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摘要

本篇論文主要目的在於解決問答模型的問題，因為問答問題常被研

究者們拿來測試模型對自然語言的理解及推理能力。解決的問題主要

有二，第一是藉由提出一個簡單且有效的模組將原先只能處理單回合

問答的模型延伸至多回合問答。第二是改善問答模型對對抗性攻擊的

穩固性，我們設計了一個基於最大化相互資訊的正則化來達到這個目

標。

基於對話的多回合問答需要模型對交談過程有近一步的理解，而先

前被提出的模型藉由隱含的對模型推理的過程建模來改善表現。本篇

論文的第一部分在這上面做了更進一步的改善，我們提出藉由明確的

對模型推理的過程進行建模，以使模型可以更好地擷取對回答問題有

用的資訊。模型在 QuAC, CoQA以及 SCONE三個資料集上皆得到很

好的效果，顯著的改善了表現且證明了其可以被應用在不同種類的模

型上。

本篇論文的第二部分專注在改善模型對對抗性樣本的的穩固性。

雖然現在問答模型已經可以在傳統的測量標準上得到非常好的成績，

它們仍是非常容易地被特別設計的混淆句子所欺騙，使人們對這些模

型是否真正理解問題感到存疑。為了解決這個問題，我們首先專注在

單回合的問答資料集上，並提出了一個藉由最大化問題、答案以及文

章的相互資訊來實現的正則化。我們的正則化可以幫助模型不再只

是用資料集中存在的膚淺相關性來回答問題。實驗結果顯示模型在

Adversarial-SQuAD這個資料集上達到現在最好的表現。

在未來工作方面，將影像、聲音及常識引入問答模型是個重要的方
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向，而進一步研究如何防禦對抗性攻擊可以幫助模型對問題及文章有

更深一步的了解。除此之外，問答模型的半監督學習和自監督學習也

是一個重要的研究主題，因為儘管是小孩也不需要現在模型需要的龐

大資料集來學習如何解決簡單的閱讀測驗。我們的未來方向放在如何

開發有效率，穩固，且可以應用在各情境的問答模型。

關鍵字：問答,機器理解,對話模型,對抗攻擊,穩固性
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Abstract

The main purpose of this thesis is to solve problems related to question

answering (QA), for it being widely used for training and testing machine

comprehension and reasoning. We focus on two problems about generaliza-

tion of single-turn QA models. Firstly, we propose a simple and effective

module which models the information gain in the reasoning process to ex-

tend the single-turn QA models to multi-turn setting. Secondly, we aim to

improve the robustness of QA models to adversarially generated examples

by designing a novel regularizer utilizing mutual information maximization

to guide the training process.

Multi-turn question answering as the dialog requires deep understand-

ing of the dialogue flow, and the prior work proposed FlowQA to implic-

itly model the context representation in reasoning for better understanding.

The first part of this thesis proposes to explicitly model the information gain

through dialogue reasoning in order to allow the model to focus on more in-

formative cues. The proposed module is evaluated on two conversational QA

datasets Question Answering in Context (QuAC) and Conversational Ques-

tion Answering Challenge (CoQA), and one sequential instruction under-

standing datset Sequential Context-dependent Execution (SCONE) to shows

the effectiveness. The proposed approach achieves significant improvement

over baselines in all three datasets and demostrates its capability of general-

ization to different QA models and tasks. 1

The second part of this thesis focuses on improving the robustness of
1The code is available at https://github.com/MiuLab/FlowDelta
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QA models to adversarial examples. Standard accuracy metrics indicate that

modern reading comprehension systems have achieved strong performance in

many question answering datasets. However, the extent these systems truly

understand language remains unknown, and existing systems are not good at

distinguishing distractor sentences, which look related but do not actually an-

swer the question. To address this problem, we first focus on models trained

on single-turn extractive QA datasets, and propose QAInfomax as a regular-

izer in reading comprehension systems by maximizing mutual information

among passages, questions, and answers. QAInfomax helps regularize the

model to not simply learn the superficial correlation for answering questions.

The experiments show that our proposed QAInfomax achieves the state-of-

the-art performance on the benchmark Adversarial-SQuAD dataset. 2

As for future work, QA can be extended to incorporate commonsense

and features in multiple-modalities, and studying how to defense adversar-

ial attacks in QA can lead models to deeper understanding of questions and

paragraphs. Moreover, semi-supervised and self-supervised approaches of

QA are worth exploring, as even children does not need so much training

data to learn how to solve these simple questions. The efficient, robust, and

generalizable QA systems is our most important research direction.

Keywords: question answering, machine comprehension, dialog modeling,

adversarial attacks, robustness

2The code is available at https://github.com/MiuLab/QAInfomax
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Chapter 1

Introduction

1.1 Motivation

Natural Langauge Processing (NLP) has been one of the central research area in artifical

intelligence. By studying NLP, it can give us new insights into all aspect of our language,

from how to acquire linguistics ability to why people and machine can understand and use

natural language. In NLP, Question Answering (QA) tasks are widely used for training

and testing machine comprehension and reasoning [1, 2, 3]. Recently, different variations

[4, 5, 6] and attacks [7, 8] of QA dataset has been proposed. They can be considered as

the generalization of well-studied QA datasets SQuAD to different scenarios and adver-

sarial examples which are out of the training distribution. The generalization in QA is an

important topic. Thus in this thesis, we focus on two essential generalization issues in QA

- how to extend single-turn QA to multi-turn setting and how to make our QA systems

more robust to adversarial examples.

QA or machine reading comprehension has been increasingly studied in the NLP area,

which aims to read a given passage and then answer questions correctly. However, human

usually seeks answers in a conversational manner by asking follow-up questions given the

previous answers. Traditional QA tasks such as SQuAD [1] focus on a single-turn setting,

and there is no connection between different questions and answers to the same passage.

To address the multi-turn issue, several datasets about conversational question answering

(CQA) were introduced, such as CoQA [9] and QuAC [10].

1
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Most existing machine comprehension models [11] apply single-turn methods and

augment the input with question and answer history, ignoring previous reasoning pro-

cesses in the models. Recently proposed FlowQA [12] attempted at modeling such multi-

turn reasoning in dialogues in order to improve performance for conversational QA. How-

ever, the proposed Flow operation is expected to incorporate salient information in an im-

plicit manner, because the learned representations captured by Flow would change during

multi-turn questions. It is unsure whether such change correlates well with the current an-

swer or not. In order to explicitlymodel the information gain in Flow and further relate the

current answer to the corresponding context, we present a novel mechanism, FlowDelta,

which focuses on modeling the difference between the learned context representations in

multi-turn dialogues.

On the other hand, in QA, high performance in standard automatic metrics has been

achieved with only superficial understanding, as QAmodels exploit simple correlations in

the data that happen to be predictive onmost test examples [8]. Jia and Liang [7] addressed

this problem and proposed an adversarial version of the SQuADdataset, whichwas created

by adding a distractor sentence to each paragraph. The distractor sentences challenge the

model robustness, and the created Adversarial-SQuAD data shows the inability of a model

about distinguishing a sentence that actually answers the question from one that merely

has words in common with it, where almost all state-of-the-art machine comprehension

systems are significantly degraded on adversarial examples.

Lewis and Fan [13] argued that over-fitting to superficial biases is partially caused

by discriminative loss functions, which saturate when simple correlations allow the ques-

tion to be answered confidently, leaving no incentive for further learning on the example.

Therefore, they designed generative QA models, which use a generative loss function in

question answering instead, and showed the improvement on Adversarial-SQuAD.

Instead of regularizing models by generative loss functions, we propose an alternative

approach named “QAInfomax” by maximizing mutual information (MI) among passages,

questions, and answers, aiming at helping models be not stuck with superficial biases in

the data during learning. To efficiently estimate MI, QAInfomax incorporates the recently

2
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proposed deep infomax (DIM) in the model [14], which was proved effective in learning

representations for image, audio [15], and graph domains [16]. In our work, the proposed

QAInfomax further extends DIM to the text domain, and encourages the question answer-

ing model to generate answers carrying information that can explain not only questions

but also itself, and thus be more sensitive to distractor sentences.

1.2 Main Contributions

Conversastional Question Answering

• We proposes a simple and effective mechanism to explicitly model information gain

in flow-based reasoning for multi-turn dialogues, which can be easily incorporated

in different MC models.

• FlowDelta consistently improves the performance on various conversational MC

datasets, including CoQA and QuAC.

• The proposed method achieves the state-of-the-art results among published models

on QuAC and sequential instruction understanding task (SCONE).

Robustness of Question Answering

• We first attempts at applying DIM-based MI estimation as a regularizer for repre-

sentation learning in the NLP domain.

• The proposedQAInfomax achieves the state-of-the-art performance on theAdversarial-

SQuADdataset without additional training data, demonstrating its better robustness.

1.3 Thesis Structure

The thesis is organized as below.

• Chapter 2 - Background

This chapter reviews background knowledge utilized in the proposed methods.

• Chapter 3 - Related Work

This chapter summarizes related work and discusses current challenges of the field.

3
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• Chapter 4 - Accurate Conversational Question Answering

This chapter focuses on introducing the model dealing with conversational question

answering and shows the conducted experiments for evaluation. Part of this research

work has been presented in the following publication [17]:

– Y.-T. Yeh and Y.-N. Chen,“QAInfomax: Learning robust question answer-

ing system by mutual information maximization,”in Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the

9th International Joint Conference on Natural Language Processing (EMNLP-

IJCNLP),(HongKong, China), pp. 3368–3373, Association for Computa-

tional Linguistics, Nov. 2019.

• Chapter 5 - Robust Question Answering

This chapter is dedicated to present a regularizer improving the robustness of QA

models, and examines the effectiveness and efficiency of proposed regualizer. Part

of this research work has been presented in the following publication [18]:

– Y.-T.Yeh and Y.-N.Chen,“FlowDelta:Modeling flow information gain in rea-

soning for conversational machine comprehension,”in Proceedings of the 2nd

Workshop onMachine Reading forQuestionAnswering, (HongKong, China),

pp. 86–90, Association for Computational Linguistics, Nov. 2019.

• Chapter 6 - Discussion and Conclusion

This chapter discusses and concludes the contributions, and describes the potential

future research directions.

4
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Chapter 2

Background

In this chapter, we will give some background knowledge about tasks, models, training

algorithms, and evaluation metrics.

2.1 Task Formulation

We first briefly introduce the detail of question answering. Given a context document

(paragraph) and a question, the goal of QA models is to reason over the document and

the question, and then generate the answer. It is similar to what we did in school tests,

which is considered as a basic ability of human intelligence. While QA tasks can be in

different formats such as multiple choices and free-form answers, in this thesis, we tackle

the QA tasks in the extractive setting. In the extractive setting which is also referred as

span-based QA, answers are guaranteed to be the span in the context document. The goal

of QA models thus become to find the most appropriate span in the paragraph given the

question. We give a simple example of span-based QA in Figure 2.1, and discuss different

types of QA datasets in section 3.

2.2 Recurrent Neural Models

In this section, we introduced long short term memory (LSTM) [19] and gated recurrent

unit (GRU) [20] used in conversational QA. As sequences we deal with get longer and

5
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Document
In meteorology, precipitation is any
product of the condensation of
atmospheric water vapor that falls
under gravity. The main forms of
precipitation include drizzle, rain,
sleet, snow, graupel and hail...

Question
What causes precipitation to fall? Model

Answer
gravity

Figure 2.1: Example of the span-based QA dataset

longer, the vanilla RNN [21] encounters the gradient vanishing problem. The gradient

vanishing problem occurs because neural network uses back propagation. In the back

propagation step, the previous time stepsmay receive very small gradient after the gradient

multiplies scalar smaller than one several times, which makes it untrainable. To avoid this

problem, the gated mechanism is introduced in LSTM and GRU. The internal structure of

a LSTM cell is:

ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ C̃t

ot = σ(Wo · [ht−1, xt] + b0)

ht = ot ∗ tanh(Ct) (2.1)

whereWf ,Wi,WC , andWo are learnable weights. ft, it and ot are often referred as forget,

input and output gates. By interacting with these three gates, we get the new hidden state

ht from ht−1.

6
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The internal structure of a GRU cell is:

zt = σ(Wz · [ht−1, xt])

rt = σ(Wr · [ht−1, xt])

h̃t = tanh(W · [rt ∗ ht−1, xt])

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (2.2)

where Wz, Wr and W are learnable weights. The new hidden state ht is updated by the

linear interpolation of original hidden state ht−1 and transformed hidden state h̃t weighted

by update gate.

2.3 Pretrained Models for Language Understanding

Pretrained Language model has been shown to be effective for improving many natural

language processing tasks including QA [22, 23, 24, 25]. There are two existing strate-

gies for applying pretrained language representation to down-stream tasks: feature-based

and fine-tuning. The feature-based approach such as ELMo [23] use task-specific archi-

tectures that include the pretrained representations as additional features. Generally, the

parameters of pretrained representations are freezed during training, or only the part of

parameters will be fine-tuned. The fine-tuning approach such as BERT [26] introduces

minimal task-specific parameters, and is trained on the downstream tasks by simply fine-

tuning all pretrained parameters.

BERT [26] with fine-tuning recently has reached the state-of-the-art in many single-

turn QA tasks, such as SQuAD [1, 27]. Each layer of BERT is a Transformer block

[28] that consists of multi-head attention (MH) and fully-connected feed forward network

(FFN).

7
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2.3.1 Multi-Head Attention

An general attention function can be described as mapping queryQ and a set of key-value

pairsK-V to an output:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.3)

where dk as scaling factor is the dimension of queryQ and keyK. The output is computed

as a weighted sum of the values V , where the weight assigned to each value is computed

by a compatibility function of the query Q with the corresponding key K.

Assuming the dimension of our model is dmodel, instead of performing a single atten-

tion function with dmodel-dimensional queries, keys, and values, it was found beneficial

to linearly project the queries, keys and values h times with different, learned linear pro-

jections to dk, dk and dv dimensions, respectively. On each of these projected versions of

queries, keys and values, we can then perform the attention function in parallel, yielding

dv-dimensional output values. These are concatenated and once again projected, resulting

in the final output of multi-head attention:

MH(Q,K, V ) = Concat(head1, . . . , headh)W
O (2.4)

headi = Attention(QWQ
i , KWK

i , V W V
i ),

whereWO,WQ
i ,WK

i , andWO are learned linear projection matrices. MH denotes multi-

head attention.

2.3.2 Transformer Block

As described above, each Transformer block consists of multi-head attention (MH) and

fully-connected feed forward network (FFN).

hl+1 = Transformer(hl) = LN(hl + FFN(LN(hl +MH(hl, hl, hl)))) (2.5)
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where hl is the hidden representation of the l-th layer, and LN is layer normalization [29]:.

LN(h) =
g

σ
⊙ (h− µ) + b (2.6)

µ =
1

dmodel

dmodel∑
i=1

hi,

σ =

√√√√ 1

dmodel

dmodel∑
i=1

(hi − µ)2,

where g and b are learned scaling parameters and⊙ is element-wisemultiplication between

two vectors. Note that here we abuse the subscripts to dentoe the i-th scalar in h vector

for simplicity.

MH(hl, hl, hl) is generally called self-attention or intra-attention. Self-attention is

useful to relating different positions of a single sequence in order to compute a repre-

sentation of the sequence. It has been used in a wide variety of NLP tasks including QA,

abstractive summarization, textual entailment and learning task-independent sentence rep-

resentations [30, 31, 32, 33].

2.3.3 BERT

The model architecture of BERT is the stack of multiple Transformer Blocks. Thus we

apply multiple times equation 2.5 and get the output representation of BERT:

BERT(S) = {r1, r2, . . . , rn} (2.7)

where S is the input sequence with n words, and {r1, r2, . . . , rn} is the output representa-

tion of BERT. There are two steps in the BERT framework as described in the beginning

of section 2: pretraining and fine-tuning. Here, we first introduce two pretraining tasks,

Masked LM and NSP, of BERT.

The Masked Language Model (Masked LM) is analogue to the traditional language

model, but the Masked LM is in bidirectional manner and thus more powerful than either

a left-to-right LM or the shallow concatenation of a left-to-right and right-to-left model.

9
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In Masked LM, we mask some percentage of the input tokens with [MASK] token at

random and then predict those masked tokens. It is worth noting that Masked LM is often

referred to as a Cloze task in the literature [34].

Besides language modeling, many important downstream tasks such as QA and Nat-

ural Langauge Inference (NLI) are based on understanding the relationship between two

sentences. In order to make a model understand sentence relationships, BERT is also pre-

trained on Next Sentence Prediction (NSP). Specifically, while choosing the sentence A

and B for each Masked LM training example, 50% of the time B is the actual next sen-

tence that follows A, and 50% of the time it is a random sentence from the corpus. Then

NSP train a model to predict whether the sentence B is the next sentence of A. It was

showed the NSP task is beneficial on both QA and NLI.

The BERT model can be easily fine-tuned on span-based QA tasks. Specifically, we

concatenate question and paragraph into a input sequence, and then feed it into BERT to get

the representation. After obtaining the passage representation of the training instance, we

use such representation to do themulti-class classification task. By classifyingwhichword

is the start and end of the answer span, we can compute the cross entropy loss andminimize

them to fine-tune our BERT. In this thesis, due to its state-of-the-art performance, we use

BERT as our baseline QA models and applied the proposed methods on it to show the

improvement.

2.4 Mutual Information (MI) Estimation

In this section, we introduce how scalable estimation of mutual information is performed

in terms of practical scenarios via mutual information neural estimation (MINE) [35] and

the deep infomax (DIM) [14] described below.

The mutual information between two random variable X and Y is defined as:

MI(X,Y ) = DKL(p(X,Y ) ∥ p(X)p(Y )) (2.8)

whereDKL is theKullback-Leibler (KL) divergence between the joint distribution p(X,Y )

10
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and the product of marginals p(X)p(Y ).

MINE estimatesmutual information by training a classifier to distinguish between pos-

itive samples (x, y) from the joint distribution and negative samples (x, ȳ) from the prod-

uct of marginals. Mutual information neural estimation (MINE) uses Donsker-Varadhan

representation (DV) [36] as a variational lower-bound to estimate MI.

MI(X,Y ) ≥ EP[g(x, y)]− log(EN[e
g(x,ȳ)]) (2.9)

where EP and EN denote the expectation over positive and negative samples respectively,

and g is the discriminator function that outputs a real number modeled by a neural network.

While the DV representation is the strong bound of mutual information shown in

MINE, we are primarily interested in maximizing MI but not focusing on its precise

value. Thus DIM proposes an alternative estimation using Jensen-Shannon divergence

(JS), which can be efficiently implemented using the binary cross entropy (BCE) loss:

MI(X,Y ) ≥ EP[log(g(x, y))] + EN[log(1− g(x, ȳ))] (2.10)

While two representations should behave similarly, considering that both act like classi-

fiers with objectives maximizing the expected log-ratio of the joint over the product of

marginals, it is found that the BCE loss empirically works better than the DV-based ob-

jective [14, 15, 16]. The reason may be that the BCE loss is bounded (i.e., its maximum

is zero), making the convergence of the network more numerically stable. In our experi-

ments, we primarily use the JS representation to estimate mutual information.

Recently, Tian et al. [37] showed strong empirical performance through the improved

multiview CPC training [38], which shares many common ideas as mutual information

maximization. Inspired by their work, we modify (2.10) by first switching the role of x

and y and summing them up:

MI(X,Y ) ≥ EP[log(g(x, y))] +
1

2
EN[log(1− g(x, ȳ))] +

1

2
EN[log(1− g(x̄, y))] (2.11)

11



doi:10.6342/NTU202000066

where (x̄, y) is also the negative sample sampled from the product of marginals.

We empirically find that (2.11) gives the best performance, andmore exploration about

parameterization of MI is left as our future work.

2.5 Optimization and Metrics

2.5.1 Cross Entropy

The training process in section 2.3.3, and the MI maximization in section 2.4 both uses

the cross entropy loss to maximize the likelihood. Here, we give the detail definition of

cross entropy loss. After we get the output representation vectors r = r1, . . . , rn from the

model, we first feed them into the softmax function to get the probability distribution over

all possible answers:

pi = softmax(r)i =
exp(ri)∑n
j=1 exp(rj)

(2.12)

In binary classification cases such as NSP and MI estimation, the binary cross entropy

(BCE) loss can be calculated as

BCE = −(y log(p) + (1− y) log(1− p)) (2.13)

where y is the target binary label and p is the output probability.

In multiclass classification such as Masked LM, the cross entropy loss is calculated as

− log(py), where py is the output probability assigned to target label y.

2.5.2 F1 Score and Exact Match

In extractive QA setting, we usually uses F1 score and Exact Match (EM) as main eval-

uation metrics. Given ground truth answer a, we can calculate the precision and recall of

12
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our prediction p. The F1 score is defined as the harmonic mean of precision and recall:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(2.14)

On the other hand, EM simply computes the exact match 1[p = a].
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Chapter 3

Related Work

3.1 Question Answering Datasets

Ideally, in QA we want answers to be arbitrary text and thus not to be limited as spans in

documents. However, answers in free-form text are generally more hard to model as it

involves the generation of natural language. The span-based question answering provides

researchers a handful framework to focus on how to model the interaction between ques-

tions and documents. Recently, there are many different span-based question answering

dataset proposed. For example, SQuAD [1] is the well-known span-based QA dataset

and was built upon documents from Wikipedia. TriviaQA [2] pairs each question to mul-

tiple documents, so models also need to learn to rank potential documents to efficiently

extract useful information. SQuAD 2.0 [27] andNewsQA [39] allow questions to be unan-

swerable. Hotpot QA [40] is a challenging dataset as it requires model to do multi-hop

reasoning over multiple supporting evidences in different documents. Natural Questions

[41] aims at providing natural questions for QA research, as most QA dataset use Amazon

Mechanical Turk to crowdsource the data. Natural Questions uses search queries from

Google Search Engine to generate QA examples. QuAC [10] extends QA to multi-turn

setting, where each question may be conditioned on dialog in previous turns.

For real world applications, there are QA datasets with open-ended questions and free-

form answers. Question inMSMARCO [42] are derived from real search queries andmay

be unanswerable. QA models need to rank set of candidate documents retrieved by Bing
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search engine. ELI5 [43] collects data from Reddit fourm ”Explain Like I’m Five”, where

an online community provides answers to questions which are comprehensible by five year

olds. ELI5 features long form answers consisting of multiple sentences. CoQA [9] is also

the conversational QA dataset and its answers can be free-form text. These is a difference

between CoQA and QuAC that when collecting data, questioners for QuAC can only see

the title of the document, but questioners for CoQA can see the whole document.

Besides finding spans in the document or generating free-form answers, QA in the

multiple-choice format is popular. RACE [44] collects English exams for middle and high

school Chinese students. DREAM [45] is the QA in dialog format, but model only need

to choose the most appropriate choice. CommensenseQA [46] contains questions which

require commonsense knowledge to solve. We provide a summarized view of these QA

datasets in table 3.1.

There are also QA datasets which does not only tackle natural language data. Mohit

et al.[47] created a sequential QA dataset about inquiring about tables from Wikepedia,

which is similar to QuAC and CoQA. ComplexWebQuestions [48] propose a dataset con-

sisting of complex questions and a framework which answers questions by first decom-

posing them into a sequence of simple questions. Each question is paired with a SPARQL

query which can be executed against knowledge base, so ComplexWebQuestions can be

used as a semantic parsing task. VQA [6] and AVSD [49] are multi-modal question an-

swering datasets, which require models to integrate information from different modalities

such as image, audio and text. It is worth to note that questions in AVSD is in the dialog

format, which is highly related to conversational QA.

3.2 Dialog Datasets

Dialog datasets are highly related to conversational QA. Such datasets are mostly studied

in the context of open-domain social chit-chat [50, 51, 52]. In the dialog, agents need

to generate fluent, meaningful and coherent responses, and chat with users engagingly.

Different from pure chit-chat, knowledge grounded dialog [53] require responses of agents

are based on evidences from the knowledge base. Visual Dialog [54] rely on images as

16



doi:10.6342/NTU202000066

Dataset Span Mutli-D No-Answer Multi-hop Multi-Turns
SQuAD [1]

√
- - - -

TriviaQA [2]
√ √

- - -
NewsQA [39]

√
-

√
- -

SQuAD 2.0 [27]
√

-
√

- -
Hotpot QA [40]

√ √
-

√
-

Natural Questions [41]
√

-
√

- -
QuAC [10]

√
-

√
-

√

MS MARCO [42] -
√ √

- -
ELI5 [43] - - - - -
CoQA [9] - -

√
-

√

Table 3.1: A summarized view of QA datasets. Span, Multi-D and No-Answer refer to
span-based, multiple context documents and unanswerable questions respectively.

evidence instead of text.

3.3 Question Answering Models

Although some QA datasets have free-form answers, by using the most similar span to

the answer in the document, we can reduce such datasets to extractive QA setting in most

cases. Thus here wemainly introduce extractive QAmodels, and do not discuss generative

QA models using sequence-to-sequence model [55] and pretrained language models [56].

Match-LSTM [57] is the early representative work incorporating attention mechanism

[58] to solve the machine reading comprehension task. Following Match-LSTM, DCN

[59] proposes to use dynamic decoder to recover from initial local maxima corresponding

to incorrect answers. BiDAF [11] uses bi-directional attention flow to fuse information

from documents and questions and obtains better representation. DCN+ [60] and Re-

inforced Mnemonic Reader [61] improve the training objective by incorporating policy

gradient [62]. R-Net [63], FusionNet [64] and QANet [65], which uses powerful Trans-

former architecture [28], apply self-attention to help model better relate different parts of

long documents. By using contextualized word embedding such as Cove [66] and ELMo

[23], QA models have further improvement by incorporating context information. Re-

cently, pretraining language models on large corpus and then fine-tuning them on different

datasets become a standard wordflow of training QA models [67, 68]. Here, we provide
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Model Attention RL Self-Attention C-Embedding P-LM
Match-LSTM [57]

√
- - - -

DCN [59]
√

- - - -
BiDAF[11]

√
- - - -

DCN+ [60]
√ √

- - -
Mnemonic Reader [61]

√ √ √
- -

R-Net [63]
√

-
√

- -
FusionNet [64]

√
-

√ √
-

QANet [65]
√

-
√

- -
BiDAF ++ [23]

√
-

√ √
-

BERT [26]
√

-
√

-
√

Table 3.2: A summarized view of QA models. RL, C-Embedding and P-LM refers to
reinforcement learning, contextualized word embedding and pretrained language model
respectively.

a summarized view of those models and important techniques used in table 3.2.

3.4 Mutual Information Estimation

How to efficiently measure mutual information in high dimensional space is a long-tailed

and unsolved problem in information theory. There are estimators based on graphs and

nearest neightbors [69, 70, 71]. By using neural network as a function approximator, re-

cently there are works utilizing the variational bound of mutual information [36] to mea-

sure mutual information [35, 38, 72]. Following the estimator based on variational bound,

there are works proposing to learn representations keeping desired properties by optimiz-

ingmutual information. Representations learned frommutual information estimators have

been proved to be useful in different domains, such as language [73], image [14] and audio

[15]. However, the limitation of learning representation by mutual information [74, 75] is

also proposed, and researchers are trying to mitigate the problem [76].

3.5 Adversarial Attacks

Adversarial examples has been proved to be a a important issue in Deep Learning, and

there are many different attack and defense methods proposed [77, 78, 79, 80]. However,
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most of the works are done on image domain, and there are fewer ones targetd to NLP

models. Adversarial SQuAD [7] uses templates and human post-processing to generate

adversarial examples of the famous question answering dataset SQuAD. Universal Ad-

versarial Triggers [81] performs gradient-guided search over word (or sub-word) tokens

to find short trigger sequences. Such adversarial trigger sequences can cause significant

performance drop of models on different NLP tasks such as NLI, QA and language gener-

ation. We can defense the attack of adversarial word substitutions by minimizing an upper

bound on the worst-case loss [82]. It was showed that we could improve model robust-

ness to adversarial examples and common input corruption by self-supervised learning

[83], which is highly related to our work.
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Chapter 4

Accurate Conversational Question

Answering

The main challenge in conversational QA is that current question may depend on the con-

versation history, which differs from the classic machine comprehension. Therefore, how

to incorporate previous history into the QAmodel is especially important for better under-

standing. Prior work [12] proposes an effective way to model the reasoning in multi-turn

dialogues summarized below.

4.1 Notations

We denote the paragraph as a sequence of N words P = {p1, p2, . . . .pN}, and the i-th

question in the dialogQi = {qi,1, qi,2, . . . , qi,K} as a sequence ofK words. In the extrac-

tive question answering, the i-th answer in the dialogAi = {ai,1, . . . , ai,M} is guaranteed

to be the span {pm, . . . , pm+M} in the paragraph.

4.2 FusionNet

Since our baseline FlowQAuses FusionNet as its backbonemachine comprehensionmodel,

here we briefly introduce it. FusionNet is the model targeting SQuAD, which is the single-

turn span-based QA dataset. Like most of the other famous QA models, FusionNet con-
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sists of LSTM which integrates representation sequence, and attention modules which

fuses information from different parts of the input.

Given word embedding of input paragraph p and question q, FusionNet first computes

the attention between embedding, and concatenate attention output with embedding to

formword features for paragraph {wp
1 . . . , w

p
N} and question {w

q
1, . . . , w

q
N}. We feedword

features into two LSTM layers to get higher level concepts of paragraph and question.

hp1
1 , . . . , hp1

N = LSTM(wp
1 . . . , w

p
N), h

q1
1 , . . . , hq1

K = LSTM(wq
1, . . . , w

q
N) (4.1)

hp2
1 , . . . , hp2

N = LSTM(hp1
1 , . . . , hp1

N ), hq
1, . . . , h

q2
K = LSTM(hq1

1 , . . . , hq1
K ) (4.2)

We then collect features in different levels of reasoning to form history-of-word (HoW)

features for each word in paragraph and question:

HoWp
i = [wp

i , h
p1
i , hp2

i ],HoWq
i = [wq

i , h
q1
i , hq2

i ] (4.3)

where HoWp
i is HoW of the i-th word in paragraph, and HoWq

i is HoW of the i-th word in

question. We perform attention between HoW of the paragraph and the question to fuse

information.

h̃p1
i =

∑
j

α1
ijh

q1
j , α1

ij ∝ exp(S1(HoWp
i ,HoW

q
j)) (4.4)

h̃p2
i =

∑
j

α2
ijh

q2
j , α2

ij ∝ exp(S2(HoWp
i ,HoW

q
j)) (4.5)

S(x, y) = f(U(x))TDf(U(y)) (4.6)

where U and D are trainable parameter matrix, and D is diagonal. S1 and S2 indicates

they have different parameters.

We now adds attention output into HoW of the paragraph and feed them into LSTM

again to get higher level concept {vp1, . . . , v
p
N}. We also uses self-attention over HoW of

the paragraph to consider distant parts of the paragraph ṽpi =
∑

j α
v
ijv

p
j , α

v
ij ∝ exp(Sv(HoWp

i ,HoW
p
j)).

Finally, we uses [vpi , ṽ
p
i ] as the representation of i-th word in the paragraph, and perform

multi-class classification to predict where is the start and end of the answer span.
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Conversation Flow (over Context)

Time (Question Turns)

Δ Δ Δ Δ… …
FlowDelta

Δ Δ Δ Δ… …

Figure 4.1: Illustration of the flow information gain modeled by the FlowDelta mecha-
nism.

4.3 FlowQA

Instead of only using shallow history like previous questions and answers, Huang et al.[12]

proposed the Flow operation that feeds the model with entire hidden representations gen-

erated during the reasoning process when answering previous questions. Flow is defined

as a sequence of latent representations based on the context tokens and is demonstrated

effective for conversational QA tasks, because it well incorporates multi-turn information

in dialogue reasoning.

Let the document representation for i-th question be Ri = ri,1, . . . , ri,M and the di-

alogue length is T . When answering questions in the dialogue, there are T document

representation sequences of lengthM , one for each question. We reshape it to becomeM

sequences of length t, one for each document word, and then pass each sequence into a

unidirectional GRU. All document word representation j (1 ≤ j ≤ M ) are processed in

parallel in order to model the information via the Flow direction (vertical direction illus-

trated in Figure 4.1).

h1,j, . . . , hT,j = GRU(r1,j, . . . , rT,j) (4.7)

Then we reshape the outputs from GRU back and form Fi = {hi,1, . . . , hi,M}, where Fi

is the output of the Flow layer.

The Flow layer described above is incorporated in FlowQA for conversational QA,
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which is built on the single-turn QAmodel FusionNet [64], and the full structure is shown

in the Figuire 4.2. Briefly, FlowQA first performs word-level attention to fuse the infor-

mation of i-th questionQi into paragraphP . Then it uses two LSTM cells combined with

Flow layers to integrate the paragraph representations, followed by the context-question

attention computation. Finally, FlowQA performs self-attention [65] on the paragraph and

predict the answer span. Modeling Flow is shown effective to improve the performance

for conversational QA.

4.4 FlowDelta

We further extends the concept of Flow and proposes a flow-based approach, FlowDelta,

to explicitlymodel information gain in flow during dialogues illustrated in Figure 4.1. The

proposed mechanism is flexible to integrate with different models, including FlowQA and

others. To examine such flexibility and generalization capability, we further apply Flow

and FlowDelta to BERT [26] described in section 2.3.3 to allow model to grasp dialogue

history.

4.4.1 FlowDeltaQA

In the original Flow operation in (4.7), the k-th step computation of GRU is hk,j =

GRU(rk,j, hk−1,j). We assume that the difference of previous hidden representations

hk−1,j and hk−2,j indicates whether the flow change is important, which can be viewed

as the information gain through the reasoning process. For example, 3 consecutive ques-

tions Qk−2, Qk−1, Qk. Qk−1 and Qk all discuss the same event described in the span

{rj, rj+1, . . . , rl} of the context, while Qk−2 is about another topic. We expect the hidden

state {hk−1,j, hk−1,j+1 . . . , hk−1,l} of the span in turn k−1 is dissimilar to the hidden state

in the turn k−2, because their topics are different. By explicitly modeling such difference,

our model more easily relates the current reasoning process to the corresponding context.

Following the intuition above, we propose FlowDelta by modifying the single step
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Figure 4.2: Illustration of the proposed FlowDeltaQA model.

computation of Flow into:

hk,j = GRU([rk,j;hk−1,j − hk−2,j], hk−1,j), (4.8)

where [x; y] is the concatenation of the vectors x and y. We also investigate other variants

such as Hadamard product (hk−1,j∗hk−2,j) detailed in the experiment part. In optimization

perspective, FlowDelta acts like a skip connection to help gradient flow more smoothly in

the dialog. Learning to model the difference of hidden states is also conceptually similar

to residual connection [84], which has been shown effective in many different tasks. The

model overview is illustrated in Figure 4.2.

4.4.2 BERT-FlowDelta

As described in section 2.3.3, BERT [26] with fine-tuning recently has reached the state-

of-the-art in many single-turn MC tasks, such as SQuAD [1, 27]. However, how to extend

BERT to the multi-turn setting remains unsolved. We argue that the concatenation of pre-

vious dialog history and current question is infeasible to deal with the multi-turn problem.

The main concern is because the general pretrained language model based on Transformer

[28] limited the maximum input sequence length (512 tokens), so we need to truncate the
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input quetion and context if the length exceeds limit. Although recently there are some

works trying to mitigate the fixed-length context limitation in Transofrmer [85, 68], it

will introduce additional computation and memory overhead into the model. In the same

time, it is also time-consuming to tune the best number of previous QA pairs for concate-

nation. To address this problem, we propose to incorporate the FlowDelta mechanism to

deal with the multi-turn problem, where the Flow layer automatically integrates multi-turn

information instead of tuning the number of QA pairs for inclusion.

BERT-FlowDelta incorporates the proposed FlowDeltamechanisms for two parts shown

in the Figure 4.3. First, we add FlowDelta layer before the final prediction layer,P S, PE =

NN([hL;FlowDelta(hL)]). Second, we further insert FlowDelta into the last BERT layer,

considering that modeling dialogue history within BERT may be benefitial.

hL = LN(hL−1 + FFN(LN(hL−1 +MH(hL−1, hL−1, hL−1) + FlowDelta(hL−1))))(4.9)

These two modifications are called exFlowDelta and inFlowDelta respectively, and the

latter alsomeets the idea from Stickland andMurray [86] who added additional parameters

into BERT layers to improve the performance of multi-task learning. In our experiments,

we only modify the last BERT layer to avoid largely increasing model size.

We also feed a additional paragraph features indicating which words are the answers

of questions in previous turns into the BERT by learning an additional embedding matrix.

Specifically, we use the binary vector to indicate whether the word is the answer in previ-

ous dialog, and multiply such binary vector with our learned embedding matrix to get the

paragraph feature embedding ep. We then add such paragraph feature embedding to the

original BERT word embedding to incorporate the additional paragraph feature.

4.5 Experiments

To evaluate the effectiveness of the proposed FlowDelta, various tasks that contains dia-

logue history for understanding are performed in the following experiments.
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Figure 4.3: Illustration of the proposed BERT-FlowDelta model.

4.5.1 Setup

Our models are tested on two conversational QA datasets, CoQA [9] and QuAC [10], and

a sequential instruction understanding dataset, SCONE [87]. For QuAC, we also report

the Human Equivalence Score (HEQ). HEQ-Q and HEQ-D represent the percentage of ex-

ceeding the model performance over the human evaluation for each question and dialogue

respectively. While CoQA and QuAC both follow the conversational QA setting, SCONE

is the task requiring model to understand a sequence of natural language instructions and

modify the word state accordingly. We follow Huang et al. [12] to reduce instruction

understanding to machine comprehension and provide the example and reduction detail

in section 4.5.2.

We reproduce and report the experiment results of FlowQA using the released code

except SCONE part since the official released code does not contain it. Authors claim

there is further performance improvement on the released version of FlowQA. All hyper-

parameters are kept the same as recommended one in FlowQA and BERT for CoQA and

QuAC datasets. For SCONE, due to the relatively small size of dataset, to prevent over-

fitting we further tune the hidden size of FlowDeltaQA in three different domains. The

tuned hidden sizes are 50, 60, 70 for Scene, Alchemy and Tangrams respectively.
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4.5.2 Reducing SCONE to Conversational QA

World State N+1:
Empty & Empty & Purple Hat, Purple 

Shirt & Blue Shirt & Empty & Empty & 

Empty & Yellow Hat, Orange Shirt 

Logical Form N:

Swap Hat for Position 3, 4

FlowDeltaQA

Instruction N:
He took the blue guy’s hat

World State N:
Empty & Empty & Purple Shirt & Purple 

Hat, Blue Shirt & Empty & Empty & Empty 

& Yellow Hat, Orange Shirt 

Execute on World State N-1

Sequential 

Semantic Parser

Answer N:

1, 3, 4

Quesition N:
He took the blue guy’s hat

Context N:

00 00 10 21 00 00 00 34

Context N+1:

00 00 11 20 00 00 00 34

Figure 4.4: Example of the SCONE dataset and its reduction

In SCONE dataset, given the initial world stateW 0 and a sequence of natural language

insturctions {I1, . . . IK}, the model need to perform the correct sequence of actions on

W 0 and obtain the correct world states {W1, . . . ,WK} after each instruction. An exam-

ple from [87] is shown in the left-hand side of Figure 4.4.

There are three different settings SCENE, TANGRAMS and Alchemy in SCONE

dataset. In SCENE, each environment has ten positions with at most one person at each

position. This setting covers four actions (enter, leave, move, and trade-hats) and two

properties (hat color, shirt color). In TANGRAMS, the environment is a list containing at

most five shapes. This setting contains three actions (add, move, swap) and one property

(shape). Lastly,in ALCHEMY, each environment is seven numbered beakers and covers

three actions (pour, drain,mix) dealing with two properties (color, amount).

Following FlowQA [12], for each position in the world state, we encode it as two

integers denoting the shirt and hat color in Scene, image ID and present or not in Tangrams,
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and color of the liquid and number of units in Alchemy. Next, the change of world states

(i.e., the logical form) is encoded as three or four integers. The first integers is the type of

action performed. The second and third integers represent the position of the context (i.e.,

the encoded world state). Finally, the fourth integer represents the additional property for

the action such as the number of units moved.

An example of encoded world states and logical form is shown in the right-hand side

of Figure 4.4. In this example, action (1, 3, 4) means ”swap the hat for position 3, 4” and

there is no additional property for the action.

4.5.3 Main Results

Table 4.1 and 4.2 reports model performance on CoQA and QuAC. It can be found that

FlowDeltaQA yields substantial improvement over FlowQA on both datasets (+ 0.9 % F1

on both CoQA and QuAC), showing the usefulness of explicitly modeling the information

gain in the Flow layer. Furthermore, BERT-FlowDelta performs the best and outperforms

the published models on QuAC leaderboard on Apr 24, 2019. Specifically, while BERT-

FlowDelta achieves slightly worse HEQ-Q score on QuAC to the HAM model [88], we

outperform HAM in HEQ-D metrics, showing the superiority of our model in model-

ing whole dialogue. Note that FlowDelta actually introduced few additional parameters

compared to Flow, since it only augments the input dimension of GRU. The consistent

improvement from both data demonstrates the generalization capability of applying the

proposed mechanism to various models.

Table 4.3 shows the performance of our FlowDeltaQA on the SCONE 1. Our model

outperforms FlowQA and achieves the state-of-the-art in Scene and Tangrams domains.

The small performance drop in Alchemy aligns well with the statement in the ablation

study. Because experiments show that removing Flow affects performance in Alchemy

less when comparing between FlowQA and FusionNet [64] (same models except Flow),

we claim that the previous dialogue history is less important in this domain. Thus replaying

Flow with FlowDelta does not bring any improvement in the Alchemy domain but risk of
1The results of BERT-FlowDelta are not shown, since SCONE is a relatively small and synthetic dataset.
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Model Dev Test
F1 Child Liter Mid News Wiki Reddit Sci F1

BiDAF++ (N-ctx) 69.2 66.5 65.7 70.2 71.6 72.6 60.8 67.1 67.8
FlowQA 76.7 73.7 71.6 76.8 79.0 80.2 67.8 76.1 75.0
SDNet [90] 78.0 75.4 73.9 77.1 80.3 83.1 69.8 76.8 76.6
FlowDeltaQA 77.6 - - - - - - - -
BERT-FlowDelta 79.4 75.9 75.6 80.1 82.1 82.3 69.8 78.8 77.7
Human 89.8 90.2 88.4 89.8 88.6 89.9 86.7 88.1 88.8

Table 4.1: Conversational QA results on CoQA, where (N-ctx) refers to using previous
N QA pairs (%).

Model Dev Test
F1 F1 HEQ-Q HEQ-D

BiDAF++ (N-ctx) 60.6 60.1 54.8 4.0
FlowQA 63.9 64.1 59.6 5.8
HAM [88] - 65.4 61.8 6.7
FlowDeltaQA 64.8 - - -
BERT-FlowDelta 66.1 65.5 61.0 6.9
Human 80.8 81.1 100 100

Table 4.2: Conversational QA results on QuAC, where (N-ctx) refers to using previous
N QA pairs (%).

overfitting.

4.5.4 Ablation Study

Table 4.4 shows the ablation study of BERT-FlowDelta, where two proposed modules are

both important for achieving such results. It is interesting that the proposed inFlowDelta

and exFlowDelta boost the performance more on QuAC. As Yatskar [89] mentioned, the

topics in a dialogue shift more frequently on QuAC than on CoQA, and we can see vanilla

BERT also performs well on CoQA in the ablation of Flow which provides long term

dialog history information. Therefore, we can conclude that while FlowDelta improves

the ability to grasp information gain in the dialog, it bring less performance improvement

in the setting we do not need much contexts to answer the question.

4.5.5 Flow Information Gain Variants

We test three different variants of FlowDelta on modeling the information flow in the

dialog and show results in table 4.5. The three variants are:
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Model Scene Tangrams Alchemy
Long et al. [87] 14.7 27.6 52.3
Guu et al. [91] 46.2 37.1 52.9
Suhr and Artzi [92] 66.4 60.1 62.3
Fried et al. [93] 72.7 69.6 72.0
FusionNet 58.2 67.9 74.1
FlowQA 74.5 72.3 76.4
FlowDeltaQA 75.1 72.5 76.1

Table 4.3: Dialogue accuracy for SCONE test (%).
Model CoQA F1 QuAC F1
BERT-FlowDelta 79.4 66.1
- inFlowDelta 79.0 64.1
- exFlowDelta 78.0 62.3

BERT-Flow 79.2 64.3

Table 4.4: The ablation study of BERT-FlowDelta (%).

• SkipDelta: ht−1 − ht−3

• DoubleDelta: [ht−1 − ht−2;ht−2 − ht−3]

• Hadamard Product: ht−1 ∗ ht−2

The reason to use SkipDelta and DoubleDelta is because we want to see if there is any

benefit to incorporate longer (or more) dialog history. Experiment results show while

using longer dialog history (i.e., SkipDelta) helps, adding too many dialog history (i.e.,

DoubleDelta) does not give any improvement.

The intuition behind Hadamard product is to model the similarity of consecutive hid-

den states. If there are any topic shift in last turns of dialog, we expect Hadamard product

can give us useful signal to detect it. Results show although the proposed FlowDelta is

the best, Hadamard product outperforms SkipDelta and DoubleDelta and proves its effec-

tiveness.

Model F1
FlowQA 76.7
FlowDeltaQA (SkipDelta) 76.9
FlowDeltaQA (DoubleDelta) 76.7
FlowDeltaQA (Hadamard Product) 77.2
FlowDeltaQA 77.6

Table 4.5: CoQA results of different variants of flow interaction. All models are provided
with previous 1 gold answer.
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4.6 Qualitative Analysis

Here we present an example fromCoQA dataset which consists of a passage that the dialog

talks about, and a sequence of questions and answers. Table 4.5 shows the paragraph,

questions, answers andmodel predicitons. We note the gold answer in CoQA is abstractive

and may not be a span in the passage. Only a subset of the dialog is showed to demonstrate

the different behaviors of FlowQA and FlowDeltaQA.

In this example, to answer the last question ”Why?”, model need to understand the

previous conversation correctly to know the actual question is ”Why is Gary Giordano in

the Aruban Jail now?”. This example is particularly hard since in order to know ”he” in

”Where is he now?” refers to ”Gary Giordano”, model need to use the information from

the very first question ”Whose house was searched”, which requires the ability to utilize

full dialog history. While FlowQA fails to hook this question to the correct conversa-

tion context and respond reasonable but incorrect answer, our FlowDeltaQA successfully

grasps long dialog flow and answers the correct span.
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Paragraph: (CNN) – FBI agents on Friday night searched the Maryland home of
the suspect in the recent disappearance of an American woman in Aruba, an agent
said. The search is occurring in the Gaithersburg residence of Gary Giordano, who
is currently being held in an Aruban jail, FBI Special Agent Rich Wolf told CNN.
Agents, wearing vests that said FBI and carrying empty cardboard and plastic boxes,
arrived about 8:40 p.m. Friday. About 15 unmarked cars could be seen on the street,
as well as a Montgomery County police vehicle. Supervisory Special Agent Philip
Celestini, who was at the residence, declined to comment further on the search, citing
the active investigation. Aruban Solicitor General Taco Stein said earlier Friday that
the suspect will appear in courtMonday, where an investigatingmagistrate could order
him held for at least eight more days, order him to remain on the island or release him
outright due to a lack of evidence. Giordano was arrested by Aruban police on August
5, three days after Robyn Gardner was last seen near Baby Beach on the western tip
of the Caribbean island. Giordano told authorities that he had been snorkeling with
Gardner when he signaled to her to swim back, according to a statement. When he
reached the beach, Gardner was nowhere to be found, Giordano allegedly said. The
area that Giordano led authorities to is a rocky, unsightly location that locals say is
not a popular snorkeling spot. Although prosecutors have continued to identify the
50-year-old American man by his initials, GVG, they also released a photo of a man
who appears to be Giordano. His attorney, Michael Lopez, also has said that his client
is being held as a suspect in Gardner’s death. Lopez has not returned telephone calls
seeking comment.
Question1: Whose house was searched?
Prediction of FlowQA and FlowDeltaQA: Gary Giordano
Gold Answer: Gary Giordano
Question2: In what city?
Prediction of FlowQA and FlowDeltaQA: Gaithersburg
Gold Answer: Gaithersburg
Question3: County?
Prediction of FlowQA and FlowDeltaQA:Montgomery County
Gold Answer: Montgomery County
Question4: State?
Prediction of FlowQA and FlowDeltaQA:Maryland
Gold Answer: Maryland
Question5: Where is he now?
Prediction of FlowQA and FlowDeltaQA: Aruban jail
Gold Answer: Aruban jail
Question6: Why?
FlowQA Prediction: lack of evidence
FlowDeltaQA Prediction: 6 recent disappearance of an American woman
Gold Answer: suspect in the recent disappearance of an American woman

Figure 4.5: Qualitative analysis of FlowDeltaQA.
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Chapter 5

Robust Question Answering

In this thesis, we not only want to generalize QA models to multi-turn setting but also

want to improve the robustness. Thus in this section, we focus on single-turn extractive

dataset SQuAD and its adversarial version AdversarialSQuAD.

5.1 Notation

Given question Q = {q1, q2, . . . , qK} and paragraph P = {p1, p2, . . . , pN}, the encoded

representations from the general QA modelM can be formulated as:

{rq, rp} = {rq1, . . . , r
q
K , r

p
1, . . . , r

p
N} = M(Q,P ) (5.1)

where rq and rp are representations of the question and the passage respectively after the

reasoning process in the QA systemM .

In this chapter, we use BERT as our baseline QA models due to its state-of-the-art

performance, so the encoded representation is further written as

BERT (Q,P ) = {rq, rp} = {rq1, . . . , r
q
K , r

p
1, . . . , r

p
N} (5.2)

As described in section 2, since the answer is a span in the paragraph, most QAmodels

then feed the passage representation rp to a single-layer neural network and obtain the span
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start and end probabilities for each passage word. Then we can compute the cross entropy

loss Lspan, which is the negative sum of log probabilities of the predicted distributions

indexed by true start and end indices illustrated in section 2.5.1, and minimize the loss

5.2 Methodology

Our QAInfomax aims at regularizing the QA system M to not simply exploit the super-

ficial biases in the dataset for answering questions. Therefore, two constraints are intro-

duced in order to guide the model learning.

1. Local Constraint (LC): each answer word representation rpi in the answer represen-

tation ra = {rpm, . . . , r
p
m+M} should contain information about what the remaining

answer words and its surrounding context are.

2. Global Constraint (GC): the summarized answer representation s = S(ra) should

maximize the averaged mutual information to all other question representations in

rq and passage representations in rp, where S is a summarization function described

below.

Intuitively, the model is expected to choose the answer span after fully considering the

entire question and paragraph. However, traditional QAmodels suffered the overstability

problem, and tended to be fooled by distractor answers, such as the one containing an

unrelated human name. As Lewis and Fan [13] argued, we also believe that the main

reason is that QA models are only trained to predict start and end positions of answer

spans. Correlation in the dataset allows QA models to find shortcuts and ignore what the

answer span looks like. A learned behavior of traditional QA models can be viewed as

a simple pattern matching, such as choosing the 5-length span after the word “river” if a

question is about a river and the context talks about countries in European.

Following the intuition, two constraints LC and GC are introduced to guide models

to learn the desired behaviors. To prevent the model from only learning to match some

specific word patterns to find the answer, LC forces the model to generate answer span

representations while maximizing mutual information among words in the span and the
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Question, Passage
(from another example)

Question, Passage

Answer, Context 
(from another example )

!
Fake

RealAnswer, Context

Answer

Fake

Real

Global Constraint 

Local Constraint 

Figure 5.1: Illustration of the LC and GC.

context words surrounding the span. By maximizing the mutual information between an

answer word and all of its context words, models need to incorporate the entire context into

its decision process while choosing answers, and thus can bemore robust to the adversarial

sentences. Thenwe further requiremodels tomaximizemutual information among answer

words, so models can no longer ignore any word in the chosen answer span.

On the other hand, different from LC, which only focuses on the answer span and its

context, GC pushes the model to prefer answer representations carrying information that

is globally shared across the whole input conditions Q and P , because shortcuts do not

necessarily appear near to the answer. If the model only learns to leverage the correlation

specific to the partial input, the MI of any input word without such relationship would not

increased.

The overview about two proposed constraints is illustrated in Figure 5.1, and the ex-

ample output is in 5.2. The detail of two constraints and our QAInfomax regularizer is

described below.
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Article: Force
Paragraph: A static equilibrium between two forces is the most usual way of mea-
suring forces, using simple devices such as weighing scales and spring balances. For
example, an object suspended on a vertical spring scale experiences the force of grav-
ity acting on the object balanced by a force applied by the ”spring reaction force”,
which equals the object’s weight. Using such tools, some quantitative force laws were
discovered: that the force of gravity is proportional to volume for objects of constant
density (widely exploited for millennia to define standard weights); Archimedes’ prin-
ciple for buoyancy; Archimedes’ analysis of the lever; Boyle’s law for gas pressure;
and Hooke’s law for springs. These were all formulated and experimentally verified
before Isaac Newton expounded his Three Laws of Motion. Jeff Dean expounded on
the Four Regulations of Action.
Question: Who expounded the Three Laws of Motion?
Ground Truth: Isaac Newton
BERT Original Prediction: Isaac Newton
BERT Prediction under adversary: Jeff Dean
BERT + QAInfomax Prediction: Issac Newton

Figure 5.2: An example from the Adversarial-SQuAD dataset. BERT originally gets the
answer correct, but is fooled by adversarial distractiing sentence (in blue).

5.2.1 Local Constraint

As shown in Section 2.4, the maximization of MI needs positive samples and negative

samples drawn from joint distribution and the product of marginal distribution respec-

tively.

In LC, because all answer word representations are expected to carry the informa-

tion of each other and their contexts, we choose to maximize averaged MI between the

sampled answer word representations and the whole answer sequence with its context

words. Specifically, a positive sample is obtained by pairing the sampled answer word

representation x ∈ ra = {rpm, . . . , r
p
m+M} to all other answer and context words rc =

{rpm−C , . . . r
p
m+M+C} \ {x}, where C is the hyperparameter defining how many context

words for consideration. Negative samples, on the other hand, are obtained by randomly

sampling answer representation r̄a = {r̄pl , . . . , r̄
p
l+L} and the corresponding r̄c from other

training examples. Following (2.11), the objective for sampled x, rc, x̄ ∈ r̄a and r̄c is
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formulated.

LC(x, rc, x̄, r̄c) =
1

|rc|
∑
rci∈rc

log(g(x, rci )) (5.3)

+
1

2|r̄c|
∑
r̄cj∈r̄c

log(1− g(x, r̄cj))

+
1

2|rc|
∑
rci∈rc

log(1− g(x̄, rci )).

5.2.2 Global Constraint

Different from LC described above, GC forces the learned answer representations ra to

have information shared with all other question and passage representations. Here, we

maximize the mutual information between the summarized answer vector s = S(ra) and

rl ∈ r = {rq, rp} \ {ra} pairs. In the experiments, we use S(ra) = σ( 1
M

∑
rai ) as our

summarization function, where σ is the logistic sigmoid nonlinearity.

Specifically, a positive sample here is the pair of a answer summary vector s = S(ra)

and all other word representations in r. Negative samples are provided by sampling ques-

tion, passage and answer representations {r̄q, r̄p, r̄a} from an alternative training example.

Then we pair the summary s with r̄ = {r̄q, r̄p} \ {r̄a}, and s̄ = S(r̄a) with r.

Similar to (5.3), the objective for the sampled s, r, s̄ and r̄ is:

GC(s, r, s̄, r̄) =
1

|r|
∑
ri∈r

log(g(s, ri)) (5.4)

+
1

2|r̄|
∑
r̄j∈r̄

log((1− g(s, r̄j)))

+
1

2|r|
∑
ri∈r

log((1− g(s̄, ri))).

5.2.3 QAInfomax

In our proposed model, we combine two objectives and formulate the model as the com-

plete QAInfomax regularizer. For each training batch consisting of training examples

{{Q1, P1, A1}, . . . {QB, PB, AB}}, we pass the batch into the model M and obtain rep-

resentations {{rq1, r
p
1, r

a
1}, . . . , {r

q
B, r

p
B, r

a
B}}. Note that we abuse the subscripts to denote
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the example index in the batch for simplicity.

Thenwe shuffle thewhole batch to obtain negative examples {{r̄q1, r̄
p
1, r̄

a
1}, . . . , {r̄

q
B, r̄

p
B, r̄

a
B}}.

The complete objective Linfo for QAInfomax becomes:

− 1

B

B∑
i=1

(αLC(xi, r
c
i , x̄i, r̄

c
i ) + βGC(si, ri, r̄i)),

where xi and x̄i are the representation sampled from rai and r̄ai , rci and r̄ci are rai and r̄ai

expanded with its context words respectively, si and s̄i are the summary vectors of rai and

r̄ai , and α and β are hyperparameters.

Combined with QAInfomax as a regularizer, the final objective of the model becomes

L = Lspan + γLinfo, (5.5)

where Lspan is the answer span prediction loss and γ is the regularize strength. The ob-

jective can be optimized through the simple gradient descent.

5.3 Experiments

To evaluate the effectiveness of the proposed QAInfomax, we conduct the experiments on

a challenging dataset, Adversarial-SQuAD.

5.3.1 Setup

BERT-base [26] is employed as our QA system M in the experiments, where we set the

same hyperparameters as one released in SQuAD training. 1.

We set C, α, β and γ to be 5, 1, 0.5, 0.3 respectively in all experiments, and add

the proposed QAInfomax into the BERT model as described above. The discriminator

function g is the bilinear function similar to the scoring used by Oord et al.[38]:

g(x, y) = xTWy, (5.6)
1We use PyTorch [94] reimplementation for experiments: https://github.com/huggingface/

pytorch-pretrained-BERT [95]
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whereW is a learnable scoring matrix.

We train the BERTmodel with the proposedQAInfomax on the orignal SQuADdataset,

and use Adversarial-SQuAD to test the robustness of the augmentedmodel. Only AddSent

and AddOneSent metrics are reported for the comparison with previous models, because

most previous models did not report their AddAny score.

5.3.2 Adversarial-SQuAD

Adversarial-SQuAD contains adversarial examples which aim to fool the QA models

trained on SQuAD.As stated above, Adversarial-SQuADhas threemain settings - AddSent,

AddOneSent, and AddAny. In this paper, we reported scores of AddSent, AddOneSent

for the comparision with previous models. AddSent and AddOneSent use a four-step pro-

cedure to generate the adversarial version of the example in SQuAD. In step1, they first

apply semantic-altering perturbation to the question by replacing nouns and adjectives

with antonyms fromWordNet [96], and change named entities and numbers to the nearest

word in Glove [97] word embedding space. In step 2, they create a fake answer by the

NER and POS tags of the original answer. For each answer, they computes its type of

NER and POS tags and return the corresponding redefined fake answer. In step 3, the

altered-question and fake answer will be combined into sentence in declarative form by

using a set of roughly 50 manually-defined rules over constituency parses. Finally in step

4, errors in generated sentences are fixed by crowdsourcing. Each generated sentence is

edited independently by five workers, resulting in up to five sentences for each raw sen-

tence. The edited sentences are then be concatenated to the original paragraph to form the

adversarial example. For each example, AddSent runs the QA modelM on every human-

approved adversarial version of the example, picks the one that makes the model give the

worst answer and returns that score. AddOneSent, on the other hand, only picks a random

human-approved adversarial example and return its score for each example.

AddAny takes the search-based approach to generate adversarial examples regardless

of grammaticality. For each example, it initialize a random word list and iteratively re-

places each word with random candidates to minimize the expected F1 score of the QA
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Model Adversary F1 Speed (iter/s)
BERT 51.0 / 63.4 3.80
+ LC 53.6 / 64.2 3.51
+ GC 52.2 / 63.7 2.75
+ LC + GC 54.5 / 64.9 2.72

Table 5.1: Ablation study with F1 scores on AddSent / AddOneSent. The speed is mea-
sured on RTX 2080Ti.

Model Original AddSent AddOneSent
BiDAF-S [98] 75.5 34.3 45.7
ReasoNet-S [99] 78.2 39.4 50.3
Reinforced Mnemonic Reader-S [61] 78.5 46.6 56.0
QANet-S [65] 83.8 45.2 55.7
GQA-S [13] 83.7 47.3 57.8
FusionNet-E [64] 83.6 51.4 60.7
BERT-S [26] 88.5 51.0 63.4
BERT-S + QAInfomax 88.6 54.5 † 64.9 †

Table 5.2: F-measure on AdversarialSquad (S: single, E: ensemble). † indicates the sig-
nificant improvement over baselines with p-value < 0.05.

model output. This setting needs significantly more model access than the other two set-

tings and takes a huge amount of time. As most previous other models did not report their

score in this setting, in this thesis, we focus on natural adversarial sentences, and leave the

arbitrary adversarial examples as our future work.

5.3.3 Results

Table 5.2 reports model performance on Adversarial-SQuAD. It can be found that QAIn-

fomax yields substantial improvement over the vanilla BERT model, and achieves the

state-of-the-art performance on both AddSent and AddOneSent metrics. Note that Wang

and Bansal [100] modified distractor paragraphs and added them into training data, so we

do not compare with them, because we only use the original SQuAD training data. QAIn-

fomax obtains larger improvement on the AddSent, which picks the worst scores of the

model. It shows the effectiveness of our QAInfomax in terms of forcing the model to ig-

nore simple correlation in the data and learn the more human-like reasoning processes. It

is worth to note that while QAInfomax mitigates the overstability problem and improves
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Function AddSent AddOneSent
Mean 52.2 63.7
Max 52.0 63.3
Sample 52.2 63.0

Table 5.3: Different summarization functions for GC.

the robustness to adversarial examples, it does not hurt the original performance of the QA

system, demonstrating the benefit for the practical usage. Some example results from the

Adversarial-SQuAD dataset can be found in the Appendix, where adversarial distracting

sentences are shown in italic blue fonts.

Table 5.1 shows the ablation study of our proposed QAInfomax, where two proposed

constraints are both important for achieving such results. We also show the training speed

of the proposed method and its limitation, where the GC objective degrades the training

speed by 28%. The reason is that GC measures the averaged MI over the whole question

and passage representations, which may include a long sequence of vectors.

Considering that the summarization function S plays an important role in GC, we

explore its different variants in Table 5.3:

• Mean: σ( 1
M

∑
rai )

• Max: σ(maxpool(ra))

• Sample: randomly sample one rai ∈ ra

According to the experimental results, Mean performs the best while Max and Sample has

the competitive performance, showing the great robustness of the proposed methods to

different architecture choices.

5.3.4 Qualitative Analysis

Here we present more examples from the Adversarial-SQuAD dataset in Figure 5.3, and

adversarial distracting sentences are shown in blue. We can see the original BERT model

is easily fooled by the distractor sentences similar to the questions. It demonstrates that

QA models learn to answer questions by only exploiting superficial correlation between
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questions and passages and not truly understand the questions. With our QAInfomax reg-

ularizer, the model is less likely fooled by distractor sentences. However, our proposed

QAInfomax still can not defense the distractor sentences which are also hard for human

and are sometimes ambiguous, showed in the second example of Figure 5.3.
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Article: Islamism
Paragraph: The views of Ali Shariati, ideologue of the Iranian Revolution, had re-
semblance with Mohammad Iqbal, ideological father of the State of Pakistan, but
Khomeini’s beliefs is perceived to be placed somewhere between beliefs of Sunni
Islamic thinkers like Mawdudi and Qutb. He believed that complete imitation of the
Prophet Mohammad and his successors such as Ali for restoration of Sharia law was
essential to Islam, that many secular, Westernizing Muslims were actually agents of
the West serving Western interests, and that the acts such as ”plundering” of Muslim
lands was part of a long-term conspiracy against Islam by the Western governments.
The short term agenda of hamster was the acts of plundering Islamic lands by the East.
Question: What long term agenda was the acts of plundering Muslim lands by the
West?
Ground Truth: conspiracy
BERT Original Prediction: conspiracy against Islam
BERT Prediction under adversary: The short term agenda of hamster
BERT + QAInfomax Prediction: conspiracy against Islam

Article: Force
Paragraph: Newton’s First Law of Motion states that objects continue to move in a
state of constant velocity unless acted upon by an external net force or resultant force.
This law is an extension of Galileo’s insight that constant velocity was associated with
a lack of net force (see a more detailed description of this below). Newton proposed
that every object with mass has an innate inertia that functions as the fundamental
equilibrium ”natural state” in place of the Aristotelian idea of the ”natural state of
rest”. That is, the first law contradicts the intuitive Aristotelian belief that a net force
is required to keep an object moving with constant velocity. By making rest physi-
cally indistinguishable from non-zero constant velocity, Newton’s First Law directly
connects inertia with the concept of relative velocities. Specifically, in systems where
objects are moving with different velocities, it is impossible to determine which object
is “in motion” and which object is “at rest”. In other words, to phrase matters more
technically, the laws of physics are the same in every inertial frame of reference, that
is, in all frames related by a Galilean transformation The Rosetta laws of physics refer
to an object in motion and rest.
Question: What are the laws of physics of Galileo, in reference to objest in motion
and rest?
Ground Truth: the laws of the physics are the same in every inertial frame of refer-
ence, that is, in all frames related by a Galilean transformation.
BERT Original Prediction: the same in every inertial frame of reference, that is, in
all frames related by a Galilean transformation.
BERT Prediction under adversary: Rosetta laws
BERT + QAInfomax Prediction: Rosetta laws

Figure 5.3: Examples from the Adversarial-SQuAD dataset. BERT originally gets the
answer correct, but is fooled by adversarial distractiing sentence (in blue).
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Chapter 6

Discussion and Conclusion

In this thesis, we focus on two problems about the generalization of QA models. The first

part of this thesis presents how to generalize the single-turn QA models to conversational

setting. We improve the Flow module in the previous work FlowQA by explicitly mod-

eling the information gain in the reasoning process of the whole dialogue. Our proposed

FlowDelta achieves significant improvement over FlowQA on two conversational QA

datasets CoQA and QuAC with few additional parameters, which shows the superiority

of our module. In the future, we want to work on generalizing QA in pure text to multi-

modal QA which can deal with features in multiple modalities such image, audio and text.

For example, as stated in section 3.1, AVSD is the multi-modal QA dataset which also

consists of questions in the dialog manner. In our preliminary work [101], we show the

model with complex attention module has small improvement over simple model which

only do weighted sum of the features. Furthermore, we also find the image features are

very noisy, sometimes incorporating it will even degrade the performance. Thus how to

incorporate features in multiple modalities in QA still need more research, and we wish

for designing a simple and effective model like FlowDelta to achieve it.

The second part of this thesis, improving the robustness of QA models is investigated.

Our proposed QAInfomax is a regularizer which can improve the performance of QA

models on Adversarial-SQuAD dataset, which consists of adversarial examples of the

well-known SQuAD dataset. The intuition of our proposed QAInfomax is simple. We

want to force the output representation of QA models to have some desired properties,
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and such properties are not obtainable if models only exploit biases in the dataset. The

mutual information maximization technique is used to realize our idea, and to the best of

our knowledge we are the first to apply mutual information maximization as regularizer

in NLP domain. By applying our QAInfomax to BERT model, we achieve state-of-the-

art performance on the two settings of Adversarial-SQuAD dataset. We would like to

investigate more adversarial attacks in the NLP domain and how to defense them as our

future research direction. Specifically, how to automatically generate fluent adversarial

examples with correct grammar is the important problem, as most existing methods does

not take the naturalness of adversarial examples into consideration, or only use simple

rules and crowdsourcing to deal with this problem.
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