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中文摘要 

此篇論文探討的是 Vasicek 雙因子模型的運用與如何用卡爾曼濾波器估計出多

因子利率模型的參數，並對 Libor 利率進行預測與檢測套利機會。過去的研究

大部分專注在如何推導公式及債券的定價模型理論。此篇論文將過去的利率模

型結合工程應用的卡爾曼濾波器，通過最小化預期誤差，推算出參數，從而利

用結果模型進一步預測市場利率的走勢。由於過去的研究鮮少提及模型的運用

和參數的運算，此篇論文的將會把詳細步驟一一列出介紹，並在附錄附上 R 

code 提供參考。利率走勢的預測不僅可讓交易者作為參考的指標，同時也供債

券持有金融機構等作為風險控制的一個工具。過去的風險管理工具不外乎 VaR, 

Expected Shortfall, 資本適足率等。此篇論文也將會探討 Vasicek 模型 如何與過

去風險管理工具結合並實踐到交易風險管理機制。 

論文分為四個部分。第一部分介紹固定收益市場與利率曲線的變化。第二部分

講述過去的研究並介紹 Vasicek 多因子模型與卡爾曼濾波器。第三部分會討論如

何運用模型與工程將參數推算出來並探討市場套利空間。第四部分則結合過去

風險管理工具提供一個全新的風險控管方法與概念。 

關鍵詞：固定收益，債券, Libor, 利率模型, 套利機會, Vasicek, 卡爾曼濾波器, 

風險管理, VaR, Expected Shortfall 
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Abstract

This paper examines the application of mathematical models such as affine models in

determining mispricing in yield curve, developing trading strategies and examining

its profitability. Reliable yield curve models can be very useful in predicting and

controlling risk in fixed income securities market. Most previous works focused

on deriving the mathematical model and formula with little discussion about the

detailed process in how to implementing the model. This paper presents a way to

summarize the theoretical and practical knowledge in applying the affine models

in exploring yield curve arbitrage, specifically combining Vasieck two-factor model

with an engineering signal processing tool, Kalman filter, to calibrate using the real

market rate data. The paper is organized as follows. The first section of this thesis

discusses the major concepts of fixed income markets such as zero coupon yield

curve, swap curve and arbitrage opportunities. The second section of this thesis

introduces two factor Vasicek short rate models and its implications. The third

section constructs trading methodology and examines its profitability. The fourth

section applies the model in combining with the risk management tools such as Value

at Risk and Expected Shortfall. The final section concludes this thesis.

2b
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Chapter 1

Introduction

1.1 Fixed income securities

Fixed income market is a financial market where all the fixed income securities,

range from simple products such as government and corporate bonds to complicated

products such as inflation linked securities, are traded. The financial market has

developed since few hundreds of years ago where all the people gather to borrow

and lend money. Today, the market has become more and more complicated, and

the products are getting sophisticated. The securities are affected by several types

of risks, and investors or financial institutions are therefore always eager to develop

a reliable model to control its portfolio risk.

Interest-rate risk is among many risk factors that would affect the price of

a fixed income security. Interest rate determines the price of borrowing or lending.

If the interest rate increases, investors expect a higher rate of return while the

borrowers expect a higher cost of borrowing. This tells us the opposite direction of

the movement of price of bonds against the interest rate, i.e., the market prices fall

while the interest rate increases and vice versa. A bond is a contract under which

the borrower (the issuer) writes to promise to pay the bondholder interest payments

(if any) periodically and principal (face value) on the maturity date. If there is no

interest payments, the bond is said to be a zero-coupon bond.

There are some other important risks such as credit risk, liquidity risk,
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and others. However, in this paper, we only study how the movement of interest

rates affect the price of the securities. For simplicity, the financial instrument that

we are going to demonstrate the calibration process and trading is the Libor (Lon-

don Interbank Offered Rate). The Libor is the average zero rate at which leading

banks borrow funds from other banks in the London market. The term ranges from

overnight to as long as 12 months.

1.2 Interest rate curves

Interest rate curve describes the term structure of interest rates, which is the re-

lationship between interest rates or bond yields and different terms or maturities.

Figure 1.1 below shows the line describing the relationship between the zero-coupon

interest rate and its term to maturity - the zero coupon yield curve. However, the

line does not stay stationary forever, and in fact, it changes all the time (see Figure

1.3). The zero coupon yield curve is only an instant snapshot of the term structure

of interest rates at a time.

Figure 1.1: Term structure of interest rates at a point in time (source: Bloomberg

Data)

8
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Figure 1.2: 3-month Libor price movement (source: Bloomberg Data)

Figure 1.3: Yield curve moves over time (source: Bloomberg Data)

In traditional literature of fixed income securities, Interest rate has been

assumed to be constant. Such assumption is acceptable when interest rate plays little

role in determining the price movement of fixed income securities, and the term

to maturity is short. However, with the advanced improvement, many securities

nowadays are strongly linked to movement of interest rates such as swaps, and it is

unrealistic to assume the interest rate to hold constant throughout the lifespan of a

bond. In the construction of valuation models, it is important to study how interest

rate curve moves over time. This is basically equal to the studies of the movement

of stock prices over time. There are several factors affecting the price movement

9
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of individual stocks such as price to earnings ratio, GDP growth and others. This

goes the same for interest rates by asking how much premium is considered fair

enough to be paid to the bond buyers? In this paper, we are exploring in a more

mathematical method under Black-Scholes valuation framework, with the condition

unlike stocks, that the bond price converges to par at maturity, affecting by the

stochastic movement of instantaneous rate of return on the bond itself.

1.3 Interest rate models

Term structure models could be divided into static models and dynamic models. Un-

der dynamic models, there are several generations of multi-factor models: 1. short

rate models (Vasicek (1977) (Vasicek, 1977), CIR (1985) (Cox et al., 1985), etc.

), 2. Heath-Jattow-Morton models (Hull & White (1993) (Hull and White, 1993),

Black-Derman-Toy (1990) (Black et al., 1990), etc.), and 3. Libor Market model

(Brace-Musiela-Gatarek (1997) (Brace et al., 1997), etc. ). This paper adopts the

most classic Vasicek short rate model which is a variation from its peer CIR short

rate model. CIR model does not allow negative interest rates which actually hap-

pens in some countries today. Empiricial studies of multi-factor models include

Stambaugh (1988) (Stambaugh, 1988), Heston (1993) (Heston, 1993), Chen & Scott

(1993) (Chen and Scott, 1993a), Duffie and Singleton (1999) (Duffie and Singleton,

1999). With cross-sectional interest rate data, one can calibrate the parameters of

the model. The result could vary depending on the model specification, time pe-

riod, and also calibration methods. The estimation and calibration methods include

methods based on: 1. Moments, 2. Likelihood function, and 3. Statistics, etc. The

aforementioned models and methods are summarized in tables below:

10
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Figure 1.4: Various term-structure models

Figure 1.5: Various calibration and estimation methods

In addition, there are different interest rate instruments for us to apply the

models and methods as mentioned. The popular products include swaps, swaptions,

bonds and other more complicated derivatives. As we can see, different combinations

could be formed between interest rate models and estimation methods in different

markets. Most papers only discuss the derivation of the underlying mathematical

theories, and sometimes it could be unrealistic or near impossible to be applied

in daily application considering the complexity and assumptions. Fitting the yield

curve is nevertheless the most common application of the model in the industry.

This paper, however, presents a step-by-step guideline from applying the theoreti-

cal results, specifically Vasicek model, estimating the parameters using the famous

Kalman filter method (Kalman, 1960), and predicting the movement of each term

11
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rates. We will also discuss how yield curve modeling can be applied to risk manage-

ment.

12
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Chapter 2

Short Rate Models

In this section, we assume the known models of stochastic movement of interest rate

called short rate models and derive the corresponding bond price formula. Short

rates are instantaneous rates of return on the bond. After the bond is issued, the

value of the bond changes over time until maturity. At every instant of time, changes

on the value of the bond is affected by the instantaneous return on the bond. We

denote the short rate as r(t), the yield that can be earned on a infinitesimally short

investment at time t.

2.1 Bond Pricing Formula

As defined above, r(t) is the short rate function of t, for time t ∈ [0,T], where T

is the maturity date of the bond. With known function of r(t), we can derive the

function of bond price, which can be written in a simple first order linear ordinary

differential equation as follows:

dP (t, T )
dt

+ k(t) = r(t)P (t, T ), t < T (2.1)

P (T, T ) = F (2.2)

where P (t, T ) is bond price, k(t) is instantaneous coupon rate, F = 1 is the par

value.

Solving the O.D.E above which requires multiplication of integrating factor together

13
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with the final condition (2.2), the bond price formula is given as follows:

P (t, T ) = e−
∫ T

t
r(s)ds [F +

∫ T

t
k(u)e

∫ T

u
r(s)dsdu] (2.3)

The above equation can been seen as the discounted value of the final redemp-

tion value of the bond plus the amount k(u)du received over the period, in which

e−
∫ T

t
r(s)ds is the discount factor. if k(t) = 0 for all t, the bond is called zero coupon

bond.

Zero rate or Spot rate of a bond is the internal rate of return earned by

an investor if he or she purchases the pure discount bond today and holds the bond

until maturity. Here, we denote z(t, T ) as the zero rate when the investor buys the

bond at time t and hold until maturity date T . Therefore,

z(t, T ) = − 1
T − t

lnP (t, T ) (2.4)

Zero rate normally increases with longer maturity, which draws the upward sloping

spot rate curve. However, there are some occasions when the curve is downward

sloping.

2.2 Vasicek Model of Short Rate

The rate of return on actual short investment period changes quickly and could be

unpredictable for most of the time. In one-factor short rate model setting, the in-

stantaneous short rate’s dynamic movement can be described by a stochastic process

in the following form:

dr(t) = µ(r, t)dt+ σ(r, t)dZ(t) (2.5)

where µ(r, t) is the instantaneous drift, σ(r, t) is the instantaneous variance of the

process of r(t) and Z(t) is the standard Wiener process.

Particularly for Vasicek model in our paper (Vasicek, 1977),

dz(t) = κ(θ − z)dt+ σdZ(t) (2.6)

The above process can be treated as a mean reversion process as the term κ(θ − z)

represents the effect of pulling the rate process back to its long-term mean θ with

14
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magnitude proportional to its deviation from the long-term mean. This makes sense

as rates tend to fluctuate around policy rate set by central bank.

Previous work has shown that the solution to the zero coupon bond price could be

written in the following analytical form: (Heston, 1993)

P (τ, z) = eA(τ)−B(τ)z (2.7)

where τ is the term to maturity, and

A(τ) = γ(B(τ)− τ)
κ2 − σ2B2(τ)

4κ (2.8)

B(τ) = 1
κ

(1− e−κτ ) (2.9)

γ = κ2(θ − σλ

κ
)− σ2

2 (2.10)

Moving forward to the two factor Vasicek model of short rate, we do the same as

above by writing the stochastic process:

dz(t) = dX1(t) + dX2(t) (2.11)

dX1(t) = κ1(θ1 −X1)dt+ σ1dZ1(t) (2.12)

dX2(t) = κ2(θ2 −X2)dt+ σ2dZ2(t) (2.13)

Here, the short rate r(t) is divided in the sum of two parts, capturing the movement

of short rate in a more detailed way. The solution to the zero coupon bond prices

under Vasicek two-factor model can be written in the following analytical form:

(Corzo Santamaria and Schwartz, 2000)

P (τ, z) = eA(τ)−B1(τ)X1−B2(τ)X2 (2.14)

A(τ) =
2∑
i=1

(γi(Bi(τ)− τ)
κ2
i

−σ
2
iB

2
i (τ)

4κi
)+ρσ1σ2

κ1κ2
(τ−B1(τ)−B2(τ)+ 1

κ1 + κ2
(1−e−(κ1+κ2)(τ)))

(2.15)

Bi(τ) = 1
κi

(1− e−κ+iτ ) (2.16)

γi = κ2
i (θi −

σiλi
κi

)− σ2
i

2 (2.17)

15
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2.3 Kalman Filter

In previous section, we have written out the Vasicek one and two factors model

explicitly in terms of the parameters ( θ, κ, σ, λ, ρ). The relationship between the

zero coupon bond prices and interest rate are linked to the parameters. However,

the theory does not tell us anything about the parameter set and how we should

determine the values. Parameter estimation is important because it can affect the

credibility of the model. There are several ways to calibrate the parameters in the

model, and we are going to introduce a methodology called Kalman filter to estimate

the values (Babbs and Nowman, 1999). Kalman filter has long been a powerful tool

especially in national defense or application such as GPS coordination to estimate

the true value as accurately as possible.

Kalman filter is named after Hungarian émigré Rudolf E. Kálmán. Kalman filter

was initially introduced to be implemented in the navigation systems of U.S. armed

forces system. Later, it had gained popularity in the affine term-structure litera-

ture by Duan and Simonato (1995) (Duan and Simonato, 1993), Geyer, Kossmeier

and Pichler (2004) (Geyer et al., 2004) and Babbs and Nowman (1999) (Babbs and

Nowman, 1999). Kalman filter is an iterative mathematical process that uses a set

of equations and consecutive data inputs to quickly estimate the true value of the

object being measured when the measured values contain unpredicted or random

error, uncertainty or variation.

16
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Figure 2.1: Kalman filter explanation flow chart

Kalman State-space Formulation

To apply Kalman filter, we need to construct a state-space formulation to describe

the relationship between observed values (zero coupon rate from the market) and

predicted values (values predicted by theory). In fact, we already have the formula

to show the transformation from the factor variables to zero coupon rate in previous

section, and we only need to write them out in the form of linear state-space matrices.

Combining equation 2.4 and 2.14, we obtain:

z(t, T ) = − 1
T − t

(A(τ)−B1(τ)X1 −B2(τ)X2) (2.18)

Consider multiple zero coupon rates with different term to maturity, the equation

could be written in the form of matrices:


z(ti, ti + τ1)

z(ti, ti + τ2)

.

.

z(ti, ti + τn)


=



−A(τ1)
τ1

−A(τ2)
τ2

.

.

−A(τn)
τn


+



−B1(τ1)
τ1

−B2(τ1)
τ1

−B1(τ2)
τ2

−B2(τ2)
τ2

.

.

−B1(τn)
τn

−B2(τn)
τn



x1(ti)

x2(ti)

 +



ε1(ti)

ε2(ti)

.

.

εn(ti)


(2.19)

17
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or equivalently,

z(ti) = D +Hx(ti) + ε(ti) (2.20)

where:

ε(ti) ∼ N(0, R) (2.21)

R =



h2 0 ... 0

0 h2 ... 0

...

0 0 ... h2


(2.22)

With our measurement system formulated, we now construct our transition system,

equation 2.12 and 2.13, into form of matrices. The stochastic differential equations

could be discretized by quite a few choices, and we use Euler scheme in this paper:x1(ti)

x2(ti)

 =

θ1(1− e−κ1δt)

θ2(1− e−κ2δt)

 +

e−κ1δt 0

0 e−κ2δt


x1(ti−1)

x2(ti−1)

 +

η1(ti)

η2(ti)

 (2.23)

where:

η(ti) ∼ N(0, Q) (2.24)

Q =


σ2

1
2κ1

(1− e2κ1(T−t)) ρσ1σ2
κ1 + κ2(1− e(κ1+κ2)(T−t)

ρσ1σ2
κ1 + κ2(1− e(κ1+κ2)(T−t) σ2

2
2κ2

(1− e2κ2(T−t))

 (2.25)

or equivalently,

x(ti) = C + Ex(ti−1) + η(ti) (2.26)

Equations 2.19 and 2.23 together represent the state-space form of two-factor Vasicek

model. N-factor can be constructed using a similar approach as shown above but

we will not show here due to its complexity.
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Chapter 3

Calibration and Trading

3.1 Kalman Recursive Algorithm

In this section, we will describe the steps to estimate the parameters. The idea is

basically by first observing the historical real Libor rates data (the observed values)

that are subject to noise error, for example bid-ask spreads or trading errors. The

Kalman filter is responsible for filtering away the unwanted noise and get us closer

to the true value. (Chen and Scott, 1993b)

Step 1: Setting the initial values

We initialize our state vector by setting the values to its unconditional mean:

E[x0] =

θ1

θ2

 (3.1)

and initial process covariance matrix, P0:

P0 = var[x0] =


σ2

1
2κ1

0

0 σ2
1

2κ1

 (3.2)

Step 2: Calculating predicted state and process covariance

matrix (Pi)

xi = E[xi|i−1] = C + E ∗ E[xi−1] (3.3)

Pkpi
= E ∗ Pi−1 ∗ ET +Q (3.4)
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Step 3: Calculating observed state

E[zi|i−1] = D +H ∗ E[xi|i−1] (3.5)

var[zi|i−1] = H ∗ Pkpi
∗HT +R (3.6)

Step 3: Estimating prediction error, ςi

ςi = zi − E[zi|i−1] (3.7)

Step 4: Calculating Kalman gain, Ki

Ki = Pkpi
∗HT ∗ var[zi|i−1]−1 (3.8)

Step 5: Updating state vector and process covariance matrix

for next iteration

E[xi|i] = E[xi|i−1] +Ki ∗ ςi (3.9)

Pi = (I −Ki ∗H) ∗ Pkpi
(3.10)

Final step: Maximizing likelihood function

L = −nNln(2π)
2 − 0.5

N∑
i=1

[ln(|var[zi|i−1]|) + ςTi var[zi|i−1]−1ςi] (3.11)

;OR

Final step: Minimizing absolute prediction error

L =
N∑
i=1
|ςi| (3.12)

where n is the number of different term to maturity, N is the number of data of

different dates for the iteration.
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3.2 Calibration using historical data

In this section, we calibrate our preceding models by using the live rates from Libor

market. (Duarte et al., 2006) The daily Libor rate data for this paper is from

Bloomberg database (1-mon Libor: US0001M Index, 3-mon Libor: US0003M Index,

6-mon Libor: US0006M Index, 12-mon Libor: US0012M Index). Unlike bond prices,

the data is available nice and neat, and therefore no effort is needed to clean the data.

I only consider 1-month 3-month 6-month and 12-month Libor to estimate the 10

parameters (θ1, κ1, σ1, λ1, θ2, κ2, σ2, λ2, ρ, h) of the model. The period for calibration

will be 100 days, approximately 4 months, which is long enough to capture the

movement of the parameters.

3.2.1 Example: The first 100 days

In our first example, the period is from 4 Jan 2010 to 21 May 2010. The summary

statistics of the historical data is shown in Figure 3.3 below.

(a) 1-month Libor (b) 3-month Libor

Figure 3.1: Historical data of Libor 1, 3-month, 2010 Jan - 2010 May (100 days)

(a) 6-month Libor (b) 12-month Libor

Figure 3.2: Historical data of Libor 6, 12-month, 2010 Jan - 2010 May (100 days)
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Parameters Values

θ1 0.00973812621

κ1 0.03448272329

σ1 0.03976446814

λ1 -0.14186613442

θ2 -0.01165157362

κ2 0.69590183998

σ2 0.05292650073

λ2 -0.46350055017

ρ 0.00764029563

h -0.00003192243

Table 3.1: Estimated parameters using Libor data

Figure 3.3: Statistical data of Libor 1, 3, 6, 12-month

After iterating over parameter values until the global minimum of the sum

of absolute errors is obtained, the resulting parameter estimates are shown in Table

3.1. With the parameter values, we again solve for the values of X1 and X2 by

estimate using the Vasicek model and Kalman filter. The estimated rates are shown

in Table 3.2. As we can see, our model shows us forward-looking results in a sense

that the estimated rates capture the trend and direction of the rates, rather than

just giving the mean or median of the sample period data (see Figure 3.3).
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Term Rates

1-month 0.3305679%

3-month 0.5077538%

6-month 0.7493960%

12-month 1.1599853%

Table 3.2: Estimated rates using estimated parameters

Sample Trading and results

This paper also proposes one approach with a yield curve arbitrage strategy that

examines the model’s ability to identify any latent mispricing. Following this intu-

ition, we could develop a trading strategy based on the ”mispricing” by going short

in the overvalued Libor rates (the Libor rates which are traded much higher than

the estimated model rates) and going long in the undervalued Libor rates (the Libor

rates which are traded much lower than the estimated model rates), or equivalently

taking long position in the corresponding bonds and taking short position in the cor-

responding bonds, respectively. The trading period is set 40 days after the 100-day

calibration period. A new set of parameters are estimated again after the 40-day

trading period.

During the 40-day trading period, we short any rates which are more than

5.5% away from the estimated rates. The percentage is calculated in such a way:

Distance = |True− Estimate|
True

(3.13)

To close the outstanding position in our portfolio, we trade in a different

direction when the rates are less than 3.5% away from the estimated rates. There

is no strict rule to set the barrier levels to be 5.5% or 3.5%; however, one possible

guideline here is that we could derive from the estimated volatility of the period

that we are trading. Following the suggestion above, we could expect a return of

approximately 2% for each closed transaction. We demonstrate our results in the

below sections.
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Portfolio:

The numbers are the price entered. Positive sign shows long position, negative sign

shows short position. The rows are 1-mon, 3-mon, 6-mon, 12-mon Libor, and the

column numbers are the nth day. The trading starts from the 101th day.

Figure 3.4: Price entered

Profit:

The numbers are the realized profits after the position is closed. The profit is

calculated as:

Profit = Closing Price− Sum of price entered
number of transactions (3.14)

Figure 3.5: Profit
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Percentage of return:

The number shows the percentage of return of each profit generated. The percentage

of return is calculated as:

Percentage of return = Profit
Sum of price entered

number of transactions

(3.15)

Figure 3.6: Percentage of return

To avoid confusion, take for example, on the 110th day, we make a profit

from 12-mon Libor of 0.0002757, which is a 2.25% of return in only ten days. The

result is quite amazing that the model has some ability to predict the movement of

rates.
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3.2.2 Example: A ten-year period (Libor)

The previous example shows the result for short period. In this example, we are

testing the performance of the above calibration method and the fitting strategy

for a longer period. The period we are testing is from January 2010 to April 2019.

Although we are looking into a longer period, the calibration period is still 100 days.

For the avoidance of doubt, the rates on the 101th day is based on the parameters

derived from the 100 days immediately preceding the 101th day. We continue this

process for the next day until April 2019 and plot the estimated rates together with

the historical rates. The results are shown in the figures below:

(a) 1-month Libor (b) 3-month Libor

Figure 3.7: Historical and fitted data of Libor 1, 3-month, 2010 Jan - 2019 Apr (100

days)

(a) 6-month Libor (b) 12-month Libor

Figure 3.8: Historical and fitted data of Libor 6, 12-month, 2010 Jan - 2019 Apr

(100 days)
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To look into more details, we plot the difference between historical real and

estimated data.

(a) 1-month Libor Historical minus Estimated (b) Summary stats (%)

Figure 3.9: 1-month Libor

(a) 3-month Libor Historical minus Estimated (b) Summary stats (%)

Figure 3.10: 3-month Libor
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(a) 6-month Libor Historical minus Estimated (b) Summary stats (%)

Figure 3.11: 6-month Libor

(a) 12-month Libor Historical minus Estimated (b) Summary stats (%)

Figure 3.12: 12-month Libor

28



doi:10.6342/NTU201902162

3.2.3 Example: A ten-year period (Taibor)

In our second example, we repeat the process in the previous example for the Taipei

Interbank Offered Rate (Taibor). The period we are testing is from January 2010 to

April 2019. The calibration period is 100 days. The results are shown in the figures

below:

(a) 1-month Taibor (b) 3-month Taibor

Figure 3.13: Historical and fitted data of Taibor 1, 3-month, 2010 Jan - 2019 Apr

(100 days)

(a) 6-month Taibor (b) 12-month Taibor

Figure 3.14: Historical and fitted data of Taibor 6, 12-month, 2010 Jan - 2019 Apr

(100 days)
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To look into more details, we plot the difference between historical real and

estimated data.

(a) 1-month Taibor Historical minus Estimated (b) Summary stats (%)

Figure 3.15: 1-month Taibor

(a) 3-month Taibor Historical minus Estimated (b) Summary stats (%)

Figure 3.16: 3-month Taibor

(a) 6-month Taibor Historical minus Estimated (b) Summary stats (%)

Figure 3.17: 6-month Taibor
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(a) 12-month Taibor Historical minus Estimated (b) Summary stats (%)

Figure 3.18: 12-month Taibor

As we can see in the above plots, the difference between historical and

fitted data could be huge when the rate started changing its direction (from station-

ary to upward or downward). The reason could be explained by the reluctance of

change in estimation because the model is designed to not to be affected much by

the ”temporary” deviation of rates from the mean value. However, when interest

rate policy changes, the change is no longer ”temporary”, and we should adjust

accordingly. The model might only be good enough to use during the period when

interest rate is stable. However, as in the case of Taibor, even during the period

when the rate is relatively stable, there is still difference between real and estimated

value. This is because the parameter set is calibrated using four rates at the same

time, and therefore movement of rates could affect one another. Having said that,

we could also adjust our error matrices and therefore Kalman gain in Kalman filter

to put more weight on the real data when estimating the rates.
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Chapter 4

Application in Risk Management

4.1 Value at Risk and Expected Shortfall

Yield curve risk management and risk measurement pertain to the practice of de-

termining the sensitivity of a portfolio of fixed income securities to the change of

yield curves. The purpose for predicting the movement of rates can be strategic or

tactical, offensive or defensive, depending the underlying objectives. Different quan-

titative risk measures have been proposed to provide a reliable approach to manage

risk of portfolio such as value at risk (VaR) and expected shortfall.

Little effort has been devoted in the research of combination of short rate

models and risk measures. Fortunately, in the paper of Song (2012) (Song et al.,

2012), the author combines the price formula, as specified above in equation 2.14,

with the definition of VaR, under defined probability space. Furthermore, the author

also takes expectation beyond calculated VaR to derive expected shortfall formula.

Figure 4.1: VaR formula under Vasicek model
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Figure 4.2: ES formula under Vasicek model

The numerical result is presented in a graph as shown in Figure 4.3 below.

The positive slope in the graph shows that higher risk evaluation corresponds to an

increase in the confidence level. Due to its mean-reverting property, the model is

a more conservative evaluation of risk, and thus any deviation from the mean or

sudden jump in the rate could result a huge expected loss. Nevertheless, the idea

allows portfolio managers especially managing fixed income securities to manage

their risk expectation more efficiently by the help of the models. Similar approaches

could also be applied to other short rate models.

Figure 4.3: ES and VaR driven by the Vasicek model

4.2 Term Structure Models with Jump

A jump process is introduced in our continuous model. The term structure models

with jump allows the short rate to have discrete movements, called jumps, with

random arrival times. This sometimes happens in country where the central bank

suddenly announces interest rate hike to strengthen its weakening currency. Re-
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search in this field has been carried out in several papers including Wu (2018) (Wu

and Liang, 2018) and Park (2006) (Park et al., 2006). The model could be repre-

sented in the following equation:

dr(t) = µ(r, t)dt+ σ(r, t)dZ(t) + Jdπ (4.1)

where jump size J is normal variable with its mean and standard deviation.

The model is time dependent. Factors such as conditions of economy,

inflation rate expectations, monetary policies and expected trends in other macroe-

conomic variables could affect the short rate movement. With jump factor in the

model, the model is more correctly specify to reflect the real situation. Unlike in our

case study of Taibor above, although the rate has been quite stable most of the time

with little movement, a sudden deviation from the mean could affect the parameters

and its predictability. Therefore, with an extra factor to capture the random arrival

of jump could help to increase the accuracy of the model.
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Chapter 5

Conclusion

As conclusion, this paper studies the yield curve arbitrage opportunities in the Libor

market by means of constructing a trading strategy based on Vasicek two-factor

model and Kalman filter. The first part of this paper focused on the theoretical

development of the different class of term-structure models. We first introduce the

single-factor model to describe the stochastic movement process of the short rate,

and later the two-factor model. The multi-factor model can be generalized in a

similar approach by Langetieg (1980) (Langetieg, 1980).

With the necessary model, we present the Kalman filter method to help

estimate the parameters and interest rates. The technique was selected due to its

flexibility to estimate true values between predicted and observed values, especially

when the observed values keep changing. Having estimated the required parameter

set and rates, we then apply it on the next pre-determined number of days to check

if there is any arbitrage opportunity.

This paper presents an introductory point on the possibility of using the

methodology proposed to manage risk or seek arbitrage profit from trading in the

market. The details, including the trading period, barrier levels, or the error matri-

ces in the model, could be tweaked accordingly to the underlying market sentiment.

Last but not least, it might worth further exploration of the possibilities of the

application for interest rate risk management analysis.
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Chapter 6

Appendix

6.1 R code for parameters calibration

library(MASS)

#Calibration

parameter = rep(0,10) # initialize parameters to be estimated

tau = c(1/12,3/12,6/12,1)

Ya = Libor_1_3_6_12

Y=Ya[,2:5]/100 #percentage to decimal

nocol = dim(Ya)[2] - 1 # exclude date column

para0 = c( 0.05, 0.06, 0.019, -0.189, 0.01, 0.7, 0.05, -0.504, -0.02,

0.001) # initial estimate

startrow = 1

norow=100

f = function(para) LLtwoVasicek(para,Y,tau,norow,nocol, startrow)

result = optim(par = para0, fn = f) #minimizing function

parameter = result$par
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LLtwoVasicek = {

function (para,Y, tau, norow, nocol, startrow)

{

#Initialize the parameters for Vasicek model

theta1=para[1]

kappa1=para[2]

sigma1=para[3]

lambda1=para[4]

theta2=para[5]

kappa2=para[6]

sigma2=para[7]

lambda2=para[8]

rou = para[9]

h = para[10]

#initialize Error Variance to diagonal matrix

R = diag(nocol)

for(i in 1:nocol)

{

R[i,i] = hˆ2

}

dt = 1/360

#Predicted state Matrices Initialization, y = C + Ey + error

C = matrix( c(theta1*(1-exp(-kappa1*dt)),theta2*(1-exp(-kappa2*dt

))), nrow =2, ncol = 1, byrow = TRUE)
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E = matrix( c(exp(-kappa1*dt),0 , 0,exp(-kappa2*dt)), nrow =2,

ncol = 2, byrow = TRUE);

# Observation state affine Matrices Initialization, z = D + Hy +

error

D = matrix( 0, nrow = nocol, ncol = 1, byrow = TRUE)

H = matrix( 0, nrow = nocol, ncol = 2, byrow = TRUE)

for (i in 1:nocol) # System Matrices are made for each tau

{

gamma1 = kappa1ˆ2 * (theta1 - sigma1*lambda1 / kappa1) - sigma1

ˆ2/2

gamma2 = kappa2ˆ2 * (theta2 - sigma2*lambda2 / kappa2) - sigma2

ˆ2/2

B1 = (1-exp(-kappa1 * tau[i])) / kappa1

B2 = (1-exp(-kappa2 * tau[i])) / kappa2

Aaa = gamma1*(B1 - tau[i]) / kappa1ˆ2 - sigma1ˆ2 * B1ˆ2/ (4*

kappa1)

Aab = gamma2*(B2 - tau[i]) / kappa2ˆ2 - sigma2ˆ2 * B2ˆ2/ (4*

kappa2)

Ab = rou * sigma1 * sigma2 * (tau[i] - B1 - B2 + (1-exp(-(

kappa1 + kappa2)*tau[i]))/(kappa1 + kappa2) ) / (kappa1*

kappa2)

A = Aaa + Aab + Ab

D[i,1]= -A / tau[i]

H[i,1]= -B1 / tau[i]
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H[i,2]= -B2 / tau[i]

}

## Kalman filter

# Initialization

initx=matrix( c(theta1,theta2), nrow = 2, ncol =1, byrow = TRUE);

initV=matrix( c( (sigma1ˆ2)/(2*kappa1), (rou*sigma1*sigma2)/(

kappa1 + kappa2), (rou*sigma1*sigma2)/(kappa1 + kappa2), (

sigma2ˆ2)/(2*kappa2)), nrow =2, ncol =2, byrow = TRUE)

# Starting values

AdjS=initx

VarS=initV

LL= matrix(0, nrow = (startrow + norow), ncol =1, byrow = TRUE) #

minimizing function initialization

for(i in startrow:(startrow + norow))

{

PredS = C+E%*%AdjS

Q= matrix( c( sigma1ˆ2*(1-exp(-2*kappa1*dt))/(2*kappa1), (rou*

sigma1*sigma2*(1-exp(-(kappa1 + kappa2)*dt)))/(kappa1 +

kappa2),

(rou*sigma1*sigma2*(1-exp(-(kappa1 + kappa2)*dt)))

/(kappa1 + kappa2), sigma2ˆ2*(1-exp(-2*kappa2*

dt))/(2*kappa2) ), nrow =2, ncol=2, byrow =

TRUE)

VarS=E%*%VarS%*%t(E)+Q
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# Step 2

PredY=D+H%*%PredS

VarY=H%*%VarS%*%t(H)+R

# Step 3

PredError=t(Y[i, ])-PredY # difference between predicted and

observed

InvVarY=ginv(VarY)

KalmanGain=VarS%*%t(H)%*%InvVarY

AdjS=PredS+KalmanGain%*%PredError #update for the next

iteration

#LL[i]=as.numeric(-(nocol/2)*log(2*pi)-0.5*log(det(VarY))-0.5*

t(PredError)%*%InvVarY%*%PredError)

LL[i] = abs(mean(PredError))

VarS=(diag(2)-KalmanGain%*%H)%*%VarS #update for the next

iteration

}

sumll= sum(LL)

return(sumll)

}

}
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