
doi:10.6342/NTU202000671

國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

數理推演與對話中的自然語言理解之研究

Investigating Language Understanding in
Arithmetic Reasoning and Conversation Modeling

江廷睿

Ting-Rui Chiang

指導教授：陳縕儂博士

Advisor: Yun-Nung Chen, Ph.D.

中華民國 109年 1月
January, 2020

doi:10.6342/NTU202000671

ii

doi:10.6342/NTU202000671

Acknowledgements

I would like to appreciate my advisor Yun-Nung Chen. She shows me the

world. I appreciate MiuLab, which sparkled the fire of my life, and has been

providingmewith the fuel. I appreciate everymember inMiuLab1, especially

who bore with my paroxysms of ignorance at those nights. I appreciate my

family, who taught me the virtue of honesty. Wish everyone in the lab, stay

passionate, stay genuine. Then, we will dare to whisper, “we have not lived

in vain.”

1黃兆緯,蔡尚錡,張婷雲,翁子騰,王佑安,蘇建嘉,葉奕廷,蘇上育,鄧逸軒,葉浩同 (order is decided
by python3.8 random.shuffle).

iii

doi:10.6342/NTU202000671

iv

doi:10.6342/NTU202000671

摘要

本論文主要嘗試研究目前深度學習技術對於自然語言理解的能力。

所研究的理解能力主要包含兩者：第一是模型對於數理問題理解與推

演的能力，第二則是模型理解對話的能力。以上兩者能力都是人類所

具有的能力，但卻是還沒有被自然語言處理界使用深度學習深入調查

的問題。

為了研究深度學習模型對於數理問題理解與推演的能力，本論文的

第一部份著重在數學應用問題的解題任務之上。受到人類解決數學應

用問題的方式的啟發，本篇論文設計了一個讓機器可以根據符號的語

意產生算式的架構。結果證明，使用符號的語意果然可以增強機器的

推演能力。

本論文的第二部份則著重於調查前人所提出的對話問答模型對於對

話理解的能力。這部份主要關注兩個著名的的對話問題資料集 QuAC

以及 CoQA。本篇論文在這個部份提出了一系列的實驗以檢驗模型理

解的能力，並發現了一些潛在的問題。期望這些貢獻能夠有助於未來

在這個方向的研究。

透過這兩方面的研究，本篇論文深入地探討了現有模型在語言理解

能力上的不足。在數學應用問題的解題任務方面，仍然需要有更完善

的方式檢驗模型泛化的能力。而在對話理解方面，如何設計出一個具

有理解對話能力的模型也是一個未解的問題。這些都是未來的研究能

夠繼續探討的方向。

關鍵字：語言理解、對話問答、數學應用問題解題

v

doi:10.6342/NTU202000671

vi

doi:10.6342/NTU202000671

Abstract

This work mainly attempt to investigate the natural language understand-

ing capability of current deep learning models. The main understanding ca-

pabilities include two: first, the capability of language understanding and

arithmetic reasoning capability for math word problems; second, the capabil-

ity of conversation understanding. The above capabilities are possessed by

human, but have not been well explored in the natural language processing

filed with deep learning.

To investigate the arithmetic reasoning capability of deep learning mod-

els, the first part of this work focuses on the task of math work problems

solving. Motivated by the solving process of human, this work proposes a

framework that allows the model to generate math expressions by manipulat-

ing the symbols based on their semantics. The results show its effectiveness

of improving the arithmetic reasoning capability.

The second part of this work investigates the conversation understand-

ing capability of previous proposed models. Two renown datasets QuAC and

CoQA are focused here. This part proposed a series of experiments that can

serve as a tool to diagnose the conversation understanding capability of mod-

els, discovering some potential hazards.

By investigation in this two aspects, this work scrutinizes the incapabil-

ities of current models. For the task of math word problems solving, some

more efforts are still required to validate the generalizability of current mod-

els. For the task of conversation understanding, the way to design a model

vii

doi:10.6342/NTU202000671

that understands conversations remains an unsolved problem. All of these are

prospective future research directions.

Keywords: language understanding, conversational question answering, math

word problem solving

viii

doi:10.6342/NTU202000671

Contents

Acknowledgements iii

摘要 v

Abstract vii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Description . 4

1.3 Main Contributions . 4

1.4 Thesis Structure . 5

2 Background 7

2.1 Recurrent Neural Models . 7

2.1.1 Recurrent Neural Network (RNN) 7

2.1.2 Long-Short Term Memory (LSTM) 8

2.1.3 Bi-Directional Long-Short Term Memory (BiLSTM) 8

2.2 Transformer Model . 9

2.3 Learning Objectives . 11

2.3.1 Maximum Likelihood for Seq2Seq Learning 11

2.3.2 Maximum Likelihood for Answer Span Selection 12

3 Related Work 13

3.1 Question Answering . 13

ix

doi:10.6342/NTU202000671

3.2 Arithmetic Reasoning . 13

3.3 Conversation Comprehension . 14

4 Math Word Problem Solving 17

4.1 Encoder . 18

4.2 Decoder . 19

4.3 Decoding State Features . 20

4.3.1 Stack Action Selector . 21

4.3.2 Stack Actions . 21

4.3.3 Operand Selector . 23

4.3.4 Semantic Transformer . 23

4.4 Training . 24

4.5 Inference . 24

4.6 Experiments . 25

4.6.1 Settings . 25

4.6.2 Results . 25

4.6.3 Ablation Test . 26

4.7 Qualitative Analysis . 28

4.7.1 Constant Embedding Analysis 28

4.7.2 Decoding Process Visualization 29

4.7.3 Error Analysis . 31

4.7.4 Discussion . 31

5 Conversation Modeling 35

5.1 Models . 37

5.1.1 FlowQA . 37

5.1.2 BERT . 38

5.1.3 SDNet . 38

5.2 How Well the Performance Reflects Content Comprehension? 39

5.2.1 Experimental Settings . 39

x

doi:10.6342/NTU202000671

5.2.2 Discussion . 40

5.3 Do Models Understand Conversation Content? 41

5.3.1 Repeat Attack . 41

5.3.2 Predict without Previous Answer Text 45

5.3.3 Predict without Previous Answer Position 47

5.3.4 Implication of Above Experiments 48

5.4 Dataset and Model Analysis . 48

5.4.1 Discussion . 50

6 Conclusion and Future Work 51

Bibliography 53

xi

doi:10.6342/NTU202000671

xii

doi:10.6342/NTU202000671

List of Figures

1.1 The solving process of the math word problem “Each notebok takes $0.5

and each pen takes $1. Tom has $10. Howmany notebook can he buy after

buying 5 pens?” and the associated equation is x = (10 − 1 × 5) ÷ 0.5.

The associated equation is x = (10− 1× 5)÷ 0.5. 2

2.1 The illustration of the encoding part in the highway recurrent transformer.

The input of multi-head attention module includes key, query, and value

sequences; the bottom branches implies that X is fed as the three param-

eters at the same time. 9

2.2 The illustration of the multi-head attention layer. Note that the input

Query, Key, Value and the output are sequences of vectors. 10

4.1 The encoder-decodermodel architecture of the proposed neural solver ma-

chine. 17

4.2 Illustration of the inference process. The purple round blocks denote the

transformed semantics, while the green ones are generated by the variable

generator. 19

4.3 The self-attentionmap visualization of operands’ semantic expressions for

the problem “There are 58 bananas. Each basket can contain 6 bananas.

How many bananas are needed to be token off such that exactly 9 baskets

are filled?”. 28

xiii

doi:10.6342/NTU202000671

4.4 Word attention and gate activation (gsa and gopd) visualization when gen-

erating stack actions for the problem “6.75 deducting 5 times of an un-

known number is 2.75. What is the unknown number?”, where the associ-

ated equation is x = (6.75− 2.75)÷ 5. Note that gopd is meaningful only

when the t-th stack action is push_op. 30

5.1 The histogram of distance between answers to consecutive questions of a

conversation in words. The bin size is 5 words. The distance is counted as

zero if the two answer spans are overlapped, and is positive if the current

is after the previous answer, negative otherwise. 36

5.2 Histogram of answer length distribution in QuAC and CoQA. The bin size

is 1 word. 36

5.3 An example of repeat attack on QuAC and the model results. The red

italic text is the inserted attack. 42

5.4 An example of repeat attack on CoQA. The red italic text is the inserted

attack. In this example, the attack increases the distance between answer

2 and 3. 42

5.5 Histogram of distance between answers to consecutive questions in words

after the attack. The bin size is 5. 43

5.6 F1 change between before and after repeat attack in terms of the answer’s

distance to its previous answers on QuAC (left: FlowQA; right: BERT).

The x-coordinate is the answer’s distance to the previous answer in words,

and the meaning of zero, positive and negative is same as in Figure 5.1.

The y-coordinate is the average F1 score. “no answer” sample are ignored

here. The dotted line is the average F1 score of all samples. 43

5.7 An example of repeat attack on QuAC and the model prediction which

BERT predicts no answer. 45

5.8 Relation between the F1 score before/after repeat attack and the answer’

s distance to its previous answer on CoQA. (Left: FlowQA, Right: SDNet) 46

xiv

doi:10.6342/NTU202000671

List of Tables

4.1 5-fold cross validation results on Math23K. 26

4.2 5-fold cross validation results of ablation tests. 27

4.3 Randomly sampled incorrect predictions. 31

5.1 Model performance on the validation set of QuAC and CoQA. Note that

the original SDNet model does not utilize the position information, so

SDNet + position - text is amodified SDNet with additional one dimension

feature indicating the previous answer as the input. 40

5.2 F1 score on the validation of QuAC and CoQA with or without attack. ”-

position” indicates training without the position information of answers to

previous questions. 46

5.3 Impact on F1 score by the attack. 47

5.4 F1 results on the validation sets of QuAC and CoQA. Models are infered

without/with applying masks on the previous answers. Models without

suffix are trained with full access to conversation, while “- position” in-

dicates that the models are trained without the previous answer position

information. Note that in both training settings, masks are not applied. . . 47

5.5 F1 score on the validation sets of QuAC and CoQA. Models are inferred

with/without access to position information, but trained with access to po-

sition information. 48

5.6 F1 score of models on shuffled validation set of CoQA. Models here do

not use the position information of the previous answers. 49

5.7 An example of random shuffled CoQA passage. 49

xv

doi:10.6342/NTU202000671

xvi

doi:10.6342/NTU202000671

Chapter 1

Introduction

1.1 Motivation

Machines’ capability of understanding natural language is always an important scientific

topic. The powerful deep learning technology has created many possibilities in the natural

language process field. Till now, deep learning models have achieve remarkable perfor-

mance in several natural language processing tasks, from linguistic tasks, such as POS

tagging, sentence parsing, to real world applications, including chat bot systems, question

answering systems, etc. However, it is not sufficient to assert those models’ capability of

language understanding solely based on their appealing performance on those tasks. It is

questionable to what degree those models understand the language.

To investigate machines’ capability of language understanding from holistic aspects,

this work focuses on the question answering tasks requiring capability of arithmetic rea-

soning and conversation modeling. Specifically, this work focus on two tasks: 1) math

word problems solving and 2) conversational question answering. The two task requires

very different sets of natural language understanding skills, and both of them have not

been well explored before. It is anticipated that by investigation on these two very differ-

ent tasks, better knowledge of machines’ capability can be acquired.

1

doi:10.6342/NTU202000671

Figure 1.1: The solving process of the math word problem “Each notebok takes $0.5
and each pen takes $1. Tom has $10. How many notebook can he buy after buying 5
pens?” and the associated equation is x = (10− 1× 5)÷ 0.5. The associated equation is
x = (10− 1× 5)÷ 0.5.

Math Word Problem Solving

Automatically solving math word problems has been viewed as a way of evaluating ma-

chines’ ability [1] of both language understanding and mathematical reasoning. For hu-

man, writing down an equation that solves a math word problem requires the ability of

reading comprehension, reasoning, and sometimes real world understanding. Specifically,

to solve a math word problem, we first need to know the goal of the given problem, then

understand the semantic meaning of each numerical number in the problem, perform rea-

soning based on the comprehension in the previous step, and finally decide what to write

in the equation. Therefore, this task should be an ideal test stone to explore machines’

language understanding capability.

Most prior work about solving math word problems relied on hand-crafted features,

which required more human knowledge. Because those features are often in the lexical

level, it is not clear whether machines really understand the math problems. Also, most

prior work evaluated their approaches on relatively small datasets, and the capability of

generalization is concerned.

To investigate model’s capability of language understanding, this work considers the

semantic of mathematical symbols involved in the reasoning procedure. Figure 1.1 illus-

trates a reasoning process that solves a math word problem. The illustration shows that

human actually assigns the semantic meaning to each number when manipulating sym-

bols, including operands (numbers) and operators (+ − ×÷). The semantic meaning of

operands may be helpful when deciding the operator to use. For example, the summation

of “price of one pen” and “number of pens Tom bought” is meaningless; therefore the ad-

2

doi:10.6342/NTU202000671

dition would not be chosen. Beholding this observation, it is worthy of investigation to

see if machine can also solve math word problems in this way. Therefore, in this work an

end-to-end math word problem solving approach is designed.

Conversation Modeling

Answering questions in the conversational manner requires special language understand-

ing skills. Different from traditional machine reading comprehension [2, 3, 4] whose

questions are context-free, questions and answers in QuAC and CoQA are collected in a

conversational manner. Same as in general machine reading comprehension tasks, ques-

tions related to a given passage are asked. However, questions may be also related to the

given conversational history, and should be answered accordingly. Such conversational

setting is regarded as more practical because people tend to seek for information in a con-

versational way. This work focus on two benchmark conversational question answering

datasets, QuAC [5] and CoQA [6]. They feature many linguistic phenomena unique to

conversations, so they are believed to be important materials for investigation of language

understanding in conversation.

This part of work focuses on investigating how well the performance of a model on

these two benchmark datasets reflects its capability of comprehension. If higher perfor-

mance on these datasets does not necessarily imply better conversation comprehension,

then further investigation must be done when models claim their better understanding per-

formance. However, it has not been well investigated by any of the prior work [5, 7, 8, 9].

We further analyze whether the recent models achieving competitive performance rely

on content comprehension. It is motivated by the fact that the position of the answer

to the previous question is widely utilized in many of previous conversational question

answering models, such as BiDAF-with-ctx [10] and FlowQA [7]. Those models leverage

the datasets’ property that answers or rationals can always be found as a span of the given

passage. Thus those models can access the informative content provided by the position

information. Models are expected to learn to understand the conversation based on its

content. However, it is not clear whether the models rely on the previous conversation

3

doi:10.6342/NTU202000671

content or merely the position information.

1.2 Problem Description

With regard to the above discussion, in this work two questions are subject to investigation:

1. How can machines do arithmetic reasoning over natural language as human do?

2. How do the previous models understand the language in conversations?

1.3 Main Contributions

Math Word Problem Solving

Contributions in this work include

• This work is the first attempt to model semantic meanings of operands and operators

for math word problems.

• This work proposes an end-to-end neural math solver with a novel decoding process

that utilizes the stack to generate associated equations.

• The proposed architecture achieves the state-of-the-art performance on the large

benchmark dataset Math23K.

• The proposed architecture is capable of providing interpretation and reasoning for

the math word problem solving procedure.

Conversational Question Answering

• Series of experiments are designed. They can serve as an analysis tool for conver-

sational question answering models in the future.

• We identify potential hazards in the conversation question answering task:

4

doi:10.6342/NTU202000671

– Higher performance on QuAC and CoQA does not necessarily imply better

content comprehension.

– Models trained on QuAC show the tendency of heavily relying on the previous

answers’ positions rather than their textual content.

1.4 Thesis Structure

In the follow chapters, technical backgrounds will be reviewed in the Chapter 2, and re-

lated work will be reviewed in the Chapter 3. Then the arithmetic reasoning capability will

be investigated in Chapter 4, which has been presented in [11]: Ting-Rui Chiang and Yun-

Nung Chen, “Semantically-Aligned Equation Generation for Solving and ReasoningMath

Word Problems,” inProceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies (NAACL)

pages 2656–2668. The conversation comprehension capability will be examined in the

Chapter 5, part of which will be published in [12]: Ting-Rui Chiang, Hao-Tong Ye, and

Yun-Nung Chen “An Empirical Study of Content Understanding in Conversational Ques-

tion Answering,” in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Finally, the Chapter 6 concludes this work.

5

doi:10.6342/NTU202000671

6

doi:10.6342/NTU202000671

Chapter 2

Background

In this chapter, some background about the building blocks of models in this work, as well

as the models analyzed will be introduced.

2.1 Recurrent Neural Models

Recurrent neural models are introduced to model a sequence of vectors. Its recurrent

structure equips it with the potential to encode the order information of the input. They

are widely used in previous work as well as this work.

2.1.1 Recurrent Neural Network (RNN)

The basic ideal of recurrent model is first embodied in the recurrent neural network [13].

For a given series of input vectors (x1, x2, · · · , xT), the representation ht of xt is encoded

with a recurrent formula

ht =σ(Whxt + Uhht−1 + bh), (2.1)

where σ is typically a sigmoid function, andWh, Uh, bh are parameters to train.

7

doi:10.6342/NTU202000671

2.1.2 Long-Short Term Memory (LSTM)

The long-short term memory model [14] is an improved version of RNN that fixes its

gradient vanish problem. For a RNN, when calculating the gradient of the outputs with

respect to the parameters, the scale of the gradient can diminish exponentially. To fix this

problem, gates are added in the design of the long-short memory model. Specifically, it

has three gates:

ft = σ(Wfxt + Ufht−1 + bf)

it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)

ct = ft ◦ ct−1 + it ◦ tanh(Wcxt + Ucht−1 + bc)

ht = ot ◦ tanh(ct),

whereWf ,Wi,Wo,Wc, Uc, bf , bi, bo, bc are parameters to learn. Generally the hidden state

ht is used as the representation of input xt encoded by this long-short termmemory model,

and is used by following neural network layers.

2.1.3 Bi-Directional Long-Short Term Memory (BiLSTM)

A bi-directional long-short term memory model consists of two LSTM models. Each

LSTM model encode each input vector xt in the input sequence in one direction into
←−
h t

and
−→
h t respectively. And then the bi-directional representation

←→
h t of xt is formed by

concatenating the two vectors. This way of encoding gives
←→
h t the potential to contain

information of all input vectors, and thus enrich the information in the encoded represen-

tation.

8

doi:10.6342/NTU202000671

Transformer
Encoder Block

X

Multi-Head Attention

Layer Normalization

+

Position-Wise
Feed-Forward Network

Layer Normalization

+

Figure 2.1: The illustration of the encoding part in the highway recurrent transformer. The
input of multi-head attention module includes key, query, and value sequences; the bottom
branches implies that X is fed as the three parameters at the same time.

2.2 Transformer Model

A transformer encoder block (Figure 2.1) proposed in [15] consists of a multi-head at-

tention layer and a position-wise feed-forward network, residual connection and layer

normalization are used to connect the two components, details are specified as follows.

Multi-Head Attention Layer

A multi-head attention [15] (Figure 2.2) consists of the heads of attention, each head per-

forms linear transformation before performing attention operation; with different sets of

trainable parameters, each attention head potentiallymodels different relationship between

two sequences. Specifically, the inputs of the multi-head attention layer are three se-

quences of vectors: query Q ∈ Rl1×df , key K ∈ Rl2×df , value V ∈ Rl2×df , where l1, l2

are the length of the first and second sequence respectively. Then for the h-th head, three

weight matricesWQh,WKh,W V h ∈ Rdf×dp are used to project the three inputs to a lower

9

doi:10.6342/NTU202000671

Multi-Head Attention

WQ1

Query Key Value

WK1 WV1

Attention

WQ2 WK2 WV2

Attention

WQh WKh WVh

Attention
... ✕h

Concatenation

WO

Head

Figure 2.2: The illustration of the multi-head attention layer. Note that the input Query,
Key, Value and the output are sequences of vectors.

dimension dp, and then an attention function is performed

Ah = Attention(Qh, Kh, V h),

where Qh = QWQh, Kh = KWKh, V h = VW V h. The attention function generates a

vector for each vector in the query sequence Q. Let the outputs of the attention function

be Ah ∈ Rl1×dp , which is weighted sum of value V based on similarity matrices Sh. For

a = 1, 2, · · · , l1, the a-th output is calculated as below:

Sh = Qh(Kh)T ,

Ah
a =

l2∑
p=1

exp sha,p∑l2
t=1 exp sha,t

V h
p , (2.2)

where s are the similarity scores in the similarity matrix Sh.

Then the output of the multi-head attention is the linear transformed concatenation of

the outputs from attention heads:

MultiHead(Q,K, V) = Concat(A1, A2, · · · , AH)WO

10

doi:10.6342/NTU202000671

where H is the number of heads, andWO ∈ WH·dp×df is a trained weight matrix.

Position-Wise Feed-Forward Network

The position-wise feed-forward network (FFN) transforms each vector in a sequence iden-

tically as follows:

FFN(X) = max(0, XW1 + b1)W2 + b2

Residual Connection and Layer Normalization

Then the above two components are connected with residual connection and layer nor-

malization [16]:

ResiNorm(f,X) = LayerNorm(X + f(X)),

TransformerBlock(X) = ResiNorm(FFN,ResiNorm(MultiHead, (X,X,X))).

(2.3)

Note that here we use the same sequence for the query, key, value arguments of the multi-

head attention for self-attention.

2.3 Learning Objectives

2.3.1 Maximum Likelihood for Seq2Seq Learning

Maximum likelihood is used in the learning objective function for conditional sequence

generation. Given an input sequencex1, x2, · · · , xTin
and a target output sequence y∗1, y∗2, · · · , y∗Tout

,

the learning objective is to maximize the sum of the factorized conditional log probability:

logP (y∗1, y
∗
2, · · · , y∗Tout

|x1, x2, · · · , xTin
) (2.4)

= log
Tout∏
t=1

P (y∗t |y∗t−1, y
∗
t−2, · · · , y∗1, x1, x2, · · · , xTin

) (2.5)

=
Tout∑
t=1

logP (y∗t |y∗t−1, y
∗
t−2, · · · , y∗1, x1, x2, · · · , xTin

) (2.6)

11

doi:10.6342/NTU202000671

In this work, the conditional probability in equation 2.6 is modeled by an encoder-

decoder seq2seq model. Specifically, in a seq2seq model, an encoder is used to encode the

input sequence into a representation, and a decoder is used to generate the output sequence

one by one in order. At the decoding time step t, the decoder assigns probability to every

output candidate according to the representation of the input as well as the generated output

before time t. The training objective is to maximize the probability.

2.3.2 Maximum Likelihood for Answer Span Selection

Maximum likelihood is used in the training objective function for answer span selection.

Generally, answer span selection is formulated as a task to select the start point and the end

point of the answer in a passage. Models considered in this work select the start point and

the end point conditionally independently given the passage. Therefore, given a passage

X , and the target start point pstart, end point pend, the objective is to maximize

logP (pstart, pend|X) (2.7)

= logP (pstart|X)P (pend|X) (2.8)

= logP (pstart|X) + logP (pend|X). (2.9)

In this work, P (pstart|X) and logP (pend|X) are modeled by the conversation compre-

hension models.

12

doi:10.6342/NTU202000671

Chapter 3

Related Work

3.1 Question Answering

The task of question answering has attracted lots of interests in recent years. It is believed

that all of the natural language processing tasks cal be reduced to question answering

problems. Therefore. many datasets [2, 4, 3, 17, 18, 19, 20, 21] have been created, and

there has been many models [22, 23, 24, 25, 26, 27] crafted for advancing the tasks.

3.2 Arithmetic Reasoning

There is a lot of prior work that utilized hand-crafted features, such as POS tags, paths

in the dependency trees, keywords, etc., to allow the model to focus on the quantities in

the problems [28, 29, 30, 31, 32, 33, 34, 35, 36, 37]. Recently, [38, 39, 40] attempted at

learning models without predefined features.

[28] first extracted templates about math expressions from the training answers, and

then trained models to select templates and map quantities in the problem to the slots in

the template. Such two-stage approach has been tried and achieved good results [35]. The

prior work highly relied on human knowledge, where they parsed problems into equa-

tions by choosing the expression tree with the highest score calculated by an operator

classifier, working on a hand-crafted “trigger list” containing quantities and noun phrases

in the problem, or utilizing features extracted from text spans [30, 33, 32]. [41] defined a

13

doi:10.6342/NTU202000671

Dolphin language to connect math word problems and logical forms, and generated rules

to parse math word problems. [34] parsed math word problems without explicit equa-

tion annotations. [36] classified math word problems into 4 types and used rules to de-

cide the operators accordingly. [37] trained the parser using reinforcement learning with

hand-crafted features. [29] modeled the problem text as transition of world states, and

the equation is generated as the world states changing. Our work uses a similar intuition,

but hand-crafted features are not required and our model can be trained in an end-to-end

manner. Some end-to-end approaches have been proposed, such as generating equations

directly via a seq2seq model [39]. [40] tried to generate solutions along with its rationals

with a seq2seq-like model for better interpretability.

3.3 Conversation Comprehension

Recently, with the trend of conversational interactions, people started to focus on conver-

sational understanding. Therefore, datasets for conversational question answering were

built [5, 6], and the corresponding models [7, 8] were proposed to tackle the challenges.

Investigations on what machine comprehension models learn are mainly for those

context-free question answering systems. [42] proposed a method to generate adversarial

examples in order to test the model robustness. [43] conducted experiments to verify the

reading required to answer questions in the dataset. [23] found a feature indicating if a

word appears in the question important, and suggested that questions can be answered with

some rules that rely only on superficial features. [44] validated the suggestion by a series

of systematic experiments. However, the conversational question answering systems are

rarely explored. Although [45] compared CoQA, SQuAD 2.0 and QuAC qualitatively,

there was no any investigation on what conversational question answering models cap-

ture.

The phenomenon that models does not utilize all useful features is common in diverse

areas. For example, [46] showed that natural language inference models with high accu-

racy relied much on the lexical-level features but utilized little compositional semantics.

[47] found that not whole conversation history is used in neural dialogue generation sys-

14

doi:10.6342/NTU202000671

tems. Similar phenomena happened in the computer vision area, where [48] indicated that

CNN trained on ImageNet relied much on textual information rather than shape informa-

tion, and [49] further showed that only textual information can achieve very high accuracy

on ImageNet.

15

doi:10.6342/NTU202000671

16

doi:10.6342/NTU202000671

Chapter 4

Math Word Problem Solving

To investigate the reasoning capability of machines, a model composed of an encoder and

a decoder is proposed. Themodel is designed by viewing the process of solvingmath word

problems as transforming multiple text spans in the problems into the target information

the problems ask for. In the example shown in Figure 1.1, all numbers in the problem

are attached with the associated semantics. Motivated by the observation, we design an

encoder to extract the semantic representation of each number in the problem text. Con-

sidering that human usually manipulates those numbers and operators (such as addition,

subtraction, etc.) based on their semantics for problem solving, a decoder is designed to

construct the equation, where the semantics is aligned with the representations extracted

by the encoder. The idea of the proposed model is to imitate the human reasoning process

for solving math word problems. The model architecture is illustrated in Figure 4.1.

Tom has $ 10 5 pens ?

Encoder

Stack

A
tte

n
tio

n

Operation Selector

Apply OP

OP Return

Decoder

Operand Selector

Semantic Transformer

Each notebook takes $0.5 and each pen

takes $1. Tom has $10. How many

notebooks can he buy after buying 5 pens?

Stack

A
tte

n
tio

n

Figure 4.1: The encoder-decoder model architecture of the proposed neural solver ma-
chine.

17

doi:10.6342/NTU202000671

4.1 Encoder

The encoder aims to extract the semantic representation of each constant needed for solv-

ing problems. However, the needed constants may come from either the given problem

texts or domain knowledge, so we detail these two procedures as follows.

Constant Representation Extraction

For each math word problem, we are given a passage consisting of words {wP
t }mt=1, whose

word embeddings are {ePt }mt=1. The problem text includes some numbers, which we refer

as constants. The positions of constants in the problem text are denoted as {pi}ni=1. In

order to capture the semantic representation of each constant by considering its contexts,

a bidirectional long short-term memory (BLSTM) is adopted as the encoder [14]:

hE
t , c

E
t = BLSTM(hE

t−1, c
E
t−1, e

P
t), (4.1)

and then for the i-th constant in the problem, its semantic representation eci is modeled by

the corresponding BLSTM output vector:

eci = hE
pi
. (4.2)

External Constant Leveraging

External constants, including 1 and π, are leveraged, because they are required to solve

a math word problem, but not mentioned in the problem text. Due to their absence from

the problem text, we cannot extract their semantic meanings by BLSTM in (4.2). Instead,

we model their semantic representation eπ, e1 as parts of the model parameters. They are

randomly initialized and are learned during model training.

18

doi:10.6342/NTU202000671

10 − 1 × 5 ÷ 0.5

𝑥 𝑥

10 − 1 × 5

0.5

𝑥

10 − 1 × 5

𝑥

10

1 × 5

𝑥

10

5

1

𝑥

10

5

𝑥

10

𝑥

Apply ÷ Push 0.5 Apply −

Apply ×

Push 1Push 5Push 10

Push 𝒙

Apply =

𝑥

0.5

1

10

5

Encoder &
Generated

Var.

SymPy

𝑥 = 10 − 1 × 5 ÷ 0.5

Figure 4.2: Illustration of the inference process. The purple round blocks denote the trans-
formed semantics, while the green ones are generated by the variable generator.

4.2 Decoder

The decoder aims at constructing the equation that can solve the given problem. We gen-

erate the equation by applying stack actions on a stack to mimic the way how human

understands an equation. Human knows the semantic meaning of each term in the equa-

tion, even compositing of operands and operators like the term ”(10 − 1 × 5)” in Figure

1.1. Then what operator to apply on a pair operands can be chosen based on their semantic

meanings accordingly. Hence we design our model to generate the equation in a postfix

manner: a operator is chosen base on the semantic representations of two operands the

operator is going to apply to. Note that the operands a operator can apply to can be any

results generated previously. That is the reason why we use “stack” as our data structure

in order to keep track of the operands a operator is going to apply to. The stack contains

both symbolic and semantic representations of operands, denoted as

S = [(vSlt , e
S
lt), (v

S
lt−1, e

S
lt−1), · · · , (vS1 , eS1)], (4.3)

where vS of each pair is the symbolic part, such as x+ 1, while eS is the semantic repre-

sentation, which is a vector. The components in the decoder are shown in the right part of

Figure 4.1, each of which is detailed below.

19

doi:10.6342/NTU202000671

4.3 Decoding State Features

At each decoding step, decisions are made based on features of the current state. At each

step, features rsa and ropd are extracted to select a stack action (section 4.3.2) and an

operand to push (section 4.3.3). Specifically, the features are the gated concatenation of

following vectors:

• hD
t is the output of an LSTM, which encodes the history of applied actions:

hD
t , c

D
t = LSTM(hD

t−1, c
D
t−1, rest−1), (4.4)

where rest−1 is the result from the previous stack action similar to the seq2seqmodel

[50]. For example, if the previous stack action ot−1 is “push”, then rest−1 is the

semantic representation pushed into the stack. If the previous stack action ot−1 is to

apply an operator ⋄, then rest−1 is the semantic representation generated by f⋄.

• st is the stack status. It is crucial because some operators are only applicable to

certain combinations of operand semantics, which is similar to the type system in

programming languages. For example, operating multiplication is applicable to the

combination of “quantity of an item” and “price of an item”, while operating ad-

dition is not. Considering that all math operators supported here (+,−,×,÷) are

binary operators, the semantic representations of the stack’s top 2 elements at the

time t− 1 are considered:

st = [eSlt ; e
S
lt]. (4.5)

• qt incorporates problem information in the decision. It is believed that the attention

mechanism [51] can effectively capture dependency for longer distance. Thus, the

attention mechanism over the encoding problem hE
1 , h

E
2 , · · · is adopted:

qt = Attention(hD
t , {hE

i }mi=1), (4.6)

where the attention function in this paper is defined as a function with learnable

20

doi:10.6342/NTU202000671

parameters w,W, b:

Attention(u, {vi}mi=1) =
m∑
i=1

αihi, (4.7)

αi =
exp(si)∑m
l=1 exp(si)

, (4.8)

si = wT tanh(W T [u; vi] + b). (4.9)

In order to model the dynamic features for different decoding steps, features in rsat is

gated as follows:

rsat = [gsat,1 · hD
t ; g

sa
t,2 · st; gsat,3 · qt], (4.10)

gsat = σ(W sa · [hD
t ; st; qt]), (4.11)

where σ is a sigmoid function and W sa is a learned gating parameter. ropdt is defined

similarly, but with a different learned gating parameterW opd.

4.3.1 Stack Action Selector

The stack action selector is to select an stack action at each decoding step (section 4.3.2)

until the unknowns are solved. The probability of choosing action a at the decoding step t

is calculated with a networkNN constituted of one hidden layer and ReLU as the activation

function:

P (Yt | {yi}t−1
i=1, {wi}mi=1) = StackActionSelector(rsat)

= softmax(NN(rsat)),

where rsat is decoding state features as defined in section 4.3.

4.3.2 Stack Actions

The available stack actions are listed below:

21

doi:10.6342/NTU202000671

• Variable generation: The semantic representation of an unknown variable x is gen-

erated dynamically as the first action in the decoding process. Note that this proce-

dure provides the flexibility of solving problems with more than one unknown vari-

ables. The decoder module can decide how many unknown variables are required

to solve the problem, and the semantic representation of the unknown variable is

generated with an attention mechanism:

ex = Attention(hD
t , {hE

i }mi=1). (4.12)

• Push: This stack action pushes the operand chosen by the operand selector (sec-

tion 4.3.3). Both the symbolic representation v∗ and semantic representation e∗ of

the chosen operand would be pushed to the stack S in (4.3). Then the stack state

becomes

S = [(vS∗ , e
S
∗), (v

S
lt , e

S
lt), · · · , (v

S
1 , e

S
1)]. (4.13)

• Operator ⋄ application (⋄ ∈ {+,−,×,÷}): One stack action pops two elements

from the top of the stack, which contains two pairs, (vi, ei) and (vj, ej), and then the

associated symbolic operator, vk = vi⋄vj , is recorded. Also, a semantic transforma-

tion function f⋄ for that operator is invoked, which generates the semantic represen-

tation of vk by transforming semantic representations of vi and vj to ek = f⋄(ei, ej).

Therefore, after an operator is applied to the stack specified in (4.3), the stack state

becomes

S =[(vSlt ⋄ v
S
lt−1, f⋄(e

S
lt , e

S
lt−1)), (v

S
lt−2, e

S
lt−2), · · · , (vS1 , eS1)].

• Equal application: When the equal application is chosen, it implies that an equation

is completed. This stack action pops 2 tuples from the stack, (vi, ei), (vj, ej), and

then vi = vj is recorded. If one of them is an unknown variable, the problem is

solved. Therefore, after an OP is applied to the stack specified in (4.3), the stack

22

doi:10.6342/NTU202000671

state becomes

S = [(vSlt−2, e
S
lt−2), · · · , (vS1 , eS1)]. (4.14)

4.3.3 Operand Selector

When the stack action selector has decided to push an operand, the operand selector aims

at choosing which operand to push. The operand candidates e include constants provided

in the problem text whose semantic representations are ec1, ec2, · · · , ecn, unknown variable

whose semantic representation is ex, and two external constants 1 and π whose semantic

representations are e1, eπ:

e = [ec1, e
c
2, · · · , ecn, e1, eπ, ex]. (4.15)

An operand has both symbolic and semantic representations, but the selection focuses on

its semantic meaning; this procedure is the same as what human does when solving math

word problems.

Inspired by addressing mechanisms of neural Turing machine (NTM) [52], the proba-

bility of choosing the i-th operand candidate is the attention weights of rt over the semantic

representations of the operand candidates as in (4.8):

P (Zt | {yi}t−1
i=1, {wi}mi=1) = OperandSelector(ropdt)

= AttentionWeight(ropdt , {ei}mi=1 ∪ {e1, eπ, ex}),

and ropdt is defined in section 4.3.

4.3.4 Semantic Transformer

A semantic transformer is proposed to generate the semantic representation of a new sym-

bol resulted from applying an operator, which provides the capability of interpretation and

reasoning for the target task. The semantic transformer for an operator ⋄ ∈ {+,−,×,÷}

23

doi:10.6342/NTU202000671

transforms semantic representations of two operands e1, e2 into

f⋄(e1, e2) = tanh(U⋄ReLU(W⋄[e1; e2] + b⋄) + c⋄), (4.16)

whereW⋄, U⋄, b⋄, c⋄ are model parameters. Semantic transformers for different operators

have different parameters in order to model different transformations.

4.4 Training

Both stack action selection and operand selection can be trained in a fully supervised way

by giving problems and associated ground truth equations. Because our model generates

the equation with stack actions, the equation is first transformed into its postfix represen-

tation. Let the postfix representation of the target equation be y1, · · · yt, · · · , yT , where yt

can be either an operator (+,−,×,÷,=) or a target operand. Then for each time step t,

the loss can be computed as

L(yt) =


L1(push_op) + L2(yt) yt is an operand

L1(yt) otherwise
,

where L1 is the stack action selection loss and L2 is the operand selection loss defined as

L1(yt) = − logP (Yt = yt | {oi}t−1
i=1, {wi}mi=1),

L2(yt) = − logP (Zt = yt | rt).

The objective of our training process is to minimize the total loss for the whole equation,∑T
t=1 L(yt).

4.5 Inference

When performing inference, at each time step t, the stack action with the highest proba-

bility P (Yt|{ỹi}t−1
i=1, {wi}mi=1) is chosen. If the chosen stack action is “push”, the operand

24

doi:10.6342/NTU202000671

with the highest probability P (Zt|{Ỹi}t−1
i=1, {wi}mi=1) is chosen. When the stack has less

than 2 elements, the probability of applying operator +,−,×,÷,= would be masked out

to prevent illegal stack actions, so all generated equations must be legal math expressions.

The decoder decodes until the unknown variable can be solved. After the equations are

generated, a Python package SymPy [53] is used to solve the unknown variable. The infer-

ence procedure example is illustrated in Figure 4.2. The detailed algorithm can be found

in Algorithm 1.

4.6 Experiments

To evaluate the performance of the proposed model, we conduct the experiments on the

benchmark dataset and analyze the learned semantics.

4.6.1 Settings

The experiments are benchmarked on the dataset Math23k [39], which contains 23,162

math problemswith annotated equations. Each problem can be solved by a single-unknown-

variable equation and only uses operators +,−,×,÷. Also, except π and 1, quantities in

the equation can be found in the problem text. There are also other large scale datasets like

Dolphin18K [41] and AQuA [40], containing 18,460 and 100,000 math word problems

respectively. The reasons about not evaluating on these two datasets are 1) Dolphin18k

contains some unlabeled math word problems and some incorrect labels, and 2) AQuA

contains rational for solving the problems, but the equations in the rational are not for-

mal (e.g. mixed with texts, using x to represent ×, etc.) and inconsistent. Therefore, the

following experiments are performed and analyzed using Math23K, the only large scaled,

good-quality dataset.

4.6.2 Results

The results are shown in Table 4.1. The retrieval-based methods compare problems in test

data with problems in training data, and choose the most similar one’s template to solve

25

doi:10.6342/NTU202000671

Model Accuracy

Retrieval Jaccard 47.2%
Cosine 23.8%

Classification BLSTM 57.9%
Self-Attention 56.8%

Generation
Seq2Seq w/ SNI 58.1%
Proposed Word-Based 65.3%
Proposed Char-Based 65.8%

Hybrid Retrieval + Seq2Seq 64.7%

Table 4.1: 5-fold cross validation results on Math23K.

the problem [28, 35]. The classification-based models choose equation templates by a

classifier trained on the training data. Their performance are reported in [54]. The seq2seq

and hybrid models are from [39], where the former directly maps natural language into

symbols in equations, and the latter one ensembles prediction from a seq2seq model and a

retrieval-based model. The ensemble is the previous state-of-the-art results of Math23K.

Our proposed end-to-end model belongs to the generation category, and the single

model performance achieved by our proposed model is new state-of-the-art (> 65%) and

even better than the hybrid model result (64.7%). In addition, we are the first to report

character-based performance on this dataset, and the character-based results are slightly

better than the word-based ones. Among the single model performance, our models obtain

about more than 7% accuracy improvement compared to the previous best one [39]. The

performance of our character-basedmodel also shows that our model is capable of learning

the relatively accurate semantic representations without word boundaries and achieves

better performance.

4.6.3 Ablation Test

To better understand the performance contributed by each proposed component, we per-

form a series of ablation tests by removing components one by one and then checking the

performance by 5-fold cross validation. Table 4.2 shows the ablation results.

Char-Based v.s. Word-Based As reported above, using word-based model instead of

character-based model only causes 0.5% performance drop. To fairly compare with prior

26

doi:10.6342/NTU202000671

Model Accuracy
Char-Based 65.8%
Word-Based 65.3%
Word-Based - Gate 64.1%
Word-Based - Gate - Attention 62.5%
Word-Based - Gate - Attention - Stack 60.1%
Word-Based - Semantic Transformer 64.1%
Word-Based - Semantic Representation 61.7%

Table 4.2: 5-fold cross validation results of ablation tests.

word-based models, the following ablation tests are performed on the word-based ap-

proach.

Word-Based -Gate It uses rt instead of rsat and roprt as the input of both StackActionSelector

and OperandSelector.

Word-Based - Gate - Attention Considering that the prior generation-based model

(seq2seq) did not use any attention mechanism, we compare the models with and without

the attention mechanism. Removing attention means excluding qt−1 in (4.11), so the input

of both operator and operand selector becomes rt = [hD
t ; st]. The result implies that our

model is not better than previous models solely because of the attention.

Word-Based -Gate - Attention - Stack To check the effectiveness of the stack status (st

in (4.11)), the experiments of removing the stack status from the input of both operator and

operand selectors (rt = hD
t) are conducted. The results well justify our idea of choosing

operators based on semantic meanings of operands.

Word-Based - Semantic Transformer To validate the effectiveness of the idea that

views an operator as a semantic transformer, we modify the semantic transformer function

of the operator ⋄ into f⋄(e1, e2) = e⋄, where e⋄ is a learnable parameter and is different

for different operators. Therefore, e⋄ acts like the embedding of the operator ⋄, and the

decoding process is more similar to a general seq2seq model. The results show that the

semantic transformer in the original model encodes not only the last operator applied on

the operands but other information that helps the selectors.

27

doi:10.6342/NTU202000671

.00 .00 .00 .00 .00 .00 .00 .00 .00 .01 .01 .00 .00 .00 .00 .08 .65 .21 .01 .01 .01 .00 .00

.01 .00 .00 .00 .01 .09 .42 .21 .02 .05 .13 .00 .00 .00 .00 .00 .01 .01 .02 .00 .01 .00 .00

.02 .15 .02 .03 .26 .14 .01 .02 .00 .02 .31 .00 .00 .00 .00 .00 .01 .00 .01 .00 .00 .00 .00

58.0

quantifier 个

banana 香蕉 ，
eve

ry 每

(baske
t) <

unk> 6.0

quantifier 个 ，

take
 off 拿掉

how m
any 多少

quantifier 个 ，
then 就

can 可以

exactly 正好 fill 装 9.0

quantifier 个

baske
ts 篮子 了

<unk> .

9.0

6.0

58.0

Figure 4.3: The self-attention map visualization of operands’ semantic expressions for the
problem “There are 58 bananas. Each basket can contain 6 bananas. How many bananas
are needed to be token off such that exactly 9 baskets are filled?”.

Word-Based - Semantic Representation To explicitly evaluate the effectiveness of

operands’ semantic representations, we rewrite semantic representation of the i-th operand

in the problem texts from (4.2) to eci = bci , where bci is a parameter. Thus for every prob-

lem, the representation of the i-th operand is identical, even though their meanings in

different problems may be different. This modification assumes that no semantic infor-

mation is captured by bci , which can merely represent a symbolic placeholder in an equa-

tion. Because the semantic transformer is to transform the semantic representations, ap-

plying this component is meaningless. Here the semantic transformer is also replaced with

f⋄(e1, e2) = e⋄ as the setting of the previous ablation test. The results show that the model

without using semantic representations of operands causes a significant accuracy drop of

3.5%. The main contribution of this paper about modeling semantic meanings of symbols

is validated and well demonstrated here.

4.7 Qualitative Analysis

To further analyze whether the proposed model can provide interpretation and reasoning,

we visualize the learned semantic representations of constants to check where the impor-

tant cues are,

4.7.1 Constant Embedding Analysis

To better understand the information encoded in the semantic representations of constants

in the problem, a self-attention is performed when their semantic representations are ex-

28

doi:10.6342/NTU202000671

tracted by the encoder. Namely, we rewrite (4.2) as

eci = Attention(hE
pi
, {hE

t }mt=1). (4.17)

Then we check the trained self-attention map (α in the attention function) on the validation

dataset.

For some problems, the self-attention that generates semantic representations of con-

stants in the problem concentrates on the number’s quantifier or unit, and sometimes it

also focuses on informative verbs, such as “gain”, “get”, “fill”, etc., in the sentence.

For example, Figure 4.3 shows the attention weights for an example math word problem,

where lighter colors indicate higher weights. The numbers “58” and “6” focus more on

the quantifier-related words (e.g. “every” and “how many”), while “9” pays higher atten-

tion to the verb “fill”. The results are consistent with those hand-craft features for solving

math word problems proposed by the prior research [29, 31, 30]. Hence, we demonstrate

that the automatically learned semantic representations indeed capture critical information

that facilitates solving math word problems without providing human-crafted knowledge.

4.7.2 Decoding Process Visualization

We visualize the attention map (qt in (4.6)) to see how the attention helps the decoding

process. An example is shown in the top of Figure 4.4, where most attention focuses

on the end of the sentence. Unlike the machine translation task, the attention shows the

word-level alignment between source and target languages, solving math word problems

requires high-level understanding due to the task complexity.

To further analyze the effectiveness of the proposed gatingmechanisms for stack action

and operand selection, the activation of gates gsa, gopd at each step of the decoding process

is shown in the bottom of Figure 4.4. It shows that most of time, the gate activation is

high, demonstrating that the proposed gating mechanisms play an important role during

decoding. We also observe a common phenomenon that the activation gsa2 , which controls

howmuch attention the stack action selector puts on the stack state when deciding an stack

29

doi:10.6342/NTU202000671

.99 1.0 1.0 1.0 .97 .96 .96 1.0 1.0

.18 .06 .02 .06 .02 .09 .26 .20 .83

.97 1.0 1.0 1.0 1.0 .99 .61 .73 .12

.77 .99 1.0 .98 .90 .78 .62 .04 .06

.69 .61 .48 .63 .74 .83 .83 .93 .70

.74 .98 .38 .66 .32 .50 .90 .45 .34

gv x 6.75 2.75 - 5.0 / = noop

.00 .00 .00 .01 .00 .01 .01 .04 .01

.35 .30 .38 .30 .77 .72 .50 .13 .23

.00 .01 .00 .01 .00 .01 .02 .06 .01

.01 .01 .01 .01 .00 .00 .00 .03 .01

.00 .00 .00 .00 .00 .00 .00 .02 .00

.00 .00 .00 .03 .00 .01 .01 .01 .01

.01 .02 .02 .14 .02 .03 .02 .06 .08

.04 .03 .04 .18 .01 .04 .12 .11 .05

.03 .09 .14 .18 .19 .13 .07 .05 .48

.06 .04 .02 .02 .00 .01 .07 .08 .01

.11 .14 .07 .02 .00 .01 .05 .08 .02

.01 .00 .00 .00 .00 .00 .00 .05 .00

.25 .28 .22 .07 .01 .03 .10 .11 .06

.10 .09 .08 .02 .00 .01 .02 .09 .02

.03 .01 .01 .01 .00 .00 .01 .08 .01

gv x 6.75 2.75 - 5.0 / = noop

, .

<unk>

number 数

unknown 某

ask 求

, ，

2.75

is 得

times 倍

5.0

's 的

number 数

unknown 某

substrates 减去

6.75

Figure 4.4: Word attention and gate activation (gsa and gopd) visualizationwhen generating
stack actions for the problem “6.75 deducting 5 times of an unknown number is 2.75. What
is the unknown number?”, where the associated equation is x = (6.75− 2.75)÷ 5. Note
that gopd is meaningful only when the t-th stack action is push_op.

action, is usually low until the last “operator application” stack action. For example, in the

example of Figure 4.4, gsa2 is less than 0.20 till the last argument selection stack action, and

activates when deciding the division operator application (÷) and the equal application

30

doi:10.6342/NTU202000671

Problem & Results
红花有 60 朵，黄花比红花多 1/6 朵，黄花有多少朵．(There are 60 red flowers.
Yellow flowers are more than red ones by 1/6. How many yellow flowers are there?)
Generated Equation: 60 + 1

6

Correct Answer: 70
火车 48小时行驶 5920千米，汽车 25小时行驶 2250千米，汽车平均每小时比火
车每小时慢多少千米？(The train travels 5920 kilometers in hours, and the car travels
2250 kilometers in 25 hours. How many kilometers per hour is the car slower than the
train?)
Generated Equation: 2250÷ 25− 5920÷ 48
Correct Answer: 331

3

小红前面 5人，后面 7人，一共有多少人？(There are 5 people in front of Little Red
and 7 people behind. How many persons are there in total?)
Generated Equation: 5 + 7
Correct Answer: 13

Table 4.3: Randomly sampled incorrect predictions.

(=). It may result from the higher-level semantics of the operand (6.75 − 2.75) on the

stack when selecting the stack action division operator application (÷). In terms of the

activation of gopd, we find that three features are important in most cases, demonstrating

the effectiveness of the proposed mechanisms.

4.7.3 Error Analysis

We randomly sample some results predicted incorrectly by our model shown in Table

4.3. In the first example, the error is due to the language ambiguity, and such ambiguity

cannot be resolved without considering the exact value of the number. From the second

example, although ourmodel identifies the problem as a comparison problem successfully,

it handles the order of the operands incorrectly. For the third problem, it cannot be solved

by using only the surface meaning but requires some common sense. Therefore, above

phenomena show the difficulty of solving math word problems and the large room for

improvement.

4.7.4 Discussion

In this part, an end-to-end neural math solver that incorporates semantic representations

of numbers is proposed in this work. The experiments show that the proposed model

31

doi:10.6342/NTU202000671

outperforms the strong baseline model by almost 10% accuracy on the benchmark dataset,

and empirically demonstrate the effectiveness of each component in themodel. The results

proves that, the reasoning capability of machines can be improved by using the semantic

of the symbols.

32

doi:10.6342/NTU202000671

Algorithm 1 Training and Inference
function SolveProblem(problem_text)

v ← ExtractConstants(problem_text) ▷ v is a list of constants in the problem.
hE , hD0 , c

D
0 , E ← Encoder(problem_text)

S ← Stack()
ret, loss, t, equations← padding, 0, 1, {}
while not solvable(equations) do

hDt ← LSTM(hDt−1, ct−1, ret)
st ← S.get_top2()
hE ← Attention(hDt−1, h

E)
rt ← [hDt , st, h

E]
psa ← StackActionSelector(rt)
popd ← OperandSelector(rt)
if training then ▷ Target equation y is available when training.

Yt ← yt
if yt is operand then

loss← loss+ L1(push) + L2(yt)
else

loss← loss+ L1(yt)
end if

else
Yt ← StackActionSelector(rsat)
if Yt = push then

Zt ← OperandSelector(ropdt)
end if

end if
if Yt = gen_var then

ex ← Attention(hDt , hE)
ret← ex

else if Yt = push then
S.push(vZt , eZt)
ret← eZt

else if Yt ∈ {+,−,×,÷} then
(va, ea), (vb, eb) = S.pop(), S.pop()
S.push(vaYtvb, fYt(ea, eb))
ret← fYt(ea, eb)

else if Yt = equal then
(va, ea), (vb, eb) = S.pop(), S.pop()
equations = equations ∪ ”va = vb”
ret← S.top()

end if
end while
return solve(equations)

end function

33

doi:10.6342/NTU202000671

34

doi:10.6342/NTU202000671

Chapter 5

Conversation Modeling

To investigate the conversation understanding capability of machines, the conversational

question answering task is focused here. Two main datasets for conversational question

answering, QuAC [5] and CoQA [6] are focused in this work. In the two datasets, ques-

tions and answers are collected in a conversational manner, where each conversation in-

cludes two participants: a student who asks question about a given passage, and a teacher

who answers the question according to the passage. The teacher in both sets may reply

“no answer” if the answer cannot be found in the given passage. When evaluating the

model for both tasks, the content as well as the position of answers to the previous ques-

tion is available to the model. In the statistics of two datasets, answers to the consecutive

questions tend to be close to each other depicted in Figure 5.1.

Even though both datasets are collected for conversational question answering, they

have several different properties.

• Answer format

Answers in QuAC are always the text spans in the given passage, while answers

in CoQA are free texts similar to some spans in the passage. Answers in QuAC is

generally longer than answers in CoQA shown in Figure 5.2, where the distribution

implies that QuAC is more realistic than CoQA. Answering “yes” or “no” is also

allowed in CoQA. Note that the evidence span (span in the passage that supports

the answer) is provided in CoQA, so the previous answers’ position information is

35

doi:10.6342/NTU202000671

QuAC
CoQA

-100 -50 0 50 100

Distance to previous answer in words.

0

5

10

15

20

25

30

35

%
 o

f
q

u
e
st

io
n

s.

Figure 5.1: The histogram of distance between answers to consecutive questions of a
conversation in words. The bin size is 5 words. The distance is counted as zero if the two
answer spans are overlapped, and is positive if the current is after the previous answer,
negative otherwise.

CoQA
QuAC

0 10 20 30 40

answer length in words

0

5

10

15

20

25

%
 o

f
a

n
sw

e
rs

Figure 5.2: Histogram of answer length distribution in QuAC and CoQA. The bin size is
1 word.

36

doi:10.6342/NTU202000671

still available.

• Dataset collection process

The Amazon mechanical turkers who generated the CoQA dataset have full access

to the passage. On the other hand, turkers who generated questions in QuAC cannot

see the passages. The latter setting may be more suitable for practical applications,

because real users want to seek for information using questions when not reading

passages.

5.1 Models

We consider models including FlowQA, BERT, and SDNet, as they are the only pub-

licly available models till now. For FlowQA and SDNet, we use the code released by the

authors. Some modifications are made for the following experiments1. Each models of

each setting are trained with 3 different random seeds, and the resulted mean and standard

deviation value are reported for reliability.

All models in the experiments are mainly based on those designed for single-turn read-

ing comprehension tasks, so this section focuses on describing the modification for each

method in order to handle understanding in conversational question answering. Below

three models are detailed.

5.1.1 FlowQA

FlowQA [7] is the model specifically designed for conversational question answering,

which contains a mechanism that can incorporate intermediate representations generated

during the process of answering previous questions. This model significantly improved

conversational machine comprehension tasks for both QuAC and CoQA data. In FlowQA,

the main mechanism designed for the conversational structure is the Integration-Flow

layer. In the model, there is a question-aware context representation Ci for each ques-

tion Qi in the history, and the Integration process simply applies BiLSTM to each Ci

1For reproducibility, we will release all code, script, and experiment settings.

37

doi:10.6342/NTU202000671

independently. After that, the Flow process applies BiLSTM to the same word across dif-

ferent context representations in order to capture knowledge of previous questions. Also,

an one-bit feature is added to the input context word representation indicating whether the

word appears in previous answers. The rest of the reasoning procedure is almost identical

to FusionNet [55] that focuses on single-turn machine comprehension.

5.1.2 BERT

In the current state-of-the-art question answering models, most models leverage the bene-

fits from BERT [56] to advance the task. We apply BERT on QuAC by converting the task

into a single-turn machine reading comprehension task such as SQuAD [2]. We prepend

previousN questions to the current questionQk, so it becomes Q̂k = {Qk−N , . . . , Qk−1, Qk}.

At the embedding layer, beside the original word embedding, segment embedding and po-

sition embedding, an additional embedding is also added to represent whether the word

appears in previous answer spans. Then we follow the procedure of applying BERT to

SQuAD that concatenates the extended and the context to form the input and uses the con-

text output representations from BERT to predict the start and the end of the answer span

[56].

5.1.3 SDNet

To incorporate the information from dialogue history, SDNet prepends not only previous

questions but also previous answers to the current question Qk, i.e.,

Q̂k = Qk−N , Ak−N , . . . , Qk−1, Ak−1, Qk

, and nomore additional effort is put to deal with the conversational structure. For the input

representation for both context and question words, they used BERT as contextualized

embeddings along with GloVe. The rest of the model architecture for reasoning is highly

inspired by FusionNet [55].

38

doi:10.6342/NTU202000671

5.2 How Well the Performance Reflects Content Com-

prehension?

This section attempts at investigating how well the performance reflects the capability

of comprehension on QuAC and CoQA? Both datasets claim rich linguistic phenomena

unique to conversations, where QuAC claims to have 61% of questions including corefer-

ence referring to entities in the given passage, 44% of coreference referring to entities in

previous history, and 11% of questions that ask for more information in the conversation.

Also, CoQA claims to have 49.7% of questions with explicit coreference to conversations,

and 19.8% with implicit ones. Given such high ratio of questions related to conversations,

it is natural to expect that higher performance implies better understanding in conversa-

tional question answering. Especially, the understanding should be based on the content

of the conversation, in which those special linguistic phenomena is embodied. To inspect

the expectation, we design experiments based on the premise: If comprehension on the

content of conversation is reflected well by the performance, then model trained without

the access to conversation content should not achieve high performance.

5.2.1 Experimental Settings

We compare models trained and tested with three different settings:

• Original: The model has free access to the previous conversation history, as the

setting proposed by the models.

• - text: Themodel has no access to the content of the answer to the previous question,

but has access to their position in the provided context. The previous questions are

not used either.

• - conversation: The model has no any access to the previous conversation history.

In the - text setting, the answer span in the passage is masked with zeros. As questions

are to seek for information, the answer content should be highly informative. Therefore,

39

doi:10.6342/NTU202000671

Dataset Model F1 (stdev) ∆ compared to full model

QuAC

FlowQA 64.4 (.30) 0.0
FlowQA - text 62.4 (.20) -2.0
FlowQA - conversation 54.1 (.13) -10.3

BERT 63.6 (.16) 0.0
BERT - text 62.2 (.48) -1.4
BERT - conversation 55.3 (.03) -8.3

CoQA

FlowQA 76.9 (.22) 0.0
FlowQA - text 71.5 (.24) -5.4
FlowQA - conversation 63.4 (.11) -13.5

SDNet + position 76.4 (.31) 0.0
SDNet + position - text 74.0 (.19) -2.4
SDNet - conversation 68.3 (.45) -8.1

Table 5.1: Model performance on the validation set of QuAC and CoQA. Note that the
original SDNet model does not utilize the position information, so SDNet + position - text
is a modified SDNet with additional one dimension feature indicating the previous answer
as the input.

the information loss by answer masking cannot be easily compensated by the surround-

ing words. Especially, for QuAC, since answer spans are typically as long as sentences,

masked language models like BERT can in no way recover the masked part. Thus, in this

setting, the only information about previous answers is their positions in the passage.

5.2.2 Discussion

We compare the results of models in Table 5.1. For both QuAC and CoQA, models trained

without access to conversation content can achieve performance significantly better than

models trainedwithout access to any conversation history. Especially for QuAC, - content

models consistently outperform - conversation models by up to absolute 7% F1 score. As

for CoQA, though not as consistently, but similar comparison can also be observed.

The above results indicate that better understanding in the dataset is not well reflected

by the performance on these two datasets. Undoubtedly, better comprehension should be

based on semantic understanding specific to the textual content. However, even no content

is provided to - text models, - text models can still achieve performance higher than

- conversation models. It indicates that higher performance does not necessarily imply

40

doi:10.6342/NTU202000671

better content understanding. Therefore, futuremodels may need to further verify whether

they indeed focus on semantic understanding instead of utilizing the position information

only.

5.3 Do Models Understand Conversation Content?

The results in §5.2 do not answer the question that if the full models understand content

of conversations well. As shown in §5.2, the full models can achieve better performance

than models use only the answers’ position information. However, §5.2 also shows the

usefulness of the previous position information. Since the full model has access to both the

position and content of the previous answers, it is not clear whether the better performance

is contributed by understanding conversation content. To answer this question, we analyze

the trained models by a series of testing settings.

5.3.1 Repeat Attack

We propose repeat attack that increases the distance between answers in the context. To

do so, a text span is repeated between the answer spans in the passage. For QuAC, as most

answers are sentences, we repeat the answer sentence for each answer spans in the pas-

sage. For CoQA, since its answer span is generally much shorter than QuAC, we repeat

sentences that contain the answer span. The attack examples for both datasets are shown

in Table 5.3 and Table 5.4. By repeating part of the passage, the meaning delivered should

remain the same. When evaluating the models, the previous answer positions provided to

models contain only the text as in original answer. Due to the repeated text, the distance

between consecutive answer spans is lengthen by this attack. The distribution of the dis-

tance is visualized in Figure 5.5, which is much smoother than the one before the attack

(Figure 5.1).

We use repeat attack to investigate models’ understanding of conversation content. It

is motivated by the high ratio of answers close to answers to the previous questions (as

shown in Figure 5.1). It is possible that positions of previous answers leak the position

41

doi:10.6342/NTU202000671

Repeat Attack Example in QuAC

Passage: In 2004, Oldman returned to prominence when he landed a significant role in
the Harry Potter film series, playing Harry Potter’s godfather Sirius Black.ans1 In 2004,
Old man returned to prominence when he landed a significant role in the Harry Potter film
series, playing Harry Potter’s godfather Sirius Black. The following year, he starred as
James Gordon in Christopher Nolan’s commercially and critically successful Batman
Begins,ans2 starred as James Gordon in Christopher Nolan’s commercially and critically suc-
cessful Batman Begins, ...

Question 1: What was his resurgence or comeback role?
Answer 1: In 2004, Oldman returned to prominence when he landed a significant role in the
Harry Potter film series, playing Harry Potter’s godfather Sirius Black.
Question 2: Are there any other interesting aspects about this article?
Answer 2: The following year, he starred as James Gordon in Christopher Nolan’s commer-
cially and critically successful Batman Begins,

Origin FlowQA prediction: (F1 0.83) The following year, he starred as James Gordon in
Christopher Nolan’s commercially and critically successful Batman Begins,
Origin BERT prediction: (F1 0.83) The following year, he starred as James Gordon in
Christopher Nolan’s commercially and critically successful Batman Begins

Attacked FlowQA prediction: (F1 0.20) In 2004, Oldman returned to prominence when he
landed a significant role in the Harry Potter film series, playing Harry Potter’s godfather Sirius
Black.
Attacked BERT prediction: (F1 0.21) In 2004, Oldman returned to prominence when he
landed a significant role in the Harry Potter film series, playing Harry Potter’s godfather Sirius

Figure 5.3: An example of repeat attack on QuAC and the model results. The red italic
text is the inserted attack.

Repeat Attack Example in CoQA

Passage: Once upon a time, in a barnans2 near a farm house, there lived a little whiteans1
kitten named Cotton. Once upon a time, in a barn near a farm house, there lived a little white
kitten named Cotton. Cotton lived high up in a nice warm place above the barn where all of
the farmer’s horses slept. But Cotton wasn’t aloneans3 in her little home above the barn, oh
no. ...

Question 1: What color was Cotton?
Answer 1: white
Question 2: Where did she live?
Answer 2: in a barn
Question 3: Did she live alone?
Answer 3: Cotton wasn’t alone

Figure 5.4: An example of repeat attack on CoQA. The red italic text is the inserted attack.
In this example, the attack increases the distance between answer 2 and 3.

information of the current answer. The model may thus learn to take as the answer candi-

dates the sentences close to the previous answer span. On the other hand, if a model does

42

doi:10.6342/NTU202000671

QuAC
CoQA

-100 -50 0 50 100

Distance to previous answer in words.

0

2

4

6

8

10

12

14

%
 o

f
q

u
e
st

io
n

s.

Figure 5.5: Histogram of distance between answers to consecutive questions in words
after the attack. The bin size is 5.

w/o attack
w attack
difference

-400 -200 0 200 400

Distance to previous answer in words.

0

0.2

0.4

0.6

0.8

F
1

w/o attack
w attack
difference

-400 -200 0 200 400

Distance to previous answer in words.

0

0.2

0.4

0.6

0.8

F
1

Figure 5.6: F1 change between before and after repeat attack in terms of the answer’s
distance to its previous answers on QuAC (left: FlowQA; right: BERT). The x-coordinate
is the answer’s distance to the previous answer in words, and the meaning of zero, positive
and negative is same as in Figure 5.1. The y-coordinate is the average F1 score. “no
answer” sample are ignored here. The dotted line is the average F1 score of all samples.

answer the question by understanding answer content, then the model should be robust

to this attack. Therefore, by using the attacked data to test models that are trained on the

normal data, the models’ capability of understanding can be well investigated.

For QuAC, the results shown in Table 5.2 indicates that both FlowQA and BERT are

sensitive to the distance between consecutive answers. Their performance drops signifi-

cantly when applying the repeat attack. The F1 score under attack is roughly the F1 score

of models trained without any conversational information. Furthermore, we conduct the

same experiments on FlowQA and BERT trained without using position information of the

previous answers, and find that although they perform much worse than the full models,

43

doi:10.6342/NTU202000671

they are more robust against the attack.

To better investigate how the answer position is related to the model robustness, we

plot the relation between F1 scores before/after attack in terms of the distance to previ-

ous answer in Figure 5.6. We find that both BERT and FlowQA predict answers more

accurately when the current answer has short distance to the previous answer (blue and

green lines). Also, our attack is more effective when the distance is short (yellow line).

These findings imply that models trained on QuACwith the position information may rely

less on the answer content but rely too much on the answer position. In addition, models

trained without the position information may rely more on the semantic information in the

conversations.

We also investigate the performance affected by the attack based on if the question is

a followup of the previous question, which is annotated in QuAC dataset. The followup

questions are questions more likely to depend on the previous question, and therefore are

expected to require understanding of conversation content. However, results shown in

table 5.3 indicate that they are more vulnerable to our attack.

QuACmodels’ reliance on position information can be further shown by the qualitative

error analysis on the attacked validation set. We inspect the questions that the models

originally predict the answer with a high F1 score, but predict the answer with a low F1

scores when applying attack. One sample is shown in Table 5.3, where two models under

attack directly predict the sentence after the previous answer span regardless of the content.

On other cases, we find FlowQA under attack makes mistakes by selecting the next span

more consistently. In contrast, BERT under attack is prone to predict a much implausible

answer or reply “no answer” (an example is shown in figure 5.7.). The reason may be

that BERT is specialized to search answers in the region near the the previous answer, so

consequently, when the next sentence after the previous answer is incorrect, it will fail to

answer the question correctly.

On the other hand, it is less clear if the drop of performances on CoQA dataset is

due to insufficient of conversation content understanding. Unlike on QuAC, - position

models are not more robust than the original models as obviously as on QuAC. It can be

44

doi:10.6342/NTU202000671

QuAC
Passage: ... Gardner has been quoted as saying that he regarded parapsychol-
ogy and other research into the paranormal as tantamount to ”tempting
God” and seeking ”signs and wonders”.ans4 he regarded parapsychology and
other research into the paranormal as tantamount to ”tempting God” and seeking
”signs and wonders”. He stated that while he would expect tests on the efficacy
of prayers to be negative, he would not rule out a priori the possibility that as
yet unknown paranormal forces may allow prayers to influence the physical
world.ans5 negative, he would not rule out a priori the possibility that as yet un-
known paranormal forces may allow prayers to influence the physical world. ...
...
Question 4: What conclusion can he draw from there believes?
Answer 4: he regarded parapsychology and other research into the paranormal
as tantamount to ”tempting God” and seeking ”signs and wonders”.
Question 5: Did he make other statement related to this?
Answer 5: negative, he would not rule out a priori the possibility that as yet un-
known paranormal forces may allow prayers to influence the physical world.
Origin FlowQA prediction: (F1 0.94) He stated that while he would expect
tests on the efficacy of prayers to be negative, he would not rule out a priori the
possibility
Origin BERT prediction: (F1 1.0) He stated that while he would expect tests
on the efficacy of prayers to be negative,
Attacked FlowQA prediction: (F1 0.21) he regarded parapsychology and other
research into the paranormal as tantamount to ”tempting God” and seeking ”signs
and wonders”.
Attacked BERT prediction: (F1 0.0) no answer
...

Figure 5.7: An example of repeat attack on QuAC and the model prediction which BERT
predicts no answer.

observed in figure 5.8 that questions in CoQA seem to be equally susceptible to the attack

regardless of the distance to previous answers. Conversation content understanding of the

models trained on CoQA may require further investigation.

5.3.2 Predict without Previous Answer Text

To investigate if the content of previous answers is used by the models trained with posi-

tion information, we measure the performance on the validation set predicted without the

content of previous answers. To remove the content information of previous answers, we

mask the previous answer spans with zeros. Different to previous - text settings, models

here has access to previous questions. Particularly, for FlowQA, the content information

45

doi:10.6342/NTU202000671

w/o attack
w attack
difference

-300 -200 -100 0 100 200 300

Distance to previous answer in words.

0

0.2

0.4

0.6

0.8

F
1

w/o attack
w attack
difference

-300 -200 -100 0 100 200 300

Distance to previous answer in words.

0

0.2

0.4

0.6

0.8

F
1

Figure 5.8: Relation between the F1 score before/after repeat attack and the answer’s
distance to its previous answer on CoQA. (Left: FlowQA, Right: SDNet)

Dataset Model Repeat Attack
∆w/o w/

QuAC

FlowQA 64.4 (0.30) 53.3 (0.75) -11.1
BERT 63.6 (0.16) 55.3 (0.74) -8.3
FlowQA - position 59.3 (0.37) 56.9 (0.37) -2.4
BERT - position 58.0 (0.18) 56.5 (0.22) -1.5

CoQA

FlowQA 76.9 (0.22) 72.0 (0.20) -4.9
SDNet 76.4 (0.31) 71.8 (0.48) -4.6
FlowQA - position 76.8 (0.42) 72.4 (0.24) -4.4
SDNet - position 75.7 (0.76) 70.9 (0.10) -4.8

Table 5.2: F1 score on the validation of QuAC and CoQA with or without attack. ”- posi-
tion” indicates training without the position information of answers to previous questions.

of the previous answer may be flowed along with the flow structure, and the RNNmemory

of the previous answer spans is also reset to zeros.

The more performance drops when masking previous answers implies that the model

relies more on the content information of those answers. According to the results in Table

5.4, it seems that all models more or less rely on the text of previous answers. Mean-

while, as expected, the models except SDNet - position trained without the position infor-

mation almost drop to the performance of ones trained without any conversation history

information. SDNet - position is an exception because answers to previous questions

are prepended to the question when training and testing, so masking answers in the pas-

sage does not remove all the content of previous answers. However, it is surprising that

FlowQA on QuAC can still keep the performance up to 60% F1, implying that FlowQA

46

doi:10.6342/NTU202000671

Model Followup No Followup

FlowQA
no attack 64.0 (0.59) 64.8 (0.11)
attack 49.5 (0.59) 57.6 (0.94)
∆ 14.6 (1.17) 7.2 (1.00)

BERT
no attack 63.4 (0.32) 64.0 (0.57)
attack 52.4 (1.37) 58.5 (0.18)
∆ 11.0 (1.12) 5.5 (0.41)

Table 5.3: Impact on F1 score by the attack.

Dataset Model Ans. Mask
∆w/o w/

QuAC

FlowQA 64.4 (0.30) 60.5 (0.54) -3.9
BERT 63.6 (0.16) 52.6 (1.76) -11.0
FlowQA - position 59.3 (0.37) 55.0 (1.80) -4.3
BERT - position 58.0 (0.18) 50.1 (0.45) -7.9

CoQA

FlowQA 76.9 (0.22) 71.2 (0.41) -5.7
SDNet 76.4 (0.31) 73.5 (0.51) -2.9
FlowQA - position 76.8 (0.42) 68.2 (0.28) -8.6
SDNet - position 75.7 (0.76) 75.6 (0.69) -0.1

Table 5.4: F1 results on the validation sets of QuAC and CoQA. Models are infered with-
out/with applying masks on the previous answers. Models without suffix are trained with
full access to conversation, while “- position” indicates that the models are trained without
the previous answer position information. Note that in both training settings, masks are
not applied.

may rely on position information much more than the semantic information.

5.3.3 Predict without Previous Answer Position

To directly test to what extent the models rely on position information of previous an-

swers, we conduct the experiments of predicting answers without position information.

The results are shown in Table 5.5, where both results of FlowQA and BERT on QuAC

drop significantly if not using position information. Among them, FlowQA drops even

more, regardless of the flow structure that models the dialog flow. The performance is

even lower than the models trained without using any conversation history. It indicates

that although the models on QuAC may rely on the semantics of previous answers, the

position information is indeed exploited. On the other hand, it is interesting to see that

FlowQA trained on CoQA rely little position information of the previous answers.

47

doi:10.6342/NTU202000671

Dataset Model Position Info.
w/ w/o

QuAC FlowQA 64.4 (0.30) 48.1 (0.72)
BERT 63.6 (0.16) 54.9 (0.08)

CoQA FlowQA 76.9 (0.22) 76.7 (0.36)
SDNet 76.4 (0.31) 73.7 (0.18)

Table 5.5: F1 score on the validation sets of QuAC and CoQA. Models are inferred
with/without access to position information, but trained with access to position informa-
tion.

5.3.4 Implication of Above Experiments

Our results show that the models trained on QuAC have high tendency to rely heavily on

the position of previous answers. The proposed attack and experiment settings can serve

as a diagnosis tool in the future.

5.4 Dataset and Model Analysis

To further investigate the performance difference between the models trained on QuAC

and CoQA, two questions are focused here.

Why doCoQAmodels rely less on position information? It is unclear why the models

trained on CoQA rely less on the position information of the previous answer as shown

in the previous sections. Figure 5.2 shows that answers in CoQA are much shorter than

in QuAC, so if we normalize the distance to the previous answer related to the length of

the answers, the average distance to the previous answer in CoQA would be much longer

than QuAC. Furthermore, short answers may also imply that an answer can be identified

as the sentence containing the answer. To verify the suggestion, we randomly shuffle the

sentences in the passage for each CoQA example. An example of shuffled passage can be

found in table 5.7. By doing this, the cross-sentence information and the order information

should be removed from the passage. Then we use CoQAmodels trained without position

information to predict the answers. The results in Table 5.6 show that, roughly speaking,

up to 70% questions can still be answer correctly. It thus supports our suggestion, and

48

doi:10.6342/NTU202000671

Dataset Model Shuffle ∆
w/o w/

CoQA FlowQA - position 76.8 (0.42) 71.7 (0.25) -5.1
SDNet - position 75.7 (0.76) 70.1 (0.59) -5.6

Table 5.6: F1 score of models on shuffled validation set of CoQA. Models here do not use
the position information of the previous answers.

partly explains why models trained on CoQA rely less on the position information.

Passage: What are you doing, Cotton?!” The rest of her sisters were all orange
with beautiful white tiger stripes like Cotton’s mommy. Then Cotton thought, ”I
change my mind. All of her sisters were cute and fluffy, like Cotton. But Cotton
wasn’t alone in her little home above the barn, oh no. Cotton lived high up in a
nice warm place above the barn where all of the farmer’s horses slept. ”I only
wanted to bemore like you”. When her mommy and sisters found her they started
laughing. ”Don’t ever do that again, Cotton!” So one day, when Cotton found a
can of the old farmer’s orange paint, she used it to paint herself like them. And
with that, Cotton’s mommy picked her up and dropped her into a big bucket of
water. She shared her hay bed with her mommy and 5 other sisters. Her sisters
licked her face until Cotton’s fur was all all dry. Next time youmight mess up that
pretty white fur of yours and we wouldn’t want that!” We would never want you
to be any other way”. Being different made Cotton quite sad. She often wished
she looked like the rest of her family. When Cotton came out she was herself
again. But she was the only white one in the bunch. Cotton’s mommy rubbed
her face on Cotton’s and said ”Oh Cotton, but your fur is so pretty and special,
like you. they all cried. ” I like being special”. Once upon a time, in a barn near
a farm house, there lived a little white kitten named Cotton.

Table 5.7: An example of random shuffled CoQA passage.

Why do QuAC models rely more position information? We provide a few possible

explanation why the models trained on QuAC rely much on the position information.

According to the analysis on QuAC [5], 11% of the questions is of the type “Anything

else?”. It is common in the general article where the information of the same type is

written in near contexts. Because the question “Anything else?” is asked to seek for more

information similar to the previous answer, it is very likely that the position of the previous

answer provides a strong hint for the current answer. Though there is a high percentage

of the questions containing pronouns in QuAC, they do not necessarily force the model

to learn coreference resolution either. For the pronouns in questions, they often refer to

49

doi:10.6342/NTU202000671

entities in the previous answer. Because entities in consecutive sentences seldom change

much, simply looking for the answer near the previous answer location may be sufficient

to answer the question. Especially, we find personal pronouns in QuAC questions of a

conversation often refer to only one same person. Also, the referred person is often the

main role in the passage. This further removes the necessity to understand the conversation

history.

5.4.1 Discussion

In this part, conversation content understanding of different models learned from differ-

ent datasets is investigated. The experiments shows concerns 1) Performance on QuAC

and CoQA does not well reflect model’s comprehension on conversation content. 2) The

model trained on QuAC does not necessarily learn conversation comprehension. 3) In

CoQA, cross-sentence information is not that important for current model. Given the con-

cerns pointed out in this work, future researchers should be able to avoid some possible

hazards in this direction.

50

doi:10.6342/NTU202000671

Chapter 6

Conclusion and Future Work

In this work we investigate current machines’ capability of understanding natural language

in two aspects. Firstly, the reasoning capability is studied. The results show the success

of the model inspired by the human reasoning process. Secondly, the capability of con-

versation content understanding is investigated. A series of experiments are designed to

scrutinize the content understanding capability in the previous proposed models, identify-

ing some potential hazards which future researchers should be aware of.

There are potential directions to further investigate the arithmetic reasoning and con-

versation modeling capability of machines. For the arithmetic reasoning part, some more

efforts may be need to better scrutinize the generalization ability of the models. To do

so, some composite questions that require capability more than pattern matching may be

created. For the conversation modeling part, inventing a more realistic data collection pro-

cess may be an important future direction. Both the QuAC and CoQA datasets are created

in an unrealistic setting and thus may contain artifacts. It is also unclear how to design a

model that learns conversation comprehension naturally until now. The future work can

focus more on those directions.

51

doi:10.6342/NTU202000671

52

doi:10.6342/NTU202000671

Bibliography

[1] S. Mandal and S. K. Naskar, “Solving arithmetic mathematical word problems: A

review and recent advancements,” in Information Technology and Applied Mathe-

matics, pp. 95–114, Springer, 2019.

[2] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+ questions for

machine comprehension of text,” in Proceedings of the 2016 Conference on Empir-

ical Methods in Natural Language Processing, pp. 2383–2392, 2016.

[3] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and L. Deng,

“Ms marco: A human generated machine reading comprehension dataset,” arXiv

preprint arXiv:1611.09268, 2016.

[4] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable

questions for squad,” in Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 2: Short Papers), pp. 784–789, 2018.

[5] E. Choi, H. He, M. Iyyer, M. Yatskar, W.-t. Yih, Y. Choi, P. Liang, and L. Zettle-

moyer, “Quac: Question answering in context,” in Proceedings of the 2018 Confer-

ence on Empirical Methods in Natural Language Processing, pp. 2174–2184, 2018.

[6] S. Reddy, D. Chen, and C. D.Manning, “Coqa: A conversational question answering

challenge,” Transactions of the Association for Computational Linguistics, vol. 7,

pp. 249–266, 2019.

53

doi:10.6342/NTU202000671

[7] H.-Y. Huang, E. Choi, and W. tau Yih, “FlowQA: Grasping flow in history for con-

versational machine comprehension,” in International Conference on Learning Rep-

resentations, 2019.

[8] C. Zhu, M. Zeng, and X. Huang, “Sdnet: Contextualized attention-based deep

network for conversational question answering,” arXiv preprint arXiv:1812.03593,

2018.

[9] Y.-T. Yeh and Y.-N. Chen, “Flowdelta: Modeling flow information gain in reasoning

for conversational machine comprehension,” in Proceedings of the 2nd Workshop on

Machine Reading for Question Answering, pp. 86–90, 2019.

[10] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi, “Bidirectional attention flow

for machine comprehension,” in Proceedings of ICLR, 2016.

[11] T.-R. Chiang and Y.-N. Chen, “Semantically-aligned equation generation for solving

and reasoning math word problems,” in Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long and Short Papers), pp. 2656–2668, 2019.

[12] T.-R. Chiang, H.-T. Ye, and Y.-N. Chen, “An empirical study of content understand-

ing in conversational question answering,” arXiv preprint arXiv:1909.10743, 2019.

[13] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14, no. 2, pp. 179–

211, 1990.

[14] S. Hochreiter and J. Schmidhuber, “Long short-termmemory,” Neural Computation,

vol. 9, no. 8, pp. 1735–1780, 1997.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,

and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information

Processing Systems, pp. 5998–6008, 2017.

[16] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint

arXiv:1607.06450, 2016.

54

doi:10.6342/NTU202000671

[17] C. C. Shao, T. Liu, Y. Lai, Y. Tseng, and S. Tsai, “Drcd: a chinese machine reading

comprehension dataset,” arXiv preprint arXiv:1806.00920, 2018.

[18] A. Trischler, T. Wang, X. Yuan, J. Harris, A. Sordoni, P. Bachman, and K. Suleman,

“Newsqa: A machine comprehension dataset,” in Proceedings of the 2nd Workshop

on Representation Learning for NLP, pp. 191–200, 2017.

[19] G. Lai, Q. Xie, H. Liu, Y. Yang, and E. Hovy, “Race: Large-scale reading com-

prehension dataset from examinations,” in Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pp. 785–794, 2017.

[20] D. Dua, Y. Wang, P. Dasigi, G. Stanovsky, S. Singh, and M. Gardner, “DROP: A

reading comprehension benchmark requiring discrete reasoning over paragraphs,”

in Proc. of NAACL, 2019.

[21] A. Amini, S. Gabriel, S. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi,

“Mathqa: Towards interpretable math word problem solving with operation-based

formalisms,” in Proceedings of the 2019 Conference of the North American Chapter

of the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long and Short Papers), pp. 2357–2367, 2019.

[22] S. Wang and J. Jiang, “Machine comprehension using match-lstm and answer

pointer,” 2016.

[23] D. Weissenborn, G. Wiese, and L. Seiffe, “Making neural qa as simple as possible

but not simpler,” in Proceedings of the 21st Conference on Computational Natural

Language Learning (CoNLL 2017), pp. 271–280, 2017.

[24] Y. Shen, P.-S. Huang, J. Gao, and W. Chen, “Reasonet: Learning to stop reading in

machine comprehension,” in Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and DataMining, pp. 1047–1055, ACM, 2017.

[25] M. Hu, Y. Peng, Z. Huang, X. Qiu, F. Wei, and M. Zhou, “Reinforced mnemonic

reader formachine reading comprehension,” inProceedings of the 27th International

Joint Conference on Artificial Intelligence, pp. 4099–4106, AAAI Press, 2018.

55

doi:10.6342/NTU202000671

[26] C. Xiong, V. Zhong, and R. Socher, “DCN+: Mixed objective and deep residual

coattention for question answering,” in International Conference on Learning Rep-

resentations, 2018.

[27] X. Liu, Y. Shen, K. Duh, and J. Gao, “Stochastic answer networks for machine read-

ing comprehension,” in Proceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers), pp. 1694–1704, 2018.

[28] N. Kushman, L. Zettlemoyer, R. Barzilay, and Y. Artzi, “Learning to automatically

solve algebra word problems,” in Proceedings of the 52nd Annual Meeting of the

Association for Computational Linguistics, ACL 2014, pp. 271–281, 2014.

[29] M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kushman, “Learning to solve arith-

metic word problems with verb categorization,” in Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language Processing, pp. 523–533, 2014.

[30] S. Roy, T. Vieira, and D. Roth, “Reasoning about quantities in natural language,”

TACL, vol. 3, pp. 1–13, 2015.

[31] S. Roy and D. Roth, “Solving general arithmetic word problems,” in Proceedings

of the 2015 Conference on Empirical Methods in Natural Language Processing,

EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pp. 1743–1752, 2015.

[32] R. Koncel-Kedziorski, H. Hajishirzi, A. Sabharwal, O. Etzioni, and S. D. Ang, “Pars-

ing algebraic word problems into equations,” TACL, vol. 3, pp. 585–597, 2015.

[33] S. Roy, S. Upadhyay, and D. Roth, “Equation parsing : Mapping sentences to

grounded equations,” in Proceedings of the 2016 Conference on Empirical Meth-

ods in Natural Language Processing, EMNLP 2016, Austin, Texas, USA, November

1-4, 2016, pp. 1088–1097, 2016.

[34] S. Upadhyay, M. Chang, K. Chang, and W. Yih, “Learning from explicit and im-

plicit supervision jointly for algebra word problems,” in Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pp. 297–306,

2016.

56

doi:10.6342/NTU202000671

[35] S. Upadhyay and M. Chang, “Annotating derivations: A new evaluation strategy

and dataset for algebra word problems,” in Proceedings of the 15th Conference of

the European Chapter of the Association for Computational Linguistics, pp. 494–

504, 2017.

[36] S. Roy and D. Roth, “Mapping to declarative knowledge for word problem solving,”

TACL, vol. 6, pp. 159–172, 2018.

[37] L. Wang, D. Zhang, L. Gao, J. Song, L. Guo, and H. T. Shen, “MathDQN: Solving

arithmetic word problems via deep reinforcement learning,” in Proceedings of the

Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[38] P. Mehta, P. Mishra, V. Athavale, M. Shrivastava, and D. M. Sharma, “Deep neural

network based system for solving arithmetic word problems,” in Proceedings of the

IJCNLP 2017, pp. 65–68, 2017.

[39] Y. Wang, X. Liu, and S. Shi, “Deep neural solver for math word problems,” in Pro-

ceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-

cessing, pp. 845–854, 2017.

[40] W. Ling, D. Yogatama, C. Dyer, and P. Blunsom, “Program induction by rationale

generation: Learning to solve and explain algebraic word problems,” in Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics, ACL

2017, pp. 158–167, 2017.

[41] S. Shi, Y. Wang, C. Lin, X. Liu, and Y. Rui, “Automatically solving number word

problems by semantic parsing and reasoning,” in Proceedings of the 2015 Con-

ference on Empirical Methods in Natural Language Processing, EMNLP 2015,

pp. 1132–1142, 2015.

[42] R. Jia and P. Liang, “Adversarial examples for evaluating reading comprehension

systems,” in Proceedings of the 2017 Conference on Empirical Methods in Natural

Language Processing, pp. 2021–2031, 2017.

57

doi:10.6342/NTU202000671

[43] D. Kaushik and Z. C. Lipton, “How much reading does reading comprehension re-

quire? a critical investigation of popular benchmarks,” in Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pp. 5010–5015,

2018.

[44] M.-A. Rondeau and T. J. Hazen, “Systematic error analysis of the stanford ques-

tion answering dataset,” in Proceedings of the Workshop on Machine Reading for

Question Answering, pp. 12–20, 2018.

[45] M. Yatskar, “A qualitative comparison of coqa, squad 2.0 and quac,” in Proceedings

of the 2019 Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies, Volume 1 (Long and Short

Papers), pp. 2318–2323, 2019.

[46] Y. Nie, Y. Wang, and M. Bansal, “Analyzing compositionality-sensitivity of nli

models,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,

pp. 6867–6874, 2019.

[47] C. Sankar, S. Subramanian, C. Pal, S. Chandar, and Y. Bengio, “Do neural dialog

systems use the conversation history effectively? an empirical study,” in Proceed-

ings of the 57th Annual Meeting of the Association for Computational Linguistics,

(Florence, Italy), pp. 32–37, Association for Computational Linguistics, July 2019.

[48] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Bren-

del, “Imagenet-trained CNNs are biased towards texture; increasing shape bias im-

proves accuracy and robustness.,” in International Conference on Learning Repre-

sentations, 2019.

[49] W. Brendel and M. Bethge, “Approximating CNNs with bag-of-local-features mod-

els works surprisingly well on imagenet,” in International Conference on Learning

Representations, 2019.

58

doi:10.6342/NTU202000671

[50] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neu-

ral networks,” in Advances in Neural Information Processing Systems 27: Annual

Conference on Neural Information Processing Systems 2014, pp. 3104–3112, 2014.

[51] T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based

neural machine translation,” in Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pp. 1412–1421, 2015.

[52] A. Graves, G. Wayne, and I. Danihelka, “Neural turing machines,” arXiv preprint

arXiv:1410.5401, 2014.

[53] A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Ku-

mar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P.

Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R.

Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz,

“Sympy: symbolic computing in python,” PeerJ Computer Science, vol. 3, p. e103,

Jan. 2017.

[54] B. Robaidek, R. Koncel-Kedziorski, and H. Hajishirzi, “Data-driven methods for

solving algebra word problems,” CoRR, vol. abs/1804.10718, 2018.

[55] H.-Y. Huang, C. Zhu, Y. Shen, and W. Chen, “Fusionnet: Fusing via fully-aware

attention with application to machine comprehension,” in International Conference

on Learning Representations, 2018.

[56] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),

pp. 4171–4186, 2019.

59

	Acknowledgements
	摘要
	Abstract
	Introduction
	Motivation
	Problem Description
	Main Contributions
	Thesis Structure

	Background
	Recurrent Neural Models
	Recurrent Neural Network (RNN)
	Long-Short Term Memory (LSTM)
	Bi-Directional Long-Short Term Memory (BiLSTM)

	Transformer Model
	Learning Objectives
	Maximum Likelihood for Seq2Seq Learning
	Maximum Likelihood for Answer Span Selection

	Related Work
	Question Answering
	Arithmetic Reasoning
	Conversation Comprehension

	Math Word Problem Solving
	Encoder
	Decoder
	Decoding State Features
	Stack Action Selector
	Stack Actions
	Operand Selector
	Semantic Transformer

	Training
	Inference
	Experiments
	Settings
	Results
	Ablation Test

	Qualitative Analysis
	Constant Embedding Analysis
	Decoding Process Visualization
	Error Analysis
	Discussion

	Conversation Modeling
	Models
	FlowQA
	BERT
	SDNet

	How Well the Performance Reflects Content Comprehension?
	Experimental Settings
	Discussion

	Do Models Understand Conversation Content?
	Repeat Attack
	Predict without Previous Answer Text
	Predict without Previous Answer Position
	Implication of Above Experiments

	Dataset and Model Analysis
	Discussion

	Conclusion and Future Work
	Bibliography

