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Abstract

In the present thesis, we concern the relation between the function
and its Laplace transform. More precisely, the asymptotic behavior
when t 1s large (small) implies asymptotic behavior of its Laplace
transform when s i1s small (large) and vice versa, especially, for
critical exponent we provide a simple sufficient and necessary
condition. Our approach only involves real analysis. We will also
compare the result with Abelian and Tauberian Theorem of Laplace
transform.
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1 Introduction

Throughout this thesis, we assume that f is a measurable function on 'R and
e St f(t) € Ly for any s > 0.

We define -
L)) = [ fee 1)
and

F(t)z/o f(uw)du. (2)

It was found that the information about the asymptotic behaviour of F near
infinity implies some information about the asymptotic behaviour behaviour of
L(f) near zero and vice versa, for example the famous Tauberian Theorem for
Laplace transform.

According to Feller in theorem of [1], we know that given p > 0 if we have
”scaling behaviour” of f near the infinity, i.e.,

I F(xt)
% F(¥)

= z”, (3)

then L(f) will have the scaling behaviour near origin, i.e.,

LGED
ML W

and vice versa.

In [2], if F has some ”logistic” behaviour near infinity, then L(f) has some
logistic behaviour near zero and vice versa. In [3], a complex analysis approach
is used. With some additional condition, the relation of asymptotic behaviour
are characterized.

In the thesis, we will relax the condition and still provide a similar result.

First we found that :

Theorem 1.1.
(a) For integer n > 0, when lim;_, % =1, then
gii% % =nl (5)
(b) If limy o0 L (;) =1, then
tim X _ (©)

s—0 —logs
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f(t) -1

(¢) For integer n < —1, if lim;_, oo T =
then

7

oo oo -1 iti ) 1) 7n711 7n—11
| e swa-sz | CO payanst = U0 L085 o T 108
0 0 :

1! (—n —1)! (=n —1)!
(7)
as s — 0
Then we use that result to found that
Theorem 1.2.
(a) For integer n > 0 when lim;_, % =1, then
lir% M = n! (8)
s— s
(b) If limyo0 10 =1 then
lim ) 4 9)
s—0 —logs
and vice versa if f is non negative.
(c¢) For integer n < —1 when, lim;_, o W =1, then
(=1)""s " llogs s~ llogs

L(f)(s) — %;04 72 /OOO (_1!)thf(t)dtsi = T + o( = )
(10)

as s — 0, and the converse is not true

The organization of the remaining part of the thesis is as follows:

In Section 2, we will discuss how the behaviour of f affect the behaviour of
L(f)(s). In Section 3, we will discuss the relation between the behaviour of F(t)
and the behaviour of L(f)(s). In Section 4, we will show that the polynomial

terms of L(f) tell nothing about of f. In Section 5, we will compare our result
with previous result in [1],[2].

2 Relation between behaviour of the function
and its transformed type (1)

The proof of Theorem 1.1 is as below.
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Proof.
(a)
It

f(x) =t + h(t) where htSf) — 0 ast— oo,

then we have

/OO e Stf(t)dt

0

_ / T et 4 h())dt

n! < g
= St h(t)dt.
gt e

So, it suffice to show that:
/OOO e Sth(t)dts" ™ = 0
as s —0.
Since h(t)t™™ — 0 as t — oo,

we have
Ve > 0,35 > 0 s.t. |h(t)] < et™ for t € [, 0]

/ e *'h(t)dt
0

In doing so,

0o 5
:/ e*sth(t)dt+/ e *'h(t)dt,
5

0

but
| / et h(t)dt]
5

< / e~ (1) dt
o

oo
§/ e Stetndt
5

nle
— anrl .

(11)
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Plus,

N e—sth(t)dt|

| S—n—l

5
=| [ e sts"TIh(t)dt|
0
5
:S"H/ e St h(t)|dt
0
5
<t [ neojar
0

(Note that h(t) is locally integrable.)
which approach to 0 as s — 0.
So we have limsup,_, | [ e *'h(t)| < € for any > 0.

which implies limsup,_, | [~ e **h(t)| = 0

(b) and (c)
For integer n > 1,
if we have f(t) = 7 + o() as t — oo,

define 1yt
e % — EZL:Q mED A
¢n(m>::: (,1yw:0 7;! : (16)
=

For example,

¢1(x):::eix7
¢2(.’E) = 67,11_1’
¢3(z) = =
2
...and so on.

It is not hard to know that this series of functions are all non negative.

Claim: for any n >1
(1) limg 0 ¢pn(z) = 1.

(2) limg—y oo P (z) =n — 1.
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(3) ¢n(z) is monotone decreasing function.

The first part and second part of the claim is trivial from the definition of

On(x).
So, we only do the third part:

Since the first part and second part of the claim, it suffice to show that all

the critical point of this function lie in a decreasing function with initial value
1.

If it has a critical point says « and ¢/, (x) = 0,

then
P ()
_9(—=1)igt 1 —1)"g" ! —x n—2(=1)'a’ —ran
_(_e—w_z?:f( (1),1)! )(4 (Qﬁi)! ) = (—em® = TP (1i))! ) (173*2“ )
(ﬁ)zxznfz
) -, pp e =1-9)
= (e @t n - 1)+ il )
(17)
then we have
E"_2( 1-)iwi S
o _ Zi=0 xzi’_ n(7—11 9 (18)
Furthermore,
bn()
D e G ) n—2(=1)'z’
_ : T+n—1 _ZZ 02( )‘
- ((—1)”;)*'1 n—1 (19)
__n-1
o +n—1

That means all critical point lie in a strictly decreasing sequence function

h(z) = #’I_Llfl (note h(0)=1),

but if ¢, (z) is not monotone decreasing i.e. there exist x; < x5 such that

an(xl) < QSTL(‘TQ)

Then, if z; # 0, then there is a maximum point y of ¢,(z) on (z1, 2],
and a minimum point z of ¢,(z) on [0,y). Note that y is a critical point,
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so on(y) = yigil < 1 which imply z # 0. z is also a critical point and

dn(2) < ¢n(y), but this contradict the fact that all critical point of ¢, (x) lie in

a strictly decreasing function f(z) = mﬁ;il

If z; = 0, this lead to the contradiction once we notice that f(z) = -2-1- <

rx+n—1
1 for any = > 1.

By (1) and (3) of the claim, we have 0 < ¢,, <1 for any = > 0.

By assumption and (2) of claim,we have

Ve > 0,3M(e) >0

s.t. Vt € [M(g),00), we have | f(t) — 7| < e and [¢, (8)t] < (n—1)(1+e).
Note that

L(f)(s) = Bz > J ' ()t
— n—1
( 1)1)1 sn—1

(n—
- /oo G (st F(t)dt
0

M(e) 0o
= / G (s" L F(H)dt + G (s L F()dt + / b (st)t" L F(t)dt
0 o

M(e)

M (e) 1 -
S/O bn (s F (1)t + /M(g) " F(8)|dt + (n — 1)/l 1+ 8)25(#

s
1
E

M(e) 1 -
S/o gz’"(St)’fnﬂf@)d’f+/ (1+€)%dt+(n—1)[ (1 + 2t

M(e) :
M(g) oo
g/o (s LF(1)dE + (1 + E)(log% ~log M(2)) + (n — 1)/1 (1+ 5)2$dt
M(E) 1
< / "M f(®)|dt + (1 +€)(log S log M(g)) + (n — 1)(1 +¢)?.
0
(20)
Hence we have
L)) — ST e (bt
T e (logs) S ey

On the other hand, for w > M(e),
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/OOO b (st)t" L F(t)dt

ppl(i—e)

_ /0 Ga(st)t" 1 F(1)dt + /¢ iy Sol O
aﬁ;l(‘lfe)
> / L als)" T f(t)t
M(e ¢;1(51—e)
/ (s LE (1 )dt+(1—e)/ =L (1) dt
0 M(e)
M(e 4’;1(,1‘5) 1 (22)
nL ()| dE+ (1 — ! —e)=d
/0 I f(0)de+ ( 5)/M(E) (- o)yt
M(e ppt(l—e)
m— 1
" E)|dE+ (1 — 1—¢)-d
/0 1 £(0)dt + ( 5)/M<E> (1 - o)t
M(e “l1—e)
s 1
n—1 d 2 Zd
/0 1 f(0)dt + (1— =) /M(E) ]
—-1(1 _
= [ e s - 220s ) g ey
And we conclude that
L L(f)(s) - mimp Ctf
hg(?f (—1)n—1gn— 1( log ) 21 (23)
]

Remark 2.1.
The method to prove the part (a) of Theorem also lead to the following result:
(a) If there is a non-negative integer n such that
flz)=t"+o(t") ast —0
then

L(f)(s) = 5 + ol 1) as s = oo,

Remark 2.2. The converse is not true.
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3 Relation between behaviour of the function

and its transformed type (2)

Before we prove the theorem 1.2,we introduce a useful lemma.

Lemma 3.1. L(logt)(s) = 27185 yhere v = I e log udu.

S

Proof.

h
—
o
80Q
~+
~—
—~
»
~

e *tlogtdt

8

I
c\c\gc\
o

:
<3
02
\
&
S

1
e “(log(u) —log s)gdu

:1(/ e 1ogudu—/ e "log sdu)
s Jo 0

1 (o) o0
:f(/ e " log udu — logs/ e "“du)

s Jo 0

(7~ logs)

(7 —logs).

Then, we will use this to prove Theorem 1

Proof. Here we will break the proof into three steps.
Step 1: The 7if” part of (a), (b) and (c)

Step 2: The ”only if” part of (b)

Step 3: Offering the counter example of ”only if part of (c).

Step 1:

(24)
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For (a),by Theorem 1.1,
L(f(1))(s)

=L( [ [f(z)dz)(s)
(

s
t

J

1 n+1)!

:n—|—1( gnt2

Therefore
n!

L(f)(s) = gt T O

For (b),
L(f(1))(s)

~L([ F(@)o)e)
=L(logt+ g(t))(s) (where

=T B 1g()(s)

logt

—1 oo
:770‘55+/ e *tg(t)dt.
0

S

Note that for any € > 0 there is real number M () > 0
s.t. |g(t)| < elogt whenever t > M(e).

Therefore,

S

—log s M(e)
:7’7 g +/ e_Stg(t
0

S

S

_1 oo
Y o8s +/ e Stg(t)dt
0

—1 M(e)
LY 08s +/ e Syt
0

)dt +
M(e

)dt +

—1 M(e)
<(1+ 5)%%75 + / g(t)dt.

0

That means for any ¢ > 0

lim sup

L(f(1)(s)

50 —logs

t
&—>0ast—>oo

oo

<l+e.

)

e Stg(t)dt
)

e Stelogtdt
M (e)

(25)

(26)

(27)

(29)
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So we have

LEO)G) _,

lim sup

s—0  —logs
Similarly,
L(f(¢t
sy L) | |
s»0  —logs

and the result follows.

For (c), the method is similar to (b)

Step 2:

Note that for any 0 < M < 1,

L(f)(s)
:/ e Stf(t)dt
0

Since
lim sup 7)(s <1,
s—0 —logs
we have
) F(—1log M) < 1
imsu —
or log 1 - M
Hence,
F(: 1
lim sup (51) < —
s—0 ]'Og slog M M
So,
F(i 1
lim sup (51) <

(32)
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for any 0 < M < 1.
Then, we have

On the other hand,
we suppose liminf;_, % <1,

then there exist ¢; * oo such that F(t;) < (1 —¢)logt;.

1—

o

Let s; := t;lf% .
For convenience, we set v := 11:2
Then,
L(f)(s;)
:/Oo e St f(t)dt
0
= /OO eiﬁf(t)dt (38)
0

tj _% o0 _%
:/ e ' f(t)dt +/ e "1 f(t)dt.
0 t;
Set G(t) = (14 0)logt for t > t;.
Note that by (39)
AM > 0s.t.vt > M, LU <1 445,

—logt —

For t; > M | by integration by part, we have
< -4
/ e T F(t)dt
tj

_Y
]

=—e Y F(t;)

+
V2l
—
8
° |
e
e
\é:

(39)
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Therefore

/Otj e T F(t)dt + /too e pw

J
tj

tj -4 oo 7%
g/ ft)dt+ (1+d)e logtj+/ e '1dG
0

tj
ty t

<(1—¢)logt; + (1 + 6)6_7 logt; +/ e 4dG
t

J

140) -7 * -F 1
—(1- E)logsj — we ‘i log s; +/ e ' (1440)=dt
2 0 ¢ t
1+06) -+ >
—(1- g)log sj — (1+ )e " log s; + (1 + 6)[log tje =% +/ log ue™“du — e~ %% log s,]
Y sjt;
145 | = e !
—(1- g) logs; — ( —; )e_sj log s; + (1 + 5)[_§ log s;e™% T4 /L_l log ue “du — e~ % ’ log s;].
s; v
(40)
y=1
Since s;7 — 00, we have
L
limint 2O g€ (41)
s—0 —logs 2
which contradict the assumption.
Hence liminf;_, % > 1.
Combining (36), we finish the step 2.
Step 3:
For n < —1,
set f 1= 020, (0T — ¢,
then
/ G_n(st)t "1 fdt
0
_ / G n(s)tINE 6, (£ — £ dt
0 (42)
=% ¢ n(stl)t_" Yttt —eth
<EZo¢—n(sti)t; (t?Jrl)
=X 00—_n(sts).
12
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We assume that 1 > 2,¢,41 > (i + 1)t; (it is easily follow once we choose
the subsequence of t; ).

Set s; = t]% (here j is large enough such that ¢_,(z) < (14 ¢)(%) for
> (j+2),

then using property of ¢, we have

/Oo 6 n(—) 1 par
0 tj+1

t;
Szfiogbfn(tji)
_E]+1¢ ( ) + E;’ij.;.zﬁb—n(%)
j+1 j+1
<xitle. ( )+ 32 0 ( [ R
tj+1 k=j+2
SOIHG () + 5 a((n — 1)1+ ) )
tj+1 Hk:j+2k (43)
=yt +(—n—1)(1+e)xx, _
onl )+ o= DL T )
j+1 o o L
<EJ (b (j+1)+( n 1)(1+5)Zz:]+2((j+2)1‘_j_1>
j+1 o
<% 0¢-n (]+1)+( n 1)(1+€)(3+1)
1
S(j+2)—|—(—n—1)(1+5)(m)
<<10gtj+1
—log s;.

Given s € (841, s;), by monotonicity of ¢, we know that fooo G_n(st)t—" "L fdt
is monotonically deceasing on s.

Hence,

13
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/oo G_p(st)t™ " fat
0

< [T oalspmti s
0

1
SG+3)+ (= D1 +) () 4
< <logtjy1
= —logs;
< —logs.

Let g(t) = (1+0)" + D200, (17 — £2).
It is obvious that fg g(u)du # t" + o(t™),

but

—n—2 poo (—=1)%t* i —1)""a_,s " ! s s " llogs
L(f)(s) — 272 [0 CUE p(ydest = S1 fons B8 4 p(loks),

Then the result is followed.
O

4 Non-informativeness of polynomial term of the
transformed function

Theorem 4.1. Forany C; € R, i = 1,2, ..., m there exist f with compact support
such that

/ e St f(t)dt = Co + Cys + Cgs®... + Cpps™ + o(s™). (45)
0

Proof. Note that

00 —as __ ,—bs
0

S
oo (ST b
=¥, T s (46)
_1)i—1(,0+1 _ pi+ly
:21‘10( 1) (a‘ b )sz + O(Sm+1).

(i+1)!

By choosing f; := 1jg j41), for j = 0,...,m, we have

/ e~ fidt = B,
0

14
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So it suffice to show that the matrix A =

1 2 3 +1

1 1 1 1 5

2! 2! 2! 2!

1 8 27 (m+1)3

30 31 31 30
(—1)™ (—1ymam+t  (_pymgmtl (=1)™ (m41)™t1
(m+1)! (m+1)! (m~+1)! (m+1)!

has non zero determinant.

But, the is equal to say the matrix(by elementary matrix operation)

1 2 3 m+1

12 22 32 . (m+1)?

13 23 33 (m+1)3
Lm+1)  o(m+1)  gm+l) (m 4 1)(m+D)

has zero determinant and it is a known fact.

5 The difference with the previous result

We will show the difference between asymptotic behaviour and scaling be-
haviour.
The following theorem is prove in [1]:

Proposition 5.1. Let u(z) be a measurable function on [0,00) We define

U(t) = fot u(dzx)
L(u)(s) := [y e™tdU for s >0

Then, for any p > 0, the following two statements are equivalent:

(1)

. Lw)() 1
B Ty~ W o
for any s >0
(2)
Ults) o
50 U) (49)
15
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for any s >0

‘Which is the difference of the condition between this result and the result in
chapter 17

It is obvious that if we have f(t) = Ct" + o(t") as t — oo for some C € R,

then lim;_, o, ! (ft), but the converse is false even when n=1.

Here we provide example.

Let g(t) := t(1 + & sinloglogt), it is clear that g(t) # Ct™ + o(t") for any
CeR.

However,

(1)
)

g
_at(l+ 15 sinlog log «:t)
=

Q

1+ %0 sin log log t)
(14 {5 sinloglog «t)
(1+ % sin log log t) (50)
%0 sinloglog xt — 11—0 sinloglogt
(14 {5 sinloglogt)
1 sinloglog xt — sinloglogt
10 (1+ -5 sinlog log t)

=z(1+4

=z(1+ )

—T
as t — oo.

(note that | sinloglogxt — sinloglogt| < |loglog xt — loglog t|

< [ log 22t L 0))

The following theorem is prove in [2]:
Proposition 5.2. For any increasing and right continuous function F : Rt —
R with F(07) =0, let L(dF) = [T e~ **dF(s) then the following are equivalent:

(a) for every positive x and y (y # 1)

F(tr) — F(t) logx

oo Fty) — F(t)  logy (51)
(b)
\LWF)(tr) ~ LF)(t) _ loge 52

t—0 L(dF)(ty) — L(dF)(t) logy’

16
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Here we will show Theorem 5.2 and Theorem 1.2 won’t imply each other.

For instance, set g(t) := logt(l + esinlogloglogt) and h(t) := logt +
Vlogtsint.

Clearly, lim;_, fi)(g)t doesn’t exist.
However,

g(zt) —g(t)

glet) —g(t)

_log xt(1 + e sinlog loglog xt) — log t(1 + € sin log log log )

~ loget(1 +esinloglogloget) —logt(1 + e sinlog log log t)

_logz(1 + esinlogloglog xt) 4 log (1 + £ sinlog log log xt) — log (1 4 £ sin log log log t)
(14 esinloglogloget) + logt(1 + e sinloglog log et) — log t(1 + e sinlog log log t)
_logz(1 + e sinlogloglog xt) + log t(¢(sin log log log #t — sinlog loglogt))

(1 + esinloglogloget) + log t(s(sin log log log et — sin log log log t)))

(53)
Note that (Here without losing generosity we assume = > 1.)
| log t(e(sin log log log 2t — sinlog log logt))]
<|logt(s(logloglog xt — logloglogt))|
11
<|(1 —x)tlogt(e )| (54)

loglogt logt t

<|(1-—
<11 = 2)(e o) = 0
as t — oo.
Hence
lim log z(1 + e sinloglog log xt) + log t(e(sin log log log 't — sinlogloglogt))

t—oo (1 + esinloglogloget) + log t((sin logloglog et — sinlogloglogt)))
— lim log z(1 4 e sinlog log log xt)
~t=oo (14 esinlogloglog et)

=logx.

It is obvious that lim;_, % =1

17
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However,

h(2et) — h(t)
h(et) — h(t)

_log2e + +/log 2et sin 2et — /logtsint

1+ /logetsinet — +/logtsint

If ¢ = 22,

then it

_log2e + +/log 2et sin 2et — v/logtsint

1+ logetsinet — +/logtsint
log 2e — /log ** sin =+

1 — /log %% sin =+

This doesn’t approach to logz when n — oo.

Also it is shown in P.282 of [3] that:

(56)

(Here we simply the result by setting s = 0 and consider s as complex

number.)

If L(f)(s) = B52gans™ " + log sX52 o by, s™

and the following additional assumption holds.

(1) L(f)(s) is analytic for Re(s) > —6,0 > 0, except at s=0

(2) L(f)(s) — 0 uniformly as I'm(s) — oo for —§ < Re(s) < v for some 7y

(3) [T |L(f)(s)|ds < oo for —6 < K <,

K—100

Then we have

f=ap— E]ff’:()(—1)"I)nn!t_"_1 + o(t_"_l)

as t — oo.

18

(58)

doi:10.6342/NTU201901693



References

[1] Feller, William. An introduction to probability theory and its applications.
Vol. II. Second edition, 1971,Pages 443

[2] Laurens de Haan. An Abel-Tauber Theorem for Laplace Transforms Journal
of the London Mathematical Society, Volume s2-13, Issue 3, 1 August 1976,
Pages 537

[3] H.S. Carslaw, J.C. Jaeger. Operation method in applied Mathematics,1947,
Pages 282

19

doi:10.6342/NTU201901693





