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Abstract 

In modern power distribution utilities, there is a growing demand for an improved system 

response in case of outages. In order to address that demand, automatic line switches can be 

installed in distribution networks to reduce the number and durations of power interruptions. 

However, automatic switching devices involve an increased investment cost. For distribution 

utilities, obtaining a high level of reliability at a relatively low cost becomes a multi-objective 

optimization problem. To solve the problem, a computational procedure based on Elitist 

Nondominated Sorting Genetic Algorithm (NSGA-II) is developed in the present study. 

Following the proposed methodology, we are able to obtain a set of optimal trade-off solutions 

identifying the number and placement of automatic switches in a distribution network for which 

we can obtain the most reliability benefit out of the utility investment. To determine the 

effectiveness of the procedure, two case studies were carried out. For comparison purposes, one 

of the cases corresponds to a previous study of an actual distribution system belonging to 

Taipower Company. The result of both tests indicates the improvement in system reliability 

indices due to the addition of a certain degree of automation investment in the distribution 

network, and demonstrates the present methodology is able to satisfy the system requirements in 

a better way than the mentioned previous study.  

 

Keywords: Power distribution systems, automatic line switches, multi-objective optimization, 

NSGA-II, optimal placement, case study simulation.  
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Chapter 1: Introduction 
 

1.1. Background and Motivation 

The distribution system is a vital component of any electric power system. It constitutes the final 

linkage between bulk power source and end customers. However, distribution is also one of the 

most susceptible to failures within the power system (Brown, 2008a). Therefore, power quality 

and continuity have become among the most important objectives that distribution utilities have 

concentrated significant efforts on in order to satisfy system load and energy requirements as 

economically as possible. 

Distribution system reliability can be improved by reducing the frequency of occurrence of faults 

and by reducing the repair time by means of maintenance strategies (Zheng et al., 2011). 

The addition of switches along the distribution network contributes to reduce the number and 

duration of interruptions; however, this involves investment costs. The two aspects of obtaining 

high level of reliability at a relatively low cost are often in direct conflict due to the fact that 

providing a higher reliability will cost utilities more capital.   

The above statement drives a motivation to emphasize on the multi-objective optimization of 

utility investment costs and reliability benefits, the result of which will be a set of trade-off 

solutions that optimize both objectives so that the decision-maker can choose from. 

Two types of line switches are normally installed along the distribution feeders: sectionalizing 

switch (normally closed switch) and tie-point switch (normally open switch). The former is a 

device that isolates a faulted section from the system so that the healthy sections upstream can 
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still be electrically supplied. The latter is a device that restores power to the disconnected loads 

downstream the failure by transferring them to a neighbor distribution feeder without violating 

operational and engineering constraints.  

Whenever a fault has been identified at any point of a network, acting as soon as possible may 

result in a minimum affected area. The process of restoring a feeder from a fault, (Bernardon et 

al., 2011), can be stated in the following steps: 

� Identify the exact fault position, 

� Isolate the faulted section by opening normally closed switches, 

� Restore power supply to customers upstream and downstream of the isolated block, 

� Correct the problem, 

� Re-operate the switches to get back to normal network status. 

Automation of distribution systems significantly contributes to reduce the time to perform the 

service restoration procedure and utterly minimize the impact of power interruptions. With the 

installation of automatic or remote-controlled line switches in the network, we can experience a 

faster response to isolate the fault without maintenance personnel even having to physically be at 

the location. New regulation policies have allowed automatic sectionalizing switches to operate 

faster, more efficient and reliable than traditional manual switches (Romero, Wesz da Silva, & 

Mantovani, 2011). Automatic switches have also shown to be an economically viable solution 

due to the emergence of a large number of automation equipment suppliers and new 

communication technologies. 

A frequent topic currently discussed is how the electric power distribution systems of the future 

will be. In this sense the term “smart grid” has arisen to describe how the new distribution 
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systems will behave, this is in a “smart” or “intelligent” manner. A deeper analysis about Smart 

Grid will be presented in Chapter 2, but as an introduction we can mention that among the 

features of the Smart Grid are the ability to carry out maneuvers in automatic mode (self-

reconfiguration) and high reliability, all with low operation and maintenance costs. 

The selection of an efficient methodology to determine the optimum location and number of 

automatic line switches is essential for utilities, since that procedure is closely related to the 

restoration time and consequently associated to the system reliability indices. The optimization 

methodology constitutes not an easy task because it is a combinatorial1 constrained problem 

described by a nonlinear and nondifferentiable objective function and its solution can be 

challenging to solve (Tippachon & Rerkpreedapong, 2009).  

Different approaches have proposed solutions for the problem of switch placement in distribution 

networks. Some studies develop optimization methodologies for a single objective function 

(mono-objective) such as minimizing economic cost or reliability indices (Chen et al., 2006), 

(Bernardon, et al., 2011). Other researches are focused on covering the impact of automatic 

switches, without considering its optimal allocation (Zheng, et al., 2011). Finally, some 

important studies about multi-objective allocation in distribution networks do not consider 

automatic switches after all (Tippachon & Rerkpreedapong, 2009), (Ferreira, Bretas, & Cardoso, 

2010). The multi-criteria methodology for optimal placement of automatic line switches has not 

been included. 

The multi-objective optimal placement of switches in distribution networks allows better 

operation and improvement on the reliability of the system (Ferreira, et al., 2010). Moreover, the 
                                                             
1 Combinatorial optimization consists, in a sentence, on finding the optimal solution among a finite set of solutions 
(Schrijver, 2003).  
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reliability indices most commonly used to quantify the quality of the utilities services are related 

to sustained interruptions (interruptions longer than 5 minutes): System Average Interruption 

Frequency Index (SAIFI), and System Average Interruption Duration Index (SAIDI). These two 

indices highly depend on network topology and location of automatic switching devices.   

Therefore, our optimization task will be driven to design a methodology for optimal placement 

of automatic line switches in distribution networks that simultaneously minimizes cost 

expenditures and maximizes system reliability (by minimizing SAIFI and SAIDI). 

As more study on this new trend of power distribution technologies has extended around the 

world, Taiwan is also taking steps to become a major force in Smart Grid. According to MOEA’s 

Bureau of Energy, the Taiwanese government plans to invest an additional US$4.6 billion in 

smart power grid infrastructure starting from first quarter 2012 (Wu, 2011). This amount 

includes NT$123.7 billion for improvement of power grid efficiency, NT$10.1 billion for the 

promotion of smart grid industry and NT$ 6.1 billion for technological research and development. 

It is expected that this project will create an output value of NT$1 trillion (Wu, 2011) in smart 

grid industry by 2030, making Taiwan an output country for global smart grid industry and 

equipment manufacturing. 

Taiwan has a long-term experience in the ICT (Information and Communications Technology) 

industry which represents a solid foundation for developing the smart grid industry. However, 

the expertise with individual components will have to lead to research on abilities for system 

integration. That constitutes another of the motivations for developing the present research topic, 

giving the need of research in terms of network automation that will allow self-regulation, 

including automatic reconfiguration in the event of failures, threats, or disturbances. 
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1.2. Research Purpose 

This study aims to the development of a computational algorithm to address the automatic line 

switch allocation problem on the basis of a Nondominated Sorting Genetic Algorithm (NSGA-II), 

in order to improve the reliability of the distribution systems and minimize costs expenditures. 

This method has proven to be effective in solving multi-objective optimization problems and 

promoting satisfactory solutions belonging to the Pareto-optimal front. The algorithm can be 

configured according to the needs of the utilities and help the network designer in the decision 

making process. Therefore, the proposed methodology will indicate where the utility should 

invest resources for switching automation in order to improve the reliability of the system, which 

constitutes an important decision support tool for planning and operating the distribution 

networks. 

The proposed approach was tested in actual distribution feeders belonging to Taipower Company 

and its effectiveness, on the specified portion of the real system, was seen in the sense of the 

improvement in the reliability indices (SAIFI and SAIDI) and the different trade-off possibilities 

for reliability that we can expect depending on the degree of automation investment, letting one 

conclude the relevant economic benefits obtained by providing a set of optimal solutions to the 

decision-maker so that he/she can decide the most appropriate alternative based on his/her own 

professional experience. 

Consequently, the main contributions of this study are highlighted as follows: 

1) A new algorithm to assess the impact on reliability due to the installation of automatic 

line switches in distribution networks. 
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2) A new multi-objective optimization methodology for solving the automatic switch 

allocation problem using a modified integer version of NSGA-II. 

1.3. Research Procedure 

In this study we propose a methodology that specifies the optimal number and location of 

automatic line switches in distribution networks by following the steps below: 

1) Understanding the function of line switches in distribution networks and how their 

number and allocation can impact system reliability. 

2) Propose a mathematical model that represents the behavior of distribution networks due 

to the installation of automatic line switches. 

3) Development of a computational algorithm based on integer-coding NSGA-II in order to 

search for the best combinations of line switch number and locations that optimizes the 

objective functions. 

4)  Simulation of the prosed algorithm for two case studies. One of them, an actual 

distribution system of Taipower Company. Additionally, results discussion for every case 

study. 

5) Research study conclusions. 

1.4. Chapter Outline 

The remainder of this thesis dissertation is organized as follows: 

In Chapter 2 we introduce some basic definitions of distribution systems and the problem 

formulation for the placement of line switches in distribution networks.  
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In Chapter 3, the algorithm foundations are presented concerning to multi-objective optimization 

theory, genetic algorithms and the concepts behind Elitist Nondominated Sorting Genetic 

Algorithm (NSGA-II).  

Chapter 4 is dedicated to explain the proposed algorithm and its working mechanism.  

In Chapter 5 we perform the simulation of the implemented algorithm in case studies and present 

the results discussion.  

Finally, we outline the conclusions of this study in Chapter 6.    
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Chapter 2: Literature Review and Problem 
Formulation 

 

2.1. Power Distribution Systems 

Since distribution systems account for up to 90% of all customer supply interruptions and 

reliability problems (Brown, 2008a), improving distribution reliability is key in order to improve 

customer reliability. For succeeding in this task, a basic outline of power distribution systems 

will be stated. The following sections present fundamental concepts and terminology that will 

provide foundation for further reliability analysis.     

2.1.1. Generation, Transmission, Distribution 

Generation plants consist of one or more generating units that convert mechanical energy into 

electricity by turning a turbine coupled to an electric generator. Most turbines are driven by 

steam produced in a boiler fired by coal, oil, natural gas, or nuclear fuel. Others may be driven 

by non-thermal sources such as hydroelectric dams and wind farms. Typically, generators 

produce line– to–line voltages between 11 kV and 30 kV, but since this is not a sufficiently high 

voltage to transport electricity long distances, generation substations step up voltages to 

transmission levels (typically between 115 kV and 1100 kV). 

Transmission systems transport electricity over long distances from bulk power generation 

facilities to substations that serve sub-transmission or distribution systems. Most transmission 

lines are overhead but there is a growing trend towards the use of underground transmission 

cable.  
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To increase flexibility and improve reliability, transmission lines are interconnected at 

transmission switching stations and transmission substations. This improves overall performance, 

but makes the system vulnerable to cascading failures2. 

Distribution systems deliver power from bulk power systems to retail customers. To do this, 

distribution substations receive power from sub-transmission lines and step down voltages with 

power transformers to utilization levels. Distribution systems consists on distribution 

transformers (which supply distribution feeders and contain a main 3ϕ trunk, 2ϕ and 1ϕ laterals), 

feeder interconnections, and distribution feeder.  

In order to illustrate the above definitions, Figure 2-1 presents an overview of Taipower System 

– based on (F. Lin, 2011) – where we can distinguish the three stages that take place before 

power is delivered to the final customers. After being generated at a power station, the power is 

firstly steeped up to 345KV in order to be transported long distances. In transmission substations, 

the power is steeped down to 161KV. For the case of Taipower, there is a series of distribution 

transformers that converts 161 KV to 69 KV and 11.4 KV since there is specific customers that 

need those power levels. Finally, distribution power transformers lower down 11.4 KV to 

utilization levels (220-110V).     

                                                             
2 Cascading failure is a type of failure in a system of interconnected parts in which a failure of one part can trigger 
the failure of successive parts. 
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Figure 2-1 Overview of Taipower System 

It is important to note that the key elements and principles of operation for interconnected power 

systems were established before the 1960s (Massoud Amin & Wollenberg, 2005), which means 

before the emergence of extensive computer systems and communication networks. Nowadays, 

computation is heavily applied throughout all levels of power network planning and optimization 

as well as local control of the equipment and data processing. 

The incorporation of Smart Grid technologies allows us to have a two-way communication 

interaction to get access to a better real time network control and data acquisition which permits 
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an easier task fulfillment. However, the new technologies require improvements in the 

approaches for solving existing problems in automation applications and research on new ones 

(Farhangi, 2010). 

We present next a more formal definition to what Smart Grid involves and the philosophies and 

technologies within. 

2.1.2. Concepts in Smart Grid 

Our current electric grid was conceived around a century ago when electricity needs were 

simpler. Power generation was localized and built around the communities; in addition, most 

homes only had small energy demands. The grid was designed for utilities to deliver electricity 

to consumer homes and then bill them for the service every month. However, this limited one-

way interaction makes it difficult for the grid to respond to the always changing and rising 

energy demands of the 21th century. The Smart Grid introduces a two-way communication 

where electricity and information can be exchanged between the utility and its customers. 

According to (Litos, 2008) Smart Grid is a developing network of communications, controls, 

automation and new technologies and tools working together to make the grid more efficient, 

more reliable, more secure and greener.  

Some of the benefits associated with the Smart Grid include: 

� More efficient transmission of electricity 

� Self-reconfiguration and quicker restoration of electricity after power disturbances 

� Reduced operations and management costs for utilities, and ultimately lower power costs 

for consumers 

� Enabling active participation by consumers in demand response 
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� Reduced peak demand, which will also help lower electricity rates 

� Increased integration of renewable energy systems 

� Improved security 

Today, an electricity disruption such as a blackout can have a domino effect—a series of failures 

that can affect banking, communications, traffic, and security. A smarter grid will add resiliency 

to the electric power system and make it better prepared to address emergencies such as severe 

natural disasters. Because of its two-way interactive capacity, the Smart Grid will allow 

automatic rerouting when equipment fails or outages occur. This will minimize outages and 

minimize the effects when they do happen. 

Distribution automation (DA) is one the most research-active areas in the field of Smart Grid 

(Brown, 2008b). It refers to monitoring, control, and communication functions located out on the 

feeder. From a design perspective, the most important aspects of distribution automation are in 

the areas of protection and switching (Brown, 2008b).  

Automatic switches allow detection of a fault event and containment of it before it becomes a 

large-scale interruption. This technology also help ensure that electricity resumes quickly and 

strategically after an interruption occurs: automatically routing electricity to sections downstream 

the isolated faulty area, for instance. 

Consequently, the optimal placement of automatic switches in Smart Grid networks plays a 

significant role that will contribute to future networks to have better operation and improved 

reliability and also permits new technology to be incorporated on the network system. 

2.1.3. Power Distribution Networks 
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The function of power distribution networks is to deliver electricity to each end-customer, 

transforming it to a suitable voltage when necessary. However, it has been estimated (Falaghi, 

Haghifam, & Singh, 2009) that most of the supply interruptions to customers are because of 

failures in the distribution networks. 

The frequency of interruptions can be reduced by improving the network failure rates, while the 

duration can be reduced by decreasing the restoration time. An effective way to reduce the 

frequency of interruption and restoration time is the installation of automatic line switches in the 

feeders of distribution systems (Chao-Shun Chen et al., 2006).  

Sectionalizing and tie-point switches work together to identify faults, automatically isolate 

problem areas and reconfigure the controlled feeders in order to restore power to un-faulted 

customer as soon as possible from the main or alternative sources. This reduces the number and 

length of electric system outages, and minimizes the impact to customers. 

The effectiveness of this process strongly depends on the number and location of sectionalizing 

and tie-point switches. Therefore, an algorithm that addresses the automatic switch optimal 

allocation problem has significant importance since it allows Smart Grids to embrace advanced 

controls, monitoring and innovative metering systems.     

2.2. Distribution Feeder Model 

An illustration of a radial feeder of a distribution system is presented in Figure 2-2. It consists of 

one main and several lateral sections. The main feeder CB-1 is interconnected to an adjacent 

feeder (CB-2) by the existence of normally open (N.O.) tie-point switch, through which power 

can be supplied to the main feeder when needed. 
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Figure 2-2 Radial Distribution Feeder and its Line Switches 

Each portion of feeder in the above figure has a unique end node. The end node of section j also 

constitutes the physical connection point for customers to the distribution feeder. Any device 

allocated in section j of the distribution system is also identified by j.  

Let s(i) be the immediate predecessor of section i. We define  as the section path which 

contains all sections belonging to the path that connects the power source to section i. For 

example, for Figure 2-2, let us suppose a failure has occurred in section 17. The section path to 

the failure event corresponds to the expression:  

Similarly, the load point path  is the pathway containing all sections that connects the power 

source to the load point i. For the same illustration, the load point path for customer 7 is: 

. 
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Switches and protective devices shown in Figure 2-2 play a vital role for reliability improvement 

of the distribution system (Tippachon & Rerkpreedapong, 2009). Each type of devices has 

unique functionalities. Following we give more details about them:  

Circuit Breakers have switching and protective properties, which are used to handle permanent 

and temporary faults. Circuit breakers are located in transmission substations and they protect a 

distribution feeder from damage caused by overload or short circuit. Its basic function is to detect 

a fault condition and, by interrupting continuity, immediately disconnect electrical flow to the 

entire distribution network. A circuit breaker can be reset (trip-reclose function), either manually 

or automatically, to resume normal operation. 

Fuses have only protective function, which means no switching capability. It separates a fault by 

melting its fuse-link. A fuse can only perform open-circuit function, and is not able to clear the 

momentary fault by itself. Fuses are not allowed to be installed on the main feeder. 

Switches can be of two types: sectionalizing or tie-point switches. Both types, they cooperate to 

isolate faulted sections of the network and restore power to customers in healthy areas through 

the main or neighbor feeders. This reduces the number of customers affected by the interruption 

and the duration of it, which is beneficial to the overall reliability of the system. 

Sectionalizing switches and tie-point switches installed in the distribution feeder are grouped into 

sets D and TP, respectively. In other words, for Figure 2-2, the sets of switching devices can be 

expressed: , . 

2.3. Line Switches in Distribution Networks 
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After a fault is cleared by the circuit breaker, the system needs to be reconfigured to isolate the 

fault and restore power for the remaining customers. This reconfiguration is performed by 

sectionalizing and tie-point devices, most of which are manually operated. Thus, the customers 

have to wait for a crew to drive to the location and manually switch these devices on or off to 

execute the reconfiguration. In order to enhance reliability and improve customer satisfaction, 

electric utilities have begun to install automatic switching systems in their distribution systems.  

Automatic switching systems are usually composed of several automatic switches with the 

capability to isolate the faulted circuits, and these switches “talk” with one another through 

communication equipment to determine the status of the portion they cover. The selection of the 

location of an automatic switch should guarantee that the adjacent feeders, to which the load will 

be transferred, have sufficient capacity to pick up the customers affected by the fault on their 

main feeder. 

2.3.1. Automatic Sectionalizing Switches and Tie-point Switches 

The installation of automatic sectionalizing switches benefits distribution network reliability, 

above all, by reducing the outage duration time when a fault occurs, given that the fault is 

isolated in a period of time equal to the switching time of the device –in automatic switches, less 

than five minutes.  With reduction of outage duration time, the unsupplied amount of energy to 

the customers is also decreased. 

An automatic sectionalizing switch typically employed by utilities in distribution systems is the 

SF6 Gas Insulated Automatic Sectionalizing Switch for overhead lines operating at a voltage up 

to 25.8kV. The full specification datasheet for the mentioned device is presented in Appendix1.  
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Automatic tie-point switches in distribution networks contribute to the improvement of 

interruption frequency on the system. Tie-switches are able to restore electrical service to 

sections of feeder within the order of minutes avoiding that sustained interruption events are 

accounted for those sections and hence affect network reliability.  

2.4. Problem Formulation for Placement of Automatic Line Switches  

As discussed previously, distribution automation in terms of installation of automatic or remote-

controlled switches provides major benefits to distribution utilities. However, its implementation 

requires economic justification, and the contribution to the performance should be also 

quantified. Benefits of automated sectionalizing and tie-point switches can be calculated in terms 

of reduced duration of outage and reduced number of customers affected during permanent faults 

by fast restoration of power to un-faulted customers. 

The main purpose of this study is to find the optimal number and location of automatic switches 

in order to minimize System Average Interruption Frequency Index (SAIFI), System Average 

Interruption Duration Index (SAIDI), in conjunction with line switch capital investment costs 

(TCOST).  

We present Figure 2-3 in order to investigate the benefits of implementing automatic line 

switches in a typical distribution feeder. In this figure we have a main radial feeder connected to 

a neighbor network through an automatic tie-point. Additionally, two automatic sectionalizing 

switches will be allocated in each feeder, in sections 2 and 5. This analysis will allow us to 

differentiate the benefits of the installation of automatic switches.        
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Figure 2-3 Operation of Automatic Sectionalizing and Tie-point switches in Distribution Networks 

Let us consider a case where a fault3 occurs on the main feeder in section 1 of Figure 2-3 (a). 

Firstly, the circuit breaker operates and de-energizes all the downstream load points. Following, 

the automatic sectionalizing switch located in section 2 will open and “tell” the automatic tie-

point in section 4 that there is a fault in section 1. Then, after the tie-point switch receives the 

information and makes sure that the automatic switch in section 1 has isolated the fault, it will 

close and transfer the load downstream the open sectionalizing switch to the neighbor feeder. At 

this point, the loads in the main feeder located between the two automatic switches will 

experience an interruption equal to the switching time of the devices (less than five minutes). 

Therefore, as seen in Figure 2-3 (b), customers in load points LP2 and LP3 will suffer no impact 

                                                             
3 In this study, fault is defined as the occurrence of a permanent disturbance on a feeder section or transformer or 
occurrence of a sustained interruption due to the failure of any component of the system.  
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on SAIFI given they did not experience any sustained interruption, and a considerably reduction 

in SAIDI because of the automatic switching time of the devices. However, customers in load 

point LP1 will experience outage duration equal to the repair time of feeder section 1, which is 

much longer than the switching time.       

Mathematically, the benefits of automatic line switches in improving the reliability of 

distribution network can be determined by considering all possible switch placement 

combinations and evaluating all possible contingencies utilizing the objective functions for 

SAIFI and SAIDI. On the other hand, the impact on investment cost for utilities due to the 

installation of line switches in distribution networks can be quantified by the objective function 

TCOST.  

2.4.1. Assumptions 

Before we state to the formulation of the objective functions it is worth mentioning the 

assumptions under which they will be estimated: 

� The network under study is radially operated; 

� A fault is repaired before a subsequent fault occurs; 

� The power substation is assumed to be fully reliable. So that we can calculate our 

reliability indexes independently from another subsystems.   

2.4.2. Objective Functions 

This study deals with a multi-objective optimization algorithm to obtain the best possible 

distribution system reliability while simultaneously minimizing investment costs as a result of 

acquisition of automatic switches. 
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There exist several reliability indices that are used to assess the performance of distribution 

systems (Billinton & Jonnavithula, 1996). The most common indices used by distribution 

utilities are System Average Interruption Frequency Index (SAIFI), and the System Average 

Interruption Duration Index (SAIDI) (Tippachon & Rerkpreedapong, 2009). They are used to 

calculate the impact on reliability of power outages in terms on number of interruptions and 

interruption duration, respectively.    

We select three objectives to be minimized: SAIFI, SAIDI and TCOST. The last corresponds to 

the total investment cost that the distribution utility has to incur due to switch automation 

purchase and installation.  

Based on the study performed by (Tippachon & Rerkpreedapong, 2009), we present a 

modification to that original work in order to obtain the mathematical models that fit our 

described problem allowing us to achieve the three mentioned objectives; the ones that are 

defined as follows: 

1) SAIFI, : system average interruption frequency index. It represents the average 

frequency of sustained interruptions per customer. This index can be calculated using the 

following equation: 

 

 

where  is the number of customers at load point i, n identifies the number of load 

points and  the number of sections.  is the permanent failure rate of load point i due 

to failure in section s. It depends on the topology of the system and location of the 
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switching devices. From the characteristics of automatic line switches and the model of 

the distribution networks in sections 2.3.1 and 2.2, respectively,  can be estimated as 

follows: 

           

 

where  is the permanent failure rate of section s.  is the set of all sections connecting 

the power source and section s. Analogically,  is the set of the path that links power 

source and load point i.  and  are the complement of  and , and are defined as 

the pathway that connects, either s or i, to the neighbor feeder power source.  

The purpose of the above set operations is to identify if there is any switching device 

between the faulted section and the load point and also verify if there is an alternative 

way to restore power through a tie-point. Based on those parameters we are able to decide 

 accordingly. 

2) SAIDI, : system average interruption duration index. It is referred to as the average 

time that a customer is interrupted per year. The following equation is employed to 

calculate this index: 

 

 

where  is the average time per interruption of load point i due to outages in section s. It 

also depends on the topology of the system and location of the switching devices. Using 
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the same concepts as mentioned before,  can be calculated with the following 

expression: 

   

 

 is the average repair time of the fault. On the other hand, represents the switching 

times of the devices. 

3) TCOST, : total cost. It is the objective function that accounts for the summation of 

the total expenses associated to the investment on automatic line switches. It can be 

computed by the equation: 

 
 

where  accounts for the number of sectionalizing switches and  for the 

number of tie-point switches to be installed.  and  are the total costs including 

purchase and installation of sectionalizing and tie-points, respectively.  

The possible switch placement locations will be grouped together into a set of possible 

combinations and they will be considered as feasible solutions for the optimization problem. For 

this task, a decision variable will be associated to every section and its value (0, 1 or 2) 

represents the cases in which: 0 – no device is assigned to that section, 1 – a sectionalizing 

switch is assigned, or 2 – a tie-point switch is assigned. By doing so, we are able to the generate 

feasible combinations for placement of switches in the distribution network; the ones that a 
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search algorithm will compare looking for closeness to the minimal objective functions in order 

to obtain the set of optimal solutions. 

2.4.3. Constraints 

To guarantee that the proposed methodology does not violate technical restrictions, the following 

operation constraints are considered in this study: 

� Only one automatic tie-point switch can connect two neighbor feeders. In other words, 

only one section for every feasible combination is allowed to be given a value of 2 as its 

decision variable; 

� When performing the load transfer for service restoration, no overloading should be 

introduced to the power transformers. In Taipower distribution system, the rated levels 

for transformers are 450A.  

In conclusion, SAIFI, SAIDI and TCOST represent the three objective functions for the multi-

objective optimization problem to be addressed by the search algorithm that will be presented in 

Chapter 4. Meanwhile, in the following Chapter 3 we will provide the algorithm background we 

need before formulating the proposed algorithm approach.  
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Chapter 3: Algorithm Background 
 

This chapter is imperative for our analysis since it will present the three most important concepts 

we need in order to implement the proposed methodology for the switch allocation problem. 

They are termed as follows: Multi-Objective Optimization, Genetic Algorithm, and Elitist 

Nondominated Sorting Genetic Algorithm (NSGA-II). 

In order to better understand each concept, a review concerning their basic approaches will also 

be presented in the way of subsections.  

3.1. Multi-objective Optimization  

Optimization is a procedure of finding and comparing feasible solutions until no better solution 

can be found (K. Deb, 2001). Solutions are considered good or bad in terms of an objective 

function, which is often the cost of fabrication, product reliability, efficiency of a process, or 

other factors. A significant amount of research efforts in the optimization field are carried in 

terms of a single objective, although most real-world problems involve more than one objective 

(Engelbrecht, 2005).  

Real-world optimization problems habitually involve simultaneous optimization of multiple and 

often conflicting objectives (such as simultaneously minimizing cost of fabrication and 

maximizing product reliability). In a multi-objective optimization problem, it is not always 

possible to find a solution that is the best with respect to all objectives. A solution may be  

optimal regarding to one objective, but at the same time be inferior regarding to another 
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objective. Typically, the goal is to find a set of optimal trade-off solutions known as Pareto-

optimal set.  

Solutions belonging to the Pareto set are optimal in a broader sense given that no other solutions 

in the search space are better than them when all objectives are considered. Additionally, since 

no any solution in the Pareto-optimal set can be said to be absolutely better than any other 

solution in the same set with respect to all objectives, all solutions belonging to the set are 

recognized as acceptable solutions for the optimization problem. The decision-maker is able to 

select one solution over the others based on his/her previous knowledge about the problem and 

professional experience. 

3.1.1. Multi-objective Optimization Problem 

The purpose of the multi-objective problem is to minimize or maximize a number of objective 

functions. Those objective functions are subject to constraints which any feasible solution, 

including the optimal solution set, must satisfy. Based on (K. Deb, 2001), the multi-objective 

optimization problem (MOOP), in its general form, can be expressed using the following 

structure:          

                                                         

                                      

                                                         

                                      

A solution  is a vector of  decision variables . The terms ,  are 

the inequality and equality constraints, respectively. Additionally,  is also 

a constraint called variable bounds. These bounds establish a decision variable space D or 
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decision variable, simply, and they are the ones that restrict each decision variable  to take a 

value within  and .  

A solution  that satisfies all the  constraints and is allocated within the  variable 

bounds is known as feasible solution. Moreover, the set of all feasible solutions is called feasible 

region S or search space. 

We have  objective functions and each one of them can be 

either minimized or maximized. However, for our case only minimization of objective functions 

is allowed in the search algorithm. 

In multi-objective optimization the objective functions constitute a multi-dimensional space 

called objective space Z. For each solution  in the decision space there exist a point in the 

objective space and the mapping takes place between a -dimensional solution vector and a -

dimensional objective vector.          

Figure 3-1 shows us the feasible decision space in the left and the feasible objective space in the 

right. Every feasible solution in the decision space can be mapped to a solution in the feasible 

objective space. This correspondence shows us the different trade-off solutions between the two 

objectives.  

3.1.2. Pareto-optimality 

In this section we are going to provide a number of definitions that are needed when talking 

about multi-objective optimization. Those definitions include dominance, Pareto-optimal set, 

Pareto-optimal front and others.  
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Figure 3-1 Illustration of a general multi-objective optimization problem (Tran, 2006) 

We can observe in Figure 3-1 that in some cases if we pick and compare some pair of solutions 

from the feasible objective space, one of the solutions is better than the other in both objectives. 

For another pair of solutions, one is better than the other in one of the objective but worse in the 

second objective. In order to determine which solutions are optimal with respect to both 

objectives we are going to introduce the concept of dominance.    

In Figure 3-2 we illustrate a number a solutions coming from the feasible objective space. 

Solution 1 provides the lowest value for objective 1 but the highest value for objective 2, while 

solution 4 offers the minimum value for objective 2 but under the highest sacrifice of objective 1. 

None of these two solutions can be said to be better than the other when considering both 

objectives. The same reassembles when considering solutions 2 and 3, no superiority of any of 

the solutions can be established if the two objectives are equally important. When this happens 

we can call them non-dominated solutions.  
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All non-dominated solutions are jointed together using a curve. The solutions lying on that curve 

are special in terms of multi-objective optimization and are called Pareto-optimal solutions. The 

curve that contains these solutions is called Pareto-optimal front. We can distinguish the 

mentioned curve in Figure 3-2. It is interesting to note that for optimization problems in which 

the minimization of the two objective functions is required, this curve is located in the bottom-

left corner.  

 

Figure 3-2 Pareto-optimal front including Pareto-optimal solutions and a non-optimal solution 

We can deduce that the feasible objective space is constituted by Pareto-optimal solutions and by 

solutions that are non-optimal, in fact, the total feasible objective space can be divided into 

Pareto-optimal set, or non-dominated set, and non-optimal set. If we consider solutions 3 and 5 

in Figure 3.2, for instance, we can realize that solution 3 is better than solution 5 in both 

objectives. Thus, we can say that solution 3 dominates solution 5. There always exists at least 

one solution in the Pareto-optimal set which is better than any member of the non-optimal 
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solution set. A formal definition for dominance will be stated below assuming minimization 

problems. 

3.1.3. Domination 

Definition 3.1: Domination (K. Deb, 2001): A solution  is said to dominate the other 

solution  (denoted by ), if and only if: 

�  is not worse than  in all objectives, i.e.  , and 

�  is strictly better than  in at least one objective, i.e.  

. 

If any of the above conditions is not satisfied, the solution  does not dominate solution . 

We can perform all possible pair-comparisons for a finite set of solutions, and find which 

solutions dominate which and the solutions that are non-dominated with respect to each other. In 

the end, we will obtain a set of non-dominated solutions which any of its elements will dominate 

any solution outside of this set. 

 Definition 3.2: Non-dominated set (K. Deb, 2001): Among a set of solutions , the non-

dominated set of solutions  are those that are not dominated by any member of the set . 

If the set P is the entire search space, then P=S, and the obtained non-dominated set  is called 

the Pareto-optimal set. 

From the above discussion we can conclude that the Pareto-optimal set is the non-dominated set. 

But there may be some Pareto-optimal sets containing some Pareto-optimal solutions and some 

non-Pareto optimal solutions. The task of finding the true Pareto-optimal solutions is usually 

computational prohibitive (Engelbrecht, 2005). Therefore, it is important to realize that the non-
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dominated solutions found by an optimization algorithm need not to represent the true Pareto-

optimal set but rather an approximation such that: 

1. The set of solutions represent as close as possible the true Pareto-optimal front. 

2. The set of non-dominated solutions, Pareto-optimal set, is as diverse as possible. 

The first goal represents the desirable near-optimality property the Pareto-optimal set must have. 

The second goal let us know that being converged close to the true Pareto-optimal front is not 

enough, only a diverse set of solutions can guarantee adequate Pareto-front coverage. 

Therefore, the population-based search algorithm must adequately emphasize the non-dominated 

set of a given population to ensure the two goals mentioned above are satisfied. We are now 

interested in a computational efficient procedure to identify the non-dominated set from a 

population of feasible solutions.  

In this study we propose a computational algorithm based on Nondominated Sorting Genetic 

Algorithm (NSGA-II). The tests we perform on the mentioned algorithm have showed that this 

methodology ensures a very good approximation to the true Pareto-front and diversity of the 

solutions is also guaranteed, all of this while being computationally efficient when performing 

the procedure of finding the non-dominated set from a population of feasible solutions.  

Before get into more detail with such algorithm, we first need to know how genetic algorithms 

perform their search technique, since that constitute the basis for the former algorithm. 

 
3.2. Genetic Algorithms 
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Genetic Algorithms (GAs) are one of the main types of Evolutionary Algorithms (EA). In 

general, EA indicate any population-based stochastic search algorithm that uses mechanisms 

inspired by biological evolution and genetic operators such as reproduction, mutation, crossover, 

natural selection and survival of the fittest.  

GAs for computer simulation were mainly developed by Holland in the 1960s and published in 

his book (Holland, 1975). Over the years, Holland’s original GA has evolved into many forms 

Multi-objective GA (MOGA), Nondominated Sorting GA (NSGA), Niched-Pareto GA (NPGA), 

Elitist Nondominated Sorting GA (NSGA-II), and others. However, the general framework 

remains the same as in the basic GA.  

A simple GA attempts to find a good solution to some problem (finding the minimum of a 

function, for instance) by generating a random population of candidate solutions and then 

manipulating those solutions using genetic operators of reproduction, crossover and mutation. 

Once the initial population of solutions has been generated, the GA begins to evaluate and rank 

each candidate solution based on the on its fitness to the objective function. Solutions with 

higher fitness value will have better chances of survival and reproduction according to the 

evolutionary process. Hence, the best fitted solutions will be selected to produce the next 

generation of candidate solutions using genetic operators. Finally, when a terminating condition 

has been satisfied, usually number of generations, the most excellent solution, which is the most 

evolved one, constitutes the optimal to the optimization problem.  

3.2.1. Solution Representation 

In GAs, each feasible solution can be denoted by a chromosome, which is a coding 

representation. In order to perform this task, first we need to code the decision variables of the 
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optimization problem using finite-length character strings, from phenotype (decimal 

representation) to genotype (binary or real representation). There are two main ways for coding a 

variable:  

1) Binary-valued representation (binary coding) consisting of 0 and 1. One character (0 or 1) 

in the binary strings is called a gene.  

2) Real-valued representation. In this case the variable is coded using real numbers instead. 

The set of chromosomes is called population, and each member evolves in every generation 

toward better solutions. The number of chromosomes in a population is called the population 

size. 

In our proposed algorithm for the optimal placement of line switches in distribution networks, 

we will apply integer-representation for the coding of the decision variables, which is an special 

case of real coding. This way we are able to reduce computational complexity, because variables 

are used directly without any string coding, and also due to the fact that this type of 

representation is ideally suited for solving combinatorial problems (K. Deb, 2001) and when 

solutions are composed of many variables. 

3.2.2. Fitness Assignment  

Fitness is an indicator for measuring a solution quality for survival. All solutions are evaluated 

and ranked based on their fitness values at each generation. The fitness is similar to the objective 

function in conventional optimization problems. Thus, solutions having higher fitness are good 

ones. During the evolution process, therefore, relatively good solutions reproduce, and relatively 

bad solutions with lower fitness die in each generation. Finally, the solution having maximum 

fitness is obtained as an optimal solution. 
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One of the reasons why we decided on a GA-based methodology in this study is due to the fact 

that GAs can deal with a wide range of objective functions (nonlinear, non-differentiable, 

constrained, or discontinuous) without the need of additional requirements for the fitness 

evaluation. 

3.2.3. Genetic Operators 

There are mainly three types of genetic operators in GAs: reproduction and selection, crossover, 

and mutation. The population of solutions is modified by genetic operators and a new (hopefully 

better) population is created. 

3.2.3.1. Reproduction and Selection 

The main purpose of the reproduction operator is to make duplicates of good solutions and 

eliminate bad ones from the population, while keeping the population size constant.  

There exist several alternatives to achieve this task, one of the most common methods is 

tournament selection, and since it is the one we are going to apply in our proposed algorithm, we 

will provide more details about it next.   

In binary-tournament selection, tournaments are played between two solutions in terms of 

ranked fitness. The better solution is chosen and placed in a mating pool. Two other solutions are 

picked and another slot of the mating pool is filled with the better one. If this methodology is 

performed accordingly, each solution will participate in exactly two tournaments. The best 

solution in the population will win both rounds; therefore, two copies of it will be present in the 

new population. On the other hand, the worst solution will lose both tournaments and will be 

eliminated from the population. Thus, each solution will have zero, one or two copies of it in the 

new population. 
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In Figure 3-3, we find six different solutions ranked according to their fitness with the objective 

function. Tournaments are played among these solutions and each one gets to participate in two 

rounds. The two solutions for each tournament are chosen at random, and for the first tournament 

we have the solution with a hypothetical fitness of 12 being better and hence a copy of it is 

placed in the mating pool. The same process is followed for the rest of tournaments, and the 

mating pool is formed. It is interesting to note better solutions (with minimum values) have 

handled to have multiple copies in the mating pool and worse solutions have gotten discarded.    

   

 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 

 

 

 

Figure 3-3 Creation of Mating Pool from six hypothetical solution fitness using Tournament Selection 

3.2.3.2. Crossover 

It is clear that the reproduction operator does not create any new solutions in the population, it 

just make copies of good solutions and deletes not so good ones. By proliferating good solutions 
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in the mating pool we ensure better chances of crossover and mutation for them than those with 

lower fitness values, this is how we stimulate the creation of more excellent solutions in each 

generation.  

The crossover operator combines the features of two different solutions (parents) into two new 

solutions (offspring). It operates by picking two random solutions belonging to the mating pool 

and exchanging some portion of their coded strings in order to create two new strings. Like 

reproduction operator, there are many ways to perform the crossover task: single-point crossover, 

multi-points crossover, uniform, intermediate crossovers and so on, but almost all operators have 

the same above notion. 

The crossover rate, , is used to determine that 100 % of strings will experience crossover and 

the rest 100(1- )% of the population is simply copied to the new population. Crossover rate 

ranged from 0.6 to 0.8 is usually used in order to allow new offspring to be created sufficiently. 

The higher the crossover rate, the more excellent created individuals will be. If the crossover rate 

is too low, the searching process may deteriorate due to lack of new strings with better 

performance. 

3.2.3.3. Mutation  

Mutation randomly alters one or more genes of a solution string to generate a new mutated 

solution. The mutation operation increases the variability of the population and helps to prevent 

premature convergence to local optima in the evolution process.  

The number for mutation events depends on the mutation rate, . The mutation rate in natural 

evolution is usually very small. Therefore, the mutation rate is traditionally given by low values 

at the range of 0.01 – 0.1. In each generation, 100 % solutions undergo mutation. The lack of 
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mutation induces poorer performances in evolution. Therefore, if mutation rate is too low, the 

possibility to fall into local optima increases. Relatively high mutation rates up to 0.4 or 0.6 have 

been found beneficial (Morimoto, 2006). It is to be noted, however, that a significantly high 

mutation rate leads to an essentially random search. 

The three genetic operators (reproduction, crossover, mutation) are straightforward. The 

reproduction operator selects good strings and makes copies of them, crossover operator 

recombines good string sections from two solutions in order to obtain a hopefully better string, 

and mutation operator alters a string locally to hopefully create a better solution.  

Since none of these operations are performed deterministically, these claims are not guaranteed, 

nor explicitly tested, during the GA generation (K. Deb, 2001). Nevertheless, parents that 

undergo crossover and mutation are not any two arbitrary random strings. These strings have 

survived tournaments played with others solutions during the reproduction operator. Therefore, it 

is expected that if bad solutions are created, then the reproduction operator will eliminate them in 

the next generations and when good solutions are created, they will be emphasized to ensure next 

generation will contain better solutions.  

In conclusion, GAs are powerful search techniques that have proven to be successful in many 

optimization applications (Morimoto, 2006). Their capacity to handle virtually any objective 

function with no requirement of derivatives or other knowledge, and their ability to reach global 

(or at least near global ones) optimal solutions makes GA-base algorithms a major tool when 

considering complex optimization problems. 
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3.3. Elitist Nondominated Sorting GA (NSGA-II)  

The original NSGA (Srinivas & Deb, 1994 ) was one of the first EA to emphasize on 

approximation to the true Pareto-optimal front while maintaining a diverse set of solutions (Deb, 

Pratap, Agarwal, & Meyarivan, 2002). However, over the years there have been many criticisms 

about to the NSGA approach, such as: high computational complexity, lack of elitism, and need 

for specifying a diversity parameter (Deb, et al., 2002). 

Deb and his students (2002) suggested an enhanced methodology they called: a fast and elitist 

multi-objective genetic algorithm: NSGA-II, in order to address all the above drawbacks of the 

original approach. The major features of NSGA-II include: 

3.3.1. Crowded-Comparison Operator 

NSGA-II uses the same genetic operator as the simple GA, but introduces a new definition about 

the way selection is performed. In order to obtain solutions uniformly spread along the Pareto-

front, a crowded-operator was proposed. This operator does not need to be set by the user, rather 

performs a density estimation of solutions. The way this is made is mentioned below: 

Density Estimation: Estimates the number of solutions surrounding a particular solution. 

In order to achieve this, the average distance between two points on either side of a 

certain point is defined as crowding distance idistance.    

Crowded-Comparison Operator ( ): Guides the selection process to reach uniformly 

spread solutions. Two attributes are taken in consideration for selection of solution i: 

1) nondomination rank (irank) 

2) crowding distance (idistance) 
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In the selection process between two solutions with different nondomination ranks, we 

prefer the solution with the lower (better rank). Otherwise, if both solutions belong to the 

same rank (front), we prefer the one in the lesser crowded region. (Deb, et al., 2002) 

3.3.2. NSGA-II Main Loop 

Step 1) Randomly create a parent population  with size .  

Step 2) Use typical binary tournament selection, crossover and mutation operator to generate an 

offspring population  with size . 

Step 3) Combine parent and offspring populations:  of size . 

Step 4) Population  is sorted based on nondomination and every solution is assigned a fitness 

(or rank) equal to its nondomination level (1 being the best level, 2 the next one, and so 

on). Minimization of the objective function is assumed. Additionally, since all previous 

and current generations are included in  elitism is ensured.  

Step 5) Solutions with rank 1 belonging to the best nondominated set  are copied into the new 

population , the remaining members of  are chosen subsequently: solutions in 

set ,   and so on; until no more sets can be accommodated in  spots of the new 

population. If  is that last set to be accommodated in , and the number of solutions 

from to  is larger than ;  is sorted using the crowded-comparison operator  

and choose the best solutions to complete  members in the new population . In 

order to illustrate this procedure we present Figure 3-4.   

Step 6) If Number of Generations has been reached, then stop and present results. Else, , 

, , and go to Step 3.   
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Figure 3-4 Elitist Selection Mechanism of NSGA-II (Tran, 2006) 

Due to its clever mechanisms, NSGA-II is much more efficient (computationally speaking) than 

its predecessor, and with an outstanding performance that has become very popular in the last 

few years, allowing significant number of applications and becoming some sort of landmark for 

multi-objective EA. 
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Chapter 4: Proposed Algorithm for the Optimal 
Placement of Automatic Line Switches 

 

When considering the increasing demand from power distribution utilities of an enhanced system 

response in case of outages, the contribution that automatic line switches provide in terms of fast 

power restoration to customers constitutes a step forward in distribution industry. Therefore, it is 

imperative the introduction of some methodology that determines the number and placement of 

those devices in order to obtain the most reliability benefit out of the utility capital investment. 

The main purpose of this study is to develop a computational algorithm that allows the 

identification of the best locations and combinations of automatic line switches in distribution 

networks with regard to system reliability maximization and investment cost minimization.  

In this study, objective functions were defined in order to represent the distribution network 

reliability indexes (SAIFI, SAIDI) and utility investment costs (TCOST). The mathematical 

representation for each was presented in Section 2.4 by equations (1), (3) and (5), respectively. 

The possible switch combinations and technical feasibility for load transfer were assumed as 

constraints. 

We illustrate our previously formulated optimization problem for the line switch placement as 

follows: 

� Objective Functions: 

 

 



 

41 
 

 

 

                 

 

� Constraints 

1) Only one automatic tie-point switch can connect two neighbor feeders.  

2) Each decision variable can only take integer values 0, 1 or 2. 

3) No overloading should be introduced to the power transformers when performing the 

load transfer for service restoration. 

The nonlinear, combinatorial, and nondifferentiable nature of the objective functions presented 

above, makes it difficult the application of traditional linear or nonlinear programming to solve 

this optimization problem. Additionally, since all of the objectives are equally important and 

should be optimized at the same time, classical techniques of objectives aggregation for solving 

multi-objective problems, such as objective weighting, are difficult to apply in this case, besides 

the fact that they alone suffer from some drawbacks in their methodology (Ferreira, et al., 2010). 

Genetic Algorithms (GAs) handle a population of solutions that is modified over the course of a 

number of generations using genetic operators in order to obtain a close approximation to the 

true Pareto-optimal front. They are able to work with a wide range of types and number of 

objective functions making them suitable for our multi-objective optimization problem. Among 

them, the Elitist Nondominated Sorting Genetic Algorithm (NSGA-II) represents one of the most 

important studies in the field of multi-objective optimization due to its efficient procedure and 

 

                    

           



 

42 
 

outstanding performance which have allowed it to become intensively applied with satisfactory 

results on a number of test studies.      

 We now analyze the main features of our proposed version of NSGA-II used to solve the 

optimal placement of line switches in distribution networks in the following sections. 

4.1. Proposed Integer Version of NSGA-II  

The optimal placement of automatic line switches in distribution networks can be considered as 

an integer optimization problem (integer phenotype). NSGA-II is capable of working with 

integer-coded solutions (integer genotype) or binary-coded solutions (binary genotype).  

Binary-coding representation for the decision variable would involve the presence of one binary 

value which does not represent any of the values we assumed (0, 1, or 2). Therefore, integer-

coding seems to be the best option for our study given that the number of possible values for the 

decision variable is not multiple of two (Conti, Nicolosi, & Rizzo, 2011).  

4.1.1. Solution Representation 

All possible combinations of switch placement in a distribution feeder constitute feasible 

solutions for the optimization problem. In order to replicate this feature, a decision variable has 

been associated to every section of the distribution feeder where a switch can be allocated. This 

decision variable can take integer values: 0, 1, or 2; each one representing a specific case: 
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Let us assume a distribution feeder which contains m sections, meaning m-2 feasible places for 

switch allocation. The decision variable in each section represents a gene in a chromosome 

whose length is m-2. Hence, considering that every decision variable can assume one of the three 

values (0, 1, or 2), the problem size is  possible switch combinations. An illustration of the 

chromosomal representation for this feeder is shown in Figure 4-1. 

 

Figure 4-1 Chromosomal Representation for a Feasible Solution 

Using the above representation we are able to generate the feasible solutions for placement of 

line switches in the distribution network. At the same time, the set of all feasible solutions 

constitutes the decision space that the NSGA-II has to sort looking for the optimal solutions. 

The optimal solution searching process performed by the proposed NSGA-II follows the 

procedures shown in the Figure 4-2, each of which will be explained next.  

4.1.2. Generate Initial Population  

In the first step of NSGA-II, a random initial solution population  of size N will be generated, 

from which an initial offspring population  will be created using genetic operators. 

Recursively, an offspring population of size N will be created by applying binary tournament 

selection, crossover and mutation operators to a parent population  in order to obtain new 

(hopefully better) solutions. Later, those two populations are combined together (size 2N) and 

sorted for nondomination (ranking and crowding distance) to obtain a new parent population 
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 for the next generation which will have the best characteristics of both parents and offspring 

found so far. This procedure will be repeated until a stopping criterion (number of generations) is 

reached.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 Procedures performed in the proposed NSGA-II Fi 4 2 P d f d i th d NSGA II
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In order to illustrate the creation of the initial population, and the other procedures yet to be 

explained, we present in Figure 4-3 an example of a distribution network containing 12 sections, 

with 11 load points served, and 10 possible line switches locations. 

 

 

Figure 4-3 Distribution Network having 2 neighbor feeders, 11 load points and 10 possible switch 

locations. In this model:  and . 

The result of the generation of a random initial population of 6 feasible switch locations is 

presented in the table below:   

Solution Chromosomal Representation 
 

D - Sectionalizing Sw. TP - Tie-point Sw. 
 

1 0   0   1   0   1   1   2   0   1   0 4, 6 , 7, 10 8 
2 0   1   0   0   2   1   1   0   0   1 3, 7, 8, 11 6 
3 1   1   1   0   2   1   1   1   1   1 2, 3, 4, 7, 8, 9, 10, 11 6 
4 0   0   1   2   1   0   0   0   0   1 4, 6, 11 5 
5 0   0   2   1   1   0   1   0   0   1 5, 6, 8, 11 4 
6 1   1   1   2   1   0   1   1   1   1 2, 3, 4, 6, 8, 9, 10, 11 5 

 
Table 4-1 Random Generation of 6 Feasible Solutions 

4.1.3. Fitness Assignment   

The algorithm will now attach a nondomination rank and a crowding-distance assignment to 

every solution as mentioned in Section 3.3.2.  
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Concerning to the crowding-distance assignment, the same procedure as the original is kept in 

this study. However, the ranking process depends on the fitness evaluation of each solution with 

respect to the objective functions. Therefore, every solution arriving to this stage will be 

analyzed and used to build a computational model of the distribution feeder to determine values 

of SAIFI, SAIDI, and TCOST for the specific switch combination.  

First, for each solution  belonging to population  we sort its coding representation looking for 

auto sectionalizing switches and tie-point switch. Next, we built a matrix  containing the 

permanent failure rates for each load point  due to failure in section . Analogically, we obtain a 

matrix  which contains the interruption duration that customers at load point  experience due 

to outages in section . Using  and  we calculate the value of SAIFI and SAIDI, accordingly. 

Finally, TCOST can be obtained by the addition of each type of device number and capital cost.  

For a detailed illustration of the mechanism used to perform this stage, the pseudo code of this 

procedure is presented below:  

 

 

 

 

 

 

 

 

Pseudo Code for the Fitness Evaluation in our Proposed Algorithm  

 
for each  

     for each      Each gene in the chromosome 

          if  then 

                    Set of auto sectionalizing switches 

          else if  then 

                Set of auto tie-point switch 
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     for each       Each possible faulted section in the feeder 

          for each                                              Each load point connected to the feeder 

                

                

    if  and 

           then 

                                        Permanent failure rate     

               else 

              No permanent interruption 

  

                if  or 

           then No effect to current feeder due to failure in 

                                          the neighbor feeder 

                else if  or  

                  then 

               Interruption Duration equal to repair time   

    else 

               Duration equal to devices switching time  
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Fitness evaluation for the distribution in Figure 4-3 can be calculated by assuming practical 

values for permanent failure rate, distance of sections and number of customers connected to 

each load point, and cost of devices; and we present the results for the 6 solutions generated in 

Table 4-1 next. 

Solution SAIFI 
 

SAIDI 
 

TCOST 
 

1 0.1307 31.3718 45355 
2 0.1073 25.7631 45355 
3 0.0252 6.0402 81639 
4 0.1816 43.5754 36284 
5 0.1307 31.3718 45355 
6 0.0262 6.2867 81639 

 
Table 4-2: Fitness Evaluation 

We can see in Table 4-2 that solution 2 is better than solution 1 in SAIFI and SAIDI at the same 

TCOST, the same resembles between solutions 3 and 6. Hence, there are some solutions in the 

population better than some other solutions. Elitist selection is introduced to sort the best 

solutions of the population.     

For a better illustration on how the fitness calculation was performed please refer to Appendix 2. 

4.1.4. Elitist Selection   

At this point we have a combined population of size 2N (parents  offspring). Yet, only N 

positions are available to accommodate the next generation of solutions. In our version of 

NSGA-II the Elitist Selection is performed in the same way as in the original approach and 

referred to in Section 3.3.5, Step 5. 

 The selection of the best solutions is performed according to their rank. The solutions copied 

into the next generation population start with the ones with rank 1 (best solutions) and continue 
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with higher ranks (no so good solutions) until N spots are filled. When solutions belonging to the 

same rank are to be accommodated in the next generation but their number surpasses N, then 

those solutions are sorted based in crowding-distance. We prefer solutions in the less crowded 

area and fill the spots left to complete the size N.       

4.1.5. Binary Tournament Selection 

The new population  is used for selection, crossover and mutation to create a new offspring 

population  of size N. For the case of the selection operator, the traditional binary 

tournament selection has been applied in the present algorithm, but the selection criterion is now 

based in ranking and crowding-distance. Tournament rounds will be played between two 

solutions (chosen at random) and the best solution (better rank or crowding-distance) will be 

copied in the mating pool. Every solution in the population will participate in exactly two rounds. 

So, it is intuitive to say that the best solutions will have more copies in the mating pool and that 

the worst solutions will get discarded. 

4.1.6. Crossover Operator 

In our integer NSGA-II, crossover will operate in the same way that it is conceived for the real-

coded solutions in the original GAs. Specifically, it has been used Intermediate Crossover for 

performing the recombination of the parent solutions. 

Intermediate Crossover creates two offspring solutions by a weighted average of two parent 

solutions picked by random from the mating pool according to the following rule (S. Lin, 2011): 
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where  is a uniform random number. The parameter  is the specific weight of the 

parents to children. If  the children produced will be between the parents. Otherwise, 

the children might lie outside the parents. 

It is important to mention some characteristics of the crossover operator in the case of our 

optimization problem: 

� All feasible solutions will be processed by the crossover operator. 

� For every solution, a variable called crossoverFraction will determine the number of 

decision variables that will participate in the crossover operation. 

� If the new gene (decision variable) created is < lb (lower bound=0), then gene=0. On the 

other hand, if the new gene is > ub (upper bound=2), then gene=2.    

 Now, we are going to illustrate the crossover operator over two solutions from the distribution in 

Figure 4-3. These solutions are randomly selected from the mating pool, let suppose we choose 

Solution 1 and Solution 3 from Table 4-1. To get to know the calculation step by step, please 

refer to Appendix 3. Next we present the offspring obtained: 

Solution type Chromosomal Representation SAIFI 
 

SAIDI 
 

TCOST 
 

Parent 1 
(Solution 1) 

0   0   1   0   1   1   2   0   1   0 
 

0.1307 31.3718 45355 

Parent 2 
(Solution 3) 

1   1   1   0   2   1   1   1   1   1 0.0252 6.0402 81639 

Child 1 
(new solution) 

0   0   1   0   0   1   2   0   1   0 0.1482 35.5630 36284 

Child 2 
(new solution) 

1   0   1   0   1   1   2   1   1   0 0.0645 15.4702 63497 

Table 4-3: Crossover operation 
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From the table above be can see that the new solutions created by the crossover operation present 

new characteristics concerning fitness alternatives. In this case, Child 1 has slightly worse 

reliability fitness than solution 1, for instance. However, the biggest impact of Child 1 is on 

TCOST, where a significant improvement in cost minimization has been reached. The same 

comparison can be done with Child 2 and solution 2. Even though the difference in SAIDI is 

considerable between two of them, the same can be said for TCOST in the case of Child 2,  

4.1.7. Mutation Operator 

Gaussian Mutation, also known as normal mutation, has been used as basis for the mutation 

procedure in this algorithm. This option of mutation operator adds a random number, taken from 

a normal distribution with mean zero, to a determined number of genes of the parent coding. The 

new mutated child is created using the following expression (S. Lin, 2011): 

 

 

 

 

The scalar parameter  determines the standard deviation of the normal distribution at the 

first generation. The  parameter is also a scalar  and it controls how the standard 

deviation decreases as the optimization progress go forward.   is commonly used 

for local search. =0 is used if a large mutation range is needed to get out of local Pareto-

optimal fronts.  
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Similarly to the crossover operator, in the case of the mutation operator we present analogous 

characteristics: 

� All feasible solutions will undergo mutation. 

� Only mutationFraction of the decision variables will be included in the mutation 

procedure. 

� If the new gene (decision variable) created is < lb (lower bound=0), then gene=0. In the 

other hand, if the new gene is > ub (upper bound=2), then gene=2.    

We are now going to perform the mutation operator over the same example in Figure 4-3, 

Solution 4 (choose by random from the mating pool) in Table 4-1, specifically. More reference 

about this calculation is presented in Appendix 3. We obtain the following mutated child:  

 Solution type Chromosomal Representation SAIFI 
 

SAIDI 
 

TCOST 
 

Parent  
(Solution 4) 

0   0   1   2   1   0   0   0   0   1 
 

0.1816 43.5754 36284 

Child  
(new solution) 

0   1   1   2   1   0   1   0   0   1 0.0801 19.2299 54426 

 
Table 4-4: Mutation Operation 

 

The new mutated solution presents important improvements in the system reliability indexes, 

more than 50% reduction in SAIFI and SAIDI by including two additional auto sectionalizing 

switches in the network.  This is an illustration of how mutation operator is able to create new 

feasible solutions for the search algorithm to consider for the next generation population. 

4.2. Constraint Handling 
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As mentioned previously, solutions have to satisfy a number of constraints in order to become 

feasible for the optimization problem. We present the constraints that model our variable 

decision space one more time in order to introduce their implementation procedure in our 

proposed algorithm: 

1) Each decision variable can only take integer values 0, 1 or 2. 

,                  

where  is an integer value and m is the total number of sections in the distribution 

feeder.  

2) Only one automatic tie-point switch can connect two neighbor feeders.  

 

 where TP is the set of auto tie-point switches. 

3) No overloading should be introduced to the power transformers when performing the 

load transfer for service restoration. 

 

 where  is the current needed by load point i and  is the maximum current 

accepted by the power transformer.    

Constraints 1 and 3 are fairly straightforward; we just need to configure lower and upper bounds 

for each decision variable accordingly while programming its settings. 
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The case of constraint 2 is a little more complex giving the difficulty to implement by a decision 

variable set-up. The handling of constraint 2 in our optimization problem will be carried out as 

follows: Every time a solution does not satisfy constraint 2, a penalty fitness (highest values of 

SAIFI, SAIDI and TCOST) will be assigned to that solution; simply because the possibility of 

having two tie-point switches in the same distribution feeder is not feasible. Therefore, that 

solution can be eliminated by the elitist selection in the next generation. 

4.3. Performance Improvement 

The proposed algorithm, as well as many evolutionary search techniques, is very time consuming 

while searching for the optimal solutions to the optimization problem. In order to contribute to 

reduce computational time, two improvements for performance are introduced: 

1) Limit the number of sections where auto tie-point switches can be allocated. While it is 

true that, according to constraints 1 and 2, tie-point switches can be located in any section 

of the distribution feeder, in practice tie-point switches have certain feasible locations. 

For instance, it is not convenient to allocate tie-point switches in the sections at the 

beginning of the network. Permanent failure rate depends on distance, if we create a 

longer neighbor feeder, there are more chances of failure on the neighbor feeder and also 

more customers affected. This concept helps us reduce the problem size complexity.    

2) Parallel Computation. (S. Lin, 2011). Parallel computation is very useful when the 

evaluation of the objective functions is time consuming and when a multicore processor 

computer in available. The Parallel Computation Toolbox in Matlab is been used (S. Lin, 
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2011) in order to start multiple process workers and use them to evaluate the objective 

functions for a number of solutions in parallel. 

4.4. Decision Making Algorithm 

NSGA-II will provide us with the set of nondominated solutions for the optimal placement of 

automatic line switches. Those solutions constitute the Pareto-optimal set and they represent the 

best solutions that can simultaneously satisfy the three objective functions. The decision-maker 

can select one of the nondominated solutions based on his/her own professional point of view. 

However, there exist some methods that can be used to obtain a final solution from the Pareto-

optimal set.  

In this study, a Max-Min approach has been used to select a final solution for the multi-objective 

problem. Each solution in the nondominated set has associated to it a vector of objective 

functions  that is first normalized using equation (10), (Tippachon & 

Rerkpreedapong, 2009) :   

 

 

where , , and  are the maximum values obtained for the three 

objective functions. On the other hand, , , and  are the minimum 

values.  
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Finally the selection of the final solution for the multi-objective optimization of automatic line 

switches in distribution networks using max-min approach can be expressed by the equation 

below (Tippachon & Rerkpreedapong, 2009). 
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Chapter 5: Algorithm Simulation and Results 
Discussion 

 

The proposed integer version of NSGA-II is implemented using Matlab on a dual-core personal 

computer with 4 GB of ram. In this study, in order to illustrate the application of the optimization 

algorithm and evaluate its performance, two case studies are used for simulation purposes. One 

corresponds to a one-line distribution feeder, and the second belongs to an actual distribution 

system from Taipower Company. These two case studies were taken from (Chen, et al., 2006) 

with the intention to drive comparisons in the different methodologies. 

Based on the parameter-sensitivity analysis of the simulation results, the NSGA-II settings for 

both case studies are determined as follows:  

 Parameter Value 
Crossover: crossoverFraction 0.9 

 ratio 0.1 
Mutation: mutationFraction 0.4 

 scale 0.5 
 shrink 0 

Table 5-1: NSGA-II Parameter Settings 

The permanent failure rate, repair time, and switching time required to restore power to 

customers have been retrieved from (Chen, et al., 2006) in the next table: 

Parameter Rate/Duration time 
Average permanent failure rate,  0.132 failures/year-km 

Average repair time,  240 min. 
Switching time,   upstream the failure 5 min 
(automatic switches) downstream the failure 0.33 min 

Table 5-2: Distribution Feeder Parameters 
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Finally, the investment cost for overhead automatic line switches is US$9071 with a life cycle of 

15 years (Chen, et al., 2006). The costs of communication equipment have been also added.   

5.1. Case 1: One-line Distribution Feeder 

The diagram for the one-line distribution feeder to be simulated is presented in Figure 5.1. It 

contains 20sections, 19 load points and 18 possible switch locations. A tie-point switch will be 

connecting the neighboring feeders in other to facilitate load transfer.  

 
 

Figure 5-1 Optimal Solution (using Max-Min) in One-line Diagram for Case 1 

For the present simulation, we assume the power transformers are able to receive any load from 

the neighbor feeder during the customer transfer. The later assumption is justified given the 

relatively low load and the sufficient power capacity that typical distribution power transformers 

can provide (Chen, et al., 2006). For the number of customers and load in each load point please 

refer to Appendix 4.    

Using the simulation settings mentioned before, we run the proposed NSGA-II for this case 

study using a population size and number of generations of 50 and 100, respectively. The results 

of such simulation are presented in Figure 5-2. 

Additionally, in Appendix 5 we present the set of Pareto-optimal solutions with their respective 

auto line switch combinations.      
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Figure 5-2 Scatter of the Pareto-optimal set obtained by the integer NSGA-II 

In the above figure we can verify the predicted fact that the best solutions for system reliability 

(lower values of SAIFI and SAIDI), come with the highest investment costs. For instance, at the 

highest point of the curve, as we can expect, automatic switches have been located in every 

section of the distribution feeder, with the tie-point being placed in section 11. This most 

expensive switch combination can provide the lowest values possible for SAIFI and SAIDI, 

0.018 int./cust.-yr. and 4.29 min/cust.-yr., respectively.  

On the other hand, at the lowest point of the curve, the cheapest solution only includes the 

installation of one tie-point switch (which is a necessary condition) in section 11; no additional 

auto sectionalizing switches have been added. This is the cheapest, though the most inconvenient 

alternative from system reliability perspective.      

Those are the two extreme solutions for the optimization problem in this case study. However, a 

number of solutions are allocated between the extremes and they propose different trade-offs 

between system reliability and investment costs.  
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For a better illustration about the impact of automatic line switches in distribution system 

reliability, we present Figure 5-3, which shows us the influence on reliability indices due to 

different levels of switching automation investment.  

 

 

 

 

 

 

 

                                      (a)                    (b) 

 

 

 

 

 

 

 

(c) 

Figure 5-3 (a) SAIFI vs TCOST (b) SAIDI vs TCOST (c) SAIFI vs SAIDI 

If we pay close attention to Figure 5-3 (a) and (b), we will distinguish that both SAIFI and 

SAIDI decay at a certain rate depending the amount of automatic switches investment following 

the pattern of an exponentially decreasing function. 
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The following table presents the seven most expensive solutions for the above optimization 

problem in ascending order, from cheaper to more expensive. In addition, we will include the 

percentage of improvement on reliability indices due to a certain incremental degree in TCOST 

from one alternative to another.  

No. of Auto 
Sect. Sw. 

SAIFI 
.) 

SAIDI 
(  

TCOST 
(  

Reliability Improvement Inv. Cost 
SAIFI [%] SAIDI[%] TCOST[%] 

11 0.082 19.770 7256.760 
12 0.067 16.124 7861.490 18.443 18.442 7.692 
13 0.054 13.045 8466.220 19.096 19.096 7.143 
14 0.044 10.614 9070.950 18.633 18.634 6.667 
15 0.034 8.183 9675.680 22.901 22.901 6.250 
16 0.026 6.239 10280.400 23.762 23.762 5.882 
17 0.018 4.294 10885.100 30.756 31.172 5.555 

 
Table 5-3: Impact of Automatic Line Switches in Distribution Networks 

In the above table we can see that that the solution alternatives in each incremental step represent 

the inclusion of one sectionalizer switch to the string combination, which is perceived in the 

diminution of SAIFI and SAIDI, both at about the same rate. We can also realize that this 

diminution of the reliability indices is greater than the required increment for TCOST.  

It is important to mention two significant aspects from the above analysis: 

1) The addition of automatic sectionalizing switches in the distribution feeder produces the 

same degree of beneficial impact for SAIFI and SAIDI. This is justified by Figure 5-3 (c), 

where we can distinguish the linear relationship between the two reliability indices. 

2) Traditionally it has been considered that switching devices have no impact whatsoever on 

SAIFI. Nevertheless, that is only true when the sectionalizing switch is operated 

manually. According to the results obtained from Figure 5-3 (a) and Table 5-3, we can 
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say that automatic sectionalizing switches do have a beneficial effect on distribution 

system reliability (SAIFI and SAIDI) due to the fact that they contribute to have less 

customers affected by sustained interruptions. 

If we go back to Figure 5-2, specifically to the lowest point (cheapest solutions) of the curve, 

there is an important characteristic of the gaps between the three cheapest solutions worth 

mentioning. From cheapest to more expensive, those solutions include 0, 1 and 2 automatic 

sectionalizing switches in their configuration. The gaps between the solutions represent the 

reliability improvement that each solution can provide to the system. Therefore, we can conclude 

that the first sectionalizing switches installed in a distribution feeder provide the biggest cost-

benefit ratio. However, we can also mention that those alternatives may not meet the 

specifications required by a distribution utility.   

For modern distribution utilities, decisions are not only driven from the economical perspective. 

There is a growing interest in the power distribution field to have a preference for reaching the 

best possible power service to customers rather than satisfy cost constraints. In the case of 

Taipower Company, for instance, a SAIDI of 21 min/cust.-yr. has been set for their current 

distribution system.  

Therefore, with the purpose of satisfying this requirement, a new constraint has been added to 

the propose algorithm, where , and we run the simulation again to provide a solution 

according to Taipower Company standards. This time we include the proposed Max-Min 

approach for the decision making of a final solution as shown in Figure 5-4. The switch 

combination for the Max-Min solution is represented graphically in Figure 5-1.    
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Figure 5-4 Scatter of the Constrained Pareto-optimal Solutions with Max-Min 

In Figure 5-4 it is found that the Max-Min approach provides the following values for the 

reliability indexes: , , and 

; which represents equal minimization benefits for the three 

objectives. This proposed solution satisfies by far the required minimum value for , with a 

reduction of about 50% from the original constraint.    

However, if the decision-maker is to choose a solution that optimizes , a more 

conservative solution is the one allocated at the bottom of the curve, whose reliability indices 

values are: , and ; which is also 

optimal given that belongs to the Pareto set and also satisfies the problem requirements, while 

being 20% cheaper than the former proposed solution.   
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5.2. Case 2: Actual Distribution System of Taipower Company 

In order to demonstrate the effectiveness of the proposed methodology to solve the optimal 

placement of line switches, an actual distribution system has been considered for simulation. The 

system is part of Taipower Company and it is located in the Fengshan area.   

There are 11 feeders, 92 sections, 90 load points and a total of 85 possible switch locations for 

the proposed case study. The original system has 34 sectionalizing switches and 6 tie-point 

switches, all of which are manually operated. We present its original line diagram in Appendix 6. 

Due to the difficulty of gathering real data for the characteristics of the system, in this analysis 

we assume some of the information based on adequate values that are typical in the Taiwanese 

distribution system. The mentioned data has to do with the number of customers in each load 

point, section lengths, and capacity of power transformers. 

For this case study the settings for the proposed NSGA-II remain the same, but we modify the 

population size and number of generations to 100 and 500, respectively, which results in a total 

of 50,000 computational evaluations. 

After solving the optimal switch placement using the proposed version of NSGA-II to obtain the 

optimal solutions that minimize the reliability indices of the distribution system, we present in 

Figure 5-5 the scatter of the non-dominated solutions for the switch placement optimization 

problem along with the final solution obtained by the Max-Min algorithm. For reader reference, 

we also attach the computational algorithm implemented for the Max-Min approach in Appendix 

7.  
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Figure 5-5 Pareto-optimal Solutions & Max-Min solution for Case 2 

In Figure 5-5, we can see how the proposed NSGA-II is able to find optimal solutions uniformly 

distributed along the Pareto-front. The decision-maker can choose a specific combination of 

switch number and locations using his/her previous knowledge about the problem or a given 

economical investment a utility is willing to use in the automation project.  

It has been found that 67 automatic lines switches were included in the new configuration 

resulting from the NSGA-II + Max-Min approach. From the total number of line switches, 61 are 

automatic sectionalizer switches and 6 are automatic tie-point switches. The Taipower 

distribution system diagram as proposed by the final solution obtained by the Max-Min 

algorithm is presented in Figure 5-6. 
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Figure 5-6 Optimal Placement of Line Switches using Max-Min approach 

For comparison purposes we consider the study performed by (Chen, et al., 2006), which works 

in the same distribution system, however, it only contemplates partial automation of the 

networks by inclusion of some automatic switches, while reallocating already existing manual 

switches. 

In this study, a Max-Min approach has been used to propose a final solution, for which the three 

objective functions experience equal minimization benefit at the same time. The obtained 

Auto Sectionalizing Switch Auto Tie-point Switch
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solution represents an improvement of 62% in SAIFI and 32% in SAIDI, when compared to the 

previous study. Consequently, SAIFI has been reduced from 0.157 to 0.059 , and 

SAIDI from 20.872 to 14.212  Nevertheless, as one may expect, with the 

significant improvements that have been reached through the application of the present 

methodology, it comes higher economical costs. An investment 2.8 times higher than the later 

study is required for gaining the above mentioned reliability benefit. 

In Table 5-4 we present a comparison of the reliability indexes in the original system, after the 

partial automation study and finally our proposed study for the optimal placement of automatic 

line switches. 

 Original System 

manual switching 

Previous Study 

partial automation 

Our proposed solution 

fully automated  

SAIFI  0.231 0.157 0.059 

SAIDI 

 

32.233 20.872 14.212 

TCOST  --- 14326 40516.9 

 
Table 5-4 Results of the Proposed Study 

Despite the higher TCOST, the economic justification for the proposed solution can be 

quantified by the benefits that automatic line switches contribute to the performance of the 

distribution system in terms of reduced outage duration and reduced number of customers 

affected by permanent faults. 

We could also consider cheaper solutions located closer to the bottom of the Pareto-optimal front 

in Figure 5-5. However, the difference in TCOST between cheaper optimal solutions and the one 

obtained by Max-Min algorithm does not excuse the poorer improvement in reliability indices 
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obtained by the former ones. For instance, for the cheapest solution: 

,  while only being 13% cheaper than the Max-Min 

solution. 

The above reasons drive our criteria to support the Max-Min solution given it not only excels in 

providing a remarkable reduction in the current reliability indices, furthermore, the reliability 

values obtained by its possible implementation can be still useful in the future since Taipower 

Company has now set a new goal of  for SAIDI by the year 2030 (Runte, 

2012). 

5.3. Results Discussion 

The results obtained by the simulation of the two case studies have shown the effectiveness of 

the proposed integer version of NSGA-II to solve the multi-objective optimal placement of 

automatic line switches in distribution networks. 

Each feasible solution for the optimization problem represents different combination of number 

and locations of automatic switches. Hence, the proposed methodology provides a set of Pareto-

optimal solutions, which constitute the best trade-offs between system reliability and utility 

investment.  

The decision-maker can select a final solution from the Pareto-set by considering the different 

objective function trade-offs according to his/her professional experience. However, a selection 

approach has also been presented in this study in order to choose the final solution based on 

Max-Min method. 
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The first simulation procedure was conducted in a one-line distribution network. The results 

obtained contributed to illustrate the beneficial impact of automatic line switches in distribution 

networks. 

In Case 2, an actual distribution system was considered for simulation with notable results. A 

significant improvement of SAIFI and SAIDI was reached, a reduction of 62% and 32%, 

respectively, when considering a previous study. Nevertheless, the reliability benefit was 

reflected in a higher investment cost for the utility due to the fact that a larger number of line 

switches were required for installation in the distribution system. But, since the reliability values 

obtained by the proposed solution were able to satisfy future utility standards, it can indicate 

where the resources should be invested by the utility with concern to switching automation. 
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Chapter 6: Conclusions 
 

This research study provides a methodology to solve the multi-objective optimal placement of 

automatic line switches in distribution networks. SAIFI, SAIDI, and TCOST represent the three 

objective functions to be minimized simultaneously. Furthermore, each feasible solution for the 

optimization problem is represented by a different combination of number and locations of 

automatic switches. 

In this study, the distribution network is modeled using set operation theory in order to determine 

the presence of any switching device between the faulted section and the customers upstream or 

downstream. This technique helps us calculate easily the reliability indices SAIFI and SAIDI for 

a certain combination of switch locations. 

We proposed an integer version of NSGA-II to solve the multi-objective optimization problem 

by sorting a population of feasible solutions in order to identify the set of Pareto-optimal 

solutions, which constitute the best trade-offs between system reliability and utility investment.  

The person in charge of the network design-planning can select a final solution from the Pareto-

set by considering the different objective function trade-offs according to his/her professional 

experience. However, a selection approach has also been presented in this study in order to 

choose the final solution based on Max-Min method. 

The proposed version of NSGA-II was tested using two case studies, and the results have showed 

that this methodology guarantees a very good approximation to the true Pareto-front and 

diversity of the solutions is also ensured.  
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In Case 1, the beneficial impact of automatic line switches in distribution networks was 

illustrated through simulation in a one-line distribution network.  

Case 2 considered the simulation of an actual distribution system with notable results for 

reliability indexes. Although, as expected, they involved higher investment cost for the utility.  

In conclusion, the present methodology will indicate where the utility should invest resources for 

switching automation in order to improve the reliability of the system, proving this way its 

application as an important decision tool for distribution utilities. 

This study is strongly related to sustained interruptions. It is suggested that a future research 

study includes an additional objective function that accounts for the effects of momentary 

interruptions in distribution networks. Another interesting objective function worth being 

evaluated is CIC (Customer Interruption Costs) given that it accounts for the economic losses of 

customers due to power outages. 
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Appendix 
 

Appendix 1: SF6 Gas Insulated Automatic Sectionalizing Switch for 

distribution systems Specifications datasheet 
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Appendix 2: Fitness Evaluation for Solution 1 in Table 4-1 

1. SAIFI  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. SAIFI 
 

0.0660    0.0660    0.0660   0         0              0         0         0         0             0         0              0  

0.0660    0.0660    0.0660   0         0              0         0         0         0             0         0              0 

0.0660    0.0660    0.0660   0         0              0         0         0         0             0         0              0  

0           0              0              0         0.0660   0          0         0         0             0         0              0 

0            0              0             0         0.0660    0         0         0         0             0         0              0 

0            0              0             0         0              0         0         0         0             0         0              0 

0            0              0             0         0              0         0         0         0             0         0              0 

0            0              0             0         0              0         0         0         0.0660   0         0              0 

0            0              0             0         0              0         0         0         0.0660   0         0              0 

0            0              0             0         0              0         0         0         0             0         0.0660    0.0660 

0            0              0             0         0              0         0         0         0             0         0.0660    0.0660 
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2. SAIDI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  240   240   240     0.33       0.33     0.33    0.33    0       0        0             0        0 

  240   240   240     0.33       0.33     0.33    0.33    0       0        0             0        0 

  240   240   240     0.33       0.33     0.33    0.33    0       0        0             0        0 

           5        5       5     5         240          0.33    0.33    0       0        0             0        0 

           5        5       5     5         240          0.33    0.33    0       0        0             0        0 

           5        5       5     5             5           5         0.33    0       0        0             0        0 

           5        5       5     5             5           5         5         0       0         0            0         0 

           0        0       0     0             0           0         0         0   240        5             5        5 

           0        0       0     0             0           0         0         0   240        5             5        5  

           0        0       0     0             0           0         0         0       0.33   0.33   240   240  

          0        0       0     0             0           0         0         0       0.33   0.33   240   240 
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3. TCOST 

 

 

 

 

US$45355 
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Appendix 3:  

1. Crossover Operator Procedure 

Parent 1:  

0 0 1 0 1 1 2 0 1 0  

Parent 2: 

1 1 1 0 2 1 1 1 1 1
 

 

 

 

 

Child 1:  

1 -0.0468 1 0 1 1 1-0.2880 2.3763 -1.2423

 

Child 2: 

   
1 0.1892 1 0 1 1 11.4979 2.0120 -0.2352

 

After rounding and setting lower and upper bounds: 

Child 1:  

0 0 1 0 0 1 2 0 1 0
 

Child 2:  

1 0 1 0 1 1 2 1 1 0
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2. Mutation Operator Procedure 

Parent:  

0 0 1 2 1 0 0 0 0 1  

 

 

 

 

 

Child:  

0 1.3145 1 2 0 0 11.0872 0.9780 -0.5747
 

After rounding and setting lower and upper bounds: 

Child:  

0 1 1 2 1 0 1 0 0 1
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Appendix 4: Load and Number of Customers of Load points for Case 1 (Chen, 
et al., 2006)  

 

Load Points Load (Kw) Total Customers 
L1 69 40 
L2 233 37 
L3 58 40 
L4 113 25 
L5 98 5 
L6 269 19 
L7 251 15 
L8 331 14 
L9 188 10 

L10 1205 24 
L11 210 28 
L12 989 16 
L13 43 22 
L14 96 23 
L15 129 19 
L16 44 11 
L17 76 20 
L18 81 10 
L19 112 13 
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Appendix 5: Original Diagram for Taipower System in Case 2 (Chen, et al., 
2006) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Manual Sectionalizing Switch Manual Tie-point Switch
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Appendix 5: Max-Min Algorithm – Matlab Implementation 

 

function MaxMin = DecisionMaking (data) 
 
%Function that returns the final solution from the set of non-dominated 
%solutions 
  
data1=unique(data,'rows');  %non-repeated values  
[r c]=size (data1); 
f1max = max(data1(:,1)); 
f2max = max(data1(:,2)); 
f3max = max(data1(:,3)); 
f1min = min (data1(:,1)); 
f2min = min (data1(:,2)); 
f3min = min (data1(:,3)); 
A=f1max-f1min; 
B=f2max-f2min; 
C=f3max-f3min; 
  
  
normalz=zeros(r,3);   %Normalized-values matrix initialization 
  
for i=1:c 
    for j=1:r 
        if i==1 
            normalz(j,i)=(f1max-data1(j,i))/(A); 
        elseif i==2 
            normalz(j,i)=(f2max-data1(j,i))/(B); 
        else 
            normalz(j,i)=(f3max-data1(j,i))/(C); 
        end 
    end 
end 
Part1=zeros(r,1); 
for i=1:r 
    Part1(i,1)=min(normalz(i,:)); 
     
end 
AUX=max(Part1(:,1)); 
for i=1:r 
    if Part1(i,1)==AUX 
        count=i; 
    end 
end 
     
MaxMin=data1(count,:); 
end 
 


