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中文摘要 

 

在這篇論文中，我們主要討論拉普拉斯轉換如何影響一個給定函數

的漸進行為。研究發現，一個函數 f(t)在 t很大的行為會影響 L(f)(s)

在 s很小的漸進行為。更進一步在某些狀況下我們可以藉由 L(f)(s)

的漸進行為去推得 f(t)在 t很大的漸進行為。這篇論文主要使用實分

析技巧。我們還將此結果與 Abelian and Tauberian Theorem of 

Laplace transform 進行比較。 

 



doi:10.6342/NTU201901693

 

Abstract 

 

In the present thesis, we concern the relation between the function 

and its Laplace transform. More precisely, the asymptotic behavior 

when t is large (small) implies asymptotic behavior of its Laplace 

transform when s is small (large) and vice versa, especially, for 

critical exponent we provide a simple sufficient and necessary 

condition. Our approach only involves real analysis. We will also 

compare the result with Abelian and Tauberian Theorem of Laplace 

transform. 
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1 Introduction

Throughout this thesis, we assume that f is a measurable function on R and
e−stf(t) ∈ L1 for any s > 0.

We define

L(f)(s) ≡
∫ ∞

0

f ∗ e−stdt (1)

and

F (t) ≡
∫ t

0

f(u)du. (2)

It was found that the information about the asymptotic behaviour of F near
infinity implies some information about the asymptotic behaviour behaviour of
L(f) near zero and vice versa, for example the famous Tauberian Theorem for
Laplace transform.

According to Feller in theorem of [1], we know that given ρ ≥ 0 if we have
”scaling behaviour” of f near the infinity, i.e.,

lim
t→∞

F (xt)

F (t)
= xρ, (3)

then L(f) will have the scaling behaviour near origin, i.e.,

lim
t→0

L(f)(xt)

L(f)(t)
= x−ρ (4)

and vice versa.
In [2], if F has some ”logistic” behaviour near infinity, then L(f) has some

logistic behaviour near zero and vice versa. In [3], a complex analysis approach
is used. With some additional condition, the relation of asymptotic behaviour
are characterized.

In the thesis, we will relax the condition and still provide a similar result.
First we found that :

Theorem 1.1.

(a) For integer n ≥ 0, when limt→∞
f(t)
tn = 1, then

lim
s→0

L(f)(s)

s−n−1
= n!. (5)

(b) If limt→∞
f(t)

1
t

= 1, then

lim
s→0

L(f)(s)

− log s
= 1. (6)

1
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(c) For integer n < −1, if limt→∞
f(t)
tn = 1,

then

∫ ∞
0

e−stf(t)dt−Σ−n−2
i=0

∫ ∞
0

(−1)iti

i!
f(t)dtsi =

(−1)−ns−n−1 log s

(−n− 1)!
+o(

s−n−1 log s

(−n− 1)!
)

(7)
as s→ 0

Then we use that result to found that

Theorem 1.2.

(a) For integer n ≥ 0 when limt→∞
F (t)
tn = 1, then

lim
s→0

L(f)(s)

s−n
= n! (8)

(b) If limt→∞
F (t)
log t = 1 then

lim
s→0

L(f)(s)

− log s
= 1 (9)

and vice versa if f is non negative.

(c) For integer n < −1 when, limt→∞
−F (t)+

∫∞
0
f(u)du

(n+1)tn+1 = 1, then

L(f)(s)− Σ−n−2
i=0

∫ ∞
0

(−1)iti

i!
f(t)dtsi =

(−1)−ns−n−1 log s

(−n− 1)!
+ o(

s−n−1 log s

(−n− 1)!
)

(10)
as s→ 0, and the converse is not true

The organization of the remaining part of the thesis is as follows:

In Section 2, we will discuss how the behaviour of f affect the behaviour of
L(f)(s). In Section 3, we will discuss the relation between the behaviour of F(t)
and the behaviour of L(f)(s). In Section 4, we will show that the polynomial
terms of L(f) tell nothing about of f. In Section 5, we will compare our result
with previous result in [1],[2].

2 Relation between behaviour of the function
and its transformed type (1)

The proof of Theorem 1.1 is as below.

2
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Proof.

(a)

If

f(x) = tn + h(t) where h(t)
tn → 0 as t→∞,

then we have ∫ ∞
0

e−stf(t)dt

=

∫ ∞
0

e−st(tn + h(t))dt

=
n!

sn+1
+

∫ ∞
0

e−sth(t)dt.

(11)

So, it suffice to show that: ∫ ∞
0

e−sth(t)dtsn+1 → 0 (12)

as s→ 0 .

Since h(t)t−n → 0 as t→∞,

we have
∀ε > 0,∃δ > 0 s.t. |h(t)| < εtn for t ∈ [δ,∞]

In doing so, ∫ ∞
0

e−sth(t)dt

=

∫ ∞
δ

e−sth(t)dt+

∫ δ

0

e−sth(t)dt,

(13)

but

|
∫ ∞
δ

e−sth(t)dt|

≤
∫ ∞
δ

e−st|h(t)|dt

≤
∫ ∞
δ

e−stεtndt

≤ n!ε

sn+1
.

(14)

3
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Plus,

|
∫ δ

0
e−sth(t)dt

s−n−1
|

=|
∫ δ

0

e−stsn+1h(t)dt|

=sn+1

∫ δ

0

e−st|h(t)|dt

≤sn+1

∫ δ

0

|h(t)|dt

(15)

(Note that h(t) is locally integrable.)

which approach to 0 as s→ 0.

So we have lim sups→0 |
∫∞

0
e−sth(t)| ≤ ε for any ε > 0.

which implies lim sups→0 |
∫∞

0
e−sth(t)| = 0

(b) and (c)
For integer n ≥ 1,

if we have f(t) = 1
tn + o( 1

tn ) as t→∞,

define

φn(x) :=
e−x − Σn−2

i=0
(−1)ixi

i!
(−1)n−1

(n−1)! x
n−1

. (16)

For example,

φ1(x) = e−x,

φ2(x) = e−x−1
−x ,

φ3(x) = e−x−1+x
x2

2

...and so on.

It is not hard to know that this series of functions are all non negative.

Claim: for any n ≥ 1

(1) limx→0 φn(x) = 1.

(2) limx→∞ xφn(x) = n− 1.

4
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(3) φn(x) is monotone decreasing function.

The first part and second part of the claim is trivial from the definition of
φn(x).

So, we only do the third part:

Since the first part and second part of the claim, it suffice to show that all
the critical point of this function lie in a decreasing function with initial value
1.

If it has a critical point says x and φ′n(x) = 0,

then

φ′n(x)

=
(−e−x − Σn−2

i=1
(−1)ixi−1

(i−1)! )( (−1)nxn−1

(n−1)! )− (−e−x − Σn−2
i=0

(−1)ixi

(i)! )( (−1)nxn−2

(n−2)! )

( 1
(n−1)! )

2x2n−2

=
(−1)n(n− 1)!

xn
(−e−x(x+ n− 1) + Σn−2

i=0

(−1)ixi(n− 1− i)
i!

)

(17)

then we have

e−x =
Σn−2
i=0

(−1)ixi

i! (n− 1− i)
x+ n− 1

. (18)

Furthermore,

φn(x)

=

Σn−2
i=0

(−1)ixi

i! (n−1−i)
x+n−1 − Σn−2

i=0
(−1)ixi

i!

(−1)n−1

(n−1)! x
n−1

=
n− 1

x+ n− 1
.

(19)

That means all critical point lie in a strictly decreasing sequence function
h(x) = n−1

x+n−1 (note h(0)=1),

but if φn(x) is not monotone decreasing i.e. there exist x1 < x2 such that
φn(x1) < φn(x2)

Then, if x1 6= 0, then there is a maximum point y of φn(x) on (x1, x2],
and a minimum point z of φn(x) on [0,y). Note that y is a critical point,

5
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so φn(y) = n−1
y+n−1 < 1 which imply z 6= 0. z is also a critical point and

φn(z) < φn(y), but this contradict the fact that all critical point of φn(x) lie in
a strictly decreasing function f(x) = n−1

x+n−1 .

If x1 = 0, this lead to the contradiction once we notice that f(x) = n−1
x+n−1 <

1 for any x > 1.

By (1) and (3) of the claim, we have 0 ≤ φn ≤ 1 for any x ≥ 0.

By assumption and (2) of claim,we have
∀ε > 0,∃M(ε) > 0
s.t. ∀t ∈ [M(ε),∞), we have |f(t)− 1

tn | ≤ ε
1
tn and |φn(t)t| ≤ (n− 1)(1 + ε).

Note that

L(f)(s)− Σi=n−2
i=0

(−1)isi

i!

∫∞
0
tif(t)dt

(−1)n−1

(n−1)! s
n−1

=

∫ ∞
0

φn(st)tn−1f(t)dt

=

∫ M(ε)

0

φn(st)tn−1f(t)dt+

∫ 1
s

M(ε)

φn(st)tn−1f(t)dt+

∫ ∞
1
s

φn(st)tn−1f(t)dt

≤
∫ M(ε)

0

φn(st)tn−1f(t)dt+

∫ 1
s

M(ε)

tn−1|f(t)|dt+ (n− 1)

∫ ∞
1
s

(1 + ε)2 1

st2
dt

≤
∫ M(ε)

0

φn(st)tn−1f(t)dt+

∫ 1
s

M(ε)

(1 + ε)
1

t
dt+ (n− 1)

∫ ∞
1
s

(1 + ε)2 1

st2
dt

≤
∫ M(ε)

0

φn(st)tn−1f(t)dt+ (1 + ε)(log
1

s
− logM(ε)) + (n− 1)

∫ ∞
1
s

(1 + ε)2 1

st2
dt

≤
∫ M(ε)

0

tn−1|f(t)|dt+ (1 + ε)(log
1

s
− logM(ε)) + (n− 1)(1 + ε)2.

(20)

Hence we have

lim sup
s→0

L(f)(s)− Σi=n−2
i=0

(−1)isi

i!

∫∞
0
tif(t)dt

(−1)n−1sn−1(− log s)
≤ 1. (21)

On the other hand, for
φ−1
n (1−ε)
s > M(ε),

6
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∫ ∞
0

φn(st)tn−1f(t)dt

=

∫ φ−1
n (1−ε)

s

0

φn(st)tn−1f(t)dt+

∫ ∞
φ
−1
n (1−ε)

s

φn(st)tn−1f(t)dt

≥
∫ φ−1

n (1−ε)
s

0

φn(st)tn−1f(t)dt

=

∫ M(ε)

0

φn(st)tn−1f(t)dt+ (1− ε)
∫ φ−1

n (1−ε)
s

M(ε)

tn−1f(t)dt

=

∫ M(ε)

0

tn−1|f(t)|dt+ (1− ε)
∫ φ−1

n (1−ε)
s

M(ε)

(1− ε)1

t
dt

=

∫ M(ε)

0

tn−1|f(t)|dt+ (1− ε)
∫ φ−1

n (1−ε)
s

M(ε)

(1− ε)1

t
dt

=

∫ M(ε)

0

tn−1|f(t)|dt+ (1− ε)2

∫ φ−1
n (1−ε)

s

M(ε)

1

t
dt]

=

∫ M(ε)

0

tn−1|f(t)|dt+ (1− ε)2(log (
φ−1
n (1− ε)

s
)− logM(ε))]

(22)

And we conclude that

lim inf
s→0

L(f)(s)− Σi=n−2
i=0

(−1)isi

i!

∫∞
0
tif(t)dt

(−1)n−1sn−1(− log s)
≥ 1. (23)

Remark 2.1.

The method to prove the part (a) of Theorem also lead to the following result:

(a) If there is a non-negative integer n such that

f(x) = tn + o(tn) as t → 0

then

L(f)(s) = n!
sn+1 + o( 1

sn+1 ) as s→∞.

Remark 2.2. The converse is not true.

7
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3 Relation between behaviour of the function
and its transformed type (2)

Before we prove the theorem 1.2,we introduce a useful lemma.

Lemma 3.1. L(log t)(s) = γ−log s
s ,where γ =

∫∞
0
e−u log udu.

Proof.

L(log t)(s)

=

∫ ∞
0

e−st log tdt

=

∫ ∞
0

e−u log
u

s

1

s
du

=

∫ ∞
0

e−u(log(u)− log s)
1

s
du

=
1

s
(

∫ ∞
0

e−u log udu−
∫ ∞

0

e−u log sdu)

=
1

s
(

∫ ∞
0

e−u log udu− log s

∫ ∞
0

e−udu)

=
1

s
(γ − log s).

(24)

Then, we will use this to prove Theorem 1

Proof. Here we will break the proof into three steps.

Step 1: The ”if” part of (a), (b) and (c)

Step 2: The ”only if” part of (b)

Step 3: Offering the counter example of ”only if part of (c).

Step 1:

8
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For (a),by Theorem 1.1,

L(f(t))(s)

s

=L(

∫ t

0

f(x)dx)(s)

=
1

n+ 1
(
(n+ 1)!

sn+2
+ o(

1

sn+2
)).

(25)

Therefore

L(f)(s) =
n!

sn+1
+ o(

1

sn+1
). (26)

For (b),

L(f(t))(s)

s

=L(

∫ t

0

f(x)dx)(s)

=L(log t+ g(t))(s) (where
g(t)

log t
→ 0 as t→∞)

=
γ − log s

s
+ L(g(t))(s)

=
γ − log s

s
+

∫ ∞
0

e−stg(t)dt.

(27)

Note that for any ε > 0 there is real number M(ε) > 0
s.t. |g(t)| ≤ ε log t whenever t > M(ε).
Therefore,

γ − log s

s
+

∫ ∞
0

e−stg(t)dt

=
γ − log s

s
+

∫ M(ε)

0

e−stg(t)dt+

∫ ∞
M(ε)

e−stg(t)dt

≤γ − log s

s
+

∫ M(ε)

0

e−stg(t)dt+

∫ ∞
M(ε)

e−stε log tdt

≤(1 + ε)
γ − log s

s
+

∫ M(ε)

0

g(t)dt.

(28)

That means for any ε > 0

lim sup
s→0

L(f(t))(s)

− log s
≤ 1 + ε. (29)

9
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So we have

lim sup
s→0

L(f(t))(s)

− log s
≤ 1. (30)

Similarly,

lim sup
s→0

L(f(t))(s)

− log s
≥ 1 (31)

and the result follows.

For (c), the method is similar to (b)

Step 2:

Note that for any 0 < M < 1,

L(f)(s)

=

∫ ∞
0

e−stf(t)dt

≥
∫ − 1

s logM

0

e−stf(t)dt

≥
∫ − 1

s logM

0

Mf(t)dt

≥M
∫ − 1

s logM

0

f(t)dt

=MF (−1

s
logM).

(32)

Since

lim sup
s→0

L(f)(s)

− log s
≤ 1, (33)

we have

lim sup
s→0

F (− 1
s logM)

log 1
s

≤ 1

M
. (34)

Hence,

lim sup
s→0

F ( 1
s )

log 1
−s logM

≤ 1

M
. (35)

So,

lim sup
s→0

F ( 1
s )

log 1
s

≤ 1

M
(36)

10



doi:10.6342/NTU201901693

for any 0 < M < 1.
Then, we have

lim sup
s→0

F ( 1
s )

log 1
s

≤ 1. (37)

On the other hand,

we suppose lim inft→∞
F (t)
log t < 1,

then there exist ti ↗∞ such that F (ti) ≤ (1− ε) log ti.

Let si := t
− 1−ε

1− ε
2

i .

For convenience, we set γ := 1−ε
1− ε2

.

Then,

L(f)(sj)

=

∫ ∞
0

e−sjtf(t)dt

=

∫ ∞
0

e
− t

t
γ
j f(t)dt

=

∫ tj

0

e
− t

t
γ
j f(t)dt+

∫ ∞
tj

e
− t

t
γ
j f(t)dt.

(38)

Set G(t) ≡ (1 + δ) log t for t ≥ tj .
Note that by (39)

∃M > 0s.t.∀t ≥M, F (t)
− log t ≤ 1 + δ.

For ti > M , by integration by part, we have∫ ∞
tj

e
− t

t
γ
j f(t)dt

=− e
−
tj

t
γ
j F (tj) + s

∫ ∞
tj

e
− t

t
γ
j F (t)dt

≤− e
−
tj

t
γ
j F (tj) + s

∫ ∞
tj

e
− t

t
γ
j G(t)dt

≤− e
−
tj

t
γ
j F (tj) + e

− t

t
γ
j G(tj) +

∫ ∞
tj

e
− t

t
γ
j dG

≤e
−
tj

t
γ
j G(tj) +

∫ ∞
tj

e
− t

t
γ
j dG

≤(1 + δ)e
−
tj

t
γ
j log tj +

∫ ∞
tj

e
− t

t
γ
j dG.

(39)

11
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Therefore∫ tj

0

e
− t

t
γ
j f(t)dt+

∫ ∞
tj

e
− t

t
γ
j f(t)dt

≤
∫ tj

0

f(t)dt+ (1 + δ)e
−
tj

t
γ
j log tj +

∫ ∞
tj

e
− t

t
γ
j dG

≤(1− ε) log tj + (1 + δ)e
−
tj

t
γ
j log tj +

∫ ∞
tj

e
− t

t
γ
j dG

≤− (1− ε

2
) log sj −

(1 + δ)

γ
e
−
tj

t
γ
j log sj +

∫ ∞
tj

e
− t

t
γ
j (1 + δ)

1

t
dt

=− (1− ε

2
) log sj −

(1 + δ)

γ
e
−
tj

t
γ
j log sj + (1 + δ)[log tje

−sjtj +

∫ ∞
sjtj

log ue−udu− e−sjtj log sj ]

=− (1− ε

2
) log sj −

(1 + δ)

γ
e−s

γ−1
γ

j log sj + (1 + δ)[− 1

γ
log sje

−s
γ−1
γ

j +

∫ ∞
s
γ−1
γ

j

log ue−udu− e−s
γ−1
γ

j log sj ].

(40)

Since s
γ−1
γ

j →∞, we have

lim inf
s→0

L(f)(s)

− log s
< 1− ε

2
. (41)

which contradict the assumption.

Hence lim inft→∞
F (t)
log t ≥ 1.

Combining (36), we finish the step 2.

Step 3:
For n < −1,

set f := Σ∞i=0δti(t
n+1
i − tn+1

i+1 ),

then

∫ ∞
0

φ−n(st)t−n−1fdt

=

∫ ∞
0

φ−n(st)t−n−1Σ∞i=0δti(t
n+1
i − tn+1

i+1 )dt

=Σ∞i=0φ−n(sti)t
−n−1
i (tn+1

i − tn+1
i+1 )

≤Σ∞i=0φ−n(sti)t
−n−1
i (tn+1

i )

=Σ∞i=0φ−n(sti).

(42)

12
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We assume that t1 ≥ 2, ti+1 ≥ (i + 1)ti (it is easily follow once we choose
the subsequence of ti ).

Set sj := 1
tj+1

(here j is large enough such that φ−n(x) < (1 + ε)( 1
x ) for

x ≥ (j + 2),

then using property of φ, we have∫ ∞
0

φ−n(
t

tj+1
)t−n−1fdt

≤Σ∞i=0φ−n(
ti
tj+1

)

=Σj+1
i=0φ−n(

ti
tj+1

) + Σ∞i=j+2φ−n(
ti
tj+1

)

≤Σj+1
i=0φ−n(

ti
tj+1

) + Σ∞i=j+2φ−n(
i∏

k=j+2

k)

≤Σj+1
i=0φ−n(

ti
tj+1

) + Σ∞i=j+2((−n− 1)(1 + ε)
1∏i

k=j+2 k
)

=Σj+1
i=0φ−n(

ti
tj+1

) + (−n− 1)(1 + ε)Σ∞i=j+2(
1∏i

k=j+2 k
)

≤Σj+1
i=0φ−n(

ti
tj+1

) + (−n− 1)(1 + ε)Σ∞i=j+2(
1

(j + 2)i−j−1
)

≤Σj+1
i=0φ−n(

ti
tj+1

) + (−n− 1)(1 + ε)(
1

j + 1
)

≤(j + 2) + (−n− 1)(1 + ε)(
1

j + 1
)

< < log tj+1

=− log sj .

(43)

Given s ∈ (sj+1, sj), by monotonicity of φ, we know that
∫∞

0
φ−n(st)t−n−1fdt

is monotonically deceasing on s.

Hence,

13
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∫ ∞
0

φ−n(st)t−n−1fdt

≤
∫ ∞

0

φ−n(sj+1t)t
−n−1fdt

≤(j + 3) + (−n− 1)(1 + ε)(
1

j + 2
)

< < log tj+1

=− log sj

≤− log s.

(44)

Let g(t) := (1 + t)n + Σ∞i=0δti(t
n+1
i − tn+1

i+1 ).

It is obvious that
∫ t

0
g(u)du 6= tn + o(tn),

but

L(f)(s)− Σ−n−2
i=0

∫∞
0

(−1)iti

i! f(t)dtsi = (−1)−na−ns
−n−1 log s

(−n−1)! + o( s
−n−1 log s
(−n−1)! ).

Then the result is followed.

4 Non-informativeness of polynomial term of the
transformed function

Theorem 4.1. For any Ci ∈ R, i = 1, 2, ...,m there exist f with compact support
such that ∫ ∞

0

e−stf(t)dt = C0 + C1s+ C2s
2...+ Cms

m + o(sm). (45)

Proof. Note that

∫ ∞
0

e−st1[a,b]dt =
e−as − e−bs

s

=Σ∞i=0

(−1)i−1(ai+1 − bi+1)

(i+ 1)!
si

=Σmi=0

(−1)i−1(ai+1 − bi+1)

(i+ 1)!
si +O(sm+1).

(46)

By choosing fj := 1[0,j+1], for j = 0, ...,m, we have∫ ∞
0

e−stfjdt = Σmi=0

(−1)i−1(−(j + 1)i+1)

(i+ 1)!
si +O(sm+1). (47)

14
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So it suffice to show that the matrix A ≡
1
1

2
1

3
1 ... m+1

1
−1
2!

−4
2!

−9
2! ... −(m+1)2

2!
1
3!

8
3!

27
3! ... (m+1)3

3!
...

(−1)m

(m+1)!
(−1)m2m+1

(m+1)!
(−1)m3m+1

(m+1)! ... (−1)m(m+1)m+1

(m+1)!


has non zero determinant.

But, the is equal to say the matrix(by elementary matrix operation)
1 2 3 ... m+ 1
12 22 32 ... (m+ 1)2

13 23 33 ... (m+ 1)3

...
1(m+1) 2(m+1) 3(m+1) ... (m+ 1)(m+1)


has zero determinant and it is a known fact.

5 The difference with the previous result

We will show the difference between asymptotic behaviour and scaling be-
haviour.

The following theorem is prove in [1]:

Proposition 5.1. Let u(x) be a measurable function on [0,∞) We define

U(t) :=
∫ t

0
u(dx)

L(u)(s) :=
∫∞

0
e−stdU for s > 0

Then, for any ρ > 0, the following two statements are equivalent:

(1)

lim
t→∞

L(u)( st )

L(u)( 1
t )

=
1

λρ
(48)

for any s > 0

(2)

lim
t→0

U(ts)

U(t)
= sρ (49)

15
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for any s > 0

Which is the difference of the condition between this result and the result in
chapter 1?

It is obvious that if we have f(t) = Ctn + o(tn) as t → ∞ for some C ∈ R,

then limt→∞
f(xt)
t , but the converse is false even when n=1.

Here we provide example.

Let g(t) := t(1 + 1
10 sin log log t), it is clear that g(t) 6= Ctn + o(tn) for any

C ∈ R.

However,

g(xt)

g(t)

=
xt(1 + 1

10 sin log log xt)

t(1 + 1
10 sin log log t)

=x
(1 + 1

10 sin log log xt)

(1 + 1
10 sin log log t)

=x(1 +
1
10 sin log log xt− 1

10 sin log log t

(1 + 1
10 sin log log t)

)

=x(1 +
1

10

sin log log xt− sin log log t

(1 + 1
10 sin log log t)

)

→x

(50)

as t→∞.

(note that | sin log log xt− sin log log t| ≤ | log log xt− log log t|
≤ | log log xt

log t | → 0 )

The following theorem is prove in [2]:

Proposition 5.2. For any increasing and right continuous function F : R+ →
R with F (0+) = 0, let L(dF ) ≡

∫∞
0+ e

−tsdF (s) then the following are equivalent:

(a) for every positive x and y (y 6= 1)

lim
t→∞

F (tx)− F (t)

F (ty)− F (t)
=

log x

log y
(51)

(b)

lim
t→0

L(dF )(tx)− L(dF )(t)

L(dF )(ty)− L(dF )(t)
=

log x

log y
. (52)

16
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Here we will show Theorem 5.2 and Theorem 1.2 won’t imply each other.

For instance, set g(t) := log t(1 + ε sin log log log t) and h(t) := log t +√
log t sin t.

Clearly, limt→∞
g(t)
log t doesn’t exist.

However,

g(xt)− g(t)

g(et)− g(t)

=
log xt(1 + ε sin log log log xt)− log t(1 + ε sin log log log t)

log et(1 + ε sin log log log et)− log t(1 + ε sin log log log t)

=
log x(1 + ε sin log log log xt) + log t(1 + ε sin log log log xt)− log t(1 + ε sin log log log t)

(1 + ε sin log log log et) + log t(1 + ε sin log log log et)− log t(1 + ε sin log log log t)

=
log x(1 + ε sin log log log xt) + log t(ε(sin log log log xt− sin log log log t))

(1 + ε sin log log log et) + log t(ε(sin log log log et− sin log log log t)))
.

(53)

Note that (Here without losing generosity we assume x > 1.)

| log t(ε(sin log log log xt− sin log log log t))|
≤| log t(ε(log log log xt− log log log t))|

≤|(1− x)t log t(ε
1

log log t

1

log t

1

t
)|

≤|(1− x)(ε
1

log log t
)| → 0

(54)

as t→∞.

Hence

lim
t→∞

log x(1 + ε sin log log log xt) + log t(ε(sin log log log xt− sin log log log t))

(1 + ε sin log log log et) + log t(ε(sin log log log et− sin log log log t)))

= lim
t→∞

log x(1 + ε sin log log log xt)

(1 + ε sin log log log et)

= log x.

(55)

It is obvious that limt→∞
h(t)
log t = 1.

17
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However,

h(2et)− h(t)

h(et)− h(t)

=
log 2e+

√
log 2et sin 2et−

√
log t sin t

1 +
√

log et sin et−
√

log t sin t
.

(56)

If t = πn
e ,

then it

=
log 2e+

√
log 2et sin 2et−

√
log t sin t

1 +
√

log et sin et−
√

log t sin t

=
log 2e−

√
log πn

e sin πn
e

1−
√

log πn
e sin πn

e

.

(57)

This doesn’t approach to log x when n→∞.

Also it is shown in P.282 of [3] that:
(Here we simply the result by setting s0 = 0 and consider s as complex

number.)

If L(f)(s) = Σ∞n=0ans
n−1 + log sΣ∞n=0bns

n

and the following additional assumption holds.

(1) L(f)(s) is analytic for Re(s) ≥ −δ, δ > 0 , except at s=0

(2) L(f)(s)→ 0 uniformly as Im(s)→∞ for −δ ≤ Re(s) ≤ γ for some γ

(3)
∫ κ+i∞
κ−i∞ |L(f)(s)|ds <∞ for −δ ≤ κ ≤ γ,

Then we have

f = a0 − Σ∞n=0(−1)nbnn!t−n−1 + o(t−n−1) (58)

as t→∞.
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