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摘要

廣義分頻多工是次世代無線通訊系統頗具前途的波型候選人之一。

然而，如何實踐廣義分頻多工的通道估測始終是一大挑戰，因其系統

本身載波間通常為非正交而存在干擾。本論文首先提出一個基於預編

碼器的領航符號插入架構，適用於廣泛的調變矩陣，包括了廣義分頻

多工矩陣，並且針對預編碼器推導出了在接收端對應之最小均方誤差

估計器。基於此架構我們進一步提出了一個可在接收端消除估測干擾

之預編碼器，其透過了讓傳送訊號在頻域上的若干頻率點形成固定領

航符號，進而消除若干頻率點上因資料符號之隨機性而產生的變動。

模擬結果顯示我們提出的預編碼器相較於傳統的領航符號散佈方法，

降低了通道估測的均方誤差與訊雜較高時的符號錯誤率。

關鍵字： 廣義分頻多工,領航符號插入,最小均方誤差估計器,符號錯

誤率
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Abstract

Generalized frequency divisionmultiplexing (GFDM) is a promising can-

didate waveform for next-generation wireless communication systems. How-

ever, channel estimation is still challenging for GFDM due to its inherent in-

terference. In this paper, we formulate a pilot-insertion framework based on

a precoder design for block-based systems including GFDM and derive its

linear minimum mean square error (LMMSE) channel estimator. We pro-

pose a solution for the precoder to achieve interference precancellation by

generating the pilots at several tramsmit frequency bins and eliminating the

randomness at such frequency bins due to data symbols. Numerical results

demonstrate that the proposed method reduces the channel estimation mean

square error and high signal-to-noise ratio (SNR) symbol error rate (SER),

compared to conventional pilots scattering methods.

Keywords:Generalized frequency divisionmultiplexing (GFDM), pilot-insertion,

linear minimummean square error (LMMSE) channel estimation, symbol er-

ror rate (SER)
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Chapter 1

Introduction

Generalized frequency division multiplexing (GFDM), considered as a candidate wave-

form for next-generation wireless communication systems, features several advantages

such as low out-of-band (OOB) emissions and relaxed requirements of time and frequency

synchronizations [1]. Particularly, it has been shown in [2] that the GFDM systems have

the potential to outperform OFDM systems by exploiting the frequency diversity. GFDM

was often considered to be a non-orthogonal system with noise enhancement effect and

MSE performance degradation compared to OFDM. However, [3] shows that based on the

prototype filter design and the matrix characterization for GFDM, the mean square error of

equalisation could be minimized and low-complexity transceiver could be implemented.

However, due to the inherent inter-subsymbol interference (ISI) and potential inter-

subcarrier interference (ICI) accompanied with specific prototype filters, the received ref-

erence signal (i.e. pilots) is influenced by data symbols. Such impact of the data on pilot

symbols degrades the channel estimation performance in comparison to orthogonal fre-

quency division multiplexing (OFDM) which takes advantage of clear pilot observation.

Therefore, the OFDM based channel estimations can not be directly adopted to GFDM.

Several methods like matched filter (MF) in [4, 5], orthogonal match pursuit (OMP)

in [6], and the parallel interference cancellation(PIC) in [7] are adopted to further improve

the channel estimation performance. However, the PIC method could get an additional

complexity of cubic growth in receiver, MF approach is based on the assumption of nearly

flat, slow fading channels, and the iterative OMP method cause a severe latency to the

1
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system, which are against the requirements of next-generation wireless communication

systems.

The least square (LS) and linear minimum mean square error (LMMSE) estimation

in GFDM receiver have been adopted in [8–10]. However, these methods conventionally

scatter the pilots in data block without any processing, which could suffer from estimation

performance degradation due to the inherent interference of data symbols.

In [11], a technique called interference-free pilots insertion (IFPI) modify the wave-

form and structure of GFDM for orthogonal pilot insertion, subsequently achieving an

interference-free channel estimation performance. However, such modification cause per-

formance degradation including OOB emission and peak-to-average power ratio (PAPR).

In this paper, based on a block transmission [12] GFDM,we formulate a pilot-insertion

framework including a general precoder which could be applied to both orthogonal and

non-orthogonal waveforms. We derive its corresponding LMMSE channel estimator and

propose a procedure which guarantees a solution for the precoder to achieve interference

precancellation. By generating the pilots at several tramsmit frequency bins and eliminat-

ing the randomness at such frequency bins due to data symbols, the precoder leads to a

significant improvement in LMMSE channel estimation accuracy compared to the con-

ventional pilot-insertion [8–10]. With proper pilot arrangement, the computational com-

plexity for pilot-insertion precoding could be very low, and there is no need for receiver

to cancel the channel estimation interference. Our contribution in this paper:

• For GFDM and any other block-based communication systems, we formulate a gen-

eral pilot-insertion framework with a flexible precoder design, and derive its corre-

sponding LMMSE channel estimator.

• Based on the precoder, we formulate a condition which guarantees the interference

cancellation for pilot-aided channel estimation.

• We propose a procedure which guarantees a solution for the precoder to cancel the

interference.

• We show the proposed pilot-insertion prcoder for IFPI-GFDM [11] and explain its

2
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advantage on channel estimation.

The remainder of this paper is organized as follows. In Section 2, we introduce the GFDM

channel systemmodel and channel reconstruction methods. The proposed scheme is illus-

trated in Section 3. Simulation results and discussion are presented in Section 4. Finally,

a conclusion with the futurework is provided in Section 5.

Notations: Boldfaced capital and lowercase letters denote matrices and column vec-

tors, respectively. We use E{·} and ⟨.⟩D to denote the expectation operator and modulo

D, respectively. Given a vector u, we use [u]n to denote the nth component of u, ∥u∥

the ℓ2-norm of u, and diag(u) the diagonal matrix containing u on its diagonal. Given a

matrix A, we denote [A]m,n, tr(A), AT , A∗, and AH its (m, n)th entry (zero-based index-

ing), trace, transpose, complex conjugate, and Hermitian transpose, respectively. For two

matrices A, B of the same dimension , we denote ◦ as hadamard product. Given a diagnal

matrix D, We use diag−1(D) to denote the vector containing the diagnal elements of D.

For any set Q, we use |Q| to denote its cardinality. We adopt the MATLAB subscripts

: and a : b to denote all elements and the elements ordered from a to b, respectively, of

the subscripted objects. Given index sets I,J ⊂ Z≥0 = {0, 1, 2...}, we denote [u]I as

the subvector of u containing the elements indexed by I, [A]I,J as the submatrix of A

containing the elements indexed by I,J , and [A]I,:, [A]:,J as the submatrix containing

the rows, columns of A indexed by I and J respectively. We define Iq to be the q × q

identity matrix, 0q the q × 1 zero vector, Om,n the m × n zero matrix. The Fq ,Wq are

the q-point discrete Fourier transform (DFT) matrix and the normalized q-point DFT ma-

trix with [Wq]m,n = e−j2πmn/q/
√
q, q ∈ N and [Fq]m,n = e−j2πmn/q =

√
qWq. For a

D × 1 vector v, d × 1 vector p, and an indexes set Q ⊂ {0, 1, 2, ..., D − 1}, |Q| = d,

we use some columns of the identity matrix ID as a D × d matrix [ID]:,Q to generate

v = [ID]:,Qp, where the elements in p are allocated in [v]Q = p and other elements

in [v]{0,1,2,...,D−1}−Q = 0D−|Q|. For a m × n matrix A, the collecting matrices [Im]I,:

and [In]:,J satisfy [Im]I,:A[In]:,J = [A]I,:[In]:,J = [Im]I,:[A]:,J = [A]I,J , where [Im]I,:

and [In]:,J collect the rows and columns of A respectively. We define LD,L to be the

3
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(D + L) × D cyclic prefix(CP) matrix, expressed as LD,L =

 OD+L,D−L IL

ID

 and

the steering vector as vD(ejω) =

[
1 ejω·1 ejω·2... ejω·(D−1)

]T
. Given some matrices

A,B,C..., we define blkdiag(A,B,C...) =



A O O O

O B O O

O O C O

O O O ...


.

4
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Chapter 2

System Model for GFDM Channel

Estimation

2.1 GFDM System Model

Figure 2.1: GFDM System Model with Channel Estimation

2.1.1 Transmitter

GFDM is a block-based communication scheme as shown in Fig. 2.1 [1,3]. Each GFDM

block employs K subcarriers, with each transmitting M complex-valued subsymbols.

So, a total of D = KM symbols are transmitted in a block. Let dl ∈ CD be the

lth GFDM block, whose mth sybsymbol on the kth subcarrier is denoted as [dl]k+mK ,

m = 0, 1, ...,M − 1, k = 0, 1, ..., K − 1.

Each symbol [dl]k+mK is pulse-shaped by a vector gk,m, whose nth entry is [gk,m]n =

[g0,0]⟨n−mK⟩De
j2πkn/K , n = 0, 1, ..., D−1,m = 0, 1, ...,M−1, k = 0, 1, ..., K−1, where

5
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g0,0 ∈ CD is called the prototype filter [1]. The GFDM transmitter matrix [1] could be

collected by

A = [g0,0...gK−1,0, g0,1...gK−1,1...gK−1,M−1], (2.1)

and the transmit vector could be expressed as xl = Adl, whose nth entry, for n =

0, 1, ..., D − 1, is

[xl]n =
K−1∑
k=0

M−1∑
m=0

[dl]k+mK [g]⟨n−mK⟩De
j2πkn/K . (2.2)

Subsequently, the vector xl is passed through a parallel-to-serial (P/S) conversion, and

a cyclic prefix (CP) of length L is further added. Denote the set of subcarrier indexes

and set of subsymbol indexes that are actually employed as K ⊆ {0, 1, ..., K − 1} and

M ⊆ {0, 1, ...,M − 1}, respectively. The digital baseband transmit signal of GFDM can

be expressed as [3]

x[n] =
∞∑

l=−∞

∑
k∈K

∑
m∈M

[dl]k+mKgm[n− lD′]ej2πk(n−lD′)/K , (2.3)

where D′ = D + L and

gm[n] =

 [g]⟨n−mK−L⟩D , n = 0, 1, ..., D′ − 1

0, otherwise
. (2.4)

For notational brevity, we omit the subscript l as in xl and dl hereafter.

2.1.2 Receiver

As shown in Fig. 2.1, the received signal after transmission through a wireless chan-

nel can be modeled as a linear time-invariant (LTI) system y[n] = h[n] ∗ x[n] + w[n],

where h[n] is the channel impulse response, and w[n] is the complex additive white Gaus-

sian noise (AWGN) with variance N0. We denote w = [w[0]w[1]...w[D − 1]]T and h =

[h[0]h[1]...h[N − 1]]T , where N − 1 is the channel order, as the vector forms of complex

AWGN and channel impulse response, respectively. Note that h =
√
diag(p)q ∈ CN ,

6
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where p ∈ CN is the power delay profile (PDP) and q ∈ CN is a vector of independently

and identically distributed (i.i.d.) standard normal random variables, with the assumption

that the channel order N − 1 does not exceed the CP length L. After CP removal and

serial-to-parallel (S/P) conversion, the received samples are collected as [7]

y = Hx+ w = HAd+ w

= WH
Ddiag(FDhN)WDAd+ w

= WH
Ddiag(WDAd)FDhN + w,

(2.5)

where H ∈ CD×D is the circulant matrix whose first column is the channel impulse re-

sponse hN = [ID]:,Nh = [hT 0TD−N ]
T , N = 0, 1, ..., N − 1.

2.2 OFDM Channel Estimation

The model in (2.5) could be adapted to OFDM system by substituting the IDFT matrix

WH
D for the modulation matrix A. The received OFDM vector could be expressed as

y = WH
Ddiag(d)FDhN + w, (2.6)

and

WDy = diag(d)FDhN +WDw, (2.7)

in frequency domain. In OFDM receiver, the received vector y would be converted to

frequency domain byWD and each element in frequency domain received vector [xf ]n =

[WDy]n = [d]n[FDhN ]n + [WDw]n experiences a flat-fading channel as shown in Fig.

2.2. In order to obtain the channel state information (CSI), the several spaces indexed

by J in the OFDM block d are employed to a reference vector dr denoted as [d]J = dr

for pilot-insertion, and the rest of spaces in d are reserved for the data vector ds, denoted

as [d]I = ds. By observing the received vector in frequency domain, the several spaces

7
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indexed by J could be collected as

[WDy]J = diag([d]J )[FDhN ]J + [WDw]J

= diag(dr)[ID]J ,:FD[ID]:,Nh+ [WDw]J

= diag(dr)[FD]J ,Nh+ [WDw]J ,

(2.8)

Assuming the effect of noise is ignored, and the number of the pilot symbols |J | ≥ the

Figure 2.2: OFDM Channel Estimation with xf = WDAd and yf = WDy

channel length N , we could reconstruct the channel impulse vector with the knowledge

of the reference vector [d]J = dr, and

ĥ = pinv([FD]J ,N )(diag(dr))−1[WDy]J , (2.9)

where pinv(·) denotes the Moore-Penrose pseudoinverse.

8
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Chapter 3

Proposed Methods

In this section, the problem of channel estimation in GFDM is statemented. With the sig-

nificant interference inherent in GFDM, the performance of channel estimation in existing

literature [8–10] suffers from severe degradation, especially in high SNR, due to the lack

of interference precancellation in pilot design.

3.1 The Problem of Channel Estimation in GFDM

In order to achieve the channel estimation at the receiver, the GFDM block d is generated

from two subvectors, the pilot vector dp ∈ CD and the data vector dd ∈ CD. The GFDM

block d can be expressed as

d = dp + dd. (3.1)

In conventional pilot insertion framework, the pilot symbols and data symbols are allo-

cated in data block d to be isolated from each other, which could be expressed as a linear

transformation of dr and ds, i.e.,

d = [ID]:,Jdr + [ID]:,Ids, (3.2)

where the number of d data symbols in ds ∈ Cd are random source data variableswith sym-

bol energy Es, and the number of p pilot symbols in dr ∈ Cp are deterministic reference

elements. We choose the indexes set I ⊂ {0, 1, ..., D− 1} and [d]I for data symbols with

9
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Figure 3.1: Conventional Pilot-insertion

J ⊂ {0, 1, 2, ..., D−1} and [d]J for pilot symbols, where |I| = d, |J | = p and I∩J = ∅.

We call the pilot symbols in [d]J “pilot-holes” and data symbols in [d]I “data-holes”. The

matrices [ID]:,J ∈ CD×p and [ID]:,I ∈ CD×d are the corresponding allocating matrices of

dr and ds, which could determine the positions of pilot symbols and data symbols in data

block d (illustrated in Fig. 3.1). Notice that dd ◦ dp = ([ID]:,Jdr) ◦ ([ID]:,Ids) = 0D ,

where elements in [dd]{0,1,2,...,D−1}−I and [dp]{0,1,2,...,D−1}−J are all zero.

Figure 3.2: Pilot in Frequency Domain: The transmit symbols in frequency domain de-
noted by green circles(called ”pilot-stones”).

After modulation, we choose the number of p samples at [xf ]Q called pilot-stones

(illustrated as green circles shown in Fig. 3.2), where Q ⊂ {0, 1, ..., D − 1}, |Q| = p

is the pilot-stones indexes set. The relationship between xf and yf , expressed as yf =

diag(FDhN)xf +
√
DWDw, benefits the frequency-domain channel estimation, where

10
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each element in xf only corresponding to a flat-fading channel in diag(FDhN). The pilot-

stones in transmit frequency samples could be derived as

[xf ]Q = [WDAd]Q = [WDA([ID]:,Jdr + [ID]:,Ids)]Q

= [WDA[ID]:,Jdr]Q + [WDA[ID]:,Ids]Q = [WDA]Q[ID]:,Jdr + [WDA]Q[ID]:,Ids =

[WDA]Q,Jdr + [WDA]Q,Ids.

We expect to obtain a deterministic reference vector dr in [xf ]Q (pilot-stones), so we for-

mulate a condition called pilot-stone condition as

[xf ]Q = [WDA]Q,Jdr + [WDA]Q,Ids = dr, (3.3)

which fixes the p frequency samples in xf indexed by Q. We could require the received

frequency samples by Q as

[WDy]Q = [diag(xf )FDhN +WDw]Q = [diag(xf )]Q,:FDhN + [WDw]Q

= diag([xf ]Q)[FD]Q,Nh+ [WDw]Q, N ≤ |Q| = p. (3.4)

The chosen pilot-stones [xf ]Q pass through a flat-fading channel diag([FD]Q,Nh) and be-

come [yf ]Q (illustrated as green squares shown in Fig. 3.2) in which the corresponding

elements in dr get the channel information. With a deterministic dr and the absence of

noise in (3.4), the channel could be exactly reconstructed as

ĥ = pinv([FD]Q,N )diag(dr)−1[WDy]Q.

Notice that the channel can be exactly reconstructed only if the number of pilot symbols

|Q| = p ≥ N is satisfied, and as a special case Q = 0,M, 2M, ...(K − 1)M , N =

0, 1, ..., N−1, where |N | < K, we could find that [FD]Q,N = [FD]Q,{0,1,...,N−1} = [FK ]:,N

is a DFT submatrix and pinv([FD]Q,N ) would become ([FD]Q,N )H .

11
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The pilot-stone condition (3.3) guarantees the interference cancellation for pilot-aided

channel estimation by fixing p pilot-stones in [xf ]Q and exactly reconstructing the channel

with the knowledge of [diag(xf )]Q,: = dr and [FD]Q,N in (3.4). To satisfy the pilot-stone

condition (3.3), the conventional pilot-insertion depends on the choice of the modulation

matrixA, the pilot-stone indexes setQ, pilot-hole indexes set J and the data-hole indexes

set I. For a classic OFDM case, the modulation matrix A is chosen as an identity IDFT

matrixWH
D . SubstitutingWH

D into the pilot-stone condition, the pilot-stones vector could

be derived as

[xf ]Q = [WDAd]Q = [d]Q = [ID]Q,Jdr + [ID]Q,Ids.

With the choice of Q = J , we could cancel the interference of data by [ID]Q,Ids =

[ID]J ,Ids = 0p and get the pilot-stones [xf ]Q = [ID]J ,Jdr + [ID]J ,Ids = dr . The

OFDM transmit symbols in frequency domain [xf ] = WDAd is equal to the data block

d, hence the pilot-stones [xf ]Q would be equal to the reference vector dr by choosing

the indexes set Q = J , where [d]Q = [d]J = dr. However, the choice of Q = J

for other modulation matrices like GFDM could not guarantee [WDA]Q,Ids in (3.3) to

be zero and the interference could not be canceled. Pilot-stone condition guarantees the

interference cancellation for pilot-aided channel estimation. We reformulate a general

pilot-insertion precoder for any modulation matrix A which could be further designed to

satisfy the pilot-stone condition and its corresponding LMMSE channel estimator will be

derived. Subsequently, we show a procedure which guarantees a solution for the precoder

as our proposed method.

12
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3.2 Pilot-insertion Framework

3.2.1 Precoder Design

The data block d can be expressed as

d = dp + dd. (3.5)

We reformulate a general precoder by the linear transformation of dr and ds, i.e.,

d = Sdr + Tds, (3.6)

where dr ∈ Cp is the reference vector, ds ∈ Cd is the source data vector, and p, d denote

the resource number of pilot and data. The matrices S ∈ CD×p and T ∈ CD×d are the cor-

responding linear coefficient matrices of dr and ds, where S and T could be any precoding

matrices. Assume that dr and ds are independent, and the symbols in ds are zero-mean

and i.i.d. with symbol energyEs, we could get E{ddH} = SE{drdHr }SH+ESTTH .With

different choices of the precoder S and T, the dp = Sdr, dd = Tds in (3.6) are accordingly

modified, and the data block d = dp+dd is generated by the linear combination of dr and

ds. As a special case of the conventional pilot-insertion methods [8–10], the matrices S

and T are set to be S = [ID]:,J and T = [ID]:,I . Based on a more flexible precoder design,

more requirements could be achieved.

3.2.2 LMMSE Channel Estimation

In the following theorem, we derive the LMMSE channel estimator corresponding to the

pilot-insertion precoder.

Theorem 1. Given any modulation matrix A with the received samples y as defined in

(2.5), the LMMSE estimated channel ĥLMMSE can be derived as

ĥLMMSE = GLMMSEy, (3.7)

13
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with

GLMMSE =Σhh(Xr[FD]:,N )H ·

[(Xr[FD]:,N )Σhh(Xr[FD]:,N )H +ΣΨΨ +N0ID]−1WD, (3.8)

where Xr = diag(WDASdr), Σhh = E{hhH} = diag(p),

and ΣΨΨ = ([FD]:,NΣhh[FD]
H
:,N)(WDATTHAHWH

D).

Proof. Proof of Theorem 1

Let the channel estimator be G, and ĥ = Gy is the estimated channel. Note that

diag(WDAd) = Xr+Xs. First, we derive the expected square error of channel estimation

E{∥h−Gy∥2} as

E{tr((h−Gy)(h−Gy)H)}

= tr(Σhh − E{hyHGH} − E{GyhH}+ E{GyyHGH})

= tr(Σhh)− tr(Σhh(WH
DXr[FD]:,N)

HGH)

− tr(G(WH
DXr[FD]:,N)Σhh) + tr(G[WH

D(Xr[FD]:,N)Σhh·

(Xr[FD]:,N)
HWD +WH

DΣΨΨWD +N0ID]GH). (3.9)

The Wirtinger derivatives of E{∥h−Gy∥2} with regard to G∗ are obtained as [13]

∂ E{∥h−Gy∥2}
∂G∗ =−Σhh(Xr[FD]:,N)

HWD +G[WH
D(Xr[FD]:,N)Σhh·

(Xr[FD]:,N)
HWD +WH

DΣΨΨWD +N0ID]. (3.10)

To solve for the optimal estimator, we require the derivatives to be zero and derive that

GLMMSE =Σhh(Xr[FD]:,N)
H ·

[(Xr[FD]:,N)Σhh(Xr[FD]:,N)
H +ΣΨΨ +N0ID]−1WD. (3.11)
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For any modulation matrix A with the precoder S,T, a LMMSE channel estimation

could be done by ĥLMMSE = GLMMSEy.

3.3 Interference-canceled Pilot Insertion Precoder

3.3.1 Pilot-stone Condition

The S,T precoder provide the flexibility of pilot-insertion for any modulation matrixA to

satisfy the pilot-stone conditionwhich guarantees the interference reduction for pilot-aided

channel estimation. The pilot-stone condition of the general pilot-insertion framework

could be expressed as

[xf ]Q = dr = [WDA(Sdr + Tds)]Q, (3.12)

where the transmit frequency samples vector [xf ]Q = [WDAd]Q = [WDA(Sdr+Tds)]Q,:

is indexed by Q ⊂ {0, 1, ..., D − 1},|Q| = p. We choose |Q| = p samples in xf to be a

constant reference vector dr and the pilot-stone condition (3.12) could be expressed as

dr = [WDAS]Q,:dr + [WDAT]Q,:ds. (3.13)

and further derived as
[WDAS]Q,: = Ip,

[WDAT]Q,: = Op,d.

(3.14)

Given any modulation matrix A, the precoder S,T and the indexes set Q are designed to

satisfy the pilot-stone condition.

3.3.2 Proposed Procedure for The Precoder Design

To find the precoder S,T which satisfies (3.14), we propose a procedure which guar-

antees a solution for the precoder to satisfy the pilot-stone condition. Considering the

pilot-insertion complexity and the non-interference of pilot and data, we reformulate the
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precoder S,T as

S = [ID]:,JC,

T = [ID]:,I − [ID]:,JD,
(3.15)

where the precoderS,T for pilot-insertion are generated by two smallermatricesC ∈ Cp×p

and D ∈ Cp×d with the allocating matrices [ID]:,J and [ID]:,I . The data block d can be

expressed by C,D as

d = [ID]:,JCdr + ([ID]:,I − [ID]:,JD)ds

= [ID]:,J (Cdr − Dds) + [ID]:,Ids,
(3.16)

where the indexes sets I,J ⊂ {0, 1, ..., D− 1} are designed to allocate the data symbols

and pilot symbols in data block d (illustrated in Fig. 3.3). We set the condition I ∩J = ∅

to isolate the data symbols from pilot symbols in data block d, which implies [d]I = ds

(illustrated as gray lines shown in Fig. 3.3). Notice that |I| = d is equal to the corre-

sponding source data number, and |J | = p is equal to the number of the corresponding

pilot symbols in the reference vector dr, where d + p ≤ D. The elements in [d]I are

directly generated by ds and transferred to the locations only for data symbols indexed by

I. Notice that in Fig. 3.3 red lines passed through −D denote the extra processes for our

proposed methods, and in the conventional pilot-insertion the matrix D is a zero matrix

Op,d. To satisfy the pilot-stone condition, we substitute (3.15) into the equation (3.14),

and get

C = ([WDA]Q,J )
−1,

D = [WDA]Q,J )
−1[WDA]Q,I .

(3.17)

Notice that (3.17) exist if and only if the indexes set Q,J mentioned above is chosen

such that the matrix [WDA]Q,J is invertible. Finally, the proposed precoder S and T can

be expressed as

S = [ID]:,J ([WDA]Q,J )
−1,

T = [ID]:,I − [ID]:,J ([WDA]Q,J )
−1[WDA]Q,I .

(3.18)

The proposed procedure (3.15) carry out a solution for the precoder to satisfy the pilot-

stone condition. The proposed precoder S,T in (3.18) could precancel inherent interfer-

16
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Figure 3.3: Pilot-insertion: Green solid circles denotes the deterministic elements in dr,
yellow solid circles denotes the data symbols in ds, and red solid circles denotes the ele-
ments allocated in [d]J .

ence during the pilot generation for any block transmission systemwith modulation matrix

A, leading to a significant improvement in LMMSE channel estimation accuracy com-

pared to the conventional methods [8–10]. By (3.18) the precoder S and T could be ex-

actly determined when the modulation matrixA, pilot-stone indexesQ, pilot-hole indexes

J , and the data-hole indexes I are given. The number of pilot-stone indexes |Q| = p,

consistent with the number of the corresponding pilot symbols, are recommended to be set

greater than the channel length N for acceptable channel estimation performance. With a

appropriate index choice, the interference-cancellation precoder for anyD×Dmodulation

matrix A could be obtained.

Figure 3.4: Pilot in Frequency Domain: The transmit symbols in frequency domain xf =
WDx are denoted by green circles(called “pilot-stones”) and orange circles.

17
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3.4 Index Choice for GFDM

For our proposed precoder (3.18), the pilot-stone indexesQ ⊂ {0, 1, ..., D−1}, pilot-hole

indexes J ⊂ {0, 1, ..., D − 1}, and data-hole indexes I ⊂ {0, 1, ..., D − 1} determine

the final form of precoder. In most cases, the channel length N ≤ K and we could use

p = K pilots for channel estimation. For channel lengthN > K case, one could consider

to use |Q| = |J | = p = 2K, whereQ,J mentioned above should be chosen such that the

matrix [WDA]Q,J is invertible. Based on the pilots numberK, we provide an appropriate

indexes choice here for GFDM.

3.4.1 Pilot-stones Indexes

The indexes in the set Q are chosen to determine which elements in frequency-domain

symbol vector xf = WDAd would be fixed. In Fig. 3.4 the elements in fixed [xf ]Q

are pilot-stones (green circle), and each of them is corresponding to a single OFDM sub-

channel. In OFDM, pilots are uniformly scattered in data block [14], that is [d]Q = dr.

In our proposed method, the estimation is similar to OFDM where the OFDM subchan-

nels corresponding to the fixed pilot-stones could be obtained in receiver without in-

terference, so we select Q = {0, D/p, 2D/p, ..., (p − 1)D/p}, where p is the num-

ber of pilot stones. When K pilots are used for channel estimation, we could choose

Q = {0,M,M, 3M, ..., (K − 1)M}, where p = |Q| = K.

3.4.2 Pilot-holes and Data-holes Indexes

The pilot-holes and data-holes indexes are indexed byJ and I. A GFDMmodulation ma-

trixA (2.1) has a block-circularly structure between subsymbols, which gives the property

that

[WDA]Q,{0,1,...,K−1} = [WDA]Q,{K,K+1,...,2K−1} = ...

[WDA]Q,{(M−1)K,(M−1)K+1,...,D−1},Q = {0,M, 2M, ..., (K − 1)M}.
(3.19)
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For Q = {0,M,M, 3M, ..., (K − 1)M}, the matrices [WDA]Q,{mK,mK+1,...,mK+K−1} in-

dexed by subsymbolsm = 0, 1...M−1 are exactly identical. We propose a indexes choice

for pilot-holes and data-holes, where

J = {m1K,m1K + 1, ...,m1K +K − 1},

I = {m2K,m2K + 1, ...,m2K +K − 1} ∪ {m3K,m3K + 1, ...,m3K +K − 1}∪

{m4K,m4K + 1, ...,m4K +K − 1} ∪ ...{mMK,mMK + 1, ...,mMK +K − 1},

m1,m2,m3,mM ... ∈ {0, 1, 2, ...,M − 1},m1 ̸= m2 ̸= m3 ̸= ...mM .

(3.20)

The indexes set J is used for pilot-holes, and I is the data-holes indexes set. The set J

allocates the subsymbol m1 for pilot-holes and I allocates m2,m3,...mM for data-holes.

By choosing m1 = 0, {m2,m3, ...mM} = {1, 2, ...M − 1} and substituting (3.20) into

(3.18) , the proposed S,T solution for GFDM can be derived

S = [ID]:,J ([WDA]Q,J )
−1

=

 ([WDA]Q,{0,1,...,K−1})
−1

OD−K,K

 ,

T = [ID]:,{K,K+1,...,D−1} − [ID]:,{0,1,2,...,K−1}([WDA]Q,{0,1,...,K−1})
−1[WDA]Q,{0,1,...,K−1} [IK ...IK ]︸ ︷︷ ︸

M−1

= [ID]:,{K,K+1,...,D−1} − [ID]:,{0,1,2,...,K−1} [IK ...IK ]︸ ︷︷ ︸
M−1

=

 −
M−1︷ ︸︸ ︷

[IK ...IK ]

ID−K

 ,Q = {0,M, 2M, ..., (K − 1)M}.

(3.21)

Notice that for given Q = {0,M, 2M, ..., (K − 1)M , the choices of J ,I have to make

([WDA]Q,J )
−1 exists, and different choices of J ,I do not affect the channel estimation

performance. Considering the additional computational complexity for pilot-insertion,

the precoder T in (3.21) does not need any multiplier and S corresponding to dr determine

the precoded pilot vector dp = Sdr, only need a one-time O(K3) computation which is

negligible.
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3.5 IFPI-GFDM Channel Estimation

The pilot-insertion precoder in (3.18) guarantees an idea channel estimation performance

without interference for a modulation matrix A, and A could be any D × D matrix.

Interference-free pilots insertion (IFPI-GFDM) [15] modify the original GFDM modu-

lation matrix A where specific pilot symbols in data block would not be interfered by

data symbols. IFPI-GFDM is based on the frequency-domain implementation [15]. In

this section, we explain the frequency-domain implementation of GFDM and express the

IFPI-GFDM with a modified modulation matrix AIFPI . We will also show our proposed

pilot-insertion precoder for IFPI-GFDM matrix AIFPI .

3.5.1 The Frequency-Domain Implementation for GFDM

When the data block d is permutated with a permutation matrix Pπ, denoted as dπ = Pπd,

the transmit symbol vector x could be equivalently expressed by dπ as

x = Ad = APT
πPπd = Aπdπ,

where Aπ = APπ
T is a column-permutated GFDM matrix with [Aπ]:,m+kM = [A]:,k+mK

and dπ = Pπd is a permutated data vector with [dπ]m+kM = [d]k+mK . The permutation

matrix Pπ could be defined as

Pπ = [C0[ID]:,0,M,2M,...,(K−1)M ,C1[ID]:,0,M,2M,...,(K−1)M , ...,CM−1[ID]:,0,M,2M,...,(K−1)M ],

where the submatrix Cm[ID]:,0,M,2M,...,(K−1)M contains a D × D m-points circular shift

matrix Cm =



[ID]⟨m⟩D,:

[ID]⟨m+1⟩D,:

...

[ID]⟨m+(D−1)⟩D,:


and a allocating matrix [ID]:,0,M,2M,...,(K−1)M . The
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permutated GFDM matrix Aπ could be equivalently expressed as [15]

Aπ = WH
DGR blkdiag(WM , ...,WM︸ ︷︷ ︸

K

), (3.22)

where

GR = [C0 diag(WDg)R, CM diag(WDg)R, ..., C(K−1)M diag(WDg)R]

and R is a repetition matrix [IM , ..., IM︸ ︷︷ ︸
K

]T . The implementation in (3.22) ending with an

IDFT is so-called frequency-domain implementation. TheWDg part in matrix GR is the

prototype vector in frequency domain.

3.5.2 The Modulation Matrix for IFPI-GFDM

The IFPI-GFDM matrix is modified from (3.22) to be

AIFPI = WH
DGR blkdiag(Γ, ...,Γ︸ ︷︷ ︸

K

), (3.23)

and in [15] SISO case Γ = Pπ
′ blkdiag(λ1, λ2WM−1) is an alternative to originalM -point

DFT matrixWM , where Pπ
′ permutates the pilots. As an example, we set Pπ

′ = IM and

use the Dirichlet protypefilter whose GR is identity matrix ID. We could get

AIFPI = WH
D blkdiag(Γ, ...,Γ︸ ︷︷ ︸

K

), (3.24)

where Γ = blkdiag(λ1, λ2WM−1) and the parameter λ1,λ2 are scaling factors that normal-

ize the carriers power. Obviously, theK column vectors in submatrix [AIFPI ]:,0,M,2M,3M,...(K−1)M =

[WH
D ]:,0,M,2M,3M,...(K−1)M are equal to the OFDM subcarriers which could guarantee at

mostK pilot symbols in data block d to be interference-free.
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3.5.3 The Proposed Pilot-insertion Precoder for IFPI-GFDM

We substitute A = AIFPIPπ into (3.18) and select Q = {0,M, 2M, ..., (K − 1)M},

J = {0, 1, 2, ..., K − 1)}, I = {K,K + 1, ..., (D − 1)} to derive the proposed precoder

for IFPI-GFDM. We could get

[WDA]Q,I = Op,d. (3.25)

and

[WDA]Q,J = λ1[GR]Q,Q = Ip. (3.26)

Proof. We first derive

[WDA]Q,I = [GR blkdiag(Γ, ...,Γ︸ ︷︷ ︸
K

)Pπ]Q,I

= [ID]Q,:GR blkdiag(Γ, ...,Γ︸ ︷︷ ︸
K

)Pπ[ID]:,I

= [GR]Q,:[blkdiag(Γ, ...,Γ︸ ︷︷ ︸
K

)Pπ]:,I

= [GR]Q,J [blkdiag(Γ, ...,Γ︸ ︷︷ ︸
K

)Pπ]J ,I + [GR]Q,I [blkdiag(Γ, ...,Γ︸ ︷︷ ︸
K

)Pπ]I,I ,

(3.27)

where [blkdiag(Γ, ...,Γ︸ ︷︷ ︸
K

)Pπ]J ,I = Op,d and [GR]Q,I = Op,d are zero matrices. We get

[WDA]Q,I = Op,d. (3.28)

Similarly, we could derive

[WDA]Q,J = [GR]Q,Q[blkdiag(Γ, ...,Γ︸ ︷︷ ︸
K

)Pπ]Q,J + [GR]Q,{D−Q}·

[blkdiag(Γ, ...,Γ︸ ︷︷ ︸
K

)Pπ]{D−Q},J ,D = {0, 1, 2, ...D − 1},
(3.29)
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where [blkdiag(Γ, ...,Γ︸ ︷︷ ︸
K

)Pπ]Q,J = λ1Ip and [GR]Q,{D−Q} = Op,d. We get

[WDA]Q,J = λ1[GR]Q,Q = Ip. (3.30)

The proposed precoder for IFPI-GFDM is derived as

S = [ID]:,J ,T = [ID]:,I , (3.31)

which is consistent with the conventional pilot-insertion, this showwhy IFPI-GFDMcould

claim itself interference-free only using a conventional pilot-insertion. The Fig. 3.5 indi-

Figure 3.5: Pilot-insertion for IFPI-GFDM

cates that for this kind of modulationmatrices like IFPI-GFDM,OFDM, etc, the precoding

matrix D for data symbols is trivial, and the additional transmit power for pilot-insertion

precoder could be saved dramatically. Notice that in SISO case IFPI-GFDM could only

guarantee K pilot symbols to be interference-free, and for this method the subcarriers

numberK could not be set too small.
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Chapter 4

Simulation Results

In this section, numerical results are presented to compare the performances of the con-

ventional methods [8–10] with the proposed method for GFDM and IFPI-GFDM, in terms

of mean square error (MSE) of LMMSE channel estimation and symbol error rate (SER).

Both the Dirichlet [16] and raised cosine (RC) [1] filters are employed as our prototype

filter. In addition, OFDM channel estimation is included in the experiments for a compre-

hensive comparison.

4.1 Parameter Settings

The modulation is QPSK, the symbol energy is Es = 1, the equalizer is the zero-forcing

equalizer, and the roll-off factor of the RC filter is α = 0.5. We consider two cases

(K,M) = (16, 8) and (8, 16) for GFDM. For a fair comparison, the same block size is

used for OFDM, i.e., (K,M) = (128, 1). The channel length is N = D/8 = 16, and the

pilot number is set to be p = 16. The pilot-stones indexes set is Q = {0, 8, 16, ..., 120}

and the pilot-holes indexes set is J = {0, 1, 2, ..., 15}. To evaluate the performances,

Monte Carlo simulation is adopted with randomly generated channel realizations and in-

dependent data sets for the realizations. We generate Nh = 100 spatially Rayleigh fading

channel realizations, whose channel PDP is exponential from 0 to -10 dB with N taps,

andNd = 100 independent data blocks for each channel realization. Moreover, the genie-

aided condition, where full CSI is known, is included and considered as the performance

24



doi:10.6342/NTU201902242

bound for the SER evaluation of all schemes.

4.1.1 Simulation Results

For the case (K,M) = (16, 8), the simulation results are shown in Fig. 4.1. With Dirich-

let prototype filter in Fig. 4.1(a), the MSE is calculated by averaging through the pairwise

Euclidean norms between a channel realization and its LMMSE estimated counterpart.

According to Fig. 4.1(a), the proposed method significantly outperforms the conventional

methods, especially under high SNR where the impact of interference is much larger than

that of noise, since the proposed method precancels the effect of interference during pilot

generation. The IFPI-GFDM could get the same performance as OFDM by interference-

free pilot-insertion, where our proposed precoder in this case also get the best performance.

When we interpret the SER performance presented in Fig. 4.1(b), it can be observed

that the proposed method outperforms the conventional methods under high SNR but per-

forms comparably to the conventional methods under low SNR since the additionally en-

ergy consumption of the pilot-insertion precoder which could relatively takes away the

transmit power for data symbols and degrades SER performance. The figures 4.1(c) and

4.1(d) show the performance for GFDM with RC prototype filter, the simulation results

demonstrate the similar trends with Dirichlet, but RC filter has been proved in [3] that the

modulation matrix is not unitary and cause the noise enhancement.

For the case (K,M) = (8, 16), the simulation results are shown in Fig. 4.2. Ac-

cording to Fig. 4.2(a) with Dirichlet filter, the proposed method significantly outperforms

the conventional methods, especially under high SNR where the impact of interference is

much larger than that of noise, since the proposed method precancels the effect of inter-

ference during pilot generation. However, the IFPI-GFDM with the conventional pilot-

insertion could not performs the best among all schemes anymore, because the existing

IFPI-GFDM in SISO case [11] could only provide one pilot symbol within per subsymbol

and at most K pilot symbols for whole transmit block to guarantee the interference-free

pilot-insertion and the channel length of N = 2K exceeds the limit. In the other hand,

our proposed precoder has no limit to precanceling the effect of interference during pilot
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Figure 4.1: Performance Comparison forK = 16,M = 8
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Figure 4.2: Performance Comparison forK = 8,M = 16

generation. When we interpret the SER performance presented in Fig. 4.2(b), it can

be observed that the proposed method outperforms the conventional methods under high

SNR and performs comparably to the conventional methods under low SNR. The IFPI-

GFDM with the conventional pilot-insertion could not performs well due to the channel

estimation performance degradation. Our proposed method could outforms the conven-

tional methods for both GFDM and IFPI GFDM, but OFDM still performs the best among

all schemes, with its performance gap between the curves of LMMSE channel estimation

and genie-aided scheme smaller than that of GFDM. The figures 4.2(c) and 4.2(d) show

the performance for GFDM with RC prototype filter, the simulation results demonstrate

the similar trends and RC filter cause the noise enhancement at low SNR.
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Chapter 5

Conclusion

In this thesis, a general pilot-insertion precoding technique for generalized frequency di-

vision multiplexing (GFDM), as well as any other block-based communication systems,

is formulated. The corresponding linear minimum mean square error (LMMSE) channel

estimator is also derived. A condition that guarantees cancellation of interference for pilot-

aided channel estimation commonly present in GFDM systems is defined. The condition

is called “pilot-stone condition”and requires the transmit samples at selected frequency

bins (i.e., pilot-stones) to be a fixed reference sequence. A procedure is proposed to find

a solution for the GFDM precoder to satisfy the pilot-stone condition, where the proposed

precoder with proper indexes choice could be low-complexity and there is no need for re-

ceiver to cancel the channel estimation interference. Simulation results demonstrate that

for original GFDM, our proposed method outperforms the conventional methods in chan-

nel MSE under high SNR where the impact of interference is much larger than that of

noise, and the proposed method precancels the effect of interference during pilot genera-

tion. The proposed pilot-insertion precoder could be viewed as a generalized version of

the so-called interference-free pilot-insertion (IFPI) GFDM [11]. In the future, it is de-

sirable to identify the class of GFDM precoders that simultaneously satisfy the properties

of interference-free channel estimation, low out-of-band emission, and low-complexity

implementation. As illustrated in Figure 5.1, a comprehensive waveform precoder based

on our findings are still yet to be researched.
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Figure 5.1: Future Work

29



doi:10.6342/NTU201902242

Bibliography

[1] N. Michailow, M. Matthé, I.S. Gaspar, A.N. Caldevilla, L.L. Mendes, A. Festag, and

G. Fettweis. Generalized frequency division multiplexing for 5th generation cellular

networks. IEEE Transactions on Communications, 62(9):3045–3061, Sept 2014.

[2] D. Zhang, L. L. Mendes, M. Matthé, I. S. Gaspar, N. Michailow, and G. P. Fettweis.

Expectation propagation for near-optimum detection of mimo-gfdm signals. IEEE

Transactions on Wireless Communications, 15(2):1045–1062, Feb 2016.

[3] P. C. Chen, B. Su, and Y. Huang. Matrix characterization for gfdm: Low complex-

ity mmse receivers and optimal filters. IEEE Transactions on Signal Processing,

65(18):4940–4955, Sept 2017.

[4] U. Vilaipornsawai and M. Jia. Scattered-pilot channel estimation for GFDM. In

2014 IEEE Wireless Commun. and Networking Conf. (WCNC), pages 1053–1058,

April 2014.

[5] M. Danneberg, N. Michailow, I. Gaspar, M. Matthé, Dan Zhang, L. L. Mendes, and

G. Fettweis. Implementation of a 2 by 2 MIMO-GFDM transceiver for robust 5G

networks. In 2015 Int. Symposium on Wireless Communication Systems (ISWCS),

pages 236–240, Aug 2015.

[6] J. Zhang, Y. Li, and K. Niu. Iterative channel estimation algorithm based on com-

pressive sensing for GFDM. In 2016 IEEE International Conference on Network

Infrastructure and Digital Content (IC-NIDC), pages 244–248, Sept 2016.

30



doi:10.6342/NTU201902242

[7] Shahab Ehsanfar, Maximilian Matthé, Marwa Chafii, and Gerhard Fettweis. Pilot-

and cp-aided channel estimation in mimo non-orthogonal multi-carriers. IEEE

Transactions on Wireless Communications, PP:1–1, 12 2018.

[8] S. Ehsanfar, M. Matthé, D. Zhang, and G. Fettweis. A Study of Pilot-Aided Channel

Estimation in MIMO-GFDM Systems. In WSA 2016; 20th Int. ITG Workshop on

Smart Antennas, pages 1–8, March 2016.

[9] S. Ehsanfar, M. Matthe, D. Zhang, and G. Fettweis. Theoretical Analysis and CRLB

Evaluation for Pilot-Aided Channel Estimation in GFDM. In 2016 IEEE Global

Communications Conference (GLOBECOM), pages 1–7, Dec 2016.

[10] Y. Akai, Y. Enjoji, Y. Sanada, R. Kimura, H. Matsuda, N. Kusashima, and R. Sawai.

Channel estimation with scattered pilots in GFDM with multiple subcarrier band-

widths. In 2017 IEEE 28th Annual International Symposium on Personal, Indoor,

and Mobile Radio Communications (PIMRC), pages 1–5, Oct 2017.

[11] S. Ehsanfar, M.Matthe, D. Zhang, andG. Fettweis. Interference-Free Pilots Insertion

forMIMO-GFDMChannel Estimation. In 2017 IEEEWireless Communications and

Networking Conference (WCNC), pages 1–6, March 2017.

[12] Marc Moonen. Block transmission techniques for wireless communications block

transmission techniques for wireless communications. 2004.

[13] A. Hjorungnes and D. Gesbert. Complex-valued matrix differentiation: Techniques

and key results. IEEE Transactions on Signal Processing, 55(6):2740–2746, June

2007.

[14] Yuan-Pei Lin, See-May Phoong, and P. P. Vaidyanathan. Filter Bank Transceivers

for OFDM and DMT Systems. Cambridge University Press, New York, NY, USA,

2010.

[15] S. Ehsanfar, M. Matthe, D. Zhang, and G. Fettweis. Interference-free pilots insertion

for mimo-gfdm channel estimation. In 2017 IEEE Wireless Communications and

Networking Conference (WCNC), pages 1–6, March 2017.

31



doi:10.6342/NTU201902242

[16] M. Matthé, N. Michailow, I. Gaspar, and G. Fettweis. Influence of pulse shaping

on bit error rate performance and out of band radiation of Generalized Frequency

Division Multiplexing. In Proc. IEEE ICC Workshop, pages 43–48, 2014.

32



doi:10.6342/NTU201902242

Appendix A

Power Spectral Density

By passing x[n] through a D/A converter with a sampling interval Ts and an interpolation

filter p(t), the analog baseband transmit signal xa(t) is obtained, i.e.,

xa(t) =
∞∑

n=−∞

x[n]p(t− nTs).

In modern digital-signal-processing-based communication systems [14], we consider that

if x[n] is a CWSS process, the power spectral density(PSD) of xa(t) can be obtained as

Sa(f) =
1

Ts

Sx(e
j2πfTs)|P (f)|2, (A.1)

where Sx(e
j(ω=2πfTs)) is the average PSD of a CWSS process x[n] and P (f) is the Fourier

transform of an interpolation filter.

A.1 For Original GFDM

Theorem 2. Given a D × D GFDM modulation matrix A, the power spectral density

could be expressed as

Sa(f) =
Es|P (f)|2

DTs

∑
k∈K

∑
m∈M

|Gm(e
j(ω−2πk/K))|2, (A.2)
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where

gm[n] =

 [g]⟨n−mK⟩D , n = 0, 1, ..., D − 1

0, otherwise
, (A.3)

and Gm(e
jω) = DTFTn (gm[n]).

A expression with the GFDM matrix in frequency domain P = WDA is

Sa(f) =
Es|P (f)2|

DTs

K−1∑
k=0

M−1∑
m=0

|Pm,k(e
j2πfTs)|2, (A.4)

where

Pm,k(e
jω) =

D−1∑
l=0

[P]l,m+kMS(ω − 2πl

D
), (A.5)

S(ω) = sincD(ω)e
−jωD−1

2 , and sincD(x) is the periodic sinc function.

Proof of Theorem 2.

For the equation (2.3) and the CP length L = 0, we could obtain the transmit signal in

GFDM

x[n] =
∞∑

l=−∞

∑
k∈K

∑
m∈M

[dl]m+kMgm[n− lD]ej2πk(n−lD)/K , (A.6)

where

gm[n] =

 [g]⟨n−mK⟩D , n = 0, 1, ..., D − 1

0, otherwise
. (A.7)

The average autocorrelation function1 of x[n] can be expressed as

Rx[i] =
1

D

D−1∑
n=0

E{x[n]x∗[n− i]}, (A.8)

Substituting (A.6) into (A.8), we can obtain

Rx[i] =
1

D

D−1∑
n=0

E

{
∞∑

l=−∞

∞∑
l′=−∞

∑
k∈K

∑
k′∈K

∑
m∈M

∑
m′∈M

[dl]m+kM [dl′ ]∗m′+k′M

·gm[n− lD]g∗m′ [n− i− l′D]ej2πk(n−lD)/Ke−j2πk′(n−i−l′D)/K

}
. (A.9)

1as defined in [14], P.331,
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Now, because

E{[dl]m+kM [dl′ ]∗m′+k′M} =

 Es, l = l′, k = k′,m = m′

0, otherwise
, (A.10)

we could get

Rx[i] =
Es

D

D−1∑
n=0

∞∑
l=−∞

∑
k∈K

∑
m∈M

(A.11)

E{gm[n− lD]g∗m[n− i− lD]ej2πk(n−lD)/Ke−j2πk(n−i−lD)/K}. (A.12)

=
Es

D

D−1∑
n=0

∞∑
l=−∞

∑
k∈K

∑
m∈M

gm[n− lD]g∗m[n− i− lD]ej2πki/K . (A.13)

From (A.6), where gm[n− lD] = 0 if n− lD /∈ {0, 1, ..., D − 1}, that is,

gm[n− lD] = 0, l /∈ {1, ..., D − 1},

we can derive that

Rx[i] =
Es

D

D−1∑
n=0

∑
k∈K

∑
m∈M

gm[n]g
∗
m[n− i]ej2πki/K . (A.14)

By [14], we define the average power spectrum of a CWSS process as the Discrete-

time Fourier transform(DTFT) of the average auto-correlation function

Sx(e
jω) =

∞∑
k=−∞

Rx[k]e
−jωk. (A.15)

For simplicity, we denote the DTFT operation as in

G(ejω) = DTFTn (g[n])
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and (A.15) can be written as Sx(e
jω) = DTFTn (Rx[k])

=
Es

D

D−1∑
n=0

∑
k∈K

∑
m∈M

gm[n]DTFTi (g
∗
m[n− i]ej2πki/K). (A.16)

Using the time reversal, time conjugation, time shifting, and frequency shifting properties

of DTFT2, we could get

DTFTi ((g
∗
m[n− i]ej2πki/K)) = G∗

m(e
j(ω−2πk/K))e−j(ω−2πk/K)n, (A.17)

and obtain

Sx(e
jω) =

Es

D

∑
k∈K

∑
m∈M

(
D−1∑
n=0

gm[n]e
−j(ω−2πk/K)n)G∗

m(e
j(ω−2πk/K)),

=
Es

D

∑
k∈K

∑
m∈M

Gm(e
j(ω−2πk/K))G∗

m(e
j(ω−2πk/K)),

=
Es

D

∑
k∈K

∑
m∈M

|Gm(e
j(ω−2πk/K))|2. (A.18)

By substituting (A.18) into (A.1), we finally get the power spectrum of xa(t),

Sa(f) =
Es|P (f)|2

DTs

∑
k∈K

∑
m∈M

|Gm(e
j(ω−2πk/K))|2. (A.19)

A.2 For General GFDM Precoder “A”

Theorem 3. Given anyD′×D modulation matrix A, and I denotes the carriers selected

in A, the power spectral density could be expressed as

Sa(f) =
Es|P (f)|2

D′Ts

∥(vD′(ej2πfTs)H [A′]:,I)
T∥2. (A.20)

2as defined in Wikipedia, https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
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Notice that for original GFDM, the equation below can be derived from (2.4) that

as[n] = gm[n]e
j2πkn/K , s = m+ kM

and we could get the equation by DTFT

DTFTn (as[n]) = As(e
jω) = Gm(e

j(ω−2πk/K)), s = m+ kM. (A.21)

Substituting (A.21) into (A.20), we get the power spectrum of xa(t),

Sa(f) =
Es|P (f)|2

DTs

∑
k∈K

∑
m∈M

|Gm(e
j(ω−2πk/K))|2. (A.22)

This coincides with the equation (A.2).

Proof of Theorem 3. For a general modulationmatrixA, the lth transmit block x′l is passed

through a parallel-to-serial (P/S) conversion, and the digital baseband transmit signal can

be expressed as

x[n] = [x′l]r = [A′dl]r,

n ∈ Z, l = ⌊ n

D′ ⌋ ∈ Z, r = ⟨n⟩D′ ∈ {0, 1, ...D′ − 1}.

Notice that [x′l]r is the rth element of the lth transmitted block x′l, and n = lD′ + r.

A random process x[n] is said to be cyclo wide sense stationary with the periodM , if

it satisfies the following two conditions:

(1)E{x[n+M ]} = E{x[n]},

(2)E{x[n]x∗[n− k]} = E{x[n+M ]x∗[n+M − k]}.

(1)Let

E{x[n]} = E{[A′dl]r} = E{[A′(ddl + dpl)]r},
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where dpl = dp is constant in each block, so we get

E{x[n]} = [A′ E{ddl}+ A′dp]r = [A′dp]r.

And we could get

E{x[n+D′]} = E{[A′dl+1]r} = E{[A′(dd(l+1)+dp(l+1))]r} = [A′ E{dd(l+1)}+A′dp]r = [A′dp]r,

so (1) is satisfied.

(2)Let

E{x[n]x∗[n− k]} = E{[A′dl]r[A′dl′ ]r′
∗}

= E{[A′]r,:dl([A′]r′,:dl′)H}

= [A′]r,: E{dldHl′ }([A′]r′,:)
H

and

E{x[n+M ]x∗[n+M − k]} = [A′]r,: E{dl+1dHl′+1}([A′]r′,:)
H ,

if l = l′, then E{dldHl′ } = E{dl+1dHl′+1};

if l ̸= l′, then E{dldHl′ } = E{dl+1dHl′+1} = OD,D.

So we could find that

E{x[n+M ]x∗[n+M − k]} = [A′]r,: E{dl+1dHl′+1}([A′]r′,:)
H

= [A′]r,: E{dldHl′ }([A′]r′,:)
H = E{x[n]x∗[n− k]}.

(2) is satisfied.

The data signal xd[n] can be expressed as

xd[n] = [x′dl]r = [A′ddl]r,

n ∈ Z, l = ⌊ n

D′ ⌋ ∈ Z, r = ⟨n⟩D′ ∈ {0, 1, ...D′ − 1},
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where A′ could be any transmit matrix, and we pick up the indexes I ⊂ {0, 1, ..., D − 1}

for i.i.d, zero-mean data symbols with symbol energyEs, that is, E{[ddl]I [ddl]HI } = EsI|I|,

E{[ddl]I} = 0|I|, and let other elements in ddl to be 0, which means [ddl]{0,1,...D′−1}−I =

0D′−|I|. Notice that [x′dl]r is the rth element of the lth transmitted block x′dl, and n =

lD′ + r. The average autocorrelation function Rxd[i] of xd[n], can be expressed as

Rxd[i] =
1

D′

D′−1∑
n=0

E{xd[n]x
∗
d[n− i]}

=
1

D′

D′−1∑
n=0

E{[A′ddl]p[A′ddl′ ]∗p′},

where l′ = ⌊n−i
D′ ⌋, p′ = ⟨n− i⟩D′ , and n− i = l′D′ + p′, and

Rxd[i] =
1

D′

D′−1∑
n=0

E{[A′]p,:ddl′([A′]p′,:ddl′)H}.

It can be derived that [A′]p,:ddl′ =
∑D−1

s=0 [A′]p,s[ddl′ ]s =
∑

s∈I [A′]p,s[ddl′ ]s = [A′]p,I [ddl′ ]I ,

then

=
1

D′

D′−1∑
n=0

E{[A′]p,I [ddl′ ]I([A′]p′,I [ddl′ ]I)H}

=
1

D′

D′−1∑
n=0

E{[A′]p′,I [ddl]I [ddl′ ]IH [A′]p′,I
H}

=
1

D′

D′−1∑
n=0

[A′]p,I E{[ddl]I [ddl′ ]IH}[A′]p′,I
H

=
1

D′

D′−1∑
n=0

[A′]p,I E{[ddl]I [ddl′ ]IH}[A′]p′,I
H
,

and the autocorrelation matrix

E{[ddl]I [ddl′ ]IH} =

 EsI|I|, l = l′

0, otherwise
.

When the conditions l = l′ and n = 0, 1, 2...D′ − 1 are satisfied, that is l = ⌊ n
D′ ⌋ =
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⌊n−i
D′ ⌋ = l′, that implies n− i = 0, 1, 2...D′−1, i = −(D′−1)...0, 1, 2...D′−1, we could

get p = ⟨n⟩D′ = n, and p′ = ⟨n− i⟩D′ = n− i. We obtain

Rxd[i] =
Es

D′

D′−1∑
n=0

[A′]p,I [A′]p′,I
H
=

Es

D′

D′−1∑
n=0

[A′]n,I [A′]n−i,I
H

=
Es

D′

D′−1∑
n=0

∑
s∈I

[A′]n,s[A′H ]s,n−i =
Es

D′

D′−1∑
n=0

∑
s∈I

[A′]n,s[A′]∗n−i,s.

We define

as[m] =

 [A′]m,s, m = 0, 1, ..., D′ − 1

0, otherwise,
(A.23)

, and denote the DTFT operation as in

As(e
jω) = DTFTm (as[m]) =

D′−1∑
m=0

[A′]m,se
−jωm.

We write the autocorrelation function as

Rx[i] =
Es

D′

D′−1∑
n=0

∑
s∈I

[A′]n,s[A′]∗n−i,s =
Es

D′

D′−1∑
n=0

∑
s∈I

[A′]n,sas[n− i]∗ (A.24)

and get the PSD by using the DTFT with time reversal, time conjugation, time shifting,

and frequency shifting properties,

Sx(e
jω) = DTFTi (Rx[i]) =

Es

D′

D′−1∑
n=0

∑
s∈I

[A′]n,sDTFTi (as[n− i]∗)

=
Es

D′

D′−1∑
n=0

∑
s∈I

[A′]n,sAs(e
jω)

∗
e−jωn

=
Es

D′

∑
s∈I

As(e
jω)

∗
D′−1∑
n=0

[A′]n,se
−jωn

=
Es

D′

∑
s∈I

As(e
jω)

∗
As(e

jω)
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=
Es

D′

∑
s∈I

|As(e
jω)|2 = Es

D′

∑
s∈I

|
D′−1∑
m=0

[A′]m,se
−jωm|2 = Es

D′ ∥(vD′(ejω)H [A′]:,I)
T∥2.

(A.25)

Substituting (A.25) into (A.1), we finally get the power spectrum of xa(t)

Sa(f) =
Es|P (f)|2

D′Ts

∑
s∈I

|As(e
j2πfTs)|2 = Es|P (f)|2

D′Ts

∥(vD′(ej2πfTs)H [A′]:,I)
T∥2.

(A.26)
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