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THESIS ABSTRACT
GRADUATE INSTITUTE OF INFORMATION MANAGEMENT
NATIONAL TAIWAN UNIVERSITY

Student: Wang, Yi-Hsiang Month/Year: November, 2011
Advisor: Tsay, Yih-Kuen

Malware Analysis with 3-Valued Deterministic Finite Tree
Automata

There exist many security threats on the Internet, and the most notorious is malware.
Malware (malicious software) refers to programs that have malicious intention and per-
form some harmful actions. Typical malware includes viruses, worms, trojan horses, and
spyware. The first line of defense to deter malware is malware detector. Each malware
detector has its own analysis method. The most basic and prevalent methods used in
commercial malware detectors are based on syntactic signature matching. It is widely
recognized that this detection mechanism cannot cope with advanced malware. Advanced
malware uses program obfuscation to alter program structures and therefore can evade
the detection easily. However, thé seinantics of a malware instance is usually preserved
after obfuscation. So, it is feasible to develop a_malware detector that is based on pro-
gram semantics.

In this thesis, we propose a semantiés—&bi?eé approach to malware analysis. Observing
recently proposed methods for malwarj detﬁjtlon we notice-that string-based signatures
are still used widely. It is natural'to extend From string to tree, which is more general and
can carry more semantics. Therefore, we use tree§_as signatures. Our malware detector
requires a set of malware instances and a'set of Henign programs. The semantics of each
input program is extracted and represented as‘a system call dependence graph. The
graph is then transformed into a tree. With the-set of trees generated from malware and
benign programs, we use the method of grammatical inference to learn a 3-valued deter-
ministic finite tree automaton (3DFT). A 3DFT has three different final states: accept,
reject, and unknown. If we take this 3DFT as the malware detector, it outputs three
different values. If an input program is a malware instance, the detector outputs true. If
an input program is a benign program, the detector outputs false. Otherwise, it outputs
unknown. According to our experiments, our detector exhibits very low false positives.
However, there is a tradeoff that many programs are identified as unknown.

Keywords: Malware Analysis, Malware Detector, Grammatical Inference, 3-Valued
Automata, Program Semantics, System Call
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Chapter 1

Introduction

1.1 Background

Nowadays, many different services are provided on the Internet. As more trusts have
been put on the Internet, more attentions have been paid to Internet security. There
exist many security threats omn the Interhet, and the most notorious is malware. Gen-
erally speaking, malware; (maliciou$ software) refe:rrs'rto programs that have malicious
intention and perform some h:'armeI actions. Typical mél-ware includes viruses, worms,

trojan horses, bots, and spyware. ‘,‘ ..-- R

! J "I ]

As underground economy ﬂourlsh&e malware |has. become a profitable tool. Malware
can be used to launch zero- day attacks inject. bots,. send fishing web-sites, and crash
systems. What worse, malware is used widely tor steal private information. As observed
by Symantec in 2010 [21], an underground economy advertised $0.07 to $100 for each

stolen credit card number. Besides, they also observed that 10,000 bots are promoting

with $15. Bots are widely used for spam or distributed denial of service attacks (DDoS).

It is reasonable that the amount of malware samples have increased every year. As
showed in Figure 1.1, the number of new malware samples that AV-TEST collected [1] is
increased with amazing speed. In 2009, the amount of new malware samples is about 12

millions, however, in 2010, it is increased to 17 millions.

We mostly rely on malware detector to cope with malware. A malware detector ac-
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Figure 1.1: The amount of new malware samples collected by AV-TEST

cepts a suspicious program as input, and determine whether it is a malware instance or
a benign program. There are many detectlon approaches but the most widely used is

= =
syntactic signature matching.

A signature refers to a p;tf'ern th@.onlj:présent ina partlcular malware instance
or malware family. If a progfamunatches s:ﬁﬁ-ﬁeqn (signature), that program is regarded
as a malware instance. Strings are the m -corrl ronly used format for signatures. For
example, a sequence of machm.e inst ulctlons a sq ence -of magic numbers, and an reg-

ular expressions can be used as &gnatures o

Syntactic signature matching has the advantages that detection is efficient and is easy
to implement. However, syntactic signature can’t cope with advanced malware which
uses program obfuscation, encryption, and packing. Program obfuscation changes
the syntactic structure of a program while preserving its original semantics. Encryp-
tion changes the original entry point (OEP) of a program. Packing changes the format
of a program using lots of different skills. These techniques were initially designed to
prevent reverse engineering. A corporation use these skills to prevent their rivals imi-
tate their products. Unfortunately, malware writers also use these techniques to protect
malware. The most common program obfuscation techniques includes garbage codes in-

sertion, equivalent instruction substitution, and instruction reordering.



For example, Figure 1.2(a) is the original program. Figure 1.2(b) inserts jmp instruc-
tions and Figure 1.2(c) reorders instruction 3 and instruction 4. However, the semantics

for these three programs are identical.

jmp L1

L2 mov [edi], eax
1 push eax add edi, 1 1 push eax
2  mov eax, [esi] pop eax 2 mov eax, [esi]
3 add esi, 1 L1 push eax 4 mov [edi], eax
4 mov [edi], eax mov eax, [esi] 3 add esi, 1
5 add edi, 1 add esi, 1 5 add edi, 1
6 pop eax jmp L2 6 pop eax

(a) Original program  (b)iInstruction reordering 1. (c) Instruction reordering 2

Figurc £.2: Program obfﬁé’catign

Therefore, rather than using syntact‘fe "é_'@rat'me‘;: it is more effective to use semantics-
based signatures. Malware writers, us ally i(i;hamge thesyntactic structures to create new
malware variants. However, ‘these Vafrl nts” usuall;yt preserve the original semantics. If a
signature is semantics-based, it shoulél be able.to d'etect several different malware variants

as long as they have same program semantlcs.

1.2 Motivation and Objective

An ideal malware detector can identify malicious programs correctly. However, it is
a co-evolution between the malware writers and the malware detectors. Every time a
new malware sample is designed, malware detectors are improved to detect this malware
sample. Whenever this malware sample can be detected, more advanced malware will be
proposed to evade detection. A practical malware detector inevitably has false positives

and false negatives.



We would like to design a malware detector that identifies programs as malware,
benign program, or unknown. Only programs are identified as unknown need a double-
check. For the other two cases, programs are recognized as malware instances or benign
programs with great confidence. We design a malware detector like so because it is always
need a double check in reality. In a highly security-sensitive environment, more than one
malware detectors are used to cope with malware. The results from the former detectors
may need to re-precess in the latter detectors. If we can explicitly separate programs into

three groups: malware, benign, and unknown; only programs identified as unknown need

to re-process. Therefore, it is more efficient.

As showed in Figure 1.3, the outermost rectangle represents all possible programs.
Each circle is a benign program and each triangle is a malware instance. For the circles
in the left rectangle, they are correctly i'deptiﬁeq:as benign programs. For the triangles in
the right rectangle, they are correctly.identified aLs malWare instances. The remain circles
and triangles in the middle rectangle are identified as unknown and need a double check.
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Figure 1.3: A malware detector identifies programs as malware, benign, or unknown



Besides, we would like to use trees as semantics-based signatures. As mentioned
before, strings has been used for syntactic signature matching widely. We can still select
strings as semantics-based signatures, but strings as signatures are too specific and easy
to evade. Strings can represent sequential relation and the basic dependence relations.
However, trees can represent more subtle dependence relations, such as shared depen-

dence.

Some proposed detection approaches require a priori knowledge about malicious be-
haviors. They specify a set of behaviors as malicious or design benign policies and regard
programs as malware if any behaviors violate the policies. It is inefficient and error-prone.
We would like to learn the malicious behaviors using grammatical inference. Given
a set of malware samples and benign programs, we use grammatical inference to learn
signatures. Compared with training from‘the gi.'f/_en knowledge, our signatures can reflect

more implicit knowledge.

% i -t “
| [
s 4, |

1.3 Thesis Outline || o= ||

il | &

F

5T

The rest of this thesis'is Structuréidl as fol
T A 1 -
e In Chapter 2, we introduee Several related ,:litef:'éttures.

|’
Towss |
| I

e In Chapter 3, we give some preliminaries about this thesis, includes finite ordered
trees and finite tree automata.

e In Chapter 4, we describe our detection approach.

e In Chapter 5, we describe our implementation and show the results of our experi-

ments.

e In Chapter 6, we summarize our contributions and indicate some possible research

direction in the future.



Chapter 2

Related Work

In this chapter, we describe some related works about our research. At first, we
give the introduction about grammatical inference, and we specifically focused on tree
automata inference. Later, related works about malware analysis with executed system
calls will be introduced. And we will alsoweviewstwo related works that combine malware

analysis with tree automatas

2.1 Grammatical Inference’

i i-VEA_', ‘

" b b il L . .
Grammatical inference is concernqdwitﬁl-,ﬂ;arn'mg language representations from given
Lles and counter—examples or anything that can

information, which can be text, exa%n
provide us insight about the elementé of the target language[l?)] The learner sometimes
is called an inference machine, or a léarning algorlthm. The research on grammatical
inference cross a number of related fields, includes artificial intelligence, machine learn-
ing, formal language theory, pattern recognition, computational linguistics, and speech
recognition. This field has a variety of learning models, they all have different and dis-
criminative environment setting, from the target of learning, the language representation,
the available information or the information presentation. However, there are three major

established formal models:

e Gold’s identification in the limit,
e Angluin’s active learning model,

e Valiant’s probably approximately correct(PAC) model.



As that Angluin’s learning model has a tight link with other work, we will give a
brief introduction. The introduction about other two learning models can be referenced

n [12],[20], and [13].

In Angluin’s active learning model (also called query learning meodel), there is a
teacher which can answer specific kind of queries about the unknown grammar, and the
learner learns the target language by asking teacher this queries. Angluin has described
several types of queries in [5]. In [4], Angluin proposed the L* learning algorithm that
can learn a regular language from minimally adequate teacher. A minimally adequate
teacher (MAT) is assumed to answer correctly two types of queries from the learner about

the target language.

e Membership query: given a string ¢, returns ?yes” if ¢ is the member of the target

language, returns "no” etherwise; =~ E

e Equivalence query: givenr a hypothesis graghmar; if-the hypothesis is equivalent to
the target, returns ”ye:s’7 returhSP no” Otherwise In the case of returning "no”,
the counter-example will also be%e’&hﬂ’x ;’fhe counter-example is the symmetric

;}md {Lze taﬂget graminar.

difference of the input grammaT

’ E ! ‘l
The learner use the membershlp qlierles to.infer grammar structure. Every time the

learner inferred a structure, it asks. teacher equwalence queries to check equivalence. If
there is a counter-example returned, modifies the inferred structure with the help of mem-
bership queries and asks equivalence queries again. The process is repeatedly continuing
until the inferred structure is somehow identical to the target. The details about L*
learning algorithm is omitted here, as will be describe in latter section. The interactions

between the learn and teacher is depicted in Figure 2.1.

2.1.1 Tree Automata Inference

As mentioned in section 1.2, we would like to infer a tree automata from the example.
Here, we give an brief introduction about the related works. The main focus of research

in grammatical inference has been placed on learning regular grammars or deterministic

7



Membership Queries
Finite String
| 3
Yes / No
Minimally
Learner Adequate
Equivalence Queries Teacher
Finite Automata
L >
Yes / No, counter-example

Figure 2.1: The interactions hetween learner-and teacher in Angluin’s L* algorithm

finite automata (DFA). The reasonfor so is that'this problem seems simple enough as it
is less general than context-freé¢ gramuntarsy, For tfee automata, it can be seen as the direct

extension of finite automata that the mpﬁi isfinite trees instead of strings. Therefore,

it is straightforward to extend ﬁniteéautdiﬁd‘fa léarning algorithm inference to tree au-
| [ S L

|

tomata inference.

Brayer and Fu [9] proposed an tree automata inference algorithm that extend the orig-
inal k-tail inference method. Similar to"{9}, Fukuda and Kamata [16] use the k-follower
to infer the tree automaton. Both these algorithms infer the tree automaton from a given
sample set. Garcia and Oncina [17] extend the RPNI (Regular Positive and Negative In-
ference) algorithm to tree automata inference, obviously, the learning is completed with
given positive examples and negative examples. The idea is that they build the subtree
automaton at first (recognize each subtree of positive sample), and merge the automaton
state while not accept the negative sample. The algorithm works in polynomial time with

the size of the input data.

Drewes [14] extend Angluin’s L* learning algorithm to tree automaton inference. Just



like Angluin’s algorithm, they retain an observation table during the learning process and
use this table to construct the automaton. To extend observation table, they ask teacher
membership queries and equivalence queries. In [14], they proposed two different tree
automata learning algorithm, L/** and L%,,. The discriminative difference between this
two algorithms is that what L!/*® learned is a total finite tree automata, however, the
automata L}, learned is a partial finite tree automata, so has less transitions and states.
The idea behind the partial finite tree automata is that they removed the dead state from
the automaton. The term dead state means that the corresponding equivalence class of
states can not be any subtree of the target language. More detail about this learning

algorithm will be discussed in chapter 4.

Another algorithm that also extends.Angluin’s active learning model is [7]. In [7],
Besombes and Marion proposed the legfjning ﬂgorithm that learn the automata from
positive examples and membershﬁi quéries. Witlslout—.:ﬁhe help of equivalence queries, the
learner is initially provided w1th the rgpresentamve SampIes for compensate. Informally,
an representative sample is the set of lmiafageslsuch that each transition of the target

automaton will be used to process thre aﬂﬁg-— - ]B}{ checking the consistent of the obser-
vation table, they can get thé new d1'ﬂ rentiating| dfntext

l A



2.2 Malware Analysis with Executed System Calls

As mentioned in section 1.1, the new generation malware detectors focused on the
behavior of the program rather than the syntactic structure. There exists many kinds of
behavior models, one of the prevalence models is based on the executed system calls of
program. We know that in order to access the system resources, the user-level program
has to invoke system call. By tracking the executed system calls of malware, we can
realize the purpose of the program and the resources being request. However, if only
using the sequence of system calls as malware signature, it is easy to evade by system
call reordering skills. Some more informative representation that based on system calls

have been proposed, we give a brief introduction as follows.

2.2.1 Effective and Efficient- Malware Detection at the End Host

In [18], Kolbitsch et als proposed the malware defe’ction approach that is efficient to

implement at the end host. TFo'mhodel tﬂe;.behavfér of the'program, they rely on the exe-

cuted system calls. As mentioned above,j‘f ; wnwise to represent the program behavior
| -

‘ i |
as system call sequences. Instead, tﬁe? usg the dependence. graph of system calls, also

called behavior graph in the paper. k |
Ao |

11
i.

The behavior graph G = (V, ByE, §);-where
e 1/ is the set of vertices, each represents a system call s € ¥

o [istheset of edges, ECV xV

e [isthe set of functions | J f : x1, 22, ..., &, — y, where each x; is an output argument

of system call, and y is the input argument of system call

e ), which assigns a function f; to each system call input argument a;

For example, we list partial behavior graph for malware Netsky in Figure 2.2.

To detect the malware at the end host, the suspicious program must be dynamically

executed. The invoked system calls will be used to match the graph vertices from the

10



(GetModuIeFiIeNameA)

Name
NTCreateFile Mode : Open
FileHandle
. C:\WINDOWS Mode : Create
NTCreateSection \AVprotect9x.exe
|

SectionHandle

|

CNTMapViewofSection)

l FileHandle

(Read Buffer)
NTWritrFile

Figure 2.2: Partial behagior gr';ph for ‘;m’élware Nétsky, redraw from [18]

5 A |

NTCreateFile

* _" 1

collected malware behavior graphs. I%owev'e;i The| dependence between the graph vertices
ilgmﬁt:ant Qverhead to dynamically taint analysis

needs to preserved. And it generatefi
at the end host. Therefore, they usé the program shcmg skills. For the data flows be-
tween x and y in the malware, the 1nstmet10ns that are responsible for reading the input
and transforming it into output is extracted.  This program slice can be used to derive
the symbolic expression that represents the semantics of the slice. Using this symbolic
expression, when the system call x has been invoked at the end host, the expected output
can be pre-computed. Later, when the system call y has been invoked, checks whether
the value of the arguments is identical to the expected output. If the value is equal, the

dependence data flow has been detected.

To test the detection effectiveness and false positives, they set up the experiments with
six common malware family. By randomly selecting 100 samples for each malware family
and extract the behavior graph with 50 samples, the detection rate of their detector is

about 93% for the remain test samples. Despite the experiment is only focused on the six

11



known malware family, the detection rate is still impressive. For false positives, they test
five common benign applications and report no false positives. Although this result is
promising, but the exact amounts of test samples is not clear from the experiments, and
we cannot comment how well their detector is in goodware misclassified. But as their
method shows, the dependence graph of system calls has truly a tight relation with the

program semantic.

2.2.2 A Layered Architecture for Detecting Malicious Behav-
iors

Martignoni et al. [19] proposed a layered architecture for detecting malicious behav-
iors. However, the focus of this method is on botnet detection, and it is reasonable to
extend the method to malware detections. To capture the behavior of the malicious pro-
gram, the basis of their method jis the executeld' system calls. But the system calls are
used in a smarter way. For each malicious behavior;ithey-use a layered representation.
Each behavior is composed of eyents, and E_\;ents is generatéd from observed system calls.
For example, Figure 2.3 shows an examplé—%fthe hierarchy of events used to specify the

high-level behavior: downloading a}lﬁ exg:_C,uting a program.

Layer 4 download_exec
-
/
Layer 3 tcp_client
N
-~ A

Layer 2 sync_tcp_client  async_tcp_client create_proc\ \
N AN\ |
Layer 1 net_recv \
AN ]
¥ Y R\ N b Y

Layer O recv  recv_from tep_sock bind connect create_file write_file

Figure 2.3: Layered behavior specification, redraw from [19]

High-level behaviors are decomposed into multiple layers. Events are represented as
bold strings, the edges related the events indicate the dependence relation. The lowest

layer, Layer 0, is the invoked system calls. The events in Layer 1 aggregate Layer 0 events
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that have a common side effect. In Figure 2.3, event net_recv is generated whenever
any of the Layer 0 events recv or recvfrom occur. Events at Layer 2 and upper layer
identify correlated sequences of lower-layer events that have some aggregate, composite
effect. In Figure 2.3, event sync_tcp_client identifies a synchronous TCP socket has
been created, bound, and connected upon. As we can see, the events at upper layers
have a more rich semantics. By decomposing the high-level behavior into multiple layers,

the behavior specifications are configurable, less error-prone and easy to update.

~ e e e e e o = =

Analyzed Programs

booooe o -":"-1
 Qemu Emulator_ |
N il

N e e e e o = "

Figure 2.4: The architecture of the detector, redraw from [19]

The overall architecture of the detector is presented in Figure 2.4, it includes analysis
environment and a set of behavior specifications and a behavior matcher. It works as

follows:

1. The suspicious program is dynamically executed in the emulator, and each invoked

system call will send to behavior matcher.

2. Every time the matcher receives an invoked system call, it attempts to match this

with the node of the behavior specification.

13



For each behavior specification, it is composed as the layered architecture in Figure
2.3. It is a graph structure, each node can be the system call or an event. There is
a single output node in each graph. If overall nodes except the output node of the
graph have been matched, then the output event will be generated. This event can

also used to compose other behavior specification.

3. If the high-level behavior specification has been matched, then the malicious be-

havior has been observed.

In their implementation, the sets of behavior specification are manually extracted with
domain knowledge and analysis of tens of gigabytes of executions traces. Although it is
inefficient to construct the behavior specifications, to modify or update the specification

is simple. And the extracted behay%%g[,gﬁggﬁgﬁggqns also provide the detector a good

. . e Y
behavioral signature. i 4 ol
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2.3 Malware Analysis with Tree Automata

Below, we review the works that implement malware detection with the help of tree
automata. In addition to give a brief introduction of the methods, we also comment their

advantages and drawbacks.

2.3.1 Architecture of a Morphological Malware Detector

In [8], Bonfante et al. proposed a malware detector that makes use of tree automata.
To capture program semantics, the detector relies on the extracted control flow graph
(CFQG). The input program is transformed to the abstracted language first, and the corre-
sponding CFG is extracted. The vertices of the extracted CFG includes inst, sequential
instructions; jmp, uncondition jumps; jec, conditional jumps; call, function calls; and
end, function returns or undefined instrﬁCtioné’.'Besidgs, in order to deal with the clas-
sical obfuscation skills, they also design an rewritin:g:engine that reduces the extracted
CFG. After this steps, the reduced CFG of a malware can'be regarded as a signature. To
build the signature database, collect the m}_of QFG of malware and transform its into
tree representation. Using the finite Eeit of ltrees, ia minimal tree automata which recog-

nizes these trees can be build. And thhs autorﬁata ¢an be used to detect malware infection.
i |

! ¥

The overall architecture of the ;iete'c:tor is dépicted in Figure 2.5. For the malware
samples, extract their control flow graph and reduced with rewriting engine. The reduced
graph is then transformed into tree. The set of trees is then used to construct the tree
automata, and after minimizing the tree automata, it will be used as the malware de-
tector. For malware detection, the suspicious program is proceed with graph extraction,
graph rewriting, and transform from graph to tree. The final output tree is used for
malware detection. If the output tree of the program is accepted by the tree automaton,

this program is identified as malware, otherwise, regard this program as benign program.

The detector Bonfante et al. proposed can be constructed automatically. Besides, the

properties of tree automata give their tool an efficient performance to detect malware.
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Malware Samples

Suspicious Program

[ CFG Extraction ] \ll
v

Graph Rewriting ]

3

Figure 2.5: The architecture of a morphological malware detector, redraw from [§]
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However, that detection can only handles the basic malware such has same CFG as the
malware signature. To detect a more general malware infection, the detection have to
based on CFG subgraph isomorphism, and it increases the complexity of detection. When
there is a demand to add new malware signature, the work can be done by computing
the union of automata, and can be computed in linear time. However, the method of
automata construction do not mentioned in [8]. So we cannot realized the capability of
their tree automata and the effects of automata union. And the experiments they make
only mentioned the false positives but neglect the false negatives. Although the false
positives(0.09% when lower bound of CFG size is 15) of their detector is really amazing,
it’s still not clear how effective and efficient of their malware detector. But the conclusion
can be made from their experiments that it is worthwhile to combine tree automata with

malware analysis.

2.3.2 Malware Analysiswith Tree Aﬁfomata Inference

Similar to [8], Babic et al. [6] propﬂsqd.the i(nalware analys&s method with tree au-

algorithm. i | *[
= |

: ‘r 1

4 !

For each malware, they use dy'riémiq taint anz_adlys-i:s to construct the data flow depen-

tomata inference. However, the majon Tnﬂ"ﬁ‘rﬁ' ion of their workis the automata inference

dence graph of system calls. As meonr i sectiof 2.2, the executed system call reflects
the accessed system resources of malware. And it has been used in the community for
a while. Besides, by focusing on the data flow dependence, the graph can resist some
common obfuscation skills. After build the graphs, in order to avoid the exponential

blowup when expanding into trees, they learn the tree automata directly from the graph.

In [6], they only use the set of positive samples (malware) to learn the automata.
Instead of learning the automata from regular tree languages, they learned from the sub-
class of regular tree languages, the k-testable tree languages. These languages are defined
as a finite set of k-level-deep tree patterns. And this kinds of regular languages can be

identified from positive samples only. The value k is a tunable factor, it influences the
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level of generalization. The smaller the k factor, the more abstract the inferred automa-
ton. Therefore, by adjusting factor k, the detector can get balance between false positives
and false negatives. There already exists some proposed methods for k-testable tree au-
tomata inference. But the algorithm Babic et al. designed has better performance, with

complexity O(kN), where N is the size of the graphs.

As their experiments showed, when k = 4, their detector has 20% false negatives and
5% false positives. And increasing the value of k above 4 does not make a significant
improvement of detection rates. Therefore, they determined that k = 4 is the optimal
abstraction level. Besides, they also test the classification ability of their detector. The
experiment results can only support that the tool has some kind of classification ability
but the noise still exists. Unfortunately, the process of extracting system call dependence
graph spends lots of time and makes thisf_detecjﬁfgr not sufficient to implement at ad hoc.
However, it merely costs few secotids td learn thé autg?fnata, and takes less than the tim-
ing jitter to analyze the prog?am. If'the front g‘ng_} of the"é_létector can be improved, this

detector will has more implementation .fvaiue. .'I,f_“l '.
= l

-
s

R |
= ||
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Chapter 3

Preliminaries

In this chapter, we give a formal definition about finite ordered trees and finite tree

automadta.

3.1 Finite Ordered Trees

First, we define the term ranked alphabet. A mnkéd,dlphabet . is a finite set of symbols
together with a function rank: 3 — N 0. For each Symbol a € ¥, rank(a) is the rank
(arity) of a. We denote by 3, n > 0 ’ﬁh‘e set \of all symbols a with rank(a) = n. A
finite ordered tree (abbreviated as tre?:J in ﬁ;}zrfollowmg) t over a ranked alphabet X is a

partial mapping ¢ : N* — 3 that S&tl? es the follqwmg condltlons

e i I
e dom(t) is a finite, prefix-closed subset of N*,

o for each p € dom(t), if ¢(p) € Dy then { i pi € dom(t) } = {1,...,n}

We call each sequence p € dom(t) a node of t, and use € to denote an empty sequence.
A root node of the tree t is the node which dom(t) = € . A frontier node of the tree ¢ is
the node p such that Vj € N, pj ¢ dom(t). We denote by T'(X) the set of all such trees
over the ranked alphabet .

For example, in Figure 3.1, we depict a tree t in the left side and its domain in
the right side. For the tree t, ¥y = {a,b}, X2 = {f, ¢}, and X3 = {h}. A root node
of the tree t is the node €. And the frontier nodes of the tree t is the set of nodes
11,12,21,221, 222,231, 232.

19



& 1 9
PN /[\ o~
b
A 11 12
PN PN
7y 21 922 23

Figure 3.1: A finite ordered tree ¢t and its domain.

3.2 Finite Tree Automata

A finite tree automaton (FTA) is a tuple A = (X, Q, A, F') where:

@ is a finite set of states,

e [ C ( is a finite set of final states,

Y is a ranked alphabet, " _—

() JE:E-?I ‘
s | |
A is a set of transition rules WiFl] following formats:

| =
1
fla,q2, - qn) = q, where lq .+ BB G.C_Q, JE %

2 I |

ol W : ,
I .

A finite tree automaton is determin%stic if there do not exists two transition rules with

the same left-hand side, which is denofed by DFT. Given a tree t, we use the transition
rules of FTA to traverse the tree ¢ from the bottom to top. We can notice that a FTA
does not have an initial state, but the transition rule is as the form f() — ¢ when f € %,

and this kind of rules can be regarded as the initial rules.

We give a more formal definition, a run 7 of a finite tree automaton A over a tree t is
a mapping from dom(t) to Q. It starts from the leaves rules, a( ) — ¢, where a € 3. A
run 7 assigns every node p € dom(t) a state with following rules: if f(q1,...,qn) = ¢ € A
and t(p) = f, m(pi) = ¢q; for each i € {1,...,n}, then 7(p) = q. We say a run 7 of 4 on
tree ¢ is successful if m(e) N F # (). A tree t is accepted by A if there is a successful run

of Aon t. A tree language L(.A) recognized by A is the set of trees accepted by A. Two
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FTAs are said to be equivalent if they recognize the same tree language.

Let us look at an example. Let 3 = {0, 1, not, and, or}, with ¥y = {0,1}, 31 = {not},
and ¥y = {and,or}. Consider a DFT A = (X,Q, A, F) where Q = {qo, 1}, F' = {q1},

and A contains the following rules.

0 — qo 1 = ¢

not(q) — ¢ not(q1) — qo
and(qo, @) — q and(q,q1) — Qo
and(qi,q0) — q and(q,q1) — @
or(g, ) — ¢  or(g,q)) — ¢
or(q, ) — @ or(q,q1) — @

For a given tree ¢ in Figure 3.2 , therun ﬁf-uggf}A over tree t is also presented in Fig-

f
ure 3.2. Because this automatoa,\;s a déftgrmlnlgﬁp ﬁmfﬁ:}ree automaton, it only has one

g
possible run on ¢ . Since W&&} N ﬁf% ¢

'i'irl

not accepted by A. £ %

Figure 3.2: A finite ordered tree t and a run 7 of A over tree t.
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Chapter 4

Approach

In this chapter, we present our malware detection approach. As mentioned in Sec-
tion 1.2, our detector uses semantics-based signatures. We assume that program seman-
tics is captured by system call data-flow dependence graphs. Because we want to
use trees as signatures, we unfold dependence graphs to trees. We use a finite tree
automaton to represent correlated 51gnatures and take this automaton as a malware

detector.

".'.ﬂ— :'_f,

Our tree automaton is a 3-valued tree auﬁ’rﬁa‘pon whieh has three disjoint final states:

accept, reject, and unknown.~If we take a 3 'aélued t[ree automaton as a malware detector
1

and give it a suspicious program’-as 3|nE input, thelgeg are three possible outcomes:
e An accept implies that the ini)ut program is a malware instance.
e A reject implies that the input program is a benign program.

e An unknown means no conclusive answer.

Therefore, our detector works as in Figure 4.1. Every circles and triangles is an input
program. For the circles inside the left circle, they are rejected by our tree automaton.
For the triangles inside the right circle, they are accepted by our tree automaton. For

the remaining circles and triangles, they are unknown for our tree automaton.
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Our detector is trained with positiy g ge'g"& ive examples. The positive
r- [y ‘ g, {? _h y
examples are the set of malware 1 I s %‘gt“l\% $ﬁmples are the set of benign

esent each input program’s se-

algorithm, we can learn a 3-valued finite tree automaton. We take this automaton as our

malware detector.

To test a suspicious program, follow the similar steps and use the 3-valued tree au-
tomaton to test the generated tree. The overall architecture is depicted in Figure 4.2.
The dash line separates the architecture into detector construction and suspicious pro-

gram testing.
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4.2 3-Valued Deterministic Finite:Tree Automata

| T |
We have mentioned that our treelaiut(‘)ﬁ?c"o'n i a 3valued free automaton. Chen et

1 p—

al. [10] have proposed the notion of fin te s_ii.laie allllt‘pmata with three disjoint final states.
We extend their definition to ﬁi’iite trEee automaﬁpu!. A ‘3=Valued deterministic finite

tree automaton (3DFT) is a tu'p‘l'e; A= (2 A, A:ccept, Reject, Unknown) where:

e Y is a ranked alphabet,

( is a finite set of states,

Accept C () is a finite set of states, disjoint with Reject and Unknown,

Reject C @ is a finite set of states, disjoint with Accept and Unknown,

Unknown = Q — (Accept|J Reject),

A is a set of transition rules of the following form:

f(QI7Q27"'7qn) — q, where QIu"'7qn7q€Q7 fezn
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The definition of a run over 3DFT is similar to that in finite tree automata. We say
that a tree ¢ is accepted by a 3DFT A if there is a run 7 such that 7(e) N Accept # (). A
tree t is rejected by a 3DFT A if there is a run 7 such that w(€) N Reject # 0. If a tree ¢

is neither accepted by A nor rejected by A, we say t is unknown for a 3DFT A.

4.3 Semantics Extraction

As we know, programs have to invoke system calls to acquire system resources. We
can discover the intension of a malware instance by observing executed system calls. Be-
sides, the dependence relation between system calls is also important. It is easy to reorder
system calls that have no dependence relations. However, reordering system calls that
have dependence relations always change the program semantics. Therefore, if we only
record the executed system calls but not the dep‘endence relations, this kind of signature

is easy to evade.

We represent a system call data—ﬂpw ' E depce graph as a behavior graph. A
behavior graph is a directed acyclie gfr ph (ﬁt V E)

| l

|

e V is a sets of vertices, where ezjcp vertex is ?gsystem call s € S.

e A directed edge < vy, vy > from v-€ V to U2 € V represents a dependence relation

that the input arguments of v, are seomehow dependent on the outputs of vy.

For example, Figure 4.3 is a behavior graph example for malware Allaple.b which is
redrawn from [18]. The directed edge from NtOpenFile to NtCreateSection means that
an input argument of NtCreateSection depends on the output of NtOpenFile. In this ex-
ample, the dependence relation between NtOpenFile and NtCreateSection is the shared
file handle.
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' NtOpenFile '

( NtCreateSection )

( NtCreateProcessEx ) ( NtQuerySection ) (GetModuIeFiIeName)

( NtQuerylnformationProcess \
NtCreateThread )

( NtResumeThread )

Figure 4.3: +A behavior graph
4.4 Graph Parser

For a given behavior graph G, we extfsa?ct all dependeﬁéé relations and output a tree
t¢. For each directed edge < vipws > We%%&té a tree t<,, 4,~ With root v; which has a
child vy. All of the trees generated v&ziJFh tk'leigbOYe formalism from a behavior graph G
form a set of trees T¢. For éach ‘@i(v}f) _-E TG merge withv;(vy) € T, where v; # vy and

form a new tree v;(v;, vy).

We got two different trees that are generated from a single behavior graph. For the
first type of tree, we call it a one-leveled dependence tree. We create a single tree
t¢ from a behavior graph G with an artificial root Root. Each tree in T is the child of
Root. Because the maximal height of T is 2, a one-leveled dependence tree has height at
most 3. It is called a one-level dependence tree because it captures the direct dependence
from the graph, which is a one-level depth. We show a one-leveled dependence tree in

Figure 4.4 which is parsed from the behavior graph in Figure 4.3.

For the second type of tree, we call it a two-leveled dependence tree. We ex-

pand the trees in T¢ with one level deeper depth. For each v;(v;) € T, merge with
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ROOT

GetModuleFileName NtQuerySection
NtCreateThread NtCreateProcessEx NtCreateThread

NtOpenfFil ( NtQuerylnformationProcess )
NtCreateSection tOpenFile

' NtCreateThread '
NtCreateThread NtCreateThread
NtCreateSection

NtCreateProcessEx ( NtResumeThread )
NtQuerySection

( NtQueryInformationProcess )

Figure 4.4: An one-leveled dependence tree

v;i(v) € T¢ and form a new tree 9;(v;(vk)). We.create.a single tree t¢ from a behavior
graph G with an artificial root” Reéot. Each tree' .in T'%4s the child of Root. Because the
maximal height of T¢ is 3, a two-leveled dependencetree-has height at most 4.
We show a two-leveled dependence tree- mﬁlf_‘ igi_;re 1o Whi(”;}i is parsed from the behavior
graph in Figure 4.3. | f";‘:' ‘. |
A |
Observe that each child of .the ro¢tj-of tq repré%sé_ents a-dependence relation, and there
does not exist an ordered relation'b:etweren the childfen. To tackle the problem that an
identical dependence relation in a behavior graphmay generate different trees, we give

each tree an ordered relation. Each vertex in a behavior graph is a system call, which is

a string. We can sort a set of trees with the following rules:

1. Compare two different trees from the root node to the frontier nodes.

2. Nodes are sorted according to their corresponding system call’s dictionary orders.

Trees in Figure 4.4 and 4.5 are sorted according to the above rules.
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NtQuerySection

GetModuleFileName NtCreateThread

NtCreateThread NtResumeThread

NtCreateProcessEx ( NtQueryInformationProcess )
NtResumeThread
NtCreateThread

NtCreateThread -
NtCreateThread
NtResumeThread (NtQueryInformationProcess) ( NtOpenFile )

' NtResumeThread '
NtCreateProcessEx
NtQuerySection
NtCreateThread

NtResumeThread

NtCreateThread

NtCreateThread ( NtQuerylnformationProcess ) ( NtCreateThread )

Figure 4.5: Altwo-leveled 'dependence tree

4.5 Automata Learning.t-,Algorithm'

We have mentioned in Section 2:1.1 ‘that"prewes proposed. two different tree automata
learning algorithms. Because L’}m is the main algorithm of our learning algorithm, we

will take a deeper view.

4.5.1 Learning Algorithm of Drewes

For a set of trees T', let (T") denote the set of all trees of the form f(t1, ..., %), where
f € Xk, and ty,...t; € T. Recall that T'(X) denotes the set of all trees over the ranked
alphabet ¥. Let O ¢ ¥ be a special symbol with rank 0, and let C'(X) be the set of all
trees in T'(XU{DO}) with exactly one occurrence of O, which we call contezts over . The
concatenation c -t with ¢ € C(X) and ¢t € T(X) U C(X) is the tree obtained from ¢ by

replacing O with ¢.

Similar to Angluin’s L* algorithm, they use an observation table €2 to construct a tree
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automaton. The observation table 2 can be separated into two parts: the upper table
Qp and the lower table ;. The rows of )y are indexed by the trees in S, S C T'(X).
The rows of €, are indexed by the trees in T', T' C ¥(S). The columns of €2 are indexed
by contexts from a finite set C' C C(X). We use Memy : T(X) — B to represent the
membership relation of the tree ¢ in the tree language L. If t € L, Memy(t) = True,
otherwise, Memp(t) = False. The cell in the place of row ¢ and column ¢ in the obser-
vation table is filled with Memy(c - t), which represents the membership relation of the
tree ¢ - t in the tree language L. We use (t) to denote the row of ¢ in €2, and extend to

the finite tree set 7" such that (T') = {(t) | t € T'}.

The idea behind Angluin’s L* algorithm is to construct an automaton by exploiting the
Myhill-Nerode congruence of the target language. The Myhill-Nerode congruence = on
T(X) is defined as follows: ¢ =p # iff forall ¢ € q_(Z), Memy(c-t) = Memyg(c-t'). We say
tree t and ¢ are equivalent with réspeatito C iff fopallic'c € Memy(c-t) = Memy(c-t).

—
T,

1. Qs closed, that is {t) € (S)yfor everyt € T
10 | i

To construct the finite tree automat'tm;;rdﬁ "ﬁf'c’rrh Q, two properties have to hold:
r— B i

T

1 J
2. Q is consistent. Let X(8) :! () &N EM&' W {@}), the observation table Q is
|

consistent if {c-s) = {e«s )i for allfe € VE(S)and.all s,s" € S with (s) = (s'). If
(c-s) # (c-s'), then s and s axc not Squivalent with respect to Y5(S). And there

exists an separating context ¢ that witnesses this inequivalence.

After assuring that € is both closed and consistent, we can construct Ag = (X, Q, A, F)

as follows:
e The set of states @ is (S)
o (s)eFifselL

e Forevery treet = f(sy1,..., k) € X(9), the corresponding transition ruleis f((s1), ..., (sx)) —
(t).
Now, let us describe the L}, learning algorithm. As an extension of Angluin’s L*, the

learning algorithm asks teacher membership queries and equivalence queries. At first, the
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observation table is started with S = () and C' = {O}. Then, it constructs an automaton
from the observation table and performs an equivalence query. If there is a returned
counter-example, update the observation table. Repeat this process until no counter-

example is returned. The pseudo code of the algorithm is presented in Algorithm 4.1.

Algorithm 4.1 L},

Input: Q = {S,T,C}, Teacher.
Output: Agq.

1: loop

2 construct Agq;

3 t := EquivalenceQuery(Ag);
4 if ¢ = yes then
5: return Ag;
6 else

7 update(€,t);
8 end if

9: end loop

When updating the observatlon table{é_lgqutfﬂwm 4.2) decompose the returned counter-
example t from the bottom to tep a gef"éﬁbtree t ghat isnot in S, where t = ¢ - ¢’
for ¢ € C. If ¢ is also not~in T, ladd tnfo Q;L and assure that € is closed. Oth-
erwise, find the equivalenee trée %e | 1E(1 Qe and Flrbplace 1 ‘with ¢, to get a new tree
thew = C - te. If Memp(t) = M eML(tnew), decgmﬁzdse tnew With above process again.
Else, Memp(t) # Memp(tyew), and Wé find a éeparating context ¢. Add the context
¢ to observation table and assure that the table is closed. The algorithm of updating
the observation table is in Algorithm 4.2. The function close in Algorithm 4.2 checks
whether (t) € (5), for every t € T. If there is a tree t € T" which (t) ¢ (S), move ¢ from

T to S.

This algorithm has several interesting properties. For every tree ¢t € T, there is exactly
one tree s € S such that (s) = (t). In other words, there is no redundant information
being record. Therefore, there is no need to check table consistent. Besides, it can be
assured that the amount of contexts is no more than the states in . The L}, algo-

rithm outputs a finite tree automaton A = (3,Q, A, F) with O(r - |Q| - |A] - (|Q| + m)),
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Algorithm 4.2 update
Input: Q = {S,T,C}, Counter-example ¢.

Output: Q.
1: loop
2 decompose t into t = ¢t , where t' € £(S) \ S;
3 if { €T then
4 let s be the unique tree in S with (s) = (t');
5: if membershipQuery(c - s) = membershipQuery(t) then
6 t:=c-s;
7 else
8 C:=CU{c};
9: return close(2);

10: end if

11: else

12: T:=TU{t};

13: return close();

14: end if

15: end loop

where m is the maximum size of’counter-examples :r'éturnred from the teacher, and r is
the maximum rank of symbols' in . /The alggtithm reéquires |Q| + |A| + 1 equivalence

queries, and m + Q| - (JA| + 1) membérégiduéries. As mentioned in [14] , the major
| | == |
disadvantage of L%, is the numben o? Tquiy@]@ncq gueries. ’

|
i |
|

1 1
11
i F

4.5.2 Tree Automata L‘eérning Algo;i:fhm

Now, we show how we can learn a 3SDFT by adapting Drewes’s L},, algorithm. What
we have are a set of positive examples (malware) and a set of negative examples (benign
programs). In order to use Drewes’s learning algorithm, we need a teacher to answer
membership queries and equivalence queries. Therefore, we simulate the teacher with the
given positive and negative examples. The positive examples and negative examples are

trees rather than behavior graphs.
For membership queries, we check whether a given tree t belongs to positive exam-

ples or negative examples. The term belong indicates that we check whether a tree is in

the set of positive examples or negative examples. If a tree ¢ is in the positive exam-
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ples, returns true. If a tree ¢ is in the negative examples, returns false. If a tree ¢ is in

both the positive examples and negative examples or in neither of them, return unknown.

For the last case of membership queries, there is a possibility that the positive ex-
amples and negative examples have the common members. That is the case where the
malware sample is conscious of being analyzed and is pretending as a benign program.

Then, the generated behavior graph will be identical to the benign programs.

For equivalence queries, we check that whether the samples in the positive examples
are accepted and the samples in the negative examples are rejected. For the case that
a tree t is both in the positive examples and negative examples, tree t is identified as
unknown. If there is a sample that Vloilagﬁs f’h ?s rule, it will be returned as a counter-
example. We proceed from the geéitllza sfamplggho néggfmve samples.

e W,
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Chapter 5

Implementation and Experiments

5.1 Implementation

We implemented a prototype TALA (Tree Automata Learning Algorithm) based on
the 3DFT learning algorithm and we take it as‘our malware detector. TALA is written

in C++, and it currently provides following functionalities.

e 3DFT learning algorithin,

e Parsing from a graph to a tree. i : 4
:-?!'
e Tree-language membership testinlg '1

L

Inside TALA, we adapt the hbrary libSETA [3 [ . LibSFTA is a symbolically encoded
finite tree automata library and stpports. basic automata operations. The term symboli-
cally encoded means that they use a multi-terminal binary decision diagrams(MTBDD)
to represent transition functions of tree automata. The alphabets of transition functions

are encoded into boolean variables. More implementation details can be referred in [3].

5.2 Experiments

To test the capability of our malware detector, we have performed several different
experiments. Our detector requires a set of malware instances and a set of benign pro-
grams. For input data, we use the data that are publicly available on Babic’s website [2].
They are provided as the system call data-flow dependence graph, which are generated by
using the tool designed by Daniel Reynaud and the tracing library libwst. The provided
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graphs are generated from 2632 malware instances and 35 benign programs. We directly

use their data as our behavior graph in the experiments.

The set of positive examples (malware samples) are pre-classified into 48 different mal-
ware families. As mentioned in [6], the methods they used for classification are based on
the work of Christodorescu et al. [11] and Fredrikson et al. [15]. We list the complete 48

malware families and the number of samples included in each malware family in Table 5.1.

Table 5.1: 48 malware families and the amount of contained samples

Malware Family Samples || Malware Family Samples
ABU,Banload 16 Hupigon, AWQ 219
Agent,Agent 42 IRCBot,Sdbot 66
Agent,Small 15 LdPinch,LDPinch 16
Allaple,RAHack 201 LmirLegMir 23
Ardamax,Ardamax 25 Mydeom;Mydoom 15
Bactera,VB 28 7 \ N‘ilage,Lineag'é' 24
Banbra,Banker 52“ ;:# : :;}lineGames,Delf 11
Bancos,Banker 1 F If]f 'f‘.()-hﬂiineGames,LegMir 76
Banker,Banker Il :r::OnLjﬁeGames;Mmorpg 19
Banker,Delf ' :LO OnLiﬁ_eGamés,OnlineGames 23
Banload, Banker 3380| Paritc Peite 71
BDH,Small 5 ||«PlémoodsPupil 32
BGM,Delf 17 PolyCrypt,Swizzor 43
Bifrose, CEP 35 Prorat, AVW 40
Bobax,Bobic 15 Rbot,Sdbot 302
DKI,Poisonlvy 15 SdBot,Sdbot 75
DNSChanger, DNSChanger 22 Small,Downloader 29
Downloader,Agent 13 Stration, Warezov 19
Downloader,Delf 22 Swizzor,Obfuscated 27
Downloader,VB 17 Viking, HLLP 32
Gaobot,Agobot 20 Virut,Virut 115
Gobot,Gbot 58 VS, INService 17
Horst,CMQ 48 Zhelatin,ASH 53
Hupigon,ARR 33 Zlob,Puper 64
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Table 5.2:

The set of negative examples (benign programs) includes 35 different samples of fre-

quently used applications. The complete lists are list in Table 5.2.

The list of benign programs

Adobe_Reader
Battle_for_Wesnoth
Copy_to_system_folder
Freeciv

Google_Earth

iTunes

Netcat_port_listen

Apple_Software_Update
Chrome

Firefox

Freeciv_server
Hello_world
Minesweeper

Netcat_port_scan

Autoruns
Chrome_Setup
Freecell

GIMP
Internet_Explorer
MSN_Messenger
NetHack

Notepad OpenOffice_Writer Outlook_Express
ping Selfiextracting.archive | Skype
Solitaire Syster;r'l,infq{r_nation Task_Manager
Tux_Racer 1+-uTorrent VLC
Windows_Media Player |[#WordPad

I f‘:: . "ﬁ' \

i
We have tested the detection ablill y a Cla§8ﬂﬁcat10n ablhty of our detector. The

procedure of testing detection ablhtyll depl'tted as follows

1. The samples in each malware farmly are Separated into two disjoint sets, one for

learning and one for testing.
2. The benign programs are also separated into learning sets and testing sets.
3. We parse each sample into a tree.
4. We use the learning samples to learn a 3DFT for each malware family.
5. We use the testing samples to test detection ability.

As mentioned in section 4.4, we extracted the dependence from the behavior graph
and build a tree for a graph. In our experiments, we have parsed two types of trees from
a graph. The first type of tree has height at most 3, and is defined in section 4.4 as one-
leveled dependence tree. The second type of tree has height at most 4, and is defined in
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section 4.4 as two-leveled dependence tree. For each type of dependence tree, we executed
4 experiments with different combinations of learning samples and testing samples. The
ratio of the number of samples in the learning set and testing set are presented in Table

0.4.

Table 5.3: Experiments for testing detection ability

Positive Examples | Negative Examples

Learning | Testing | Learning | Testing
Experiments 1 80% 20% 100% 0%
Experiments 2 80% 20% 80% 20%
Experiments 3 50% 50% 100% 0%
Experiments 4 50% 50% 50% 50%

."Il':;- ) = = e
o ol -l
The procedure of testing d@ﬁqé’ption abilit iéd‘epicﬁéﬁi&as follows.
,.'n,;: r .-"'I{-i- s -
Banker that are generated from
"'..‘—:j Tee

Ji= J
1. We use the automaé_ﬁavhg,
h‘]:'l_-'."

the above experiments. |

=

é_',";l.n ot
e

2. Taking the sample

2
NEARE D
Table 5.4: Experiﬂle;_t’p_s‘_;f;(l)ﬁ pg@_c}gg_cl%siﬁcation ability

Positive Examples | Negative Examples

Learning | Testing | Learning | Testing
Experiments 5 80% 20% 100% 0%
Experiments 6 50% 50% 100% 0%
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5.2.1 Experimental Results

We describe the results that are experimented with one-leveled dependence trees at

first.

For Experiment 1, all test samples are identified as accept or unknown, no one is
identified as reject. In Figure 5.1, we showed the accepting rates for testing samples
in each malware family. Since some malware family have test samples less than 10, it
is meaningless to discuss their accepting rates, therefore, the first 10 malware families
which have most samples are labeled with different format in Figure 5.1. We can see that
although the accepting rates are not good enough, but they are on average more than
50%.

el
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Figure 5.1: Experiment 1 results with one-leveled dependence tree

For Experiment 2, we take 20% of positive examples and 20% of negative examples
as the test samples. The accepting rates for positive test samples are identical to Exper-

iment 1. And all test samples in the negative set are identified as unknown.

Notice that the samples in the negative test set are all identified as unknown, the
possible reason is that the samples in the negative set have great difference with each

other, and they cannot be identified by the detector. Besides, the accepting rates in the
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positive test sample are identical to Experiment 1, which reflects that the accepting rates

are more relied on the input positive examples rather than negative examples.

In Experiment 3, 50% of positive examples are used as test samples. The results are
showed in Figure 5.2. We can observe that the accepting rates are similar but less than
Experiment 1. It is quiet straightforward since learning with less examples will let the

detector identified less behaviors and identified more programs as unknown.

For Experiment 4, 50% of positive examples and 50% of negative examples are used
as the test samples. The accepting rates for positive test samples are identical to Exper-

iment 3. And the accepting rates for all negative test samples are identified as unknown.

" '—:-1:-""__ M
As we can see, in this expegi@gﬁ%ﬁts,,z-‘a}!l tesﬂ%ﬁnfpfés-in negative set are identified as
o, e P

_'|'| - &
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bk@: ‘safhples in the negative sets are

o
quiet different with each e_a.iihép’_{
| ' |
o |

Accepting Rates
pting Height =3

100.0%

90.0%

80.0%

70.0%
60.0%

50.0%

40.0%
30.0%

20.0%

10.0%

T [T [T )
T T [ O T

T T OO T

T

T T OTOTI T

TITTTIITIIIT

[

T

0.0%

Horst,CMQ,

Hupigon,ARR,
Hupigon,AWQ,

Lmir,LegMir,
Mydoom,Mydoo...

Rbot,Sdbot,

SdBot,Sdbot,

Small,Downloader,

Stration,Warezov,
Zlob,Puper,

Parite,Pate,
Plemood,Pupil,

PolyCrypt,Swizzor,
Prorat,AVW,

Agent,Small,
Allaple,RAHack,
Ardamax,Ardam...
Bactera,VB,
Banbra,Banker,
Bancos,Banker,
Banker,Banker,
Banker,Delf,
Banload,Banker,
BDH,Small,
Bifrose,CEP,
Bobax,Bobic,
DKI,Poisonlvy,
DNSChanger,DN...
Gobot,Gbot,
Viking,HLLP,

ABU,Banload, [mesmm

Agent,Agent,
Downloader,Delf, jmm—
Downloader,VB,
Gaobot,Agobot,
IRCBot,Sdbot,
LdPinch,LDPinch,
Nilage,Lineage,
OnlineGames,Delf,
OnLineGames,Le...
OnLineGames,0...
Swizzor,Obfuscat... jm
VS,INService,
Zhelatin,ASH,

Downloader,Age...
OnLis

Figure 5.2: Experiment 3 results with one-leveled dependence tree

We look at the results that are experimented with two-leveled dependence trees now.
Actually, the results we get are very similar to previous experiments. In Figure 5.3, we

showed the results for Experiment 1. In Figure 5.4, we showed the results for Experiment
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3. We can see that the accepting rates are increased compared with previous experi-
ments. The accepting rates in the malware families which have the most samples are
increased a little bit. For the remain families, their improvement in accepting rates are
more obvious. All testing samples in the positive set are identified as accept or unknown
and all testing samples in the negative set are identified as unknown, just identical to
previous experiments. By these experiments, we can say that if we learn a 3DFT with
a more accurate dependence tree (two-leveled dependence tree), the detection rates will

increase, especially for the family that has less samples.
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Figure 5.3: Experiment 1 -;15_63}1_1’95,' yv;ltl? two-leveled dependence tree

So far, we have tested 4 different combinations of learning samples and testing sam-

ples. Besides detection rates, the time required for learning and the size of the generated

automaton are also the important factors to reflect the effectiveness of the detector. We

recorded the size of the automata which generated from Experiment 1 to Experiment 4

and also recorded the time expense for learning each automaton.

The total states of each automaton are showed in Figure 5.5 and the total transitions
of each automaton are showed in 5.6. For the time expense, they are depicted in Figure

5.7. We can see that the automaton generated from Experiment 1 has the largest size, and
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For classification, we use the ﬁtfk’or,r.}a enqrat%d frpm Experiment 1 and Experi-
]’.

ment 3 to test malware samples in g‘thﬁ;r malvw?rq. fémlhes The automaton is learned
for single malware family, and the samples in other malware families are used to test
samples. In Figure 5.8, it is the automaton learned from Banker,Banker family and is
generated from Experiment 1. Figure 5.9 is the automaton learned from Banker,Banker
family and is generated from Experiment 3. As we can see, the malware families which

have similar name with Banker,Banker have higher accepting rates compared with others.
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Figure 5.6: Total transitions of generated automaton

41



Minutes Time Expense

18.00

16.00
14.00

12.00
10.00

8.00
6.00 =¢-—80_100
=—380_80
4.00 _
====50_100
2.00
=3¢=50_50

0.00

=

. The tim ense
‘b ?':?OL

Accepting Rate

100.00%

90.00%

80.00%

70.00%

60.00%
50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

Figure 5.8: Classification results for automaton generated from Experiment 1
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Figure 5.9: Classification results for automaton generated from Experiment 3
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Chapter 6

Conclusion

In this thesis, we proposed a malware detection approach that is behavior-based and
uses a tree representation as the signature. Our detector requires a set of malware sam-
ples and a set of benign programs. The semantics of each input program is extracted
and represented as a system call dependence graph. The graph is then parsed into a
tree. We take the set of trees generated frbm m'a'lware and benign programs as inputs to
our tree automata learning algorithm: For automata :1earning, we adapted the methods
proposed by Drewes [14]; which/was adap%g_i fI“OII‘l Angluiﬁ’; L* algorithm [4]. When the
learning algorithm is termindtes,.it outﬁ)ut;éj?-%alﬂed deterministic finite tree automaton
(3DFT). A 3DFT contains three disjobh*t setg:pf ﬁﬁz%l states: accept, reject, and unknown.
Therefore, using the 3SDFT as.fhe malware detectlioir, it ‘eutputs corresponding three dif-
ferent values: true, false, and unkﬁov;fn.: *the 1nput program is a malware instance,
the detector outputs true. If the input iprogram :is a benign program, the detector out-
puts false. Otherwise, it outputs unknown. According to our experiments, our detector

exhibits very low false positives. However, there is a tradeoff that many programs are

identified as unknown.

6.1 Contributions

We summarize our contributions as follows:

e We introduced 3DFT for malware analysis.
Babic et al. [6] and Bonfante et al. [8] have proposed to use finite tree automata

in malware analysis. We generalized finite tree automata to 3-valued deterministic
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finite tree automata. A 3DFT has three different final states: accept, reject, and
unknown. We take a 3DFT as the malware detector, it outputs 3 different values.
If an input program is a malware instance, it outputs true. If an input program is

a benign program, it outputs false. Otherwise, it outputs unknown.

e We proposed a learning algorithm for 3DFT from the sets of positive examples and
negative examples.
We adapted the learning algorithm of Drewes [14]. Our algorithm requires a set
of positive examples and negative examples and outputs a 3DFT. We sequentially
process the samples from the set of positive examples to negative examples. Every
sample in the set of positive examples is accepted by the 3DFT and every sample

in the set of negative examples is rejected by the 3DFT.

e We implemented a prototype malware de-teetor.
We implemented the tool “FALA for our' 3DFT learning algorithm and we take
its outputs as malware detectors The prototype eurrently supports the following
functionalities: 3DFT learmng algor _Lhm, pjarsmg from a graph to a tree, and tree-

language membership testing. I ﬂ"';" |

6.2 Future Work » l&{ H :‘El

There are several issues that can be:congidered as future works, and we list them as

follows.

e Improve the accepting rates for our malware detector.
Currently, the detection rates of our detector are on average 50%. The time required
to learn a 3DFT is ranged from 1 minute to 18 minutes. It is inefficient for a practical
use. There are several possible solutions to consider. First, unfold the graph with
a more appropriate tree representation. We unfold the data-flow dependence graph
with 2 different depths. It is worthwhile to try another representation. Second,
improve the tree automata learning algorithm we used. We adapted the algorithm
proposed by Drewes [14] to learn a 3DFT. However, in some cases we have to double

check every example, and it increases the run time.
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e Find the minimal tree automaton that is consistent with a 3DFT.
We use a 3DFT as our malware detector, which outputs three different values.
However, it is valuable to learn a minimal tree automaton that is consistent with
a 3DFT. A tree automaton is consistent with a 3DFT if it accepts the trees that
are accepted by a 3DFT, and rejects the trees that are rejected by a 3DFT. The
states that are identified by a 3DFT as unknown can be either accepted or rejected

by the consistent tree automaton.
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