rax(n) = R, (nAL), (3.24)
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where %4;(n) is the downsampled data and X, (t) is the modulated component. The
result of the approximation by the downsampling method is shown in Fig. 3-10, which
displays the first five components of Cow signal. It is evident that the method performs
well in the fitting of data. The reconstruction of the component from the compressed

data will be introduced in the next section.
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Fig. 3-10 Result of the approximation for the first five components of Cow signal by the

downsampling method. Blue lines are the component values and orange lines are the

fitting results.
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3.3.3 Legendre polynomial basis

In this method, we utilize the discrete Legendre polynomials as the basis to expand
the components. First, we normalize the time intervals of the components into [-1, 1]
and start with a minimum Legendre order Npin. The Legendre basis consists of the time
interval vectors to the power of zero to Npin, Which are linearly independent but not
orthogonal, and thus we use the Gram-Schmidt process to orthonormalize the basis as

follows:

dn =700 and Py = by — EhZ(bp, din) dn, (3.25)
where d, is the element to be added into the basis and b, is the time interval vector to
the power of n.

As the downsampling method, we set a threshold value for NMSE of each
component, and when the NMSE of the approximation is larger than the error threshold,
the number of basis is increased iteratively with the Gram-Schmidt process to improve
the performance. Once the NMSE is below the threshold, we stop adding new elements
into the basis. The compressed data will be the coefficients of the Legendre expansion
and can be described as

Xax (M) = (g, dp), (3.26)

where X, is the component to be decomposed. The result of the approximation by the

Legendre polynomial basis method is shown in Fig. 3-11, which displays the first five
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components of Cow signal. It is evident that the method performs well in the fitting of

data. The reconstruction of the component from the compressed data will be introduced

in the next section.
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Fig. 3-11 Result of the approximation for the first five components of Cow signal by the
Legendre polynomial basis method. Blue lines are the component values and orange

lines are the fitting results.

3.3.4 Encoding
The data to be encoded depends on the information we need when the signal is

recovered. However, the number of components, the minimum time interval of the
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signal, the beginning time and the end time of each component, the polynomial values
of the generalized modulation, the downsampling ratios or the order of the Legendre
polynomials (depends on the method), and the compressed data, are the data we need to
encode. The encoding scheme is to string up the data directly to a package, which is
convenient for the decoding.

Assume that the number of components is S, which is also the first element of the
package. The next element is the minimum time interval of the signal that is denoted as
At in the previous section. What follows are pairs of time points, the beginning time tnyin
and the end time tmax, With length 2S. For the 4™ order polynomials, the following 5S
elements are concerned with the coefficients of the generalized modulation, which are
transformed into the polynomial values to avoid the large values. We cut the time
interval in quarters and the five time points yielded are evaluated with the polynomial
coefficients to make sure the transformation can be reversed. The S elements in the
following are the downsampling ratio for the downsampling method, or the order of the
basis for the Legendre polynomial basis method, of each component. Finally, the
compressed data of S components is directly attached to all attributes. The structure of
the encoded data and the length of each part in a package of our work are shown in

Table 3-2.

57

do0i:10.6342/NTU201902199



Table 3-2 Structure of the encoded data in a package.

Information of components of the signal Length
Number of components (S) 1
Minimum time interval (At) 1
Beginning time (tmin) and end time (tmax) 2S
Polynomial values of the generalized modulation 5S
Downsampling ratios / Order of the Legendre polynomials S
Compressed data remaining

3.4 Signal Reconstruction Scheme

In this section, we will introduce the signal reconstruction process to recover the
signal from the encoded data. When we receive a sequence of encoded data, the
decoding is definitely the first thing to do in the process. Then, the components in the
signal are reconstructed separately. Depending on the method used for compression, the
reconstruction scheme is supposed to be different. Subsequently, the recovered

components are scrabbled up and the recovered signal is accomplished.
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3.4.1 Decoding
The packages are encoded sequences of information about the signal, which are
arranged in a certain order by the encoding scheme, as shown in Table 3-2. The first
element in a package will be the number of components S, and the second one will be
the minimum time interval At. The following 2S elements are pairs of the beginning
time tmin and the end time tyax OF each component. The next 5S elements are related to
the polynomial coefficients of the generalized modulation. Every group of five elements
is the polynomial values of a component, which is denoted as pv(m) withm =1, 2, 3, 4,
5. Since the polynomial values are evaluated from the time points in the time interval of
the component, the polynomial coefficients are supposed to be the solution of the
simultaneous linear equations
pv(m) = azth + ast3, + ati + a;t +ay, m=1,2,3,4,5, (3.27)
where {a, | n =0, 1, 2, 3, 4} is the set of polynomial coefficients, and { t, | m =1, 2, 3,
4, 5} is the set of time points uniformly distributed in the time interval [tmin, tmax] With t;
= tmin and ts = tmax. Solving the equations, the higher order exponential function m(t) in
(3.23) for the generalized modulation is hence acquired. The last sequence of elements
with fixed length is the downsampling ratios or the order of the Legendre polynomials,
depending on the compression method. Last but not least, the remaining elements are

the compressed data of the signal and the length of each component will be calculated
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respectively in the reconstruction schemes of both methods.

3.4.2 Downsampling

In the downsampling method, the length of each compressed component can be
calculated by dividing the length of time interval with the downsampling ratio. Thus,
the compressed data of each component can be easily split up from the remaining
encoded data. The components can be reconstructed by upsampling the compressed data

to the length of the time interval with the equation

), (3.28)

t—-nAt
t

V() = Xy Xgq(n) sinc( A

where i, (t) is the recovered component and X, ,(n) isthe compressed data.

The recovered data is then modulated by the higher order exponential function m(t)
solved in (3.27) to be recovered from the generalized modulation. Due to the analytic
signal we use for the time-frequency analysis, the recovered components are combined
together with double value to generate the complete signal. At last, the recovered signal
is modulated by a quarter of the sampling frequency and a half of the average value of
the recovered signal is subtracted from it to deal with the modification of the signal in
the preprocessing. The reconstruction result of Cow signal by the downsampling method
is shown in Fig. 3-12, where the compression ratio is 9.912 and the NMSE of the

reconstruction is 0.03348.
60

do0i:10.6342/NTU201902199



Original signal x(t)

o
)

Amplitude
o

_0-5 Il 1 | | | 1
0 02 04 06 038 1 12 14 16 1.8 2

Time (Sec)
Recovered signal yrec(t)

Amplitude
o
4

0 02 04 06 08 1 12 14 16 18 2
Time (Sec)
Error (y___(t) - x(t) )?> (NMSE = 0.03348 )

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (Sec)

Fig. 3-12 Reconstruction result of Cow signal by the downsampling method.

3.4.3 Legendre polynomial basis

In the Legendre polynomial basis method, the length of each compressed
component can be calculated by adding the order of the Legendre basis by one since the
compressed data is the coefficients of the expansion on the basis. Thus, the compressed
data of each component can be easily split up from the remaining encoded data. The
components can be reconstructed by multiplying the compressed data by the atoms in
the dictionary, which is described as

(@) = XnXax (M) dn, (3.29)

where ¥, (t) is the recovered data of the component and X, ,(n) is the compressed
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data.

The recovered data is then modulated by the higher order exponential function m(t)
solved in (3.27). Due to the analytic signal we use for the time-frequency analysis, the
recovered components are combined together with double value to generate the
complete signal. At last, the recovered signal is modulated by a quarter of the sampling
frequency and a half of the average value of the recovered signal is subtracted from it to
deal with the modification of the signal in the preprocessing. The reconstruction result
of Cow signal by the Legendre polynomial basis method is shown in Fig. 3-13, where

the compression ratio is 8.97 and the NMSE of the reconstruction is 0.03558.
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Fig. 3-13 Reconstruction result of Cow signal by the Legendre polynomial basis

method.
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3.5 Summary

In this chapter, we introduce the process of our work to compress and encode the
data into a package by a relatively efficient algorithm with low error rate and efficient
space. We review the basic form of the time-frequency analysis, the short-time Fourier
transform, and implement the Gabor-Wigner transform on the signal. The signal is split
into components according to the time-frequency analysis figure and components with
large area are divided into pieces by the time-frequency reassignment. Here, we use
local maximums and local minimums with our proposed gap connection scheme, and
the segmentation of the head and tail parts, to relabel the components. Then, the
components of the signal are modulated to minimize the bandwidths by the generalized
modulation and compressed by two methods, the downsampling method and the
Legendre polynomial basis method. The attributes and the compressed data of the signal
are encoded to a package, which is the ultimate form of signal. Finally, we decode and
decompress the package and recover the signal by the inverse process of the encoding
and the compression methods. The simulation results of our works will be presented in

the next chapter.
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Chapter 4 Simulation Result

In this chapter, we demonstrate the result and the performance of our work in
compression ratio (CR), normalized mean square error (NMSE) and computation time
(CT) measure. In our work, we choose six combinations of parameter settings, which
are described as two logical numbers followed by a capital letter. The first number
refers to the optional pre-cut scheme, while the other refers to the optional head and tail
scheme. The letter means the type of the computation method for calculating
bandwidths. The existing methods we compare with include MP3 and AAC (M4A)
compression algorithms, which come from [33] and [34]. Data for simulations are
downloaded from [35] in three classes of common sounds, animal signals, people, and

vehicles.

4.1 Performance

In this section, we will compare the compression ratios and the reconstruction
errors of both existing algorithms and six combinations of our work by two compression
methods, the downsampling method and the Legendre polynomial basis method. Three

classes of signals are presented respectively in the following paragraphs.
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4.1.1 Animal signals dataset

Table 4-1 Compression ratio for animal signals dataset by the downsampling method.

Compression MP3 MAA Downsampling
Ratio 1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C
bear.wav 10.836 | 11.649 | 22.131| 16.114 | 12.016 | 10.090 | 10.008 9.598
camel.wav 10.655 | 24.747 | 19.530 | 17.987 | 13.169 | 18.666 | 19.176 | 13.192
cat growl.wav 10.885 9.796 | 19.170 9.734 8.238 8.583 7.825 7.572
cat meow.wav 10.457 | 20.222 | 15.457 | 26.236 | 15.668 | 14.162 | 20.472| 15.382
chimpanzee.wav 10.852 | 15.172 | 13.058 8.340 6.589 5.257 5.074 4.970
cougar.wav 10.714 | 22.981 | 18.710 | 14.447 | 10.807 6.638 5.849 5.469
cow.wav 10.613 | 12526 | 26.726 | 23.585 | 16.874 | 33.037 | 20.178 | 15.920
coyote.wav 10.457 | 28.106 | 32.643 | 18.488 | 15.075| 19.788 | 17.522 | 16.089
crocodile.wav 10.714 | 25.450 | 14.358 | 10.931 8.041 9.113 8.078 7.199
dog.wav 10.532 8.772 | 13.182 9.926 7.285 8.877 8.673 7.696
dolphin.wav 10.167 8.289 | 10.634 | 10.456 7.203 | 10.777 | 10.096 7.178
donkey.wav 10.745 9.080 | 18.933 | 17.533 | 13.157 | 12.608 | 12.484 | 12.141
fox.wav 10.810 | 21.107 | 13.910 7.280 5.954 5.373 4.963 4.886
gorilla.wav 10.779 | 22.708 | 26.002 | 12.188 9.883 | 36.368 | 11.932| 10.462
hippo.wav 10.906 | 15.596 | 23.481 | 40.137 | 23.510 | 23.998 | 37.962| 23512
horse.wav 10.680 | 13.595 | 14.283 | 14.793 | 10.417 | 14.244| 14.790 | 10.438
jaguar.wav 10.627 | 22.240 | 22.106 7.867 6.759 8.027 6.067 5.827
koala.wav 10.758 | 17.431 | 12.618 | 17.423 | 13.118 | 12.458 | 17.033 | 12.961
lamb.wav 10.764 | 20.577 | 37.287 | 16.864 | 14.077 | 38.083 | 16.653 | 13.892
lion.wav 10.733 9.914 | 16.343 | 13.168 9.223 | 26.764 | 11.632 9.463
mouse.wav 10.874 9481 | 16.243 | 11.695 9.212 | 15.345| 11.154 9.021
panda.wav 10.850 | 13.374 | 21562 | 18558 | 13.693 | 18.875| 16.489| 13.097
rabbit angry.wav 10.571 | 12,521 | 14.467 9.168 7.237 | 13.335 9.226 7.270
raccoon.wav 10.901 9.784 | 13.762 8.150 6.641 3.351 3.026 2.898
seal.wav 10.151 8.059 | 17.785| 22.871| 15.208 | 15.705| 15.819| 15.645
sheep.wav 10.358 | 23.427 | 17.103 | 15.296 | 10.861 | 17.118 | 15.362| 10.946
squirrel.wav 10.870 | 11.153 | 13.673 | 10.411 7.418 4.439 4.430 4.372
tiger.wav 10.824 | 10.308 | 21.168 | 13.134 9.980 3.647 3.345 3.322
whale.wav 10.787 | 15.327 | 29.503 | 45.451 | 25.824 | 46.417 | 31.406 | 23.443
wolf.wav 10.579 9.441 | 11.540 | 13.962 9.880 | 10.374 9.884 8.652
AVERAGE 10.682 | 15.428 | 18.912 | 16.073 | 11.434| 15.717| 12.887 | 10.417
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Table 4-2 Reconstruction error for animal signals dataset by the downsampling method.

Reconstruction

Downsampling

MP3 M4A
Error 1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C
bear.wav 0.008 0.011 0.050 0.017 0.003 0.002 0.009 0.001
camel.wav 0.003 0.009 0.008 0.015 0.002 0.003 0.002 0.001
cat growl.wav 0.019 0.017 0.288 0.013 0.010 0.013 0.007 0.007
cat meow.wav 0.005 0.007 0.003 0.008 0.003 0.003 0.008 0.003
chimpanzee.wav 0.004 0.014 0.145 0.011 0.004 0.015 0.002 0.002
cougar.wav 0.009 0.012 0.225 0.005 0.003 0.030 0.002 0.002
cow.wav 0.007 0.008 0.044 0.006 0.002 0.125 0.001 0.001
coyote.wav 0.003 0.008 0.026 0.001 0.000 0.001 0.000 0.000
crocodile.wav 0.003 0.009 0.011 0.004 0.003 0.005 0.003 0.003
dog.wav 0.025 0.013 0.067 0.007 0.005 0.021 0.008 0.005
dolphin.wav 0.023 0.011 0.062 0.010 0.004 0.061 0.007 0.003
donkey.wav 0.016 0.012 0.016 0.014 0.004 0.002 0.002 0.002
fox.wav 0.003 0.007 0.222 0.100 0.005 0.011 0.044 0.001
gorilla.wav 0.009 0.013 0.235 0.004 0.002 0.417 0.002 0.002
hippo.wav 0.006 0.006 0.004 0.007 0.003 0.002 0.004 0.002
horse.wav 0.019 0.011 0.014 0.006 0.002 0.013 0.006 0.002
jaguar.wav 0.003 0.021 0.532 0.003 0.003 0.108 0.003 0.003
koala.wav 0.011 0.010 0.004 0.044 0.004 0.005 0.043 0.004
lamb.wav 0.004 0.014 0.334 0.001 0.001 0.334 0.001 0.001
lion.wav 0.020 0.011 0.027 0.012 0.002 0.253 0.001 0.001
mouse.wav 0.068 0.019 0.205 0.016 0.005 0.191 0.015 0.005
panda.wav 0.004 0.012 0.068 0.012 0.002 0.062 0.006 0.001
rabbit angry.wav 0.013 0.014 0.050 0.004 0.003 0.031 0.003 0.003
raccoon.wav 0.021 0.012 0.139 0.005 0.003 0.053 0.002 0.002
seal.wav 0.018 0.012 0.012 0.041 0.006 0.002 0.002 0.002
sheep.wav 0.003 0.013 0.051 0.005 0.002 0.050 0.005 0.001
squirrel.wav 0.073 0.025 0.243 0.014 0.006 0.004 0.005 0.003
tiger.wav 0.020 0.015 0.135 0.003 0.002 0.137 0.001 0.001
whale.wav 0.003 0.009 0.019 0.105 0.009 0.031 0.001 0.000
wolf.wav 0.013 0.010 0.007 0.022 0.002 0.001 0.001 0.001
AVERAGE 0.014 0.013 0.108 0.014 0.003 0.066 0.005 0.002
66

do0i:10.6342/NTU201902199




Table 4-3 Compression ratio for animal signals dataset by the Legendre basis method.

Compression MP3 MAA Legendre polynomial basis

Ratio 1-0-A 1-0-B 1-0-C
bear.wav 10.836 11.649 15.827 11.552 9.195
camel.wav 10.655 24.747 15.116 12.477 10.181
cat growl.wav 10.885 9.796 13.589 7.113 6.447
cat meow.wav 10.457 20.222 14.586 18.751 14.929
chimpanzee.wav 10.852 15.172 9.212 6.132 5.192
cougar.wav 10.714 22.981 13.828 10.589 8.651
cow.wav 10.613 12.526 24.389 20.151 13.932
coyote.wav 10.457 28.106 26.723 16.757 14.124
crocodile.wav 10.714 25.450 10.240 7.962 6.637
dog.wav 10.532 8.772 9.551 7.477 6.199
dolphin.wav 10.167 8.289 7.938 7.338 5.749
donkey.wav 10.745 9.080 14.411 12.875 10.566
fox.wav 10.810 21.107 9.794 5.351 4.614
gorilla.wav 10.779 22.708 18.075 8.945 8.039
hippo.wav 10.906 15.596 21.161 27.584 19.856
horse.wav 10.680 13.595 10.322 10.687 8.265
jaguar.wav 10.627 22.240 15.113 6.351 6.032
koala.wav 10.758 17.431 10.157 12.849 10.500
lamb.wav 10.764 20.577 26.521 12.905 11.395
lion.wav 10.733 9.914 11.797 9.656 7.735
mouse.wav 10.874 9.481 11.660 8.185 6.836
panda.wav 10.850 13.374 16.306 13.662 11.202
rabbit angry.wav 10.571 12,521 10.618 7.090 6.240
raccoon.wav 10.901 9.784 9.715 5.882 5.227
seal.wav 10.151 8.059 13.304 15.825 11.541
sheep.wav 10.358 23.427 12.704 11.116 9.082
squirrel.wav 10.870 11.153 9.881 7.254 6.181
tiger.wav 10.824 10.308 14.901 9.888 8.392
whale.wav 10.787 15.327 24.831 33.034 20.811
wolf.wav 10.579 9.441 9.277 10.164 7.890
AVERAGE 10.682 15.428 14.385 11.853 9.388
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Table 4-4 Reconstruction error for animal signals dataset by the Legendre basis method.

Reconstruction MP3 MAA Legendre polynomial basis

Error 1-0-A 1-0-B 1-0-C
bear.wav 0.008 0.011 0.056 0.019 0.012
camel.wav 0.003 0.009 0.016 0.019 0.010
cat growl.wav 0.019 0.017 0.292 0.021 0.018
cat meow.wav 0.005 0.007 0.012 0.017 0.012
chimpanzee.wav 0.004 0.014 0.148 0.017 0.012
cougar.wav 0.009 0.012 0.228 0.013 0.012
cow.wav 0.007 0.008 0.052 0.014 0.010
coyote.wav 0.003 0.008 0.034 0.008 0.008
crocodile.wav 0.003 0.009 0.019 0.014 0.013
dog.wav 0.025 0.013 0.074 0.014 0.013
dolphin.wav 0.023 0.011 0.064 0.015 0.011
donkey.wav 0.016 0.012 0.023 0.019 0.011
fox.wav 0.003 0.007 0.226 0.015 0.013
gorilla.wav 0.009 0.013 0.239 0.012 0.011
hippo.wav 0.006 0.006 0.010 0.014 0.011
horse.wav 0.019 0.011 0.020 0.011 0.008
jaguar.wav 0.003 0.021 0.533 0.012 0.013
koala.wav 0.011 0.010 0.009 0.041 0.009
lamb.wav 0.004 0.014 0.337 0.010 0.010
lion.wav 0.020 0.011 0.033 0.017 0.010
mouse.wav 0.068 0.019 0.205 0.022 0.012
panda.wav 0.004 0.012 0.073 0.019 0.010
rabbit angry.wav 0.013 0.014 0.055 0.012 0.013
raccoon.wav 0.021 0.012 0.145 0.013 0.012
seal.wav 0.018 0.012 0.016 0.042 0.011
sheep.wav 0.003 0.013 0.054 0.010 0.010
squirrel.wav 0.073 0.025 0.243 0.021 0.013
tiger.wav 0.020 0.015 0.143 0.013 0.012
whale.wav 0.003 0.009 0.024 0.109 0.014
wolf.wav 0.013 0.010 0.015 0.024 0.009
AVERAGE 0.014 0.013 0.113 0.020 0.011
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Table 4-1 and Table 4-2 are the compression ratio and the reconstruction error of
signals by the downsampling method, whereas Table 4-3 and Table 4-4 are the
compression ratio and the reconstruction error of signals by the Legendre polynomial
basis method. Results better than both algorithms are highlighted in red, while those

only better than one of both are highlighted in blue.

4.1.2 People dataset

Table 4-5 and Table 4-6 are the compression ratio and the reconstruction error of
signals by the downsampling method, whereas Table 4-7 and Table 4-8 are the
compression ratio and the reconstruction error of signals by the Legendre polynomial
basis method. Results better than both algorithms are highlighted in red, while those

only better than one of both are highlighted in blue.
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Table 4-5 Compression ratio for people dataset by the downsampling method.

Compression Downsampling

MP3 M4A
Ratio 1-0-A | 1-0-B | 1-0-C | 0-1-A | 0-1-B | 0-1-C

applause.wav 10.894 | 10.741 | 16.279 | 10.177 7.682 | 26.812 8.722 7.567
baby squeal.wav 10.909 | 19.825| 14.357 | 10.966 8.083 | 11.171 9.216 8.392
belch.wav 10.916 | 28.925 | 20.933 | 12.675 9.905 8.196 7.313 7.046
breath.wav 10.875 8.925 9.110 5.942 4.818 4.960 4.780 4.566
cheer.wav 10.869 | 21.527 | 15.272 7.923 6.182 | 33.782 7.334 6.757
cough.wav 10.426 | 22.010 | 12.847 8.772 6.683 5.395 5.395 5.395
crowd.wav 10.856 | 13.181 | 16.587 | 10.329 7.522 | 25.153 8.735 6.959
drink with

10.919 | 10.290 | 10.018 | 11.086 7.956 4.490 4.545 4.404
straw.wav
drink.wav 10.915 9.226 | 13.866 9.175 7.277 6.890 7.008 6.892
fart.wav 10.075 | 23.032 | 18976 | 16.149 | 12.465| 18976 | 16.149| 12.465

footsteps in
10.874 8.816 | 10.369 4371 3.780 1.469 1.255 1.194
leaves.wav

footsteps in
10.899 | 18.015| 10.377 6.217 4973 3.028 2.980 2.935
mud.wav

footsteps on
10.874 | 23.659 | 15.043 | 10.455 7.861 | 15.019 | 10.453 7.851

snow.wav
footsteps.wav 10.748 | 12.133 | 10.138 | 22.173 | 12.342 5.613 5.833 5.684
groan.wav 10.790 9.203 | 10.415| 11.235 8.105 7.422 7.314 6.791
heartbeat.wav 10.844 | 16.250 | 17.043 | 55.120 | 22.475| 13.942 | 14.437 | 14.081
kiss.wav 9.164 | 17.423 4.975 6.254 5.072 5.045 6.147 4,991
laugh.wav 10.639 | 18.849 7.711 8.855 6.450 5.186 5.153 5.119
scream.wav 10.661 | 12.088 9.585 7.130 5.607 9.078 6.490 5.589
sigh.wav 10.444 | 20.675| 10.801 6.867 5.475 8.527 6.772 5.758
sneeze.wav 9.989 9.542 9.094 9.264 6.634 4.856 5.031 4.589
snore.wav 10.933 | 19.115 | 12.472 8.918 6.986 5.445 4.821 4.606
yell.wav 10.436 9.194 | 12.296 6.421 5.378 5.185 4.650 4471
AVERAGE 10.650 | 15.767 | 12.546 | 11.586 7.814 | 10.245 6.980 6.265
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Table 4-6 Reconstruction error for people dataset by the downsampling method.

Reconstruction Downsampling

MP3 M4A
Error 1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C

applause.wav 0.057 0.017 0.112 0.010 0.009 0.412 0.007 0.007
baby squeal.wav 0.011 0.013 0.075 0.008 0.004 0.039 0.002 0.002
belch.wav 0.003 0.014 0.079 0.005 0.001 0.030 0.001 0.000
breath.wav 0.030 0.027 0.286 0.038 0.030 0.039 0.027 0.024
cheer.wav 0.005 0.020 0.238 0.006 0.006 0.604 0.005 0.005
cough.wav 0.003 0.017 0.179 0.009 0.004 0.001 0.001 0.001
crowd.wav 0.013 0.017 0.144 0.010 0.009 0.315 0.007 0.007
drink with

0.016 0.010 0.029 0.011 0.007 0.006 0.005 0.005
straw.wav
drink.wav 0.014 0.009 0.146 0.012 0.005 0.004 0.004 0.004
fart.wav 0.019 0.012 0.036 0.005 0.003 0.036 0.005 0.003

footsteps in
0.081 0.030 0.541 0.025 0.020 0.046 0.007 0.006
leaves.wav

footsteps in
0.015 0.017 0.236 0.014 0.008 0.006 0.005 0.004
mud.wav

footsteps on
0.003 0.019 0.197 0.004 0.001 0.197 0.004 0.001

snow.wav
footsteps.wav 0.015 0.007 0.051 0.104 0.010 0.001 0.001 0.001
groan.wav 0.014 0.012 0.010 0.019 0.003 0.002 0.002 0.002
heartbeat.wav 0.003 0.008 0.000 0.013 0.001 0.000 0.001 0.000
kiss.wav 0.104 0.032 0.126 0.217 0.064 0.140 0.214 0.049
laugh.wav 0.012 0.014 0.031 0.065 0.011 0.005 0.005 0.005
scream.wav 0.007 0.013 0.020 0.031 0.006 0.017 0.004 0.004
sigh.wav 0.027 0.027 0.058 0.006 0.005 0.039 0.006 0.005
sneeze.wav 0.053 0.016 0.051 0.031 0.006 0.013 0.007 0.003
snore.wav 0.016 0.011 0.081 0.013 0.009 0.040 0.008 0.007
yell.wav 0.023 0.017 0.334 0.015 0.014 0.042 0.012 0.012
AVERAGE 0.024 0.016 0.133 0.029 0.010 0.088 0.015 0.007
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Table 4-7 Compression ratio for people dataset by the Legendre basis method.

Compression Ratio MP3 M4A Legendre polyndgiz gepts
1-0-A 1-0-B 1-0-C
applause.wav 10.894 10.741 10.618 7.283 6.276
baby squeal.wav 10.909 19.825 9.868 7.515 6.352
belch.wav 10.916 28.925 13.974 9.209 7.905
breath.wav 10.875 8.925 6.051 4.047 3.580
cheer.wav 10.869 21.527 10.233 6.287 5.545
cough.wav 10.426 22.010 8.682 6.152 5.051
crowd.wav 10.856 13.181 10.754 7.316 6.247
drink with straw.wav 10.919 10.290 7.120 7.380 6.028
drink.wav 10.915 9.226 9.359 6.873 5.709
fart.wav 10.075 23.032 12.673 11.438 10.115
footsteps in leaves.wav 10.874 8.816 6.812 3.079 2.779
footsteps in mud.wav 10.899 18.015 7.193 4.360 3.789
footsteps on snow.wav 10.874 23.659 9.788 7.090 6.030
footsteps.wav 10.748 12.133 7.381 12.161 8.646
groan.wav 10.790 9.203 8.611 7.675 6.315
heartbeat.wav 10.844 16.250 13.283 29.212 17.212
kiss.wav 9.164 17.423 3.532 3.406 3.312
laugh.wav 10.639 18.849 5.563 5.698 4.651
scream.wav 10.661 12.088 6.592 5.127 4.140
sigh.wav 10.444 20.675 7.172 5.118 4.200
sneeze.wav 9.989 9.542 6.394 6.118 4.874
snore.wav 10.933 19.115 8.354 6.332 5.383
yell.wav 10.436 9.194 8.021 4.708 4.331
AVERAGE 10.650 15.767 8.610 7.547 6.021
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Table 4-8 Reconstruction error for people dataset by the Legendre basis method.

Reconstruction Error MP3 M4A Legendre polyndinizggepts
1-0-A 1-0-B 1-0-C
applause.wav 0.057 0.017 0.111 0.011 0.012
baby squeal.wav 0.011 0.013 0.075 0.011 0.008
belch.wav 0.003 0.014 0.079 0.008 0.005
breath.wav 0.030 0.027 0.283 0.041 0.035
cheer.wav 0.005 0.020 0.237 0.354 0.354
cough.wav 0.003 0.017 0.176 0.013 0.008
crowd.wav 0.013 0.017 0.142 0.012 0.011
drink with straw.wav 0.016 0.010 0.033 0.015 0.011
drink.wav 0.014 0.009 0.145 0.015 0.009
fart.wav 0.019 0.012 0.035 0.006 0.007
footsteps in leaves.wav 0.081 0.030 0.539 0.028 0.024
footsteps in mud.wav 0.015 0.017 0.234 0.016 0.011
footsteps on snow.wav 0.003 0.019 0.194 0.005 0.006
footsteps.wav 0.015 0.007 0.053 0.104 0.012
groan.wav 0.014 0.012 0.019 0.026 0.011
heartbeat.wav 0.003 0.008 0.008 0.015 0.007
kiss.wav 0.104 0.032 0.123 0.217 0.067
laugh.wav 0.012 0.014 0.031 0.062 0.015
scream.wav 0.007 0.013 0.020 0.028 0.007
sigh.wav 0.027 0.027 0.058 0.010 0.009
sneeze.wav 0.053 0.016 0.051 0.031 0.011
snore.wav 0.016 0.011 0.080 0.325 0.325
yell.wav 0.023 0.017 0.331 0.019 0.020
AVERAGE 0.024 0.016 0.133 0.060 0.043
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4.1.3 \ehicles dataset

Table 4-9 and Table 4-10 are the compression ratio and the reconstruction error of

signals by the downsampling method, whereas Table 4-11 and Table 4-12 are the

compression ratio and the reconstruction error of signals by the Legendre polynomial

basis method. Results better than both algorithms are highlighted in red, while those

only better than one of both are highlighted in blue.

Table 4-9 Compression ratio for vehicles dataset by the downsampling method.

Compression Downsampling

_ MP3 | M4A
Ratio 1-0-A | 1-0-B | 1-0C | 0-1-A | 0-1-B | 0-1C

Ferrari.wav 10.891 | 12.008 | 20.577 | 14.759 | 10.868 | 14.704 | 10.865 | 10.355
airplane.wav 10.956 | 12.107 | 23.927 8.545 7.131 6.281 5.042 4,935
ambulance.wav 10949 | 11.780 | 15.494 | 21.820 | 15.612 | 14.441 | 16.686 | 13.468
brakes.wav 10.613 | 11.676 | 10.314 | 28.642 | 11.207 | 11.903 | 17.866 | 12.882
bus.wav 10.936 | 11.936 | 20.599 | 13.186 | 10.347 | 19.992 | 10.691 9.617
helicopter.wav 10.921 | 11.483 | 23.817 | 11.674 9.349 | 13.328 | 10.309 9.799
jet flyby.wav 10.907 | 10.746 | 15.659 9.063 7.049 4.741 4.540 4.498
motor.wav 10.927 7.708 | 13.939 5.177 4.474 | 21.233 4.348 4.198
motorcycle.wav 10.865 | 12.328 | 22.400 9.888 8.306 4,173 3.933 3.897
siren.wav 10.872 | 13.768 | 24.567 | 13.228 | 10.671 8.082 8.098 8.017
tank.wav 10.759 | 12.030 | 13.542 9.031 6.793 | 21.870 7.414 5.795
train steam
whistle.way 10.680 | 10.106 7.736 | 11.151 7.648 8.054 | 10.761 7.811
train.wav 10.837 | 10.160 | 10.896 8.886 6.597 | 15.776 7.292 5.611
truck.wav 10.759 | 11.837 | 11.632 9.244 6.945 | 19.449 6.707 6.050
windshield wiper

10.991 | 19.575| 16.496 | 12.069 9.158 8.256 7.717 7.483
wav
AVERAGE 10.858 | 11.950 | 16.773 | 12.424 8.810 | 12.819 8.818 7.628
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Table 4-10 Reconstruction error for vehicles dataset by the downsampling method.

Reconstruction Downsampling

MP3 M4A
Error 1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C

Ferrari.wav 0.011 0.009 0.019 0.012 0.002 0.071 0.001 0.001
airplane.wav 0.030 0.015 0.332 0.007 0.005 0.033 0.003 0.003
ambulance.wav 0.010 0.010 0.006 0.019 0.006 0.004 0.008 0.003
brakes.wav 0.008 0.009 0.001 0.003 0.001 0.001 0.002 0.001
bus.wav 0.007 0.010 0.079 0.021 0.004 0.186 0.003 0.003
helicopter.wav 0.026 0.011 0.265 0.006 0.005 0.084 0.005 0.005
jet flyby.wav 0.045 0.013 0.085 0.010 0.005 0.026 0.002 0.002
motor.wav 0.043 0.054 0.554 0.187 0.183 0.654 0.178 0.175
motorcycle.wav 0.018 0.008 0.238 0.004 0.002 0.010 0.001 0.001
siren.wav 0.003 0.006 0.197 0.003 0.001 0.000 0.001 0.000
tank.wav 0.020 0.013 0.072 0.033 0.013 0.130 0.010 0.009
train steam
whistle.way 0.010 0.011 0.033 0.057 0.029 0.027 0.041 0.025
train.wav 0.020 0.015 0.035 0.041 0.014 0.042 0.013 0.011
truck.wav 0.017 0.012 0.038 0.036 0.010 0.121 0.005 0.005
windshield wiper

0.022 0.015 0.165 0.020 0.015 0.030 0.012 0.011
wav
AVERAGE 0.019 0.014 0.141 0.030 0.020 0.095 0.019 0.017
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Table 4-11 Compression ratio for vehicles dataset by the Legendre basis method.

Compression Ratio MP3 M4A Legendre polyndgiz gepts

1-0-A 1-0-B 1-0-C

Ferrari.wav 10.891 12.008 14.663 10.359 5.709
airplane.wav 10.956 12.107 16.073 10.743 10.115
ambulance.wav 10.949 11.780 13.416 16.183 6.315
brakes.wav 10.613 11.676 8.426 20.266 17.212
bus.wav 10.936 11.936 13.625 9.665 6.030
helicopter.wav 10.921 11.483 15.129 9.074 8.646
jet flyby.wav 10.907 10.746 10.356 7.090 5.051
motor.wav 10.927 7.708 9.017 8.185 6.247
motorcycle.wav 10.865 12.328 15.405 13.662 3.312
siren.wav 10.872 13.768 17.380 12.905 5.709
tank.wav 10.759 12.030 8.821 9.656 10.115
train steam whistle.wav 10.680 10.106 5.346 6.592 2.779
train.wav 10.837 10.160 7.362 6.351 4.874
truck.wav 10.759 11.837 7.781 7.090 5.383
windshield wiper.wav 10.991 19.575 11.163 5.882 6.247
AVERAGE 10.858 11.950 11.597 10.247 6.964
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Table 4-12 Reconstruction error for vehicles dataset by the Legendre basis method.

Reconstruction Error MP3 M4A Legendre polyndgua s

1-0-A 1-0-B 1-0-C

Ferrari.wav 0.057 0.017 0.024 0.014 0.011
airplane.wav 0.011 0.013 0.334 0.676 0.011
ambulance.wav 0.003 0.014 0.009 0.021 0.007
brakes.wav 0.030 0.027 0.010 0.009 0.067
bus.wav 0.005 0.020 0.081 0.022 0.011
helicopter.wav 0.003 0.017 0.265 0.564 0.013
jet flyby.wav 0.013 0.017 0.082 0.015 0.009
motor.wav 0.016 0.010 0.553 0.104 0.010
motorcycle.wav 0.014 0.009 0.242 0.028 0.007
siren.wav 0.019 0.012 0.199 0.016 0.024
tank.wav 0.081 0.030 0.071 0.005 0.011
train steam whistle.wav 0.015 0.017 0.034 0.006 0.006
train.wav 0.003 0.019 0.036 0.026 0.005
truck.wav 0.015 0.007 0.039 0.015 0.011
windshield wiper.wav 0.014 0.012 0.164 0.042 0.011
AVERAGE 0.024 0.016 0.143 0.104 0.014

4.2

Computation time

Table 4-13 and Table 4-14 are the results of computation time. However, the
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computation time depends on the complexity of the algorithm, which trivially leads to

our time-consuming results. Apparently, different bandwidth computation methods also

yield different results, For instance, type C is slower than type B and type B is slower

than type A due to the larger bandwidths for approximation. The relationship between
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the pre-cut scheme and the head and tail scheme is not definite since the target signals

may affect the appropriate scheme.

Table 4-13 Average computation time by the downsampling method.

Average Downsampling
Computation MP3 M4A
. 1-0-A 1-0-B 1-0-C 0-1-A 0-1-B 0-1-C
Time
Animal signals 0.765 1.943 14,324 | 25.179 | 28.630 | 19.798 | 27.068 | 30.678
People 1.172 1.851 34145 | 67.996 | 77.056 | 51.912 | 67.824 | 74.336
Vehicles 1.455 2.373 88.516 | 115.496 | 136.534 | 62.249 | 164.846 | 175.649

Table 4-14 Average computation time by the Legendre basis method.

Average Legendre polynomial basis
Computation MP3 M4A
. 1-0-A 1-0-B 1-0-C
Time
Animal signals 0.765 1.943 45.103 148.499 189.082
People 1.172 1.851 97.236 254.288 301.106
Vehicles 1.455 2.373 177.446 462.108 512.326
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Chapter 5 Discussion

In data compression theory, when the compression ratio increases, the
reconstruction error also increases and when the compression ratio decreases, the
reconstruction error also decreases, which implies the compression ratio and the
reconstruction error are positively correlated. However, we hope the compression ratio
is as large as possible while the reconstruction error is as small as possible. Hence we
compare the compression ratio and the reconstruction error respectively and try to find
the overlapping methods.

For the comparison groups, MP3 algorithm performs steadily in both the
compression ratio and the reconstruction error. Although M4A algorithm fluctuates
more in both the compression ratio and the reconstruction error, the average
performance is much better than MP3 algorithm.

For the downsampling method, the results with animal signals dataset are good in
both measures, and the overlapping methods are 1-0-B, 1-0-C, and 0-1-C, which means
our proposed algorithm works. Unfortunately, the results with people dataset and the
results with vehicles dataset seem not so good.

For the Legendre polynomial basis method, we only test the algorithm with the
pre-cut scheme since the algorithm without the pre-cut scheme will produce

components with large time intervals and the approximation for Legendre polynomial
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basis will never converge or take a very long time. The results with animal signals

dataset, people dataset, and vehicles dataset are not good, and the reason for this may be

the boundaries of elements in the Legendre polynomial basis.

However, there are three primary reasons for the failure of our proposed algorithm.

First, if we take a close look to signals with bad performance, we can find that most of

them are far from our ideal target signals. The signals our algorithm intends to deal with

are signals with harmonics, which look like stripes in the time-frequency analysis and

are able to be divided into horizontal parallel components, such as Fig. 3-1. Most

signals in the animal signals dataset conform to the rule while most signals in the people

dataset and the vehicles dataset do not act like that. The result has shown that the

algorithm of our work is more applicable to the animal voice signals rather than other

classes of common signals.

The second reason is that the time-frequency analysis is not as precise as we think.

As we mention before, the resolution of the Gabor transform for the time domain and

the frequency domain totally depends on the parameter o. If our empirical value of o is

not suitable for the signal, the Gabor transform of the signal may produce negative

effect on the analysis. Despite the combination of the high clarity of the Wigner

distribution function, the problem of the Gabor transform still exists. On the other hand,

the cross term problem in the Wigner distribution function may still exist while the
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mask of the Gabor transform does not work appropriately, which means that the

combination of the Gabor-Wigner transform becomes meaningless. The unbalanced

sampling used in the implementation for lowering the computation time and the

complexity also decreases the resolution of the analysis.

The last reason is that the time-frequency reassignment does not perform ideally. In

the observation of the failed examples, plenty of the signals do not carry out as we want

in this part of the algorithm. In spite of the pre-cut scheme, the gap connection scheme,

the head and tail scheme and the fixed bandwidth estimation, the results are still not

identical to those we can trivially predict. The time-frequency reassignment part in the

algorithm we design is not complete and not able to handle all types of signals.

To sum up, even though our concept of the time-frequency analysis is reasonable in

theory, the implementation of the algorithm still encounters numerous difficulties and

challenges. If all these problems are solved and the computation time can be improved,

the time-frequency methods for compressive sensing can outperform the existing

algorithms and be applied practically with a high chance.
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Chapter 6 Conclusion and Future Work

In our work, we propose an algorithm to compress data with time-frequency
analysis method. This thesis consists of four parts, form Chapter 2 to Chapter 5. In
Chapter 2, we review some related works like compressive sensing, matching pursuit,
basis pursuit, some other expansion methods and common bases for expansion. In
Chapter 3, we introduce our proposed work, including time-frequency analysis,
time-frequency reassignment, signal components approximation, and the signal
reconstruction scheme. In the section of time-frequency analysis, the target signal is
transformed by the Gabor transform and the Wigner distribution function, and then the
segmentation scheme is applied. The section for time-frequency reassignment includes
the optional pre-cut scheme, the gap connection scheme, the optional head and tail
scheme, and the fixed bandwidth estimation, which reassign the figure and relabel the
components of the signal. In the section of signal components approximation, the signal
is implemented by the generalized modulation, the downsampling method, the Legendre
polynomial basis method, and the encoding scheme. The section for signal
reconstruction scheme includes the decoding scheme and the reconstruction of both
methods. Simulation results are demonstrated in Chapter 4, while the discussion of the

simulation is provided in Chapter 5.
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The simulation proves that our work is better than MP3 and M4A algorithms under

certain circumstances. From the results, the animal voice signals are suitable for our

proposed algorithm relative to both existing algorithms. However, we do not test our

work with acoustic signals and speech signals, which are theoretically composed of

harmonics. We believe that our work can be extended to most of signals if the

segmentation scheme can handle various types of signals since our proposed algorithm

can remove the space between components in time-frequency analysis. The

performance can be further improved by deriving more intelligent time-frequency

reassignment scheme. Bandwidth computation methods can also be improved to apply

to most segmentation conditions.
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