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中中中文文文摘摘摘要要要

本研究呈現了如何運用電腦圖學中，各種豐富的3D模型，轉換成

形狀相近且趣味豐富的樂高積木模型。轉換出來的樂高積木模型，不

僅可以運用在虛擬的電腦圖學動畫當中，更可以藉由用人手進行實際

堆積組裝，產生出令人驚嘆的創作成果。我們的方法主要分成兩個部

分。首先，我們將三角形組成的立體模型描述檔，轉換成外型相似，

由方格組成的立體模型。由於參考的方格近似演算法並沒有達成我們

期待的狀態，所以我們自行提出 了一種混和以前方格近似演算法的

方法來取得更好的方格立體模型。接著，我們讓轉換好的立體方格模

型，經過簡單的預處理以後，進行連接擺放最佳化的計算。我們參考

以前的作法，將此問題轉換成細胞演化自動機的形式進行模擬與最佳

化。但同樣的，此方法仍然沒有達成我們期待的完美結果，因此我們

提出後續補強的方法，既能提昇完全連接的機率，又能改善方塊使用

數量的控制。最後，我們附加地提出了一個簡易的演算法來產生方便

人們組裝的建造順序。這或許可以提供一個研究出發點，來改善如何

視覺化樂高堆積順序，使人們能清楚了解與實際操作。

關關關鍵鍵鍵字字字：：： 樂樂樂高高高益益益智智智積積積木木木，，， 立立立體體體模模模型型型方方方格格格化化化，，， 連連連接接接擺擺擺放放放最最最佳佳佳化化化，，，

幾幾幾何何何組組組裝裝裝推推推理理理
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Abstract

In this work, we present a system, “legolizer”, to transform 3D models

into buildable LEGO sculptures. Our legolized 3D model has various pur-

poses. It can not only be used in the production of LEGO-style computer

animations, but also can be actually built by hand to amuse people. Our sys-

tem consist of two parts. The first part converts the input triangular 3D mesh

model into grid-like voxel representation. Because the utilized voxelization

methods did not reach our expectation, we purposed a hybrid voxelization

approach in attempt to obtaining a better voxelized model. Then, after sim-

ple preprocessing, we put the voxelized model into the second part of our

system - connectivity placement optimization. We reduced this placement

problem into the form of cellular automaton similar to the most recent pre-

vious work. Again, due to imperfection of cellular automaton optimization,

we later proposed our refinement approaches to improve not only the prob-

ability of fully connecting, but also the brick usage control. Finally and ad-

ditionally, we compute an easy-to-build instruction sequence of our obtained

LEGO sculpture. This may provide a researching starting point of improving

the visualization of computed LEGO brick assembly process for people eas-

ily understanding.

Keyword: LEGO brick puzzle, 3D model voxelization, connectivity place-

ment optimization, geometric assembly reasoning
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Chapter 1

Introduction

1.1 Motivation

The LEGO company, founded in Denmark since 1932, continuously produce colorful

interlocking plastic bricks to fill many people’s childhood memory. During the assem-

bly process, we overcame the exponential growth of construction possibilities step-by-

step, and eventually finished the shape we want. Like many other puzzle games, building

LEGO model is a fascinating, intriguing and entertaining activities for adults and kids [1].

It even evolved into an artform, for instances, Dispatchwork project [2], Nathan Sawaya‘s

creations [3], and LEGOLAND’s around the world [3, 4]. These complex LEGO sculp-

tures really make people wonder how to build them. This mysterious puzzle later became

known as ”LEGO construction problem.” In other words, ”Given any 3D body, how can

it be built from LEGO bricks?” (see Figure 1.1 for illustration) [5, 6]

Over the last few years, the advancement of computer graphics and vision has made

making and retrieving 3D models easy. Especially, with the advent of depth camera based

3D geometry scanning technology [7], it is expected that many real-world objects will be

scanned and put into online 3D model repositories. By using the state-of-the-art 3D model

retrieval techniques [8, 9], getting any 3D model from these repositories is not difficult

anymore. However, in order to fit these models into scenes of different styles, artists often

need to remake these models. This has trigger some of computer graphics researchers to

study the topic - ”3D Model Style Transfer”. Transforming a 3D model into constructible

1
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Figure 1.1: Problem illustration. The left image: input 3D shape represented by triangle

meshes. The right image: buildable LEGO sculpture instructions.

LEGO sculpture is such a topic related. In addition, if a 3D model can be converted into

LEGO buildable model, this may bring many other computer graphics applications such

as LEGO sculpture force stability simulation, automatic generation of LEGO assembly

process animation, and more. These are really interesting and challenging topics.

1.2 Background - The LEGO construction problem

The ”LEGO construction problem” has already been presented to the scientific com-

munity at large in 1998 [6] and 2001 [10]. In essence, what the LEGO company wished

for, was a computer program that can generate LEGO building instructions for any real-

world object within a reasonable amount of time [5]. After a rough analysis, this problem

has relationships to a number of fields in computer sciences and mathematics such as

computer graphics, computer vision, and combinatorial optimization. Although repre-

senting and visualizing 3D shape model can be handled by the techniques in computer

graphics and vision, LEGO construction problem is still difficult for computer to solve.

Because for a given 3D shape, there are multiple choices of LEGO bricks and multiple

ways to assemble them. This combinatorial explosion nature quickly make this problem

intractable.

This problem, like most area filling problems, has the properties of an optimization

problem. In general, it has to achieve the following objectives [5, 6, 11] :

2



• Connectivity: The constructed LEGO sculpture should be one single connected

object. (i.e., the sculpture should not contain easy-pick LEGO bricks and floating

LEGO bricks. See Figure 1.2 for illustration.)

• Shape Similarity: The constructed LEGO sculpture should look similar to the orig-

inal input 3D shape.

• Cost Optimiality: To save money and time when building with actual LEGO bricks,

the program should try to minimize the number of LEGO bricks used to build the

sculpture. If possible, try to match the quantity limit of every brick.

• Runtime Limit: As previously mentioned, this problem should be solved in reason-

able time.

The first and second optimization objectives directly affect the composability of output

LEGO sculpture if there is no quantity constraint on every type of LEGO brick. The third

objectives can effectively reduce the actual construction time, but in fact, we are often

unable to finish the sculpture because of not enough specific kinds of LEGO brick, rather

than the construction itself takes time. Therefore, we change the third objective into the

following objective:

• Quantity Constraint: The solution should not violate the quantity limit of each

LEGO brick.

To solve this problem, the program - ”legolizer” (see Figure 1.3), expect two inputs:

the family of usable LEGO brick set and the 3D geometry model. And often with a

quantity constraint for each kind of LEGO brick. The program should output the building

instructions of the sculpture if this model is realizable. Otherwise, it should report the

reason of the failure synthesis. The reason can be not enough specific kinds of LEGO

brick, or unable to find the placement that can fully connect these bricks.

The LEGO construction problem can be seen as a three dimensional volume filling

problem. The search space is extremely large and there can even be more than one viable

solution. In fact, the two dimensional area filling problem is already considered to be NP-

complete [5]. Furthermore, to ensure the stability and visual similarity of the sculpture,

3



Floating in the air

Easy-pick ground LEGOs

(a) (b) (c)

(d) (e) (f)

Figure 1.2: Connectivity objective. (a) shows what are disconnected LEGO bricks. Red

circles indicate there are vertical cutting edge spliting white LEGOs from yellow pillar.

Easy-pick LEGO bricks are also known as floating bricks on the ground. These bricks

will cause the entire sculpture unable to leave the ground. (b), (c) and (d) demonstrate the

case that it looks like fully connected but in fact it is disconnected. This also shows the

difficulty of the LEGO construction problem. (e) and (f) is the correct solution for 6x6x2

plate using only 1x2 LEGOs.

it needs to consider shape similarity and connectivity objectives when filling LEGO brick

into the target volume. This increase the complexity and difficulty of the problem. How-

ever, these constraints can also be exploited and devise an efficient approximation method

to deliver acceptable solutions. We will discuss previous approaches to the problem in the

related work chapter.

1.3 Contributions

In this work, we present a system to convert a 3D triangle mesh model into a buildable

LEGO sculpture. We extend previous work [5] by adding several new features that may

help not only obtaining better automatic results, but also designing better optimization

4



legolizer

No

Yes

Figure 1.3: System flowchart.

algorithms. These features are:

• Combine two different techniques of voxelizing 3D triangular mesh model into a

hybrid voxelization approach, described in the section 3.2.

• Post-optimization connectivity refinement based on connectivity risks information,

described in the sectionin section 3.4.

• Post-optimization quantity constraint refinement, described in the section 3.4.

• Connectivity-aware and positional-aware building instruction order generation, de-

scribed in the section 3.4.
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Chapter 2

Related Work

2.1 LEGO construction automation and stylization

Since the presentation of LEGO construction automation problem [6, 10] , there were

a number of previous works trying to solve this problem. Most recent work is presented

by van Zijl and Smal [5] in 2008, which is our main reference work. Their work purposed

a new optimization approach using cellular automaton and obtained comparable results to

the ones using beam search. Cellular automaton is a computation model originated from

John von Neumann [12]. This concept is applied in various scientific fields nowadays.

They formulated this problem by viewing LEGO bricks as cells that lives in a grid world

which represents a layer of voxelized model. By defining certain rules of cellular interac-

tion, they can evolved into larger LEGO bricks, and eventually produce a complete layout

of a LEGO structure. Beam search is an another optimization-by-search algorithm, firstly

presented by David V. Winkler, in a LEGO fans convention called “BrickFest” in 2005.

Conceptually, it is a breadth-first search with tree width limit, hence visually like shooting

a “beam” during the expansion of search tree. The tree width K means the algorithm will

try to store K currently best solutions. To solve LEGO construction layout problem, it

searches step-by-step LEGO brick placement and evaluate the cost of placement. Finally,

they implemented a completed Java package consist of 3D model voxelization and the

above two optimization techniques for producing an constructible LEGO structure. The

application can be found at http://lsculpturer.sourceforge.net

6
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More earlier attempts are works by Gower et al. [11], Petrovic [10], and Na [13].

Gower et al first formulated the LEGO construction as a combinatorial optimization prob-

lem. They proposed various observation in designing the connectivity cost function, and

described some methods such as local search and simulated annealing to obtain connected

LEGO structure. Petrovic applied energy terms by Gower et al. into his three genetic al-

gorithms, but accroding to [5], their attempts required significant more execution time

which fails the expectation of running in reasonable time. Na later extended the indirect

gene representation of Petrovic by allowing the builing patterns to extend in two direc-

tions instead of one. At last, although not directly solving the exact LEGO construction

problem, Lambrecht presented LSculpt [14], which produces constructible LEGO sculp-

ture using oriented LEGO plates instead of standard LEGO bricks. The output sculpture

has improved detail than standard pixel-like look LEGO structure.

The above previous works were focus on solving the LEGO construction problem,

they often utilized many combinatorial optimization techniques such as simulated anneal-

ing, genetic algorithm and so on. However, in computer graphics, it is also important to

visualize realistic LEGO bricks. The work “legolizer”, done by Silva et al [15], is such one

work. They successfully render a 3D triangular mesh model into similar shaped LEGO

sculpture realistically in real-time. In essence, they present a LEGO-style volumtric ren-

dering technique by implementing four GPU shader programs. These shader programs

are triangle subdivison shader, voxelization shader, polygonization shader, and rendering

shader. It is important to note that their work didn’t consider actual construction, that is,

no brick connectivity consideration.

2.2 LEGO computer-aided design toolkits

The official LEGO Group has provided the LEGO Digital Designer, which recently

incooprates the Australia Google Map service in parternship with Google. Users can use

Google Chrome web browser to build their virtual LEGO structure on the Australia land.

The LEGO Digital Designer can be found in [16] and [17] (the web version). Another

popular LEGO CAD system is called “LDraw” [18], which is a community-maintained

7



software project by James Jessiman since 1995. It is similar to the LEGO Digital De-

signer, but with many other documentation trying to standardize LEGO brick representa-

tion in a computer. Until now, various related LEGO CAD tools are created using LDraw

as a reference. For example, L3P [19] is a conversion utility between LDraw file format

and the scene file used in POV-Ray ray-tracing renderer [20]. For other related LEGO

CAD tools, please refer to books [21, 22].

2.3 Recreational Computer Graphics and 3D Model Style

Transformation

If not restricted to LEGO bricks, there are many efforts trying to make virtual 3D mod-

els realizable in many different kinds of form. This ia a related field called “Recreational

Computer Graphics” [23]. Like the ultimate goal of LEGO construction problem, the ob-

jective of this field is to make a computer-aided geometric design tool that converts virtual

3D objects into a piecewise buildable object with step-by-step construction instructions.

In recent literture, Lo et al [24] presented a new genre of 3D puzzle called “3D poly-

omino puzzle”. A well-known example of polyomino puzzle tiling is the popular video

game “Tetris” invented by the Russian Mathematician Pajitnov in 1985. In short, they de-

signed a specialized interlocking tetromino bricks to assemble the virtual 3D model into

real object. step-by-step building instructions. Xin et al [1] converts a 3D model into a 3D

burr puzzle that consists of interlocking pieces with a single-key property. Shigeo et al

[25] unfolds 3D triangular meshes onto a white paper so they can use glues and scissors to

build the 3D papercraft models. Finally, Hildebrand et al [26] introduce an algorithm and

representation for fabricating 3D shape abstractions using mutually intersecting planar

cut-outs. The assembly process is like inserting pieces of paper into each other.

Because obtaining a realizable procedure from virtual 3D models directly implies that

it can be represented by computers, we can view such realization process as a kind of

3D model style transformation. However, the results from 3D model style transformation

need not to be realizable, this is another related field called “3D Model Style Transforma-

8



tion”. For instances, Xu et al. [27] extract the silhouette of object in a picture collection,

then they morph a generic 3D model to fit the given silhouette. The generic 3D model and

the object in the picture must have the same semantic meaning, if not, matching may fail.

Shen et al. [28] converts a 3D character model into a style called “super-deformed”, ab-

breviated as SD. SD is a specific artistic style for Japanese manga and anime. The goal of

SD style is making characters to be appeared cute and funny. They use energy optimiza-

tion guided by a number of constraints that can not only capture the essence of SD style,

but also stabilize deformation artifacts. Their system provides customizable parameter

settings, and can convert character models into visually pleasing SD models in seconds.
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Chapter 3

Methodology

3.1 System Overview

Voxelization

Mesh-based 3D model Voxel-based 3D model Legolized 3D model

Preprocessing Placement Optimization

Figure 3.1: System overview.

Our system “legolizer” can be decomposed into three components, illustrated as Fig-

ure 3.1. Users can pick two kinds of input: mesh-based 3D models or voxel-based 3D

models. When user provides 3D models consist of triangle meshes, we first voxelize it to

get voxel-based 3D models. Then, we will preprocess these voxel-based 3D models such

as checking connectivity and removing interior voxels. These steps will assist later steps

to achieve our objectives. Finally, these preprocessed voxel models will put into place-

ment optimizer to obtain LEGO building instructions. Users can then use our graphical

user interface to actually build Legolized 3D models.
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The implementation of our system is closely follow the paper [5]. We reference their

system as our basis implementation, then add some new features to further refine connec-

tivity and LEGO brick usage of the LEGO sculpture. We also try to generate brick-by-

brick construction instructions rather than layer-by-layer.

3.2 Voxelization

Using standard cuboid LEGO brick to build a sculpture is an approximation by nature.

The completed LEGO structure often have ”pixel-like”, ”voxel-like”, or ”grid-like” look.

This observation gives a key direction for us to simplify our problem. That is, to apply

voxelization algorithm on the triangle mesh 3D models.

The voxelization method can produce 3D voxel structures similar to the input mesh-

based models, which solves the shape similarity goal of the LEGO construction problem.

Besides, it reduces the search space of LEGO construction problem. Because the problem

of finding where to place a LEGO brick which intersects the mesh model is delegated to

the voxelizer, it effectively simplified the LEGO construction problem.

Among all popular voxelization methods, we utilize the voxelization algorithm de-

scribed in the paper by Nooruddin et al. [29]. Essentially, it traces ray along all three

axes (X, Y and Z) from corresponding perpendicular plane at zero. For example, if we

trace ray along x-axis, then the ray origin is at (0, y, z), where Y and Z coordinate is the

center of a pixel at yz-plane. During the ray-tracing, the algorithm records all the inter-

sections with the triangles from the input triangular mesh model. The data structure used

to record intersection is similar to a z-buffer. But instead of overwriting Z position when

a closer intersection is found, the algorithm uses sequential container to record all the Z

position of intersections at a particular xy-plane coordinate (See Figure 3.2 for illustra-

tion). After computing the z-buffer for three axes, the algorithm performs parity counting

to determine the interior of a geometry body. That is, during intersection point counting,

if the counting variable is odd, the algorithm marks the voxels until the counting variable

become an even number. At last, the algorithm consider a voxel inside the body when at

least two of three axes agreed (got at least 2 marks at that voxel position).
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(a)

0 => outside

1 => inside

2 => outside

(b)

Figure 3.2: Voxelization by ray-triangle intersection test. (a) Rays are shooted from z=0,

x=0, y=0 planes. (b) The center of square-shaped pixel is where the ray shoots from, and

hit many triangles. Parity counting identifies interior of the body.

The following pseudocode implements the above voxelization algorithm.

Algorithm 1 Ray-tracing voxelization

for all 3 principal axes: X,Y,Z do

rename current ray-tracing axis to z axis . We pretend to trace ray along z axis

for all triangle facets in the 3D mesh model do

scan convert the triangle facet to find effective ray-tracing pixels on xy-plane.

for all effective pixels on xy-plane do

intersection← rayTriangleIntersect( ray, triangle )

depthBuffer( pixel(x,y), axis ).insert( intersection )

. z-buffer can also be called as ”depth buffer”

end for

end for

for all pixels on xy-plane do

sort intersections in depthBuffer( pixel(x,y), axis ) from near to far.

end for

end for

initialize 3D matrices Count, V oxel to zero.

for all 3 principal axes: X,Y,Z do

for parityCount = 0 to depthBuffer( pixel(x,y), axis ).size do

intersection← depthBuffer( pixel(x,y), axis ).at( parityCount ).

++Count(rename(x,y,round(intersection.z))).

end for

end for

mark V oxel(x,y,z) = 1 if corresponding Count(x,y,z) ≥ 2
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In the main reference paper [5], they used AABB-triangle intersection test (AABB:

axis-aligned bounding box) and octree space subdivision to implement their own vox-

elizer. The intersection test they borrow from was developed by Akenine-Möller [30].

Basically, it was derived from the separating axis theorem (SAT). The theorem states

that two convex polyhedra, A and B, are disjoint if one can find an axis along which the

projection of the two polyhedra does not overlap. The axis is the one that

1. is parallel to a normal of a face of either A or B.

2. is formed from the cross product of an edge from A with and edge from B.

The separating axis theorem tests if two polyhedra collide by enumerating all axes that

satisfies the conditions above. Then for each axis, vertices on these two polyhedra will

project to the axis. Each polyhedron has their own range of projection. If these ranges do

not intersect, then this axis is a separating axis. Instead of visually separating two objects,

the axis is used as a normal vector to form a plane that separating these two objects. (Note:

the ”bounding” B in AABB can be neglected if the box is not actually bounding an object.

So we may use the term ”AAB” for generality). see Figure 3.3 for illustration.

axis

plane

Not
Intersect !

(a)

Normal of
The triangle face

The edge vectors of polygonal shapes

The cross product
of the edge vectors

(b)

Figure 3.3: Separating axis theroem (SAT). (a) is a 2D version of SAT. The projected

vertices ranges of the two polygon do not overlap, therefore not intersected. (b) shows

that AABB-triangle intersection test is one of SAT simplest example. The green and blue

vectors represents what kinds of axes are used in SAT intersection test.
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In the implementation of Akenine-Möller’s fast AAB-triangle intersection test, the

axis-aligned box (AAB), defined by center point c, and a vector of half lengths h, is

tested against the triangle ∆u0u1u2 with a normal n. The lengths in h can have different

values along different axis, since axis-aligned nature firmly defines a box. Figure 3.4

shows the notation used for the AAB and the triangle.
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Figure 3.4: Notations for explanation of AAB-triangle intersection algorithm.

Initially, the triangle is translated so that the box is centered around the origin in order

to simplify the tests. In mathematical notation, vi = ui − c, i ∈ {0, 1, 2}. Then based

on SAT, the algorithm tests the following thirteen axes, which can be grouped in three

categories and are performed according to the order of bullet numbering.

1. (9 tests) aij = cross product(ei , tj), i, j ∈ {0, 1, 2}, where t0 = v1 − v0, t1 =

v2−v1, and t2 = v0−v2. After computing the axis aij , we need to project vertices

of the triangle and the AAB onto the axis. The projection of the triangle vertices are

performed by a regular dot product. That is, pk = aij ·vk, k ∈ {0, 1, 2}. Thanks to

many zeros in the unit vector e0e1e2, the projection often results in one of pk equal

to another pq, k 6= q. This observation leads to removing one conditional branch

during the finding minimum and maximum of pk, thus faster. Now it turns to the

projection of AAB vertices. They compute a “radius”, called r, of the box projected

on aij (hereafter call a) as r = hx|ax|+ hy|ay|+ hz|az|. This is valid computation
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reduction because the eight vertices of the translated AAB enumerate complete

combination of signs in their own dot product projection. It can be proven that

there must exists two vertices on the AAB, xmin and xmax, such that xmax · a = r

and xmin · a = −r. Finally, the axis test is performed logically as:

if min( p0 , p1 , p2 ) > r or max( p0 , p1 , p2 ) < −r

return ”non-overlapping”

2. (3 tests) e0 = (1, 0, 0), e1 = (0, 1, 0), and e2 = (0, 0, 1) (the normals of the axis-

aligned (bounding) box). It is equivalent to test the AAB against the minimal AABB

around the triangle. If we follow standard SAT procedures, the projection of ver-

tices on unit vectors directly simplify the test a lot. It can be expressed as:

for all axis a ∈ X, Y, Z do

if min( v0a , v1a , v2a ) > ha or max( v0a , v1a , v2a ) < −ha

return ”non-overlapping”

end for

3. (1 test) n = cross product(t0 , t1) (the normal of the triangle). As previous SAT

illustration, this test is equivalent to asking if the separating plane is the triangle

itself. If this is the last test, then this test looks like asking if the triangle is cutting

through the AAB. Because previous failed tests implied that all vertices of AAB

can be projected onto the triangle (onto the plane defined by triangle normal and

within the triangle area). Akenine-Möller simpify this test using fast plane-AAB

intersection test, illustrated in Figure 3.5. (Therefore, readers should be noted that

this test is not only for the last test. This test is a regular SAT test because a plane

intersecting with an AAB does not imply the corresponding triangle also intersects

the AAB.) The algorithm take a reference point x and n to form the plane, and the

vector of half lengths h since the AAB is origin-translated. x can be any vertex of

the triangle, they use v0 as x.

At first, it finds the maximum and minimum distance vectors, vmax and vmin,

from all vertices on the AAB to the reference point x. The following pseudocode
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vmax

vmin

(a) ”not overlapping”

n

vmax

vmin

(b) ”overlapping”

n

vmax

vmin

(c) ”not overlapping”

Figure 3.5: SAT third test illustration.

takes advantage of translated AAB to achieve the same logic.

for all axis a ∈ X, Y, Z do

if na > 0 then

vmina ← −ha − xa; vmaxa ← ha − xa;

else

vmina ← ha − xa; vmaxa ← −ha − xa;

end if

end for

Geometrically, it will always obtains vmax and vmin from two diagonal vertices.

After finding vmax and vmin, the algorithm then projects vmax and vmin to

the n by dot product (i.e., rmax = vmax · n and rmin = vmin · n). This test

report ”non-overlapping” if rmax and rmin are both positive or both negative. The

following pseudocode implements the above logic using early termination.

if vmin · n > 0 return ”non-overlapping”

if vmax · n ≥ 0 return ”overlapping” (if not last test, plane and AAB only!)

return ”non-overlapping”

If any of these tests report non-overlapping, then the triangle and the AAB are not

intersected. Otherwise they are overlapping. They put the ”(9 tests)” first because empir-

cally it makes entire test faster (it may be seen as early termination code optimization).

We also developed a similar voxelizer using AABB-triangle intersection test, but with-

out octree space subdivision. Instead, for each triangle, we linear search the voxel range
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that the triangle is located at. This process is similar to scan conversion in three dimen-

sional space. After we found the range, we extend the range by two voxels in all six

directions. Finally, we examine the voxels within the range by using the box-triangle in-

tersection test. If the test reports “overlapping”, we mark the corresponding voxel as one

to indicate occupancy. Figure 3.6 demonstrates some examples of this process.

(a) (b)

(c) (d)

Figure 3.6: Voxelization by box-triangle intersection test. (a), (b), (c) shows red vox-

elization grids, the blue box is the tight bounding box of the input mesh model. Note

that the starting position of the voxelization needs adjustment. (d) shows scan converting

box-triangle intersection test (Red boxes are also intersected boxes).

We compared two voxelization algorithm, and discovered there are pros and cons in

both methods. The ray-triangle voxelizer can produce visually more similar voxelized

3D model than the box-triangle voxelizer under the same voxelization resolution. But it

also produces many holes in the voxelized model. On the other hand, the box-triangle

voxelizer is just the opposite. It may be more desirable to have a more visually similar

17



voxelized model than a fewer holes one. Although models with fewer holes usually make

entire sculpture more stable, these thicker models also use more LEGO bricks implicitly,

thus reduce the chance of completing a LEGO sculpture. See Figure 3.7 for comparision

and evaluation.

(a) Sphere

+z
+x

+y

(b)

+z
+x

+y

(c)

(d) Bottle

+z
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(e)

+z
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+y

(f)

(g) Bunny

+z

+x

+y

(h)

+z

+x
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Figure 3.7: Voxelization results. Left column is the original triangular mesh models.

Middle column is voxelized using ray-triangle intersection test. Right column is

voxelized using box-triangle intersection test. Both voxelization uses same resolution

setting. (a), (b), (c): Sphere, resolution = (x: 12, y: 12, z: 12). (d), (e), (f): Bottle,

resolution = (x: 23, y: 38, z: 12). (g), (h), (i): Bunny, resolution = (x: 15, y: 15, z: 12).
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The observed dilemma between two voxelization algorithms make us wonder if this

is really a tradeoff (see Figure 3.8 for artifact illustration), or there will be a hybrid ap-

proach to further improve the voxelized model. To ease the explanation, we first define

two terms, VMray and VMbox, to represent the two voxelization results obtained from

previous stage. VMray and VMbox are both 3D matrices representing voxel occupation.

They are consist of only zeros and ones. The ones represent occupied voxels, while the

zeros represent empty void voxels. VMray is voxelized by ray-triangle intersection test.

VMbox is voxelized by box-triangle intersection test.

After we obtain two voxelization results, we combine the results into one voxelized

model using the following three repairing procedures in attempt to solve the dilemma.

1. Make the interior of shell-only voxelized model VMbox solid, thus obtainin VMsolidbox.

2. Improve neighborhood connectivity of VMray within 3x3x3 range using VMsolidbox

as an aid.

3. Fill the fragmented interior and surface holes. If a hole is surrounded by VMsolidbox

neighboring voxels.

(a) (b)

Figure 3.8: Artifacts of a ray-triangle voxelized model. (a) and (b) show the flower bottle

has a failure voxelization part in ray-triangle intersecting voxelization, but not in the box-

triangle intersecting voxelization.
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If users supply voxel-based 3D model directly, then the above three repairing pro-

cedures can still be used, but there will be no distinction between VMbox, VMray and

VMsolidbox since there is only one voxelized 3D model. In other word, these procedures

use the input itself as the reference voxelization to repair itself. We have experimented

that it will still achieve some repairing result.

Before explaining each step of propressing, we define “voxel connectivity” as follows:

Definition 1. Voxel Connectivity (see Figure 3.9)

A voxel at (x, y, z) is automatically connected to its six 3D direction neighboring

voxels (i.e., voxels at coordinates (x − 1, y, z), (x + 1, y, z), (x, y − 1, z), (x, y + 1, z),

(x, y, z − 1) and (x, y, z + 1)).

(a) (b) Connected voxels (c) Disjoint voxels

Figure 3.9: Voxel connectivity. (a) shows the spatial neighboring relationship for a voxel

to check its connectivity. (b) and (c) are examples in six direction.

In mathematical graph theory, if we view a voxel as a node, then the Definition 1

means that the node always equipped with edges toward six 3D direction. This implies

that if a voxel is nearby another voxel in 3 dimensional Euclidean geometry sense, then

they are automatically connected. These edges can be directed or undirected, because if

two voxels are connected using directed edges, it forms a bidirectional edge.

After we know how to express the connectivity of a voxel, we can then devise an con-

nected component algorithm, VOXEL CONN COMP, based on depth first search.

It takes a voxelized 3D model representation V m consist of zeros and ones. The algo-

rithm will return how many connected components the voxelized 3D model has, and a

3D matrix Setid consist of component set integer identifiers. The Setid has the same
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size of V m, and each unique integer in Setid is a ranking order according to the size of

each connected component. In other words, The smaller the Setid(x, y, z) is, the larger

the connected component is. The ranking order property of Setid can be used to map

each identifier to a color. We use Jet color mapping for this purpose. Therefore, if the

color is close to red, then the connected component has few voxels. If the color is close

to blue, then the connected component has many voxels. This visualization will be used

throughout the entire paper, as in Figure 3.10. The running time does not put pressure on

our system, therefore we use the algorithm in many other parts of our system.

(a) (b)

Figure 3.10: Voxel connected components. The color code in (a) and (b) represent dif-

ferent connected components of the voxels, and the gray color often represent the main

connected component (that is, a connected component with most number of voxels). (a)

shows the bunny has broken ears, but thay can be repaired by simply adding a voxel nearby

to achieve fully connected voxels. (b) shows the yellow and cyan voxels are isolated from

the main connected component.

The repairing procedure 1 is essentially a procedure to solidify a voxelized model.

This procedure is mainly used after voxelization using AAB-triangle intersecting vox-

elizer, because it only tests against the triangles used to described the surface of a 3D

object. It does not detect whether a voxel is in the interior/exterior of a 3D model. The

algorithm 2 describes the above procedure.

The above procedure do successfully solidify the AAB-triangle voxelized 3D models.

The reason why it works is that there are always some of rays, shot from the exterior
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Algorithm 2 Soldify shell-only voxelized 3D model

Require: A voxelized 3D model V m with no holes on the shell surface.

. (i.e., a fully enclosed 3D model)

for all V m(x, y, z) = 0 (empty void voxels) do

hitcount← 0
for all rays shooting toward 6 direction do

if the ray hit an occupied voxel

+ + hitcount
end for

if hitcount = 6
V m(x, y, z)← 1

end for

empty void voxels , hitting nothing but continuing travels. While the interior empty void

voxels, with the enclosure assumption, will make hitcount reaches six. The results are

shown in the Figure 3.11.

After we obtain solidified voxel representation, VMsolidbox, we use it to perform re-

pairing procedure 2. As previous section mentioned, VMbox is often thicker than VMray,

while VMray often produces the artifacts like Figure 3.8. This observation strongly sug-

gests that we should devise a heuristic voxel connectivity repairing algorithm using a

thicker reference VMsolidbox in attempt to eliminate the disconnecting artifacts in VMray.

The method is described in the algorithm pseudocode 3. Basically, it will utilize the

previously described voxel connected component algorithm to detect if there is a voxel at

VMsolidbox(x, y, z) and adding it to VMray(x, y, z) cause the voxel connectivity of nearby

3x3x3 space dropping, then we add it. Otherwise we reject this adding.

Algorithm 3 Voxel connectivity repair using a thicker reference VMsolidbox

for all VMray(x, y, z) = 0 (empty void voxels) do

VM3x3x3 ← extract nearby 3x3x3 of VMray at (x, y, z)
oldConnectivity ← VOXEL CONN COMP(VM3x3x3)
VMray(x, y, z)← 1
VM3x3x3 ← extract nearby 3x3x3 of VMray at (x, y, z)
newConnectivity ← VOXEL CONN COMP(VM3x3x3)
if newConnectivity ≥ oldConnectivity
V Mray(x, y, z)← 0 . reject the adding.

end for

We use a reference voxelization VMsolidbox because simply adding voxels for connec-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.11: Solidify a voxelized 3D model. The resolutions of these models are the same

as Figure 3.7. The bunny has a failure voxel inside, it is because the model has bottom

holes which violate the assumption of our procedure.
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tivity will not respect to the visual similarity. And we use VMsolidbox instead of VMbox

because there are extreme cases that the shell of VMbox does not intersect with the shell of

VMray. These cases may occur if the intersection of triangle is very close to the boundary

of a voxel.

The results are shown in Figure 3.12. The algorithm often successfully repairs the

voxelized model with long parts. These models are often humanoid characters, biped

animals, and so on. Models with smoother surface often do not need such connectivity

repairing. Because we only apply the connectivity repairing within 3x3x3 cube space

(that is, it checks the Definition 1 and diagonal voxels). It cannot actually connect the

case shown in Figure 3.9 (c), since their 3x3x3 space do not include each other.

The repairing procedure 3 also takes the advantage of the observation that VMray

is thicker than VMsolidbox. It could happen that VMray will be entirely included by

VMsolidbox, and the we can use the solid interior of VMsolidbox to repair surface and inte-

rior holes of VMray. The algorithm 4 implements this procedure.

Algorithm 4 Repair surface/interior holes of VMray using a thicker reference VMsolidbox

for all VMray(x, y, z) = 0 (empty void voxels) do

surroundingCount← 0
(check if (x, y, z) is surrounded by VMsolidbox = 1 in six directions):

if VMsolidbox(x− 1, y, z) = 1 + + surroundingCount
if VMsolidbox(x + 1, y, z) = 1 + + surroundingCount
if VMsolidbox(x, y − 1, z) = 1 + + surroundingCount
if VMsolidbox(x, y + 1, z) = 1 + + surroundingCount
if VMsolidbox(x, y, z − 1) = 1 + + surroundingCount
if VMsolidbox(x, y, z + 1) = 1 + + surroundingCount
if surroundingCount = 6 VMray(x, y, z)← 1

end for

In fact, we not only check VMsolidbox but also check VMray for surrounding. This is

just for some subtle cases that the VMsolidbox is not successfully solidified. The algorithm

successfully applied to different resolutions of the bottle model. At this step, our attempt

to repair a voxelization result with artifacts is basically finished. The following prepro-

cessing steps are focused on providing a better initial solution for placement optimization.
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(a) Dinosaur (b) 4 connected components (c) entire fully connected

(d) Child (e) 3 connected components (f) 2 connected components

(g) Bunny (h) 5 connected components (i) entire fully connected

Figure 3.12: Repair the connectivity of VMray. Left column is the original triangu-

lar mesh models. Middle column is the voxelized models before connectivity repairing.

Right column is the voxelized models after connectivity repairing. (a), (b), (c): Dinosaur,

resolution = (x: 18, y: 25, z: 26). (d), (e), (f): Child, resolution = (x: 25, y: 37, z: 12).

(g), (h), (i): Bunny, resolution = (x: 15, y: 15, z: 12). In the child model case, the yellow

voxel in (e) cannot be rescued due to 3x3x3 cube space constraint.
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(a) (x: 16, y: 25, z: 8) (b) (x: 23, y: 38, z: 12) (c) (x: 31, y: 50, z: 16)

(d) (e) (f)

Figure 3.13: Repair surface and interior holes of VMray. First row shows the broken part

of the “Bottle” model. The captions in (a), (b), and (c) are their voxelization resolution.

Second row shows the repaired results.

3.3 Preprocessing

Although there are previous voxel repairing efforts, still we are unable to fully repair

all kinds of artifacts in these voxelized models. The remaining isolated voxels, as shown

in Figure 3.10, will never connect to the main trunk of LEGO sculpture. If we do not get

rid of these voxels, we cannot clearly determine our legolized results are valid or not in

the later placement optimization step. In addition, albeit we change the cost optimality

goal into quantity constraint goal, it is still worth making our voxelized model as hollow

as possible. Especially for large LEGO construction projects, removing interior voxels

can effectively minimize time and money spent on these projects.

The above two factors lead to the design of the following two operations.

1. Remove isolated voxels automatically.

2. Remove the interior voxels of the combined result, thus making it hollow.
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The preprocessing step 1 is basically removal of smaller isolated connected compo-

nents. As our VOXEL CONN COMP algorithm will find the major connected com-

ponent with most number of voxels, this step is as easy as reuse of the VOXEL CONN COMP

algorithm. After cleaning fragmented voxels, we eliminate one of reasons that could fail

the placement optimization.

The preprocessing step 2, removing the interior voxels to make the voxelized model

hollow, is the inverse operation of making model solid. However, the algorithm is quite

different. Instead of traversing all empty void voxels, we use ray-tracing like algorithm

to traverse voxels. Similar to the voxelization algorithm by ray-triangle intersection test,

we also use parity counting to determine the interior, but with a higher counter bound for

classifying interior between shell. The ray-tracing way provides the flexibility to adjust

the thickness of the hollow voxelized model for every side, since we perform six sides ray-

tracing to determine the interior. The algorithm requires one assumption, that is, the input

voxelized model must be fully solidified (i.e., no holes inside the model). The procedure

is implemented in Algorithm 5.

Algorithm 5 Remove interior voxels of a voxelized model V m.

Require: A voxelized 3D model V m with no holes inside it.

. (i.e., a fully solidified 3D model)

initialize 3D matrix countSix to zero.

for all ray shooting directions ∈ {+x,−x,+y,−y,+z,−z} do

for all pixel(i, j) ∈ corresponding plane perpendicular to the ray do

Get 3D coordinate (x, y, z) by interpreting pixel(i, j) and the ray.

if V m(x, y, z) = 0 then

countThickness← 0
else

+ + countThickness
if countThickness > thicknessrayDirection

+ + countSix(x, y, z)
end if

end for

end for

V m(x, y, z)← 1, ∀ countSix(x, y, z) = 6

The hollowed-out voxelized model results can be seen in Figure 3.14. We found that it

is sufficient for placement optimizer to run in thickness of two voxels. If we use only one

voxel thick, the shell of voxelized model will produce zigzag structure. These diagonal
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artifacts will greatly reduces the chance to use LEGO bricks connect the entire voxel

representation. And making the voxelized model thicker does not gain any benefit but

increase the consumption of LEGO bricks.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.14: Hollowing out a voxelized 3D model. The resolutions of these models are the

same as Figure 3.7. Left column is the original triangular mesh models. Middle column

is the voxelized models of one voxel thick. Right column is the voxelized models of three

voxel thick.
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3.4 Placement Optimization

After voxelization and preprocessing stages, our voxelized model is ensured to be a

single connected voxel representation according to the Definition 1. But such a model

cannot be considered as “legolized”. A simple attempt of legolizing the voxelized model

is to map every voxel into generic 1x1 LEGO brick. This attempt, however, is definitely

unable to succeed. Because this will only give you many disjoint 1x1 LEGO pillars, and

some of pillars are even floating in the air, as Figure 1.2 shows. A truly legolized object

should at least satisfy the connectivity-one objective, which is one of three goals we want

to achieve in order to solve the “LEGO construction problem”.

But before we describe our approach of placement optimization, we first have to define

what is the connectivity between LEGO bricks. As we did in the Preprocessing section,

in this way we can have a better understanding of our problem in terms of mathematical

graph theory.

Definition 2. LEGO Brick Connectivity (see Figure 3.15)

A LEGO brick is connected to the bricks directly above it and the bricks below it.

If a LEGO brick X has a dimension of (width × height × length) and positioned at

(x, y, z) using the lowest voxel part of LEGO brick as the pivot voxel. Then we know

the LEGO brick X has two rectangular interlocking surfaces. They can be expressed

as a voxel coordinate set S = {(xr, y − 1, zr)} ∪ {(xr, y + height− 1, zr)}, where

x ≤ xr < x+width and z ≤ zr < z+ length. Any LEGO brick covers these coordinates

in S are said to connect to the LEGO brick X .

The above definition assumes the LEGO bricks are cuboid shapes. In graph theory

terms, if we view a LEGO brick as a node, then the Definition 2 means that the node

always equipped with edges toward above and below. The LEGO brick connectivity

definition is somewhat more strict than the voxel connectivity definition, as LEGO bricks

only allow vertical connection instead of horizontal connection. Again, the edge can be

directed or undirected using the same bidirectional edge argument in Definition 1. But

directed edges can be use for computing a better building order, later in the section we
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(a) Connect from above (b) Connect from below

Figure 3.15: LEGO brick connectivity.

will briefly discuss how to obtain a better building order.

Like we can devise a connected component algorithm based on depth first search on

voxels, we can also design a similar algorithm, BRICK CONN COMP, to compute

the connectivity of entire legolized 3D structure. But instead of using 3D matrix SetId,

we use a hash table for this purpose. This is because our legolized representation data

structure LM is designed by a composition of 3D pointer matrix Pm and a linked list

brickList storing information for all actual LEGO bricks. Each Pm(x, y, z) is actually

a pointer to one of items in brickList. In this way, we can conveniently reference the

LEGO brick information stored in the brickList by using LM(x, y, z) = Pm(x, y, z).

In addition, pointers provide unique item referencing, which is suitable for being as hash

keys. This explained the reason why we use hash table to store SetId.

As mentioned in the Introduction chapter, this NP-hard problem is not easy to solve.

After our related work survey, it is typical to formulate the problem as an placement

optimization problem, and solving it using optimization techniques. We also follow this

common approach as our final stage of legolizer. Among all optimization techniques, we

follow the “Cellular Automaton” method described in the paper [5] and implemented our

own version with some modifications.

Basically, they formulate the LEGO placement optimization problem in a “Cellular

Automaton” way. Then the optimization process is just the same as the evolution process

of a cellular automaton simulation. To formulate a problem solvable by cellular automa-
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ton simulation, it typically requires to define two elements.

1. What is a cell and its states?

2. How a cell to interact with nearby cells?

For optimization problems, we require two more elements, and thus become a opti-

mization algorithmic framework called “cellular automaton optimization”:

3. How “healthy” is a cell?

4. When to stop optimization?

To formulate, they map the concept of a cell to a LEGO brick. The operations for

interacting neighborhood cells are called “merging” and “splitting”. And finally, they

have to define a local heuristic energy function to represent the fitness of a cell. In this

way, they can evaluate how good is the placement of a LEGO brick.

We later found that the properties of cellular automaton are very suitable for LEGO

construction problem. These properties are:

• Parallelism. Each cell is independent and isolated, it provides the opportunity of

data parallel computing.

• Locality. Each cell only probes and interacts with its neighboring cells. This is

especially important because eliminate the needs to check if a placement is blocked

by other LEGO bricks. Instead, we only need to check whether inter-cellular inter-

action is successful of not. But this property may be also a drawback because we

can only compute local cost function. This may lead to local optimal results.

• Homogeneousity. Cuboid LEGO bricks have homogeneous geometric properties,

which is just the same as cells in cellular automaton.

We begin to formally define what is a cell for cellular automaton optimization to

evolve a 2D layout of LEGO brick placement. This is the main object which we often

manipulate in the algorithm. After the definition, we will use “cell” and “LEGO brick”

interchangeably.
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Definition 3. A cell in cellular automaton (see Figure 3.16)

A cell represents a cuboid LEGO brick. It is defined by a dimension of (width ×

height× length) and positioned at (x, y, z) using the lowest voxel part of LEGO brick as

the pivot voxel. The neighborhood of a cell is divided into vertical part and horizontal part.

The definition of vertical neighbors are the same as the LEGO brick connectivity defini-

tion (Def. 2). The horizontal neighbors are defined by four side of the LEGO brick. That

is, it can be defined by a voxel grid set S = {(xr, yr, z)} ∪ {(xr, yr, z + length− 1)} ∪

{(x, yr, zr)} ∪ {(x + width− 1, yr, zr)}, where x ≤ xr < x + width, y ≤ yr <

y + height, and z ≤ zr < z + length.

pivotpivot

length

height
z+

x+

y+

width

Interlocking 
Rectangular 
Surface

(a)

pivot

z+

x+
y+

Interlocking 
Rectangular 
Surface

(b)

(c) (d)

Figure 3.16: A cell in cellular automaton. The 2x2x6 LEGO brick is synthesized by

two 2x1x6 LEGO bricks for illustration. (c) and (d) shows the white and red horizontal

neighboring LEGO bricks.
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Their initial attempt [5] to encode the problem by a standard cellular automaton is

unsuccessful due to LEGO bricks are not homogeneously occupying only one grid but

multiple grids. Therefore, they use the concept of “cluster of cells” to futher abstract a

LEGO brick. But this abstraction may further complicate the algorithm for readers to

understand, we would like to use only “cells” to abstract LEGO bricks.

The LEGO brick family set that we used in our legolizer can be found in Figure 3.17.

Note that the dimension notation in the Definition 3 is different from the labels in Figure

3.17. And to ease the implementation, we handle the rotation of bricks by mirroring the

dimension. For example, 1x1x2 cell and 2x1x1 cell represent the same LEGO 1x2 brick.

In addition, Instead of adding so called L-shape LEGO brick as they [5] did. We strictly

do not include the L-shape brick because they are rare in the LEGO basic brick set.

1x1 1x2 1x3 1x4

2x2 2x3 2x4

1x6

2x6

1x8

2x8

Figure 3.17: LEGO brick family set.

Similar to previous attempts, cellular automaton also uses layer-by-layer decomposi-

tion approach to solve the LEGO construction problem. Because most often the height

of a cell is 1. As this can be seen by the input LEGO brick set, which is only consist
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of height-one LEGO bricks. This divide and conquer technique is often used to solve

complicated optimization problems.

We now describe the procedure of cell automaton optimization first. We defer the

explanation of the remaining three elements to the later part of this section. Initially, for

all occupied voxels in the 3D voxelized model, we convert them into 1x1 generic LEGO

bricks (i.e. ∀ V m(x, y, z) = 1, we replace it with a corresponding 1x1 generic LEGO

brick). Then, for each layer, the algorithm iteratively optimize this layer until a given time

step limit is reached. Each time step iteration performs the following 3 phases.

1. For each cell in the layer, probe horizontal neighboring cells to find best mergeable

direction ∈ {+x,−x,+z,−z} The “best” term is defined by element 3 - energy

function. If there are more than one directions that evaluates the same minimum

cost, we randomly choose one of them.

2. Compute all weakly connected components for this layer by viewing each cell’s

best horizontal mergeable direction as a directed edge pointing to a horizontally

neighboring cell. These weakly connected components are called potential merge-

able clusters.

3. For each potential mergeable cluster, merge all cells within the cluster. For any cell

within the cluster, if the number of failed merge attempts for the cell is exceed a

constant, we perform probabilistic split on it.

More precisely, the cellular automaton optimization algorithm can be described us-

ing the pseudocode 6. The element 4, termination criteria, is very simple. The variable

MAX ITERATION is the time step limit for each layer.

We begin to explain the element 2 - cell interating operations. There are two opera-

tions: merge and split. The merging of two cells is defined as following:

Definition 4. Merge operation of two cells (two LEGO bricks) (see Figure 3.18)

Given two cells A and B according to the Definition 3, a merge attempt is successful

if A and B satisify one of the following three conditions:
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Algorithm 6 Cellular automaton optimization.

Require: A single entirely connected voxelized 3D model V m.

. Variables with LM prefix are legolized 3D volume.

∀ V m(x, y, z) = 1, LM(x, y, z)← 1x1x1 cell (LEGO brick).

for 0 ≤ y < LM.height do

LMlayer ← LM.layer(y)
LMbestLayer ← LMlayer

bestLayerCost← compute layer cost for each cell c ∈ LMbestLayer

using local heriustic energy function BRICK ENERGY(c). . (element 3)

for 0 ≤ timeStep < MAX ITERATION do

(phase 1), parallelizable for each c:
for all cell c ∈ LMlayer do

find c.bestMergeDirection by probing horizontal neighboring cells by

evaluate after merging energy using BRICK ENERGY(merged).

end for

(phase 2):

compute the set of potential mergeable clusters S by c.bestMergeDirection.

. This can be solved by weakly connected component algorithm.

(phase 3), parallelizable for each s:

for all potential mergeable cluster s ∈ S do

for all cell c ∈ s do

mergedNewCell←merge(c, getCell(LMlayer, c.bestMergeDirection)).

. (element 2)

if mergedNewCell 6= empty void voxel (merge success) then

alter LMlayer to reflect the merge .

else

+ + c.mergeFailCount
end if

if c.mergeFailCount > MERGE FAIL LIMIT
and pass c.splitProbability test

split c and alter Lmlayer to reflect the split. . (element 2)

end for

end for

currentLayerCost← compute layer cost for each cell c ∈ LMlayer

using BRICK ENERGY(c).

if currentLayerCost < bestLayerCost then

bestLayerCost← currentLayerCost.
LMbestLayer ← LMlayer.

end if

end for

LM.layer(y)← LMbestLayer

end for
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1. They are completely overlap in YZ plane, and there is such a LEGO brick type with

the merged dimension (A.width+B.width,A.height, B.length). The merged cell

M has the merged dimension and the pivot coordinate of (min(A.x,B.x), A.y, B.z)

2. They are completely overlap in XY plane, and there is such a LEGO brick type with

the merged dimension (A.width,B.height, A.length + B.length). The merged

cell M has the merged dimension and the pivot coordinate of (A.x,B.y,min(A.z,B.z))

3. They are completely overlap in XZ plane, and there is such a LEGO brick type with

the merged dimension (A.width,A.height + B.height, B.length). The merged

cell M has the merged dimension and the pivot coordinate of (A.x,min(A.y,B.y), B.z)

For the extension of color constraint mentioned in the reference work [5], The merge

operation must additionally check if two cells are of the same color, or one of cell has the

so-called “wildcard” color. Cells with wildcard color are used to relax the constraint, they

often reside in the interior of the voxelized 3D model. The cell with non-wildcard color

will override the wildcard color after merging.

(a) Succeed (b) Failed by mismatch (c) Failed by no such type

Figure 3.18: Merge operation of two neighboring cells. (a) is a successful merge oper-

ation, provided that white color is the “wildcard” color. (b) is a failure merge operation

because position mismatch leads to not completely overlap. (c) is a failure merge opera-

tion, provided that the input LEGO brick set is the same as Figure 3.17.

There are two problems when implementing the merge operation and related algo-

rithm phases (phase 1 and 3). First, how does a cell know the properties of its horizontal

neighboring cells? Second, how to smoothly merge cells in a potential mergeable cluster

into a real large cell without the aid of L-shaped LEGO brick? (L-shaped brick will make
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merge operations within a potential mergeable cluster smoothly executed along the path

formed by sequence of best mergeable direction).

The first problem is solved by the design of legolized representation data structure

LM . As previously mentioned, we use the 3D matrix of pointers Pm to reference cells.

We can reference a cell by a volume of pointers ptrs. Specifically, given a LEGO brick A

stored in LM , ptrs = {Pm(xr, yr, zr)} where A.x ≤ xr < A.x + A.width, A.y ≤ yr <

A.y + A.height, and A.z ≤ zr < A.z + A.length. Figure 3.19 (a) illustrate the above

description. In addition, using this design can simplify the finding of horizontal mergable

cells. We can only probe four voxels instead of iterating all horizontal neighboring voxels

by Definition 3. Because it can be proven that given two mergeable cells, B and C, C must

occupy Pm in one of these four voxel positions: (B.x − 1, B.y, B.z), (B.x,B.y, B.z −

1), (B.x + B.width,B.y, B.z), and (B.x,B.y, B.z + B.length).

The second problem is basically the current cell cannot merge all of its neighboring

cells due to dimension mismatching. We solve it by deferring the merge of current cell.

More specifically, we perform merge operation on the neighboring cell first in attempt to

get a cell whose dimension is matched for a successful merge. Then we return to merge

the original cell whose merging is deferred. We use arrows in Figure 3.19 (b) to explain.

The splitting of a single cell is very simple. It is defined as following:

Definition 5. Split operation of a single cell

A split operation on a single cell is to break it into 1x1 cells. More clearly, Given

any LEGO brick A, the split operation turn every voxel (x, y, z) into 1x1 generic standard

LEGO brick, where A.x ≤ x < A.x + A.width, A.y ≤ y < A.y + A.height, and

A.z ≤ z < A.z + A.length.

As pseudocode 6 mentioned, the split operation is controlled by two parameters,

MERGE FAIL LIMIT and cell.splitProbability. MERGE FAIL LIMIT should

not be too small, as it may cause splitting too often. The parameter cell.splitProbability

is related to the brick size. Usually, the larger the brick, the smaller the probability to

trigger a successful split.
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(a)

X

(b)

Figure 3.19: Notes for implementing merge operation. In (a), the center orange LEGO

probes the four horizontal neighboring cells using the yellow arrows shot from pivot lo-

cated by green rectangle. The voxels pointed by the yellow arrows then reference to the

actual LEGO bricks, like the cyan arrows pointing to their pivots located by red rectangle.

The probing result is that the center LEGO can only merge the light blue cell. In (b), we

defer the merge led by the yellow arrow, and try the merge led by the white arrow first.

After the merge of white arrow is completed, the yellow arrow is now pointing newly

merged 1x2 LEGO, which becomes mergeable by the yellow arrow holder.

After we defined the element of neighborhood interaction routines, we begin introduc-

ing the local heuristic energy function, the element 3 of cellular automaton optimization.

Basically, it is a weighted sum of different energy terms.

Definition 6. Local heuristic energy function (BRICK ENERGY(cell))

Given a LEGO brick cell placed in the legolized 3D volume LM , the cost of this

placement, Ecell, is defined by the following weighted sum equation [5, 10, 11]:

Ecell = WnumBricks × EnumBricks

+ WdirAltern × EdirAltern

+ WnumDistinctColor × EnumDistinctColor

+ WnumConnBricks × EnumConnBricks

+ WareaConnBricks × EareaConnBricks

+ WsameV edge × EsameV edge
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If any of weight equals to zero, then it effectively disable the corresponding energy

term. The energy terms often probe the connecting cells from above and below. The

“above” and “below” are following the brick connectivity definition (Def. 2). And the

counting of connecting cells are all distinct LEGO bricks, that is, if a vertical connect-

ing LEGO brick covers the current evaluating LEGO brick, cell, more than one grids,

it should be counted as one rather than the number of overlapping grids. We begin to

explain every single energy terms.

The energy term EnumBricks is simply computed by counting how many LEGO bricks

in the legolized sculpture volume LM . If the energy term is used in the cellular automaton

for local cost function, then it refers to the cost of cell itself. We use uniform cost for each

kind of LEGO bricks as the main reference work [5] did. In other word, EnumBricks = 1

for every LEGO brick in LM . We should set WnumBricks > 0 to minimize this energy

term. This term can even be ignored when used in cellular automaton because it does

not discriminate the merged LEGO bricks, and merging operation itself implicitly and

effectively reduce the consumption of LEGO bricks.

The energy term EdirAltern means the above and below bricks connecting to cell

should result in alternative directionality. That is, if the longest dimension of cell is along

x-axis, then the above and below bricks connecting to it should have longest dimension

along z-axis, and vice versa. Figure 3.20 demonstrate this energy term. The directionality

alternation will make the LEGO structure more stable and connected since it follows the

principle of masonry. In practice, given the input LEGO brick set, we can compute the

longest dimension axis for each kind of LEGO beforehand. EdirAltern is actually equals to

the number of LEGO that differs from cell in longest dimension axis. For LEGO bricks

with no longest dimension axis (e.g., squared LEGO bricks like 1x1 and 2x2), this term is

ignored. We can infer from the description that we should set WdirAltern < 0 to maximize

this energy term.

The energy term EsameV edge means how many overlapping boundaries for connected

LEGO bricks from above and below. Figure 3.21 illustrates this term. The boundaries of

LEGO bricks are the reasons why they cannot be horizontally connected. If two connected
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(a) Good placement, EdirAltern = 3 (b) Bad placement, EdirAltern = 0

Figure 3.20: The energy term EdirAltern. The cyan arrows represent the longest dimension

axis of cell. The black arrows represent longest dimension axes of bricks connecting to

cell.

LEGO brick has more overlapping vertical cutting edges, it implies that they are covering

themselves. As a result, they are tend to less helpful in increasing connectivity. We should

set WsameV edge > 0 to minimize this energy term. We originally implemented EsameV edge

by counting the length of total overlapping edges. However, we discovered this energy

term will have the side effect of penalizing cell to cover square-shaped LEGO bricks.

Because squared bricks have considerable area covering capability. When cell has to

choose a direction from L-shaped choices, this term will cause cell to choose mergeable

bricks without covering bricks from above and below. Therefore, we disabled this term in

the experiment result by setting WsameV edge = 0

The energy term EnumConnBricks is computed by total number of bricks connecting to

cell from above and below. This term directly reflects the connectivity contribution of

cell. We should set WnumConnBricks < 0 to maximize this energy term.

The energy term EareaConnBricks is computed similar to the energy term EnumConnBricks,

but instead of just adding one for each distinct LEGO brick connecting to cell, it adds the

area of vertical connecting LEGO brick. The area is computed as width× length It eval-

uates the connectivity contribution more precisely. We should set WareaConnBricks < 0 to

maximize this energy term.
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(a) Good placement.

EsameV edge = 1
(b) Bad placement.

EsameV edge = 3 + 1 + 3 = 7
(c) Side effect.

Bad merge direction.

Figure 3.21: The energy term EsameV edge. In (a) and (b), cell is the blue LEGO brick.

The red lines show the overlapping edges that should be penalized for bad placement.

However, as (c) shows, this term may make the red LEGO brick to merge the white

orphan brick pointed by the arrow, thus increase the risk of disconnection.

The EnumConnBricks and EareaConnBricks terms will drive the cell actively to merge

horizontally neighboring cells. Figure 3.22 illustrates the above two energy terms.

(a) Good placement.

EnumConnBricks = 4
EareaConnBricks = 6+6+2+8 = 22

(b) Bad placement.

EnumConnBricks = 3
EareaConnBricks = 1 + 1 + 1 = 3

Figure 3.22: The energy term EnumConnBricks and EareaConnBricks. cell is the light blue

brick on the table.

The energy term EnumDistinctColor means to make cell cover as many distinct color

of LEGO bricks as possible. It is corresponding to the color extension of the reference

work [5]. This is a reasonable energy term because color constraint makes the merging

operation more difficult to successfully performed, and thus compromise the connectivity.

Without this term, it is likely that the entire legolized model will split along line partition
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by different colors. Note that the “wildcard” color is also treated as one kind of color. We

should set WnumDistinctColor < 0 to maximize this energy term. Figure 3.23 shows the

example of this energy term.

(a) Good placement.

EnumDistinctColor = 8
(b) Bad placement.

EnumDistinctColor = 2

Figure 3.23: The energy term EnumDistinctColor. The white color here represents the wild-

card color. cell is the wildcard color sticked to the green plate.

In the original reference work, there was an energy term called Euncovered, which

counts the interlocking surface area coverage of cell from above and below. That is, if

cell has fewer vertical connecting bricks, the more area is uncovered by LEGO bricks

and resulting in larger Euncovered. However, we feel that this energy term is much less

effective, and it may prevent interior cells merge toward boundary. Because boundary

bricks often uncovered by other cells to provide shape visual similarity, this term will

penalize the outward merging LEGO brick, and thus produce hanging bricks.

In our experiment, our parameters for placement optimization are: MAX ITERATION

= 98, MERGE FAIL LIMIT = 11, WnumBricks = +7, WdirAltern = −2, WsameV edge =

0 (disabled), WnumConnBricks = +4, WareaConnBricks = −1, and WnumDistinctColor = −2.

Table 3.1 shows the LEGO family set we used in the experiment and its splitting probabil-

ity paramters for each kind of LEGO brick. The quantity distribution of the LEGO family

set is equivalent to two boxes of LEGO 5623 basic brick set. Our table only considers the

dimension, all bricks that has the same dimension but different colors will be aggregated

into the total quantity of that dimension. The dimension notation is according to the Def-
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inition 3, and we do not mirror the type in the table to reflect the actual number. Figure

3.24 shows our cellular automaton optimization in action. It also illustrates our graphical

user interface for this computer-aided LEGO sculpture assembly tool.

Type Quantity Splitting Probability Type Quantity Splitting Probability

1x1x1 128 0

2x1x1 280 0.7 2x1x2 212 0.7

3x1x1 40 0.7 3x1x2 76 0.7

4x1x1 32 0.6 4x1x2 76 0.6

6x1x1 20 0.5 6x1x2 14 0.5

8x1x1 14 0.4 8x1x2 8 0.4

Table 3.1: The LEGO brick family set used in the experiment.

The optimized LEGO placement achieved nearly connected results. However, to fur-

ther increase the chance of successfully constructing a LEGO sculpture, we implemented

following post-optimization refinement procedures:

1. Repair disconnected hanging LEGO bricks on the surface.

2. Simple L-shaped conflict resolution.

3. Re-merge all bricks generated by above two procedures.

4. Adjust LEGO quantity distribution to relax the pressure from rare kinds of LEGO.

The first procedure is implemented because the optimized placement often consist

of fragmented hanging LEGO bricks on the surface, resulting in disconnected legolized

model. As shown in Figure 3.27, this kind of artifact is rather easy to repair. We use

BRICK CONN COMP to find disconnected components containing only one LEGO

brick. Then, for each of such disconnected LEGO brick, we split it and its nearby horizon-

tal neighboring LEGO brick. The split operation is defined in Def. 5 and the horizontal

neighborhood is defined in Def. 3. After splitting isolated LEGO bricks, we will re-merge

them by third procedure rather than reusing the cellular automaton optimization. Because

we want to completely avoid the artifact produced by it.

The second procedure is an attempt to repair connectivity lost by L-shaped conflicts,

as the bunny example in Figure 3.27 (a). The L-shaped conflict example can be found

43



(a) layer 8 to 14 optimized

(b) layer 4 to 14 optimized

Figure 3.24: Cellular automaton optimization in action.
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in Figure 3.21 (c). What we called “L-shaped conflict” means various problems intro-

duced by the lack of L-shaped LEGO bricks. L-shaped voxels introduce conflicts be-

cause any of merge results are unable to connect L-shaped voxels, and usually left a

(1 × height × m) LEGO brick disconnected. One of resolution methods is to supply a

1x1 brick horizontally that makes L-shaped voxels transformed into squared-shaped vox-

els. This is what we did in the second refinement procedure. More clearly, we again apply

a BRICK CONN COMP to identify all connected components by integer cell.setid.

Then, we scan entire legolized volume to find possible L-shaped conflicts. If an empty

void voxel e(x, y, z) is surrounded by disconnected L-shaped bricks (identified using

cell.setid), then we add one 1x1 LEGO at that position.

The third procedure is the brick re-merging algorithm for the first and the second

refinement procedure. In order to avoid disconnecting these hanging bricks again, we

use a different approach to guide the merge operation. We define another energy called

“risk of disconnection”. Like previously mentioned energy terms in optimization, this

term also computes cost by vertical connection condition. For empty void voxels ver-

tically neighboring to the brick, we add R for each of such voxel. For 1x1 generic

bricks vertically neighboring to the brick, we add 2R for each of such brick. R =

max({brick.area | ∀ brick ∈ LEGO family set }) ÷ current brick.area. Unlike pre-

viously mentioned energy terms, we also consider horizontal neighboring bricks. We add

one for each horizontal neighboring direction that the current brick cannot successfully

merge. Figure 3.25 demonstrates how to compute the risk of disconnection of a given

LEGO bricks. Please also refer the Definition 3 for related concept.

Provided with the definition of risk above, the algorithm basically performs merg-

ing from higher-risk bricks to lower-risk bricks. And the merge must follow the order

from higher risk to lower risk strictly (i.e., cella.merge(cellb) is success provided that

cella.risk > cellb.risk). We use a priority queue to dynamically maintain the risk or-

dering. Initially, the priority queue is filled with all LEGO bricks from the legolized

model LM . Then, we perform the merge described above. Newly merged LEGO brick

is inserted into the priority queue. After insertion, it updates the risk of bricks near the
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+2R
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(a) Low Risk, risk = 4R+ 1

+1 +0

+1

+1

+4R

+4R

+4R

+2R

(b) High Risk, risk = 14R+ 3

Figure 3.25: Risk of disconnection. The white 1x4 brick is the current brick. In (b), there

is only one 1x2 yellow brick supporting the center white 1x4 brick. Therefore, +4R is

for the added risk for both empty void voxels from above and below.
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2x1
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8x2
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Figure 3.26: Merge closure, computed by the LEGO family set in Table 3.1.

newly merged brick. If the merge operation of a LEGO brick is failed, the brick is simply

removed from the priority queue. This procedure is then terminated when the priority

queue is empty. Fortunately, this procedure will also merge the smaller LEGO bricks left

by previous optimization into larger LEGO bricks. In order to ensure all smaller LEGO

bricks are merged into larger ones, we compute the number of merge operation from the

set that containing only 1x1 LEGO bricks to the set that containing entire input LEGO

family set, or the next set is the same as the current set. We call this “merge closure.”

Figure 3.26 illustrates this computation. The result of our repairing attempt can be found

in Figure 3.27.

The fourth procedure is a heuristic greedy adjustment of LEGO brick quantity distri-

bution. The idea is to split larger bricks of rare types into smaller bricks of rich types

without losing connectivity. We continue splitting until the quantity limits of rare types
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(a) Bunny, before repair

connected component = 6

number of brick = 191

(b) Bunny, after repair

entirely connected

number of brick = 165

(c) Child, before repair

connected component = 8

number of brick = 324

(d) Child, after repair

entirely connected

number of brick = 260

Figure 3.27: Post-optimization refinement - connectivity repair.

47



are satisified. We discovered that 1x3, 1x4, 1x6, 2x6 and 1x8 are rare types, 1x1, 1x2

and 2x2 are rich types. Therefore, we perform the following steps to achieve rare type

quantity control.

• Split every 1x3 brick into 1x2 and 1x1.

• Merge every two 1x1 bricks into 1x2 bricks.

• Merge every two 1x2 bricks into 2x2 bricks (if mergeable).

• Split every 1x4 brick into two 1x2 bricks.

• Merge every two 1x2 bricks into 2x2 bricks (if mergeable).

• Split every 1x6 brick into three 1x2 bricks.

• Merge every two 1x2 bricks into 2x2 bricks (if mergeable).

• Split every 2x6 brick into three 2x2 bricks.

• Split every 1x8 brick into four 1x2 bricks.

• Merge every two 1x2 bricks into 2x2 bricks (if mergeable).

Except for the 2x6 split, there are always one or two merge after each split. This is

because we want to prevent connectivity instability. However, this conservative sequences

may also reduce the chance of successful quantity control.

Finally, to ease the actual construction, we begin to think if there are better building

instruction order. We observed that, if we do not have the bottom plate, it is difficult for

us to build LEGO structure layer-by-layer, which [5] did. We think a better building order

should satisfy:

• Ensure always connected when adding a brick.

• We like to build LEGO structure bottom-up.

According to our observation, we implemented a bottom-up building order by sim-

ply a vertical priority breadth-first search of LEGO bricks using undirected connectivity

defined in Def. 2.
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Chapter 4

Results and Evaluation

We have experimented and real constructed using the model listed in Table 4.1, each

result will show four images and a table of statistics. The four images are wireframed

3D triangular mesh model, preprocessed voxelized model, computer generated legolized

model, and actual constructed LEGO sculpture. The table of statistics for the given model

will show the consumption of LEGO bricks using the format of Table 3.1, and optimized

energy terms. The surface thickness of all voxelized model are 2 in all six sides, men-

tioned in the section 3.3. The optimization parameters are listed in the section 3.4. All

results are entirely connected (i.e., the number of connected component is 1). Some re-

sults will have minor user intervention in order to cope with complicated disconnected

situations. These interventing operation differences will also be listed in Table 4.1. Our

legolized models can often completed within 30 minutes or one hour with the aid of

graphical user interface. The builder often spends most of the time trying to find the exact

LEGO brick instructed by the system.

Name of 3D Triangular Mesh Model Applied User Intervention

Heart Red surface and Constraint 5 rare types only for red

Standford Bunny (Simplified) Red eye and Disable 5 rare types

Child None

Table 4.1: Experimented 3D triangular mesh models.
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(a) Triangle count = 664 (b) Resolution = (x: 14, y: 13, z: 8)

(c) Total Energy = -3306 (d) Runtime = less than 1 second

Figure 4.1: Experimented result - Heart.

Type Quantity Type Quantity Energy Terms Cost

1x1x1 10 EnumBricks +882

2x1x1 52 2x1x2 18 EdirAltern -244

3x1x1 8 3x1x2 12 EsameV edge 0

4x1x1 6 4x1x2 14 EnumConnBricks -1942

6x1x1 4 6x1x2 0 EareaConnBricks -1672

8x1x1 2 8x1x2 0 EnumDistinctColor -330

Table 4.2: Result Statistics - Heart.
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(a) Triangle count = 26668 (b) Resolution = (x: 25, y: 37, z: 12)

(c) Total Energy = -8961 (d) Runtime = 5 seconds

Figure 4.2: Experimented result - Child.

Type Quantity Type Quantity Energy Terms Cost

1x1x1 46 EnumBricks +1988

2x1x1 81 2x1x2 24 EdirAltern -1448

3x1x1 40 3x1x2 21 EsameV edge 0

4x1x1 32 4x1x2 26 EnumConnBricks -4627

6x1x1 9 6x1x2 2 EareaConnBricks -4184

8x1x1 3 8x1x2 0 EnumDistinctColor -690

Table 4.3: Result Statistics - Child.
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(a) Triangle count = 4968 (b) Resolution = (x: 15, y: 15, z: 12)

(c) Total Energy = -3904 (d) Runtime = 2 seconds

Figure 4.3: Experimented result - Bunny.

Type Quantity Type Quantity Energy Terms Cost

1x1x1 42 EnumBricks +1519

2x1x1 108 2x1x2 38 EdirAltern -284

3x1x1 0 3x1x2 17 EsameV edge 0

4x1x1 0 4x1x2 12 EnumConnBricks -2201

6x1x1 0 6x1x2 0 EareaConnBricks -2400

8x1x1 0 8x1x2 0 EnumDistinctColor -538

Table 4.4: Result Statistics - Bunny.
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There are still unsolvable cases appeared during our experiments, and our system can

only show where LEGO bricks are disconnected due to the limitation of our methods. The

limitations will be discussed in the next chapter. Figure 4.4 demonstrated this functional-

ity.

(a) (b) Connected component = 7

Figure 4.4: Failure detection - Dinosaur.

In addition to showing successful cases and failure cases, we did some simple evalu-

ation of our methods according to the objectives of the LEGO construction problem. For

connectivity objective, if we did not applying the post-optimization connectivity refine-

ments, the overall chance of disconnecting is much higher, as shown in Table 4.5.

3D Model # of disconnection # of disconnection # of connected component

without refinement with refinement reduction with refinement

Bunny 20 14 20

Child 20 7 20

Heart 5 0 5

Dinosaur 20 20 18

Table 4.5: Evaluation - connectivity objective, test 20 runs.

For visual similarity objective, our informal user study shows that users favor our

hybrid (thinner) voxelized result, it is more similar than box-triangle voxelization result.

In addition, it brings fewer brick usage. Among 5 persons, only 1 person choose the

box-triangle voxelized result once. The hybrid voxelized results are chosen 12 times.
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For quantity constraint objective, we tested the extreme case that if we can obtain a

fully connected LEGO model without using any of LEGO bricks from rare types (1x3,

1x4, 1x6, 1x8, and 2x8). We count that how many times does our method successfully

decrease the usage of rare types larger than 10 bricks. Table 4.6 shows the results.

Rare types Bunny Child Heart

1x3 5 4 5

1x4 5 3 5

1x6 5 2 5

1x8 3 5 5

2x6 5 5 3

Table 4.6: Evaluation - quantity constraint, test 5 runs.

For runtime limit objective, our method runs very quickly among all our experimented

cases. We have also tested twice larger voxel resolution, the average runtime is around

30 to 60 seconds This is beacuse we firmly control the optimization maximum iteration

count. We find that cellular automaton often converged within 100 iterations. And our

method can even put to acceleration, since cellular automaton has part that can process in

parallel. But this gain trades the possibility of finding an exact solution off. This is the

limitation of our methods and will discussed in the following chapter.
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Chapter 5

Discussion and Limitation

Although we can produce high quality results in nearly fully automated fashion, there

are limitations within our system. First of all, our placement optimization algorithms,

such as cellular automaton optimization and post-optimization connectivity refinement,

have the following limitations due to the nature of heuristic design.

• Using only fixed amount of iterations will often lead to local optimal results.

• It mixes the element of randomness, every run of optimization may obtain different

results providing the same input.

• No guarantee of finding the global optimal or a connectivity one solution.

These limitations will cause our “legolizer” program unable to deterministically an-

swer whether it can solvable or not (and it may even left solvable parts unsolved). How-

ever, one can claim that it is the inherited limitation of heuristic algorithms for NP-hard

problems, if we really want a true answer, we may contradict the timing constraint objec-

tive.

To further demonstrate these limitations, we made a pressure test on the cellular au-

tomaton algorithm. We limit the LEGO brick set that contains only 1x1 and 1x2 bricks.

And the input voxelized volume is a 6x2x6 cube, which is shown in Figure 1.2 as an ex-

ample of a problem instance. Our test results are demonstrated in Figure 5.1 and Table
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5.1. Most of the time, the algorithm failed to produce fully connected result under very

difficult cases.

(a) Table 5.1, row 2 (b) Table 5.1, row 4 (c) Table 5.1, row 8

Figure 5.1: The failure cases.

Cube Brick Set Iteration # of Connected Component

6x2x6 1x1,1x2 98 9

6x2x6 1x1,1x2 198 6

6x2x6 1x1,1x2,2x2 98 1

6x2x6 1x1,1x2,2x2 198 2

6x3x6 1x1,1x2 98 4

6x3x6 1x1,1x2 198 8

6x3x6 1x1,1x2,2x2 98 1

6x3x6 1x1,1x2,2x2 198 1

Table 5.1: Pressure test of 6x2x6 and 6x3x6 cubes.

After the experiments on extreme cases, we begin to wonder that what may increase

the difficulty of the LEGO construction problem. We discovered two following reasons

that might force the connectivity optimization algorithm to search more placement solu-

tions.

• The size factor of LEGO brick set. If the set contains only small bricks, then natu-

rally we have to try more combination of placement to obtain a connected result.

• The height of voxelized model (i.e., number of layers). A disconnected component

may get connected by using additional layers of voxels. As we have experimented,

the 6x3x6 case is much easier to achieve one connected structure than 6x2x6 case.

The second limitation is that our hybrid voxelization is still unable to accurately cap-

ture the symmetry feature of input triangular 3D mesh model. The reason may lie in the
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Figure 5.2: Building instruction order example.

ray-triangle voxelization, which is relatively less robust than box-triangle voxelization.

Readers can reference the “Heart” results in Figure 4.3.

The third limitation is the building instruction order generation. Normally, if the 3D

model changes its height smoothly, the generated building order is fairly easy for human

to build. Figure 5.2 provides an example. However, when the 3D model consist of “tall

legs”, shown in Figure 5.3, the generated building order will firstly touch down to the

lowest, then will climb up. This result is rather strange for human to understand.

Figure 5.3: Building instruction order artifact.
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Chapter 6

Conclusion and Future Work

We presented a constructible 3D model legolizer system that is nearly fully automated

and runs within reasonable time. Because of our hybrid voxelization approach, our input

3D geometry can be nearly arbitrary and can use less LEGO brick while maintain visual

similarity. We also increased the robustness of connectivity optimization algorithms with

a noticeable amount by proposed post-processing algorithms. To further increase the

chance of realization, we also provide a mean to adjust brick usage between rare types

and rich types. Finally, our computed building orders are visually easy for LEGO players

to finish their LEGO building project.

For future work, although our placement optimization considers color constraint, it

is rarely tested because we do not automatically paint colors on LEGO sculpture by the

texture of input 3D model. And our building order generation should consider part-by-

part relationship since it is more nature for us to consider semantic components such as

legs and torsos. Furthermore, there are always rooms for voxelization and optimization

algorithms to improve.
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