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中文摘要 

  

遙測技術可以監測大空間尺度下的環境變化，使探討都市化對生物多樣性的

衝擊研究更容易進行，其中，又以能夠反映棲地枝葉量多寡與初級生產力的植被

指數最常被使用於描述棲地的面積以及棲地的品質；然而，有關棲地初級生產力

假說和遙測資料衍生的環境因子如何影響蜘蛛這類肉食性小型節肢動物在大空間

尺度下分布的研究卻較為缺乏且結果分歧。因此，本研究使用遙測資料所衍生的

棲地動態指數與建蔽/裸地動態指數，探討與蜘蛛物種多樣性、科組成以及棲地偏

好間的關係，並找出遙測因子能解釋最多變異的取樣尺度。本研究透過 1145組

掉落式陷阱蒐集蜘蛛樣本，並將蜘蛛物種多樣性依照 1、6.25、25、100公頃的網

格進行資料整合；另一方面，遙測資料則由大地 8號衛星的網路公開資料庫取

得，並使用廣義線性混合模式以及冗餘分析測試遙測因子和蜘蛛物種多樣性資料

之間的關係。本研究發現，蜘蛛物種多樣性和棲地初級生產力呈顯著的正相關，

且由於上行效應，使得蜘蛛儘管是食物鏈中上層的掠食者而非直接取食植物的初

級消費者，棲地生產力假說仍能適用於牠們；且遙測因子，特別是年累積生產

力，能夠顯著地解釋蜘蛛的物種多樣性以及科組成，而解釋變異的比例在 6.25到

25公頃的空間尺度之間達到最大。此外，狼蛛、皿蛛、姬蛛以及卵蛛這四個優勢

科基於其體型、覓食策略和型態特徵的不同，棲地偏好能良好地被遙測因子所解

釋。本研究提供了使用大尺度監測工具研究小型肉食節肢動物的方法，在保育策

略方面，於都會綠地中營造初級生產力高且穩定的環境有助於蜘蛛多樣性的保

育，除大面積綠地之外，高度都市化地區的行道樹或小型花壇亦是都會蜘蛛的重

要棲地，減少殺蟲劑和除草劑的用量對於都會蜘蛛的物種多樣性保育亦有助益。 

 

關鍵字：棲地生產力、增強植被指數、棲地動態指數、增強建蔽/裸地指數、臺灣 
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ABSTRACT 

 

Through remote sensing data, monitoring the impact of urbanization on species 

diversity at a regional scale has become more and more convenient. Vegetation indices 

have been used to represent the size of habitats and habitat quality by predicting the 

amount of foliage and habitat productivity. However, studies on how habitat primary 

productivity hypothesis and remote sensing derived environmental factors (RS factors) 

affect spatial distribution of spiders at large spatial scales are lacking, and the relationship 

between spider diversity and RS factors remains unclear. Hence, the present study aimed 

to examine the relationship of spider species richness, family composition, and habitat 

preference with RS factors (Dynamic Habitat Indices and Dynamic Building/Bareness 

Indices) and determine the best spatial scale of sampling unit which RS factors could 

explain the largest variance in spider species richness and family composition. Spider 

species distribution data were obtained by pitfall traps in 1,145 sampling sites in an 

urbanization landscape in central Taiwan. Remote sensing data were obtained from 

Landsat 8 images. The relationships between RS factors and spider assemblage diversity 

were examined by generalized linear mixed models and redundancy analysis at four 

spatial scales: 1, 6.25, 25, and 100 ha grids. Results reveal that although spiders are 

predators which occupy higher trophic level, spider diversity follows habitat productivity 
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hypothesis based on bottom-up effect, and thus could be modeled by RS factors 

significantly, especially cumulative Dynamic Habitat Index. The best spatial scale for 

studying spider diversity by RS factors was between 6.25 to 25 ha. With differences in 

sizes, foraging strategy, and morphological traits, habitat preferences of dominant spider 

families, Lycosidae, Linyphiidae, Theridiidae, and Oonopidae, could also be well 

explained by RS factors. Overall, the present study offers methods of modeling the spatial 

distribution of small carnivorous invertebrate species richness in the urbanization 

landscape by remote sensing data at a broad scale. For spider biodiversity conservation, 

maintaining high and stable habitat productivity in green areas, such as parks or school 

campuses, can help maintain high spider species richness. Also, Reducing the use of 

pesticides and herbicide at street trees and small vegetated patches in highly urbanized 

areas may also help on conserving spider diversity. 

 

Keywords: Habitat productivity, EVI, Dynamic Habitat Indices, EBBI, Taiwan 

  



 

vi 

 

CONTENTS 

 

口試委員審定書 ............................................................................................................ i 

誌謝 ............................................................................................................................... ii 

中文摘要 ...................................................................................................................... iii 

ABSTRACT ................................................................................................................ iv 

CONTENTS ................................................................................................................ vi 

LIST OF FIGURES ................................................................................................... vii 

LIST OF TABLES ....................................................................................................... x 

Introduction ................................................................................................................. 1 

Methods ...................................................................................................................... 12 

Results ......................................................................................................................... 24 

Discussion ................................................................................................................... 35 

References ................................................................................................................... 42 

Appendix .................................................................................................................... 54 

 

  



 

vii 

 

LIST OF FIGURES 

 

Figure 1 The study area located in central Taiwan; each dot represent one sampling site 

and colors of the dots represent different land use types in Global Research & 

Education on Environment and Society project. ......................................... 13 

Figure 2 Dynamic Habitat Indices (DHIs) of the study area derived by Enhance 

Vegetation Index. (a) cumulative DHI, (b) minimum DHI, (c) variation DHI, 

(d) combined DHIs were transformed into RGB color on the map (Red: 

Variation DHI; Green: Cumulative DHI; Blue: Minimum DHI)................. 19 

Figure 3 Dynamic Building/Bareness Indices (DBIs) of the study area derived by 

Enhance Build-up/Bareness Index. (a) cumulative DBI, (b) maximum DBI, 

(c) variation DBI, (d) combined DBIs were transformed into RGB color on 

the map (Red: Variation DBI; Green: Cumulative DBI; Blue: Maximum DBI)

 ..................................................................................................................... 20 

Figure 4 Sampling sites occupied by Lycosidae, Linyphiidae, Theridiidae, and 

Oonopidae had higher spider family composition dissimilarity and thus were 

divided from other sampling sites into four unique groups through 

unweighted pair-group method with arithmetic means (UPGMA) cluster 

analysis. Note: figure here only presents families with abundance over 30 



 

viii 

 

individuals. Other 17 Families with abundance less than 30 individuals were 

all belonged to the complex community in the cluster analysis. ................. 25 

Figure 5 Kruskal-Wallis test and pair wised Wilcoxon test indicated that sampling sites 

dominant by wolf spiders had high cumulative Dynamic Habitat Index (DHI), 

Variation DHI, and Variation Dynamic Building/Bareness Index (DBI) while 

had low Cumulative DBI. Sampling sites dominant by sheet weaving spiders, 

on the other hand, had high cumulative DHI while had low Cumulative DBI, 

Variation DHI, and Variation DBI. No statistical significance (Bonferroni 

adjusted p-value >0.05) between RS factors at sampling sites dominant by 

cobweb spiders and goblin spiders, they both had low cumulative DHI while 

had high Cumulative DBI, Variation DHI, and Variation DBI. Upper 

boundaries of the rectangles: 25th percentiles; lower boundaries of the 

rectangles: 75th percentiles; horizontal bars: median; dotted vertical bars: 

upper and lower distribution limits. DHI: Dynamic Habitat Index; DBI: 

Dynamic Building/Bareness Index. ............................................................. 26 

Figure 6 relationship between remote sensing derived environmental factors and 

sampling site with different spider family composition. DHI: Dynamic 

Habitat Index; DBI: Dynamic Building/Bareness Index; Cum: cumulative; 

Var: variation. .............................................................................................. 27 



 

ix 

 

Figure 7 Comparison between the proportion of the spider family composition 

variances explained by remote sensing derived environmental factors (RS 

factors) and local vegetation factors (LV factors). (a) RS factors and LV 

factors could explain different parts of the spider family composition 

variances and together explained 5.91% of total variances. (b) RS factors 

could explain more variance (blue circle) than local vegetation factors did 

(red circle). SR: species richness; BA: basal area; CV: coverage; DHI: 

Dynamic Habitat Index; DBI: Dynamic Building/Bareness Index. ............ 28 

Figure 8 The proportion of the spider family composition variances explained by 

remote sensing derived environmental factors at 1, 6, 25, and 100 ha sampling 

unit size. At 25 ha spatial scale, remote sensing derived environmental factors 

explain the largest percentage of spider family composition variances. ..... 29 

Figure 9 Model fitness measured by model deviance and pseudo R square of the best-

fitted model at 1, 6.25, 25, and 100 ha sampling unit size. The increasing trend 

of the model fitness declined at sampling unit size greater than 6.25 ha. ... 33 

  



 

x 

 

LIST OF TABLES 

 

Table 1 Sites compilation by buffer zones and grids at different spatial scale; CHAO1: 

Chao (1984) index estimated species richness; GLM: generalized linear 

model; GLMM: generalized linear mix model ............................................ 15 

Table 2 Landsat 8 images selected in this study ....................................................... 16 

Table 3 Pearson correlation coefficient between six remote sensing derived 

environmental factors; bold characters represent factor pairs with correlation 

coefficient over 0.7. Cum_DHI: Cumulative Dynamic Habitat Index; 

Min_DHI: Minimum Dynamic Habitat Index; Var_DHI: Variation Dynamic 

Habitat Index; Cum_DBI: Cumulative Dynamic Building/Bareness Index; 

Max_DBI: Minimum Dynamic Building/Bareness Index; Var_DBI: Variation 

Dynamic Building/Bareness Index. ............................................................. 18 

Table 4 factors included in the analysis and their ecological meanings; EVI: Enhance 

Vegetation Index; EBBI: Enhanced Built-Up and Bareness Index; DHI: 

Dynamic Habitat Indices; DBI: Dynamic Building/Bareness Indices. ....... 23 

Table 5 Correlation relationship and model AIC between estimated spider species 

richness and each remote sensing derived environmental factors at 1 ha 

sampling unit size. “***”: p-value<0.001; “**”: p-value<0.01; DHI: 



 

xi 

 

Dynamic Habitat Index; DBI: Dynamic Building/Bareness Index. ............ 30 

Table 6 Correlation relationship between estimated spider species richness and both 

remote sensing derived environmental factors and local vegetation factors. 

“***”: p-value<0.001; SR: species richness; BA: basal area; CV: coverage; 

DHI: Dynamic Habitat Index; DBI: Dynamic Building/Bareness Index. ... 31 

Table 7 Best-fitted model when modeling estimated spider species richness by remote 

sensing derived environmental factors at 1 ha, 6.25 ha, 25 ha, and 100 ha 

sampling unit size. “***”: p-value<0.001; “**”: p-value<0.01; “*”: p-

value<0.05; “NS”: p-value>0.05; DHI: Dynamic Habitat Index; DBI: 

Dynamic Building/Bareness Index. ............................................................. 34 



 

1 

 

Introduction 

 

In the recent decades, urban areas expand dramatically (United Nation, 2018), and 

urbanization has thought to be one of the leading causes of biodiversity loss (Marzluff, 

2001; Li et al., 2005; McKinney, 2008). Therefore, evaluating the influences of 

urbanization and the spatial distribution of biodiversity in urban areas are essential keys 

to conservation (McKinney, 2008; De Mas et al., 2009; Zhang et al., 2018a). 

Spiders are very sensitive to environmental changes both at large and small spatial 

scales, which make them an excellent environmental indicator (Pearson, 1994; Fan, 

2007; Chapman, 2009; Lowe et al., 2017), and their species richness can be benefitted 

by both local and regional scale conservation works (Lowe et al., 2017). Besides, as the 

main arthropod predator in the terrestrial ecosystems, spiders can benefit human society 

by serving as capable pest controllers (Nyffeler, 1987; Marc et al., 1999; Denno et 

al.,2003). 

Spider is taxa vary in size and foraging strategy (Uetz et al., 1999; Cardoso et al., 

2011). Therefore, urbanization might cause different effects on different spider families 

and functional guilds (Miyashita et al.,1998; Magura et al., 2010; Varet et al., 2014). 

Large-sized spiders are often the main victims of urbanization. Natural habitats with 

complex vertical vegetation structures where harbor higher prey diversity and biomass 
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are more likely to support high energy cost of large-sized spiders (Miyashita et al.,1998; 

Floren and Deleman-Reinhold, 2005; Finch, 2005; Barlow et al., 2007; Hung et al., 

2008; Pinto-Leite et al., 2008; Yekwayo et al., 2016; Setiawan et al., 2016; Lowe et al., 

2017). On the other hands, small-sized space web builders, for example, Theridiidae, 

prefer highly urbanized habitats and sometimes become dominant taxon due to their low 

energy cost and tolerance to low humidity (Magura et al., 2010). Similar preferences 

can also be found in some ground wandering spider taxa (Magura et al., 2010). Orb wed 

builder prefer edge habitats or open areas because of their unique spatial needs for orb 

web weaving (Miyashita et al.,1998; Petcharad et al., 2016). However, previous studies 

also showed that these urban taxa tend to present smaller body size and web width than 

those in natural habitats due to the lower prey biomass (Miyashita et al.,1998; Dahirel et 

al., 2018). Nevertheless, like most of the wildlife, urbanization could cause negative 

influences on overall spider species richness (Miyashita et al.,1998; McKinney, 2008; 

Varet et al., 2014). 

Remote sensing data can serve as proper tool to monitor the relationship between 

broad-scale environmental changes and wildlife species richness (McFeeters, 1996; Liu 

et al., 2004; Schowengerdt and Robert, 2007; Mohapatra et al., 2014; Lu et al., 2015). 

By satellite or aircraft carried sensors, such as Moderate Resolution Imaging 

Spectroradiometer (MODIS), remote sensing can record electromagnetic wave emitted 
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or reflected from the surface instantly (Schowengerdt and Robert, 2007; Lu et al., 

2015). Based on remote sensing data, researchers can derive important environmental 

indices to wildlife by calculating the albedo differences between several different 

spectral bands reflect from the ground surfaces (McFeeters, 1996; Mohapatra et al., 

2014; Yan et al., 2019). 

Vegetation Indices are one of the most commonly used remote sensing derived 

environmental indices which are derived from albedo ratio between red (564–580 nm) 

and near-infrared (750–950 nm) lights (Liu et al., 2004; Phillips et al., 2010). These 

indices are designed to predict the amount of foliage and vegetation density on the 

ground (Liu et al., 2004; Phillips et al., 2010) and can also be used on quantifying the 

main impacts of urbanization on biodiversity: habitat loss and habitat degradation 

(McFeeters, 1996; Li et al., 2005; As-syakur et al., 2012; Mohapatra et al., 2014; Zhang 

et al., 2018b). 

Based on the albedo ratio, there are several types of formulae to derive vegetation 

indices (Liu et al., 2004). Among all vegetation indices, Normalized Difference 

Vegetation Index (NDVI) has been the most commonly used vegetation index (Liu et 

al., 2004). Derived by red and infrared bands only, NDVI is the most straightforward 

vegetation index, which can be calculated easily (Liu et al., 2004). However, NDVI also 

has several shortages. For example, soil and airborne particle noises can heavily 
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influence the accuracy of NDVI (Liu et al., 2004). Besides, a nonlinear relationship is 

presented between the index and real foliage amount. The NDVI saturates at condense 

vegetation, such as broadleaf forests (Liu et al., 2004; Phillips et al., 2010; Hobi et al., 

2017). Despite many disadvantages, NDVI is still a sensitive index in habitats with low 

to medium vegetation density (Liu et al., 2004; Phillips et al., 2010). 

Enhance Vegetation Index (EVI) was then constructed in order to fix the shortages 

of NDVI (Hobi et al., 2017; Philpot, 2017). Intaking an additional blue band and two 

constants to calibrate soil and practical biases, EVI is more accurate than NDVI for 

dense vegetation (Phillips et al., 2010). Therefore, EVI could present linear correlations 

to real foliage amount and vegetation density, which make EVI better predictors of 

foliage amount than NDVI in tropical and subtropical landscapes (Hobi et al., 2017; 

Philpot, 2017). However, no matter how precise a vegetation index is, it does not fully 

equal to ground truth foliage amount (Liu et al., 2004; Phillips et al., 2010; Hobi et al., 

2017). 

Further, vegetation types and their phenology can be inferred by combining 

vegetation indices at different temporal scales (Berry et al., 2007). Dynamic Habitat 

Indices (DHIs) are designed to describe vegetation phenology through times base on 

vegetation indices (Berry et al., 2007). The DHIs include three different indices, 

Cumulative DHI, Minimum DHI, and Variation DHI (Berry et al., 2007). Within a year, 
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Cumulative DHI represents the total amount of foliage of the habitat in the whole year, 

Minimum DHI represents the amount of foliage in non-growing season of the habitat, 

and Variation DHI is the differences in the amount of foliage between growing and non-

growing season of the habitat (Berry et al., 2007; Andrew et al., 2012; Hobi et al., 

2017). By comparing DHIs in different habitats, vegetation types and their phenology 

can be inferred. For example, within one year, temperate deciduous forest presents high 

cumulative DHI, high variation DHI, and low minimum DHI because of the dense 

foliage in growing season and defoliation in the non-growing season (Hobi et al., 2017). 

On the other hand, all three DHIs are low in temperate grassland due to its stable, but 

sparse foliage amount (Hobi et al., 2017). 

Through vegetation indices and DHIs, researchers can also predict habitat 

productivity, which has been thought to be one of the most important environmental 

factors to species diversity (Clark et al., 2001; Amthor and Baldocchi, 2001; Liu et al., 

2004; Lu et al., 2015). Habitat productivity is defined as the total inorganic energy fixed 

by producers (Amthor and Baldocchi, 2001; Clark et al., 2001). Habitat productivity 

hypothesis is an important theory which states that species richness increases with 

increasing habitat productivity. However, there are many exceptions which have 

rejected habitat productivity hypothesis (McGoff et al., 2013; Vilar et al., 2014; Bicudo 

et al., 2016; Zorzal-Almeida et al., 2017). One of the famous cases is eutrophication in 
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aquatic ecosystems, high productivity sometimes leads to explosive growth of bacteria 

and algae which consume all the oxygen and cause suffocation to other organisms 

(McGoff et al., 2013; Vilar et al., 2014; Bicudo et al., 2016; Zorzal-Almeida et al., 

2017). 

Besides species richness, community dissimilarity can also be explained by habitat 

productivity (Harrison et al., 2006; Andrew et al., 2012; Johnson and Angeler, 2014). In 

habitats with high productivity, community dissimilarity between sampling sites are 

larger than those in habitat with low productivity (Harrison et al., 2006; Andrew et al., 

2012; Johnson and Angeler, 2014). Further, Andrew et al. (2012) stated that 

dissimilarity is driven by inter-species competition in productive habitats due to the 

competition on resources. On the other hand, dissimilarity in less productive habitats are 

driven by environmental filtering since only a few strong species are present in harsh 

habitats (Andrew et al., 2012). 

Although spiders are small-sized carnivores, their species richness and assemblage 

composition are heavily influenced by bottom-up effect, prey biomass and vertical 

vegetation structure (Greenstone, 1984; Tso, 2003; Fan, 2007; Scharf et al., 2011; 

Štokmane and Spuņģis, 2014). Therefore, habitat productivity hypothesis can also apply 

on spider species richness (De Mas et al. 2009; Birkhofer and Wolters, 2012; Turrini et 

al., 2015). Turrini et al. (2015) even stated that green areas in highly urbanized 
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landscape with high NDVI value can harbor higher spider species richness than that in 

rural farmland. Besides species richness, prey diversity to spiders also increases with 

increasing productivity at a global scale (Birkhofer and Wolters, 2012). However, in 

some cases, spider species richness cannot be well explained or predicted by vegetation 

indices (Jiménez-Valverde and Lobo, 2006; Lafage et al., 2014). Lafage et al. (2014) 

suggest that the results may be caused by the higher trophic levels that spiders occupied 

(Girard et al., 2011). Thus their diversity is not heavily influenced by vegetation 

productivity in less productive habitats such as temperate floodplains (Lafage et al., 

2014). 

DHIs are good environmental predictors which contain not just spatial, but also 

temporal productivity features. To many taxa, habitats with high cumulative, high 

minimum productivity, and low productivity variation can harbor higher species 

richness, abundance, and larger body size (Coops et al., 2009a; Coops et al., 2009b; 

Coops et al., 2009c; Birkhofer and Wolters, 2012; Michaud et al., 2014; Suttidate, 2016; 

Hobi et al., 2017; Khlifa et al., 2017; Tiede et al., 2018). However, different taxa and 

functional groups might prefer habitats which had different productivity features. To 

North American birds, vegetation indices derived DHIs are valid predictors (Hobi et al., 

2017). For forest nesting birds, cumulative DHI has the best predictive power and 

presents positive correlation relationship (Hobi et al., 2017). On the other hand, 
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minimum and variation DHI are better predictors for grassland nesting birds, and habitat 

had low minimum and high productivity variation harbor higher grassland nesting birds 

(Hobi et al., 2017). To spiders, however, the relationship between DHIs and the habitat 

preferences of each family or functional guilds was seldom studied. 

Habitat preferences of wildlife taxa and functional guilds are not the only reason 

which might cause different relationship between habitat productivity and species 

richness. Habitat productivity hypothesis is a scale-dependent hypothesis, several 

previous studies indicated that the hypothesis is more likely to be applied at broader 

spatial scales, while the correlation between habitat productivity and species richness 

might become neutral, or even negative and less significant at finer spatial scales 

(Coops et al., 2009a; Coops et al., 2009b; Coops et al., 2009c; Birkhofer and Wolters, 

2012; Michaud et al., 2014; Suttidate, 2016; Hobi et al., 2017; Khlifa et al., 2017). 

Therefore, spatial scale shall also be considered as an important factor when modeling 

species richness by habitat productivity. On the other hand, the scale of sampling unit is 

also important when using remote sensing data to derived environmental factors (Liu et 

al., 2004; De Mas et al. 2009; Phillips et al., 2010). Under remote sensing, differences 

within sampling units are shrunk into a single value, which may cause two distinct 

habitats had the same environmental factors (Liu et al., 2004; De Mas et al. 2009; 

Phillips et al., 2010). To spiders, De Mas et al. (2009) indicated that spider species 
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richness in the mountains in the Mediterranean climate could be well predicted by 

NDVI and the area ratio of different vegetation types. They also stated that the proper 

spatial scale to predict spider species richness and assemblage composition is in 220-

meter pixel size, and the efficiency decreases at other spatial scales (De Mas et al. 

2009). 

Not just vegetation indices can quantify the effect of urbanization, building indices, 

based on albedos differences between short wave infrared (2000 – 2500 nm) and 

thermal infrared (1000 – 1200 nm), are indices sensitive in detecting concrete, asphalt, 

and most of the artificial surfaces (McFeeters, 1996; As-syakur et al., 2012; Mohapatra 

et al., 2014). Therefore, scientists can map level of urbanization by deriving indices 

such as Enhance Build-Up/Bareness Index (EBBI) (As-syakur et al., 2012). However, 

only a few studies have focused on the relationship between building indices and 

species richness (Shih, 2018). After all, modeling spatial distribution of species richness 

at regional scale has become more important to conservation works, especially to those 

in urban areas (Turrini et al., 2015; Buchholz et al., 2018; Lowe et al., 2018). Through 

burgeoning remote sensing technology, environmental factors which used to cost many 

resources to record are now easier to reach (McFeeters, 1996; Liu et al., 2004; 

Schowengerdt and Robert, 2007; Mohapatra et al., 2014; Lu et al., 2015). However, 

algorithms and conservation strategy were still remaining ambiguous to taxa which 
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attracted less attention, such as spiders (Nyffeler, 1987; Marc et al., 1999; Denno et 

al.,2003; McKinney, 2008). Therefore, the present study aimed to test the possibility of 

studying species richness and family composition of ground-dwelling arthropods 

predator in urbanization landscape by remote sensing data. Further, are spiders in 

different families in urbanization landscapes all prefer habitats with the same 

productivity features? Also, is the best scale of sampling units for studying spider 

diversity in the present study the same to that stated in Lafage et al. (2014) in mountains 

in Mediterranean climate (220 m2)? After all, could any conservation strategy be stated 

through the present study? 

Specifically, the present study aimed to (1) examine differences in spider family 

composition in a subtropical urbanization landscape, (2) define habitat preferences of 

dominant spider families by remote sensing derived environmental factors (RS factors) 

(EVI derived DHIs, and EBBI derived Dynamic Building/Bareness Indices (DBIs)), (3) 

explain these spider family composition differences by RS factors, (4) determine 

appropriate spatial scale of the sampling units that RS factor(s) can explain the largest 

proportion of variance of spider family composition variances, (5) examine 

relationships between RS factors and spider species richness in subtropical urbanization 

landscape, (6) explore the possibility of modeling spider species richness by RS factors, 

and (7) determine best RS factors subset and spatial scale of the sampling units that 
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spider species richness can be modeled by RS factor(s). 
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Methods 

 

GREEnS data set 

Global Research & Education on Environment and Society (GREEnS) was a 

project supported by the Board of Directors of Tunghai University, and conducted by 

Tunghai University from the year 2012 to 2015. One of the main aims of the project was 

to test the suitability and validity of studying spider and plants species diversity in 

different land use types by using an environmental indicator which has been widely 

used in gardening and urban planning, Biotype Area Factor (BAF). 

Therefore, a broad urbanization landscape (about 3,500 km2) located in central 

Taiwan was selected as the study area of GREEnS project (Figure 1). Within this study 

area, a total of 1,232 sampling sites were conducted under 53 patches with four different 

land use types, which included 8 school campus, 11 industrial areas, 30 parks, and 4 

paddy areas (Appendix 1). Sampling sites was at least 100 m apart and a sampling plot 

of 100 m2 quadrat was established for recording both spider and vegetation species 

diversity data. 
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Figure 1 The study area located in central Taiwan; each dot represent one sampling site 

and colors of the dots represent different land use types in Global Research & Education 

on Environment and Society project. 

 

Species diversity data 

 During the growing seasons (March to June) from 2012 to 2015, pitfall traps were 

established in the field to record spider species richness and abundance data at every 

sampling site and without repeat survey. A set pitfall trap consisted of five 50 ml 

centrifuge tubes. Each tube was filled with 30 ml 70% ethanol and left in the field for 
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no more than a week to reach the highest capture efficiency (Schirmel et al., 2010). All 

the trapped spider individuals were the removed from the traps and preserved in 70% 

ethanol and identified to morphological species level by comparing their genitals. A 

total of 1849 spider individuals that belong to 196 morphological species, 27 families 

were recorded in the data set (Appendix 2). The present study only included sampling 

sites with mature spider individuals and sampling sites with only one juvenile 

individual, which was treat as one morphological species at that site. In a total of 1,145 

sampling sites were included for further analysis. 

On the other hand, vegetation diversity data, including both wood and herb plants, 

were surveyed within the 10×10 m sampling plot. For woody plants, individuals with its 

diameter at breast height (DBH) larger than 1 cm were identified to species level, and 

their DBH were also recorded. For herbs, individuals were identified to species level, 

and percentage of coverage of each herb species was also recorded. 

In order to determine suitable spatial scale to explain spider species richness and 

family composition by RS factors, I rearranged the spider and vegetation diversity data 

into four different grid systems, 1ha (100 m diameter buffer of each sampling site), 6.25 

ha (250m × 250m grid), 25 ha (500 m × 500 m grid), and 100 ha (1,000 m × 1,000 m 

grid) (Table 1). Spider and vegetation diversity data were combined in each grid. 

Besides, since no repeat survey was done to both spider and vegetation data. 
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Hence, to correct the possible bias of the data set, I adopted species richness estimation 

by using Chao (1984) index (CHAO1), which is a species richness estimator suitable for 

estimating invertebrate richness at genus level or lower (Basualdo, 2011). CHAO1 is 

derived by the cumulative species richness rarefaction curve and the number of rare 

species recorded in sampling sites and is suitable for. The correction method was 

applied to spider species richness at every spatial scale (grid size) and to tree and herb 

species richness in grids larger than 1 ha (Table 1) 

 

Table 1 Sites compilation by buffer zones and grids at different spatial scale; CHAO1: 

Chao (1984) index estimated species richness; GLM: generalized linear model; GLMM: 

generalized linear mix model 

Unit 

size 

Sample 

size 

CHAO1  Model 

Radom 

factor 

N.O. of site(s) 

per grid 

1 ha 1,145 

Spider 

Richness 

GLM None 1 

6.25 ha 805 

Spider, Wood,  

Herb Richness 

GLMM 

N.O. of sites 

per grid 

1–9 

25 ha 407 1–29 

100 ha 186 1–49 
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Remote sensing data 

I downloaded five cloud-free images, four from the four seasons of the year 2014 

and one from the winter of the year 2013 (Table 2), of the study area (Path: 118, Row: 

43) from National Aeronautics and Space Administration (NASA), Landsat 8 mission 

level two product online open access (Resolution: 30m × 30m). Based on the images, 

Enhance Vegetation Index (EVI) and Enhanced Built-Up and Bareness Index (EBBI) 

were calculated through the following formulae (NIR: near infrared band; RED: red 

band; BLUE: blue band; SWIR: short wave infrared; TIR: thermal infrared). 

 

EVI = 6 ×
NIR − RED

NIR + 6 × RED − 7.2 × BLUE + 1
     EBBI =

SWIR − NIR

10√(SWIR + TIR)
 

 

Table 2 Landsat 8 images selected in this study 

Date of the image Season represented 

December 3rd, 2013 2013 Winter 

March 25th, 2014 2014 Spring 

August 16th, 2014 2014 Summer 

October 19th, 2014 2014 Fall 

December 22nd, 2014 2014 Winter 
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Using the EVI and EBBI values in each season, I derived Dynamic Habitat Indices 

(DHIs), and Dynamic Building/Bareness Indices (DBIs). Dynamic Habitat Indices 

include cumulated annual productivity (Cumulative DHI), minimum annual 

productivity (Minimum DHI), and seasonal coefficient (Variation DHI) (Figure 2). On 

the other hand, DBIs is consists of cumulated annual build-up/bareness (Cumulative 

DBI), maximum annual build-up/bareness (Maximum DBI), and seasonal coefficient 

(Variation DBI) (Figure 3).  

Both Cumulative DHI and DBI were calculated by integrating EVI and EBBI 

value from the winter of the year 2013 to the winter of the year 2014 (Table 3). On the 

other hand, Variation DHI and DBI were calculated by the standard deviation of EVI 

and EBBI value divided by the average of EVI and EBBI value (Table 3). Minimum 

DHI was the lowest EVI value of the year, and Maximum DBI was the largest EBBI 

value of the year. All the calculations were done using QGIS version 2.18.15.  

However, strong collinearity was found between Cumulative DHI and Minimum 

DHI (Pearson correlation coefficient = 0.95), and also between Cumulative DBI and 

Maximum DBI (Pearson correlation coefficient = 0.83) (Table 3). Therefore, I excluded 

Minimum DHI and Cumulative DBI from the following statistical analyses. 
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Table 3 Pearson correlation coefficient between six remote sensing derived 

environmental factors; bold characters represent factor pairs with correlation coefficient 

over 0.7. Cum_DHI: Cumulative Dynamic Habitat Index; Min_DHI: Minimum 

Dynamic Habitat Index; Var_DHI: Variation Dynamic Habitat Index; Cum_DBI: 

Cumulative Dynamic Building/Bareness Index; Max_DBI: Minimum Dynamic 

Building/Bareness Index; Var_DBI: Variation Dynamic Building/Bareness Index. 

 Cum_DHI Min_DHI Var_DHI Cum_DBI Max_DBI Var_DBI 

Cum_DHI – – – – – – 

Min_DHI 0.95 – – – – – 

Var_DHI -0.37 -0.57 – – – – 

Cum_DBI -0.21 -0.24 0.20 – – – 

Max_DBI -0.14 -0.27 0.37 0.83 – – 

Var_DBI -0.33 -0.47 0.52 0.37 0.65 – 
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Figure 2 Dynamic Habitat Indices (DHIs) of the study area derived by Enhance 

Vegetation Index. (a) cumulative DHI, (b) minimum DHI, (c) variation DHI, (d) 

combined DHIs were transformed into RGB color on the map (Red: Variation DHI; 

Green: Cumulative DHI; Blue: Minimum DHI) 
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Figure 3 Dynamic Building/Bareness Indices (DBIs) of the study area derived by 

Enhance Build-up/Bareness Index. (a) cumulative DBI, (b) maximum DBI, (c) variation 

DBI, (d) combined DBIs were transformed into RGB color on the map (Red: Variation 

DBI; Green: Cumulative DBI; Blue: Maximum DBI) 
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Statistical analyses 

All statistical works were done using R version 3.4.3. At all four sizes of sampling 

units, eight environmental factors were selected (Table 4), wood species richness, wood 

total basal area, herb species richness, and herb coverage were local vegetation factors 

(LV factors); and Cumulative DHI, Variation DHI, Cumulative DBI, and Variation DBI 

were remote sensing derived environmental factors (RS factors) (Table 4). 

Matrix of spider family occupancy at each sampling sites (1 ha scale) was 

transformed into Ward’s distance matrix, and went under unweighted pair-group method 

with arithmetic means (UPGMA) cluster analysis to group sampling sites based on 

spider family composition dissimilarity. Then, Kruskal-Wallis test and pair-wised 

Wilcoxon test (Bonferroni adjusted p-value) was adopted to test were RS factors 

different between different groups. Together with the results from pair-wised Wilcoxon 

test, RS factors preference of dominant spider families in each group and the 

significance of studying spider family composition through RS factors were tested by 

Bray-Curtis distance based Redundancy Analysis (RDA) and Monte Carlo permutation 

test.  

Besides, in order to test if RS factors were suitable for explaining spider family 

composition differences between sampling sites (1 ha scale), the proportion of 

composition variances explained by RS factors and by LV factors through Bray-Curtis 
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distance based RDA were compared. The same comparisons were also made at the 6.25, 

25, 100 ha sampling unit size, and the sampling unit size which RS factors could 

explain the largest proportion of composition variances was considered as the proper 

spatial scale for studying spider family composition with RS factors. 

On the other hand, to test the relationship between CHAO1 and RS factors among 

sampling sites (1 ha scale), and test did RS factors fit good models to CHAO1, negative 

binomial-based generalized linear models (GLM) were conducted between CHAO1 and 

each individual RS factor. Also, another two negative binomial-based GLM were 

conducted, one with both RS factors and LV factors while the other with RS factors 

only. The former was conducted in order to test could any RS factors still reach the 0.05 

significance level when modeling CHAO1 with LV factors together. The latter was 

conducted for selecting the best-fitted model with highest AIC weight. 

Besides, at sampling unit size larger than 1 ha, negative binomial-based 

generalized linear mixed models (GLMM) were conducted to model CHAO1 by RS 

factors (Table 1). Model AIC and AIC weight of all candidate models with different RS 

factors subset combinations were compared to select the best-fitted model for modeling 

CHAO1 at each spatial scale. Besides, I set the number of sampling site within a grid as 

a random factor to correct its effect on CHAO1. After all, model fitness of the best-

fitted model at each scale was compared by pseudo R square (one minus ration between 
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null deviance and residual deviance) between the predicted value generated from the 

model and CHAO1. The spatial scale that best-fitted model had the highest pseudo R 

square was considered the proper spatial scale of modeling CHAO1 by RS factors. 

 

Table 4 factors included in the analysis and their ecological meanings; EVI: Enhance 

Vegetation Index; EBBI: Enhanced Built-Up and Bareness Index; DHI: Dynamic 

Habitat Indices; DBI: Dynamic Building/Bareness Indices. 

Type Factors Calculation Ecological meaning 

L
o
ca

l 
v
eg

et
at

io
n

 

Wood species richness — Horizontal vegetation structure 

Wood basal area π × (
DBH

2 )
2

144
 

Vegetation abundance 

Herb species richness — Horizontal vegetation structure 

Herb coverage — Vegetation abundance 

R
em

o
te

 s
en

si
n
g

 

Cumulative DHI ∫ EVI
2013 Dec

2014 Dec

 Annual total productivity 

Variation DHI 
∂(EVI)

μ(EVI)
 Annual productivity variation 

Cumulative DBI ∫ EBBI
2013 Dec

2014 Dec

 Annual total Building/Bareness 

Variation DBI 
∂(EBBI)

μ(EBBI)
 

Annual Building/Bareness 

Variation 
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Results 

 

Spider family composition differences in the subtropical urbanization landscape 

were mainly determined by the occupancy of four dominant spider families, which were 

wolf spiders (Lycosidae), sheet weaving spiders (Linyphiidae), goblin spiders 

(Oonopidae), and cobweb spiders (Theridiidae) (Figure 4). Based on the proportion of 

the occupancy of the four dominant spider families, sampling sites were divided into 

five groups: wolf spiders dominance (occupancy>0.5), sheet weaving spiders 

dominance, goblin spiders dominance, cobweb spiders dominance, and complex 

community which included other 23 spider families with low species richness and 

abundance (Figure 4). 

Remote sensing derived environmental factors (RS factors) at sampling sites in 

different groups were significantly different (Figure 5). Thus, habitat preferences of 

these dominance spider families could be stated by the RS factors (Figure 6). Wolf 

spiders preferred habitats which had high but unstable annual productivity and low but 

also unstable annual building/bareness (Figure 6). Sheet weaving spiders, on the other 

hand, preferred habitats which had high and stable annual productivity and low and also 

stable annual building/bareness (Figure 6). Goblin spiders and cobweb spiders, 

however, preferred similar habitats which had low and unstable annual productivity 
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while had high and unstable annual building/bareness (Figure 6). Beside the four 

dominant families, most of the less-abundant spider families were recorded in habitats 

which had low but stable annual productivity and medium but stable annual 

building/bareness. 

 

 

Figure 4 Sampling sites occupied by Lycosidae, Linyphiidae, Theridiidae, and 

Oonopidae had higher spider family composition dissimilarity and thus were divided 

from other sampling sites into four unique groups through unweighted pair-group 

method with arithmetic means (UPGMA) cluster analysis. Note: figure here only 

presents families with abundance over 30 individuals. Other 17 Families with 

abundance less than 30 individuals were all belonged to the complex community in the 
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cluster analysis. 

 

 

Figure 5 Kruskal-Wallis test and pair wised Wilcoxon test indicated that sampling sites 

dominant by wolf spiders had high cumulative Dynamic Habitat Index (DHI), Variation 

DHI, and Variation Dynamic Building/Bareness Index (DBI) while had low Cumulative 

DBI. Sampling sites dominant by sheet weaving spiders, on the other hand, had high 

cumulative DHI while had low Cumulative DBI, Variation DHI, and Variation DBI. No 

statistical significance (Bonferroni adjusted p-value >0.05) between RS factors at 

sampling sites dominant by cobweb spiders and goblin spiders, they both had low 

cumulative DHI while had high Cumulative DBI, Variation DHI, and Variation DBI. 
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Upper boundaries of the rectangles: 25th percentiles; lower boundaries of the rectangles: 

75th percentiles; horizontal bars: median; dotted vertical bars: upper and lower 

distribution limits. DHI: Dynamic Habitat Index; DBI: Dynamic Building/Bareness 

Index. 

 

 

Figure 6 relationship between remote sensing derived environmental factors and 

sampling site with different spider family composition. DHI: Dynamic Habitat Index; 

DBI: Dynamic Building/Bareness Index; Cum: cumulative; Var: variation. 

 

 RS factors could serve as significant constrained factors in explaining spider 

family composition variances and could explain variances which LV factors could not 
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explain (Figure 7). Further, among the variances explained by both types of factors 

(5.91% of the total variances), larger proportion of variances were explained by RS 

factors than LV factors did (RS factors: 41%; LV factors: 35%; both: 24%) (Figure 7). 

Also, the proportion of spider family composition variances explained by RS factors 

increased about 10% from 1 ha spatial scale to 25 ha spatial scale while declining at the 

spatial scale larger than 25 ha spatial scale (25 ha: 53%; 100 ha: 50%) (Figure 8). 

Therefore, 25 ha spatial scale was the proper scale for using RS factors on explaining 

spider family composition. 

 

 

Figure 7 Comparison between the proportion of the spider family composition 

variances explained by remote sensing derived environmental factors (RS factors) and 

local vegetation factors (LV factors). (a) RS factors and LV factors could explain 

different parts of the spider family composition variances and together explained 5.91% 
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of total variances. (b) RS factors could explain more variance (blue circle) than local 

vegetation factors did (red circle). SR: species richness; BA: basal area; CV: coverage; 

DHI: Dynamic Habitat Index; DBI: Dynamic Building/Bareness Index. 

 

 

Figure 8 The proportion of the spider family composition variances explained by 

remote sensing derived environmental factors at 1, 6, 25, and 100 ha sampling unit size. 

At 25 ha spatial scale, remote sensing derived environmental factors explain the largest 

percentage of spider family composition variances. 
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Estimated spider species richness (CHAO1) was higher in habitats which had high 

annual productivity while lower in habitat with high productivity variation, high annual 

building/bareness, and high building/bareness variation and all four RS factors were 

significantly correlated to CHAO1 (Table 5). Besides, although the model with local 

vegetation factors (LV factors) added fitted CHAO1 better (AIC with LV factor: 3887.3; 

AIC without LV factor: 3982.7), RS factors could still found significantly correlated to 

CHAO1, especially Cumulative DHI (Table 6).  

 

Table 5 Correlation relationship and model AIC between estimated spider species 

richness and each remote sensing derived environmental factors at 1 ha sampling unit 

size. “***”: p-value<0.001; “**”: p-value<0.01; DHI: Dynamic Habitat Index; DBI: 

Dynamic Building/Bareness Index. 

Factor Trend Significance AIC 

Cumulative DHI + *** 3985 

Variation DHI – *** 4129 

Cumulative DBI – ** 4166 

Variation DBI – *** 4133 
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Table 6 Correlation relationship between estimated spider species richness and both 

remote sensing derived environmental factors and local vegetation factors. “***”: p-

value<0.001; SR: species richness; BA: basal area; CV: coverage; DHI: Dynamic 

Habitat Index; DBI: Dynamic Building/Bareness Index. 

Factor type Factor  Trend Significance 

L
o
ca

l 
v
eg

et
at

io
n

 

Wood SR  + *** 

Wood BA  +  

Herb SR  + *** 

Herb CV  + *** 

R
em

o
te

 s
en

si
n
g

 

Cumulative DHI  + *** 

Variation DHI  –  

Cumulative DBI  +  

Variation DBI  –  

 AIC  3887.3 

 

 RS factors subsets significantly correlated to CHAO1 at 1, 6.25, and 25 ha 

sampling unit size (Table 7). The best-fitted model at 1 ha spatial scale consisted of 

Cumulative DHI and Variation DBI (Weight AIC: 0.383), the former was positively 
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correlated to CHAO1 while the latter was negatively correlated to CHAO1 (Table 7). At 

6.25 ha spatial scale, Cumulative DHI was the significant factor which positively 

correlated to CHO1 and fitted CHAO1 better than other candidate models did at the 

same spatial scale (AIC weight: 0.267) (Table 7). On the other hand, The best-fitted 

model at 25 ha spatial scale consisted of Cumulative DHI and Variation DHI (Weight 

AIC: 0.339), the former was positively correlated to CHAO1 while the latter was 

negatively correlated to CHAO1 (Table 7). At 100 ha spatial scale, the model with 

Cumulative DHI alone fitted CHAO1 better than other candidate models did at the same 

scale. However, Cumulative DHI did not reach the 0.05 significance level (Table 7). 

 Further, model fitness of the best-fitted model at each spatial scale was different, it 

increased from 1 ha to 100 ha spatial scale (Pseudo R square at 1 ha: 0.103; 6.25 ha: 

0.506; 25 ha: 0.595; 100 ha: 0.622) (Figure 9). However, the increasing trends of the 

model fitness declined at sampling unit size greater than 6.25 ha (Figure 9). After all, 

considered both model fitness and factor significance of the best-fitted model at each 

spatial scale, sampling unit size between 6.25 and 25 ha were the proper sampling unit 

size for modeling CHAO1 by RS factors, and Cumulative DHI could serve as an 

important RS factor. 
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Figure 9 Model fitness measured by model deviance and pseudo R square of the best-

fitted model at 1, 6.25, 25, and 100 ha sampling unit size. The increasing trend of the 

model fitness declined at sampling unit size greater than 6.25 ha. 
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Table 7 Best-fitted model when modeling estimated spider species richness by remote sensing derived environmental factors at 1 ha, 6.25 ha, 

25 ha, and 100 ha sampling unit size. “***”: p-value<0.001; “**”: p-value<0.01; “*”: p-value<0.05; “NS”: p-value>0.05; DHI: Dynamic Habitat 

Index; DBI: Dynamic Building/Bareness Index. 

Factor  

1 ha  6.25 ha  25 ha  100 ha 

Trends Significance  Trends Significance  Trends Significance  Trends Significance 

Cumulative DHI  + ***  + ***  + **  + NS 

Variation DHI        - *    

Cumulative DBI             

Variation DBI  – **          

Weight(AIC)  0.383  0.267  0.339  0.143 
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Discussion 

 

Results of this study suggest spider communities in the subtropical urbanization 

landscape were mainly dominated by wolf spiders, sheet weaving spiders, cobweb 

spiders, and goblin spiders. RS factors could significantly explain the composition 

variances and define the habitat preferences of each dominant spider family. Besides, 

RS factors could explain the largest proportion of spider family composition variances 

at the 25 ha spatial scale. On the other hand, RS factors were found significantly 

correlated to CHAO1, and only Cumulative DHI was positively correlated to CHAO1. 

Also, the model with Cumulative DHI and Variation DHI fitted CHAO1 the best at the 

spatial scales between 6.25 to 25 ha. 

Relationship between animal composition assemblage and nature resources is 

thought to be driven by two mechanisms, inter-species competition, and environmental 

filtering (Andrew et al., 2012; Nakadai et al., 2018). In habitats which are lack of 

resources, the effect of environmental filtering is usually larger than competition and 

only a few species/taxa of animal can survive become dominant (Andrew et al., 2012). 

Therefore, the present study speculates that the differences in ground-dwelling spider 

composition in the present study may also be driven by environmental filtering due to 

low and unstable productivity in urban areas and its surrounding landscapes. Similar 
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result has been also reported in other invertebrates like butterflies (Andrew et al., 2012). 

    The main differences which cause those dominant spider families preferred 

different habitats shall be their foraging behavior and morphological traits. Most of the 

sheet weaving spiders are web builders in small to medium size, which weaves 2-

dimensional sheet web and can hunt for their prey efficiently and control most of the 

agricultural pests (Uetz et al., 1999; Cardoso et al., 2011; Yin et al., 2011). However, 

web building is also a foraging strategy which costs a lot of energy (Uetz et al., 1999; 

Cardoso et al., 2011). Also, sheet weaving spiders need to anchor their web to 

vegetation (Cardoso et al., 2011). Therefore, based on the special needs and high energy 

cost of web building, sheet weaving spiders need habitats with high and stable year-

round productivity. Therefore, sheet weaving spiders can serve as a good environmental 

indicator on monitoring urban greenness due to their habitat preference. 

Wolf spiders are ground wandering spiders in medium to large size (Uetz et al., 

1999; Cardoso et al., 2011), they prefer habitat with higher productivity to support the 

high energy cost caused by their larger body. However, rather than hunting by web in a 

specific spot, wolf spiders have good mobility, which makes them able to travel for a 

distance for hunting (Uetz et al., 1999; Cardoso et al., 2011). Their mobility also gives 

them flexibility when facing disturbance (Yu et al., 2002). which may make them 

possible to dwell in habitats with unstable productivity, such as paddy fields and 
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wetlands. 

Goblin spiders are small-sized ground wandering spiders smaller than wolf spiders 

do (Cardoso et al., 2011). Therefore, the energy cost of goblin spiders are low. Further, 

the exoskeleton in some of the goblin spiders is thickened and skeletonized (Simon, 

1890). Altogether, goblin spiders can endure small and dry habitats in the highly 

urbanized area such as small vegetated patches or street trees on asphalt and concrete. 

Like sheet weaving spiders, most of the cobweb spiders are also web builders in 

small to medium size, while they weave a 3-dimensional irregular web for catching 

preys (Uetz et al., 1999; Cardoso et al., 2011). However, cobweb spiders have been 

reported as edge or urban species in several cases (Miyashita et al.,1998; Magura et al., 

2010). They can anchor their web on artificial structures and forage on the sufficient 

insects lured by human activities such as street lights (Magura et al., 2010). 

Overall, although spiders are small invertebrate predators, the correlation 

relationships between CHAO1 and DHIs are the same to those in vertebrates and 

herbivorous invertebrates, such as birds (Coops et al., 2009a; Coops et al., 2009b; 

Coops et al., 2009c; Hobi et al., 2017) and butterflies (Andrew et al., 2012). Therefore, 

ground-dwelling spiders in subtropical urbanization landscape follow habitat 

productivity hypotheses. However, the hypothesis was not supported in spiders in 

temperate floodplains landscapes (Lafage et al., 2014) although two landscape types 
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share similar EVI value (maximum about 0.5). Possible reason for this finding is these 

two studies were conducted at different spatial scales, size of the study area in Lafage et 

al. (2014) was 7.4 ha while that is the present study could up to more than 1000 ha. 

Habitat productivity hypothesis is more likely to be agreed at regional scale (Coops et 

al., 2009a; Coops et al., 2009b; Coops et al., 2009c; Birkhofer and Wolters, 2012; 

Michaud et al., 2014; Suttidate, 2016; Hobi et al., 2017; Khlifa et al., 2017). Besides, 

the RS factors in the present study not just contain vegetation indices, but also building 

indices. However, like the previous study (Shih, 2017), building indices cannot serve as 

factors which are as good as vegetation indices when modeling species richness. 

RS factors could explain more variance to both CHAO1 and spider family 

composition, and agree with the results reported in previous studies, which stated that 

productivity related factors are more significant at regional scale (Coops et al., 2009a; 

Coops et al., 2009b; Coops et al., 2009c; Birkhofer and Wolters, 2012; Michaud et al., 

2014; Suttidate, 2016; Hobi et al., 2017; Khlifa et al., 2017). However, the best spatial 

scale, which RS factors could explain the largest proportion of both CHAO1 and spider 

family composition variances, in the present study was larger than 4.84 ha (220 m2) 

suggested by De Mas et al. (2009). Main reason for this difference may be the area ratio 

of different land covers in the study area. Study area of De Mas et al. (2009) was 

located in mountains (altitude range: 800 m–2500 m), which were landscapes with 
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complex land covers with various vegetation types at different altitudes (Lasseur et al., 

2018). On the other hand, land covers in the urbanization landscape in the present study 

were simpler than those in mountains, and land cover of most of the sampling sites in 

the present study was large-sized paddies and urban areas. Therefore, large-sized 

sampling grids in landscapes with complex land covers may mix multiple land covers 

with different spider composition and obscure the relationships of RS factors with 

spider species richness and family composition. Overall, the present study suggests that 

sampling unit with its size between 6.25 to 25 ha is the best when studying both spider 

species and family composition in subtropical urbanization landscape. 

Although DHIs was designed to describe vegetation phenology (Berry et al., 

2007), the present study found they can also be used in describing urbanized land cover 

types. Parks and school (green area) are land cover which had high cumulative DHI, 

high minimum DHI, and low variation DHI; paddies, on the other hand, had high 

cumulative DHI, low minimum DHI, and high variation DHI while urbanized area had 

low cumulative, minimum, and variation DHI. However, land covers with high 

minimum DHI, but low cumulative and variation DHI, which usually represent 

temperate grass land in previous studies (Coops et al., 2009a; Coops et al., 2009b; 

Coops et al., 2009c; Andrew et al., 2012), cannot be found in the study areas and thus 

cause strong collinearity between cumulative and minimum DHI. Therefore, the present 
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study suggests that when studying species diversity in tropical or subtropical landscapes 

minimum DHI can be skipped, and represented by cumulative DHI, which contains 

more temporal information of primary productivity. 

The spider distribution data set in the present study was previously used in a study 

(Huang et al., 2015) examing relationship between spider species richness and other 

environmental index, Biotope Area Factor (BAF), which is defined as ratios of 

ecologically effective land covers (e.g. green areas) among landscapes (Butchar et al., 

2010). BAF has been a commonly used index in urban planning in Europe, and is 

derived by scoring every surface material at sampling sites mainly based on their water 

permeability (e.g. 5 points for soil while 1 point for asphalt) (Huang et al., 2015). 

However, BAF do not present any significant relationship to neither spider, nor plant 

species richness (Huang et al., 2015). Therefore, the present study suggests that indices 

of habitat productivity shall also be considered when using BAF or other similar 

indices. 

Previous studies indicated that proper managements in urban green areas, such as 

parks, are critical to spider conservation (Buchholz et al., 2018; Lowe et al., 2018). 

However, the present study showed that not just green areas, but also small vegetated 

patches and even street trees can serve as important habitats to many different spider 

families. In Taiwan, these small habitats have often undergone pesticide and herbicide 
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usage in order to keep the urban clean and green. Although the target of pesticide and 

herbicide are not spiders, the toxic chemicals can still be consumed by spiders through 

bioconcentration effect (Girard et al., 2011; Gill & Garg, 2014; Maurya & Malik, 2016) 

and lead to their death by harming their nerve systems (Samu &Vollrath, 1992). 

Therefore, beside the effect of low productivity, the use of toxic chemical may also be 

one of the main cause of low spider species richness and abundance in highly urbanized 

area. 

The present study offers methods of modeling the spatial distribution of small 

carnivorous invertebrate species richness in the urbanization landscape by a very large 

scale monitoring scheme and remote sensing data. In conservation works, the present 

study suggests that maintaining high and stable habitat productivity, such as parks or 

school campuses, can help maintain high spider species richness. On the other hand, 

reduce the amount of pesticide and herbicide usage on street trees and small vegetated 

patches in highly urbanized areas, can also help on increasing urban spider species 

richness and abundance. 
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Appendix 

 

Appendix 1 patches selected in Global Research & Education on Environment and 

Society project, with their land use types, location, size, and number of the sampling 

site within the patches 

Patch 

Land 

use type 

Longitude Latitude Area (ha) 

N.O. of 

sampling 

sites 

Asia University School 120.68679 24.04707 22.467 10 

Central Taiwan 

University 

School 120.73565 24.17269 8.7826 8 

Chaoyang 

University 

School 120.71499 24.06876 13.6063 15 

Fengchia 

University 

School 120.64839 24.18003 16.3076 5 

Lingtung 

University 

School 120.60317 24.13496 23.7684 14 
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National 

Chunghsing 

University 

School 120.67435 24.12022 77.3713 25 

Providence 

University 

School 120.58049 24.22726 30.684 14 

Tunghai 

University 

School 120.60583 24.17948 146.7321 90 

Baguashan 

Ecological Park 

Park 120.54961 24.07911 23.4942 13 

Dakeng Hiking 

Trails 5–1 

Park 120.79879 24.18933 9.8464 7 

Dakeng Hiking 

Trails 9–1 

Park 120.73399 24.18392 9.5526 7 

Zhongzheng Park Park 120.68271 24.15678 7.4833 5 

Zhongzheng Park 

to Botanical 

Garden 

Park 120.67397 24.15736 2.1287 5 
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National 

Chunghsing 

University to 

TongFeng Park 

Park 120.67682 24.12332 9.5247 7 

Chunghsing Lake Park 120.67361 24.12146 14.446 7 

Wenxin Forest 

Park 

Park 120.64509 24.14533 9.2492 9 

Taichung Park Park 120.6843 24.14456 11.7203 10 

Taichung 

Metropolitan Park 

Park 120.59777 24.20805 80.6893 44 

Tianzhong Forest 

Park 

Park 120.61419 23.85108 10.6881 8 

Baguashan Hiking 

Trail 

Park 120.62907 23.94077 11.9573 9 

Dongguang 

Parkway 

Park 120.69596 24.13301 8.8288 9 

Tongfeng Park Park 120.68768 24.12492 7.9526 10 

Tunghai Lake Park 120.61052 24.18196 32.1284 45 
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Houli Huatian 

Pinbu Park 

Park 120.70395 24.28785 25.8899 15 

Nanliao Hiking 

Trail C 

Park 120.55736 24.1767 43.6381 11 

Miaoli Hakka 

Culture Park 

Park 120.8319 24.25774 7.851 7 

Maple Garden Park 120.63906 24.16724 3.1828 4 

National Taiwan 

Museum of Fine 

Arts to Chonglun 

Park 

Park 120.66285 24.13633 3.0585 5 

National Taiwan 

Museum of Fine 

Arts 

Park 120.66391 24.14129 10.2192 7 

Yuanlin Sports 

Park 

Park 120.61871 23.94035 10.3926 6 

Calligraphy 

Greenway 

Park 120.66427 24.14854 10.9955 9 
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Jiankang Park Park 120.6684 24.12017 6.1097 10 

Chonglun Park Park 120.65944 24.1326 4.9772 5 

Huludun Park Park 120.71001 24.25613 9.1855 12 

Xingjin Road Park 120.69319 24.15583 2.786 5 

Fengle Sculpture 

Park 

Park 120.64263 24.1308 6.6701 10 

Tiehchen 

Mountain Park 

Park 120.64818 24.35952 22.885 15 

Tiehchen 

Mountain Hiking 

Trail 

Park 120.64458 24.36079 2.3307 7 

Daan Estuary Wetland 120.60441 24.405 593.9413 71 

Dadu Estuary Wetland 120.49665 24.20142 1721.9119 132 

Zhuoshui Estuary Wetland 120.28422 23.8608 1238.7935 198 

Gaomei Wetland Wetland 120.557 24.32648 925.9667 73 

Daja Youth 

Industrail Area 

Industrail 120.65202 24.40391 230.9493 20 
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Daja Urban 

Planning 

Industrail Area 

Industrail 120.62248 24.35208 62.5621 9 

Dali Industrail 

Area 

Industrail 120.71651 24.10173 78.0242 10 

Central Taiwan 

Science Area 

(Houli) 

Industrail 120.61706 24.20905 389.161 20 

Central Taiwan 

Science Area 

Industrail 120.72835 24.31847 139.9395 48 

Taichung 

Industrail Area 

Industrail 120.60453 24.17208 114.9126 11 

Nangang 

Industrial Area 

Industrail 120.65934 23.92336 190.8234 26 

Shengang 

Industrial Area 

Industrail 120.70363 24.27812 50.0358 6 
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Changhua Costal 

Industrail Area 

(Lukang) 

Industrail 120.40946 24.07782 218.3041 28 

Changhua Costal 

Industrail Area 

(Xianxi) 

Industrail 120.42686 24.13196 274.7659 37 

Taichung Harbor 

Related Industrail 

Area 

Industrail 120.52321 24.23468 279.5736 39 
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Appendix 2 Morphological species list of the present study. Male and female were 

treated as different morphological species; odd coding numbers were for male while 

even coding numbers were for female. THU: Tunghai University. 

Family THU Morphological species code Abundance 

Agelenidae Age-001 1 

Amaurobiidae Ama-001 7 

Amaurobiidae Ama-002 1 

Anyphaenidae Any-001 1 

Caponiidae Cap-001 1 

Caponiidae Cap-002 1 

Clubionidae Clu-002 1 

Clubionidae Clu-003 1 

Clubionidae Clu-005 1 

Clubionidae Clu-009 2 

Corinnidae Cor-001 11 

Corinnidae Cor-002 7 

Corinnidae Cor-003 3 
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Corinnidae Cor-004 1 

Corinnidae Cor-005 3 

Corinnidae Cor-007 5 

Ctenidae Cte-001 1 

Ctenidae Cte-002 1 

Dictynidae Dic-001 1 

Dictynidae Dic-002 1 

Gnaphosidae Gna-001 3 

Gnaphosidae Gna-002 15 

Gnaphosidae Gna-003 34 

Gnaphosidae Gna-004 20 

Gnaphosidae Gna-005 19 

Gnaphosidae Gna-006 12 

Gnaphosidae Gna-007 10 

Gnaphosidae Gna-008 4 

Gnaphosidae Gna-009 4 

Gnaphosidae Gna-010 6 

Gnaphosidae Gna-011 3 
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Gnaphosidae Gna-012 2 

Gnaphosidae Gna-013 2 

Gnaphosidae Gna-014 3 

Gnaphosidae Gna-015 2 

Gnaphosidae Gna-016 1 

Gnaphosidae Gna-017 5 

Gnaphosidae Gna-019 1 

Gnaphosidae Gna-021 4 

Gnaphosidae Gna-023 13 

Gnaphosidae Gna-025 1 

Gnaphosidae Gna-027 1 

Gnaphosidae Gna-033 1 

Gnaphosidae Gna-037 1 

Hahniidae Hah-001 3 

Hahniidae Hah-002 1 

Linyphiidae Lin-00 1 

Linyphiidae Lin-004 3 

Linyphiidae Lin-006 31 
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Linyphiidae Lin-008 40 

Linyphiidae Lin-009 1 

Linyphiidae Lin-010 9 

Linyphiidae Lin-011 14 

Linyphiidae Lin-012 5 

Linyphiidae Lin-013 146 

Linyphiidae Lin-014 8 

Linyphiidae Lin-015 66 

Linyphiidae Lin-016 8 

Linyphiidae Lin-017 61 

Linyphiidae Lin-018 1 

Linyphiidae Lin-019 18 

Linyphiidae Lin-020 1 

Linyphiidae Lin-021 16 

Linyphiidae Lin-022 15 

Linyphiidae Lin-023 2 

Linyphiidae Lin-024 1 

Linyphiidae Lin-025 59 
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Linyphiidae Lin-026 2 

Linyphiidae Lin-027 17 

Linyphiidae Lin-028 9 

Linyphiidae Lin-029 6 

Linyphiidae Lin-030 2 

Linyphiidae Lin-031 26 

Linyphiidae Lin-032 2 

Linyphiidae Lin-033 7 

Linyphiidae Lin-035 1 

Linyphiidae Lin-036 1 

Linyphiidae Lin-037 6 

Linyphiidae Lin-039 2 

Linyphiidae Lin-041 6 

Linyphiidae Lin-042 1 

Linyphiidae Lin-043 1 

Linyphiidae Lin-045 1 

Linyphiidae Lin-053 1 

Linyphiidae Lin-064 1 
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Linyphiidae Lin-075 1 

Linyphiidae Lin-077 2 

Liocranidae Lio-001 1 

Liocranidae Lio-003 7 

Liocranidae Lio-004 1 

Liocranidae Lio-aa 2 

Lycosidae Lyc-001 200 

Lycosidae Lyc-002 29 

Lycosidae Lyc-002a 5 

Lycosidae Lyc-003 72 

Lycosidae Lyc-004 32 

Lycosidae Lyc-005 39 

Lycosidae Lyc-006 19 

Lycosidae Lyc-007 39 

Lycosidae Lyc-008 11 

Lycosidae Lyc-009 23 

Lycosidae Lyc-010 19 

Lycosidae Lyc-011 7 



 

67 

 

Lycosidae Lyc-012 14 

Lycosidae Lyc-013 13 

Lycosidae Lyc-014 4 

Lycosidae Lyc-015 4 

Lycosidae Lyc-016 22 

Lycosidae Lyc-017 33 

Lycosidae Lyc-018 4 

Lycosidae Lyc-019 10 

Lycosidae Lyc-020 3 

Lycosidae Lyc-021 1 

Lycosidae Lyc-022 1 

Lycosidae Lyc-023 3 

Lycosidae Lyc-024 1 

Lycosidae Lyc-025 4 

Lycosidae Lyc-026 4 

Lycosidae Lyc-030 2 

Lycosidae Lyc-033 1 

Lycosidae Lyc-036 1 
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Miturgidae Mit-001 1 

Mysmenidae Mys 1 

Mysmenidae Mys-001 1 

Oonopidae Oon-001 1 

Oonopidae Oon-002 21 

Oonopidae Oon-003 23 

Oonopidae Oon-004 24 

Oonopidae Oon-005 2 

Oonopidae Oon-006 25 

Oonopidae Oon-007 11 

Oonopidae Oon-008 3 

Oonopidae Oon-009 6 

Oonopidae Oon-011 1 

Oonopidae Oon-013 33 

Oonopidae Oon-014 6 

Oonopidae Oon-015 4 

Oonopidae Oon-016 2 

Oonopidae Oon-017 15 
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Oonopidae Oon-018 1 

Oonopidae Oon-019 1 

Oonopidae Oon-021 2 

Oonopidae Oon-023 1 

Oxyopidae Oxy-003 1 

Pisauridae Pis-001 2 

Pisauridae Pis-002 1 

Salticidae Sal-001 3 

Salticidae Sal-002 1 

Salticidae Sal-003 3 

Salticidae Sal-004 2 

Salticidae Sal-009 13 

Salticidae Sal-010 2 

Salticidae Sal-011 2 

Salticidae Sal-013 1 

Salticidae Sal-015 4 

Salticidae Sal-017 1 

Salticidae Sal-030 3 
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Salticidae Sal-032 1 

Salticidae Sal-036 2 

Scytodidae Scy-001 3 

Segestriidae Seg-001 7 

Tetragnathidae Tet-002 1 

Theridiidae The-001 1 

Theridiidae The-002 3 

Theridiidae The-004 3 

Theridiidae The-007 1 

Theridiidae The-012 1 

Theridiidae The-019 3 

Theridiidae The-021 2 

Theridiidae The-033 1 

Theridiidae The-035 1 

Theridiidae The-036 1 

Theridiidae The-039 3 

Theridiidae The-041 8 

Theridiidae The-101 5 
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Theridiidae The-102 17 

Theridiidae The-103 6 

Theridiidae The-105 1 

Thomisidae Tho-001 1 

Thomisidae Tho-003 2 

Thomisidae Tho-007 1 

Thomisidae Tho-008 1 

Thomisidae Tho-009 2 

Thomisidae Tho-010 1 

Thomisidae Tho-011 7 

Titanoecidae Tit-001 44 

Titanoecidae Tit-002 5 

Zodariidae Zod-001 6 

Zodariidae Zod-002 9 

Zodariidae Zod-003 6 

Zodariidae Zod-004 4 

Zodariidae Zod-005 2 

Zodariidae Zod-006 4 
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Zodariidae Zod-007 2 

Zodariidae Zod-009 1 

Unknown UN-001 2 

 


