N

SRS ES S0y X 108
#8234 U
Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

A LAEE A

m

\

A = 4 288 AR AR B PTRE IS 24 AT R A
Transform 3D Models thto.€onstruetible LEGO Brick Sculpture

Bt
Liao Han-Wei

FEHMI AT L
Advisor: Chen Bing-Yu, Ph.D.

¥ KB 101 4 8 A
August, 2012

-
-
=

MR AR —HB R ARG IEF SR TR KEA S
ZWEMOIBATRTHARIGMA - RE KA TLER S4H
AWM T d T A REe 8 LI ik » Rt e+ —
AAn 8 A% » 906 B 4 FT AL 8 R Ao 1 9060 & 2 EKevin & » 5
RASBEMEPI OB 7 8L - B A 2R A H T RBLUKEA
B3] 22T » RAITR) S8BT EMEAR - LAB KO EHK
#Robin » T AR KR ABMAR - ARITARIME > A SRR
S RAITR B LA % R 0 Sk —— 2
BB ERNRZAL > ZWALEERBETRALSHRARA LA
RAHE) kK > BT R RATILE Bk T — A 40 M SRR
ARIRA L BRBH R NEEIET L - F TRAEZEIFHNG
SRS + S TEAE T R0 AR 459 o = s 4 A — e
s 8 R A Gk o — 2R A R B BT A ok
HOR o RS A RO T R R o 2 o R — M8 ¥
A o 57 3B I AR el AR Tk L R R LR S
—MRm LA DRI ZRA AR O AR YR LEEERRA TR
i FL S A% U A 8 — R TR R AR B e R TS AR M] RS B R R
AR~ M o XN FR - 28 BA L AARMEFRE O
REZBORBEBBFFFR > ABMARAMERA DX TE - BA
ZRMRMERNEZEAX XN —RTUR XL BATHAKY
AT FHTOE » KW R B Sl LR RAH
B I8 0 AT AR 6918 R BE AN 0 B CMLABAE 32 &K ve i@ AR 49 AL
Bt R X KA I Ak R RS RN
MRS S BRAFROLRATREEGOFTE B3t B2
SEFRAFE BRMERET LA A R REHANM BR#HRE Lo
B LA B A A > BAHR R A R IDSPAL 0 RH I BAT Rty
KLRLMEHYE > BHRHABAAGTEHA > BEAH > AN
B — B AR — s H

AFHA - B TAERAGTT > HANE—EA c BHTER
HEBMHAKRS » THAKBHKE - (RF : BARAE)

€ RS

$m%iﬁ7%ﬁ MEREL T » &Y F3DER » 3%
Ak A8 i Bk R M“@ﬁﬁﬂoﬁﬁm%%m“ﬁﬁﬁﬂ’\
£ 7T 1A %Jﬂﬁﬁéﬁié’a MEZHEET » ETAEIAATET T
MATME 0 B A BANELEGRERE &M%ﬁ&ig\mm@%
5o Bk RV AN AR AR EAS - kAR AR
W A AR Y LR AR o Wty 7S E BG gy A& VT LR Bk 3B R A 1 A AR AT
%%%%%’%M&MEﬁ&mT—ﬁ%%umﬁ%kaﬁ%%
T ik R BAT i%%ﬁ%;%ﬁﬂ°&% BAT R P dT 69 78 7 AR
Ao Bl R E AR) TR RBR AR o RIS
VART 89 VR ik o AF b PR 82 35 Rt A0 T AT R B AR A0 T B AT AR AR L R AE
o A2 RIAR 89 b7y 547 R A HE AR T A 8 T RE R » B sk &A1
&&&%ﬁﬁ%ﬁ%’%%&ﬁfgﬁ%%&$ Lhe L E S

W o Bl ﬁmwm%#m7*@%@%@ﬁ¢xgiﬁ@
AP 4% %%g% &ﬁTu& AR A AT o R E hedT

AL 23R ADB ST ﬁi/\WﬂﬁEﬁ?ﬁiﬁ’ﬁ$ﬁﬁéfWKin4?

Méts : s 2BBENFHEL 2ERARMENR
ZiTHaEER

Abstract

In this work, we present a system, “legolizer”, to transform 3D models
into buildable LEGO sculptures. Our legolized 3D model has various pur-
poses. It can not only be used in the production of LEGO-style computer
animations, but also can be actually built by hand to amuse people. Our sys-
tem consist of two parts. The first part converts the input triangular 3D mesh
model into grid-like voxel«sepresentationy Because the utilized voxelization
methods did not reach-our expectation, we purposed:a hybrid voxelization
approach in attempt to obtainingra;better-voxelized,model. Then, after sim-
ple preprocessing, we put.the voxeﬁ?e'd model into the second part of our
system - connectivity placement opti;nization. We reduced this placement
problem into the form.of cellu:Iar automaton similar to the most recent pre-
vious work. Again, due to imperfection oficellular automaton optimization,
we later proposed our refinement approaches to improve not only the prob-
ability of fully connecting, but also the brick usage control. Finally and ad-
ditionally, we compute an easy-to-build instruction sequence of our obtained
LEGO sculpture. This may provide a researching starting point of improving
the visualization of computed LEGO brick assembly process for people eas-

ily understanding.

Keyword: LEGO brick puzzle, 3D model voxelization, connectivity place-

ment optimization, geometric assembly reasoning

Contents

i
Abstract 11
1 Intr Ion __11__;?;‘,' 1
(1.1 Motivation|. vl Sy 1
(1.2 Background - The hEGO constructlomproblem| 2

L.3—Confribufions & < - - Sy A
7 RelatedWork = &) ~ M *’:" 6

2.1 LEGQO construction automapgn.. 6
(2.2 LEGO computer-ai esl 7
[2.3" Recreational Compu raphics 8
Wl
B Methodology, i .~ 10
BI System Overwevtﬂ t/ &) o 4 10
B2 Voxelization r“Zy """". ik W 4 11
. 7 hs 2 A T

(3.3 Preprocessing| . il e OF 26
3.4 Placement Optlmlzat|0n| T ey o 1oy (o] Sl 29
4__Results and Evaluation| 49
o__Discussion and Limitation| 55
nclusion and Future Wor 58
Bibliography 59

List of Figures

(1.1 Problem illustrationl 2
(1.2 Connectivity objective| 4
1.3 Systemflowchartl 5
(3.1 Systemoverview| 10
[3.2 Voxelization by ray- trlanglq mtel'sedtloﬁ test 12
[3.3 Separating axls therpe’m | . 3 . ._'_-,;::- .. . 13
Notations for expl‘anatrdn’ i 14

SHAUQA™. . 16

(3.6 Voxelization by box-triangle ; 17
8.7 Voxelizafion fesulis TS 18
(3.8 Aurtifacts of a t;aiy tria v3>‘ellz¢1moc eh . 19
(3.9 Voxel connectlvﬁ—)fl . ‘“'*-r:" 1 l 20
[3.10 Voxel connected ¢ c_prfltpor)e‘ntC . ‘ * o, 21
.11 Solidify a voxellzed‘BD modeu b .;g.} L 23
[3.12° Repalir the connectivity of Vj\@ayj G e 1 25
[5.15 Repalr surface and interior holes of VMmy| 26
[3.14 Hollowing out a voxelized 3D model.| 28
(3.15 LEGO brick connectivity.|. oL 30
3.16 A cellin cellular automaton) 32
3.1/ LEGO brick familyset| 33
[3.18 Merge operation of two neighboringcells.| 36
[3.19 Notes for Implementing merge operation.| 38
[3.20 The energy term Eivattern| « « « « « v v o v v 40
[5.21 The energy term Fggmevedge] - « «+ « v v v v v v v v 41
[3.22 The energy term E,,..nconnBricks A0 EoreaConnBricks] « « « « « « « « « « 41
[3.23 Theenergy term F,,.nDistinctColor] + « « « «+ ¢+ v v v v e e e e 42
(3.24 Cellular automaton optimization in action| 44
3.25 Riskofdisconnectionl 46
[3.26 Mergeclosurel 46

[3.2/ Post-optimization refinement - connectivity repairf 47

4.1 Experimented result-Heart| 50
4.2 Experimented result-Child.f oL o1
4.3 Experimentedresult-Bunny|. 52
4.4 Fallure detection - Dinosaurf L 53
6.1 Thefailurecases)], . 56
(0.2 Building Instruction order example| oL 57
[0.3 Building Instruction order artifactf 57
(el OB ey
o %

-J ;'::‘1 -% %fgf@h ;

Vi

List of Tables

(3.1 The LEGO brick family set used In the experiment,] 43
4.1 Experimented 3D triangular meshmodels.| 49
4.2 Result Statistics - Heart] oo 50
4.3 Result Statistics -Child oo 51
@4 Result Statistics - BunnyL,.1,_:| 1] S .JL T 52
Evaluation - connec{}wfﬁy ob;e(ﬁve i ns) 53

' 54

56

vii

List of Algorithms

(1 Ray-tracing voxelization|
[2 Soldity shell-only voxelized sDbmoael

3 Voxel connectivity repair using a thicker reference VM, ;av0a]

22

4 Repair surtace/interior holes of V' M,.,,, using a thicker reterence V' M ,jiapo.| 24

B) Gy,
6 Cellular aufomaton og&@o] .= ‘ﬁﬂ-r;%
- L B

L [
__-,,::.'.-h'r <,
A
_:::::-\.f .I':I
£ .
M
‘X4
h;ij. o5 .
e "
<, év

ZeFopeien®

viii

27

Chapter 1

Introduction

1.1 Motivation

The LEGO company, founded.in Denmark since 1932, continuously produce colorful
interlocking plastic bricks to fill many people’s childhood memory. During the assem-
bly process, we overcame ‘the exponentia.i_:;&rowth of construction possibilities step-by-
step, and eventually finished-the shape we want Like many other puzzle games, building
LEGO model is a fascinating,-#ntriguing and.entertaining activities for adults and kids [1].
It even evolved into an artform, forinstances, Dispatchwork project [2], Nathan Sawaya‘s
creations [3], and LEGOLAND'’s around the world'[3, 4]. These complex LEGO sculp-
tures really make people wonder how to build them. This mysterious puzzle later became
known as "LEGO construction problem.” In other words, ”Given any 3D body, how can
it be built from LEGO bricks?” (see Figure [1.1] for illustration) [5, 6]

Over the last few years, the advancement of computer graphics and vision has made
making and retrieving 3D models easy. Especially, with the advent of depth camera based
3D geometry scanning technology [7], it is expected that many real-world objects will be
scanned and put into online 3D model repositories. By using the state-of-the-art 3D model
retrieval techniques [8l 9], getting any 3D model from these repositories is not difficult
anymore. However, in order to fit these models into scenes of different styles, artists often
need to remake these models. This has trigger some of computer graphics researchers to

study the topic - 3D Model Style Transfer”. Transforming a 3D model into constructible

1

Figure 1.1: Problem illustration. The left image: input 3D shape represented by triangle
meshes. The right image: buildable LEGO sculpture instructions.

LEGO sculpture is such a topic relatﬁed 1 lfraddltmrl,. if a 3D model can be converted into
LEGO buildable model, this méy{ brlngmany nger corﬁﬁqler graphics applications such

c gene:atlon of LEGO assembly
<\

estin éﬁe}'ch_allengmg topics.

process animation, and mor‘e.."ll'. ese afe really j}ﬁte\
g - - 2L ‘B
1.2 Background = .E@ con lj-fa’t@n problem

The "LEGO constructiﬁyrohf@m

munity at large in 1998 [6] and 2001 In e
A@]‘] h _"jl\.
for, was a computer program that can generate LEGO building instructions for any real-

bﬁ,an p{lei"ented to the scientific com-
s?enpel W\hat the LEGO company wished

world object within a reasonable amount of time [5]. After a rough analysis, this problem
has relationships to a number of fields in computer sciences and mathematics such as
computer graphics, computer vision, and combinatorial optimization. Although repre-
senting and visualizing 3D shape model can be handled by the techniques in computer
graphics and vision, LEGO construction problem is still difficult for computer to solve.
Because for a given 3D shape, there are multiple choices of LEGO bricks and multiple
ways to assemble them. This combinatorial explosion nature quickly make this problem
intractable.

This problem, like most area filling problems, has the properties of an optimization

problem. In general, it has to achieve the following objectives [5, 6l [11] :

e Connectivity: The constructed LEGO sculpture should be one single connected
object. (i.e., the sculpture should not contain easy-pick LEGO bricks and floating

LEGO bricks. See Figure[L.2 for illustration.)

e Shape Similarity: The constructed LEGO sculpture should look similar to the orig-

inal input 3D shape.

e Cost Optimiality: To save money and time when building with actual LEGO bricks,
the program should try to minimize the number of LEGO bricks used to build the

sculpture. If possible, try to match the quantity limit of every brick.

e Runtime Limit: As previously mentioned, this problem should be solved in reason-

able time.

The first and second optimization.ebjectives directhy-affect the composability of output
LEGO sculpture if there IS no'quantity-eenstraint-en every type of LEGO brick. The third
objectives can effectively reduce the actua[ﬁonstruction time, but in fact, we are often
unable to finish the sculpture because of nc;t?enough specific kinds of LEGO brick, rather
than the construction itself takestime. There-fore, we change the third objective into the

following objective:

e Quantity Constraint: The solution. should not violate the quantity limit of each

LEGO brick.

To solve this problem, the program - "legolizer” (see Figure[1.3), expect two inputs:
the family of usable LEGO brick set and the 3D geometry model. And often with a
quantity constraint for each kind of LEGO brick. The program should output the building
instructions of the sculpture if this model is realizable. Otherwise, it should report the
reason of the failure synthesis. The reason can be not enough specific kinds of LEGO
brick, or unable to find the placement that can fully connect these bricks.

The LEGO construction problem can be seen as a three dimensional volume filling
problem. The search space is extremely large and there can even be more than one viable
solution. In fact, the two dimensional area filling problem is already considered to be NP-

complete [5]. Furthermore, to ensure the stability and visual similarity of the sculpture,

3

cohnt{Eted LEGO bricks. Red
lte\L_E@Os from yellow pillar.
s'on the ground. These bricks
;Xb) (c) and (d) demonstrate the
isconnected. This also shows the
I:hsJ"the correct solution for 6x6x2

circles |nd|cate there arE erti
Easy-pick LEGO brlcks»qre?al
will cause the entire sculpmrq
case that it looks like fuIIy

difficulty of the LEGO constrﬁcudﬁ"pro‘}vqlem (e-j.gnd;%

plate using only 1x2 LEGOs. Lz — e
L '{:ji 2

it needs to consider shape similarity and connectivity objectives when filling LEGO brick
into the target volume. This increase the complexity and difficulty of the problem. How-
ever, these constraints can also be exploited and devise an efficient approximation method

to deliver acceptable solutions. We will discuss previous approaches to the problem in the

related work chapter.

1.3 Contributions

In this work, we present a system to convert a 3D triangle mesh model into a buildable
LEGO sculpture. We extend previous work [5] by adding several new features that may

help not only obtaining better automatic results, but also designing better optimization

4

| ---r" {5 .""i'
Flgpte 1. ; ﬁysterpﬂéwmgrt

Fo

\- .-"I-:-'-
algorithms. These featuregare '

T

Iq_i':"'ﬁ I"..':F.--" (o
I

Combine two dlfﬁerent chnig izing 3C

T fmeient base mr,ﬂ;bnﬂectlwty risks information,
i 00

Post-optimization quantity constr{TTffrefmément described in the section[3.4]

triangular mesh model into a

hybrid voxelization appr
N4
Post-optimization dt_ique@%i

described in the sectlorﬂ-n s ot

Connectivity-aware and positional-aware building instruction order generation, de-

scribed in the section [3.41

Chapter 2

Related Work

2.1 LEGO construction.automation.and stylization

Since the presentation of LEGO construction automation. problem [6, [10] , there were
a number of previous works trying to solve_this problem., Most recent work is presented
by van Zijl and Smal [5] in 2008, which is.;_i;tfﬁ’ main reference'work. Their work purposed
a new optimization approachrusing cellular a:utomaton and obtained comparable results to
the ones using beam search. Cellular automaton is a computation model originated from
John von Neumann [12]. This conceptris applied-in-various scientific fields nowadays.
They formulated this problem by viewing LEGO bricks as cells that lives in a grid world
which represents a layer of voxelized model. By defining certain rules of cellular interac-
tion, they can evolved into larger LEGO bricks, and eventually produce a complete layout
of a LEGO structure. Beam search is an another optimization-by-search algorithm, firstly
presented by David V. Winkler, in a LEGO fans convention called “BrickFest” in 2005.
Conceptually, it is a breadth-first search with tree width limit, hence visually like shooting
a “beam” during the expansion of search tree. The tree width K means the algorithm will
try to store K currently best solutions. To solve LEGO construction layout problem, it
searches step-by-step LEGO brick placement and evaluate the cost of placement. Finally,
they implemented a completed Java package consist of 3D model voxelization and the
above two optimization techniques for producing an constructible LEGO structure. The

application can be found at http://Isculpturer.sourceforge.net

6

http://lsculpturer.sourceforge.net

More earlier attempts are works by Gower et al. [11], Petrovic [10], and Na [13].
Gower et al first formulated the LEGO construction as a combinatorial optimization prob-
lem. They proposed various observation in designing the connectivity cost function, and
described some methods such as local search and simulated annealing to obtain connected
LEGO structure. Petrovic applied energy terms by Gower et al. into his three genetic al-
gorithms, but accroding to [5], their attempts required significant more execution time
which fails the expectation of running in reasonable time. Na later extended the indirect
gene representation of Petrovic by allowing the builing patterns to extend in two direc-
tions instead of one. At last, although not directly solving the exact LEGO construction
problem, Lambrecht presented LSculpt [14], which produces constructible LEGO sculp-
ture using oriented LEGO plates instead .of standard LEGO bricks. The output sculpture
has improved detail than standard pixel-like loek L EGO.structure.

The above previous works were focus on solving the-.EGO construction problem,
they often utilized many combinatorial eptimization techniques such as simulated anneal-
ing, genetic algorithm and so on. Howeve'f,?{h computer graphics, it is also important to
visualize realistic LEGO bricks. The work “Iégolizer", done'by Silva et al [15], is such one
work. They successfully render'a 3b triangular mesh.model into similar shaped LEGO
sculpture realistically in real-time. In essence, they present a LEGO-style volumtric ren-
dering technique by implementing four GPU shader programs. These shader programs
are triangle subdivison shader, voxelization shader, polygonization shader, and rendering
shader. It is important to note that their work didn’t consider actual construction, that is,

no brick connectivity consideration.

2.2 LEGO computer-aided design toolkits

The official LEGO Group has provided the LEGO Digital Designer, which recently
incooprates the Australia Google Map service in parternship with Google. Users can use
Google Chrome web browser to build their virtual LEGO structure on the Australia land.
The LEGO Digital Designer can be found in [16] and [17] (the web version). Another

popular LEGO CAD system is called “LDraw” [18], which is a community-maintained

7

software project by James Jessiman since 1995. It is similar to the LEGO Digital De-
signer, but with many other documentation trying to standardize LEGO brick representa-
tion in a computer. Until now, various related LEGO CAD tools are created using LDraw
as a reference. For example, L3P [19] is a conversion utility between LDraw file format
and the scene file used in POV-Ray ray-tracing renderer [20]. For other related LEGO
CAD tools, please refer to books [21} 22].

2.3 Recreational Computer Graphics and 3D Model Style
Transformation

If not restricted to LEGO bricks, there are many efforts trying to make virtual 3D mod-
els realizable in many different kinds:of form. Thissia-a related field called “Recreational
Computer Graphics” [23]. Like the ultimate goal-ef LEGO. construction problem, the ob-
jective of this field is to make a computer-a‘i.'%q geometric design tool that converts virtual
3D objects into a piecewise buildable objéct_ with step=by-step construction instructions.
In recent literture, Lo et al [24] ‘presented a- new genre .of 3D puzzle called “3D poly-
omino puzzle”. A well-known exarﬁple of polyomine_puzzle tiling is the popular video
game “Tetris” invented by the Russian Mathematician Pajitnov in 1985. In short, they de-
signed a specialized interlocking tetromino bricks to assemble the virtual 3D model into
real object. step-by-step building instructions. Xin et al [1] converts a 3D model into a 3D
burr puzzle that consists of interlocking pieces with a single-key property. Shigeo et al
[25] unfolds 3D triangular meshes onto a white paper so they can use glues and scissors to
build the 3D papercraft models. Finally, Hildebrand et al [26] introduce an algorithm and
representation for fabricating 3D shape abstractions using mutually intersecting planar
cut-outs. The assembly process is like inserting pieces of paper into each other.

Because obtaining a realizable procedure from virtual 3D models directly implies that
it can be represented by computers, we can view such realization process as a kind of
3D model style transformation. However, the results from 3D model style transformation

need not to be realizable, this is another related field called “3D Model Style Transforma-

tion”. For instances, Xu et al. [27] extract the silhouette of object in a picture collection,
then they morph a generic 3D model to fit the given silhouette. The generic 3D model and
the object in the picture must have the same semantic meaning, if not, matching may fail.
Shen et al. [28] converts a 3D character model into a style called “super-deformed”, ab-
breviated as SD. SD is a specific artistic style for Japanese manga and anime. The goal of
SD style is making characters to be appeared cute and funny. They use energy optimiza-
tion guided by a number of constraints that can not only capture the essence of SD style,
but also stabilize deformation artifacts. Their system provides customizable parameter

settings, and can convert character models into visually pleasing SD models in seconds.

Chapter 3
Methodology

xe
||' f. J,..r

3.1 System Overwaw .
v f “"\ .

Mesh-based 3D model Voxel-based 3D model Legolized 3D model

Figure 3.1: System overview.

Our system “legolizer” can be decomposed into three components, illustrated as Fig-
ure 3.1} Users can pick two kinds of input: mesh-based 3D models or voxel-based 3D
models. When user provides 3D models consist of triangle meshes, we first voxelize it to
get voxel-based 3D models. Then, we will preprocess these voxel-based 3D models such
as checking connectivity and removing interior voxels. These steps will assist later steps
to achieve our objectives. Finally, these preprocessed voxel models will put into place-
ment optimizer to obtain LEGO building instructions. Users can then use our graphical

user interface to actually build Legolized 3D models.

10

The implementation of our system is closely follow the paper [5]. We reference their
system as our basis implementation, then add some new features to further refine connec-
tivity and LEGO brick usage of the LEGO sculpture. We also try to generate brick-by-

brick construction instructions rather than layer-by-layer.

3.2 \Voxelization

Using standard cuboid LEGO brick to build a sculpture is an approximation by nature.
The completed LEGO structure often have "pixel-like”, voxel-like”, or ”grid-like” look.
This observation gives a key direction for us to simplify our problem. That is, to apply
voxelization algorithm on the triangle mesh 3D models.

The voxelization method can _produce 3D._voxel structures similar to the input mesh-
based models, which solves the shape similarity goal of the LEGO construction problem.
Besides, it reduces the search space of LEGI(_) construction problem. Because the problem
of finding where to place a'LEGO brick Wﬁf‘é‘h tntersects:the ‘mesh model is delegated to
the voxelizer, it effectively simplified the LE::GO constructian.problem.

Among all popular voxelization imethods, we utilize the voxelization algorithm de-
scribed in the paper by Nooruddin‘et al: [29]. sEssentially, it traces ray along all three
axes (X, Y and Z) from corresponding perpendicular plane at zero. For example, if we
trace ray along x-axis, then the ray origin is at (0, y, z), where Y and Z coordinate is the
center of a pixel at yz-plane. During the ray-tracing, the algorithm records all the inter-
sections with the triangles from the input triangular mesh model. The data structure used
to record intersection is similar to a z-buffer. But instead of overwriting Z position when
a closer intersection is found, the algorithm uses sequential container to record all the Z
position of intersections at a particular xy-plane coordinate (See Figure [3.2 for illustra-
tion). After computing the z-buffer for three axes, the algorithm performs parity counting
to determine the interior of a geometry body. That is, during intersection point counting,
if the counting variable is odd, the algorithm marks the voxels until the counting variable
become an even number. At last, the algorithm consider a voxel inside the body when at

least two of three axes agreed (got at least 2 marks at that voxel position).

11

L) AN
L

Ot
oL
N 2 => outside
<
) 1 => inside
<
<
N -
0 => outside
(a) (b)

Figure 3.2: Voxelization by ray-triangle. intersection test. (a) Rays are shooted from z=0,
x=0, y=0 planes. (b) The center of square-shaped pixel is where the ray shoots from, and
hit many triangles. Parity counting-identifies interior ofthe body.

The following pseudacode implements the above voxelization algorithm.
R
P t
Algorithm 1 Ray-tracing voxelization -
i |

for all 3 principal axes:%;Y,Z do | 5
rename current ray-tracing-axis fozaxis > We pretend to trace ray along z axis
for all triangle facets in‘the 3D mesh:model do

scan convert the triangle facet to find effective ray-tracing pixels on xy-plane.
for all effective pixels on xy=plane do
intersection « rayTrianglelntersect(ray, triangle)
depthBuffer(pixel(x,y), axis).insert(intersection)
> z-buffer can also be called as ”depth buffer”

end for
end for
for all pixels on xy-plane do
sort intersections in depthBuffer(pixel(x,y), axis) from near to far.
end for
end for
initialize 3D matrices C'ount, V oxel to zero.
for all 3 principal axes: X,Y,Z do
for parityCount = 0 to depthBuffer(pixel(x,y), axis).size do
intersection < depthBuffer(pixel(x,y), axis).at(parityCount).
++Count(rename(x,y,round(intersection.z))).
end for
end for
mark Vozxel(x,y,z) = 1 if corresponding Count(x,y,z) > 2

12

In the main reference paper [5], they used AABB-triangle intersection test (AABB:
axis-aligned bounding box) and octree space subdivision to implement their own vox-
elizer. The intersection test they borrow from was developed by Akenine-Maller [30].
Basically, it was derived from the separating axis theorem (SAT). The theorem states
that two convex polyhedra, A and B, are disjoint if one can find an axis along which the

projection of the two polyhedra does not overlap. The axis is the one that
1. is parallel to a normal of a face of either A or B.
2. is formed from the cross product of an edge from A with and edge from B.

The separating axis theorem tests if two polyhedra collide by enumerating all axes that
satisfies the conditions above. .Then far each aX|s vertices on these two polyhedra will
project to the axis. Each polyhedion has their OWn range-of projection. If these ranges do
not intersect, then this axis is:a separating axis. | nstead of visually separating two objects,
the axis is used as a normal vector to fonj’r'ﬁ‘éj:lqilv_'.e. that separating these two objects. (Note:
the ”bounding” B in AABB can be nqgi:ac.t';?%'-'i::f:t-hél b_ox i not actually bounding an object.

erality). sele:lFlgure@for illustration.

So we may use the term ”AAB” for ge
iy i1 |

Normal of

The triangle face

plane

The edge vectors of polygonal shapes

The cross product
of the edge vectors

Y

Not
Intersect !

(@) (b)

Figure 3.3: Separating axis theroem (SAT). (a) is a 2D version of SAT. The projected
vertices ranges of the two polygon do not overlap, therefore not intersected. (b) shows
that AABB-triangle intersection test is one of SAT simplest example. The green and blue
vectors represents what kinds of axes are used in SAT intersection test.

13

In the implementation of Akenine-Mdller’s fast AAB-triangle intersection test, the
axis-aligned box (AAB), defined by center point c, and a vector of half lengths h, is
tested against the triangle Augu;u, with a normal n. The lengths in h can have different
values along different axis, since axis-aligned nature firmly defines a box. Figure [3.4]

shows the notation used for the AAB and the triangle.

" Translate correspondingly
. —
u

! A

% | Translate to origin
—

¥

I -

Figure 3.4: Notations for'explanation Qf AAB-triangle intersection algorithm.

Initially, the triangle is translated so.that the box-is.centered around the origin in order
to simplify the tests. In mathematical notatien, v; = w; — ¢, i € {0,1,2}. Then based
on SAT, the algorithm tests the following thirteen axes, which can be grouped in three

categories and are performed according to the order of bullet numbering.

1. (9 tests) a;; = cross product(e; ,t;), i,j € {0,1,2}, where tg = vi — vy, t; =
vy — vy, and ty = vy — vo. After computing the axis a;;, we need to project vertices
of the triangle and the AAB onto the axis. The projection of the triangle vertices are
performed by a regular dot product. That is, p, = a;; - vi, k € {0,1,2}. Thanks to
many zeros in the unit vector ege; e, the projection often results in one of p; equal
to another p,, k # ¢. This observation leads to removing one conditional branch
during the finding minimum and maximum of p,, thus faster. Now it turns to the
projection of AAB vertices. They compute a “radius”, called r, of the box projected

on a;; (hereafter call a) as » = h,|a,| + hyla,| + h.|a.|. This is valid computation

14

reduction because the eight vertices of the translated AAB enumerate complete
combination of signs in their own dot product projection. It can be proven that
there must exists two vertices on the AAB, Xpmin aNd Xmax, SUCh that X0 -a =17

and x,in - @ = —r. Finally, the axis test is performed logically as:

if min(po,p1,p2) >r or max(po,pi,p2) < —r

return “non-overlapping”

. (3 tests) e = (1,0,0), e = (0,1,0), and e; = (0,0, 1) (the normals of the axis-
aligned (bounding) box). Itis equivalent to test the AAB against the minimal AABB
around the triangle. If we follow standard SAT procedures, the projection of ver-

tices on unit vectors directly simplify the test.a lot. It can be expressed as:

forall axisa € X, ¥, Z do
if min(vog ;014 , V2a = ke Or MaX(Woe'; V1o, V9,) < —hg
return ”non-overlapping”

o

end for =

fa |

. (1 test) n = cross produet(ty, t1) (the normal of the'triangle). As previous SAT
illustration, this test Is equivaient tosasking' if the separating plane is the triangle
itself. If this is the last test, then-this test [ooks like asking if the triangle is cutting
through the AAB. Because previous failed tests implied that all vertices of AAB
can be projected onto the triangle (onto the plane defined by triangle normal and
within the triangle area). Akenine-Moller simpify this test using fast plane-AAB
intersection test, illustrated in Figure 3.5 (Therefore, readers should be noted that
this test is not only for the last test. This test is a regular SAT test because a plane
intersecting with an AAB does not imply the corresponding triangle also intersects
the AAB.) The algorithm take a reference point x and n to form the plane, and the
vector of half lengths h since the AAB is origin-translated. x can be any vertex of

the triangle, they use v, as x.

At first, it finds the maximum and minimum distance vectors, vimax and vmin,

from all vertices on the AAB to the reference point x. The following pseudocode

15

vmax

vmax

¥ vmin / vmin

(a) "not overlapping” (b) "overlapping” (c) "not overlapping”

vmin

Figure 3.5: SAT third test illustration.

takes advantage of translated AAB to achieve the same logic.

forall axisa € X,Y,Z do
if n, >0 then
vmin, + —h, — x,; ¥max, < h, — x,;
else
vmin, < h, -+ x,; [vimax, ¢ +h, —'x.5
end if =

end for

Geometrically, it will always obtains vmax and vmin from two diagonal vertices.
After finding vmax and vmin,"the algorithm ‘then projects vmax and vmin to
the n by dot product (i.e., r,,,, = vmax - n and r,,;,, = vmin - n). This test
report "non-overlapping” if r,,., and r,,;, are both positive or both negative. The
following pseudocode implements the above logic using early termination.

if vmin-n > 0 return ”non-overlapping”

if vmax-n > 0 return "overlapping” (if not last test, plane and AAB only!)

return “non-overlapping”

If any of these tests report non-overlapping, then the triangle and the AAB are not
intersected. Otherwise they are overlapping. They put the (9 tests)” first because empir-
cally it makes entire test faster (it may be seen as early termination code optimization).

We also developed a similar voxelizer using AABB-triangle intersection test, but with-

out octree space subdivision. Instead, for each triangle, we linear search the voxel range

16

that the triangle is located at. This process is similar to scan conversion in three dimen-
sional space. After we found the range, we extend the range by two voxels in all six
directions. Finally, we examine the voxels within the range by using the box-triangle in-
tersection test. If the test reports “overlapping”, we mark the corresponding voxel as one

to indicate occupancy. Figure [3.6|demonstrates some examples of this process.

DS N &

(©) (d)

Figure 3.6: Voxelization by box-triangle intersection test. (a), (b), (c) shows red vox-
elization grids, the blue box is the tight bounding box of the input mesh model. Note
that the starting position of the voxelization needs adjustment. (d) shows scan converting
box-triangle intersection test (Red boxes are also intersected boxes).

We compared two voxelization algorithm, and discovered there are pros and cons in
both methods. The ray-triangle voxelizer can produce visually more similar voxelized
3D model than the box-triangle voxelizer under the same voxelization resolution. But it
also produces many holes in the voxelized model. On the other hand, the box-triangle

voxelizer is just the opposite. It may be more desirable to have a more visually similar

17

voxelized model than a fewer holes one. Although models with fewer holes usually make
entire sculpture more stable, these thicker models also use more LEGO bricks implicitly,
thus reduce the chance of completing a LEGO sculpture. See Figure [3.7] for comparision

and evaluation.

< AN

- +y +y
f \/ E = - \x
WD > >N
ISISISIEA
V \\\ >< ‘ - .) /
WA S
e o 1
[M ”Sﬁ?'l'@g)
.miﬁ}"...ﬂi-l(b T
§ g
! ;

+z

-

+z
Fy
1-

(@) Bottle %Q ~ Y 4

+X
+z

(9) Bunny (h)

Figure 3.7: Voxelization results. Left column is the original triangular mesh models.
Middle column is voxelized using ray-triangle intersection test. Right column is
voxelized using box-triangle intersection test. Both voxelization uses same resolution
setting. (a), (b), (c): Sphere, resolution = (x: 12, y: 12, z: 12). (d), (e), (f): Bottle,
resolution = (x: 23, y: 38, z: 12). (9), (h), (i): Bunny, resolution = (x: 15, y: 15, z: 12).

18

The observed dilemma between two voxelization algorithms make us wonder if this
is really a tradeoff (see Figure [3.8] for artifact illustration), or there will be a hybrid ap-
proach to further improve the voxelized model. To ease the explanation, we first define
two terms, V' M,,, and V M,,,, to represent the two voxelization results obtained from
previous stage. V' M, and V' M,,, are both 3D matrices representing voxel occupation.
They are consist of only zeros and ones. The ones represent occupied voxels, while the
zeros represent empty void voxels. V M, is voxelized by ray-triangle intersection test.
V M, is voxelized by box-triangle intersection test.

After we obtain two voxelization results, we combine the results into one voxelized

model using the following three repairing procedures in attempt to solve the dilemma.
gtk fﬂ:‘\’:"‘r"?ﬁ'-'é‘-' o
1. Make the interior of sht_e&_l_;—ﬁik”y'vqaégi ized _@'gﬂel'VMw solid, thus obtainin V M,.idsos-

[e i
2. Improve neighborhgmdplon X3 range using V Moiidvox
& S

. o Xy
as an aid. y
~
[#

3. Fill the fragmenté'_'dllnter urfa\g?ole . € ounded by V' M, oiidpos

D I = =

S

D0

@) (b)

Figure 3.8: Artifacts of a ray-triangle voxelized model. (a) and (b) show the flower bottle
has a failure voxelization part in ray-triangle intersecting voxelization, but not in the box-
triangle intersecting voxelization.

19

If users supply voxel-based 3D model directly, then the above three repairing pro-
cedures can still be used, but there will be no distinction between V' M,,,, V M,,, and
V M oiapoz SINCE there is only one voxelized 3D model. In other word, these procedures
use the input itself as the reference voxelization to repair itself. We have experimented
that it will still achieve some repairing result.

Before explaining each step of propressing, we define “voxel connectivity” as follows:

Definition 1. Voxel Connectivity (see Figure[3.9)
A voxel at (z,y, z) is automatically connected to its six 3D direction neighboring
voxels (i.e., voxels at coordinates (z — 1,y, 2), (x + 1,4, 2), (z,y — 1,2), (z,y + 1, 2),

(xvya 2 1) and (l’,y,Z + 1))

(a) “{b) Connected voxels ™ (c) Disjoint voxels

Figure 3.9: Voxel connectivity. (a) shows:the spatial neighboring relationship for a voxel
to check its connectivity. (b) and (c) are examples in six direction.

In mathematical graph theory, if we view a voxel as a node, then the Definition [I]
means that the node always equipped with edges toward six 3D direction. This implies
that if a voxel is nearby another voxel in 3 dimensional Euclidean geometry sense, then
they are automatically connected. These edges can be directed or undirected, because if
two voxels are connected using directed edges, it forms a bidirectional edge.

After we know how to express the connectivity of a voxel, we can then devise an con-
nected component algorithm, VOXEL_CONN_COMP, based on depth first search.
It takes a voxelized 3D model representation Vm consist of zeros and ones. The algo-
rithm will return how many connected components the voxelized 3D model has, and a

3D matrix Setid consist of component set integer identifiers. The Setid has the same

20

size of V'm, and each unique integer in Setid is a ranking order according to the size of
each connected component. In other words, The smaller the Setid(x,y, z) is, the larger
the connected component is. The ranking order property of Setid can be used to map
each identifier to a color. We use Jet color mapping for this purpose. Therefore, if the
color is close to red, then the connected component has few voxels. If the color is close
to blue, then the connected component has many voxels. This visualization will be used
throughout the entire paper, as in Figure[3.10] The running time does not put pressure on

our system, therefore we use the algorithm in many other parts of our system.

W - — I

. LT = W L
-~ R
(@ = oho, e Tl (b)

ey

T —— ~ ™
Figure 3.10: Voxel connected compb? \ts. The color code in (a) and (b) represent dif-
ferent connected components of the voxels, and the gray color often represent the main
connected component (that is, a connected component with most number of voxels). (a)
shows the bunny has broken ears, but thay can be repaired by simply adding a voxel nearby
to achieve fully connected voxels. (b) shows the yellow and cyan voxels are isolated from
the main connected component.

The repairing procedure 1 is essentially a procedure to solidify a voxelized model.
This procedure is mainly used after voxelization using AAB-triangle intersecting vox-
elizer, because it only tests against the triangles used to described the surface of a 3D
object. It does not detect whether a voxel is in the interior/exterior of a 3D model. The
algorithm 2] describes the above procedure.

The above procedure do successfully solidify the AAB-triangle voxelized 3D models.

The reason why it works is that there are always some of rays, shot from the exterior

21

Algorithm 2 Soldify shell-only voxelized 3D model

Require: A voxelized 3D model V'm with no holes on the shell surface.
> (i.e., a fully enclosed 3D model)

for all Vm(z,y,z) = 0 (empty void voxels) do
hitcount < 0
for all rays shooting toward 6 direction do
if the ray hit an occupied voxel
+ + hitcount
end for
if hitcount = 6
Vm(z,y,z) < 1
end for

empty void voxels , hitting nothing but continuing travels. While the interior empty void
voxels, with the enclosure assumption, will. make hitcount reaches six. The results are
shown in the Figure [3.11]

After we obtain solidified voxel representationg VM, iapex, We USE it to perform re-
pairing procedure 2. As previous section.mentioned, V"M, is often thicker than V' M,
while V' M, often produces the artifacts tiIg_e__Figure 3.8 This observation strongly sug-
gests that we should devise a heuristic v-c'-»gel connectivity .repairing algorithm using a
thicker reference V M ,iidpo, in.attempt to eliminate the disconnecting artifacts in V. M,.,,.
The method is described in the algbrithm pseudocode 3, Basically, it will utilize the
previously described voxel connected.component algorithm to detect if there is a voxel at
V Motidvoz (%, y, 2) and adding it to V' M, ., (x, y, z) cause the voxel connectivity of nearby

3x3x3 space dropping, then we add it. Otherwise we reject this adding.

Algorithm 3 Voxel connectivity repair using a thicker reference V M iiqvox

for all VM, q,(z,y,2) =0 (empty void voxels) do

V M3,3,3 < extract nearby 3x3x3 of V M, at (z, vy, 2)

oldConnectivity < VOXEL_CONN_COMP (V M3,3,3)

V Moy(z,y,2) 1

V Ms,3,5 < extract nearby 3x3x3 of V' M, at (z,y, 2)

newConnectivity < VOXEL_CONN_COMP (V Mj,3,3)

if newConnectivity > oldConnectivity

V M,ay(x,y,2) <0 > reject the adding.

end for

We use a reference voxelization V M, ;0 Decause simply adding voxels for connec-

22

(@) (h) (i)

Figure 3.11: Solidify a voxelized 3D model. The resolutions of these models are the same
as Figure 3.7l The bunny has a failure voxel inside, it is because the model has bottom
holes which violate the assumption of our procedure.

23

tivity will not respect to the visual similarity. And we use V Mqiapo. inStead of V My,
because there are extreme cases that the shell of V' M,,, does not intersect with the shell of
V' M,.,. These cases may occur if the intersection of triangle is very close to the boundary
of a voxel.

The results are shown in Figure 3.12] The algorithm often successfully repairs the
voxelized model with long parts. These models are often humanoid characters, biped
animals, and so on. Models with smoother surface often do not need such connectivity
repairing. Because we only apply the connectivity repairing within 3x3x3 cube space
(that is, it checks the Definition [I] and diagonal voxels). It cannot actually connect the
case shown in Figure[3.9(c), since their 3x3x3 space do not include each other.

The repairing procedure 3 also takes the advantage of the observation that V' M,
is thicker than V Mo« It could_happen-that V 34, will be entirely included by
V M yotidaboz» @and the we can use the'solid interior oF VM, 545, to repair surface and inte-

rior holes of V' M,.,,.. The algorithm 4 implements this procedure.
=

Algorithm 4 Repair surface/interior hales Q£ V M;y using a thicker reference V M idpor

for all VM, ., (z,y,z) =0 (empty void vaels) do
surroundingCount <0 '
(check if (x,y, 2) is surrounded byl Mgiars. =1 inSix directions):
if V Mgotiavor (z — 1,y,2) = 1 + + surroundingCount

if V Myotigpor (7 + 1 y, z) = + + surroundingCount
if V Miotidbos (7, ,2) = + 4+ surroundingCount
if V Moriapor (0, y + 1 ,2) = + + surroundingCount
itV Motiabor (7,y, 2 — 1) = 1 + + surroundingCount
if V Mgotigbor (2,9, 2 +1) =1 + + surroundingCount

if surroundingCount =6 V Moy, y,2) 1
end for

In fact, we not only check V Mj,q00, bUt also check V' M, for surrounding. This is
just for some subtle cases that the V' M,,;;ap0.- 1S NOt successfully solidified. The algorithm
successfully applied to different resolutions of the bottle model. At this step, our attempt
to repair a voxelization result with artifacts is basically finished. The following prepro-

cessing steps are focused on providing a better initial solution for placement optimization.

24

(a) Dinosaur (b) 4 connected components (c) entire fully connected

o

(d) Child %333 Iq’meéi@?conia!ne h:'@gconnected components

i

(9) Bunny (h) 5 connected components (i) entire fully connected

Figure 3.12: Repair the connectivity of V' M,,,. Left column is the original triangu-
lar mesh models. Middle column is the voxelized models before connectivity repairing.
Right column is the voxelized models after connectivity repairing. (a), (b), (c): Dinosaur,
resolution = (x: 18, y: 25, z: 26). (d), (e), (f): Child, resolution = (x: 25, y: 37, z: 12).
(9), (h), (i): Bunny, resolution = (x: 15, y: 15, z: 12). In the child model case, the yellow
voxel in (e) cannot be rescued due to 3x3x3 cube space constraint.

25

99

(@) (x: 16, y: 25, z: 8) (b) (x: 23,y: 38, z: 12) (c) (x: 31,y: 50, z: 16)

®

irst r@g.v shows the broken part
thelr'-yoxellzatlon resolution.

Figure 3.13: Repair su ﬁ cean
of the “Bottle” model. The capti

Second row shows the @alﬁe i L"-
= i

WEH

3.3 Preprocessmg) oS .

- .‘ A T I (i
L NEEENE
Although there are previous v&é&’ repairing. qf.fﬂrt} still we are unable to fully repair

all kinds of artifacts in these voxelized models. The remaining isolated voxels, as shown
in Figure[3.10] will never connect to the main trunk of LEGO sculpture. If we do not get
rid of these voxels, we cannot clearly determine our legolized results are valid or not in
the later placement optimization step. In addition, albeit we change the cost optimality
goal into quantity constraint goal, it is still worth making our voxelized model as hollow
as possible. Especially for large LEGO construction projects, removing interior voxels
can effectively minimize time and money spent on these projects.

The above two factors lead to the design of the following two operations.
1. Remove isolated voxels automatically.

2. Remove the interior voxels of the combined result, thus making it hollow.

26

The preprocessing step 1 is basically removal of smaller isolated connected compo-
nents. As our VOXEL_CONN_COMP algorithm will find the major connected com-
ponent with most number of voxels, this step is as easy as reuse of the VOXEL_CONN_COMP
algorithm. After cleaning fragmented voxels, we eliminate one of reasons that could fail
the placement optimization.

The preprocessing step 2, removing the interior voxels to make the voxelized model
hollow, is the inverse operation of making model solid. However, the algorithm is quite
different. Instead of traversing all empty void voxels, we use ray-tracing like algorithm
to traverse voxels. Similar to the voxelization algorithm by ray-triangle intersection test,
we also use parity counting to determine the interior, but with a higher counter bound for
classifying interior between shells The ray-tracing-way. provides the flexibility to adjust
the thickness of the hollow voxelized model for-every side, since we perform six sides ray-
tracing to determine the interior. The-algorithm requires.one assumption, that is, the input
voxelized model must be fully solidifiee (l.e.,.no"holes inside the model). The procedure

is implemented in Algorithm Bl

fa |
|

Algorithm 5 Remove interior voxels of a voxelized madel V.

Require: A voxelized 3D model Virh With.no holes inside'it:
> (i.e., a fully solidified 3D model)

initialize 3D matrix countSix to.zero:
for all ray shooting directions € {4+, =z, +y, vy, +z, —z} do
for all pizel(i, j) € corresponding plane perpendicular to the ray do
Get 3D coordinate (z,y, z) by interpreting pizel(i, j) and the ray.
if Vm(x,y,z) =0 then
countT hickness < 0
else
+ + countT hickness
if countT hickness > thickness,qypirection
+ + countSiz(x,y, z)
end if
end for
end for
Vm(z,y, z) < 1, V countSiz(x,y,z) = 6

The hollowed-out voxelized model results can be seen in Figure[3.14] We found that it
is sufficient for placement optimizer to run in thickness of two voxels. If we use only one

voxel thick, the shell of voxelized model will produce zigzag structure. These diagonal

27

artifacts will greatly reduces the chance to use LEGO bricks connect the entire voxel
representation. And making the voxelized model thicker does not gain any benefit but

increase the consumption of LEGO bricks.

) (h) (i)

Figure 3.14: Hollowing out a voxelized 3D model. The resolutions of these models are the
same as Figure 3.7} Left column is the original triangular mesh models. Middle column
is the voxelized models of one voxel thick. Right column is the voxelized models of three

voxel thick.

28

3.4 Placement Optimization

After voxelization and preprocessing stages, our voxelized model is ensured to be a
single connected voxel representation according to the Definition [I, But such a model
cannot be considered as “legolized”. A simple attempt of legolizing the voxelized model
is to map every voxel into generic 1x1 LEGO brick. This attempt, however, is definitely
unable to succeed. Because this will only give you many disjoint 1x1 LEGO pillars, and
some of pillars are even floating in the air, as Figure[I.2)shows. A truly legolized object
should at least satisfy the connectivity-one objective, which is one of three goals we want
to achieve in order to solve the “LEGO construction problem”.

But before we describe our approach-ofiplacement optimization, we first have to define
what is the connectivity between LEGQ bricks.. As we did.in the Preprocessing section,
in this way we can have a better understanding of our problem. in terms of mathematical

graph theory.

Definition 2. LEGO Brick Connectivity (s}g?'Figure

A LEGO brick is connected to the bricf<s directly above-it and the bricks below it.
If a LEGO brick X has a difension of (width xheight x length) and positioned at
(z,y, z) using the lowest voxel part of IlEGO brick as-the pivot voxel. Then we know
the LEGO brick X has two rectangular interlocking surfaces. They can be expressed
as a voxel coordinate set S = {(z,, y — 1, 2.)} U {(z,, y + height — 1, z.)}, where
r<x, <xtwidthand z < z,. < z+length. Any LEGO brick covers these coordinates

in .S are said to connect to the LEGO brick X.

The above definition assumes the LEGO bricks are cuboid shapes. In graph theory
terms, if we view a LEGO brick as a node, then the Definition [2 means that the node
always equipped with edges toward above and below. The LEGO brick connectivity
definition is somewhat more strict than the voxel connectivity definition, as LEGO bricks
only allow vertical connection instead of horizontal connection. Again, the edge can be
directed or undirected using the same bidirectional edge argument in Definition [1, But

directed edges can be use for computing a better building order, later in the section we

29

(a) Connect from above (b) Connect from below

Figure 3.15: LEGO brick connectivity.

_ HN _-COMP, to compute
the connectivity of entire legolized insteal %Jsing 3D matrix SetId,

=
we use a hash table foﬁ}his p : ; 3 Ie’go'@ed representation data

brick List storing mformaﬁpnﬁér all actual.LEGQ b ck‘g Eﬁfh Pm(z,y, z) is actually
a pointer to one of items m? E’zste‘?-'aln thls;\.y_gy%ekﬁn conveniently reference the
LEGO brick information stored I%W‘ﬂr using LM (z,y,z) = Pm(z,y, 2).
In addition, pointers provide unique item referencing, which is suitable for being as hash
keys. This explained the reason why we use hash table to store SetId.

As mentioned in the Introduction chapter, this NP-hard problem is not easy to solve.
After our related work survey, it is typical to formulate the problem as an placement
optimization problem, and solving it using optimization techniques. We also follow this
common approach as our final stage of legolizer. Among all optimization techniques, we
follow the “Cellular Automaton” method described in the paper [5] and implemented our
own version with some modifications.

Basically, they formulate the LEGO placement optimization problem in a “Cellular
Automaton” way. Then the optimization process is just the same as the evolution process

of a cellular automaton simulation. To formulate a problem solvable by cellular automa-

30

ton simulation, it typically requires to define two elements.
1. What is a cell and its states?
2. How a cell to interact with nearby cells?

For optimization problems, we require two more elements, and thus become a opti-

mization algorithmic framework called “cellular automaton optimization”:
3. How “healthy” is a cell?
4. When to stop optimization?

To formulate, they map the concept of a cell to a LEGO brick. The operations for
interacting neighborhood cellsare called “merging” and “splitting”. And finally, they
have to define a local heuristic €nergy function tosrepresent the fitness of a cell. In this
way, they can evaluate how,good is the-placement.of a LEGO, brick.

We later found that the prapertie$ of egl‘iular automaton are very suitable for LEGO

construction problem. These properties are

e Parallelism. Each cell.isindependent and isalated; it provides the opportunity of

data parallel computing.

e Locality. Each cell only probes and interacts with its neighboring cells. This is
especially important because eliminate the needs to check if a placement is blocked
by other LEGO bricks. Instead, we only need to check whether inter-cellular inter-
action is successful of not. But this property may be also a drawback because we

can only compute local cost function. This may lead to local optimal results.

e Homogeneousity. Cuboid LEGO bricks have homogeneous geometric properties,

which is just the same as cells in cellular automaton.

We begin to formally define what is a cell for cellular automaton optimization to
evolve a 2D layout of LEGO brick placement. This is the main object which we often
manipulate in the algorithm. After the definition, we will use “cell” and “LEGO brick”

interchangeably.

31

Definition 3. A cell in cellular automaton (see Figure 3.16)

A cell represents a cuboid LEGO brick. It is defined by a dimension of (width x
height x length) and positioned at (x, y, z) using the lowest voxel part of LEGO brick as
the pivot voxel. The neighborhood of a cell is divided into vertical part and horizontal part.
The definition of vertical neighbors are the same as the LEGO brick connectivity defini-
tion (Def. [2). The horizontal neighbors are defined by four side of the LEGO brick. That
is, it can be defined by a voxel grid set S = {(z,, y,, 2)} U {(x,, y,, z + length — 1)} U
{(z,yr, z)} U {(z +width — 1,y,,2,)}, where z < z, < z + width, y < y, <

y + height,and z < z, < z + length.

(d)

Figure 3.16: A cell in cellular automaton. The 2x2x6 LEGO brick is synthesized by
two 2x1x6 LEGO bricks for illustration. (c) and (d) shows the white and red horizontal
neighboring LEGO bricks.

32

Their initial attempt [5] to encode the problem by a standard cellular automaton is
unsuccessful due to LEGO bricks are not homogeneously occupying only one grid but
multiple grids. Therefore, they use the concept of “cluster of cells” to futher abstract a
LEGO brick. But this abstraction may further complicate the algorithm for readers to
understand, we would like to use only “cells” to abstract LEGO bricks.

The LEGO brick family set that we used in our legolizer can be found in Figure 3.17]
Note that the dimension notation in the Definition[3]is different from the labels in Figure
[3.17] And to ease the implementation, we handle the rotation of bricks by mirroring the
dimension. For example, 1x1x2 cell and 2x1x1 cell represent the same LEGO 1x2 brick.
In addition, Instead of adding so called L-shape LEGO brick as they [5] did. We strictly

do not include the L-shape brick becal_J_s'e,__they a_ré rarein the LEGO basic brick set.

| _:‘E:.

1x1 1x2 1x3 1x4

Figure 3.17: LEGO brick family set.

Similar to previous attempts, cellular automaton also uses layer-by-layer decomposi-
tion approach to solve the LEGO construction problem. Because most often the height

of a cell is 1. As this can be seen by the input LEGO brick set, which is only consist

33

of height-one LEGO bricks. This divide and conquer technique is often used to solve
complicated optimization problems.

We now describe the procedure of cell automaton optimization first. We defer the
explanation of the remaining three elements to the later part of this section. Initially, for
all occupied voxels in the 3D voxelized model, we convert them into 1x1 generic LEGO
bricks (i.e. ¥ Vm(z,y,z) = 1, we replace it with a corresponding 1x1 generic LEGO
brick). Then, for each layer, the algorithm iteratively optimize this layer until a given time

step limit is reached. Each time step iteration performs the following 3 phases.

1. For each cell in the layer, probe horizontal neighboring cells to find best mergeable
direction € {+z, —z, +z, —z} The,best” term is defined by element 3 - energy
function. If there are more thanone directions that evaluates the same minimum

cost, we randomly choose one©f them.

2. Compute all weakly connected components|for this layer by viewing each cell’s
best horizontal mergeable directionsas a-directed edge pointing to a horizontally
neighboring cell. These weakly connected components.are called potential merge-

able clusters.

3. For each potential mergeable cluster, merge‘all cells within the cluster. For any cell
within the cluster, if the number of failed merge attempts for the cell is exceed a

constant, we perform probabilistic split on it.

More precisely, the cellular automaton optimization algorithm can be described us-
ing the pseudocode [6l The element 4, termination criteria, is very simple. The variable
MAX ITERATION is the time step limit for each layer.

We begin to explain the element 2 - cell interating operations. There are two opera-

tions: merge and split. The merging of two cells is defined as following:

Definition 4. Merge operation of two cells (two LEGO bricks) (see Figure 3.18)
Given two cells A and B according to the Definition [3] a merge attempt is successful

if A and B satisify one of the following three conditions:

34

Algorithm 6 Cellular automaton optimization.

Require: A single entirely connected voxelized 3D model V'm.
> Variables with LM prefix are legolized 3D volume.

VVm(z,y,z) =1, LM(z,y, z) < 1x1x1 cell (LEGO brick).
for 0 <y < LM.height do
LMuyer <+ LM layer(y)
LMbestLayer < LMlayer
best LayerCost <— compute layer cost for each cell ¢ € LMyestrayer
using local heriustic energy function BRICK_ENERGY (¢). > (element 3)

for 0 < timeStep < MAX_ITERATION do
(phase 1), parallelizable for each c:
for all cell c € LMy, do
find c.best M ergeDirection by probing horizontal neighboring cells by
evaluate after merging energy using BRICK_ENERGY (merged).
end for

(phase 2):
compute the setof potential mergeable clusters S by c.best MergeDirection.
> This can be selved by weakly‘connected component algorithm.

(phase 3), parallelizable for eaéﬁng
for all potential mergeable cluster s € 5| do
for all cell c-&-s'do
mergedNewC'ell +-merge(c, getCell(LM, qyer, c.best MergeDirection)).
' : > (element 2)
if mergedNewCeéll # empty void voxel.(merge success) then
alter LM qyerto reflect the merge..
else

+ + c.mergeFail Count
end if

if c.mergeFailCount > MERGE_FAIL_LIMIT
and pass c.split Probability test
split c and alter Ly, to reflect the split. > (element 2)
end for
end for

current LayerCost < compute layer cost for each cell c € LM, e,
using BRICK_ENERGY (c).
if current LayerCost < best LayerCost then
best LayerCost < currentLayerCost.
L Myestrayer < LMjqyer-
end if
end for
LM.layer(y) < LMyestzayer
end for

35

1. They are completely overlap in YZ plane, and there is such a LEGO brick type with
the merged dimension (A.width+ B.width, A.height, B.length). The merged cell

M has the merged dimension and the pivot coordinate of (min(A.z, B.z), A.y, B.z)

2. They are completely overlap in XY plane, and there is such a LEGO brick type with
the merged dimension (A.width, B.height, A.length + B.length). The merged

cell M has the merged dimension and the pivot coordinate of (A.z, B.y, min(A.z, B.z))

3. They are completely overlap in XZ plane, and there is such a LEGO brick type with
the merged dimension (A.width, A.height + B.height, B.length). The merged

cell M has the merged dimension and the pivot coordinate of (A.z, min(A.y, B.y), B.z)
1l IR, »
| - B __ L
For the extension of colorllceonstrai'lntl -_f'benti_o_xg*e'ﬂ infthé reference work [5], The merge

operation must additionallﬁy”‘check'r cells ar € same color, or one of cell has the

: '\-\.,,l- ’ , I:l_,.-""' .'._ .
so-called “wildcard” color. Cells with-wildcard color are'used:to relax the constraint, they
. \ =

(a) Succeed (b) Failed by mismatch (c) Failed by no such type

Figure 3.18: Merge operation of two neighboring cells. (a) is a successful merge oper-
ation, provided that white color is the “wildcard” color. (b) is a failure merge operation
because position mismatch leads to not completely overlap. (c) is a failure merge opera-
tion, provided that the input LEGO brick set is the same as Figure[3.17]

There are two problems when implementing the merge operation and related algo-
rithm phases (phase 1 and 3). First, how does a cell know the properties of its horizontal
neighboring cells? Second, how to smoothly merge cells in a potential mergeable cluster

into a real large cell without the aid of L-shaped LEGO brick? (L-shaped brick will make

36

merge operations within a potential mergeable cluster smoothly executed along the path
formed by sequence of best mergeable direction).

The first problem is solved by the design of legolized representation data structure
LM. As previously mentioned, we use the 3D matrix of pointers Pm to reference cells.
We can reference a cell by a volume of pointers ptrs. Specifically, given a LEGO brick A
stored in LM, ptrs = {Pm(x,,y,, 2,)} where A.x <z, < A.x + Awidth, Ay <y, <
Ay + A.height, and A.z < z, < A.z 4+ A.length. Figure [3.19 (a) illustrate the above
description. In addition, using this design can simplify the finding of horizontal mergable
cells. We can only probe four voxels instead of iterating all horizontal neighboring voxels
by Definition[3] Because it can be proven that given two mergeable cells, B and C, C' must
occupy Pm in one of these four voxel pasitions. (B.x— 1, B.y, B.z), (B.z, B.y, B.z —
1), (B.x + B.width, B.y, B.z), and (Ba; BysB.2 4+ /B.length).

The second problem is basicallythe current cell"cannot'merge all of its neighboring
cells due to dimension mismatching.. \Me solvesit by deferring the merge of current cell.
More specifically, we perform merge operz:a'?iah on the neighboring cell first in attempt to
get a cell whose dimension is matched for a: successful merge. Then we return to merge
the original cell whose merging is de:ferred. We use-arrows in Figure [3.19(b) to explain.

The splitting of a single cell is verysimple. Itis defined as following:

Definition 5. Split operation of a single cell

A split operation on a single cell is to break it into 1x1 cells. More clearly, Given
any LEGO brick A, the split operation turn every voxel (z, y, z) into 1x1 generic standard
LEGO brick, where A.x < = < Ax + Awidth, Ay < y < Ay + A.height, and

Az <z < Az+ Alength.

As pseudocode [6] mentioned, the split operation is controlled by two parameters,
MERGE_FAIL_LIMIT and cell.split Probability. MERGE_FAIL_LIMIT should
not be too small, as it may cause splitting too often. The parameter cell.split Probability
is related to the brick size. Usually, the larger the brick, the smaller the probability to

trigger a successful split.

37

(b)

Figure 3.19: Notes for implementing merge operation. In (a), the center orange LEGO
probes the four horizontal neighboring cells using the yellow arrows shot from pivot lo-
cated by green rectangle. The voxels pelntedrbyfthe yellow arrows then reference to the
actual LEGO bricks, like the cyan arrows,pointing to their pivots located by red rectangle.
The probing result is that the -.cent r LEGO can‘only mergethe light blue cell. In (b), we
defer the merge led by the yellov ,and t “‘ng(e‘rge led by the white arrow first.
After the merge of whitg arrow i pleted, th w.arrow is now pointing newly
merged 1x2 LEGO, which becomes mergeable by the yellow-arrow holder.

e

After we defined the element of nei hb@ jon routines, ini
g g) "'" g, - . R
ing the local heuristic energyf n, the.e of celfular automaton optimization.

Basically, it is a weighted suﬁfof qh erent

_'

. 3 o

Definition 6. Local heuristic energy functlon (BRICK ENERGY(cell))
o,
Given a LEGO brick cell placed in the Iegollzed 3D volume LM, the cost of this
placement, E..;, is defined by the following weighted sum equation [5, 10} [11]:

Ecell = WnumBricks X EnumBm'cks
+ WdirAltern X EdirAltern
+ WnumDistinctCOlor X EnumDistinctColor
+ WnumConan’cks X EnumConnBricks
+ WareaConnBricks X EareaConan’cks

+ WsameVedge X EsameVedge

38

If any of weight equals to zero, then it effectively disable the corresponding energy
term. The energy terms often probe the connecting cells from above and below. The
“above” and “below” are following the brick connectivity definition (Def. [2). And the
counting of connecting cells are all distinct LEGO bricks, that is, if a vertical connect-
ing LEGO brick covers the current evaluating LEGO brick, cell, more than one grids,
it should be counted as one rather than the number of overlapping grids. We begin to
explain every single energy terms.

The energy term E,,...Bricks 1S SIMply computed by counting how many LEGO bricks
in the legolized sculpture volume L M. If the energy term is used in the cellular automaton
for local cost function, then it refers to the cost of cell itself. We use uniform cost for each
kind of LEGO bricks as the main reference work [5] did. In other word, E,,....Bricks = 1
for every LEGO brick in LM. We. should set<dZ,..,.5751s > 0 to minimize this energy
term. This term can even be-ignored when used‘in“cellular automaton because it does
not discriminate the merged LEGO bricks,.and merging operation itself implicitly and
effectively reduce the consumption of LEC;‘I-_’Cf)"bricks.

The energy term Egiyaiiern Means the :atbove and below bricks connecting to cell
should result in alternative directiona\:Iity. That.is, if the longest dimension of cell is along
x-axis, then the above and below bricks-connecting to.it should have longest dimension
along z-axis, and vice versa. Figure[3.20/demonstrate this energy term. The directionality
alternation will make the LEGO structure more stable and connected since it follows the
principle of masonry. In practice, given the input LEGO brick set, we can compute the
longest dimension axis for each kind of LEGO beforehand. Ey;, 4ite-» 1S actually equals to
the number of LEGO that differs from cell in longest dimension axis. For LEGO bricks
with no longest dimension axis (e.g., squared LEGO bricks like 1x1 and 2x2), this term is
ignored. We can infer from the description that we should set W4, arern < 0 to maximize
this energy term.

The energy term Eqeveqqe Means how many overlapping boundaries for connected
LEGO bricks from above and below. Figure [3.21]illustrates this term. The boundaries of

LEGO bricks are the reasons why they cannot be horizontally connected. If two connected

39

() Good placement, Eg;r aitern = 3 (b) Bad placement, E g artern = 0

Figure 3.20: The energy term Eg;, aizern- The Cyan arrows represent the longest dimension
axis of cell. The black arrows represent longest dimension axes of bricks connecting to

cell. (ol IOEE e,
y |_ -y _4.. __:.1-_:._ = Ll -
LEGO brick has more overl,gpipipg vertical-cutting edg\i; itimplies that they are covering
themselves. As a result, they~are less helpf creasing connectivity. We should
i/ N

set Weamevedge > 010 minlmlzle this e oriQiﬁéllmipIemented Esamevedge
- 3 o . | |
by counting the length of total overlapping ' H(ﬁxer we discovered this energy

r SQUa(e shaped LEGO bricks.

-
r_,-'

choose a direction from L- shabed chouzes this ferm V\{I” \cause cell to choose mergeable
bricks without covering bricks from abo&e and bélow. Therefore, we disabled this term in
the experiment result by setting Wmevedge = 0

The energy term E,,..nconnBricks 1S cOmputed by total number of bricks connecting to
cell from above and below. This term directly reflects the connectivity contribution of
cell. We should set W, mconnBricks < 0 10 maximize this energy term.

The energy term E,,caconnBricks 1S computed similar to the energy term E,,....connBricks»
but instead of just adding one for each distinct LEGO brick connecting to cell, it adds the
area of vertical connecting LEGO brick. The area is computed as width x length It eval-

uates the connectivity contribution more precisely. We should set W,,.caconnBricks < 0 t0

maximize this energy term.

40

(a) Good placement. (b) Bad placement. (c) Side effect.
EsameVedge =1 EsameVedge =3+1+3=7 Bad merge direction.

Figure 3.21: The energy term Egumevedge- IN (@) and (b), cell is the blue LEGO brick.
The red lines show the overlapping edges that should be penalized for bad placement.
However, as (c) shows, this term may make the red LEGO brick to merge the white

orphan brick pointed by the arrow, thus in_ci‘:rea}se_the risk of disconnection.
e ol IS AT oy
|”1"_‘ % -

A = & - .-:..\..""!)
The EpumconnBricks and_-Ed“’%ComgB ioks LETAS mlji&r_-;ye the cell actively to merge
AC = -

Y

e abvs two energy terms.

e T.l""..-

horizontally neighboring péils. Fil

e

.

(a) Good placement. (b) Bad placement.

EnumConnBricks =4 EnumConnBricks =3
EareaC’onnBricks =6+6+2+8=22 EareaConnBricks =14+1+1=3

Figure 3.22: The energy term E, ...connBricks N0 EqreaconnBricks- cell is the light blue
brick on the table.

The energy term E,,...pistinctcolor MeaNS to make cell cover as many distinct color
of LEGO bricks as possible. It is corresponding to the color extension of the reference
work [5]. This is a reasonable energy term because color constraint makes the merging
operation more difficult to successfully performed, and thus compromise the connectivity.

Without this term, it is likely that the entire legolized model will split along line partition

41

by different colors. Note that the “wildcard” color is also treated as one kind of color. We
should set W,umpistinctcoior < 0 to maximize this energy term. Figure [3.23 shows the

example of this energy term.

(a) Good placement. (b)'léad pllace'ment
ErnumbistinctColor =8 .-.’.:; 2 nu"hpzst@fwolor =2

Figure 3.23: The energy t term EnumD,stmctoolm The Whlteeolor here represents the wild-
card color. cell is the wildcard color ‘ﬁa?tid to ihe green plate

8 = ’
In the original reference Wor_k-, there \fﬁ an energy term caIIed Encovered, Which

counts the interlocking surface area coverage of [fror-n above and below. That is, if

cell has fewer vertical connectlng brlcks the more area is Uncovered by LEGO bricks
and resulting in larger E,,.covered- HoWever we feeI that this energy term is much less
effective, and it may prevent interior ceIIs merge toward boundary. Because boundary
bricks often uncovered by other cells to provide shape visual similarity, this term will
penalize the outward merging LEGO brick, and thus produce hanging bricks.

In our experiment, our parameters for placement optimization are: MAX_ ITERATION
= 98, MERGE_FAIL_LIMIT = 11, WyumBricks = +7, Wairaitern = —2, Weamevedge =
0 (disabled), WiumconnBricks = +4 WareaConnBricks = —1, ad WumpistinctColor = —2-
Table[3.1]shows the LEGO family set we used in the experiment and its splitting probabil-
ity paramters for each kind of LEGO brick. The quantity distribution of the LEGO family
set is equivalent to two boxes of LEGO 5623 basic brick set. Our table only considers the
dimension, all bricks that has the same dimension but different colors will be aggregated

into the total quantity of that dimension. The dimension notation is according to the Def-

42

inition [3} and we do not mirror the type in the table to reflect the actual number. Figure
[3.24] shows our cellular automaton optimization in action. It also illustrates our graphical

user interface for this computer-aided LEGO sculpture assembly tool.

Type | Quantity | Splitting Probability | Type | Quantity | Splitting Probability
1x1x1 128 0

2x1x1 280 0.7 | 2x1x2 212 0.7
3x1x1 40 0.7 | 3x1x2 76 0.7
4x1x1 32 0.6 | 4x1x2 76 0.6
6x1x1 20 0.5 | 6x1x2 14 0.5
8x1x1 14 0.4 | 8x1x2 8 0.4

Table 3.1: The LEGO brick family set used in the experiment.

The optimized LEGO placement achieved nearly connected results. However, to fur-
ther increase the chance of successfully construeting a LEGO sculpture, we implemented

following post-optimization refinement procedures:

1. Repair disconnected hanging LEGQ.brickSion the surface.

- x.

2. Simple L-shaped conflict resolution. [}
3. Re-merge all bricks generated by above twoiprecedures.

4. Adjust LEGO quantity distribution to relax the pressure from rare kinds of LEGO.

The first procedure is implemented because the optimized placement often consist
of fragmented hanging LEGO bricks on the surface, resulting in disconnected legolized
model. As shown in Figure [3.27] this kind of artifact is rather easy to repair. We use
BRICK_CONN_COMP to find disconnected components containing only one LEGO
brick. Then, for each of such disconnected LEGO brick, we split it and its nearby horizon-
tal neighboring LEGO brick. The split operation is defined in Def. [5]and the horizontal
neighborhood is defined in Def. [3| After splitting isolated LEGO bricks, we will re-merge
them by third procedure rather than reusing the cellular automaton optimization. Because
we want to completely avoid the artifact produced by it.

The second procedure is an attempt to repair connectivity lost by L-shaped conflicts,

as the bunny example in Figure [3.27] (a). The L-shaped conflict example can be found

43

usage messagebox

:y-axis B:z-axis, toward +
£, depth = 0.000, scale = 8.000
ft = -39

solu (x,y,z) = (15,15,12)
ler mode: LEGO
ayer from 0 to 15, LEGO: 501
ase: placement optimization, 5

0 %

‘s‘?({-

s

ANRD

L ec

1]
Lk
T

'H' key to popup UI usage messagebox
:x-axis G:y-axis B:z-axis ar.

R z- , toward +

ligh off, depth = 0.000, scale = 8.000
hi 2, yshift = -39

v (x,

v e: LEGO

oxe
showing layer from 0 to 15, LEGO: 338
Exec Phase: placement optimization, 75

(b) layer 4 to 14 optimized

Figure 3.24: Cellular automaton optimization in action.

44

in Figure 3.21] (c). What we called “L-shaped conflict” means various problems intro-
duced by the lack of L-shaped LEGO bricks. L-shaped voxels introduce conflicts be-
cause any of merge results are unable to connect L-shaped voxels, and usually left a
(1 x height x m) LEGO brick disconnected. One of resolution methods is to supply a
1x1 brick horizontally that makes L-shaped voxels transformed into squared-shaped vox-
els. This is what we did in the second refinement procedure. More clearly, we again apply
a BRICK_CONN_COMP to identify all connected components by integer cell.setid.
Then, we scan entire legolized volume to find possible L-shaped conflicts. If an empty
void voxel e(x,y, z) is surrounded by disconnected L-shaped bricks (identified using
cell.setid), then we add one 1x1 LEGO at that position.

The third procedure is the brick re-merging algorithm for the first and the second
refinement procedure. In order to_avoid-disconnecting.these hanging bricks again, we
use a different approach to guide 'the'merge operation.. \We define another energy called
“risk of disconnection”. Like previously mentioned energy terms in optimization, this
term also computes cost by vertical conng(‘:?t;i'on candition. For empty void voxels ver-
tically neighboring to the brick, we add é'for each of such voxel. For 1x1 generic
bricks vertically neighboring ‘to the: bricky'we add 2R for each of such brick. R =
max({brick.area | ¥ brick € LEGO-family set}) =current brick.area. Unlike pre-
viously mentioned energy terms, we also consider horizontal neighboring bricks. We add
one for each horizontal neighboring direction that the current brick cannot successfully
merge. Figure [3.25] demonstrates how to compute the risk of disconnection of a given
LEGO bricks. Please also refer the Definition [3| for related concept.

Provided with the definition of risk above, the algorithm basically performs merg-
ing from higher-risk bricks to lower-risk bricks. And the merge must follow the order
from higher risk to lower risk strictly (i.e., cell,.merge(cell,) is success provided that
cell,.risk > celly.risk). We use a priority queue to dynamically maintain the risk or-
dering. Initially, the priority queue is filled with all LEGO bricks from the legolized
model LM. Then, we perform the merge described above. Newly merged LEGO brick

is inserted into the priority queue. After insertion, it updates the risk of bricks near the

45

(a) Low Risk, risk = 4R + 1 (b) High Risk, risk = 14R + 3

Figure 3.25: Risk of disconnection. The white 1x4 brick is the current brick. In (b), there
is only one 1x2 yellow brick supporting the center white 1x4 brick. Therefore, +4R is
for the added risk for both empty void voxels from above and below.

L R =

2x3 2x4
3x2 4x2
1x6 1x8
6x1 8x1

| R I

Figure 3.26: Merge closiite, Ctlnrputed by t 'e\LEGO_'.famin set in Table[3.1]

newly merged brick. If the merge o:p-erati'on of a I.;'EGO brick is failed, the brick is simply
removed from the priority queue. This procedure is then terminated when the priority
queue is empty. Fortunately, this procedure will also merge the smaller LEGO bricks left
by previous optimization into larger LEGO bricks. In order to ensure all smaller LEGO
bricks are merged into larger ones, we compute the number of merge operation from the
set that containing only 1x1 LEGO bricks to the set that containing entire input LEGO
family set, or the next set is the same as the current set. We call this “merge closure.”
Figure [3.26] illustrates this computation. The result of our repairing attempt can be found
in Figure [3.27]

The fourth procedure is a heuristic greedy adjustment of LEGO brick quantity distri-
bution. The idea is to split larger bricks of rare types into smaller bricks of rich types

without losing connectivity. We continue splitting until the quantity limits of rare types

46

T~

() Bunny, before repair -
connected component =
number of brick = 191 .ﬁ'

-ﬂ‘F

=

(c) Child, before repair (d) Child, after repair
connected component = 8 entirely connected
number of brick = 324 number of brick = 260

Figure 3.27: Post-optimization refinement - connectivity repair.

47

are satisified. We discovered that 1x3, 1x4, 1x6, 2x6 and 1x8 are rare types, 1x1, 1x2
and 2x2 are rich types. Therefore, we perform the following steps to achieve rare type

quantity control.

e Split every 1x3 brick into 1x2 and 1x1.

e Merge every two 1x1 bricks into 1x2 bricks.

e Merge every two 1x2 bricks into 2x2 bricks (if mergeable).
e Split every 1x4 brick into two 1x2 bricks.

e Merge every two 1x2 bricks into 2x2 bricks (if mergeable).
e Split every 1x6 brick into, three 1x2 bricks:

e Merge every two 1x2 bricks into 2x2 bricks (if.mergeable).

e Split every 2x6 brick into three 2x2 bricks:

——
L.

e Split every 1x8 brick int@ four 1x2 b-'}i;:ks.

e Merge every two 1x2 bricks'into 2x2 bricks (if mergeable).

Except for the 2x6 split, there are always one or two merge after each split. This is
because we want to prevent connectivity instability. However, this conservative sequences
may also reduce the chance of successful quantity control.

Finally, to ease the actual construction, we begin to think if there are better building
instruction order. We observed that, if we do not have the bottom plate, it is difficult for
us to build LEGO structure layer-by-layer, which [5] did. We think a better building order

should satisfy:

e Ensure always connected when adding a brick.

e \We like to build LEGO structure bottom-up.

According to our observation, we implemented a bottom-up building order by sim-
ply a vertical priority breadth-first search of LEGO bricks using undirected connectivity

defined in Def.

48

Chapter 4

Results and Evaluation

We have experimented and real eonstructed using the model listed in Table 4.1} each
result will show four images and_ a table-of statistics.._The four images are wireframed
3D triangular mesh model, preproeessed voxelized medel, computer generated legolized
model, and actual constructed LEGO sculptl_Jre. The table'of statistics for the given model
will show the consumption‘of LEGO bricl;é;"ﬂsing the format of Table [3.1] and optimized
energy terms. The surface-thickness of all :v_oxelized model.are 2 in all six sides, men-
tioned in the section [3.3] The<optimization parameters ar¢listed in the section [3.4] All
results are entirely connected (i.e.,"the;humber of connected component is 1). Some re-
sults will have minor user intervention in order to cope with complicated disconnected
situations. These interventing operation differences will also be listed in Table 4.1, Our
legolized models can often completed within 30 minutes or one hour with the aid of
graphical user interface. The builder often spends most of the time trying to find the exact

LEGO brick instructed by the system.

Name of 3D Triangular Mesh Model | Applied User Intervention

Heart Red surface and Constraint 5 rare types only for red
Standford Bunny (Simplified) Red eye and Disable 5 rare types

Child None

Table 4.1: Experimented 3D triangular mesh models.

49

(a) Triangle count = 664 ﬁ:m;[fsjf_@,-;{-’@g,ﬁ@r Resolution = (x: 14, y: 13, z: 8)

(c) Total Energy = -3306 (d) Runtime = less than 1 second

Figure 4.1: Experimented result - Heart.

Type | Quantity | Type | Quantity | Energy Terms Cost
1x1x1 10 ErpumBricks +882
2x1x1 52 | 2x1x2 18 | Ejirattern -244
3x1x1 8 | 3x1x2 12 | Esomevedge 0
4x1x1 6 | 4x1x2 14 | EumconnBricks | -1942
6x1x1 4 | 6x1x2 0 | EureaconnBricks | -1672
8x1x1 2 | 8x1x2 0 EnumDistinctColor -330

Table 4.2: Result Statistics - Heart.

50

(@) Triangle count = 26663.3(ﬂ@_;t:za‘[&:l,ﬁfgw

(c) Total Energy = -8961

. W - — I

esolution = (x: 25, y: 37, z: 12)

(d) Runtime =5 seconds

Figure 4.2: Experimented result - Child.

Type | Quantity | Type | Quantity | Energy Terms Cost
Ix1x1 46 ErumBricks +1988
2x1x1 81 | 2x1x2 24 | EgirAttern -1448
3x1x1 40 | 3x1x2 21 | Esmevedge 0
4x1x1 32 | 4x1x2 26 | E,umConnBricks -4627
6x1x1 9 | 6x1x2 2 | EureaConnBricks -4184
8x1x1 3 | 8x1x2 0 EnumDistinctColor -690

Table 4.3: Result Statistics - Child.

51

Resolution = (x: 15, y: 15, z: 12)

(c) Total Energy = -3904 (d) Runtime = 2 seconds

Figure 4.3: Experimented result - Bunny.

Type | Quantity | Type | Quantity | Energy Terms Cost
1x1x1 42 ErumBricks +1519
2x1x1 108 | 2x1x2 38 | Ejirattern -284
3x1x1 0 | 3x1x2 17 | Esamevedge 0
4x1x1 0 | 4x1x2 12 | E,umConnBricks -2201
6x1x1 0 | 6x1x2 0 | EureaConnBricks -2400
8x1x1 0 | 8x1x2 0 EnumDistinctColor -538

Table 4.4: Result Statistics - Bunny.

52

There are still unsolvable cases appeared during our experiments, and our system can
only show where LEGO bricks are disconnected due to the limitation of our methods. The
limitations will be discussed in the next chapter. Figure [4.4]demonstrated this functional-

ity.

i T e
(a);':-' /] f{ (b) Cannected component = 7
= =
- Figure 4.4: Fa Iuruf'@t'!bt on - Dinosaur.
Ve Il’:‘
In addition to showmg;suctCQS ul cases and failur ages v,ye did some simple evalu-

ation of our methods according tdfﬁﬁé bj¢ of tf’%‘LE@B construction problem. For
3’.

.J' L]

connectivity objective, if we d|d ri"("jt,-ap‘pIy}ngJ| thJe nosl optlmlzatlon connectivity refine-

ments, the overall chance of disconnecting is much higher, as shown in Table[4.5

3D Model | # of disconnection | # of disconnection | # of connected component
without refinement | with refinement | reduction with refinement

Bunny 20 14 20

Child 20 7 20

Heart 5 0 5

Dinosaur 20 20 18

Table 4.5: Evaluation - connectivity objective, test 20 runs.

For visual similarity objective, our informal user study shows that users favor our
hybrid (thinner) voxelized result, it is more similar than box-triangle voxelization result.
In addition, it brings fewer brick usage. Among 5 persons, only 1 person choose the

box-triangle voxelized result once. The hybrid voxelized results are chosen 12 times.

53

For quantity constraint objective, we tested the extreme case that if we can obtain a
fully connected LEGO model without using any of LEGO bricks from rare types (1x3,
1x4, 1x6, 1x8, and 2x8). We count that how many times does our method successfully

decrease the usage of rare types larger than 10 bricks. Table[4.6 shows the results.

Rare types | Bunny | Child | Heart
1x3 5 4 5
1x4 5 3 5
1x6 5 2 5
1x8 3 5 5
2X6 5 5 3

Table 4.6: Evaluation - quantity constraint, test 5 runs.

For runtime limit objective, ourmethod runs very quickly among all our experimented
cases. We have also tested twice-larger.vexelresolution, the average runtime is around
30 to 60 seconds This is beacuse:we firmly controlthe optimization maximum iteration
count. We find that cellular automaton-often cenverged within 100 iterations. And our
method can even put to acceleration, since'ggi'lular automaton has part that can process in
parallel. But this gain trades the possibility:ef finding an exact solution off. This is the

limitation of our methods and Will discussediin the following chapter.

54

Chapter 5

Discussion and Limitation

Although we can produce high guality results in-mnearly fully automated fashion, there
are limitations within our system. First-of all,;*our placement optimization algorithms,
such as cellular automaten optimization and post-optimization connectivity refinement,

have the following limitations due to the nature of heuristic-design.

—
-

e Using only fixed amount of iterations will often.Jead to local optimal results.
¢ It mixes the element of randomness, every run of optimization may obtain different

results providing the same. input.

¢ No guarantee of finding the global optimal or a connectivity one solution.

These limitations will cause our “legolizer” program unable to deterministically an-
swer whether it can solvable or not (and it may even left solvable parts unsolved). How-
ever, one can claim that it is the inherited limitation of heuristic algorithms for NP-hard
problems, if we really want a true answer, we may contradict the timing constraint objec-
tive.

To further demonstrate these limitations, we made a pressure test on the cellular au-
tomaton algorithm. We limit the LEGO brick set that contains only 1x1 and 1x2 bricks.
And the input voxelized volume is a 6x2x6 cube, which is shown in Figure[I.2)as an ex-

ample of a problem instance. Our test results are demonstrated in Figure [5.I) and Table

55

B.1l Most of the time, the algorithm failed to produce fully connected result under very

difficult cases.

(a) Table[5.1} row 2 (b) Table[5.1} row 4 (c) Table[5.1} row 8
Figure 5.1: The failure cases.
A

Cube | Brick Setﬂu ~Iteration ‘,L#—of ('fog-rlected Component

6x2x6 | Ix1,1x2 | _ B “H; 5.9
6x2x6 | 1xL,Ax2 ' 198 6
6x2x6 | 1x1,1x2.2 98 i

6x2x6 | 1x1,1x2,2x2 ﬁ}gsjg
6x3x6 | 1x1,1x2 gy
6x3x6 | 1x1,1x2
6x3x6 | 1XL,1x2,
6x3%6 1><I"1'x2,2

Table 5.1 Eres@wm 63&3‘)’&6 cubes.

=, &

_..-' F

After the experiments on extreme' c5§e§?ﬁé lg'é'gin to wonder that what may increase
the difficulty of the LEGO construction problem. We discovered two following reasons
that might force the connectivity optimization algorithm to search more placement solu-

tions.
e The size factor of LEGO brick set. If the set contains only small bricks, then natu-

rally we have to try more combination of placement to obtain a connected result.

e The height of voxelized model (i.e., number of layers). A disconnected component
may get connected by using additional layers of voxels. As we have experimented,

the 6x3x6 case is much easier to achieve one connected structure than 6x2x6 case.

The second limitation is that our hybrid voxelization is still unable to accurately cap-

ture the symmetry feature of input triangular 3D mesh model. The reason may lie in the

56

Figure 5.2: Building instruction order example.
,,_1,_][gl S5 Lo oty
r 7

ray-triangle voxelization, Wh'lp-'f‘i;E reIatW
\' -
&

x -:--.1
The third I|m|tat|on33 the

-h'ljr

robui%a ﬂ-lan box-triangle voxelization.

model changes its helgﬁs smo buildi order -is fairly easy for human

to build. Flgure|5;2|pro§1dgs-a _%N the §j‘:) model consist of “tall
legs”, shown in Figure @ ﬂﬁ“g rated buildi del:fwn'hflrstly touch down to the

.,’ﬂ
lowest, then will climb up. Thfs :esﬂlt 1§=r,ather sgfnéﬂg‘%qﬂnuman to understand.

Ui Gl —

Figure 5.3: Building instruction order artifact.

57

Chapter 6

Conclusion and Future Work

We presented a constructible 3D-model legolizersystem that is nearly fully automated
and runs within reasonable time. Because of ourhybrid voxelization approach, our input
3D geometry can be nearly arbitrary and can use less'\LEGQ brick while maintain visual
similarity. We also increased the robustness_of connectivity-optimization algorithms with
a noticeable amount by propased post—p.r-_i);ééssing algorithms. To further increase the
chance of realization, we also provide a me:'an tojadjust brick usage between rare types
and rich types. Finally, our computed building orders.are visually easy for LEGO players
to finish their LEGO building project.

For future work, although our placement optimization considers color constraint, it
is rarely tested because we do not automatically paint colors on LEGO sculpture by the
texture of input 3D model. And our building order generation should consider part-by-
part relationship since it is more nature for us to consider semantic components such as
legs and torsos. Furthermore, there are always rooms for voxelization and optimization

algorithms to improve.

58

Bibliography

[1] S. Xin, C.-F. Lai, C.-W. Fu, T.-T. Wong, Y. He, and D. Cohen-Or, “Making burr
puzzles from 3D models,” in ACM SIGGRAPH 2011 papers, SIGGRAPH ’11, (New
York, NY, USA), pp. 97:1-97:8, ACM, 2011.

[2] J. Vormann, “The dispatchwork. project;*-2007. - image from http://www.

Jjanvormann.com/testbild/dispatehwerk/.

[3] N. Sawaya, “http://brickartist.com/,” 2012:

-
[4] “Model Mom Mary’s blog,” 2012." image from:http:7//news.legoland.

com/post/Model—Mom—Marys—Five—Favorite—Models-aspx.

[5] L. van Zijl and E. Smal, “‘Cellular Automata with' Cell Clustering,” in Proceedings

of AUTOMATA2008 Workshop, (Bristol, UK); pp- 425-440, June 2008.

[6] O. Timcenko, “LEGO: How to build with LEGO,” in 32nd European Study Group
with Industry, p. xix—xxi, 1998. http://www2.mat.dtu.dk/ESGI/32/

Report/eESGI132.ps.

[7] S. lzadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, “KinectFusion: real-time
3D reconstruction and interaction using a moving depth camera,” in Proceedings of
the 24th annual ACM symposium on User interface software and technology, UIST

’11, (New York, NY, USA), pp. 559-568, ACM, 2011.

59

http://www.janvormann.com/testbild/dispatchwork/
http://www.janvormann.com/testbild/dispatchwork/
http://brickartist.com/
http://news.legoland.com/post/Model-Mom-Marys-Five-Favorite-Models.aspx
http://news.legoland.com/post/Model-Mom-Marys-Five-Favorite-Models.aspx
http://www2.mat.dtu.dk/ESGI/32/Report/ESGI32.ps
http://www2.mat.dtu.dk/ESGI/32/Report/ESGI32.ps

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

C. Holz and A. Wilson, “Data miming: inferring spatial object descriptions from
human gesture,” in Proceedings of the 2011 annual conference on Human factors in

computing systems, CHI *11, (New York, NY, USA), pp. 811-820, ACM, 2011.

M. Fisher and P. Hanrahan, “Context-based search for 3D models,” in ACM
SIGGRAPH Asia 2010 papers, SIGGRAPH ASIA 10, (New York, NY, USA),
pp. 182:1-182:10, ACM, 2010.

P. Petrovic, “Solving the LEGO brick layout problem using evolutionary algo-

rithms,” 2001. http://www.nik.no/2001/08-petrovic.pdf.

R. A. H. Gower, A. E. Heydtmann, and H. G. Petersen, “LEGO: Automated Model
Construction,” in 32nd European:Study Group with-Industry, p. 81-94, 32nd Euro-
pean Study Group with Industry;1998. h€gp://www2 .mat.dtu.dk/ESGI/

32/Report/1ego .ps.

J. V. Neumann, Theory of: Self-Reprdﬂéeing Automata. Champaign, IL, USA: Uni-

versity of Illinois Press;~1966.

S. Na, Optimization for.L-ayout Problems.Syddansk Universitet. Mearsk Mc-Kinney

Magiller Instituttet for Produktionsteknologi,2002.

B. Lambrecht, “Voxelization of boundary representations using oriented LEGO
plates,” 2006. http://code.google.com/p/Isculpt/, last accessed: July,
2012.

L. Silva, V. Pamplona, and J. Comba, “Legolizer: A Real-Time System for Modeling
and Rendering LEGO Representations of Boundary Models,” in Computer Graphics
and Image Processing (SIBGRAPI), 2009 XXII Brazilian Symposium on, pp. 17 -23,
oct. 2009.

“LEGO Digital Designer.” By LEGO Group, http://1dd. Iego.com.

“Build with Chrome.” By LEGO Group and Google, http://www.

burldwrithchrome.com/static/map.

60

http://www.nik.no/2001/08-petrovic.pdf
http://www2.mat.dtu.dk/ESGI/32/Report/lego.ps
http://www2.mat.dtu.dk/ESGI/32/Report/lego.ps
http://code.google.com/p/lsculpt/
http://ldd.lego.com
http://www.buildwithchrome.com/static/map
http://www.buildwithchrome.com/static/map

[18] J. Jessiman, “LDraw, LEGO CAD software package.” http://beta.ldraw.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

org/.

L. C. Hassing, “L3P: an LDraw to POV-Ray conversion utility.” http://www.
hassings.dk/13/13p.html.

“POV-Ray - The Persistence of Vision Raytracer.” www . povray .ordg.

K. Clague, M. Agullo, and L. Hassing, LEGO Software Power Tools: With LDraw,
MLCad, and LPub. Syngress, 2003.

T. Courtney, S. Bliss, and A. Herrera, Virtual Lego: The Official Ldraw.Org Guide

to Ldraw Tools for Windows. No Starch Press:Series, No Starch Press, 2003.

A. Glassner, “Recreational-computer graphies,”-.in"ACM-SIGGRAPH 2006 Courses,
SIGGRAPH ’06, (New:York, NY, USA), ACM, 2006:

K.-Y. Lo, C.-W. Fu, and H. Li, “3D"§ﬂyomino puzzle,” in ACM SIGGRAPH Asia
2009 papers, SIGGRAPH Asia 09, (New Yark, NY, USA), pp. 157:1-157:8, ACM,
2009.

T. Shigeo, H.-Y. Wu, S. H.:Saw, C:-C. Lin;and H.-C. Yen, “Optimized Topological
Surgery for Unfolding 3D Meshes,” in‘Computer Graphics Forum (Pacific Graphics
2011), vol. 30, 2011.

K. Hildebrand, B. Bickel, and M. Alexa, “crdbrd: Shape Fabrication by Sliding

Planar Slices,” in Computer Graphics Forum (Eurographics 2012), vol. 31, 2012.

K. Xu, H. Zheng, H. Zhang, D. Cohen-Or, L. Liu, and Y. Xiong, “Photo-inspired
model-driven 3D object modeling,” in ACM SIGGRAPH 2011 papers, SIGGRAPH
’11, (New York, NY, USA), pp. 80:1-80:10, ACM, 2011.

L.-T. Shen, S.-J. Luo, C.-K. Huang, and B.-Y. Chen, “SD Models: Super-Deformed
Character Models,” Computer Graphics Forum, 2012. (Pacific Graphics 2012 Con-

ference Proceedings).

61

http://beta.ldraw.org/
http://beta.ldraw.org/
http://www.hassings.dk/l3/l3p.html
http://www.hassings.dk/l3/l3p.html
www.povray.org

[29] F. Nooruddin and G. Turk, “Simplification and repair of polygonal models using

volumetric techniques,” vol. 9, pp. 191 — 205, april-june 2003.

[30] T. Akenine-Moller, “Fast 3D triangle-box overlap testing,” J. Graph. Tools, vol. 6,
pp. 29-33, Jan. 2002.

62

	致謝
	中文摘要
	Abstract
	Introduction
	Motivation
	Background - The LEGO construction problem
	Contributions

	Related Work
	LEGO construction automation and stylization
	LEGO computer-aided design toolkits
	Recreational Computer Graphics and 3D Model Style Transformation

	Methodology
	System Overview
	Voxelization
	Preprocessing
	Placement Optimization

	Results and Evaluation
	Discussion and Limitation
	Conclusion and Future Work
	Bibliography

