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摘要 

     自區塊鏈問世以來，大眾對隱私的擔憂不斷提升。同時，密碼學的相關發展，如多方

計算（MPC）、零知識證明和同態加密等，為閾值密碼學發展奠定了穩固基礎。本研究

深入討論兩種主要類型的閾值 ECDSA，並以演算法為例進行驗證。此外，根據回合數 、

傳輸量以及計算量，對兩種算法進行全面性比較。另一方面，本研究進一步探討閾值加密

技術的各種應用，包括 TOPRF、TPPSS以及雲端計算中的各種應用。 

 

 

關鍵詞：閾值密碼學，多方計算，ECDSA，同態加密，雲端計算 
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Abstract 

     Ever since the emergence of blockchain, the concerns to privacy have been rising among the 

public. Meanwhile, the advancements of cryptography, such as MPC (Multi Party Computation), 

zero-knowledge proof, and homomorphic encryption, etc., pave a consolidated foundation for the 

threshold cryptography development. In this study, two major types of threshold ECDSA were 

discussed in depth, and each of them was testified via an algorithm as an example. In addition, the 

two algorithms were also compared comprehensively based on the number of rounds, the amount 

of transmission, and the amount of calculation. Furthermore, various applications of threshold 

cryptography, including TOPRFs, TPPSS, and a variety of applications in cloud computing, were 

also explored in this study.  

 

 

Key words: threshold cryptography, MPC, ECDSA, homomorphic encryption, cloud computing 
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Chapter 1. Introduction 

     Threshold cryptography is a technique that requires the number of participants to reach the 

threshold in order to sign or verify a message, and encrypt or decrypt data. To be more specific, t-

out-of-n threshold represents any t (including above) participants can perform actions. Meanwhile, 

t-1 (or fewer) participants have little authorities, and they are not allowed to obtain any information 

about signing, verifying, encrypting or decrypting. The concept of threshold cryptography was 

first proposed by Adi Shamir in "How to share a secret" in 19791. He indicated that, in the 

traditional scenario, cryptography consisted of one sender, one receiver, and an active or passive 

eavesdropper who was an opponent. However, the situation may be complex when a scenario with 

multiple transmitters or multiple receivers is considered. For example, a procurement department 

of a multinational company requires two supervisors to sign and agree to proceed the purchasing 

process. In this case, two transmitters will be included in such scenario. In order to cope with this 

issue, the study of threshold cryptography has been increasingly thriving2-7. The National Institute 

of Standards and Technology (NIST) is also interested in the subfield of cryptography, and the 

institute released a series of reports to address its position on the threshold field8. NIST also held 

a threshold workshop in March 2019, which will be further described in a following chapter. 

     Among all the characteristics of threshold cryptography, the ability of ruling out single points 

of failure is worth noting. One can grasp the concept of single point of failure by borrowing the 

motto of the American Navy SEAL: ‘Two is one, one is none.’ In other words, two sets of 

equipment are usually prepared, while in fact only one set is accessible because one of them may 

malfunction at any time. If only one set is prepared, however, it means there is no equipment 

available at all. This motto best describes the concept of single point of failure. In the real word, a 

magnificent system can also be completely shut down due to a node failure. As what Yvo C. 
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Desmedt describe2, there are only one transmitter and one receiver for traditional cryptography 

considerations. For instance, when it comes to the private key of Bitcoin, there is only one private 

key available. If the owner of the account loses the private key, the account can no longer be 

accessed. If threshold signature is applied, however, it is possible to allow the account to be 

accessed in cases where at most (n - t) the private key is lost.  

     In the Chapter 2, various tools used in threshold cryptography will be discussed, including 

oblivious transfer (OT), a technology heavily used in multiparty computation (MPC). For instance, 

Yao's Millionaires' Problem9 is one of the classic OT applications. In addition, there is also a 

method of converting addition to multiplication, a technique proposed by Niv Gilboa10. Based on 

OT, it is possible to change the relationship of the part owned by both parties from multiplication 

to addition. Besides, the Paillier cryptosystem11, a cryptosystem that implements additive 

homomorphic encryption, will also be introduced. Finally, the Schnorr protocol12, a fairly efficient 

zero-knowledge proof, will be discussed as well.  

     In Chapter 3, NIST's recommendations and comments of threshold cryptography will be 

primarily discussed, followed by the review of ‘National IRTIR 8214 Threshold Schemes for 

Cryptographic Primitives’ published by NIST in 20188. Besides, several fundamental features of 

threshold will also be introduced. Finally, the NIST office's threshold workshop and various 

applications about threshold, including OPRF, TOPRF, PPSS, etc., will be addressed.  

     In Chapter 4, at first, the differences between multi signature and threshold signature will be 

discussed by comparing the advantages and disadvantages of the two signatures, followed by the 

introduction of the threshold ECDSA, a threshold version of the most popular digital signatures 

used on cryptocurrency. In addition, considering the strong motivation for threshold ECDSA, an 

in-depth analysis of the current two major types of threshold ECDSA was conducted in this study. 
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The amount of computation required to perform Paillier's encryption, decryption and 

homomorphic addition was firstly analyzed, followed by the introduction of Gennaro’s algorithm13. 

Meanwhile, the algorithm of Doerner14,15, a threshold ECDSA algorithm that does not require 

additional hardness assumptions, was also explored in the discussion. Subsequently the 

comparisons between these two algorithms, including the number of rounds, the amount of 

information transmitted, the amount of calculation and the t-of-n model, were performed in the 

study as well. Ultimately, the part of the two algorithms that may be optimized in the future were 

also discussed.  

     Lastly, in Chapter 5, cloud computing will be focused and discussed. Similar to the threshold 

cryptography, it is also a field greatly thriving. Due to the significant demands for MPC, cloud 

computing and threshold can be granted as advantageous and promising fields. Hence, NIST also 

anticipated to develop standards for cloud computing. At the beginning of the chapter, the various 

definitions of cloud computing proposed by NIST17 will be discussed, followed by the challenges 

encountered during the course of developing the standards. Afterwards, the chapter will be 

concluded by introducing several studies of cloud computing and threshold cryptography. 
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Chapter 2. Definition and Tools 

2.1 Decisional Composite Residuosity Assumption (DCRA) 

 Definition. A number z is said to be a n-th residue modulo 𝑛2 if there exist a number y ∈ 𝑍𝑛2
∗  

such that 

z = 𝑦𝑛 𝑚𝑜𝑑 𝑛2. 

 Conjecture. There exists no polynomial time distinguisher for n-th residues 

modulo 𝑛2. 

     This intractability hypothesis will be referred to as the Decisional Composite Residuosity 

Assumption (DCRA). 

 

2.2 Paillier cryptosystem11 

Key Generation Generate two large prime P, Q of equal length, and set N=PQ. 

Let λ(N)=lcm (P-1,Q-1) be the Carmichael function of N. 

Finally choose Γ∈ 𝑍𝑁2
∗  such that its order is a multiple of N. 

Public key (N,Γ) 

Secret key λ(N). 

Encryption To encrypt a message m ∈ 𝑍𝑁, choose x ∈𝑅 𝑍𝑁
∗ . 

Compute c = 𝛤𝑚𝑥𝑁 𝑚𝑜𝑑 𝑁2 

Send c 

Decryption To decrypt a ciphertext c ∈ 𝑍𝑁2, let L be a function defined over 

the set {u ∈ 𝑍𝑁2 : u ≡ mod N} computed as L(u) =
(𝑢−1)

𝑁
 

Compute 
m =

𝐿(𝑐𝜆(𝑁))

𝐿(𝛤𝜆(𝑁))
 𝑚𝑜𝑑 𝑁 

*Choose x ∈𝑅 𝑍𝑁
∗  means randomly choose x ∈ 𝑍𝑁

∗ . 
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 Additive Homomorphic Properties. As already seen, the two encryption 

functions m |→𝛤𝑚𝑟𝑁 𝑚𝑜𝑑 𝑁2 and m |→ 𝛤(𝑚+𝑁𝑟) 𝑚𝑜𝑑 𝑁2 are additively homomorphic on 𝑍𝑁. 

Practically, this leads to the following identities: 

∀𝑚1, 𝑚2 ∈ 𝑍𝑁 and k ∈ N 

 e(𝑚1)+𝐸e(𝑚2) ≡ e(𝑚1)e(𝑚2) ≡ 𝑒(𝑚1 + 𝑚2) 𝑚𝑜𝑑 𝑁2. 

 k ×𝐸 e(m) ≡ (e(m))𝑘 ≡ 𝑒(𝑘𝑚) 𝑚𝑜𝑑 𝑁2. 

2.3 Oblivious Transfer (OT) 

     OT is a promising cryptographic primitive, which is a fairly important and basic technology in 

the field of secure multiparty computation. OT was originally invented by Michael O. Rabin in 

198117. The original version of OT is a message m sent by sender to the receiver. Receiver has a 

1/2 probability to receive. Sender knows nothing about whether the receiver has received the 

message. If there is only such an effect, there is actually useless. Later, the better-used OT was 

invented by Shimon Even, Oded Goldreich, and Abraham Lempel18. This technique was invented 

to perform secure multiparty computation. After that, people continued to invent 1-of-n OT19-22 

and t-of-n OT23-25. Furthermore, there is also an OT Extension available to improve OT efficiency26. 

     In the study, the 1-of-2 OT system is applied. 1-of-2 OT is performed by two parties (sender 

and receiver). Sender masters two messages 𝑚0 and 𝑚1. Receiver masters 1 bit c (c = 0 or 1). 

Sender will send two packages to the receiver, which contain 𝑚0 and 𝑚1 respectively. Although 

the receiver receives two packages, he or she can only open one of the packages (𝑚𝑐), and the 

other package will only see a series of meaningless information if it is turned on. After the end, the 

sender will not know which message the receiver receives. The receiver only sees the target 

message (𝑚𝑐) and knows nothing about the other message.  

     The following is the ‘The Simplest Protocol for Oblivious Transfer’ invented by Tung Chou 
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and Claudio Orlandi27 based on the Diffie-Hellman key Exchange28. 

 

 Sender Receiver 

Input 𝑚0, 𝑚1 c 

Output none 𝑚𝑐 

 

 Sender Receiver 

1. 

 

Choose a ∈𝑅 𝑍𝑝 Choose b ∈𝑅 𝑍𝑝 

Compute A=𝑔𝑎  

Send  A 

2.  Compute if c = 0, B = 𝑔𝑏. 

if c = 1, B = A𝑔𝑏 

𝑘𝑟 = H(𝐴𝑏) 

Send  B 

3. Compute 𝑘0 = 𝐻(𝐵𝑎) 

𝑘1 = 𝐻((
𝐵

𝐴
)𝑎) 

𝑒0 = 𝐸𝑘0
(𝑚0) 

𝑒1 = 𝐸𝑘1
(𝑚1) 

 

Send  (𝑒0, 𝑒1) 

4.  Compute 𝑚𝑐 = 𝐷𝑘𝑟
(𝑒𝑐) 

*H: hash function.  E: symmetric encryption system.  D: decryption of E.  

 

2.4 Multiplication into addition 

     Multiplication into addition is used in the 𝐹𝑚𝑢𝑙 part of Doerner's paper14. Multiplication into 

addition is a fairly critical technique in the paper. Because the final signature of ECDSA is in the 

form of (𝐻(𝑚) + 𝑠𝑘 ∙ 𝑟)/𝑘. The part of k in the denominator causes ECDSA to be very unsuitable 

for performing threshold. So Doerner moved their attention to the 1/k and 𝑠𝑘 /k parts of the 

signature. Perform 𝐹𝑚𝑢𝑙 by 1/𝑘𝑎 of Alice and 1/𝑘𝑏 of Bob, it can let Alice and Bob get 𝑡𝑎
1 and 𝑡𝑏

1 
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respectively. Where 𝑡𝑎
1 + 𝑡𝑏

1 = (1/𝑘𝑎) ∙ (1/𝑘𝑏). Similarly, execute 𝐹𝑚𝑢𝑙 again, Alice and Bob can 

also get 𝑡𝑎
2 and 𝑡𝑏

2 whose sum is equal to(𝑠𝑘𝑎/𝑘𝑎) ∙ (𝑠𝑘𝑏/𝑘𝑏). This technique is based on Gilboa's 

paper10.See the following protocol for details. 

 Alice Bob 

1. Choose 𝑠0, … , 𝑠𝑝−1 ∈𝑅 𝑍𝑞 

Let 𝑡𝑖
0 = 𝑠𝑖 for all i. 

 

Compute 𝑡𝑖
1 = 2𝑖𝑎 + 𝑠𝑖, for all i. 

Send (𝑡0
0, 𝑡0

1),….(𝑡𝑝−1
0 , 𝑡𝑝−1

1 ) 

2. Let the binary representation of b be 𝑏𝑝−1, … , 𝑏0. Alice and Bob execute p 

times 1-of-2 OTs. In the i-th invocation Bob chooses 𝑡𝑖
𝑏𝑖 from the pair (𝑡𝑖

0, 𝑡𝑖
1). 

3. Compute 

x = − ∑ 𝑠𝑖

𝑝−1

𝑖=0

 

Compute 

y = ∑ 𝑡𝑖
𝑏𝑖

𝑝−1

𝑖=0

 

 

2.5 Schnorr’s zero-knowledge proof with Fiat–Shamir heuristic 

     Schnorr’s zero-knowledge proof12 is one of the simplest and frequently used proofs of 

knowledge. Fiat-Shamir heuristics29 are seen as converting public-coin interactive knowledge 

proofs into non-interactive knowledge proofs. The following is the working process of the two 

together. 

 The protocol is defined for a cyclic group 𝐺𝑞 of order q with generator g. 

 Prover wants to prove that he knows x of y = 𝑔𝑥 𝑚𝑜𝑑 𝑞. 
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 Prover Verifier 

1. Choose r ∈𝑅 𝑍𝑞  

Compute t = 𝑔𝑟 

c = H(g, y, t) 

s = r + c ∙ x 

Send (s,c,t) 

2.  Compute 𝑣0 = 𝑔𝑠 

𝑣1 = 𝑡 ∙ 𝑦𝑐 

Output Accept, if 𝑣0 = 𝑣1. 

Reject, if 𝑣0 ≠ 𝑣1. 

* H: hash function. 
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Chapter 3. Standardization, Applications and Challenges of 

Threshold Cryptography 

3.1 Standardization and recommendations of threshold cryptography 

     Due to the advanced development of threshold cryptography technology, studies on threshold 

cryptography have been increasingly dominant and thriving. Acting as one of the leading roles in 

cryptography, it is inevitable for National Institute of Standards and Technology (NIST) to 

establish its sophisticated guidelines and recommendations. NIST demonstrated its determination 

to standardize threshold encryption schemes in the report conducted by Brandão et el in 20198, 

and the institute also revealed the benefits of standardized threshold encryption schemes. 

Developing cryptographic primitives with a well-characterized threshold scheme provides 

significant advantages of security, intriguing the majority to be involved in the threshold scheme 

of the NIST-approved encryption primitives.  

     However, there are still concerns remained in terms of application and flexibility. For instance, 

what conditions should everyone adopt the guidelines as a standard for selecting standard threshold 

encryption schemes? What parameters and functional flexibility can the threshold encryption 

scheme standard tolerate? Should additional standardization and verification be set independently 

for some basic primitives? These issues are not directly resolved in the 2019 report. Instead, the 

report suggests people of interests to solve these problems and develop an objective basis at the 

user end. Meanwhile, the report also addresses a variety of representative issues that need to be 

considered, namely safety certification assessment, operational efficiency and implementation 

applicability. Nevertheless, the report also presents promising applications related to the 

standardization of threshold encryption schemes. Hence, the process of solving these issues may 

bring a significant leap forward to the security of the cryptographic primitives. Prior to the standard 
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establishment, there is still presence of various concerns, and several of them are listed in the NIST 

Internal Report (NISTIR) 82148 and will be discussed in Chapter 3.2.  

3.2 Challenges and issues in standardization of threshold cryptography 

Question 1: Are the designated criteria able to properly describe the characteristics of the 

threshold scheme? 

     When it comes to such an issue, one is suggested to first clearly define the threshold scheme 

even under the circumstances where the representations such as f-out-of-n threshold are not unified. 

In addition, although threshold cryptography is not considered as a state-of-the-art technology, it 

should be acknowledged that such advancement is considerably distinct from other cryptographic 

primitives. Besides ensuring cryptography to yield desirable characteristics of the threshold, one 

should also take security and efficiency into consideration. 

Question 2: What is the efficiency and performance of the operation as a function of the 

threshold parameter? 

        Similar to the approaches to defining the optimal value (i.e. k) for threshold cryptography on 

cloud computing addressed in the NIST report, one is suggested to firstly consider the uses of 

security properties, including confidentiality, integrity and availability, and subsequently discuss 

the tradeoff of the security property and operational efficiency. 

Question 3: Can the complexity of implementation possibly lead to new errors or 

misconfigurations? 

     Although threshold cryptography technology has the chances to tolerate a range of side channel 

attacks, such as differential power analysis (DPA) and differential fault analysis (DFA), its novelty 

may lead to unfamiliar challenges. After the standard guidelines and recommendations have been 

proposed, there may be possibilities where new attacks occur, or new errors appear due to the 
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complexity of the actual operation.  

Question 4: Is the security verification reliable? 

     Despite the fact that the security verification of threshold cryptography was carefully 

implemented, it still takes time for a new cryptosystem to consolidate its reliability and authenticity. 

The threshold cryptography scheme adopting the NIST standards is considered as a brand-new 

cryptosystem, where complete and rigorous proof is still desired to justify its safety assessment.  

Question 5: How is its reliability compared to the traditional implementations? 

     The reliability of traditional implementations has been well understood and recognized. When 

it comes to that of a new system, however, one may be easily influenced and show moderate to 

low tolerance of corrupted nodes.  

Question 6: Is the scheme applicable to NIST-approved cryptographic primitives? 

     According to the Federal Information Processing Standards Publication 186-4 (FIPS-186-4)30, 

three NIST-approved digital signature algorithms have been specified, including: digital signature 

algorithm (DSA), algorithm developed by Rivest, Shamir and Adleman (RSA)31 and elliptic curve 

digital signature algorithm (ECDSA). Therefore, when one is anticipated to establish new 

standards, these digital signature algorithms should be aligned with the current modernization 

process and incorporate the structure of the testing methodology derived by the NIST 

cryptographic validation programs. This approach may greatly save time and efforts in updating 

resources.  

     In addition to the challenges described above, there are still many issues to be considered. 

Overall, NIST expects its institute to drive an open and transparent process towards standardization 

of threshold schemes for cryptographic primitives. During the course of publishing official 

guidelines, the institute promised to consult cryptography research community as wells as 
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stakeholders in the government and industry to deliver sophisticated outcomes fulfilling the needs 

of all aspects.  

3.3 Security of threshold cryptography 

3.3.1 Threshold values 

    Overall, the total number n of components, or the ‘thresholds,’ can be expressed in two ways: a 

decent component (i.e., undamaged) of the minimum required number k and an undesirable 

component of a maximally allowable number f. It is worth noting that f + k does not necessarily 

equal n. 

3.3.2 Concerning tradeoff among security properties 

     The question of whether threshold cryptography is more secured than traditional cryptography 

still remains unknown. If one performs analyses of various security properties on study cases, it 

will be found that while threshold cryptography may enhance the security nature of certain aspects, 

it can also reveal its additional weaknesses in security. Therefore, the tradeoff of various security 

properties among each other should also be considered when applying threshold cryptography. 

Under such circumstances, the use of threshold cryptography should be carefully evaluated in real-

world scenarios. The following is a tradeoff among various security features based on the three 

properties of information security: confidentiality, integrity and availability (CIA). Next, threshold 

values corresponding to the nature of CIA will be discussed.  

3.3.3 Confidentiality, integrity and availability 

     Confidentiality, integrity and availability, or CIA, are the security triangle portfolio of 

information security. Any violation of the incident or behavior of the triangle will reduce the 

protection strength of the security mechanism and threaten the company's important assets or 

confidential information. Therefore, CIA is the core judgment criterion of information security. 
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Every employee of an entity is able to identify the events or behaviors requiring regulation and 

management based on CIA principles. 

     Confidentiality serves its main purpose to maintain the confidentiality of information, meaning 

any confidential information cannot be disclosed under unauthorized entities, including a person, 

a group or a system. In generally, the definition of f derived by threshold cryptography indicates 

the of property confidentiality is satisfied. 

     Integrity, on the other hand, implies its purpose to maintain the veracity, consistency and 

completeness of the information, meaning the modification of any confidential information must 

be authorized and not tampering.  

     Additional, availability presents its purpose of maintaining the smoothness of the work 

activities, meaning the authorized entity can obtain or use the information ‘opportunely’ and 

‘without interruption.’ 

3.3.4 Defining 𝒇𝒙 

     Threshold value 𝑓𝑥 represents the maximum number of incorrectly operated members that can 

be tolerated under the property of maintaining x. 

Example 1. Threshold signature agreement 

     Any kind of n-out-of-n threshold signing agreement shall be considered. According to the 

definition, whenever a signature is to be completed, n members must work together. If there are 

only n-1 members, the signature fails. In this case, if one would like to maintain the confidentiality 

(on the basis where the adversaries are able to complete the signature), the confidentiality can be 

managed by the system by failing the signature as long as one follows the specifications. Thus, 

𝑓𝑐= n – 1. On the other hand, concerning the integrity, if one does not use the original components 

for calculation deliberately, indicating that the signature was tampered with and will be identified 
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immediately the verifier. Hence, 𝑓𝑖 = 0. Finally, when it comes to the availability, the signature 

cannot be completed as long as one refuses to perform the calculation. Therefore, 𝑓𝑎  = 0. 

According to the example described earlier, the agreement can obtain an optimal threshold for 

confidentiality (𝑓𝑐= n − 1) while yielding a pessimal threshold for availability and integrity (𝑓𝑎= 0 

and 𝑓𝑖 = 0).  

Example 2. Threshold random number generator 

     A threshold random number generator is granted as an approach to outputting uniformly random 

bit-strings. The production can be achieved by using three different random number generators, 

where S is defined as the XOR value of the three generator bit streams 𝑆𝑖 (i = 1.2.3). In this case, 

integrity, or i, means whether S is truly random, whereas availability, or a, indicates whether S can 

be successfully generated. A genuine random S can be achieved if one of the 𝑆𝑖 is random and 

independent of other 𝑆𝑖 . Hence, based on the assumption of independence, 𝑓𝑖  = 2. Meanwhile, 

since S fails to be defined when one of 𝑆𝑖 is missing, therefore, 𝑓𝑎 = 0.  

     To summarize the two examples described earlier, under a similar scenario, it is revealed that 

the threshold value will change accordingly in the circumstances where the designated security 

properties have been altered. In respect of applications, it is necessary to analyze and identify the 

properties required in order to meet the needs. Such challenge is something practical and inevitable 

to confront when establishing new threshold standards.  

3.4 Applications of threshold cryptography 

3.4.1 Threshold Oblivious Pseudo-Random Functions (TOPRFs) 

Procedure 1. Pseudo-Random Functions (PRFs)32, 33 

Definition 1:  

A function F : {0, 1}𝑛 → {0, 1}𝑛  is a random function if it is constructed as follows: For each  

x ∈ {0, 1}𝑛  pick a random y ∈ {0, 1}𝑛, and let F(x) = y. 



doi:10.6342/NTU201902375
23  

Definition 2: 

F ={𝑓𝑠 : {0, 1}|𝑠|→ {0, 1}𝑛  | s ∈ {0, 1}∗ } is a family of PRFs if: 

• [Easy to compute]  

given s ∈ {0, 1}𝑛  and x ∈ {0, 1}𝑛  , can efficiently compute 𝑓𝑠(x). 

• [Pseudo-randomness]  

for all non-uniform PPT “oracle machines” D, there exists a negligible function ǫ(k) such that 

|Pr[s←{0, 1}𝑘: (𝐷𝑓𝑠)(1𝑘) = 1] − Pr[F←𝑅𝐹𝑘 : (𝐷𝑓)( 1𝑘) = 1]|≤ ǫ(k) □. 

     In short, the purpose of PRF is to make it challenging to distinguish the differences between a 

PRF function and a truly random function, where the PRF simulates a genuine random function 

for ambiguity. An illustrated description is shown in Figure 1. 

  

 

 

 

 

Figure.1 

 

Procedure 2. Oblivious PRFs (OPRFs)34 

     In terms of pseudo-random function, information is concealed from the two parties (server and 

user) that are involved in a PRF. Server holds the key (k) of the PRF and provides the service of 

the PRF. However, the server will not learn any information (including input and output) during 

the course of service. As for the user, one can get the output after the input is transferred and 

interacted with the server. Similarly, during the course of acquiring the output, the user will not 

receive any information about the function. An illustrated description is shown in Figure 2. 
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Figure.2 

     The extensive uses of OPRFs have been addressed in two studies conducted by Stanisław 

Jarecki, et al.35, 36. Both studies discussed a variety of applications, including: private information 

retrieval (PIR), password protected secret sharing (PPSS), searchable encryption, file de-

duplication, etc. OPRF can also be applied as the basis of PIR and oblivious transfer (OT).  

Procedure 3. Diffie-Hellman based Oblivious Pseudo-Random Functions (DH- OPRFs) 

     Among the various OPRFs, there is a particularly common type called DH-OPRF. As its name 

suggests, it is an OPRF based on Diffie-Hellman assumption28. The implementation method is 

shown as follows. 

 User Sever 

Input x 𝐹𝑘 

output 𝐹𝑘(𝑥) none 

1. Choose r ∈𝑅  𝑍𝑞  

C a = (H′(𝑥))𝑟 

S a 

2.  C b = 𝑎𝑘 

S b 

3. C 𝐹𝑘(𝑥) = 𝐻(𝑥, 𝑏1/𝑟)  
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Procedure 4. Threshold Oblivious PRFs (TO-PRFs)36 

    Concerning that a user may correspond to multiple servers, threshold oblivious-PRFs, or TO-

PRFs, are developed subsequently. As for a TO-PRF, the key (k) used by the PRF is composed of 

servers. These servers are combined via t-out-of-n threshold, finishing the threshold by using 

Shamir Secret Sharing. First, the user transfers the same a as the DH-OPRF to the t servers, which 

are selected by the users from the set [n]. Each server uses 𝑘𝑖 to calculate 𝑏𝑖 and send it to the user. 

The user the subsequently applies Shamir Secret Sharing1 to reassemble these 𝑏𝑖 into a real output.  

     Similar to OPRF, the user is able to obtain the output at the end of the entire operation process 

accompanying with the condition where the sever will not know the information about the input 

and the output. As for TOPRF, each server will not learn about the complete k as long as the corrupt 

servers do not exceed t.  

3.4.2 Threshold Oblivious Password Protected Secret Sharing (TOPPSS) 

Procedure 1. Password Protected Secret Sharing (PPSS)37,38 

     Password Protected Secret Sharing, which is a protocol that allows a user to share his or her 

data secretly among n trustees. Imagine a scene where Alice wants to trade with bitcoin, and she 

stores the private key on a server because the key is too difficult to remember due to the length of 

the private key. Whenever a trade is needed, she can retrieve the private key by entering the correct 

password. However, there is an underlying downside of such approach. The password stored at the 

server’s end is vulnerable to a single point of failure. In this case, to recover the private key 

clandestinely, all it takes for the attacker is to break into the server and then install an offline 

dictionary attack to project the password created by the user. In order to cope with this flaw, one 

of the solutions is to store the secrets on multiple servers and have these servers share the private 

key. This mechanism is to ensure the attacker will need to break into multiple servers if one is 
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trying to fetch the private key. Nevertheless, there is another critical issue to be managed when 

taking this route. The situation can be complex when each server uses an individual password, 

while using a unified password is not desirable either because it is vulnerable to the attacks. 

Fortunately, the use of PPSS can solve the issues addressed earlier. The PPSS scheme allows users 

to secretly share secrets between n servers (with threshold t) and only a single password needs to 

be memorized for authentication. In this case, even if the attacker cracks any of the t (including 

the following) servers, one still fails to get the access to any information related to the private key.  

Procedure 2. TOPPSS: PPSS via Threshold OPRF[40] 

     In a scheme where each server holds a random key 𝑘𝑖  for an OPRF f independently, the 

designated secret is processed with a (t, n) secret sharing scheme at initiation. Each share is stored 

at one of the n servers, whereas server 𝑆𝑖 stores the i-th shares encrypted under 𝑓𝑘𝑖
 (password). 

During the course of reconstruction, the user receives the encrypted shares from t + 1 servers and 

subsequently decrypts them by using the 𝑓𝑘𝑖
 (password) values run by the OPRF of each server.  
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Chapter 4. Applications of threshold signature 

4.1 Multi signature vs. Threshold signature 

     When using virtual currency, such as Bitcoin, one will obtain a private key that can be 

considered as a bank account, and uses it to execute the signature and make a transaction. However, 

there may be underlying problems when using such approach. For instance, a user fails to get the 

access to the account of the private key is lost or stolen. In order to deal with this issues, multi 

signature is proposed as the solution40, 41. In a nutshell, multi signature requires more than one key 

to execute the signature, and 2-of-2, 2-of-3 or 3-of-3 are commonly seen. Surely the use of t-of-n 

can also be applied.  

    2-of-2 can be applied to a joint account such as a husband and wife. Any transaction must be 

permitted by both husband and wife to be performed. The 2-of-3 scene can be a person with three 

keys. One of the keys is carried with an individual, another key is hidden in a safe and offline place 

(such as a safe), and the other one is handed over to the company that provides the service. When 

the individual performs a transaction, he or she uses both his or her own key and the key kept by 

the company to sign it. If the key is lost, one can retrieve the key hidden in the safe and the trading 

activities will not be impeded. This mechanism can also prevent the company from hacking the 

individual’s assets because there is only one key available. 

     However, there are also disadvantages of multi signature. First of all, the privacy is not 

sufficiently secured. All private keys required must be presented each time when individuals sign. 

Similarly, the efficiency can also be insufficient. For instance, the multi signature of 2-of-3 

represents two private keys must be provided in each signature. The verifier also needs to verify 

the two private keys each time. Moreover, there is lack of flexibility. If an asset owner is not 

satisfied with the current t-of-n multi signature and would like to use the a-of-b scheme instead, 
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new private keys will be generated and all the inheritance will need to be transferred to the new 

account.  

     Therefore, threshold signature42-45 is considered as an ideal approach to solve the problems. 

Threshold signature does not generate a new private key. Instead, it distributes new parts to n users. 

When a t-name user signs and the threshold signature algorithm is operated, one will receive a 

signature signed with the original private key (or to be clearer, the signatures are indistinguishable). 

There are a number of advantages of threshold signature. First, the privacy is ensured and secured 

because the private keys are not required to be presented during the signing process, and no one 

else can identify who is involved in the transaction. Second, compared to multi signature, the use 

of threshold signature is more cost-effective because each transaction will only produce one 

signature. Thus, such application can save more resources than multi signature when transferring 

and verifying. Third, the use of threshold signature yields fair flexibility. If a user is not satisfied 

with the current t-of-n threshold signature and would like to switch to the a-of-b scheme, repeating 

the set-up steps alone is sufficient and no new private keys required.  

     Despite all the benefits discussed earlier, there are still disadvantages in regards to the use of 

threshold signature. First, the person who signs must be online. Performing the threshold signature 

algorithm requires the users to interact with each other. On the contrary, the multi signature users 

can send their signatures to the network in advance and then go offline. When other users come 

online, they can simply send their signatures along with the signatures of the offline signer. 

However, this can also be considered as one of the disadvantages when using multi signature. Once 

a transaction is signed, the signature cannot be recovered. Thus, the last party signed has a slight 

advantage over the other parties. Second, due to the limitation of current technology, the efficiency 

of threshold signature is promisingly satisfying. In the real world, only a handful of practical 
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applications have been implemented.  

4.2 Threshold ECDSA 

    ECDSA is one of the most commonly used digital signature algorithms in the worldwide. Many 

mainstream virtual currencies, including Bitcoin and Ethereum, use ECDSA. Therefore, the 

research on threshold ECDSA has been increasing, and the threshold signature introduced in this 

chapter will focus on threshold ECDSA. Currently, the Paillier cryptosystem has been widely 

adopted to implement threshold ECDSA. Paillier cryptosystem11, invented by Pascal Paillier in 

1999, addresses its sophisticated assumption based on the decisional composite residuosity 

assumption. Paillier cryptosystem is able to implement homomorphic encryption of additions and 

is therefore well utilized in the ECDSA threshold. However, the cryptosystem itself is extremely 

inefficient, so there are barely practical study cases in the real-world setting. On the other hand, 

Doerner proposed the threshold ECDSA algorithm in 201814, using the technology of OT. One of 

the main outcomes discussed in the study is that a more promising efficiency could be achieved 

without the use of supernumerary assumptions than those using the Paillier cryptosystem. 

4.3 Securing Bitcoin wallets via a new DSA/ECDSA threshold signature 

scheme. 

     In the study conducted by R Gennaro et al., a set of threshold ECDSA was designed based on 

the Paillier cryptosystem13. This paper claims that they presented the first threshold signature 

scheme compatible with Bitcoin’s ECDSA signatures. Meanwhile, the version of DSA was also 

introduced in the study. Therefore, the ECDSA version and the analysis of the efficiency R 

Gennaro’s algorithm will be discussed in this section. (this algorithm is called as R algorithm for 

convenience) 
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4.3.1 R Gennaro’s algorithm 

*M: message. C: compute. S: send. H: hash function. E: encryption of Paillier cryptosystem.   

  D: decryption of Pailler cryptosystem. +𝐸: additive Homomorphic of Pailler cryptosystem. 

 𝑃1 𝑃2~𝑃𝑡−1 𝑃𝑡 

setup Participant 𝑃𝑖 choose 𝑥𝑖 ∈𝑅 𝑍𝑞 

Secret key x = ∏ 𝑥𝑖

𝑖

  𝑚𝑜𝑑 𝑞 

Public key y = x ∙ G  in G 

1. Choose 𝑘1 ∈𝑅 𝑍𝑞   

C 𝑧1=𝑘1
−1mod q 

𝑎1= 𝐸(𝑧1) 

𝑏1= 𝐸(𝑥1𝑧1mod q) 

Set 𝑎1
∗=𝑏1

∗=⊥  

S M, 𝑎1, 𝑏1, 𝑎1
∗ , 𝑏1

∗ to 𝑃2 

2 

to 

t-1. 

 At round i, participant 𝑃𝑖.  

Abort if any input ∉ 𝐺𝐸. 

Choose 𝑘𝑖 ∈𝑅 𝑍𝑞. 

 

C 𝑧𝑖=𝑘𝑖
−1mod q 

𝑎𝑖=𝑧𝑖 ×𝐸 𝑎𝑖−1 

𝑏𝑖= 𝐸(𝑥𝑖𝑧𝑖mod q) ×𝐸 𝑏𝑖−1 

𝑎𝑖
∗= 𝐸(𝑧𝑖), 𝑏1

∗= 𝐸(𝑥𝑖𝑧𝑖mod q) 

S 𝑀, 𝑎1, … , 𝑎𝑖,𝑏1, … , 𝑏𝑖,𝑎1
∗ , …, 

𝑎𝑖
∗, 𝑏1

∗, … , 𝑏𝑖
∗ to 𝑃𝑖+1 

t.   Abort if any input ∉ 𝐺𝐸. 

Choose 𝑘𝑡 ∈𝑅 𝑍𝑞. 

C 𝑧𝑡=𝑘𝑡
−1mod q 

𝑅𝑡=𝑘𝑡G in G 

S 𝑅𝑡 to 𝑃𝑡−1 
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 𝑃1 𝑃2~𝑃𝑡−1 𝑃𝑡 

t+1 

to 

2t-2. 

 At round t+i, participant 𝑃𝑡−𝑖.   

C 𝑅𝑡−𝑖=𝑘𝑡−𝑖𝑅𝑡−𝑖+1 in G 

S 𝑅𝑡 , … , 𝑅𝑡−𝑖 to 𝑃𝑡−𝑖−1 

2t-1. C 𝑅1=𝑘1𝑅2 in G 

ZK proof П1 

  

S 𝑅1, П1 to 𝑃2 

2t 

to 

3t-3 

 At round 2t+i-2, participant 𝑃𝑖.   

C ZK proof П𝑖 

S 𝑅1, … , 𝑅𝑖 , П1, … , П𝑖 to 𝑃𝑖+1 

3t-2   Choose c ∈𝑅 𝑍𝑞 

C m=H(M). 

r=H’(𝑅1) ∈ 𝑍𝑞. 

𝑢∗=E(𝑧𝑡). 

u=[(m𝑧𝑡 mod q)×𝐸 𝑎𝑡−1]+𝐸 

[(r𝑥𝑡𝑧𝑡 mod q) ×𝐸 𝑏𝑡−1] +𝐸 

    E(cq). 

ZK proof П𝑡 

S u, 𝑢∗, П1, … , П𝑡 to all the  

other participants. 

final Let s = D(u) mod q. 

The participants output (r,s) as the signature for M. 

 

 ZK proof П𝑖 which states 

 ∃ 𝜂1, 𝜂2 ∈ [−𝑞3, 𝑞3] such that 

 𝜂1𝑅𝑖=𝑅𝑖+1 and 
𝜂2

𝜂1
𝐺=𝑦𝑖 

 D(𝑎𝑖) = 𝜂1𝐷(𝑎𝑖−1) and D(𝑏𝑖) = 𝜂2𝐷(𝑏𝑖−1) 

 D(𝑎𝑖
∗) = 𝜂1 and D(𝑏𝑖

∗) = 𝜂2 
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4.3.2 Efficiency analysis 

Analysis 1. Hardness assumption  

     Due to the basis of the Paillier cryptosystem, it is certainly that the algorithm confronts similar 

difficult assumption as the Paillier cryptosystem, where the problem of computing n-th residue 

classes is computationally difficult. Currently it is not directly proved that this assumption is more 

difficult than the assumption of ECDSA. Therefore, in theory, the R Gennaro’s algorithm may be 

likely less secured than ECDSA. 

Analysis 2. Number of rounds 

     According to the study, the number of rounds required for the R algorithm to perform t-of-n 

threshold is 3t-2. However, it is also observed that the message delivered by the participants 

actually indicates no causal relationship in the 1 to t-1 round and t to 2t-2 round. The reason why 

such scheme designed in this study is that the zero-knowledge proof will come in handy if the 

previous t-1 round passes the commits for the following message. With the implementations of 

additional methods and restrictions, perhaps the reduction in the number of rounds can be broken 

from this place, reducing the number of rounds needed to 2t-1. In fact, R Gennaro et al. conducted 

the study of ‘Threshold-optimal DSA/ECDSA signatures and an application to Bitcoin wallet 

security’ in 201646. In this new algorithm, only 6 rounds are required. 

Analysis 3. Zero-Knowledge proof 

     Among the uses of R algorithm, there have been many projects implementing zero-knowledge 

proof as an approach to confirmation. Therefore, the amount of calculations spent on zero-

knowledge proof is considerable, and it is proved that a total of 20 values need to be calculated 

each time. Most of the calculations are O (𝑛3) level operations or elliptic curve multiplications. In 

terms of transmission, these 20 values need to be transmitted, and many of the messages are N or 
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𝑁2 bits. As for the verifier, one is required to verify 10 equations, containing 6 O (𝑛3), 3 elliptic 

curve multiplications, and 1 hash calculation. Moreover, because of security considerations, all 

participants must verify the zero-knowledge proof of other participants. Overall, the zero-

knowledge proof consumes a lot of computing resources in the R algorithm. 

Analysis 4. Send messages 

    In many situations where the R algorithm is being applied, the message just received must be 

sent to the next participant. Therefore, the total amount of messages to be transmitted in the entire 

algorithm is considerably large (23𝑡2-21t-2), and most of them are N or 𝑁2 bits. It is worth noting 

that 𝑃𝑡 can practically make a full signature at the end of the algorithm. However, in R Gennaro’s 

study, 𝑃𝑡 was designed to pass u, 𝑢∗ and all zero-knowledge proofs to all participants. Although 

each participant has already obtained some information, this work still requires a great amount of 

traffic (10t (t-1) messages).  

Analysis 5. The amount of calculation 

     Due to the fact that this algorithm is based on the Paillier cryptosystem, there will be a number 

of operations appear in the process, such as 𝑔𝑎𝑥𝑏 mod 𝑁2. The complexity of the operation is O 

(𝑛3), which is about 4.68RSA*. In addition, a lot of computation tasks required because all the 

participants must verify the zero-knowledge proof of all the other participants. The calculations 

required for different participants in a t-of-t thresholds ECDSA are shown as follows: 

 𝑃1 𝑃2~𝑃𝑡−1 𝑃𝑡 average 

RSA 50 66 58 66-24/t 

(×) 5 5 5 5 

(+) 1 1 1 1 

Hash 0 0 2 1 
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RSA: Perform a calculation of RSA encryption. 

(×): Perform a multiplication of points on elliptic curve. 

(+): Perform an addition on elliptic curve. 

Hash: Perform a hash operation. 

* Definition: 1RSA is the amount of computation required to perform an RSA encryption, which 

is the amount of computation required to execute 𝑔𝑎 mod N. 

4.68RSA: Suppose a has as many bits as b. The i-th bit of a is called 𝑎𝑖. Calculating 𝑔𝑎𝑥𝑏 is 

similar to the square and multiplication of (𝑔𝑥)𝑐. The number of squares is the same, there are 

three cases when multiplying: (𝑎𝑖 , 𝑏𝑖)=(1,1),(1,0),(0,1). So, the calculation of 𝑔𝑎𝑥𝑏 mod N is 

about 1.17RSA. However, the calculation here is mod 𝑁2, so the total is 4.68RSA 

Analysis 6. t-of-n threshold 

     In terms of the R algorithm, the method of executing the t-of-n threshold is to perform the t-of-

n threshold (𝑛
𝑡
)  times. In other words, a desirable way to perform t-of-n threshold was not 

developed in the study. In addition, as for the t-of-t case, R Gennaro also stated in the study that 

the proposed algorithm was only suitable for situations where t was not too large. Fortunately, 

thanks to statistics, the most commonly used multi signature forms in Bitcoin transactions are 2-

of-2, 2-of-3 and 3-of-3. 

4.4 Threshold ECDSA from ECDSA Assumptions14, 15 

     The study conducted by Doerner et al in 2018 proposed that 2-of-2 and 2-of-n threshold 

signatures could be achieved only on the assumption of ECDSA. Soon, in the study published in 

2019, it was indicated that t-of-n threshold signature could be achieved when being on the basis of 

ECDSA assumption. The core technology of these different threshold protocols is the 2-of-2 

version. The researchers used the OT technology to perform multiplication and addition to achieve 
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a combination of different signatures. The 2-of-n version is a setup of Lagrange Interpolation 

before signing. After the selection of any two participants, the two designated individuals perform 

the same as the 2-of-2 version. Similarly, the t-of-n version is also based on t-of-t. As for t-of-t, the 

main concept is to perform the multiplication of the t participants by performing the 𝐹𝑚𝑢𝑙 in the 2-

of-2 version repeatedly through some combination. The following focuses on the introduction of 

the 2-of-2 version of the threshold signature and the t-of-t 𝐹𝑚𝑢𝑙 combination method. (this 

algorithm is called as D algorithm for convenience) 

4.4.1 Doerner’s algorithm 

 Alice Bob 

1. Choose instance key seed 𝑘𝐴
′ ∈𝑅 𝑍𝑞 Choose instance key 𝑘𝐵 ∈𝑅 𝑍𝑞 

C 𝐷𝐵 = 𝑘𝐵 ∙ 𝐺 

S 𝐷𝐵 

2. C 𝑅′ = 𝑘𝐴
′ ∙ 𝐷𝐵 

𝑘𝐴 = 𝐻(𝑅′) + 𝑘𝐴
′  

R = 𝑘𝐴 ∙ 𝐷𝐵 

 

S R 

3-1. 

𝐹𝑚𝑢𝑙 

Choose a pad φ ∈𝑅 𝑍𝑞  

input 

 

1/𝑘𝐵 input φ + 1/𝑘𝐴 

output 𝑡𝐴
1 output 𝑡𝐵

1  

3-2. 

𝐹𝑚𝑢𝑙 

input 1/𝑠𝑘𝐴 input 1/𝑠𝑘𝐵 

output 𝑡𝐴
2 output 𝑡𝐵

2 
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 Alice Bob 

4.  C R = H(R′) ∙  𝐷𝐵 + 𝑅′ 

For both Alice and Bob let (𝑟𝑥, 𝑟𝑦) = R. 

5. 

𝐹𝑍𝐾
𝑅𝐷𝐿 

Submit (prove,𝑘𝐴,𝐷𝐵) Submit (prove,R ,𝐷𝐵) 

 Bob receives a bit indicating whether the proof 

was sound. If it was not, he aborts. 

6. C m′ = H(m) C m′ = H(m) 

7. C 𝛤1 = 𝐺 + φ ∙ 𝑘𝐴 ∙ 𝐺 − 𝑡𝐴
1 ∙ 𝑅 

𝜂𝜑 = 𝐻(𝛤1) + φ 

𝑠𝑖𝑔𝐴 = (𝑚′ ∙ 𝑡𝐴
1) + (𝑟𝑥 ∙ 𝑡𝐴

2) 

𝛤2 = (𝑡𝐴
1 ∙ 𝑝𝑘) − (𝑡𝐴

2 ∙ 𝐺) 

𝜂𝑠𝑖𝑔 =  𝐻(𝛤2) + 𝑠𝑖𝑔𝐴 

 

S 𝜂𝜑 and 𝜂𝑠𝑖𝑔 

8.   C 𝛤1 = 𝑡𝐵
1 ∙ 𝑅 

φ = 𝜂𝜑 − 𝐻(𝛤1) 

θ = 𝑡𝐵
1 − φ/𝑘𝐵 

𝑠𝑖𝑔𝐵 = (𝑚′ ∙ 𝜃) + (𝑟𝑥 ∙ 𝑡𝐵
2) 

𝛤2 = (𝑡𝐵
2 ∙ 𝐺) − (𝜃 ∙ 𝑝𝑘) 

sig = 𝑠𝑖𝑔𝐵 + 𝜂𝑠𝑖𝑔 − 𝐻(𝛤2) 

Final Bob uses the public key pk to verify that σ = (sig, 𝑟𝑥) is a valid signature on message m. 

 If the verification fails, Bob aborts. If it succeeds, he outputs σ. 
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4.4.2 Efficiency analysis 

Analysis 1. Difficult assumption  

     As what addressed in the study, the algorithm (or D algorithm) did not apply additional obscure 

assumptions. Instead, the use of OT technology was implemented to complete the threshold 

mechanism. However, it is difficult for the applied OT technology to discrete logarithm problem 

above the elliptic curve. In other words, using the D algorithm does not reduce the security of the 

signature. 

Analysis 2. Number of rounds  

     According to the study, the number of rounds required for 2-of-2 and 2-of-n versions is 2. 

However, in order to compare with the R algorithm, the round calculation of the two should adopts 

the same definition: If the i round has not been completed, the i + 1 round cannot be completed 

(for all i). In this way, the number of rounds of the D algorithm is 4. 

Analysis 3. Zero-Knowledge proof 

    The zero-knowledge proof used in the D algorithm is based on the Schnorr protocol12. This zero-

knowledge proof, which is a fairly efficient zero-knowledge proof algorithm, was invented by 

Claus Schnorr in 1991. By incorporating the use Fiat–Shamir heuristic29, Doerner et al made zero-

knowledge proof converted to a non-interactive version. One can refer to Chapter 2.4 for the brief 

introduction.  

     Using the Schnorr protocol to make the zero-knowledge of the D algorithm saves a lot of 

computing resources. The prover's calculation consists of 1RSA and 1 hash, while the verifier's 

calculation is about 2RSA.  

Analysis 4. Send messages 

     The number of messages that the D algorithm needs to transmit is mostly in 𝐹𝑚𝑢𝑙, meaning the 
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technique of multiplication and addition will be required and the intensive use of OT is also needed. 

In order to minimize the number of messages that need to be transmitted, the researchers also 

applied the OT extension26, where the OT that has been process many times to k times (k is the 

security parameter of OT) can be reduced. In fact, in Gilboa's multiplication addition10, it is also 

possible to further reduce the number of messages to be transmitted by changing the 2-bit to 4-bit.   

Analysis 5. t-of-n 

     Strictly speaking, Doerner et al did not propose a new t-of-n threshold scheme in the study. 

Instead, they did some sorting combinations based on the 2-of-2 version. In terms of the version 

proposed in the study, t is preferably the power of 2. However, such arrangement is not an arbitrary 

choice. On the contrary, this method is designed to allow each participant to operate as much as 

possible. Although the number of times 𝐹𝑚𝑢𝑙  needs to be performed remains unchanged, the 

number of rounds that need to be executed by t-of-n threshold to 𝑙𝑜𝑔2𝑛  can be reduced. The 

algorithm is symmetrical for each participant. We show what participants 1 needs to do in the 

process. 

Round1. 𝐹𝑚𝑢𝑙 1 

With 𝑃2 

Round2. 𝐹𝑚𝑢𝑙 2 

With 𝑃3, 𝑃4 

Round3. 𝐹𝑚𝑢𝑙 4 

With 𝑃5, 𝑃6𝑃7, 𝑃8 

Round ⌈𝑙𝑜𝑔2𝑡⌉. 𝐹𝑚𝑢𝑙 2(⌈𝑙𝑜𝑔2𝑡⌉−1) 

With 𝑃2(⌈𝑙𝑜𝑔2𝑡⌉−1)+1, … , 𝑃𝑡 
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4.5 Comparisons between the two studies 

Rounds (signing): 

 R D 

2-of-2 4 4 

2-of-n 4 4 

t-of-t 3t-2 5+2𝑙𝑜𝑔2𝑡 

t-of-n 3t-2 5+2𝑙𝑜𝑔2𝑡 

* The t-of-t case and the t-of-n case of these two algorithms are almost the same, the main difference is in the setup 

part. 

 

Communication (Bits): 

 R D 

2-of-2 343κ** κ(κ𝑂𝑇 + 16κ + 14s + 10) + 3 

2-of-n 343κ κ(κ𝑂𝑇 + 22κ + 20s + 11) + 3 

t-of-t κ(155𝑡2 − 122𝑡 − 33) 𝑡(𝑡 − 1)

2
(7κ2 + 12κ ∙ s + κ ∙ κ𝑂𝑇 + 28κ + 10) 

t-of-n κ(155𝑡2 − 122𝑡 − 33) 𝑡(𝑡 − 1)

2
(9κ2 + 18κ ∙ s + κ ∙ κ𝑂𝑇 + 30κ + 10) 

*κ, κ𝑂𝑇, 𝑠 are all security parameters. 

** According to the paper13 , use N>κ8 in Paillier cryptosystem 

 

Operation: 

 R D 

 

2-of-2 

 

(X) 10 (X) 8 

(+) 4 (+) 2 

Hash 2 Hash 2.5κ𝑂𝑇 + 22κ + 17S + 9 

RSA 58.97 RSA 2 

 

2-of-n 

 

(X) 10 (X) 8 

(+) 4 (+) 2 

Hash 2 Hash 2.5κ𝑂𝑇 + 28κ + 23S + 9 

RSA 58.97 RSA 2 
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t-of-t 

(X) 5t (X) 5 

(+) 3t-2 (+) t-1 

Hash t+1 Hash 𝑡(𝑡 − 1)

2
(2.5κ𝑂𝑇 + 11κ + 16S + 26) 

RSA 25.61t+15.75-10/t RSA 1.5t 

 

t-of-n 

(X) 5t (X) 5 

(+) 3t-2 (+) t-1 

Hash t+1 Hash 𝑡(𝑡 − 1)

2
(2.5κ𝑂𝑇 + 15κ + 21S + 26) 

RSA 25.61t+15.75-10/t RSA 1.5t 

 

4.6 Other forms of threshold secret sharing 

     Although each algorithm discussed earlier shows its own advantages, cryptography can't be 

confined to la tour d'ivoire, after all. There are always a variety of challenging conditions in the 

real world. A more targeted algorithm is needed in order to solve the problems. A number of 

different threshold secret sharing will be introduced in the following section.  

4.6.1 Weighted threshold47-51 

     When using multi signature or threshold signature, there may be situations where each 

individual possesses different levels of authority in the same group. For example, the signature of 

an account is 4-of-10 threshold signature is implemented in a company, and the company consists 

of ten members, including two supervisors and eight employees. The supervisors think that the 

two of them can use the account as long as they reach a consensus, and permission from the other 

staff members required. In this case, it is possible to assign 2 weights to both supervisors, and the 

weights of other staff members is considered as 1. It is something intuitive to adopt such approach. 

When using the threshold signature scheme mentioned earlier, people with more weights will be 

allocate with more secret shares. Dikshit and Singh47 also performed their studies in a similar 

manner, however, they later realized there was a fatal flaw embedding in this algorithm. For 
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instance, in this scenario, everyone needs to manage a lot of keys. If an individual's weight is w, it 

is likely for one to reach all the keys. In order to cope with this issue, researchers published a new 

study in 201748. In the study, it was proposed that each individual, regardless of his or her weight, 

would only get the access to a single key.  

4.6.2 Hierarchical threshold 

     Let’s discuss about another scenario. In a school, according to the school regulations, it is 

stipulated that a group of fifteen people per application must be met, and at least one teacher must 

be included in each group. There may be people commenting that an adjustment of right 

distribution may solve this problem. However, such approach does not necessarily be considered 

as a solution. If the number of students is extremely large, one can simply use a large number of 

students to replace the teacher's weight, regardless of the weight of the students. In addition, if the 

problem gets more complicated, for instance, where at least two directors, four teachers, and seven 

students should be included among the fifteen people, some additional schemes may be required. 

Tamir Tassa et al proposed an approach of Hierarchical Threshold Secret Sharing to solve such 

problems 52. The Birkhoff interpolation was applied in the study.  
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Chapter 5. Threshold Cryptography on Cloud Computing 

5.1 Introduction of cloud computing 

     With the advancement of technology, such as grid computing, multi-core processors, 

virtualization, the Internet, etc., the development of cloud computing has been thriving. Cloud 

computing can save a lot of redundant resources for enterprises. In fact, many companies spend a 

lot of money on building the IT infrastructure, but the average usage rate is less than 20%. In other 

words, nearly 80% of the resources are wasted. Imaging a scenario where space and services rental 

are available based on one’s needs. Tasks such the equipment room maintenance, network 

management and software upgrades can simply be assigned to a dedicated individual. Such scheme 

can be much more time-efficient and cost-effective. After all, people don’t need to raise a cow by 

themselves to drink milk. Similarly, cloud computing is gradually sprouting under such thoughts. 

The vision of cloud computing is to make information services, such as public services (including 

water and electricity), available at any time. This example also carries one of the dominant 

properties of cloud computing: instant flexibility. That is to say, turn on the faucet when one is in 

need, and vice versa.  

5.2 The NIST definition of cloud computing 

     In November 2010, the National Institute of Standards and Technology (NIST) launched the 

cloud computing technology projects. It is mainly to assist the federal government to adopt cloud 

computing instead, and to strengthen the traditional information system and the new cloud 

application model. Meanwhile, the US federal government also supports and assists the NIST to 

develop relevant standards, as well as the deployment of cloud security architecture and cloud 

computing. A series of documents and reports were also drafted during the course of projects, 

including: (1) NIST SP800-145 Cloud Computing Definition16, (2) NIST SP800-146 Cloud 
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Computing Recommendations53, and (3) NIST SP500-292 Cloud Computing System 

Architecture54. A wide range aspects of cloud security were focused in the projects, including cloud 

computing security barriers, cloud computing security measures list, etc. The NIST guidelines and 

recommendations can be considered as the essential guidelines for the development of cloud 

security in the future. 

     Specifically, NIST further explains its definition by outlining the five essential characteristics, 

three service models, and four deployment models. The five essential characteristics include on-

demand self-service, broad network access, resource pooling, rapid elasticity, and measured 

service. The three services models discussed in the reports are Software as a Service (SaaS), 

Platform as a Service (PaaS), and Infrastructure as a Service (IaaS), while the four deployment 

models consist of private cloud, community cloud, public cloud, and hybrid cloud.  

5.3 Threshold Cryptography on Cloud Computing 

     Although cloud computing can help companies save a broad range of resources, including 

hardware (such as equipment and maintenance costs), storage space and computing, security is a 

critical concern when it comes to the application of cloud computing. The security issues may be 

discussed from several aspects. First, the security of the server supplier is the primary and crucial 

concern. It is questionable whether the data can be restored when the server entity storing the data 

is damaged. In addition, it is greatly concerning whether the stored data is prone to be leaked or 

destroyed. Moreover, the highly concentrated information will bring convenience to the hackers 

(the eggs should not be placed in the same basket).  

     Take some real-world cases as examples. Business.com surveyed through Linkedin, 75% of the 

65 respondents believe that "security" is the first consideration of cloud computing. In addition, 

Gartner surveyed 169 data center managers, and 85% thought that the’securit’ of cloud computing 
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might be the reason for them to retreat. Similarly, according to the CNN's article, ‘How safe is 

cloud computing?’, hackers can capture a lot of customer information in clouds. In a nutshell, 

when one puts more eggs in a single basket, the prize is much bigger for the others. 

     Some studies have tried to use the threshold cryptography to solve security problems. Those 

researchers anticipate to be able provide more security to the key used by the secret share schemes. 

5.3.1 Threshold cryptography based on data security in cloud computing55 

Acronyms and definition 

a. DO (Data Owner): the data owner will upload the data to the CSP, so that DO can save 

the cost of storing and managing the data. 

b. CSP (Cloud Service Provider): servers that provide cloud services, such as Amazon's 

Simple Storage Service (S3) and Elastic Block Store (EBS) 

Procedure 

     Sushil Kr Saroj, Sanjeev Kr Chauhan, Aravendra Kr Sharma, Sundaram Vats, based on the 

NDAC model, coupled with the technique of threshold cryptography, enabled themselves not only 

provide the strong data confidentiality but also reduces the number of keys. And because of 

threshold cryptography, one can avoid collusion attack of malicious users and cloud service 

provider and heavy computation (due to large number of keys). 

     In short, as the illustration shown in Figure 3, User requests registration from DO. After DO 

confirms the identity of User, DO will divide users in groups, and DO will provide encryption keys, 

tokens, algorithm (MD5) and other necessary things for secure communication to user groups in 

response of registration. Then DO will transmit the updated Capability List and the file encrypted 

with 𝑘𝑇  (the symmetric key held by DO and User) to the CSP (this can avoid the CSP from 

knowing). When User needs the data, he or she will apply to the CSP. After the CSP confirms the 
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identity of the User based on the Capability List, it will perform a modified Diffle-Hellman 

exchange with the User. People call it modified DH algorithm as they encrypt the DH parameters 

using the public key of one side while using nonce in each direction during session key (𝑘𝑆 ) 

generation and data transfer. This helps to resist any negative attacks during the process. After User 

receives the file, one will complete the desire decrypt with other users in the group (in addition to 

the file is encrypted, there is actually the hash value of the file so User can verify the integrity of 

the file).  

 

 

 

 

 

 

     In this study, the authors divided all the steps into four algorithms, where the part related to the 

threshold is in algorithm 4. Algorithm 4, the algorithm for decryption of a file for User 1, is similar 

to threshold encryption technology, describing the procedure how a file is decrypting for User 1 

after acquiring the encrypted message. Because one can't decrypt key alone, he or she first updates 

the PKS Vector (initially, all its bits are zero) with the key component, and then sends the PKS 

Vector and the encrypted message to the next user in the same group. Next user decrypts the 

message and updates the PKS Vector with his key component. This process continues until all bits 

of PKS Vector are one. It is clear to see that the application is not used by all key components 

(threshold for critical components only). Afterwards, the data is sent back to the originator user, 

who then decrypts the message and gets it. Initially, User 1 will not decrypt the message (M). 

Figure 3 
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Instead, User 1 will only update the PKS Vector. 

5.3.2 A secured key for cloud computing using threshold cryptography in Kerberos56 

Acronyms and definition  

a. Kerberos: is a network authentication protocol. It is designed to provide strong 

authentication for client/server applications by using Symmetric-key algorithm. A free 

implementation of this protocol is available from the Massachusetts Institute of Technology. 

b. Authentication Sever (AS): is responsible for providing Ticket Granting Ticket (TGT) to 

the client. After AS confirms the identity of the client, AS encrypts TGT with the client's 

private key and sends it to the user.  

c. Ticket Granting Sever (TGS): is responsible for providing Service Ticket (ST) to client. 

Client will hand over the TGT that he got from the AS to the TGS.  After the TGT is verified, 

the ST will be handed over to client. 

Procedure 

     This paper proposed a cloud computing authentication model based on Kerberos protocol, 

which uses threshold cryptography technology to provide higher security and improve key 

availability. This model can also benefit by filtering unauthenticated access and reducing the 

computational and storage resources that cloud providers spend on each customer's identity 

authentication. It acts as a third party between the client and the cloud server to allow authorized 

and secure access to the cloud service. In Kerberos authentication, the main issue is how to prove 

an individual’s true identity. For example, when a client accesses a service on a server, how does 

the server determine if the client has access to the service on its own host. 

     Due to the fact that all the authentication processes are controlled by a centralized key 

distribution center, once the system is compromised, it is easy for an attacker to gain information 
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about the user's key. To avoid such situation, threshold encryption algorithm was applied in the 

study to divide the ticket into n shares and delivers it to the server, so that the key cannot be cracked 

until the number of votes for the threshold value is obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 

Figure 5 
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5.3.3 Searching for the optimal value for threshold on cloud computing57 

     In the scope of cloud computing, threshold cryptography can help to increase security by 

protecting the key. Dividing the key into n copies can reduce the risk of the key being lost cracked 

by the attacker. Moreover, n people (every combination will only use k, k < n) use the assigned 

key component to combine only one key, which greatly reduces the burden of keys storage. 

However, when it comes to the research on threshold cryptography, there is barely discussion 

related to the question of ’If n is fixed, how much k should be selected’. Therefore, Weena 

Janratchakool, Sirapat Boonkrong and Sucha Smanchat used CloudSim to simulate cloud 

environment and collect time consumed in key distribution and key reconstruction process to 

achieve the optimal threshold value. The key size used in the experiment will be only 2048-bit 

private keys according to the NIST recommendation.  

     First, n = 256, n = 224, and n = 196 were fixed respectively. When the number of threshold 

(that is, k) is gradually increased, the Key Distribution Time will increase. According to experiment 

conducted in the study, however, the results of Key Distribution Time showed little discrepancies, 

which were linearly increased and the gaps among the three results were small. Therefore, only 

the Average of Key Distribution Time was considered in the following analysis in the study.  

     Next, concerning what happens to the key reconstruction time when k is gradually increased 

under different n, the curves obtained from the two experiments were considered as intersections, 

and the researchers indicated that the part of the intersection was the best k. According to the 

experimental results, the best k was nearly 31% of n.  

     Although the authors were not convinced by the route of how to get the best k, the research on 

searching for the best k is expected in the future since it is increasing promising to protect sensitive 

data in terms of cloud computing (especially the private key stored via cloud computing). 
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Concerning security issues, using threshold cryptography to improve the security of private keys 

is one of the convincing approaches adopted by many people. Therefore, the importance of 

searching for the best k is correspondingly increasing.  
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Chapter 6. Conclusions  

     Ever since the emergence of the blockchain, the concerns to privacy have been rising among 

the public. Factors, such as the advancements of cryptography (including MPC, zero-knowledge 

proof, and homomorphic encryption, etc.), NIST’s proactive attitude towards developments, and 

the public’s anticipation for avoiding single point of failures in the system, stimulate an inevitable 

trend in the threshold cryptography development. Early in 1979, cryptographers have successively 

published pertinent studies since Adi Shamir proposed the concept of ‘How to share a secret.’ 

Thanks to the advanced technology, the development of threshold cryptography has entered its 

golden era. People are convinced that threshold cryptography will play a role worldwide in the 

near future.  

     In a short period of time, due to the impact of virtual currency, the development of ECDSA 

threshold is in a compelling need. In this study, two major types of ECDSA thresholds were 

discussed, and particularly the Rosario Gennaro the algorithm optimized in 2016. There have been 

teams, who devote to developing smart contracts, adopting the optimized algorithm and apply it 

in a real-world setting. However, according to the analyses of the two algorithms discussed earlier, 

Gennaro's algorithm yields an additional hardness assumption compared to ECDSA. In additional, 

Paillier cryptosystem will consume significant computing resources when performing encryption, 

decryption, and homomorphic addition. Concerning the efficiency and security, therefore, we 

concluded that Doerner's algorithm may be considered as a more optimal ECDSA threshold than 

the others. 

     As what were discussed earlier, the evolutionary conditions of threshold cryptography act as a 

propeller in the development of cloud computing. While NIST has been showing a proactive 

attitude towards the developments, a number of multinational enterprises are also targeting on the 
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cloud computing markets. According to the comments made by third parties described in Chapter 

5, the majority are still hesitant when it comes to the security of cloud computing. Under such 

circumstances, the use of threshold cryptography plays a role since it can provide the security 

required in cloud computing. Kerbero, proposed by MIT's research lab, is a great application in 

cloud computing. On top of that, it is promising that threshold cryptography will be able to provide 

a more optimal and desirable security in the near future. We are also expecting to see more 

combined applications of threshold encryption and cloud computing, together creating synergistic 

benefits in the years ahead.  
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