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摘要 

遺傳結構與其對應的效應值向來是演化生物學的研究核心。冰河時期和亞洲大陸

間斷相連的台灣恰為絕佳地點進行該類研究，因其不僅具有大陸族群的既有變異，

更有因應新環境被保留的新生突變。此研究著眼於野生種香蕉──台灣芭蕉，並

利用生態基因體學的方法檢視其過去至未來的適應進程。遺傳組成與環境因子的

顯著相關顯示台灣芭蕉存在在地適應現象，且新生突變與既有變異此二者遺傳結

構貢獻不一。數量上，既有變異普遍較新生突變為多；而對於雨量相關的氣候因

子，效應值則以新生突變為大，且當該因子相對於中國大陸地區為一嶄新的氣候

時，此現象尤為明顯。我們亦著眼於台灣芭蕉未來的適應現象，雖未發現氣候變

遷傾向保留任一遺傳結構，但透過物種分布模型與效應值的結合，揭露了適存族

群潛在的滅絕風險。此研究不僅演示了遺傳結構──既有變異與新生突變──的

適應軌跡，且透過不同模型的整合，指出台灣西南部為台灣芭蕉的易危區域。 

關鍵字： 

效應值、在地適應、既有變異、新生突變、滅絕風險 
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Abstract 

Genetic architecture of adaptation has been the central focus to evolutionary biology, and 

effect sizes thereof have been investigated from theory to empirical studies. Taiwan is a 

perfect place to explore such synthesis of the genetic basis and effect size where standing 

variations (SV) and new mutations (NM) were established through the recurring 

connection to East Asian continent at glacial periods. Here, we center on a wild banana 

Musa itinerans that distributes along altitudinal and latitudinal gradients in Taiwan, and 

assess the adaptive course from the past to the future. Significant genetics-environment 

association indicates local adaptation where the assortment of SV and NM contributes 

differently. While SV are dominant in number, NM exert larger effect size in 

precipitation-related climates, especially for those novel to mainland China. Under 

anthropogenic climate change, both SV and NM have no inclination to retain in the future. 

Incorporation of effect size into species distribution modeling unveils the indiscernible 

extinction risk of apparently fitting populations. Our results demonstrate the trajectories 

of adaptive SV and NM, and identify southwestern Taiwan as the most vulnerable region 

with the integration of universal and locally differential responses of M. itinerans. 

Keyword: 

effect size, local adaptation, standing variation, new mutation, extinction risk 
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Introduction 

  There have long been interests in understanding the genetic architecture in 

adaptation. A population may adapt through advantageous alleles that are new mutations 

(NM) subsequently sweeping through the population (1, 2). On the other hand, the 

adaptive course can be modulated by standing variations (SV) in quick response to an 

environmental change (3). The major driver of adaptation has long been emphasized on 

the significance of NM in theory (4) and empirical studies (5); however, recent genomic 

researches provide evidence for the role of SV in adaptation (6, 7). Both of NM and SV 

can propel adaptation with major strong effects. NM can spread rapidly to fixation and 

purge variation at linked sites, resulting in hard sweeps (8). SV, on the other hand, result 

in soft sweeps which have weaker effects on linked sites and may therefore be more 

difficult to detect (9, 10). 

  Nevertheless, not all genetic variants underlying adaptation have dramatic effects to 

be detectable as Mendelian genes. Adaptation can take place at many loci simultaneously, 

and the response to selection is generated just by modest allele frequency shifts (11, 12). 

Over past decades, discovery of one large-effect quantitative trait locus after another has 

refuted the infinitesimal theory (13, 14), leading to a consensus that views alleles having 

detectably large effects as the norm (15). However, such observations could not explain 
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that many adaptive traits are highly quantitative rather than Mendelian, and field 

ecologists have been using the polygenic framework to study real-world adaptation with 

great success. Indeed, the overwhelming focuses on Mendelian genes can just be an 

exception that researchers successfully sample the outlier in the tail of effect-size 

distribution where a whole constellation of infinitesimals may govern the evolution with 

effects beneath detection limit (16-18).  

  Ever since Fisher, population geneticists are constantly debating the effect size of 

NM for adaptation to novel environments. In Fisher’s geometric model (19), the organism 

is considered a set of phenotypic characters, each having an optimal value in the present 

environment as a point in the high-dimensional space. After an environmental change 

resulting in a new adaptive landscape, adaptation, the return to the new optimum, has 

been predicted by Fisher to mostly have beneficial mutations of small effect. Motoo 

Kimura (20) later pointed out that small-effect mutations are effectively neutral and could 

be lost by genetic drift, and mutations of intermediate effect size are the most likely to 

contribute to adaptation. Orr (21) then derived the distribution of effect sizes for an entire 

bout of adaptation. The effect-size distribution is proposed to have few large-effect and 

many small-effect mutations, and the large-effect substitutions typically happened earlier 

when a population encountered novel adaptive optimum, resulting in a pattern of 
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diminishing returns. This relationship is supported by empirical evidences: Microbial 

experimental evolution has corroborated (22-24) that adaptation involves larger-effect 

mutations when populations are farther from the optimum. However, studies on natural 

populations (25) are scarce. In this study, we provide an example from natural populations.  

  Taiwan is a perfect place to test the relative importance of SV and NM on 

environmental adaptation: Unlike oceanic islands such as Hawaii, Taiwan is a continental 

island where most species originated from the East Asian continent (26). The land bridge 

between Taiwan and China during the glacial maximum (27, 28) allows exchange of SV, 

and the isolation during interglacial periods enables the development of NM. One could 

therefore ascertain the origin of a genetic variant SV or NM by comparing the Chinese 

and Taiwanese populations. Moreover, the land bridge continually connected different 

types of environments where some are homogeneous across mainland China and Taiwan 

while some are not. How genetic variants (SV vs. NM) respond to such heterogeneity and 

homogeneity can further be explored. 

  Here we aim to investigate the integrative effects of the number and effect size of 

SV and NM as well as their responses to different types of environments. We focus on a 

wild banana, Musa itinerans, whose habitats in Taiwan are considered peripheries from 

ancestral area reconstructions (29), providing a good opportunity to distinguish SV from 
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NM as well as their effect on existing or novel adaptive landscapes. We show how past 

events (SV vs. NM) influence present adaptation and how they correspond to the past and 

present environmental range. We further assess that if present adaptation will remain 

under anthropogenic climate change. Combining genetics and species distribution 

modeling, we lastly infer the fate of M. itinerans by introducing a novel idea called 

“extinction risk”. 
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Materials and Methods 

Sample Collection and DNA Extraction 

  Field work was conducted during 2017 (August - December) and 2018 (January - 

May). We sampled Musa itinerans at 24 sites across Taiwan (Figure 1a and Table 1). 

Fresh leaves were harvested from nine to fifteen individuals at each site. Total genomic 

DNA was extracted using the standard CTAB extraction method (30). Since other 

commercial Musa species were also grown in Taiwan, we developed an indel marker for 

species delimitation. From previous studies (31-34), we identified a 6-bp insertion 

specific for the Taiwanese M. itinerans in the atpB-rbcL region of chloroplast. We 

designed a primer pair (5’-GAAGGGGTAGGATTGATTCTCA-3’; 5’-

CGACTTGGCATGGCACTATT-3’) and used amplicon size to confirm all collected 

samples are Taiwanese M. itinerans. 

 

Simple Sequence Repeat Genotyping 

SSR primer sequences used in this study were originally developed for the genus 

Musa (35, 36), which were then applied on Musa itinerans (37). Previously documented 

primer sequences were first searched against the Musa acuminata DH-Pahang genome 

version 2 (38) on Banana Genome Hub (https://banana-genome-hub.southgreen.fr/) to 
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check specificity as having only one amplicon, resulting in 26 primer pairs. These primers 

were then experimented to check specificity on M. itinerans, resulting in 14 pairs (Table 

2). We modified each pair of primers by capping the 5’ end of forward primers with M13 

sequences (CACGACGTTGTAAAACGAC) and inflorescent molecules (39). SSR 

amplicons were run through capillary electrophoresis and the length of each allele was 

recorded. 

 

Library Construction and SNP Identification 

  We conducted whole genome pooled-sequencing (40) on our site-wise samples 

(Table 1), resulting in 24 pooled-sequencing libraries. Equal amount of DNA from ten 

individuals at each site were pooled, except for the PTWT population where only nine 

individuals were available. A library with 300 - 400 bp insert size for each pooled sample 

was prepared using NEBNext Ultra II DNA Library Prep Kit (New England Biolabs). 

Libraries were then sequenced with 150 bp paired-end on the HiSeq X Ten platform. 

  Illumina reads were then trimmed with SolexaQA (41), followed by the removal of 

adaptor sequences with cutadapt (42), subsequently mapped to the Musa itinerans 

reference genome assembly ASM164941v1 (43) with BWA 0.7.15 (44). Picard Tools 
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(http://broadinstitute.github.io/picard) was used to mark duplicated read pairs, and the 

genotypes were called following GATK 3.7 best practice (45). 

  For the 24 pooled samples, we filtered out sites with (1) more than two alleles, (2) 

indels, (3) quality (QUAL) < 30, (4) quality by depth (QD) < 2, (5) call rate < 0.74, and 

(6) depth (DP) > genome-wide average depth plus three standard deviations, resulting in 

4,200,177 SNPs. SNPs with (1) minor allele frequency (MAF) < 0.05, (2) missing data 

in any of the pooled-seq sample, and (3) DP per sample < 20 were further filtered out, 

resulting in 1,256,894 SNPs. 

  To investigate the relationship between Taiwanese and Chinese M. itinerans, we 

downloaded public data from 24 Chinese accessions (SRR6382516 - SRR6382539) (46). 

SNPs were called using all 24 Chinese accessions and the 24 Taiwanese pooled samples 

together following the pipeline described above. We did not perform any site filtering 

since the main objective for this combined dataset is to investigate whether specific SNPs 

in Taiwan also existed in China as SV. This dataset has 18,442,853 SNPs. SRR6382532 

was excluded due to high missing rate. Only when evaluating the averaged expected 

heterozygosity between Taiwanese and Chinese populations did we filter out sites with 

(1) indels and (2) QUAL < 30, resulting in 15,591,923 SNPs. 
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  To assess the phylogeny of our Taiwanese populations and Chinese accessions, we 

downloaded Musa acuminata sequence (SRR7013754) as an outgroup. SNPs were called 

using one M. acuminata species, 24 Chinese accessions, and the 24 Taiwanese pooled 

samples together following the pipeline described above. We filtered out sites with (1) 

more than two alleles, (2) indels, (3) QUAL < 30, and (4) call rate < 0.9, resulting in 

12,693,687 SNPs. This dataset also excluded SRR6382532. 

 

Data Analysis 

Population Structure  Population structure of  20 populations (Table 1) was analyzed 

with 14 SSR markers (Table 2). Lowland populations (C35H, WFL, THNL, PTWT, 

P199H, MLLYT, HDPG, TTL, NAJY, HLCN, NXIR, and DFR), east transect populations 

(TPS300, TPS500, TPS700, and TPS900), and west transect populations (XT400, XT700, 

XT1200, and XT1500) were used in the analysis. We inferred the ancestry of 244 

individuals with STRUCTURE 2.3.4 (47, 48), parameterizing a run to have (1) run length 

of burnin and after-burnin period of 100,000, (2) admixture ancestry model, and (3) 

independent allele frequency model, further setting 20 runs for each K value. 
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Species Distribution Modeling  Current and future species distribution models were 

built for Musa itinerans using presence-only data (483 occurrence points) obtained from 

Google Street view (Table 3). Occurrence points were then reduced to 204 cells by the 

removal of co-occurring presence data within the same 1 × 1 km grid. MaxEnt 3.4.1 (49, 

50), implemented with the maximum entropy modeling approach, reports an overall niche 

suitability and the importance of predictors by analyzing the presence-only data as well 

as background (psuedo-absence) data distribution. We downloaded from WorldClim 

database version 1.4 (http://worldclim.org/) spatial layers of 19 present-day bioclimatic 

variables based on high-resolution monthly temperature and rainfall data (51). Layers 

were selected at spatial resolution of 30 arc-second and with a mask that ranges 119.25 - 

122.47 ⁰E and 21.76 - 25.49 ⁰N covering Taiwan. Variables showing high dependence 

(Pearson’s correlation coefficient > 0.89 calculated from ENMTools (52)) from each 

other were removed, resulting in nine final variables: BIO1－mean annual temperature, 

BIO2－mean diurnal range, BIO3－isothermality, BIO7－temperature annual range, 

BIO12－annual precipitation, BIO15－precipitation seasonality, BIO16－precipitation 

of wettest quarter, BIO17－precipitation of driest quarter, and BIO19－precipitation of 

coldest quarter (Table 4). 
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  Present species distribution model was constructed using the default optimization 

settings in MaxEnt, except the regularization set to three. We tested the predictive model 

by ten-fold cross-validation which was carried out by randomly partitioning the data into 

ten equally sized subsets and then replicating models while omitting one subset in turn. 

In each turn, the predictive model was built using nine subsets as training data and 

evaluated using the other subset as test data. The output of the predictive model is the 

probability of presence, or called suitability, and we averaged the ten runs to have an 

averaged suitability. 

  To predict the species distribution under different scenarios of future climate change, 

we projected the present-day model onto eight future climatic conditions combining two 

periods (2050 and 2070) and four Representative Concentration Pathways (RCP 2.6, RCP 

4.5, RCP 6.0, and RCP 8.5). Future climatic layers were obtained from the WorldClim 

database at spatial resolution of 30 arc-second and were developed based on two general 

circulation models: the Community Climate System Model (53), CCSM, and the Model 

for Interdisciplinary Research on Climate (54), MIROC. Species distribution models for 

the future were carried out using the same settings described above. 

  To estimate the least cost path between populations, we first generated the resistance 

surface by taking the reciprocal of suitability. Resistance and suitability is simply a 
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monotonic transformation in which locations with higher suitability exhibit lower 

resistance. Pairwise least cost path was then measured among 20 populations from the 

resistance surface, performed by SDM Toolbox v2.3 (55). While least cost path is the 

single line with least overall cost, we also constructed the least cost corridor between 

populations, allowing 1%, 2%, or 5% higher cost than the least cost value. In essence, the 

least cost corridors represent the realized dispersal routes of organisms along suitable 

habitats. 

 

Isolation Pattern and Adaptive SNP Identification  To investigate the association 

among genetic, geographical, and environmental distance, we generated these distance 

matrices. Genetic distance was calculated by GenAlEx 6.503 (56, 57) from 14 SSR 

markers; straight geographical distance (the fly-over distance) was generated by ArcGIS 

10.5 (http://desktop.arcgis.com/en/); environmental distance was measured as 

Mahalanobis distance to address the correlation among bioclimatic variables. In addition 

to the fly-over geographical distance which assumes organism dispersal ignores 

landscapes, we further calculated as resistance distance the cumulative cost along the least 

cost path. Matrix association was examined under Mantel and Partial Mantel tests. 

Statistical significance was examined with 1,000 permutations. We performed Mantel 
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tests on (1) genetic distance vs. fly-over distance, (2) genetic distance vs. resistance 

distance, (3) genetic distance vs. Mahalanobis environmental distance, and Partial Mantel 

tests on (4) genetic distance vs. Mahalanobis environmental distance while controlling for 

resistance distance. 

  We used Bayenv 2.0 (58, 59) to search for SNPs highly associated with 

environmental variables. Bayenv estimates the relationship between SNPs and 

environments while controlling the whole-genome population structure from a subset of 

loose linkage-disequilibrium SNPs. Loose linkage-disequilibrium SNPs were formed by 

sampling (1) one SNP from scaffolds more than 10 kb and less than 100 kb, (2) two SNPs 

from scaffolds more than 100 kb and less than 500 kb, (3) three SNPs from scaffolds 

more than 500 kb and less than 1000 kb, and (4) four SNPs from scaffolds more than 

1000 kb. We then, for each bioclimatic variable, defined as the adaptive SNPs ones 

exhibiting top 1 % Bayes factor and top 5 % rho value (a nonparametric correlation 

coefficient capable to reduce outlier effects). 

 

Adaptive SNP Retention and Disruption under Climate Change   We further 

investigated the fate of currently adaptive SNPs under anthropogenic climate change, 

performing the same Bayenv analyses of currently adaptive SNPs using future climatic 
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conditions. We included two time periods (2050 and 2070) and four Representative 

Concentration Pathways (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) from two general 

circulation models, CCSM (53) and MIROC (54), forming 16 future climatic conditions. 

If a currently adaptive SNP remains strongly associated with environments, it should 

exhibit Bayes factor above the current adaptive threshold. We then defined as “retention” 

a currently adaptive SNP constantly exhibiting Bayes factor above the current adaptive 

threshold in all future scenarios, and defined as “disruption” a currently adaptive SNP 

exhibiting Bayes factor above the current adaptive threshold in none of the future 

scenarios.  

 

Genetic Offset  We used a novel method, Gradient Forest (60, 61), to estimate the 

effect of environmental gradients on allele frequency differences among populations. 

Gradient Forest is a regression-tree based machine-learning algorithm using 

environmental variables to partition SNP allele frequencies. The analysis was done 

separately for each SNP. The “importance” measures how much of the variation in allele 

frequency was explained by partitioning the populations based on a specific value in an 

environmental variable. By making multiple regression trees (thus generating a random 

forest) for a SNP, the goodness-of-fit r2 of a random forest is measured as the proportion 

of variance explained by this random forest, which is then partitioned among 
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environmental variables in proportion to their conditional importance. Such SNP-wise 

importance of each environmental variable is then averaged across SNPs, resulting in the 

overall importance (of each environmental variable). SNP-wise importance along the 

environmental gradient can also be averaged across SNPs and summed cumulatively, 

resulting in the cumulative importance. After obtaining the relationship between 

environmental gradient and cumulative importance, one can then measure how much of 

the importance would change following the environmental change between current and 

future climates. Based on the cumulative importance results from each bioclimatic 

variable, the “genetic offset” (61) could then be calculated as the Euclidean distance 

between contemporary importance corresponding to the contemporary environmental 

value and future importance corresponding to the future environmental value, considering 

all bioclimatic variables together. Genetic offset can then be considered to be the 

magnitude of genetic change needed for a population to be still adaptive in the face of 

climate change.  

 

Regression Slope  The regression slope is not given by Gradient Forest, since it only 

reports the r2 importance estimate. Thus, we introduced the simple linear regression 

y=α+βx  to measure the regression slope. We took y as the allele frequency, x as the 
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standardized bioclimatic variable, and β (slope) as the measurement of the amount of 

allele frequency changes along environmental gradients. By fitting simple linear 

regression with the general least-square approach, β can then be expanded to rxy

sy

sx
: rxy is 

the correlation coefficient between x and y, and sx and sy are the standard deviation of x 

and y. 
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Results 

Population Structure and Evidences of Local Adaptation  By using STRUCTURE 

(47, 48), we observed genetic differentiation mostly between eastern and western Taiwan 

under K = 2 (Figure 1), which is supported by the previous study that had shown the east 

populations being the most isolated (37). Populations in northwestern Taiwan showed 

admixture, implying this region could be a hybrid zone of east and west populations. 

However, population MLLYT stood out as having the most incongruent ancestry. The 

high and uniform east ancestry of MLLYT resulted from the monomorphic SSR loci 

exhibiting most east-specific alleles. Population MLLYT might have first been dispersed 

by seed vectors, such as squirrels, monkeys, and birds, followed by the massive clonal 

growth during the early succession (37, 62). 

  The niche reported (Figure 2a) was in line with the previous statement that Musa 

itinerans inhabits sunny valleys, watersheds, and hillsides with gentle slope (37). Annual 

mean temperature (BIO1) and precipitation of driest quarter (BIO17) turned out to be the 

critical bioclimatic variables determining the species range (Table 5). We then 

constructed resistance surface (Figure 2b) by transforming suitability into its reciprocal. 

Here, we observed the northeastern hillsides and Lanyang Plain exhibited the most 

suitable niche, mainly due to high values of BIO17. The most unsuitable environments 
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lay within Central Mountain Range and the southwestern plains (Figure 2a and 2b). To 

estimate possible connectivity between populations, we generated the least cost corridor 

landscape based on the resistance surface (reciprocal of the suitability value from niche 

modeling above) (Figure 2c). Pairwise costs of least cost paths show that northwestern 

Taiwan acted as a hub of connectivity (Figure 2c).  

  To explore the possible adaptation, we dissected the effects of geography and 

environment on genetic differentiation. The “fly-over” geographical distance, calculated 

as the straight distance between locations, could not explain the variation of genetic 

differentiation (Mantel’s r = 0.146 and p-value = 0.062). However, if we considered that 

Central Mountain Range hardly possesses passages for M. itinerans to disperse (Figure 

2c with sparse routes across Central Mountain Range), this fly-over geographical distance 

could be too unrealistic. We therefore used resistance distance to represent the “realized” 

geographical distance and found that genetic differentiation was significantly associated 

with resistance (Mantel’s r = 0.2257 and p-value = 0.006). The environmental 

Mahalanobis distance of nine bioclimatic variables also showed strong association with 

genetic differentiation (Mantel’s r = 0.298 and p-value = 0.005). Given that the 

environmental distance could be strongly dependent on geography, we performed Partial 

Mantel test to control the geographical effect. After controlling for the effect of realized 
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geography (resistance distance), genetic differentiation could still be explained by the 

Mahalanobis environmental distance (Mantel’s r = 0.2505 and p-value = 0.012). This 

strong association implied long-term adaptation shaped genetic differentiation of M. 

itinerans. 

 

The Genetic Architecture of Local Adaptation  What shaped the adaptation and what 

was the genetic architecture have yet to be answered. To determine the genetic 

architecture, we partitioned SNPs into two groups: (1) standing variations (SV) whose 

two alleles were found both in Taiwan and China and (2) new mutations (NM) where the 

polymorphism was only found in Taiwan. Bayenv (58, 59) was first employed to search 

for candidate SNPs underlying possible adaptation across nine bioclimatic variables. 

Adaptive SNPs were then defined as ones possessing top 1 % Bayes factor and 5 % rho 

value (Figure 3).  

  We found SV outnumbered NM in both adaptive and non-adaptive SNPs, and SV 

were even more enriched in adaptive ones (Table 6). We note, however, since adaptive 

SNPs also tend to have higher minor allele frequency (MAF) (Figure 4), this pattern could 

be confounded by allele frequency for two reasons. First, SV are more likely to have 

higher MAF than NM, and SNPs with higher MAF may be more likely to be detected as 

adaptive due to higher statistical power. Second, the designation of SV depends on 
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whether one could observe it in China. If a SNP has low MAF, it is likely that the minor 

allele is a SV in China but mis-identified as a NM in Taiwan because it was not sampled 

in the Chinese populations. We therefore performed the same test while only focusing on 

a subset of SNPs where the adaptive and non-adaptive SNPs have similar allele 

frequencies (ranging from the first quantile of adaptive MAF to the third quantile of non-

adaptive MAF separately for each bioclimatic variable) (Figure 4). SV still 

disproportionately abound when allele frequency was controlled (Table 7). Here, we 

emphasize that SV prevail over NM in number in adaptation. 

  In addition to the relative number, does the difference between SV and NM depend 

on the environments? We therefore tested whether newly mutated alleles from NM 

conferring environmental adaptation are more often observed in novel environments in 

Taiwan relative to the ancestral Chinese environmental range experienced by SV. Indeed, 

when we separated the Taiwanese populations into those within the Chinese 

environmental range and those with novel environments, allele frequencies of newly 

mutated adaptive alleles are higher in the latter set of populations, especially for the 

precipitation-related variables (Figure 5 and Table 8). Among these variables, 

precipitation of driest quarter (BIO17) and precipitation of coldest quarter (BIO19) 
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manifest the allele frequency difference where newly mutated alleles are extremely 

enriched in novel environments. 

  However, similar to standard genetic mapping where a trait could be controlled by 

few Mendelian genes or numerous polygenes each with minor effect, the number of 

candidate SNPs may not necessarily reflect the overall importance of SV and NM. To 

investigate the effect size of SV and NM in environmental adaptation, we compared their 

Bayes factors directly from Bayenv. Mean diurnal range (BIO2), precipitation seasonality 

(BIO15), precipitation of driest quarter (BIO17), and precipitation of coldest quarter 

(BIO19) showed the most significant differences between SV and NM (Figure 6 and 

Table 9), where NM consistently had higher Bayes factor and therefore stronger effect 

size than SV. On the other hand, SV had significantly stronger effect size than NM for 

annual mean temperature (BIO1) and temperature annual range (BIO7) (Figure 6 and 

Table 9). We further employed Gradient Forest to identify influential bioclimatic 

variables as well as the proportion of adaptive allele frequency changes explained by these 

variables. Precipitation of driest quarter (BIO17) turned out to be the most important 

determinant for adaptive SNP allele frequency turnover (Figure 7 and 8), suggesting 

differential local adaptation among the Taiwanese populations exists in response to this 

(BIO17) and other correlated climatic variables (BIO15 and BIO19). Interestingly, for 



doi:10.6342/NTU201903254

21 

 

climatic variables with strong effect on local adaptation (BIO2, BIO15, BIO17, and 

BIO19), NM have stronger response than SV. Again, SV are more important for BIO1 

and BIO7, the two climatic variables with weakest association with adaptive allele 

frequency changes (Figure 8). We note, it is of no necessity to further partition the 

adaptive SNPs to control for allele frequency, since the minor allele frequencies of 

adaptive NM and SV SNPs show no obvious differences (Figure 9).   

  The “importance” estimated by Gradient Forest is essentially equivalent to r2, 

representing the amount of allele frequency variation explained by environmental 

gradients. Assuming a simple linear relationship between allele frequency and 

environment, the value of r2 only represents how well each data point (a population) fits 

along the regression line. We are, however, also interested in the regression slope: the 

amount of allele frequency changes along environmental gradients (Figure 10). SNPs 

pertaining to precipitation seasonality (BIO15), precipitation of driest quarter (BIO17), 

and precipitation of the coldest quarter (BIO19) display the largest overall slope, and NM 

exhibit larger slope than SV (Figure 11). SNPs relevant to annual mean temperature 

(BIO1) and temperature annual range (BIO7) show the smallest slope with SV being more 

important than NM (Figure 11), again consistent with previous comparisons from Bayenv 

Bayes Factor (Figure 6) and Gradient Forest importance (Figure 8). Therefore at least in 
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our case, NM with larger effect size per SNP are associated with the adaptation to novel 

environments outside of the ancestral niche range, consistent with previous population 

genetics modeling results (19-21). 

  In summary, the observed patterns could be integrated with the unique climate of 

Taiwan. Northern Taiwan experienced northeast monsoon during winter and had higher 

precipitation during the typical winter dry season elsewhere of the species range (Figure 

12f, 12h, and 12i), and such a pattern has at least been maintained since the last glacial 

maximum (Figure 13c, 13d, and 13e). Such novel environments imposed strong selection 

pressure and novel adaptive optimum to the ancestral immigrant population from China. 

Adaptation to such environmental gradient is strong (with highest Bayes factor, r2, and 

slope among these bioclimatic variables) (Figure 6, 8, and 11; Table 9 and 10) especially 

for NM, where newly mutated alleles are strongly associated with novel environments 

(Figure 5 and Table 8). More importantly, for the major driver of adaptation (BIO17), the 

greatest increment of importance lies in between 200 mm and 300 mm (Figure 7) which 

are the very separating points to distinguish the novel Taiwan environment from the 

ancestral China environment (Figure 12h). Annual mean temperature (BIO1) and 

temperature annual range (BIO7) are the other extreme: the environmental gradient 

within Taiwan is well within the ancestral Chinese environmental range (Figure 12a and 
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12d), which can be traced back to the last glacial maximum as well (Figure 13a and 13b). 

The immigrant population experienced similar adaptive optimum as before. Genetic 

response to the selection pressure is lower, and therefore SV are more important than NM 

(Figure 6, 8, and 11; Table 9 and 10). Finally, Taiwan has higher precipitation of wettest 

quarter (BIO16) and therefore higher annual precipitation (BIO12) than China (Figure 

12e and 12g). The per SNP contribution to adaptation is similar between SV and NM 

(Figure 6, 8, and 11; Table 9 and 10), suggesting that NM may not be associated with 

novel environments in every case. This may be related to the fact that wet-season 

precipitation did not impose as strong selection as dry-season precipitation did. In 

summary, adaptation happened through the assortment of SV for a new territory with 

similar adaptive landscape and optimum. For adaptation to novel environments and a new 

adaptive landscape, NM with larger effective size are preferred. 

 

Local Adaptation in the Face of Future Climate Change   In addition to 

understanding how past events (SV vs. NM) affected present adaptation, we are also 

concerned with how these factors affect the future of this species under anthropogenic 

climate change. We therefore predicted 16 future outcomes according to the current one, 

including two time periods (2050 and 2070) and four Representative Concentration 

Pathways (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5) from two general circulation models, 



doi:10.6342/NTU201903254

24 

 

CCSM (53) and MIROC (54). We summed the suitability over all grids in each future 

prediction, generating two extreme scenarios: CCSM4-2070-RCP8.5 was the niche-

expanding extreme (Figure 14), whereas MIROC-2070-RCP4.5 was the niche-

contracting extreme (Figure 15). Under the expanding extreme, Central Mountain Range 

could not impose strong resistance as the present (Figure 14a and 14b), possibly due to 

the ascending temperature overlapping with the suitable temperature range. The 

contracting extreme, however, showed exacerbating isolation of the eastern populations 

(Figure 15a and 15b). Under both extremes, the northeast remains as the suitable 

environment (Figure 14 and 15).  

  For perennial and sessile M. itinerans, the contemporary adaptation may no longer 

hold promise in the face of climate change. We used Bayenv to detect whether the 

currently adaptive SNP is still strongly associated with the future climatic conditions. 

Currently adaptive SNPs remaining high association with environment in the future are 

defined as “retention”, while adaptive ones no longer highly associated with environment 

are defined as “disruption”. Different from the present pattern that SV disproportionately 

abound in adaptive SNPs, we saw no clear tendency for any set of adaptive SNPs towards 

retention or disruption (Table 11) in terms of SNP number. For effect size, we used the 

genetic offset value calculated from the Gradient Forest results to estimate genetic 
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mismatch, which is related to the magnitude of allele frequency turnover perturbed by the 

future climatic conditions (61). We estimated the overall genetic offset in the 16 future 

climatic scenarios, especially focusing on two extremes: CCSM4-2070-RCP8.5 

(expanding extreme) and MIROC-2070-RCP4.5 (contracting extreme). Adaptive SNPs 

as a whole encounter differing genetic offset in both extremes: Northwestern and mid-

eastern Taiwan experience large genetic offset in the expanding extreme (Figure 16a), 

while southwestern Taiwan experiences large genetic offset in the contracting extreme 

(Figure 16b).    

  Finally, we investigated the fate of M. itinerans, developing a novel concept called 

“extinction risk” to bridge the knowledge gaps between genomics and biogeographical 

modeling. Traditional species distribution model like MaxEnt assumes a species reacts 

identically to the environment, overlooking local adaptation from within-species 

polymorphism. Hence, we took extinction risk, integrating species-level and population-

level responses, as the division of genetic offset (estimate from Gradient Forest) by the 

suitability (estimate from MaxEnt). Northeastern Taiwan exhibits the lowest extinction 

risk as a climate change refugium, for it possesses the highest suitability and lowest 

genetic offset. Surprisingly, western Taiwan displays very high extinction risk (Figure 17) 

despite the high suitability from MaxEnt (Figure 14a and 15a). Here we emphasize that 
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MaxEnt suitability is a measure of species-wide average, assuming all members of a 

species equally suitable to all environments of the species range. With differential local 

adaptation, our extinction risk therefore shows that despite some other population might 

be suitable for western Taiwan in the future, the current locally adaptive population may 

mismatch with future climates. Nevertheless, if we assume the dispersal distance and gene 

flow are high enough, local populations may obtain well-matched alleles to rescue their 

adaptive mismatch and therefore reduce their extinction risk. With higher connectivity, 

northwestern Taiwan may take advantage of alleles matching its environment from some 

other population against genetic offset (Figure 14c and 15c). However, southwestern 

Taiwan remains relatively isolated, exposing it in high risk (Figure 14c and 15c). Above 

all, we underscore the importance of introducing extinction risk to investigate the fate of 

species under climate change. 
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Discussion 

  Assessing the within-species variation in climate association is the crucial first step 

to understand species susceptibility to fluctuating environment. Here, we investigate the 

relationship between genetic, geographical, and environmental distance in Musa itinerans 

and find evidences for environmental adaptation. We detect adaptive SNPs highly 

correlated with nine bioclimatic variables, and further probe into the past, present, and 

future genetic architecture of adaptive substitutions.  

When tracing the present adaptive course back to the past events (SV vs. NM), we 

were aware of the problem of wrong classification of NM. SV can be designated as NM 

due to the limited samples in China which only possess a part of variation that do not 

contain Taiwanese alleles. Therefore, we evaluated the possibility of mis-categorizing SV 

into NM in three ways. First, we assessed the phylogeny of our Taiwanese populations, 

Chinese accessions, and one outgroup species Musa acuminata. All Taiwanese 

populations are clustered into a clade with the shortest branch length, being a sister group 

to one of Chinese populations (Figure 18). This demonstrates that Chinese populations 

capture much more variations than our Taiwanese populations which are more recently 

emerging. Thus, we are unlikely to falsely identify NM due to insufficient variation of 

Chinese samples. Second, we assessed the averaged expected heterozygosity of 
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Taiwanese and Chinese populations from the integrated dataset. The averaged within-

population heterozygosity among five Chinese populations (He = 0.158) is five times 

higher than that of Taiwanese populations (He = 0.033), indicating NM in Taiwan is 

unlikely to be mis-identified due to the insufficient sample size in China. Third, if an 

adaptive SNP belongs to SV, the allele which is a minor one for Taiwanese populations 

tends to exhibit higher allele frequency in China (Figure 9). Additionally, our previous 

result has revealed that adaptive SV and NM show no obvious differences (Figure 9) in 

minor allele frequency (MAF). Therefore, with higher minor allele frequency for SV in 

China, it is much more unlikely for us to designate adaptive SV as adaptive NM due to 

low allele frequency. We further selected the adaptive SNPs whose MAF ranks top 50 % 

in all adaptive ones to perform Gradient Forest analysis. In this way, we have less chance 

to miss such an allele in China with higher MAF. The significance test for r2 importance 

and slope distribution from selected adaptive SNPs is quite similar as before (Table 12). 

All results demonstrate our ascertainment of NM is of no risk. 

Our investigation into effect sizes of SV and NM with Bayenv (58, 59) and Gradient 

Forest (60, 61) aid in the elaboration of how past events modulated adaptation. Orr’s 

model (21) has predicted the distribution of effect sizes for an entire bout of adaptation 

where early substitutions have larger effect than later ones. We show that NM are more 
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strongly associated with precipitation-related variables (BIO15, BIO17, and BIO19) 

where they have larger effect size than SV (Figure 6, 8, and 11; Table 9 and 10). Just as 

Orr’s prediction, Taiwan region during the last glacial maximum possessed novel 

environments regarding these variables (Figure 13c, 13d, and 13e), and thus more distant 

adaptive optima for the immigrant population. The selection pressure imposed by these 

climatic factors has never stopped, since Taiwan is still experiencing northeast monsoon 

now, resulting in maintenance of larger effect size for NM. We too inspect two 

bioclimatic variables (BIO1 and BIO7) where SV have larger effect size than NM (Figure 

6, 8, and 11; Table 9 and 10) during the last glacial maximum. Both climatic factors of 

Taiwan region have been well within those of mainland China (Figure 13a and 13b), 

forming a similar adaptive landscape for the immigrant population, suggesting a similar 

adaptive optimum and landscape has last from the last glacial maximum to the present 

where a potpourri of SV contributes to adaptation. Here we provide another perspective 

to recent research showing that SV contributes to adaptation (63, 64). We show that SV 

indeed dominate over NM in number (63). However, the effect size of SV and NM hinges 

on experienced environments: SV have larger effect size when encompassed by ancestral 

environments, while NM have larger one encountering novel environments. 
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  Conventional ecological niche models like MaxEnt (49, 50) are widely used to 

predict future species distribution, but such models do not account for the differential 

adaptation below species level. In the case of Musa itinerans, whose habitats range from 

100 m to 1,500 m (Table 1) and distributing along a latitudinal gradient in Taiwan, 

differentially local adaptation should not be neglected. The difference between the major 

determinant of species range (BIO1) and driver of population-wise adaptation (BIO17) 

demonstrates the need to consider local adaptation. Comparison between suitability and 

the newly introduced extinction risk manifests the modeling limit where MaxEnt assumes 

homogeneity within the species. With the incorporation of genetic offset, we can therefore 

recognize the potential risk among western populations which possess ostensibly high 

suitability (Figure 14a, 15a, and 17). Methods for assessing impacts of climate change 

which hinge on the single species distribution model may disregard the differential 

adaptation, probably biasing and misplacing the conservational efforts. Our results show 

that the integration of genetics-environment association and species distribution model 

can improve predictions by revealing the mismatch between present adaptation and future 

climates. Such amelioration can aid in the protection of M. itinerans by effectively 

conserving the adjacent populations with relatively lower extinction risk. In particular, 

populations near Alisan National Scenic Area (in southwestern Taiwan) and Hsinchu-
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Yilan area (in northeastern Taiwan) are proposed to be the best choice for in situ 

conservation (37). 
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Figures 

 
Figure 1a. Collection site. 

Solid circles represent collection locations corresponding to their coordinates and 

elevation: Gray circles indicate populations of low elevation (LE); blue circles indicate 

populations of Xitou transect (XT); red circles indicate populations of Taipingshan 

transect (TPS). Map template is provided by *Cheng-Tao Lin. 

*Cheng-Tao Lin (2018) QGIS template for displaying species distribution by horizontal 

and vertical view in Taiwan. URL: https://github.com/mutolisp/distrmap_tw.qgis. DOI: 

10.5281/zenodo.1493690 
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Figure 1b. Population structure under K = 2. 

Individual ancestry is plotted on the right side, while population ancestry is plotted on 

map with a pie chart. Map template is provided by *Cheng-Tao Lin. 

*Cheng-Tao Lin (2018) QGIS template for displaying species distribution by horizontal 

and vertical view in Taiwan. URL: https://github.com/mutolisp/distrmap_tw.qgis. DOI: 

10.5281/zenodo.1493690 
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Figure 2a. Current suitability of Musa itinerans. 

Suitability is provided by MaxEnt in cloglog output. 
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Figure 2b. Current resistance of Musa itinerans. 

Current resistance is the reciprocal of current suitability from MaxEnt, and is then 

reclassified into 32 color blocks. 
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Figure 2c. Current least cost corridor landscape. 

Least cost corridor landscape integrates all least cost corridors which allow paths with 

1%, 2%, or 5% higher cost than the least cost value. Path density is colored according to 

the amount of overlapping paths. 
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Figure 3. Adaptive candidate SNPs. 

Bayenv detects adaptive candidates in total SNPs (1,256,894 SNPs) across nine 

bioclimatic variables. Red solid line shows the top 1 % Bayes factor value as the threshold. 
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Figure 4. Minor allele frequency distribution in adaptive and non-adaptive SNPs. 

Minor allele frequency is plotted for adaptive and non-adaptive SNPs separately for each 

bioclimatic variable. 
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Figure 5. Allele frequency of newly mutated alleles within the ancestral and novel 

environmental range. 

Averaged allele frequency of newly mutated alleles which are within the ancestral or 

novel environmental range in Taiwan is plotted. Statistical significance from paired t-test 

between the novel and ancestral environmental range for each bioclimatic variable is 

shown. The value on x-axis denotes the number of Taiwanese populations within the 

ancestral or novel environmental range. 
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Figure 6. Bayenv Bayes factor distribution. 

Bayes factor is plotted for adaptive new mutation and standing variation. Statistical 

significance from Wilcoxon rank sum test between new mutation and standing variation 

for each bioclimatic variable is shown.  
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Figure 7. Cumulative importance distribution. 

Gradient Forest cumulative importance is plotted for four sets of SNPs. 
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Figure 8. Gradient Forest r2 importance distribution. 

r2 importance is plotted for adaptive new mutation and standing variation separately for 

each bioclimatic variable. Statistical significance from Welch two sample t-test between 

new mutation and standing variation for each bioclimatic variable is shown (***p-value 

< 0.001). 
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Figure 9. Minor allele frequency distribution of adaptive SNPs. 

Minor allele frequency for adaptive new mutation and standing variation is shown. 

Standing variation allele frequency of the minor allele in Taiwan is plotted for both 

Taiwanese and Chinese populations. 
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Figure 10. The relationship between r2 importance and slope. 

r2 indicates the extent that allele frequency fits a linear model, while slope indicates the 

amount of allele frequency changes along the linear relationship. The graphs indicate one 

should also investigate regression slopes in addition to the Gradient Forest r2. The value 

on x-axis shows the range of standardized environmental variables. 
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Figure 11. Slope distribution. 

Slope is plotted for adaptive new mutation and standing variation. Statistical significance 

from Welch two sample t-test between new mutation and standing variation for each 

bioclimatic variable is shown (***p-value < 0.001). 
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Figure 12a. BIO1 environmental map. 

Current annual mean temperature (BIO1) is shown for Taiwan and its adjacent areas. 
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Figure 12b. BIO2 environmental map. 

Current mean diurnal range (BIO2) is shown for Taiwan and its adjacent areas. 
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Figure 12c. BIO3 environmental map. 

Current isothermality (BIO3) is shown for Taiwan and its adjacent areas. 
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Figure 12d. BIO7 environmental map. 

Current temperature annual range (BIO7) is shown for Taiwan and its adjacent areas. 
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Figure 12e. BIO12 environmental map. 

Current annual precipitation (BIO12) is shown for Taiwan and its adjacent areas. 
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Figure 12f. BIO15 environmental map. 

Current precipitation seasonality (BIO15) is shown for Taiwan and its adjacent areas. 
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Figure 12g. BIO16 environmental map. 

Current precipitation of wettest quarter (BIO16) is shown for Taiwan and its adjacent 

areas. 
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Figure 12h. BIO17 environmental map. 

Current precipitation of driest quarter (BIO17) is shown for Taiwan and its adjacent areas. 
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Figure 12i. BIO19 environmental map. 

Current precipitation of coldest quarter (BIO19) is shown for Taiwan and its adjacent 

areas. 
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Figure 13a. BIO1 environmental map during the last glacial maximum. 

Annual mean temperature (BIO1) is shown for Taiwan and its adjacent areas during the 

last glacial maximum. The climatic layer is downloaded from WorldClim database 

version 1.4 (http://worldclim.org/) at spatial resolution of 2.5 arc-minute. 
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Figure 13b. BIO7 environmental map during the last glacial maximum. 

Temperature annual range (BIO7) is shown for Taiwan and its adjacent areas during the 

last glacial maximum. The climatic layer is downloaded from WorldClim database 

version 1.4 (http://worldclim.org/) at spatial resolution of 2.5 arc-minute. 

 

  



doi:10.6342/NTU201903254

62 

 

 
Figure 13c. BIO15 environmental map during the last glacial maximum. 

Precipitation seasonality (BIO15) is shown for Taiwan and its adjacent areas during the 

last glacial maximum. The climatic layer is downloaded from WorldClim database 

version 1.4 (http://worldclim.org/) at spatial resolution of 2.5 arc-minute. 

 

  



doi:10.6342/NTU201903254

63 

 

 
Figure 13d. BIO17 environmental map during the last glacial maximum. 

Precipitation of driest quarter (BIO17) is shown for Taiwan and its adjacent areas during 

the last glacial maximum. The climatic layer is downloaded from WorldClim database 

version 1.4 (http://worldclim.org/) at spatial resolution of 2.5 arc-minute. 
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Figure 13e. BIO19 environmental map during the last glacial maximum. 

Precipitation of coldest quarter (BIO19) is shown for Taiwan and its adjacent areas during 

the last glacial maximum. The climatic layer is downloaded from WorldClim database 

version 1.4 (http://worldclim.org/) at spatial resolution of 2.5 arc-minute. 
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Figure 14a. Expanding-extreme suitability of Musa itinerans. 

Suitability is provided by MaxEnt in cloglog output. 
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Figure 14b. Expanding-extreme resistance of Musa itinerans. 

Resistance is the reciprocal of suitability from MaxEnt under the expanding extreme 

(CCSM4-2070-RCP8.5), and is then reclassified into 32 color blocks. 
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Figure 14c. Least cost corridor landscape for the expanding extreme. 

Least cost corridor landscape integrates all least cost corridors which allow paths with 

1%, 2%, or 5% higher cost than the least cost value. Path density is colored according to 

the amount of overlapping paths. 
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Figure 15a. Contracting-extreme suitability of Musa itinerans. 

Suitability is provided by MaxEnt in cloglog output. 
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Figure 15b. Contracting-extreme resistance of Musa itinerans. 

Resistance is the reciprocal of suitability from MaxEnt under the contracting extreme 

(MIROC-2070-RCP4.5), and is then reclassified into 32 color blocks. 
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Figure 15c. Least cost corridor landscape for the contracting extreme. 

Least cost corridor landscape integrates all least cost corridors which allow paths with 

1%, 2%, or 5% higher cost than the least cost value. Path density is colored according to 

the amount of overlapping paths. 
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Figure 16a. Genetic offset for the expanding extreme. 

Overall genetic offset of nine bioclimatic variables under the expanding extreme 

(CCSM4-2070-RCP8.5) is shown. Grids with current suitability < 0.2 are excluded. 
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Figure 16b. Genetic offset for the contracting extreme. 

Overall genetic offset of nine bioclimatic variables under the contracting extreme 

(MIROC-2070-RCP4.5) is shown. Grids with current suitability < 0.2 are excluded. 
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Figure 17a. Extinction risk for the expanding extreme. 

Extinction risk under the expanding extreme (CCSM4-2070-RCP8.5) is partitioned into 

32 bins with equal amount of data points, and then reclassified into 32 color blocks. Grids 

with current suitability < 0.2 are excluded. 
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Figure 17b. Extinction risk for the contracting extreme. 

Extinction risk under the contracting extreme (MIROC-2070-RCP4.5) is partitioned into 

32 bins with equal amount of data points, and then reclassified into 32 color blocks. Grids 

with current suitability < 0.2 are excluded. 
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Figure 18. Phylogeny of Taiwanese and Chinese Musa itinerans. 

The gray-colored indicates Taiwanese lowland populations; the blue-colored indicates 

Taiwanese populations of Xitou transect; the red-colored indicates Taiwanese 

populations of Taipingshan transect; the black-colored indicates Chinese accessions and 

one outgroup Musa acuminata. 
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Tables 

Table 1. Musa itinerans collection information. 

Site Code Latitude Longitude Altitude Used for SSR Used for SNP 

TPS300 CLM0031 24.60428 121.5336 331 ˅ ˅ 

TPS300 CLM0032 24.60427 121.5344 334 ˅ ˅ 

TPS300 CLM0033 24.60436 121.5348 332 ˅ ˅ 

TPS300 CLM0034 24.60446 121.5351 329 ˅ ˅ 

TPS300 CLM0035 24.60459 121.5355 324 ˅  

TPS300 CLM0036 24.60463 121.5356 323 ˅ ˅ 

TPS300 CLM0037 24.60472 121.5357 320 ˅ ˅ 

TPS300 CLM0038 24.60475 121.536 323 ˅ ˅ 

TPS300 CLM0039 24.60499 121.5366 318 ˅ ˅ 

TPS300 CLM0040 24.60514 121.5373 318 ˅ ˅ 

TPS300 CLM0041 24.60526 121.5374 312 ˅ ˅ 

TPS400 CLM0042 24.58588 121.5148 394  ˅ 

TPS400 CLM0043 24.58469 121.5138 400  ˅ 

TPS400 CLM0044 24.58422 121.5132 390   

TPS400 CLM0045 24.58401 121.5131 397  ˅ 

TPS400 CLM0046 24.58374 121.5129 397  ˅ 

TPS400 CLM0047 24.58356 121.5129 405   

TPS400 CLM0048 24.58336 121.5128 411  ˅ 

TPS400 CLM0049 24.58227 121.5124 411  ˅ 

TPS400 CLM0050 24.58163 121.5112 397  ˅ 

TPS400 CLM0051 24.5814 121.511 404  ˅ 

TPS400 CLM0052 24.58085 121.5106 416  ˅ 

TPS400 CLM0053 24.5802 121.5102 448  ˅ 

TPS500 CLM0086 24.57036 121.4993 429 ˅ ˅ 

TPS500 CLM0087 24.57036 121.4993 429 ˅ ˅ 

TPS500 CLM0088 24.56993 121.4996 443 ˅ ˅ 

TPS500 CLM0089 24.5691 121.4996 441 ˅ ˅ 

TPS500 CLM0090 24.56884 121.4995 439 ˅ ˅ 

TPS500 CLM0091 24.56832 121.4994 441 ˅ ˅ 

TPS500 CLM0092 24.56705 121.4993 449 ˅ ˅ 

TPS500 CLM0093 24.56662 121.4992 447 ˅ ˅ 

TPS500 CLM0094 24.56639 121.499 441 ˅ ˅ 

TPS500 CLM0095 24.56558 121.4989 443 ˅ ˅ 

TPS600 CLM0054 24.55402 121.5079 596  ˅ 
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TPS600 CLM0055 24.55415 121.5082 610   

TPS600 CLM0056 24.55403 121.5089 619  ˅ 

TPS600 CLM0057 24.55385 121.5091 616  ˅ 

TPS600 CLM0058 24.55383 121.5091 614  ˅ 

TPS600 CLM0059 24.553 121.5095 613  ˅ 

TPS600 CLM0060 24.55218 121.5093 600  ˅ 

TPS600 CLM0061 24.55218 121.5093 598  ˅ 

TPS600 CLM0062 24.55209 121.5093 603  ˅ 

TPS600 CLM0063 24.55144 121.5091 605  ˅ 

TPS600 CLM0064 24.55002 121.5083 576  ˅ 

TPS700 CLM0065 24.54913 121.5116 698 ˅ ˅ 

TPS700 CLM0066 24.54861 121.5119 701 ˅ ˅ 

TPS700 CLM0067 24.54733 121.5124 725 ˅ ˅ 

TPS700 CLM0068 24.54612 121.5128 737 ˅  

TPS700 CLM0069 24.54621 121.5126 723 ˅ ˅ 

TPS700 CLM0070 24.54486 121.5126 745 ˅ ˅ 

TPS700 CLM0071 24.54485 121.5126 744 ˅ ˅ 

TPS700 CLM0072 24.54467 121.5125 749 ˅ ˅ 

TPS700 CLM0073 24.54452 121.512 740 ˅ ˅ 

TPS700 CLM0074 24.5444 121.5117 739 ˅ ˅ 

TPS700 CLM0075 24.54408 121.5113 738 ˅ ˅ 

TPS900 CLM0076 24.53878 121.5219 987 ˅ ˅ 

TPS900 CLM0077 24.5399 121.5126 917 ˅ ˅ 

TPS900 CLM0078 24.53934 121.5122 912 ˅ ˅ 

TPS900 CLM0079 24.53912 121.512 896 ˅ ˅ 

TPS900 CLM0080 24.53962 121.5119 890 ˅ ˅ 

TPS900 CLM0081 24.54018 121.5123 900 ˅ ˅ 

TPS900 CLM0082 24.54005 121.5122 901 ˅ ˅ 

TPS900 CLM0083 24.53983 121.5121 898 ˅ ˅ 

TPS900 CLM0084 24.53953 121.5119 891 ˅ ˅ 

TPS900 CLM0085 24.53922 121.5119 895 ˅ ˅ 

XT400 CLM0121 23.7413 120.7367 407 ˅ ˅ 

XT400 CLM0122 23.74138 120.7367 405 ˅ ˅ 

XT400 CLM0123 23.74167 120.7367 394 ˅ ˅ 

XT400 CLM0124 23.7425 120.7396 356 ˅ ˅ 

XT400 CLM0125 23.74263 120.7394 363 ˅ ˅ 

XT400 CLM0126 23.74267 120.7393 364 ˅ ˅ 

XT400 CLM0127 23.74279 120.7391 365 ˅ ˅ 
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XT400 CLM0128 23.74288 120.739 365 ˅  

XT400 CLM0129 23.74294 120.7388 367 ˅  

XT400 CLM0130 23.74293 120.7379 378 ˅ ˅ 

XT400 CLM0131 23.74281 120.7376 378 ˅ ˅ 

XT400 CLM0132 23.74211 120.7368 384 ˅ ˅ 

XT500 CLM0133 23.72787 120.7618 543  ˅ 

XT500 CLM0134 23.72796 120.7621 538  ˅ 

XT500 CLM0135 23.72797 120.7622 537  ˅ 

XT500 CLM0136 23.72816 120.7623 527  ˅ 

XT500 CLM0137 23.72826 120.7627 521  ˅ 

XT500 CLM0138 23.72807 120.7634 523  ˅ 

XT500 CLM0139 23.72796 120.7637 525  ˅ 

XT500 CLM0140 23.72799 120.7643 516  ˅ 

XT500 CLM0141 23.72785 120.7644 521  ˅ 

XT500 CLM0142 23.72775 120.7652 520   

XT500 CLM0143 23.72776 120.7655 516  ˅ 

XT700 CLM0144 23.71015 120.7792 681 ˅ ˅ 

XT700 CLM0145 23.71089 120.7789 669 ˅ ˅ 

XT700 CLM0146 23.71158 120.7786 659 ˅  

XT700 CLM0147 23.71152 120.7781 658 ˅ ˅ 

XT700 CLM0148 23.71119 120.7779 668 ˅  

XT700 CLM0149 23.71077 120.7777 681 ˅  

XT700 CLM0150 23.71044 120.7775 689 ˅ ˅ 

XT700 CLM0151 23.71032 120.7774 692 ˅ ˅ 

XT700 CLM0152 23.71002 120.7773 698 ˅  

XT700 CLM0153 23.70981 120.7771 702 ˅ ˅ 

XT700 CLM0154 23.70994 120.7773 699 ˅ ˅ 

XT700 CLM0255 23.70981 120.7767 710  ˅ 

XT700 CLM0256 23.7099 120.7768 708  ˅ 

XT700 CLM0257 23.71013 120.7766 709  ˅ 

XT900 CLM0155 23.69081 120.7853 857  ˅ 

XT900 CLM0156 23.69314 120.786 873   

XT900 CLM0157 23.69323 120.786 874  ˅ 

XT900 CLM0158 23.69354 120.7859 870  ˅ 

XT900 CLM0159 23.69366 120.7859 869  ˅ 

XT900 CLM0160 23.69405 120.786 872  ˅ 

XT900 CLM0161 23.69422 120.7859 872  ˅ 

XT900 CLM0162 23.69435 120.7859 871  ˅ 
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XT900 CLM0163 23.6949 120.7858 878   

XT900 CLM0258 23.6949 120.7858 878  ˅ 

XT900 CLM0164 23.69512 120.7858 882   

XT900 CLM0259 23.69275 120.7858 865  ˅ 

XT900 CLM0260 23.6935 120.786 874  ˅ 

XT1200 CLM0165 23.67361 120.7866 1150 ˅ ˅ 

XT1200 CLM0166 23.67358 120.786 1149 ˅ ˅ 

XT1200 CLM0167 23.67349 120.7855 1152 ˅  

XT1200 CLM0168 23.67338 120.7855 1158 ˅  

XT1200 CLM0169 23.67337 120.7854 1157 ˅ ˅ 

XT1200 CLM0170 23.67313 120.7851 1163 ˅ ˅ 

XT1200 CLM0171 23.67279 120.7849 1175 ˅ ˅ 

XT1200 CLM0172 23.67266 120.7846 1175 ˅ ˅ 

XT1200 CLM0173 23.67251 120.7844 1179 ˅ ˅ 

XT1200 CLM0174 23.6725 120.7843 1177 ˅ ˅ 

XT1200 CLM0175 23.6724 120.7837 1170 ˅ ˅ 

XT1200 CLM0176 23.67226 120.7834 1176 ˅ ˅ 

XT1500 CLM0177 23.66741 120.7717 1497 ˅ ˅ 

XT1500 CLM0178 23.66883 120.7715 1481 ˅ ˅ 

XT1500 CLM0179 23.66951 120.771 1491 ˅ ˅ 

XT1500 CLM0180 23.6714 120.7726 1453 ˅ ˅ 

XT1500 CLM0181 23.67186 120.7728 1450 ˅ ˅ 

XT1500 CLM0182 23.67161 120.7729 1446 ˅ ˅ 

XT1500 CLM0183 23.67278 120.7729 1444 ˅ ˅ 

XT1500 CLM0184 23.67284 120.7731 1441 ˅ ˅ 

XT1500 CLM0185 23.67229 120.7734 1432 ˅ ˅ 

XT1500 CLM0186 23.67239 120.7733 1440 ˅ ˅ 

C35H CLM0109 24.69913 121.1537 265 ˅ ˅ 

C35H CLM0110 24.69826 121.1529 273 ˅ ˅ 

C35H CLM0111 24.69789 121.1528 275 ˅ ˅ 

C35H CLM0112 24.69782 121.1527 275 ˅ ˅ 

C35H CLM0113 24.6978 121.1527 275 ˅  

C35H CLM0114 24.69766 121.1526 275 ˅ ˅ 

C35H CLM0115 24.69748 121.1525 275 ˅  

C35H CLM0116 24.69743 121.1525 276 ˅ ˅ 

C35H CLM0117 24.69688 121.1514 285 ˅  

C35H CLM0118 24.69683 121.1511 289 ˅ ˅ 

C35H CLM0119 24.69682 121.1509 289 ˅ ˅ 
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C35H CLM0120 24.69658 121.1506 290 ˅ ˅ 

C35H CLM0240 24.69311 121.1451 315 ˅ ˅ 

WFL CLM0188 25.06747 121.7998 332 ˅ ˅ 

WFL CLM0189 25.06671 121.8001 324 ˅  

WFL CLM0190 25.06686 121.7993 334 ˅  

WFL CLM0191 25.06638 121.7985 333 ˅ ˅ 

WFL CLM0192 25.0666 121.8002 322 ˅  

WFL CLM0193 25.07073 121.7995 355 ˅ ˅ 

WFL CLM0194 25.07183 121.7987 365 ˅ ˅ 

WFL CLM0195 25.07218 121.7985 366 ˅ ˅ 

WFL CLM0196 25.07243 121.7977 379 ˅  

WFL CLM0197 25.07242 121.7974 384 ˅ ˅ 

WFL CLM0250 25.07479 121.7955 430 ˅ ˅ 

WFL CLM0251 25.07419 121.7949 427 ˅ ˅ 

WFL CLM0252 25.07405 121.7958 412 ˅ ˅ 

WFL CLM0253 25.07177 121.7991 363 ˅ ˅ 

THNL CLM0213 24.08425 120.7876 318 ˅ ˅ 

THNL CLM0214 24.08309 120.7981 344 ˅ ˅ 

THNL CLM0215 24.08274 120.8001 363 ˅ ˅ 

THNL CLM0216 24.08266 120.8002 367 ˅  

THNL CLM0217 24.08261 120.8006 367 ˅  

THNL CLM0218 24.08269 120.8008 361 ˅ ˅ 

THNL CLM0219 24.08258 120.803 358 ˅ ˅ 

THNL CLM0220 24.08212 120.8043 373 ˅  

THNL CLM0221 24.0813 120.8074 391 ˅ ˅ 

THNL CLM0222 24.08134 120.8074 391 ˅ ˅ 

THNL CLM0223 24.08167 120.8086 410 ˅  

THNL CLM0224 24.08164 120.809 413 ˅ ˅ 

THNL CLM0225 24.0817 120.8079 395 ˅  

THNL CLM0226 24.07969 120.8079 435 ˅ ˅ 

THNL CLM0227 24.08017 120.8076 417 ˅ ˅ 

PTWT CLM0241 22.56724 120.6454 254 ˅ ˅ 

PTWT CLM0242 22.56481 120.6465 350 ˅ ˅ 

PTWT CLM0243 22.5657 120.6475 363 ˅ ˅ 

PTWT CLM0244 22.56364 120.6456 378 ˅ ˅ 

PTWT CLM0245 22.56276 120.6452 403 ˅ ˅ 

PTWT CLM0246 22.56327 120.6443 401 ˅ ˅ 

PTWT CLM0247 22.56226 120.6449 420 ˅ ˅ 
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PTWT CLM0248 22.57957 120.6505 485 ˅ ˅ 

PTWT CLM0249 22.58491 120.6484 381 ˅ ˅ 

P199H CLM0001 22.24463 120.835 470 ˅ ˅ 

P199H CLM0004 22.2448 120.8353 470 ˅ ˅ 

P199H CLM0005 22.24513 120.8367 452 ˅ ˅ 

P199H CLM0008 22.24495 120.8369 457 ˅ ˅ 

P199H CLM0009 22.24407 120.8394 455 ˅ ˅ 

P199H CLM0010 22.24326 120.8508 450 ˅ ˅ 

P199H CLM0012 22.23958 120.8575 450 ˅ ˅ 

P199H CLM0014 22.23862 120.8575 437 ˅ ˅ 

P199H CLM0016 22.23777 120.8584 439 ˅ ˅ 

P199H CLM0017 22.23735 120.8599 432 ˅ ˅ 

MLLYT CLM0096 24.3352 120.7832 409 ˅ ˅ 

MLLYT CLM0097 24.33541 120.7844 417 ˅ ˅ 

MLLYT CLM0098 24.33551 120.7847 412 ˅ ˅ 

MLLYT CLM0099 24.33525 120.7853 471 ˅  

MLLYT CLM0100 24.33484 120.7858 440 ˅ ˅ 

MLLYT CLM0101 24.335 120.7859 432 ˅ ˅ 

MLLYT CLM0102 24.33525 120.7863 419 ˅  

MLLYT CLM0103 24.33532 120.7864 416 ˅ ˅ 

MLLYT CLM0104 24.33541 120.7866 414 ˅ ˅ 

MLLYT CLM0105 24.33584 120.7867 404 ˅ ˅ 

MLLYT CLM0106 24.33591 120.787 409 ˅ ˅ 

MLLYT CLM0107 24.33642 120.787 396 ˅ ˅ 

MLLYT CLM0108 24.33632 120.7869 395 ˅  

HDPG CLM0201 24.88384 121.5023 221 ˅ ˅ 

HDPG CLM0202 24.88383 121.5022 221 ˅ ˅ 

HDPG CLM0203 24.8836 121.5021 223 ˅  

HDPG CLM0204 24.88337 121.5019 225 ˅ ˅ 

HDPG CLM0205 24.88313 121.5016 229 ˅  

HDPG CLM0206 24.88312 121.5016 230 ˅ ˅ 

HDPG CLM0207 24.88293 121.5013 234 ˅ ˅ 

HDPG CLM0208 24.88292 121.5013 234 ˅ ˅ 

HDPG CLM0209 24.88273 121.5009 235 ˅ ˅ 

HDPG CLM0210 24.88411 121.5029 223 ˅ ˅ 

HDPG CLM0211 24.88415 121.503 224 ˅ ˅ 

HDPG CLM0212 24.88478 121.5036 216 ˅ ˅ 

TTL CLM0228 23.45159 120.6137 433 ˅ ˅ 
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TTL CLM0229 23.45215 120.6137 413 ˅ ˅ 

TTL CLM0230 23.45241 120.6131 417 ˅ ˅ 

TTL CLM0231 23.45244 120.6126 421 ˅ ˅ 

TTL CLM0232 23.45226 120.6121 433 ˅  

TTL CLM0233 23.45219 120.612 438 ˅ ˅ 

TTL CLM0234 23.45212 120.6118 441 ˅ ˅ 

TTL CLM0235 23.45205 120.611 453 ˅ ˅ 

TTL CLM0236 23.45214 120.6108 457 ˅ ˅ 

TTL CLM0237 23.45285 120.6111 440 ˅ ˅ 

TTL CLM0238 23.45362 120.6114 437 ˅  

TTL CLM0239 23.45357 120.6115 435 ˅ ˅ 

NAJY CLM0261 24.43272 121.7606 98 ˅  

NAJY CLM0262 24.43254 121.7614 106 ˅ ˅ 

NAJY CLM0263 24.43244 121.7616 110 ˅ ˅ 

NAJY CLM0264 24.4321 121.7619 112 ˅ ˅ 

NAJY CLM0265 24.42486 121.7634 148 ˅ ˅ 

NAJY CLM0266 24.42448 121.7636 145 ˅ ˅ 

NAJY CLM0267 24.42392 121.7641 147 ˅ ˅ 

NAJY CLM0268 24.4237 121.7643 146 ˅ ˅ 

NAJY CLM0269 24.42345 121.7643 143 ˅  

NAJY CLM0270 24.42267 121.7625 153 ˅ ˅ 

NAJY CLM0271 24.42248 121.7624 155 ˅ ˅ 

NAJY CLM0272 24.42167 121.7629 162 ˅  

NAJY CLM0273 24.42145 121.763 165 ˅ ˅ 

NAJY CLM0274 24.42121 121.7629 167 ˅  

HLCN CLM0275 23.90632 121.493 249 ˅ ˅ 

HLCN CLM0276 23.90623 121.4928 249 ˅ ˅ 

HLCN CLM0277 23.90616 121.4927 249 ˅ ˅ 

HLCN CLM0278 23.90581 121.4921 246 ˅ ˅ 

HLCN CLM0279 23.90578 121.4916 246 ˅ ˅ 

HLCN CLM0280 23.90563 121.491 248 ˅  

HLCN CLM0281 23.90447 121.4888 266 ˅ ˅ 

HLCN CLM0282 23.90456 121.4885 267 ˅  

HLCN CLM0283 23.90492 121.4872 303 ˅ ˅ 

HLCN CLM0284 23.90471 121.487 306 ˅ ˅ 

HLCN CLM0285 23.90449 121.4869 294 ˅  

HLCN CLM0286 23.90413 121.4869 279 ˅ ˅ 

HLCN CLM0287 23.90386 121.4868 279 ˅ ˅ 
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HLCN CLM0288 23.90352 121.4865 289 ˅  

HLCN CLM0289 23.90318 121.4863 292 ˅  

NXIR CLM0290 23.40875 121.4504 118 ˅ ˅ 

NXIR CLM0291 23.40884 121.4503 117 ˅ ˅ 

NXIR CLM0292 23.40958 121.4497 124 ˅  

NXIR CLM0293 23.40979 121.4493 127 ˅  

NXIR CLM0294 23.40993 121.4491 129 ˅ ˅ 

NXIR CLM0295 23.41069 121.4481 148 ˅ ˅ 

NXIR CLM0296 23.41058 121.4492 150 ˅  

NXIR CLM0297 23.41058 121.4495 151 ˅  

NXIR CLM0298 23.41057 121.4486 147 ˅ ˅ 

NXIR CLM0299 23.40839 121.4504 127 ˅ ˅ 

NXIR CLM0300 23.40854 121.4493 136 ˅  

NXIR CLM0301 23.40887 121.4481 146 ˅ ˅ 

NXIR CLM0302 23.40959 121.4467 155 ˅ ˅ 

NXIR CLM0303 23.4097 121.4466 152 ˅ ˅ 

NXIR CLM0304 23.40996 121.4461 151 ˅ ˅ 

DFR CLM0305 23.10971 121.2745 536 ˅  

DFR CLM0306 23.10958 121.2746 535 ˅ ˅ 

DFR CLM0307 23.10758 121.2752 551 ˅ ˅ 

DFR CLM0308 23.10752 121.2751 552 ˅ ˅ 

DFR CLM0309 23.10535 121.2724 585 ˅ ˅ 

DFR CLM0310 23.10518 121.2723 587 ˅ ˅ 

DFR CLM0311 23.10535 121.2724 585 ˅ ˅ 

DFR CLM0312 23.10502 121.2723 583 ˅ ˅ 

DFR CLM0313 23.10356 121.2724 587 ˅ ˅ 

DFR CLM0314 23.10245 121.2719 599 ˅  

DFR CLM0315 23.10211 121.272 599 ˅  

DFR CLM0316 23.10183 121.2725 589 ˅  

DFR CLM0317 23.10033 121.2759 597 ˅ ˅ 

DFR CLM0318 23.09964 121.2747 586 ˅  

DFR CLM0319 23.09905 121.2742 581 ˅ ˅ 

 

Genomic DNA used for different analyses is marked “˅” in the last two columns. 
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Table 2. SSR primer information. 

Primer Sequence (5' to 3') Chromosome*  Position* 

CIR436 
ATAAGCTCATATGGGTACAGTCACA 

CTGCAGCAACCAAATTTATTTCT 
1 

4917979 - 4918003 

4918057 - 4918080 

CIR276 
CTCCTCCATAGCCTGACTGC 

TGACCCACGAGAAAAGAAGC 
1 

13588759 - 13588778 

13588847 - 13588866 

CIR1113 
ACTCTCGCCCATCTTCATCC 

ACTTATTCCCCCGCACTCAA 
1 

28009948 - 28009967 

28010173 - 28010192 

Ma-3-132 
TCCCTCTTCAACCAAAGCAC 

AACGCGAATGTGTGTTTTCA 
2 

20365901 - 20365920 

20366041 - 20366060 

CIR646 
AACACCGTACAGGGAGTCAC 

GATACATAAGGCAGTCACATTG 
2 

23940966 - 23940985 

23941276 - 23941297 

Ma-1-17 
AGGCGGGGAATCGGTAGA   

GGCGGGAGACAGATGGAGT 
2 

24383391 - 24383408 

24383488 - 24383506 

CIR332a 
ATGACCTGTCGAACATCCTTT 

TCCCAACCCCTGCAACCACT 
3 

8978575 - 8978595 

8978831 - 8978848 

Ma-3-48 
CCCGTCCCATTTCTCA 

TTCGTTGTTCATGGAATCA 
5 

32672883 - 32672898 

32673018 - 32673036 

CIR631a 
ATTAGATCACCGAAGAACTC 

ATCTTTTCTTATCCTTCTAACG 
6 

33942751 - 33942770 

33943017 - 33943038 

CIR16a 
TCATCTCACAATGCTTTCATAGTT 

TGGTTGAGTAGATCTTCTTGTGT 
8 

1234609 - 1234632 

1234700 - 1234722 

Ma-3-103 
TCGCCTCTCTTTAGCTCTG 

TGTTGGAGGATCTGAGATTG 
8 

40127782 - 40127800 

40127910 - 40127929 

CIR348b 
ACAGAATCGCTAACCCTAATCCTCA 

CCCTTTGCGTGCCCCTAA 
10 

27228162 - 27228186 

27228325 - 27228342 

Ma-3-139 
ACTGCTGCTCTCCACCTCAAC 

GTCCCCCAAGAACCATATGATT 
10 

30237591 - 30237611 

30237717 - 30237735 

CIR550a 
ACCGCACCTCCACCTCCTG 

TGCTGCCTTCATCGCTACTA 
10 

31914219 - 31914237 

31914459 - 31914478 

 

Primer sequences were searched against the Musa acuminata DH-Pahang version 2 (38) 

on Banana Genome Hub (https://banana-genome-hub.southgreen.fr/). 

*The chromosome and position indicate locations on Musa acuminata where primer 

sequences were blast. 
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Table 3. Integrated presence-only data. 

No. Latitude Longitude No. Latitude Longitude 

1 24.68661 121.229 243 23.71152 120.7781 

2 24.62276 121.5501 244 23.71119 120.7779 

3 24.61333 121.5452 245 23.71077 120.7777 

4 24.60428 121.5336 246 23.71044 120.7775 

5 24.60427 121.5344 247 25.06747 121.7998 

6 24.60436 121.5348 248 25.07479 121.7955 

7 24.60446 121.5351 249 25.07419 121.7949 

8 24.60459 121.5355 250 25.07405 121.7958 

9 24.60463 121.5356 251 25.07177 121.7991 

10 24.60472 121.5357 252 24.91284 121.5428 

11 24.60475 121.536 253 23.70981 120.7767 

12 24.60499 121.5366 254 23.7099 120.7768 

13 24.60514 121.5373 255 23.71013 120.7766 

14 24.60526 121.5374 256 23.6949 120.7858 

15 24.58588 121.5148 257 23.69275 120.7858 

16 24.58469 121.5138 258 23.6935 120.786 

17 24.58422 121.5132 259 24.43272 121.7606 

18 24.58356 121.5129 260 24.43254 121.7614 

19 24.58336 121.5128 261 24.43244 121.7616 

20 24.58227 121.5124 262 24.4321 121.7619 

21 24.58163 121.5112 263 24.42486 121.7634 

22 24.58085 121.5106 264 24.42448 121.7636 

23 24.5802 121.5102 265 24.42392 121.7641 

24 24.61676 121.1546 266 24.4237 121.7643 

25 23.10835 121.2918 267 24.42345 121.7643 

26 24.83443 121.3905 268 24.42267 121.7625 

27 22.53487 120.9658 269 24.42248 121.7624 

28 24.62621 121.5546 270 24.42167 121.7629 

29 24.58401 121.5131 271 24.42145 121.763 

30 24.58374 121.5129 272 24.42121 121.7629 

31 24.5814 121.511 273 23.90632 121.493 

32 24.55402 121.5079 274 23.90623 121.4928 

33 24.55415 121.5082 275 23.90616 121.4927 

34 24.55403 121.5089 276 23.90581 121.4921 

35 24.55385 121.5091 277 23.90578 121.4916 
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36 24.55383 121.5091 278 23.90563 121.491 

37 24.553 121.5095 279 23.90447 121.4888 

38 24.55218 121.5093 280 23.90456 121.4885 

39 24.55209 121.5093 281 23.90492 121.4872 

40 24.55144 121.5091 282 23.90471 121.487 

41 24.55002 121.5083 283 23.90449 121.4869 

42 24.54913 121.5116 284 23.90413 121.4869 

43 24.54861 121.5119 285 23.90386 121.4868 

44 24.54733 121.5124 286 23.90352 121.4865 

45 24.54612 121.5128 287 23.90318 121.4863 

46 24.54621 121.5126 288 23.40875 121.4504 

47 24.54486 121.5126 289 23.40884 121.4503 

48 24.54485 121.5126 290 23.40958 121.4497 

49 24.54467 121.5125 291 23.40979 121.4493 

50 24.54452 121.512 292 23.40993 121.4491 

51 24.5444 121.5117 293 23.41069 121.4481 

52 24.54408 121.5113 294 23.41058 121.4492 

53 24.53878 121.5219 295 23.41058 121.4495 

54 24.5399 121.5126 296 23.41057 121.4486 

55 24.53934 121.5122 297 23.40839 121.4504 

56 24.53912 121.512 298 23.40854 121.4493 

57 24.53962 121.5119 299 23.40887 121.4481 

58 24.54018 121.5123 300 23.40959 121.4467 

59 24.54005 121.5122 301 23.4097 121.4466 

60 24.53983 121.5121 302 23.40996 121.4461 

61 24.53953 121.5119 303 23.10971 121.2745 

62 24.53922 121.5119 304 23.10958 121.2746 

63 24.57036 121.4993 305 23.10758 121.2752 

64 24.57036 121.4993 306 23.10752 121.2751 

65 24.56993 121.4996 307 23.10535 121.2724 

66 24.5691 121.4996 308 23.10518 121.2723 

67 24.56832 121.4994 309 23.10535 121.2724 

68 24.33525 120.7853 310 23.10502 121.2723 

69 24.33484 120.7858 311 23.10356 121.2724 

70 24.69913 121.1537 312 23.10245 121.2719 

71 24.69826 121.1529 313 23.10211 121.272 

72 24.69789 121.1528 314 23.10183 121.2725 

73 24.69782 121.1527 315 23.10033 121.2759 
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74 24.6978 121.1527 316 23.09964 121.2747 

75 24.69766 121.1526 317 23.09905 121.2742 

76 24.69748 121.1525 318 23.27941 121.3464 

77 24.69743 121.1525 319 24.71341 121.1137 

78 24.69688 121.1514 320 24.71137 121.1147 

79 24.69683 121.1511 321 23.76997 120.9408 

80 24.69682 121.1509 322 23.4855 120.7572 

81 24.69658 121.1506 323 24.41948 121.7631 

82 23.71032 120.7774 324 24.01298 121.544 

83 23.71002 120.7773 325 23.82657 121.4252 

84 23.70981 120.7771 326 24.00425 121.5369 

85 23.70994 120.7773 327 23.97538 121.5355 

86 23.69081 120.7853 328 23.99935 121.433 

87 23.69314 120.786 329 23.92911 121.4947 

88 23.69323 120.786 330 23.83699 121.4226 

89 23.69354 120.7859 331 23.81386 121.542 

90 23.69405 120.786 332 24.89776 121.5705 

91 23.69422 120.7859 333 24.84946 121.579 

92 23.69435 120.7859 334 24.78193 121.5047 

93 23.6949 120.7858 335 24.77708 121.482 

94 23.69512 120.7858 336 24.47827 121.4209 

95 23.67361 120.7866 337 24.48819 121.4334 

96 23.67358 120.786 338 24.4858 121.4256 

97 23.67349 120.7855 339 24.60777 121.4866 

98 23.67338 120.7855 340 24.60417 121.4961 

99 23.67313 120.7851 341 24.60772 121.5033 

100 23.67279 120.7849 342 24.67661 121.3562 

101 23.67266 120.7846 343 24.79827 121.3201 

102 23.67251 120.7844 344 24.27296 120.9119 

103 23.6725 120.7843 345 24.24832 120.9186 

104 23.6724 120.7837 346 24.25119 120.9177 

105 23.67226 120.7834 347 24.24724 120.9111 

106 23.66741 120.7717 348 23.89392 120.9 

107 23.66883 120.7715 349 24.01224 121.0711 

108 23.66951 120.771 350 24.10386 120.853 

109 23.6714 120.7726 351 24.15118 120.8077 

110 23.67186 120.7728 352 23.70394 120.6345 

111 23.67161 120.7729 353 23.7018 120.6324 



doi:10.6342/NTU201903254

88 

 

112 23.67278 120.7729 354 24.419 120.742 

113 23.67284 120.7731 355 22.66975 120.6877 

114 23.67229 120.7734 356 22.66933 120.6946 

115 23.67239 120.7733 357 22.68218 120.6813 

116 24.7813 121.3587 358 22.26229 120.8496 

117 22.24463 120.835 359 22.25786 120.842 

118 22.2448 120.8353 360 22.25378 120.8415 

119 22.24513 120.8367 361 24.71359 121.6514 

120 22.24495 120.8369 362 24.70048 121.6119 

121 22.24407 120.8394 363 24.70383 121.6407 

122 22.24326 120.8508 364 24.63892 121.5546 

123 22.24332 120.8509 365 24.62729 121.5205 

124 22.23958 120.8575 366 24.61627 121.6367 

125 23.10148 120.6869 367 25.03128 121.7968 

126 22.15934 120.824 368 25.25787 121.5979 

127 22.1873 120.8756 369 23.87936 121.4902 

128 22.23862 120.8575 370 23.7606 121.4382 

129 22.23865 120.8576 371 23.75373 121.4238 

130 22.23777 120.8584 372 23.70575 121.3924 

131 22.23735 120.8599 373 23.66266 121.4065 

132 22.22688 120.8679 374 23.57077 121.3575 

133 22.20977 120.8643 375 23.48988 121.3267 

134 22.19893 120.8514 376 23.4399 121.3355 

135 22.18587 120.8609 377 23.37335 121.3177 

136 24.56884 121.4995 378 23.40048 121.3092 

137 24.56705 121.4993 379 23.2742 121.2543 

138 24.56662 121.4992 380 23.22564 121.2604 

139 24.56639 121.499 381 25.12625 121.6534 

140 24.56558 121.4989 382 25.14488 121.6787 

141 24.3352 120.7832 383 22.66763 120.6996 

142 24.33541 120.7844 384 22.66913 120.6968 

143 24.33551 120.7847 385 24.45524 120.8581 

144 24.335 120.7859 386 22.94361 121.1051 

145 24.33525 120.7863 387 22.94061 121.1172 

146 24.33532 120.7864 388 22.71047 120.996 

147 24.33541 120.7866 389 22.58201 120.9731 

148 24.33584 120.7867 390 22.48514 120.9172 

149 24.33591 120.787 391 22.3718 120.8889 
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150 24.33642 120.787 392 22.41534 120.8489 

151 24.33632 120.7869 393 23.12748 121.3481 

152 22.19621 120.8793 394 23.25711 121.3837 

153 24.55218 121.5093 395 23.40548 121.4338 

154 23.69366 120.7859 396 23.40858 121.4493 

155 23.67337 120.7854 397 24.9355 121.6568 

156 25.06671 121.8001 398 23.47265 121.4809 

157 25.06686 121.7993 399 23.48579 121.4741 

158 25.06638 121.7985 400 23.49765 121.4228 

159 25.0666 121.8002 401 23.6107 121.5071 

160 25.07073 121.7995 402 23.62768 121.4993 

161 25.07183 121.7987 403 23.72981 121.508 

162 25.07218 121.7985 404 24.7813 121.3587 

163 25.07243 121.7977 405 24.61676 121.1546 

164 25.07242 121.7974 406 24.83443 121.3905 

165 24.92046 121.5115 407 22.53487 120.9658 

166 24.91049 121.511 408 24.62621 121.5546 

167 24.90145 121.4978 409 24.89618 121.3949 

168 24.88384 121.5023 410 25.02319 121.7706 

169 24.88383 121.5022 411 25.08722 121.793 

170 24.8836 121.5021 412 25.0837 121.7861 

171 24.88337 121.5019 413 24.41998 121.732 

172 24.88313 121.5016 414 24.04696 120.8066 

173 24.88312 121.5016 415 24.03439 120.7803 

174 24.88293 121.5013 416 24.03537 120.7765 

175 24.88292 121.5013 417 24.03548 120.7741 

176 24.88273 121.5009 418 24.03764 120.7646 

177 24.88411 121.5029 419 24.03696 120.7625 

178 24.88415 121.503 420 24.03749 120.7623 

179 24.88478 121.5036 421 24.05166 120.7794 

180 24.08425 120.7876 422 24.05164 120.7654 

181 24.08309 120.7981 423 23.31425 120.5017 

182 24.08274 120.8001 424 23.37682 120.5904 

183 24.08266 120.8002 425 23.34793 120.6195 

184 24.08261 120.8006 426 24.0345 120.7797 

185 24.08269 120.8008 427 23.36246 120.6193 

186 24.08258 120.803 428 23.36383 120.6184 

187 24.08212 120.8043 429 23.36494 120.6177 
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188 24.0813 120.8074 430 23.36514 120.6166 

189 24.08134 120.8074 431 23.36345 120.6143 

190 24.08167 120.8086 432 23.3645 120.6149 

191 24.08164 120.809 433 23.36513 120.6155 

192 24.0817 120.8079 434 23.36287 120.6108 

193 24.07969 120.8079 435 23.36187 120.6107 

194 24.08017 120.8076 436 24.05237 120.981 

195 23.45159 120.6137 437 24.15331 120.8126 

196 23.45215 120.6137 438 24.09865 120.8119 

197 23.45241 120.6131 439 24.09013 120.8081 

198 23.45244 120.6126 440 22.57301 120.6583 

199 23.45226 120.6121 441 23.06605 121.3017 

200 23.45219 120.612 442 23.07139 121.3015 

201 23.45212 120.6118 443 23.36184 120.5806 

202 23.45205 120.611 444 24.65611 121.5847 

203 23.45214 120.6108 445 24.60462 121.5079 

204 23.45285 120.6111 446 24.89542 121.7266 

205 23.45362 120.6114 447 24.64151 121.5608 

206 23.45357 120.6115 448 24.64151 121.5608 

207 24.69311 121.1451 449 24.64151 121.5608 

208 22.56724 120.6454 450 25.00026 121.9923 

209 22.56481 120.6465 451 23.36814 120.611 

210 22.5657 120.6475 452 23.10867 121.2933 

211 22.56364 120.6456 453 22.2036 120.7424 

212 22.56276 120.6452 454 23.09963 121.2727 

213 22.56327 120.6443 455 23.10564 121.2729 

214 22.56226 120.6449 456 23.36814 120.611 

215 22.57957 120.6505 457 23.43363 120.6398 

216 22.58491 120.6484 458 23.43369 120.6154 

217 23.7413 120.7367 459 24.5852 121.033 

218 23.74138 120.7367 460 24.68691 121.2287 

219 23.74167 120.7367 461 24.24274 120.9116 

220 23.7425 120.7396 462 24.49218 121.429 

221 23.74263 120.7394 463 24.74367 121.3465 

222 23.74267 120.7393 464 24.76854 121.142 

223 23.74279 120.7391 465 24.83851 121.4095 

224 23.74288 120.739 466 24.84268 121.4 

225 23.74294 120.7388 467 24.83341 121.4083 
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226 23.74293 120.7379 468 24.83184 121.4078 

227 23.74281 120.7376 469 24.8344 121.3892 

228 23.74211 120.7368 470 24.83456 121.39 

229 23.72787 120.7618 471 24.83449 121.3907 

230 23.72796 120.7621 472 24.83418 121.3908 

231 23.72797 120.7622 473 25.23869 121.5571 

232 23.72816 120.7623 474 25.20907 121.5902 

233 23.72826 120.7627 475 25.23856 121.5569 

234 23.72807 120.7634 476 24.84671 121.5447 

235 23.72796 120.7637 477 24.84702 121.5508 

236 23.72799 120.7643 478 24.83947 121.5331 

237 23.72785 120.7644 479 24.95613 121.7872 

238 23.72775 120.7652 480 24.97453 121.9266 

239 23.72776 120.7655 481 25.04844 121.7878 

240 23.71015 120.7792 482 24.83642 121.6528 

241 23.71089 120.7789 483 24.94826 121.7925 

242 23.71158 120.7786 - - - 

 

Presence-only data incorporates collection data and Google Street view data, resulting in 

483 occurrence points. 
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Table 4. Population coordinates and bioclimatic information. 

Site Latitude Longitude BIO1 BIO2 BIO3 BIO7 BIO12 BIO15 BIO16 BIO17 BIO19 

TPS300 24.60488 121.5359 208 63 35 180 2970 46 1223 364 364 

TPS400 24.58135 121.5124 194 65 36 177 2769 50 1145 301 301 

TPS500 24.56765 121.4992 199 65 36 179 2763 50 1142 299 299 

TPS600 24.55172 121.509 193 65 36 176 2709 51 1124 289 289 

TPS700 24.54638 121.5125 185 65 37 174 2699 49 1107 302 302 

TPS900 24.54021 121.5126 178 66 38 173 2757 46 1110 336 336 

XT400 23.74292 120.7386 217 77 42 180 2468 86 1395 87 127 

XT500 23.7278 120.7641 206 77 44 173 2600 84 1420 97 141 

XT700 23.71137 120.7782 199 77 45 169 2412 83 1311 94 138 

XT900 23.69294 120.7857 189 77 47 162 2357 83 1287 97 145 

XT1200 23.67333 120.7854 176 77 48 159 2478 82 1346 97 148 

XT1500 23.66936 120.771 160 78 48 160 2637 81 1402 98 149 

C35H 24.69907 121.1528 202 65 34 188 2500 55 1073 192 289 

WFL 25.06752 121.7998 203 58 31 185 3440 29 1229 606 749 

THNL 24.08273 120.8021 212 74 40 184 2188 83 1220 78 138 

PTWT 22.58684 120.6489 227 78 49 158 2912 98 1784 79 87 

P199H 22.24302 120.8465 223 73 50 144 3114 92 1856 178 178 

MLLYT 24.33526 120.7864 211 71 37 190 2056 76 1084 79 148 

HDPG 24.88347 121.5019 197 62 33 185 3201 37 1201 475 475 

TTL 23.4523 120.6134 215 79 45 174 3515 98 2154 81 123 

NAJY 24.43352 121.7602 216 62 35 174 2860 61 1328 271 296 

HLCN 23.90623 121.4928 213 68 40 168 2127 46 849 251 255 

NXIR 23.40887 121.4503 227 71 43 163 2147 57 938 211 211 

DFR 23.10356 121.2724 206 75 48 155 2017 68 1026 166 166 
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Table 5. MaxEnt permutation importance. 

Variable Permutation importance 

BIO1 36.7 

BIO17 27.3 

BIO12 9.4 

BIO19 7.5 

BIO3 6.9 

BIO15 5.8 

BIO16 3.8 

BIO2 1.4 

BIO7 1.2 

 

Permutation importance is determined by randomly permuting the values of that variable 

among the training points and measuring the resulting decrease in training predictive 

power. A large value indicates that the model depends heavily on that variable. 
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Table 6. SNP composition. 

Variable 
Non-adaptive  

NM 

Non-adaptive  

SV 

Adaptive  

NM 

Adaptive  

SV 
p-value Odds ratio 

BIO1 317,505 931,458 982 6,949 < 2.2e-16 2.41212 

BIO2 317,411 930,311 1,076 8,096 < 2.2e-16 2.56716 

BIO3 317,719 930,983 768 7,424 < 2.2e-16 3.29897 

BIO7 317,802 931,072 685 7,335 < 2.2e-16 3.65496 

BIO12 317,625 931,349 862 7,058 < 2.2e-16 2.79239 

BIO15 317,242 928,623 1,245 9,784 < 2.2e-16 2.68472 

BIO16 318,069 934,612 418 3,795 < 2.2e-16 3.08977 

BIO17 317,614 932,066 873 6,341 < 2.2e-16 2.47512 

BIO19 317,663 932,429 824 5,978 < 2.2e-16 2.47161 

 

The number of four sets of SNPs is recorded. New mutation is abbreviated as NM; 

standing variation is abbreviated as SV. Statistical significance from χ2 test is shown for 

each bioclimatic variable. Odds ratio is calculated as (“adaptive SV” / “adaptive NM”) / 

(“non-adaptive SV” / “non-adaptive NM”). 
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Table 7. SNP composition (controlled for minor allele frequency). 

Variable 
Non-adaptive  

NM 

Non-adaptive  

SV 

Adaptive  

NM 

Adaptive  

SV 
p-value Odds ratio 

BIO1 51,405 253,881 293 2,518 < 2.2e-16 1.74006 

BIO2 26,893 145,492 147 1,050 0.001831 1.3203 

BIO3 45,243 229,020 229 2,642 < 2.2e-16 2.27916 

BIO7 47,029 236,530 227 2,750 < 2.2e-16 2.40872 

BIO12 42,821 219,108 270 2,464 < 2.2e-16 1.78351 

BIO15 37,778 197,032 392 2,545 6.41e-05 1.24481 

BIO16 38,733 201,947 142 1,253 2.49e-09 1.69241 

BIO17 13,755 70,721 75 603 0.000296 1.56375 

BIO19 12,625 65,198 48 422 0.000532 1.70243 

 

The number of four sets of SNPs whose minor allele frequency (MAF) ranges from the 

first quantile of adaptive MAF to the third quantile of non-adaptive MAF separately for 

each bioclimatic variable is recorded. New mutation is abbreviated as NM; standing 

variation is abbreviated as SV. Statistical significance from χ2  test is shown for each 

bioclimatic variable. Odds ratio is calculated as (“adaptive SV” / “adaptive NM”) / (“non-

adaptive SV” / “non-adaptive NM”). 
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Table 8. Significance test for allele frequency distribution within the novel and 

ancestral environmental range. 

Variable Novel Ancestral p-value 

BIO1 0.412705 0.391079 0.00639 

BIO2 0.53879 0.384593 1.33e-15 

BIO3 0.533299 0.45664 2.45e-05 

BIO7 0.502003 0.450798 0.004346 

BIO12 0.456482 0.482977 0.1015 

BIO15 0.471812 0.449859 0.000116 

BIO16 0.430376 0.45188 0.212893 

BIO17 0.571548 0.343989 1.34e-28 

BIO19 0.603138 0.340112 1.19e-26 

 

The averaged frequency of newly mutated alleles within the novel and ancestral 

environmental range in Taiwan is recorded. Statistical significance from paired t-test is 

shown for each bioclimatic comparison between the novel and ancestral environmental 

range. 
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Table 9. Significance test for Bayenv Bayes factor distribution. 

Variable NM (rank)  SV (rank)  p-value 

BIO1 3,806.171 3,988.586 0.019432 

BIO2 5,085.828 4,520.137 4.36e-11 

BIO3 3,880.061 4,118.89 0.00771 

BIO7 3,741.818 4,035.592 0.00149 

BIO12 3,874.063 3,971.057 0.239722 

BIO15 6,255.701 5,420.747 2.56e-18 

BIO16 2,212.05 2,095.429 0.062812 

BIO17 3,975.735 3,556.803 2.44e-08 

BIO19 3,662.596 3,365.511 4.64e-05 

 

The average of ranked Bayes factor of adaptive new mutation (NM) and standing 

variation (SV) is recorded. Statistical significance from Wilcoxon rank sum test is shown 

for each bioclimatic comparison between NM and SV. 
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Table 10. Significance test for Gradient Forest r2 importance and slope distribution. 

 r2 Slope 

Variable NM  SV  p-value NM  SV  p-value  

BIO1 0.20225 0.23771 2.66e-05 0.13242 0.16355 6.56e-14 

BIO2 0.41309 0.36337 2.47e-14 0.2671 0.23895 6.38e-19 

BIO3 0.28392 0.28256 0.89344 0.19906 0.19133 0.13266 

BIO7 0.15727 0.19032 2.88e-05 0.1325 0.14948 1.29e-05 

BIO12 0.32996 0.31662 0.12053 0.20024 0.19491 0.13391 

BIO15 0.49811 0.40632 2.97e-30 0.2897 0.24879 1.60e-32 

BIO16 0.30961 0.29408 0.25876 0.19231 0.189 0.51441 

BIO17 0.5378 0.43781 4.84e-19 0.30059 0.26587 2.50e-13 

BIO19 0.45297 0.34754 2.67e-28 0.27773 0.23629 8.23e-22 

 

The averaged r2 importance and slope of adaptive new mutation (NM) and standing 

variation (SV) are recorded. Statistical significance from Welch two sample t-test is 

shown for each bioclimatic comparison between NM and SV. 
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Table 11. SNP composition for the future. 

Variable 
Disruption  

NM 

Disruption  

SV 

Retention  

NM 

Retention  

SV 
p-value Odds ratio 

BIO1 106 623 171 1,132 0.4091 1.12634 

BIO2 45 363 389 1,969 0.006335 0.62748 

BIO3 29 261 150 2,246 0.0222 1.6637 

BIO7 37 243 162 2,359 4.66e-05 2.21722 

BIO12 76 470 163 1,482 0.01155 1.4702 

BIO15 47 355 555 2,864 0.02192 0.6832 

BIO16 41 274 29 233 0.5584 1.20224 

BIO17 46 345 236 1,105 0.007549 0.62429 

BIO19 34 352 111 424 1.46e-06 0.36896 

 

The number of four sets of SNPs under future scenarios is recorded. New mutation is 

abbreviated as NM; standing variation is abbreviated as SV. Statistical significance from 

χ2 test is shown for each bioclimatic variable. Odds ratio is calculated as (“retention SV” 

/ “retention NM”) / (“disruption SV” / “disruption NM”). 
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Table 12. Significance test for Gradient Forest r2 importance and slope distribution 

(controlled for minor allele frequency). 

 r2 Slope 

Variable NM  SV  p-value NM  SV  p-value  

BIO1 0.19737 0.21328 0.23039 0.16593 0.17117 0.42363 

BIO2 0.42462 0.38436 7.93e-10 0.28673 0.26359 2.85e-13 

BIO3 0.33661 0.33365 0.8402 0.23496 0.22597 0.21744 

BIO7 0.15572 0.2014 2.66e-06 0.14358 0.16534 8.91e-06 

BIO12 0.3322 0.32251 0.42739 0.21776 0.2142 0.50127 

BIO15 0.57536 0.49643 2.38e-18 0.33311 0.29867 1.70e-21 

BIO16 0.23986 0.24695 0.61079 0.18398 0.18725 0.60515 

BIO17 0.5909 0.49654 1.13e-13 0.33493 0.29796 6.90e-13 

BIO19 0.48532 0.38889 2.37e-18 0.30343 0.2628 4.39e-18 

 

The averaged r2 importance and slope of adaptive new mutation (NM) and standing 

variation (SV) whose minor allele frequency ranks top 50 % in all adaptive SNPs are 

recorded. Statistical significance from Welch two sample t-test is shown for each 

bioclimatic comparison between NM and SV. 
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