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ABSTRACT

Indoor positioning systems based on short-range wireless technologies such as 

wireless local area network (WLAN) have been widely investigated. Additional 

information produced by the emerging low-cost micro-electro-mechanical system 

(MEMS) sensors or floor plans is usually used to improve the accuracy of indoor 

positioning system. Although several combining WLAN with MEMS based inertial 

measurement units (IMU) researches have been researched, they assume the user’s

initial location and heading is given. But this information might not be available in 

some circumstances. Therefore, we proposed an indoor positioning system to solve such 

problem as well as improving the positioning accuracy. In this thesis, we show how to 

differently fuse IMU, map information and Wi-Fi by the utilization of particle filter to 

provide indoor pedestrian tracking service. Three drawbacks from Wi-Fi fingerprinting 

and IMU are handled which are the initial location problem, drift error problem and the 

unsteadiness of Wi-Fi positioning. The accuracy of the fused system was evaluated in

Taipei NanGang Exhibition Center against ground truth. Our results show that accuracy 

is much higher than Wi-Fi fingerprinting alone and particle filter. Furthermore, we 

achieve better performance than fusing IMU and Wi-Fi fingerprinting directly. Up to 
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206%, 203% and 159 % enhancement are achieved in three distinct test paths 

respectively when compared with the latter approach.

Keywords – IMU, fingerprinting, particle filter, map filter, indoor positioning system.
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Chapter 1

Introduction 

In modern society, indoor localization and navigation is essential and inevitable, and it 

makes our life more convenient and comfortable. By the aid of indoor localization and 

navigation [1-22], a work of art could be found easier in a museum, more people could 

be saved in a scene of a fire by firefighters, and the blind could be guided more 

accurately. However, researchers have encountered difficult navigation problems in 

indoor environment. 

Global Positioning System [23-25] has been widely used in outdoor environment and it 

is installed in several devices, such as smart phones, car navigator…etc. However, the 

accuracy of GPS positioning degrades seriously in indoor environment, their signals are 

either blocked or poorly received. Although High Sensitivity (HS) receiver could be 

utilized to detect weak GPS signal for positioning, the signal is still not reliable due to 

errors such as multipath [26]. 

In recent years, a lot of mechanisms were used for indoor positioning including 

radio-frequency identification (RFID) [7], ultra-wideband (UWB) [27], infrared [1, 13],

ultrasound [5], vision [28], radio map based Wi-Fi positioning [18], inertial 

measurement units (IMUs) based on MEMS (Micro Electro-Mechanical Systems) and 

many others [12]. Radio-frequency identification [7] is used to assist indoor pedestrian 
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navigation by providing absolute position information to the navigation system, but the 

cost is expensive. There are usually a lot of rooms in a typical building which increases 

the expense of cost to add these in each room. Furthermore, maintenance is another 

costly issue. Different type of mechanisms such as ultra wide band (UWB) [27] can be 

used as well but they are strongly influenced by radio signal interaction with 

environments.  

Of all approaches above, radio map (fingerprinting) based Wi-Fi positioning is the most 

popular way because Wi-Fi signals are everywhere in modern buildings, while the other 

mechanisms cost more in environment setup. Nevertheless, radio map based Wi-Fi 

positioning does not perform well in a wide and empty place. In such a place, the 

differences of the signal strength of an AP received by the neighboring reference points 

are too small to distinguish. In order to improve the accuracy in such environment, 

some other techniques should be exploited and combined with radio map based Wi-Fi 

positioning. 

Inertial Measurement Units (IMUs), which is based on MEMS (Micro 

Electro-Mechanical Systems), have become more and more desirable. Expansive, heavy 

and high-accuracy IMU has long been used by airplanes and ships for route guidance 

and positioning. As a result of rapid development of technologies, there are also IMU 

devices which are smaller and cheaper but less accurate. In recent years, low-cost IMU 
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has been commonly integrated in navigation systems, such as Inertial Navigation 

Systems (INS) [29], to improve the positioning accuracy. By the aid of IMU, a 

navigation system can supply continuous positioning, heading and velocity estimation. 

However, a main disadvantage of using IMU for navigation is that they suffer from 

accumulated error. Because the navigation system is continually adding detected 

changes to its previously-calculated locations, any small errors in measurement are 

accumulated from time to time. This leads to drift from the actual location [30].  

To avoid drift error, several significant research efforts were presented. The research in 

[19] engaged in building human movement characteristics models which successfully 

distinguish the actions like walking, running, walking a circle, stair ascent and descent, 

and sit-to-stand and stand-to-sit. Some filtering methods were used to decrease drift 

error. Particle filter was used to find out the object’s position by approximating the 

dynamic system’s probability density function (pdf) through generating a set of samples 

with and without the support of map information [2, 3, 9, 14, 31]. In [2], particle 

filtering was utilized in application where Wi-Fi and INS are both used. Combining 

these two different positioning technologies leads to interesting results due to their 

heterogeneous but complementary characteristics – INS has the advantage of high 

availability, high data rate, and it is not easily effected by external noises but fast 

accumulative error, while Wi-Fi positioning rate is comparably low and susceptible to 
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external noises yet the positioning errors are bounded. 

The systems mentioned above [2, 3, 9, 14, 19, 31] all have a strong assumption: the 

starting point and the moving direction must be given [32] . If the starting point and the 

moving direction are given, their algorithms perform well. However, the starting point 

and the moving direction are not always available for a navigation system, such as the 

navigation system for the blind. It is not unreasonable to ask the blind to input his/her 

position first then he/she could use the positioning system.  

In this thesis, we proposed an algorithm that combines Wi-Fi fingerprinting system and 

IMU to solve the problem that starting point and the moving direction are necessary 

when positioning. First, an algorithm, named Modifying Outset and Direction Approach 

(MODA), which uses the historical positioning data obtained by Wi-Fi and IMU 

systems to determine the starting point and the initial heading of the navigation, is 

proposed. In MODA, the initial heading is estimated by calculating the linear regression 

line from the Wi-Fi points. Then we use the total walking distance from IMU to 

approximate all the possible walking area starting from Wi-Fi points. The user is 

expected near the edge of every walking area, so a minimum estimation function is 

proposed to evaluate the starting position of the user. Once we have outset position and 

initial heading, we could infer the current position of the user by absolutize the recorded 

path from IMU. After we pre-processed the Wi-Fi and IMU data which are done by 
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MODA, we use this information to further update the probability of density function in 

particle filtering rather than using them directly [2]. The accuracy of the fused system 

was evaluated in Taipei NanGang Exhibition Center against ground truth. Our results 

show that accuracy is much higher than Wi-Fi fingerprinting alone and we achieve 

better performance than fusing IMU and Wi-Fi fingerprinting directly. Up to 206%, 

203% and 159 % enhancement are achieved in three distinct test paths respectively 

when compared with the latter approach. The followed chapters are arranged as below. 

In the next Chapter we will describe the related works, especially the fusion of WLAN 

and INS. Our algorithm MODA Particle Filter will be presented in Chapter 3. The 

experiments and discussion are given in Chapter 4. Finally we summarize the thesis in 

Chapter 5. 
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Chapter 2

Related Work 

This chapter gives a brief overview of different approaches for radio map 

(fingerprinting) based wireless LANs positioning and particle filter based tracking 

mechanisms. The fingerprinting based approach (e.g., KNN) and particle filter based 

approaches are implemented to compare the performance of the proposed tracking 

system.  

2.1 Fingerprinting Based Positioning System

Fingerprinting based positioning approach is divided into two phases: offline phase and 

online phase. In offline phase, the received signal strength (RSS) values from different 

access points (Aps) are gathered by a device at predefined places, which are named 

reference points (RPs) to establish a fingerprint database. During online phase, the user 

collects RSS values at an interested position then these RSS measurements are used to 

compare with the fingerprint database in order to estimate the user’s location.  

A commonly used approach named K-nearest neighbor (KNN) [18], which calculates 

the Euclidean distance on RSS space between RSS values of the RPs and observed RSS 

values to estimate the user’s location. K  RPs that have smallest distances are chosen 

to estimate the current position.  
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However, as a result of radio propagation depending heavily on the unceasingly 

changing environment, the accuracy of this kind of system is restricted and sometimes 

the fluctuation of signal strength cause many unexpected jumps in terms of an 

approximated faraway position from the real one. 

2.2 Particle Filter Based Tracking System

The particle filter is a sequential Monte Carlo method that generates random samples, 

also known as particles, based on a measurement model and estimates their probability 

distributions [33, 34]. Furthermore, the particle filter can be deployed in non-Gaussian 

and non-linear models. Providing absolute position by combining inertial measurement 

units with particle filter has been researched [2, 9, 16, 22, 35]. This sort of systems 

could be roughly divided into two groups based on the availability of knowledge of 

initial position and orientation. Non-autonomous tracking systems are those who 

assume the information of initial location and heading is given while autonomous 

tracking systems do not require such information. 

2.2.1 Non-autonomous tracking systems

In [22], the tracking accuracy is improved by using the information acquired from 

inertial measurement units (IMUs) to revise the measurement model and thus the filter 
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could generate more applicable particles. In virtue of the convenience of internet, the 

maps of all the public buildings are available in digital format online. Additional map 

information can be used to improve the performance of particle filter by assigning 

impossible particles zero weights, such as those bump into the wall [36, 37].

Backtracking based on the map information is also proposed in [9]. In [2], they 

proposed a WLAN-INS fusion algorithm for pedestrian navigation based on particle 

filter. The inertial signals are used to count steps and the length of step as well which is 

then fused with WLAN position. This approach also exploits map information to 

constrain the particles or, to put it differently, to eliminate those particles having 

impossible trajectory. However, the major drawback of these methods is that they are 

non-autonomous. In other words, the initial point and heading must be given. 

2.2.2 Autonomous tracking systems

An entirely autonomous tracking system has been proposed in [35]. They preprocessed 

the building map to a link-node model map. Every corner in the map is referred to a 

node and if there is a corridor between two corners those two nodes are connected by a 

line. When the tracking system begins, the set of successive points are transformed into 

a motion model path in each step. The system uses the motion model path to match the 

link-node model map to find the possible position. The disadvantage of such system is 
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that the entire map is involved into computation thus the real time positioning is 

impossible. 

Another autonomous tracking system that combines with WLAN is proposed. In [16],

the WLAN position is utilized in the beginning to reduce the particles that are scatted 

over the whole building. The particles are significantly diminished from 4530000 

particles to 136000 particles, less than 1/30 of the number that required to stand for the 

unlimited prior over the thorough building. Although this approach does not need the 

knowledge of initial point and orientation, the rate of converging particles into one 

cluster relies mainly on map information and the behavior of the user. The more 

complicated path the user walk, the faster it converges. The reason is that the 

complicated path could decrease the ambiguity in an environmental symmetry building. 

So, if the user’s walk style is simple, walking along a corridor for instance, this 

approach could not converge into one cluster as it wished in some cases thus resulting 

poor performance. Furthermore, since the initial points are uniformly distributed in a 

region, the accuracy could be as poor as the region size which might be as large as an 

access point’s coverage area when walking in a broad and long corridor. 

2.3 Chapter Summary

From chapter 2.1 and chapter 2.2, we can conclude that there are three problems. The 
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first one is that is we use the fingerprinting based method KNN, we will suffer from the 

unstable positioning problem which results in the uncertainty to the user. The second 

problem is that a positioning system should be autonomous. The information of initial 

position and heading is not always available. Thirdly, the computation complexity 

should not be high and the speed of convergence should be fast. A real time tracking 

system should not let the user wait too long. 

Therefore, the goal of this thesis is to present a real time and autonomous tracking 

system which combines WLAN and IMU measurements. In this thesis, the 

fingerprinting based positioning jumps are eliminated by using particle filter since the 

particles are far away from those jumps. In addition, computation complexity is reduced 

by constraining the particles in a region. Because the number of particles are lessened, 

enormous computational time is saved. Lastly, we find the outset point and initial 

direction for IMU in each step to ensure that the recorded path from IMU is correctly 

matched to the map. 

In the next Chapter, we present a positioning system that combines an existing WLAN 

infrastructure with IMU. The initial information is not necessary in our system and the 

rate of convergence is speeded up by the data fusion of WLAN and IMU. The 

verification of our positioning system has been shown in Chapter 4. 
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Chapter 3

Indoor Tracking System 

In this chapter we describe our indoor tracking system in four sections. The complete 

flow chart of our positioning system is demonstrated in Figure 3.1. There are two 

phases in our system. Offline phase can be deemed as the setup of the tracking system 

whereas online phase is referred to providing positioning services. As you can see the 

system is composed of client and server. The client is supposed to collect the 

measurement of IMU and Wi-Fi RSS. The fingerprinting database needs to be 

established during offline phase because those data are then used to be compared with 

online RSS measurements. In chapter 3.1, we first describe the Wi-Fi positioning 

system we use because there are lots of different Wi-Fi positioning techniques. Right 

after that in chapter 3.2, we depict how we use the information obtained from IMU 

devices. In chapter 3.3, we explain how we use the measurements from Wi-Fi 

positioning and IMU to produce a new possible location. The procedure of MODA is 

narrated in detail and the flow chart is provided as well. In chapter 3.4, we show how 

the output of MODA is combined with particle filter and we also illustrate the whole 

flow path of MODA particle filter in detail. 
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Figure 3.1: Flow chart of our positioning system 

3.1 Wi-Fi Positioning System 

The most popular network based localization system is Received Signal Strength (RSS) 

based system, because the RSS value is apparent and available. Based on these observed 

RSS values, a well-known method called K-Nearest Neighbors (KNN) has widely been 

used. This algorithm includes two phases.  

3.1.1 Offline phase 

Offline phase is the training period that allows the system to collect and preprocess 

received strength signal (RSS) data at the area of interest then these data are used to 
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enable the system to estimate the user’s position in the online phase. The first operation 

we do is to build the fingerprinting database. The RSS value from every access points at 

each reference points are measured and stored as the characteristics (fingerprint) of the 

reference points in a database. The position of reference point j is represented as 

� �,j j jW x y� and the characteristic vector of reference point j is expressed 

as � �1 2, ,...,j nV RSS RSS RSS� .

3.1.2 Online phase

In the online phase, assume that there are n  access points in this environment. A user 

equipped with an intelligent device standing at an unknown position collects RSS 

values from detectable access points, which are then used with the database to estimate 

the location of the user. When the device receives the RSS values from all access points 

as an observed vector O , where � �1 2, ,..., nO RSS RSS RSS� ,.we calculate the Euclidean 

distance(in RSS space) between this observed RSS vector O  and each reference point 

j ’s characteristic vectors. The Euclidian distance is defined in equation (1) 

� � � �2

,1
, n

j i j ii
d O V O V

�
� �� (1)

Where � �, jd O V  is the Euclidean distance between observed vector O  and the 

premeasured vector stored in database at reference point j , iO is the i th� RSS value 

in vector O , ,j iV  is the i th� RSS value in vector jV .Then the member of the 
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possible reference point set kN is determined as follows in equation (2). 

� � 1, \argmin
j

k j j k
V

N d O V V N �
	


� �
 
� �� �� �� �

 
� �

(2)

Where 
 is the set of predefined reference points in database.

Finally, the position of the user is calculated as follows: 

� �� �
� �

,
  with 

( ,

k
i ii

i kk
ii

d O V W
W W N

d O V
� 	�

�
�

i hiWi � ithi � with (3)

3.2 Inertial Measurement Units System

There are two IMUs in our system, one is attached on waist, and the other is tied on foot.

These two IMUs are equipped with gyroscopes and accelerometers sensors. For 

convenience, we call the former IMU1, and the latter IMU2. By IMU1, we use the 

gyroscope to estimate the user’s turning angle and the Z-axis of accelerometer to 

distinguish whether the user is walking. Through IMU2, the information of gyroscope 

and accelerometer are combined to approximate the step size. Finally, the IMU system 

outputs a walking vector � �,x y
t tI I , where I stands for IMU, x is the walking distance 

on x-axis, y is the walking distance on y-axis, t represents the time tag. Noted that the 

x-axis or y-axis is a relative coordinates, the absolute coordinates is unknown since we 

have assumed that initial heading and location is unknown. 
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3.3 Modifying Outset point and Direction Approach

The main idea is that we observe the relationship between the walking path and the 

Wi-Fi positioning results during the walk. Interestingly, although the Wi-Fi positioning 

results are not accurate in short term, the long-term tendency of the heading is roughly 

correct. The reason is despite that fingerprinting-based Wi-Fi positioning is easily 

influenced by external disturbance which results in unsteadiness, the positioning error is 

bounded. In virtue of the complementary error feature, combining IMU and Wi-Fi 

positioning system together is appropriate. MODA fusion structure is demonstrated in 

Figure 3.2. As you can see, we dynamically modify the outset point and direction trying 

to find the best path that matches the linear regression function. After that, we use the 

calculated outset point and direction to infer the current position. 

Figure 3.2: MODA fusion structure
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The detailed steps are as following. 

First of all, based on the past statistical observations we have, we want to find the start 

point. The object function is showed below. 

� � � � � �� �
,

, : , | , : , ,argmin
i j

f i j i j x y f x y f i j� � � (4)

Where � � � � � �� �2 2[ ]. [ ].
,

    ( _ [ ].
k

sqrt i W k pixelx j W k pixely
f i j

abs total distance W k distance

� � �
�

� �
� (5)

where k  is the index of the -k th Wi-Fi historical data, W[k].pixelx  and 

W[k].pixely  are the absolute coordinates of X-axis and Y-axis respectively at time k

from our Wi-Fi positioning system, W[k].distance  is the walking distance from the 

beginning to the time that the k-th Wi-Fi positioning result came out, total_distance

is the total walking distance at that time, function � �abs �  returns an absolute value of 

� �� , function � �sqrt �  returns a square root value of � �� . We want to find out the 

desired position � �,i j  which has the smallest value in equation (4).  

Secondly, we use the whole history of Wi-Fi positioning results to calculate a linear 

regression function as the possible heading. 

Let linear regression function be 

� �f W aW b� � (6)

where W  is a vector that stored the history of Wi-Fi positioning results. 

Then the coefficients ,a b  are calculated by the following equations. 
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� �� � � �2 2

i i i ix y x yE f W W aW b W� � � � �� � (7)

20 0

0 0

i i i i

i i

x x x y

x y

E a W b W W W
a
E a W nb W
b

�
� � � � �

�
�

� � � � �
�

� � �

� �
(8)

� �� � � �

� �� � � �� �
� � � �

2 2

2

2 2

( ) ( )
i i i

i i

i i

i

i

i

i

i i

x

x
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x x

x y x y x

x

W
a

b

W n W W

W n W

W W W W W

W n W

�

�

�

�

�

�

� � �
� �

� � � �
� �

(9)

Thirdly, we defined a Fitting Function (Figure 3.3) to estimate the initial heading. 

Where IMU[i].x and IMU[i].y are the recorded data from IMU at moment t with the 

x-axis value and y-axis value respectively, d is the possible direction of the estimated 

IMU path, � �cos � is the cosine function which returns the cosine value of � �� , � �sin � is

the sine function which returns the sine value of � �� , � �fabs � returns the float absolute 

value of � �� , � �sqrt � returns the square root value of � ��  and sum is the accumulated 

distance from each point in IMU to the calculated linear regression function. 

Finally, the current position is calculated by function (10) and (11).The , ,x y d  values 

are determined by fitting function and m  is the last index of vector IMU. 

� � � � � � � �� �. cos /180 . sin /180X IMU m x d PI IMU m y d PI x� � �� � � � � ��d PI IMU m y d PI x� � � � � ��cos /180 . sin /180/180 . sin� � � � �/180 i /180/180 i� � � � � ��cos /180 . sin /180/180 . sin� � � � � (10)

� � � � � � � �� �. sin /180 . cos /180Y IMU m x d PI IMU m y d PI y� � �� � � � � ��d PI IMU m y d PI y� � � � � ��sin /180 . cos /180/180 . cos� � � � �i /180 /180/180� � � � � ��sin /180 . cos /180/180 . cos� � � � � (11)
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Fitting Function : � �, ,f x y d

0.0sum �

For each node i in IMU vector

do

tempx = (IMU[i].x*cos(d*PI/180) - IMU[i].y*sin(d*PI/180)) + x;

tempy = (IMU[i].x*sin(d*PI/180) + IMU[i].y*cos(d*PI/180)) + y;

sum += fabs(a*tempx-tempy+b*sqrt(a*a+1);

return sum

Figure 3.3: Fitting function

3.4 MODA Particle Filter (MPF)

The key idea of particle filtering is to represent the posterior density � �|t tp X Z by a set 

of random samples (particles) with corresponding weights and make estimations upon 

these samples and weights. When the number of samples is enormous, this kind of 

particle filter closes to the optimal Bayesian estimate. Now we deem tracking the 

walking man as a dynamic system, of which the evolution is defined by the following 

state space model: 
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� �
� �

1 1,t t t

t t t

X f X I

Z h X Mn
� ��

� �
(12)

With the following elements 

� �
� �

: state transition function

: measurement function

f

h

�

�

� �0, 1,...,t tX � � ��  state vector 

1tI �  movement input 

� �1 2, ,...,t tZ z z z�  measurement vector 

tMn  measurement noise 

The state � �, ,t t t tx y�  �  stands for the location � �,t tx y and start direction � �t at 

moment t. The dynamic process is expressed in discrete regarding the motion model, 

thus when new measurement is available, an approximation is made. The measurement 

� �, , ,x y x y
t t t t tz I I W W�  contains the moving vector � �,x y

t t tI I I� from last position to time t 

and Wi-Fi positioning result � �,x y
t t tW W W� which is a predefined calibration point 

outputted from KNN at moment t. The measurement noise tMn  is assumed Gaussian. 

We find the most possible position that the user currently stand by estimating tX  by 

the set of all measurements tZ . The particle filter directly estimates this posterior 

density of the state by the following equation [38]  

� � � �
1

|
pN

i i
t t t t t

i
p Z weight� ! � �

�

" �� (13)

Where i
t�  is the -thi particle of the posterior, i

tweight  is the weight of the particle 
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and � �i
t t! � �� function is the Dirac delta measure [15]. Then, we could transform the 

intractable continuous-time dynamic system into tractable discrete sums of weighted 

particles [39]. 

The flow chart of MPF is showed in Figure 3.4, as you can see, we have 7 stages, 

initialization stage, measurement update stage, propagation stage, map filtering stage, 

resampling stage, normalization stage, and estimation stage. The function and detailed 

procedures of each stage are discussed below. 

 

Figure 3.4: The flow chart of MODA Particle Filter 
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3.4.1 Initialization Stage

At this stage, we have to give all particles initial conditions. The steps are as following. 

Step 1. Choose an outset point by Wi-Fi positioning system. 

Step 2. Scatter pN  particles from normal distribution � �,W WN # $ , where pN  is the 

number of particles, W# and W$  are the predefined mean and standard deviation from 

experiments in Wi-Fi positioning system. 

Step 3. Set particles’ startup orientation from uniform distribution � �0,360U

Step 4. Set all particles’ weight 1 pN� , where weight means the credibility of that 

particle. 

3.4.2 Measurement Update Stage

When measurements are available at moment t, the prior is updated with observations 

� �, , ,x y x y
t t t t tZ I I W W� via Bayes’ rule. However, before updating the prior, we use 

MODA to pre-process the observations tZ . As described in chapter 3.3, after the 

calculation of MODA, the output is a position, just like what the Wi-Fi positioning 

system do. The difference is that we use the information from both IMUs and Wi-Fi to 

predict a position rather than utilizing the result from Wi-Fi positioning system directly. 

According to the measurements tz  and output from MODA � �,
t

x y
t tM m m� , we 

calculate � �| i
t tp z � with a new measurement � �, , ,

t

x y x y
t t t tz I I m m� .



22

Where � �,
t

x y
tm m  is a position estimated by MODA, 

t

xm  is the value of X-axis, y
tm

is the value of Y-axis and � �| i
t tp z �  is the likelihood function that describe the 

estimated walking vector is Normal distributed with the measurement � �,x y
t tI I  and 

assumes that the position estimated by MODA is normal distributed around the true 

position. The likelihood function � �| i
t tp z �  is defined as following: 

� �
� �
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3.4.3 Propagation Stage

The propagation step generated the state t�  of a new particle by drawing from the 

state transition model � �1 1,t t tf I� � � ��

First, the moving vector is disturbed according to an uncertain model, because of the 

perturbing measurement noise from IMU device. We assume that both the changing 

heading and walking length are disturbed by Normal random variables, draw x
tS  from 

� �,ix ix
t tN # $ , y

tS  from � �,iy iy
t tN # $  and tS  from � �,i i

t tN   # $ , where � �,ix ix
t t# $  are 

the measurement x
tI  and the standard deviation of x

tI  respectively, � �,iy iy
t t# $  are 

the measurement y
tI  and the standard deviation of y

tI  respectively, � �,i i
t t
  # $  are 

zero and the standard deviation of changing heading error. Those three standard 

deviations � �, ,ix iy i
t t t

 $ $ $  are set by experiments, and they are set to 10% error, 10% 
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error and 5% error respectively. 

Thereafter, we have three new values, � �, ,x y
t t tS S S , which are disturbed by Gaussian 

random variables. 

� �
� �
� �

,

,

,

x ix ix
t t t

y iy iy
t t t

i i
t t t

S N

S N

S N   

# $

# $

# $

� ix� t�N # $,ixix
tt ,

� iy� t�N # $,iyiy
tt ,

� t�N �  � iN # $,tt , i

(15)

Then these values are used to predict the next state as following: 
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3.4.4 Map Filtering Stage

In some public buildings such as Nang Gang Exhibition Center or MRT stations in 

Taipei, the map information is available online. Therefore, we could use this additional 

useful information to reduce the uncertainty of the walking trajectory in such places. 

With particle filter, the approximation can be ameliorated by deleting unreasonable 

particles that have impossible trajectory. Accordingly, the weight of each particle 

should be re-evaluated by the equation (13) 

� �1

0                                 ,     

|     ,
i
t i

t t t

if the position is impossible
weight

weight p z otherwise��

�
� �

� � �t t�� �p z� �| �t t� |

(17)
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3.4.5 Normalization Stage

At each iteration of the process, the weights of particles can alter rapidly and because 

this system is a non-Gaussian dynamic system, the sum of the weights of particles might 

not equal to one. Hence, in order to keep the sum weights equaling one, we use the 

following equation (14) to normalize the weights of particles. 

1

p

i
i t
t N

i
t

i

weightweight
weight

�

�

�
(18)

3.4.6 Estimation Stage

The possible location of the user is estimated by the particle with maximal weight, 

noted as max
t�
 and the equation is below. 

� � � � � �� �: | :argmax
i

f i i z f z f i� � & (19)

Where � � i
tf i weight� (20)

max
t i� �� (21)

3.4.7 Resampling Stage

A degeneracy phenomenon occurs when after walking a few steps, some particles will 

have negligible weights. It has been shown[40] that the variance of the importance 

weights is only enlarging over time, so it is impossible to avoid such phenomenon. For 
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this reason, we use the resampling algorithm[41] to eliminate such problem. 

However, though the resampling algorithm diminishes the effects of the degeneracy 

problem, it brings another well-known problem, sample impoverishment. It is especially 

severe in the situation of small process noise. As a matter of fact, in such circumstance, 

all particles will collapse to a single point within a few steps. Because the diversity of 

the paths of all particles is decreased, the approximation based on these particles 

degrades. Consequently, we can’t do the resampling on every step. There are many

approaches proposed to solve this problem [42-45]. 
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Chapter 4

Experiments 

In this chapter, we introduce the environment, devices we use and the parameters in our 

experiments. Our algorithm is compared with another Wi-Fi and IMU fusion algorithm 

with its Wi-Fi likelihood function [2] (we call it WPF for the abbreviation of Wi-Fi 

Particle Filter), NN(Nearest Neighbor) which is the core algorithm of RADAR [18] and 

particle filter approach used in [16] when the information of start point and orientation 

is not available. Noted that, we only consider the nearest neighbor instead of k 

neighbors in Wi-Fi positioning system, KNN becomes NN. Furthermore, we just take 

out the assumptions of knowing the outset point and direction in WPF. Accordingly, 

WPF remains its functionality.  

4.1 Experiment Environment

Our experiments were conducted in the corridor of fourth floor of Taipei NanGang 

Exhibition Center which is approximately a 27200m  indoor building, the floor plan 

could be downloaded on-line [46], or you can see the Figure 4.1, which is the original 

map from the internet. We defined 156 reference points on the floor plan and marked 

them on the floor of the building as red points which were site-surveyed approximately 

every 3 meters with signal strength readings being taken 100 samples in offline phase 
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whereas we take 10 samples in online phase. There are totally 24 access points in this 

building without knowing its position. The standard deviation and the mean error of 

Wi-Fi positioning system are chosen by experiments, the IMU step error rate and IMU 

heading error rate are defined by experiments as well. These parameters are listed in 

Table 4.1and Table 4.2. The example of device setup is showed in Figure 4.2.

Figure 4.1: Radio Map of the corridor of fourth floor of Taipei NanGang Exhibition 

Center. The red dots are predefined calibration points. 

Figure 4.2: Example of device setup
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Table 4.1: Experiment Devices

Hand-held Navigation Device

Operating System : Win CE 6.0

Processor : Samsung S3C6410 533MHZ

RAM : 128MB

Storage : 2GB

Wi-Fi : Marvell 88W8686

Server

Operating System : Windows 7

Processor : Intel Core Duo CPU T2400 1.83GHz

RAM : 2039MB

Storage : 160GB

Network : HSDPA 4Mbps / HSUPA 1 Mbps
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Table 4.2: Experiment Parameters

Wi-Fi access points : 24

Number of reference points : 156

Distance between reference points : 3-meter

Wi-Fi scanning period : 1 second

Wi-Fi offline sample size : 100

Wi-Fi online sample size : 10

Height of Hand-held Device : 1.2 m

Standard deviation of Wi-Fi W$ : 4.843958

Mean value of Wi-Fi W# : 8.410209

Number of Particles : 13000

K-Nearest Neighbor - K : 1

4.2 Experiment Paths

To verify our MODA Particle Filter (MPF), we set up three different ground truth paths, 

which are straight line walk, converse-U shape walk and N shape walk. And for 

simplicity, we use the term path 1, path 2 and path 3 to substitute the terms used in 

original ones respectively. As a matter of fact, these paths represent different situations,
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path 1 is long and simple, path 2 has two turning points and path 3 is short and having 

two turning points. Through these paths we could evaluate the efficiency of our 

approach in time and space. In other words, we expect that our approach could find out 

the interested position faster than others and we are looking forward to seeing that our 

approach outperforms others when the walking distance is long. In order to make our 

analysis simple in these paths, we all started from a reference point and also stopped at 

another reference point. Furthermore, we use timestamps to record the moment that we 

receive the IMU and Wi-Fi data from IMU devices and Wi-Fi positioning server 

respectively, which are used to rebuild the real walking path that will then be utilized to 

evaluate the efficiency of these algorithms. 

4.2.1 Path 1 – a straight line walk

As you can see in Figure 4.3, in this walk, we start from the “4F Area N Lobby” and 

walk along the corridor to the “Visitor Entrance L”. This walk evaluates someone 

comes to here by stairs, and his destination is “Visitor Entrance L”.
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Figure 4.3: Path 1 – a straight line walk 

4.2.2 Path 2 – a converse – U shape walk

The route planning is showed in Figure 4.4, in this walk, we expect the user comes up 

by the electricity staircase with a handrail and he comes here from a meeting in 

“Conference Room 402a”. Therefore, he walks toward the main corridor then takes a

right turn when reaching the main corridor. After that, he walks along the corridor until 

he sees the “Conference Room 402a” he takes a right turn again. Lastly, he walks into 

the “Conference Room 402a” to have a meeting.

Figure 4.4: Path 2 – a converse-U shape walk 
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4.2.3 Path 3 – an N shape walk

As you can see in Figure 4.5, in this walk, we assume that a user just finished the 

meeting, so the start point is right next to the door of “Conference Room 402a”. Owing 

to the tiring meeting, the user is likely exhausted. Therefore that he takes a small walk 

to the nearest elevator. 

Figure 4.5: Path 3 – an N shape walk 

4.3 Experiment Results

In the following sections we discuss the performance of MPF, WPF, NN and PF in three 

distinct paths. We will show estimated paths from different approaches and the 

cumulative percentage of error distance as well to prove the efficiency of our approach. 
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4.3.1 Path 1 – a straight line walk

In path 1, the walking style is a straight line walk, the walking distance is 121.9 meters 

and the duration of walking period is 133 seconds. The red line represents the ground 

truth, blue line is the path that estimated by Wi-Fi Particle Filter (WPF), the green line 

stands for the walking path approximated by MODA Particle Filter (MPF), the purple 

line is the NN (Nearest Neighbor) and the black line is PF (Particle Filter). We can see 

that in the beginning of this walk (Figure 4.7), MPF and WPF have terrible trajectories. 

The reason is that there were too few clues to determine the current position of the walk 

person. When this person walks a period of time, the green line and blue line started to 

converge to the ground truth. In other words, the more information we have the higher 

probability that we could get an accurate localization. Here the information means the 

Wi-Fi positioning results and the recorded path by IMU. WPF seems having good 

performance in the trajectory picture, but actually its position jumped back and forth 

under the overlapped lines. This phenomenon could be observed in Figure 4.6 which is 

the picture of the cumulative distribution function of MPF, WPF, NN and PF

respectively. As a result of depending on Wi-Fi too much, WPF is as easily drifted away 

as Wi-Fi. On the other hand, MPF relies on the whole history of Wi-Fi points and the 

total walking path rather than one single Wi-Fi point thus reducing the probability of 

strayed away by specific one severely inaccurate Wi-Fi point. It can be seen in Table 4.3
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that MPF has smallest mean error (3.12) whereas the mean error of WPF is 6.43m. In 

such case, WPF, MPF an PF couldn’t take much advantage of map information since 

that the walking style is too simple to filter out shift error, which resulted in the particles 

that are scattered along the corridor. Therefore, the standard deviation of both MPF and 

WPF is quite high compared to other walking paths. However, MPF outdid WPF with 

the enhancement up to 206% in mean error in this case. Nevertheless, the standard 

deviation of MPF is the lowest which shows that MPF is more stable than WPF, NN 

and PF. 
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Table 4.3: Positioning error and stand deviation in path 1

MPF WPF NN PF

Mean error (m) 3.12 6.43 8.66 8.05

Standard deviation (m) 3.38 5.60 4.32 4.23

Figure 4.6: Position error CDFs in path 1 

Figure 4.7: Estimated trajectories in path 1 



36

4.3.2 Path 2 – a converse-U shape walk

In path 2, the walking style is a converse-U shape walk, the walking distance is 74.6 

meters and the duration of walking period is 96 seconds. The five colored lines 

represent for the same relationship as declared above. Though both the trajectories of 

MPF and WPF look like random walks at the start, MPF found the right way faster than 

WPF which could be seen in Figure 4.8 and Figure 4.9. Owing to some diverged Wi-Fi 

points, the blue line was strayed from the real path in the middle of the walk. However, 

this path is long enough for convergence and there are two turning points that would 

help decreasing the ambiguities of locations in the map, so both mean error and standard 

deviation of MPF, WPF and PF are lower than path 1. Furthermore, we could see the 

curves in Figure 4.8, the green curve and blue curve is close in the beginning which 

means they could achieve position errors below one meter during the journey. Despite 

that they are close to each other, the green line ascends rapidly whereas the blue line 

rises slower. The reason is that MPF finds the real path faster than WPF. The black line 

PF in path 2 performs poorer than path 1. It is because that the start region of path 2 is 

bigger than that of path 1 which results in slower convergence to real path. Under such 

circumstance, MPF prevails WPF with the increment up to 203% in mean error (Table 

4.4).  
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Table 4.4: Positioning error and stand deviation in path 2

MPF WPF NN PF

Mean error (m) 2.95 6.01 8.40 8.64

Standard deviation (m) 2.38 5.61 4.27 3.74

Figure 4.8: Position error CDFs in path 2 

Figure 4.9: Estimated trajectories in path 2 
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4.3.3 Path 3 – an N shape walk

In path 3, the walking style is an N shape walk, the walking distance is 25.6 meters and 

the duration of walking period is 32 seconds. The five lines colored with blue, green,

purple, black and red stand for the same relationship as mentioned before. From the 

Figure 4.11, we could also see the influence of uncertainties in direction and outset 

point in the beginning. Just as in other cases, both MPF and WPF converge to the 

ground truth after the person walk a few steps. Figure 4.10 proposes a performance 

comparison among three positioning techniques by illustrating the cumulative 

distributions of MPF, WPF, NN and PF. As you can see the four curves of path 3 are 

closer than other paths, the main reason is that the walk is too short that the MPF just 

find its way to the ground truth, the walk finishes. Noted that PF has the poorest 

performance in this path, the explanation is that the corridor that is in front of the 

elevators is too narrow that few particles could walk inside to in. Owing to its method of 

finding the possible position which is calculated by averaging all the particles’ positions, 

the estimated position has no chance being in that narrow corridor unless all particles 

are in there. Figure 4.10 shows that MPF excels WPF no matter in short range or long 

range error.  The mean error of MPF is better than WPF with the augmentation up to 

159% (see Table 4.5). 
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Table 4.5: Positioning error and stand deviation in path 3

MPF WPF NN PF

Mean error (m) 3.30 5.25 7.06 9.92

Standard deviation (m) 2.07 3.51 2.78 5.58

Figure 4.10: Position error CDFs in path 3 

Figure 4.11: Estimated trajectories in path 3
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As we expected, the Wi-Fi positioning system with NN and Particle Filter (PF) shows 

poor performance relative to MODA Particle Filter (MPF) and Wi-Fi Particle Filter 

(WPF). The reason is that it is memory-less which means that NN doesn’t take the 

history into account, consequently cannot filter out any noise in the estimates. Moreover,

in such a huge building, 27200m , the Wi-Fi positioning system – RADAR(NN) could 

not achieve good performance because most of the signals from access points are not 

blocked by walls, rooms or furniture. PF uniformly scatters the initial particles in a 

region which is determined by Wi-Fi positioning system. Because the width of the 

corridor is approximately 7.35 meters, those particles are hard to converge into a small 

cluster by only using the map constraints. The results of these three paths indicate that 

our algorithm outperforms other algorithms by achieving smaller average error distance 

and smaller standard deviation which means that our algorithm is more stable and 

accurate. 
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Chapter 5

Conclusion 

In this thesis, we present a positioning system that fuses a Wi-Fi positioning system 

with IMU. Wi-Fi positioning system is implemented with NN in RADAR while we use 

IMU to estimate the length of each step and the turning angle. As the initial information 

is not available, we first set the start point of particles by Wi-Fi with Gaussian 

distribution and the direction is uniformly distributed between 0 and 360. Then we use 

the whole history of Wi-Fi points and the path that was recorded by IMU to modify the 

outset point and the initial direction at each iteration. Extensive experiments were 

carried out showing that our approach yields drastic improvements over previously 

introduced approaches that use particle filters with the fusion of Wi-Fi points and IMU. 

In our experiments, MPF outdid WPF with the enhancement up to 206% in path 1, 

prevails WPF with the increment up to 203% in mean error in path 2 and the mean error 

of MPF is better than WPF with the augmentation up to 159% in path 3. All the results 

indicate that our approach is more applicable than introduced solutions when initial 

knowledge is not given. 

In our tracking system the user do not need to know any information about the building. 

Such system could potentially be utilized to enable location-aware applications in large 

buildings, where the setup of high accuracy positioning system is either expensive or 
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impractical. Navigation in museums or exhibition halls, tracking a missing children and 

guidance for the blind are some examples of location based services. Since MPF could 

achieve the rate of accuracy less than 4-meters in large building, location based services 

can benefit from our system. 
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