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摘要 

 在這篇論文中，我將會報告利用分子束外延(molecular beam epitaxy)成長在砷

化鎵(GaAs)上的鋁奈米薄膜(Al nanofilms)在低溫下表現的傳輸特性。利用此方法所

成長的鋁奈米薄膜比傳統的鋁塊材擁有較高的臨界溫度與臨界磁場。特別的是，

在這樣的鋁奈米薄膜中觀察到拓撲相變(topological transition)，這表示我們的鋁奈

米薄膜可是被視為二維系統。另外也發現在最薄的樣品中(3-nm)平行的上臨界磁場

(upper critical magnetic field)能夠超過包立順磁極限(Pauli paramagnetic limit)。 

 

關鍵字：超導電性、鋁奈米薄膜、包立順磁極限、拓撲相變 
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ABSTRACT 

 In this thesis, I shall report extensive transport measurements on aluminum (Al) 

nanofilms (as-grown thickness ranging from 3 nm to 4 nm) grown on GaAs by 

molecular beam epitaxy (MBE). Such MBE-grown Al nanofilms have a higher 

superconductor transition temperature (around 2.17 K, depending on the thickness) 

compared to that of bulk aluminum (1.2 K). In particular, I observed the topological 

transition of Berezinskii-Kosterlitz-Thouless (BKT) transition which implies 

two-dimensional superconductivity in our system. I also found that the upper critical 

field goes beyond the Pauli paramagnetic limit in the thinnest sample (3-nm thick). 

 

Keywords: superconductivity, aluminum nanofilms, Pauli paramagnetic limit, 

topological transition 
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Chapter 1 Introduction 

 

 In 2010, the Nobel Prize in physics was awarded to Andre Geim and Konstantin 

Novoselov for their work on graphene, which is a two-dimensional (2D) material [1]. 

The 2D system has attracted much attention. With progress in science and technology, 

we can grow high quality thin film like aluminum, graphene, MoS2, and so forth with a 

scalable size, controllable thickness [2, 3]. As a result, we are allowed to further 

investigate the 2D systems. 

 In this work, I have performed extensive transport measurement on aluminum (Al) 

nanofilms on GaAs grown by molecular beam epitaxy (MBE) which exhibit 

superconducting behavior below the critical temperature. Interestingly, the critical 

temperature is higher than that conventional bulk aluminum (1.2 K) and the critical 

magnetic field exceeds the Pauli paramagnetic limit [4, 5]. 

 Nowadays, superconductors are widely utilized such as superconducting magnets, 

Maglev and nuclear magnetic resonance. However, liquid helium is expensive and plays 

an important role in cooling a conventional superconducting system. Luckily we have a 

cryo-free dilution refrigerator, which only relies on electricity, for probing 

superconductivity in Al nanofilms grown by MBE. 
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Chapter 2 Superconductivity 

 

 Superconductivity was discovered by Heike Kamerlingh Onnes in 1911 [1]. When 

the temperature is lower than the critical temperature, where the phase transition takes 

place, some materials exhibit superconducting behavior. In the superconducting state, 

resistivity becomes zero and the material excludes the applied external magnetic field 

from the interior which is called the Meissner-Ochsenfeld effect [2] as shown in figure 

2.1. 

 

Figure 2.1 Meissner-Ochsenfeld effect. As cT T , the magnetic field can enter into the 

interior of a type-I superconductor. As cT T , the magnetic field is excluded from the 

interior. 
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2.1 Two-fluid Model 

 Gorter and Casimir proposed a two-fluid model to explain the thermodynamic 

properties of superconducting phase transition [3]. The two-fluid model proposes that (i) 

there are two types of free electron, one is normal electron, the other one is 

superconducting electron which depends on temperature. (ii) a normal electron can 

scatter with lattice so contribute to entropy and result in resistance (iii) a 

superconducting electron is in a condensed state which means superconducting 

electrons condense in lower energy state. When the phase transition occurs, the free 

energy of superconducting stat is lower than the free energy of normal state 

(
2

0

2

c
n s

H
F F


  ), where V  is volume of superconductor. (iv) superconducting phase 

transition belong to second order transition and superconducting state is order state. 

 

2.2 London Equations 

 In 1935, the following two equations were derived by London and London [4]. 

 2 s

s

m
B j

n e
   , (2.2.1) 

 
2

s
s

n e
j E

t m





, (2.2.2) 

where sj  is the superconducting current density, e is the charge of an electron, sn  is 

the number density of superconducting electrons, m is electron mass, B  and E  are 

the magnetic and electric field within the superconductor respectively. 

 Eq. (2.2.1) and Eq. (2.2.2) are called the first and the second London (LD) 

equations, respectively. Combining Ampere’s law 0B J   with the LD equation, 
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we have 

 
2

2

1
B B


  . (2.2.3) 

 The solution of Eq. (2.2.3) is 

   0

x

zB x B e 


 . (2.2.4) 

 This implies that the external magnetic fields are exponentially screened with a 

characteristic length λ which is called the penetration depth. The penetration depth is 

 
0 s

m

n e



 . (2.2.5) 

 Using Ampere’s law 0B J   again with Eq. (2.4), we have 

 
0

x

a
y

B
j e 

 

 
 
  . (2.2.6) 

This implies that current can just flow on the surface with depth  .  

 Although the LD equations are consistent with most experimental results, they 

cannot explain the mechanism of superconducting behavior. After that, with advances in 

theory, there are some widely acceptable theories which will be further discussed. 

 

2.3 BCS Theory 

 In 1957, conventional superconductors were modeled successfully by the 

pioneering theory developed by John Bardeen, Leon Cooper and Robert Schrieffer in 

what is called the BCS theory [5]. The BCS theory is different from LD equations, 

phenomenology equation, and is the first microscopic theory of superconductivity [6]. 

They suggested that in the superconducting state the electron pairs by lattice vibration 

(phonon) and form the Cooper pair in which two electrons are bound to each other. 
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Such a revolutionized concept has won Bardeen, Cooper and Schrieffer the Nobel prize 

in Physics in 1972.  

 

2.3.1 Cooper Pair 

 The Cooper pair was proposed by Cooper in 1956 [7]. The basic concept is that in 

addition to Coulomb repulsion there is some attraction between electrons to form a 

Cooper pair because the free energy reduces when normal state transfer to 

superconducting state. The mechanism can be simply explained by a classical method 

[8]. As shown in figure 2.1, an electron attracts the positive ions and increases the 

positive charge density nearby. Although there is Coulomb repulsion, this local positive 

charge area attracts another electron and then pair them up. It can also be explained by 

the quantum mechanical effect which shows that the attraction is due to electron-phonon 

interaction. The phonon is a collective vibrational motion of the positively charged 

lattice [9]. 

 

Figure 2.2 Cooper pair diagram. 

 Although electrons are fermion which cannot occupy the same quantum state due 

to the Pauli exclusion principle, Cooper pairs, which are composed of two electrons 

with opposite spin and momentum, are bosons and can occupy the same quantum state 

because the electron-phonon interaction is long range and the distance is usually greater 

than distance of electron [10]. 
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2.3.2 Energy Gap 

 As indicated in previous section superconducting phase transition belongs to 

second order transition. The physical quantity which correlate with second order 

transition is specific heat. From the experiment result in Ref.[11], the superconducting 

specific heat depends on temperature with exponential relation. 

 
1.5 /

9.17 cT Tes

c

c
e

T


 . (2.3.1) 

 In statistical mechanics, if there is an energy gap in a single electron system, with 

increasing temperature the electron must absorb the energy which is equal to energy gap 

in exciting process and the number of electron is proportional to B/ Tk
e


. Therefore, it is 

expected that there is an energy gap in superconducting state and the energy gap is 2 . 

The energy gap of BCS theory is given 

 

 

 
 
1

0 1
0

2
1

sinh
0

N V
N VD

De

N V






  
 
 
 

, 
(2.3.2) 

where  0N  is density of state on the Fermi surface, D  is Debye frequency. 

 

2.4 Ginzburg-Landau Theory 

 After the development of the LD equations, Ginzburg also proposed a 

phenomenology theory which is called Ginzburg-Landau (GL) theory in 1950 and based 

on the theory of phase transition [12]. Although the GL theory was just a mathematical 

model for describing the superconducting behavior, Gor’kov prove that the GL theory is 

a limitation of BCS theory as cT T  from the view of microscopic theory in 1957 

[13]. 
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 In 1937, Landau proposed a theory of second order phase transition which based 

on the three postulates. First, there is an order parameter   which will be zero when a 

phase transition take place. Second, free energy can be expanded with   by power law. 

Third, the coefficient is the function of temperature. 

 Following Landau’s postulates, Ginzburg developed the theory so-called 

Ginzburg-Landau (GL) theory and interpret the physics meaning of   as 
2

sn   

where ns is the density of superconducting electron. When cT T  , the free energy 

can be write as 

 

2
* 2

2 4

*

1

2 2 8

GL
s n GL

h e h
F F A

m i c


   



  
       

   
, (2.4.1) 

where sF  is the free energy of a superconductor, nF  is the free energy of a normal 

state, 
*e  is the charge of pair of electron and 

* 2e e , which e  is the charge of single 

electron, 
* 2m m  and 

*

sn  is the number of pair of electron and * 1

2
s sn n  , where 

sn  is the number of single electron in the condensate. The first two terms are from 

Landau’s postulate. The third term is kinetic energy of superconducting electron. The 

last term is the energy which is induced by magnetic field. 

 

2.4.1 Magnetic Field Dependence of Temperature 

 To figure out the parameters GL  and GL , the case without field and gradient 

was discussed. Equation (2.4.1) becomes 

 
2 4

2

GL
s n GLF F


  

 
    

 
. (2.4.2) 
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 Evidently GL  must be a positive value for the lowest free energy at the transition 

point cT T  because the density of superconducting electron 
2

0sn    as 

cT T . If the GL  is a negative value, the minimum of free energy would occur with 

any allowed value of 
2

 . Different from the value of GL , GL  can be positive or 

negative value. As cT T , GL  is a negative value and the minimum of free energy 

occurs at 
2 GL

GL





  . As cT T , GL  is a positive value and the minimum of free 

energy occurs at 
2

0  . Therefore  GL T  can be written as 

    
c

GL
GL c

T T

d
T T T

dT






 
   

 
. (2.4.3) 

Now, substituting 
2 2 GL

GL


 


    and    

c

GL
GL c

T T

d
T T T

dT






 
   

 
into equation 

(2.4.2) 

 
 

22 2 2

0

22 2 2
c

cGL GL a
s n

GLc GLc T T

T T d H
F F

dT

  

 


  
      

 
, (2.4.4) 

where  GL c GLcT  , Ha is apparent magnetic field 

 Finally, it is a formula about magnetic field dependence of temperature under the 

limitation approaching cT  

    
2

0 1c c

c

T
H T H

T

  
    
   

. (2.4.5) 
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2.4.2 The GL Equation 

 However, external magnetic field can actually cause the order parameter variant 

with space. For generation situation, the more complicated case should be discussed. If 

the order parameter vary with space which means  r  , the extra term in Eq 

(2.4.1) is 

 

2
*

*

1

2

h e
A

m i c


 
 

 
. (2.4.6) 

To solve this, let ie    and the remaining term can be written as 

  
2

2
*

2 22

*

1

2

e
A

m c
  

  
        

, (2.4.7) 

where    B r A r  ,  B r  is the interior magnetic field. The first term contributes 

to extra energy associated with gradient. The second term is the kinetic energy with 

supercurrents in a gauge-invariant form. In this case, Eq (2.4.1) can be rewritten as 

 
22 4 * 2

*

0

1 1
1

2 2 2

GL
s n GL aF F i e A B B H

m


    



 
          

 
. (2.4.8) 

 The GL equation can be obtained by integrating Eq (2..4.7) with   and A , 

respectively.  

  
2 2*

*

1
+ 0

2
GL GLi e A

m
         , (2.4.9) 

with the boundary condition   0n i eA      . 

  
* *2

2* *

0

1

2
s

e e
B A j

im m
    


        , (2.4.10) 

with the boundary condition 
0

0a

B
n H



 
   
 

. The equation (2.4.9) and (2.4.10) are 
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called first GL equation and second GL equation, respectively. Theoretically, GL 

equation and Maxwell equation can solve  , ,T r H  and  ,A T r  in most part of 

superconductor. However, the general solution is too difficult to deal with so, in general 

situation, the calculation just be an approximation under different condition. 

 

2.4.3 The GL Penetration Depth and Coherence Length 

 Although the general solution of the GL equation cannot be obtained, the GL 

equations give the two characteristic length to study superconductor in different types 

superconductor. Firstly, consider another case of weak magnetic field 0H    0   

with the sample dimensions much greater than the magnetic penetration depth , the 

second GL equation becomes 

  
*2

2

0*s

e
j A

m c
  , (2.4.11) 

taking the curl of both sides and replacing 
2

0

GL

GL





  

 

*2 *2
2

0* *

GL

s

GL

e e
j B B

m c m c





     , (2.4.12) 

substituting  
4

s

c
j B


   into Eq (2.4.12) 

  
* 2

*2
0

4

GL

GL

m c
B B

e



 
   . (2.4.13) 

Comparing with London equation, the GL penetration depth is given 

  
 

 

1/ 2
* 2

*24

GL

GL

m c T
T

e T




 

 
  
 
 

, (2.4.14) 
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this result is consistent with London penetration depth if 
2 *

0 sn





  . Substituting 

Eq (2.4.14) into Eq (2.4.4) get the parameter GL  and GL  

    
*2

2 2

* 2GL c

e
T H T

m c
   , (2.4.15) 

      
*4

2 4

*2 4

4
GL c

e
T H T T

m c


  . (2.4.16) 

 The next case is that assuming   varies only in one direction z  and without 

external magnetic field. In the case the first GL equation becomes 

 
2 2

2

* 2
0

2
GL GL

d

m dz


        , (2.4.17) 

if z is real and introduce a new dimensionless order parameter 

  
 

0

z
f z




 . (2.4.18) 

The Eq (2.4.17) can be rewritten as 

 
 

   
22

3

* 2
0

2 GL

d f z
f z f z

m dz
    . (2.4.19) 

From Eq (2.4.19), a length scale for spatial variation of the order parameter is given by 

  
 

1/ 2
2

*2 GL

T
m T




 
  
 
 

, (2.4.20) 

which is called the GL coherence length. This two characteristic length are both depend 

on temperature. 
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2.5 Type-I and Type-II Superconductor 

 As pervious mentioned, there are two superconducting characteristics. However, 

the one of feature is violated in some superconductor. As shown in figure 2.3, there are 

two different types of superconductor which can be categorized according to their 

magnetic behaviour.  

 

2.5.1 Magnetization of the Superconductor 

 A type-I superconductor excludes the whole magnetic field until a critical field Hc. 

When the magnetic field exceeds the critical field Hc the superconducting state will be 

destroyed. 

 A type-II superconductor can also keep the magnetic field outside until the external 

magnetic field reach the lower critical field Hc1 and then the magnetic field can enter 

into the superconductor to form a mixed state. The mixed state means that there are both 

superconducting state and normal state inside. With increasing magnetic field until 

upper critical magnetic field Hc2, the superconducting state will be completely broken. 

 

Figure 2.3 Magnetization M versus applied magnetic field H for Type-I and Type-II 

superconductor. 
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 The magnetic field can enter into superconductor in the form of vortex which is 

surrounded by superconducting current due to Cooper pair motion and the magnetic 

flux is quantized. The magnetic flux   in the vortex is integral multiple of magnetism 

quantum flux 0 . 

 0n  , (2.5.1) 

where n is positive integer and 0  is superconducting magnetic flux quantum with 

0
2

h

e
  .  

 The radius of vortex is determined by coherence length. As shown in figure 2.4, the 

magnetic field in the center is equal to external magnetic field and exponentially decay 

from the core with the decay length which is equal to penetration depth. The lower and 

upper critical field are also determined by the penetration length and coherence length, 

respectively. 

  
 

0
1 24

cH T
T


 , (2.5.2) 

  
 

0
2 22

cH T
T


 . (2.5.3) 
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Figure 2.4 Mixed state of Type-II superconductor 

 

2.5.2 Dimensionless GL Parameter κ 

 It is known that there are two types of superconductor which can be distinguished 

by a dimensionless parameter which is so-called GL parameter κ. In the GL theory, 

there are two characteristic lengths coherence ξ and penetration length λ. By using these 

two characteristic lengths, define a dimensionless GL parameter κ by 

 
 

 

T

T





 , (2.5.4) 

this parameter can be used to distinguish two different types of superconductor by [14]. 

 

1
,  Type I

2

1
,  Type II

2









 


, (2.5.5) 
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2.6 Upper Critical Field Limits 

 Conventional superconductor is described by BCS which is rely on Cooper pairs. 

Because Cooper pairs consist of two electrons with opposite spin and momentum, there 

are two limitations of upper critical magnetic field which are contributed to two 

different ways which can possible break Cooper pairs in the presence of an external 

magnetic field. The first one is orbital limit due to the Lorentz force. The second one is 

spin paramagnetic limit result from Zeeman effect.  

  In [15],  Werthamer, Helfand and Honenberg (WHH) studied the temperature 

and purity dependence of the critical field. The temperature dependence of magnetic 

field and spin-orbit scattering can be expressed 

 

1 1
1 1 1 1 1 12 2ln

2 4 2 2 2 4 2 2 2

SO SO
SO SO

i i
i i

t t t

   
 

  
 

   
           

              
       

   

, (2.6.1) 

where 
c

T
t

T
 ,  

1/ 2
2

2 1

2
Maki SO  

  
   

   

, 0 2

2 2

1

4 c

c

t

H

dH

dt






 
 
 
 

, 
 

 
22 0

0

orb

c

Maki P

H

H
   

and   is digamma function. Eq (2.6.5) consider both the orbit limit and the spin limit. 

Maki  is so-called Maki parameter which can be used to determine which effect 

dominate the upper critical magnetic field limit, orbit limit or spin limit. SO  is a 

parameter describing the strength of spin-orbit scattering. With WHH theory, Eq (2.6.5) 

can be used to analyze the experimental result by adjusting the parameter SO  and 

Maki . 
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2.6.1 Orbital Limit 

 The orbital pair breaking is due to the Lorentz force acting on the Cooper pair. 

According to general physics, when an electron moves in an external magnetic field B 

or electric field with the velocity Ve, it will suffer a force which is called Lorentz force. 

In the superconductor, it can just be considered the case without electric field so the 

Lorentz force can be written as  

 Lorentz eF BeV , (2.6.2) 

where B is external magnetic field, e is the charge and Ve is the velocity of electron. 

 The original centripetal force [16], which form the Cooper pair, is  

 
0

cF



 , (2.6.3) 

where 
02

eV


   is the superconducting energy gap and ξ0 is the minima coherence. 

 

Figure 2.5 Lorentz force act on the Cooper pair and break the superconducting state. 

 To keep the superconducting state, these two forces must satisfy 

 
0

eBeV



 , (2.6.4) 

under the limit condition,  

 
0

2 2

02
cB




 . (2.6.5) 

Eq (2.6.5) represents the orbital limit of upper critical magnetic field. 
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 In WHH theory with the absence of spin effect  0Maki  , the upper critical is 

restricted by orbit limit. The Eq (2.6.1) can be rewritten as simple one 

 
1 1 1

ln
2 2 2t t

 
   

     
   

, (2.6.6) 

and then the upper critical magnetic field of orbit limit can be derived as 

   0 2
0 2 0 0.69

c

orb c
c c

T T

d H
H T

dT






 
   

 
, (2.6.7) 

where 0  is vacuum permeability and cT  is the critical temperature. 

 

2.6.2 Spin Paramagnetic Limit 

 The spin paramagnetic limit results from the Zeeman effect which align the spin of 

two electrons of Cooper pair with direction of external magnetic field [17, 18]. Zeeman 

effect is that, with an external magnetic field, the electron orbital momentum and the 

spin momentum will couple and induce energy splitting. When the spin polarization 

energy exceeds the superconducting condensation energy, the superconducting behavior 

will be suppressed. According to the BCS theory, the energy gap at 0T   is 

 0 1.76 B ck T   [5]. The polarization energy is 
21

2
n PH  where 

 2 2 0

4

B

n

g N
   is 

the magnetic susceptibility and B  is Bohr magneton and  0N  is the density of 

state on the Fermi surface.   
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Figure 2.6 The spin paramagnetic limit due to the Zeeman effect. 

 The spin limit can be calculated by the equilibrium of these two energy 

  
2

21
0

2 2
n PH N


 . (2.6.8) 

Substituting 1.76 Bk T  , 
 2 2 0

4

B

n

g N
    and 2g   (for free electron) into Eq 

(2.6.8), the Pauli paramagnetic limit can be expressed by 

 1.85P cH T . (2.6.9) 

 The spin paramagnetic can be possibly enhanced in the case of strong 

electron-phonon coupling, spin-orbital coupling or pairing state [19]. 

 

2.7 Spin-orbit Interaction 

2.7.1 Spin-orbit interaction  

 The electrons can be thought of a spinning charge ball and the correlated angular 

momentum is spin. The interaction of the electron spin with the electric field which is 

related magnetic field in the electrons rest frame with the lattice motion is so-called 

spin-orbit interaction.  
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2.7.2 Elliot-Yafet mechanism  

 There are different mechanisms to explain spin-orbit interaction. The Elliot-Yafet 

(EY) mechanism is generally used to explain spin-orbit interaction in Al. Elliott propose 

that spin-orbit interaction will cause different wave function from all band mixed so 

electron momentum change in the process of momentum relaxation which means that 

the spin-orbit scattering can flip the spin of electron. If the EY mechanism lead the 

scattering mechanism, the momentum scattering time is proportional to the spin 

relaxation time [20]. 

 

Figure 2.7 Spin polarizations at different wavevector. 

 The spin-orbit interaction can play a role in superconductivity. Previously our 

group have already studied this effect and show that with the decreasing thickness the 

spin-orbit interaction can be strong which is indicated by the decreasing spin-orbit 

relaxation time and it also consistent with the results of this thesis [21]. 
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2.8 BKT Transition 

 The Berezinskii-Kosterlitz-Thouless (BKT) transition is a topological transition in 

2D system. This topological transition is related to topological charge excitation process. 

In superconducting state, vortex and anti-vortex can be seemed as topological charged. 

In a 2D superconducting system vortex-antivortex pairs which is bound at low 

temperatures would dissociate into free vortices at a characteristic transition 

Temperature TBKT. Because the ordered state has power law decay and the disordered 

state has exponential decay, by electronic properties measurement, an easy way to find 

the BKT transition is to observe the relation between voltage and current. The BKT 

transition occurs where V~I3 [22-25]. Our group member have already showed the BKT 

transition in Al with different methods and the results are consistent with each other 

[26]. 
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Chapter 3 Device fabrication and Measurement 

Technique 

  

 This chapter will cover the device fabrication and measurement technique. The 

aluminum (Al) films were prepared by Prof. Sheng-Di Lin’s group at NCTU using 

molecular beam epitaxy (MBE) system. The measurement was performed by Prof. 

Chi-Te Liang’s group at NTU using a cryo-free He3/He4 dilution refrigerator. 

 

3.1  Device Fabrication 

 In this section, I will briefly introduce the concept of MBE and the fabrication 

process of the device. The detailed growth processes can be found in Ref. [1]. 

 

3.1.1 Molecular-beam Epitaxy 

 The MBE technique was developed by Arthur and Cho in 1960s at Bell 

Laboratories [2]. It is usually used to grow nanostructure device with controllable 

thickness and high quality. Under the condition of ultra-high vacuum, by heating up the 

material to sublime, the gaseous elements will condense on substrate. The atoms 

condense on surface of substrate slowly and systematically in ultra-thin layer. The 

quality was mainly influenced by deposition rate which is tuned by temperature and 

pressure. 
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3.1.2 Fabrication Processes 

 The fabrication processes can be divided into three parts. First, the substrate was 

baked for cleaning the surface. The second part is growing Al by MBE. Finally, the 

device was shaped into a Hall-bar for electrical property measurement. 

 

(i) Baking substrate:  

 As shown in figure 3.1, there are three stages of this process for removing the 

steam, organic and oxidized layer respectively. The substrate was baked for 8 hours at 

200 C and then backed for 5 hours at 400 C, and finally baked for 20 minutes at 600 

C. 

 

Figure 3.1 Baking substrate process. 

 

(ii) Growing Al: 

 Under the condition of Ga-rich, the Al nanofilm can be grown with high quality 

and flat surface. For this purpose, the substrate was grown a 200-nm-thick undoped 

GaAs buffer layer at 580 C and then heated up to 600 C without arsenic flux to 

transform the surface into Ga-rich condition for 3 minutes. After that, the sample was 

cooled down and subsequently Al was grown on the surface at the rate of 0.1 nm/s. 
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 (iii) Hall-bar fabrication 

 For electrical measurements, Al nanofilms were shaped into Hall-bar by 

photolithography. The fabrication started with exposure, followed by development 

which was using TMAH developer to shape the Hall-bar. Next, the exposure and the 

development which was using AZ developer was applied again to form the pad and then 

using E-gun deposited 200 nm thick Al layer to protect Al etched by followed procedure 

and then grown Al2O3 with atomic layer deposition (ALD) to form passivation. The last 

step was using BOE etching on the region of pad and depositing Ti and Au of 20 nm 

and 200 nm respectively for contact.  

 The size of device was shown in figure 3.2 with the length of device is 1630 μm × 

1020 μm and the width of Hall-bar are 100 μm and 40 μm. The OM image is shown in 

figure 3.3-3.5 for 3-nm-thick, 3.5-nm-thick and 4-nm-thick, respectively. 

 

 

Figure 3.2 schematic diagram of device. 
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Figure 3.3 OM image of 3-nm-thick device. 

 

 

Figure 3.4 OM image of 3.5-nm-thick device. 
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Figure 3.5 OM image of 4-nm-thick device. 

 

3.2  Low-temperature System 

 The experiments were performed in an Oxford Triton 200 cryo-free He3/He4 

dilution refrigerator. The dilution refrigerator is a cryogenic system which can cold 

down to around 20 mK. The concept was proposed by Heinz London in early 1950s and 

realized in 1964 [3]. The mechanism relies on thermodynamic characteristics of the 

mixture of two isotopes of He3 and He4. As shown in figure 3.6, when cooled below a 

critical temperature (about 870 mK) the mixture is spontaneously separated into two 

liquid phase which is divided by a phase boundary. The working fluid is He3 which is 

circulated by vacuum pumps. When the He3 moves from the He3-rich phase (right of 

triple point) to the He4-rich phase (left of the triple point), it expand and take heat out of 

the chamber and then reduce the temperature. 
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Figure 3.6 The phase diagram of He3 and He4 mixture.(Take from [4]) 

 

3.3  Four-terminal DC Measurements 

 Standard four-terminal dc resistance measurements were performed on the devices. 

As shown in figure 3.7, the device’s source was connected to a Keithley 2400 

multi-meter which providing a current from source to drain. The voltage drops between 

each voltage probes was measured by Keithley 2000 multi-meter. 

 The advantage of using four-terminal measurement is that the influence of contact 

resistance can be diminished. 
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Figure 3.7 The schematic of four-terminal measurement of 3.5-nm-thick device. 
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Chapter 4 Results and Discussion 

 Four-terminal dc measurement was performed on our devices which are of 

different thickness (3-nm-thick, 3.5-nm-thick and 4-nm-thick) to measure the 

current-voltage (I-V) curves. The process and correlated machine is mentioned in 

Chapter 3. 

 

4.1 Electronic Properties of MBE-Grown Al Nanofilms 
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Figure 4.1 I-V curves of the 3-nm-thick Al nanofilm at various temperatures. 
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Figure 4.2 I-V curves of the 3.5-nm-thick Al nanofilm at various temperatures. 
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Figure 4.3 I-V curves of the 4-nm-thick Al nanofilm at various temperatures. 
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 Figures 4.1-4.3 show I-V characteristics of the 3-nm, 3.5-nm and 4-nm-thick Al 

nanofilms at different temperatures, respectively. When the temperature is lower than 

the critical temperature and the current is lower than the critical current, our samples 

show the zero-resistance state which is a superconducting behavior. The transition is 

sharp which indicate good quality of Al nanofilm and I define the critical current at the 

certain point which it shows an abrupt change to the normal state at the lowest 

temperature (0.25 K). At lowest temperature 0.25 K, the critical currents are 13.6 μA, 

64.55 μA, and 820 μA for the 3-nm-thick, 3.5-nm-thick, and 4-nm-thick samples, 

respectively. 
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Figure 4.4 I-V curves of the 3-nm-thick device for various temperatures on a log-log 

scale. The black straight line corresponds to V~I3. 
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Figure 4.5 I-V curves of the 3.5-nm-thick device for various temperatures on a log-log 

scale. The black straight line corresponds to V~I3. 
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Figure 4.6 I-V curves of the 4-nm-thick device for various temperatures on a log-log 

scale. The black straight line corresponds to V~I3. 
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 The data shown in figures 4.4-4.6 are extracted from figures 4.1-4.3. In these 

figures, the I-V curves was plotted at different temperatures on a log-log scale. The red 

line with slope 3 was drawn to find when the BKT transition take place. The linear fit 

was applied to find the slope α  ~V I  at each temperature and the temperature 

dependence of the exponent α is plotted in figures 4.7-4.9. The BKT transition 

temperature will be determined when find where the slope of the fit is 3. 
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Figure 4.7 α(T) obtained on the 3-nm-thick device. The data are extracted from those 

shown in figure 4.4. 
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Figure 4.8 α(T) obtained on the 3.5-nm-thick device. The data are extracted from those 

shown in figure 4.5. 
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Figure 4.9 α(T) obtained on the 4-nm-thick device. The data are extracted from those 

shown in figure 4.6. 
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 In figures 4.7-4.9, the slope at temperature was found. At where the slope is 3 

indicate the BKT transition occurring. At higher temperatures, the slope is 1 which 

indicates the metallic behavior. The BKT transition temperature (TBKT) of the 3-nm, 

3.5-nm and 4-nm thick films are 2.25 K, 2.4 K and 2.1 K, respectively. 
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Figure 4.10 R-T curve of the 3-nm-thick device. 
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Figure 4.11 R-T curve of the 3.5-nm-thick device. 
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Figure 4.12 R-T curve of the 4-nm-thick device. 

 The resistance dependence of temperature is shown in figures 4.9-4.12 by applying 

a constant current and measuring the resistance at different temperatures. The critical 

temperature is chosen at the temperature where the resistance is half resistance of the 

saturating value in the normal state. The critical temperature (Tc) of each films are 2.33 

K, 2.44 K and 2.17 K respectively. It is acceptable that the critical temperatures are 

slightly higher than BKT transition temperatures. When temperature lower than the 

critical temperature the Al nanofilms become superconductor and then vortex and 

anti-vortex appear in interior of superconductor. The superconductor changes from 

disorder state to order state. 
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Thickness (nm) 3 3.5 4 

Critical Current Ic (μA) 13.6 64.55 820 

BKT Transition TBKT (K) 2.25 2.4 2.1 

Critical Temperature Tc (K) 2.33 2.44 2.17 

Table 4-1 Key parameters for samples with different thicknesses. 

 

4.2 Magneto-transport in MBE-Grown Al Nanofilms 
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Figure 4.13 R(H) data taken on the 3-nm-thick device with H perpendicular to the plane 

of film at different temperatures. 
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Figure 4.14 R(H) data taken on the 3.5-nm-thick device with H perpendicular to the 

plane of film at different temperatures  
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Figure 4.15 R(H) data taken on the 4-nm-thick device with H perpendicular to the plane 

of film at different temperatures 
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  Figures 4.13-4.15 show the resistance dependence of the magnetic field which 

is perpendicular to the films dependence, the data was measured by applying a constant 

current and sweeping the magnetic field which is perpendicular to the film 

simultaneously with measuring the resistance. Because the H-R curves are unlike the 

I-V curves which show a sharp transition, which may indicate a mixed state in transition 

process, the critical magnetic field was chosen at magnetic field where the resistance is 

half resistance of the saturating value in a normal state at each temperature. 
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Figure 4.16 R(H) data taken on the 3-nm-thick device with H parallel to the film at 

different temperatures. 
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Figure 4.17 R(H) data taken on the 3.5-nm-thick device with H parallel to the film at 

different temperatures. 
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Figure 4.18 R(H) data taken on the 4-nm-thick device with H parallel to the film at 

different temperatures. 
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 Figures 4.16-4.17 show the resistance dependence of magnetic field which is 

parallel to the films dependence. The data was measured by the same process as 

mentioned above in perpendicular magnetic field. Obviously, the parallel critical 

magnetic field is much higher than the perpendicular critical magnetic field. 

 

4.3 Analysis and Discussion 

 With the critical temperature of Al nanofilms are higher than that conventional 

bulk aluminum which may be contributed to the strain [1, 2]. 

 According to the GL theory, the critical magnetic field as a function of temperature 

is given by Eq (2.4.5) [3] 

      
2

0 1 /c c cH T H T T  
 

. (4.3.1) 

 On the other hand, the parallel critical magnetic field as a function of temperature 

can be empirically fitted to the following equation [4] 

      
1/ 2

0 1 /c c cH T H T T    . (4.3.2) 

 The Pauli limit, estimated on the basis of the BCS theory 1.78 B ck T   is given 

by  Eq (2.6.9) [5, 6] 

 18.5 <kOe>p cH T . (4.3.3) 
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Figure 4.19 Hc(T) data taken on the 3-nm-thick device. The black squares represent the 

data taken when a parallel magnetic field is applied to the film and red circles represent 

the data taken when a perpendicular magnetic field is applied to the plane of the film. 

The blue curve correspond to fit      
2

0 1 /c c cH T H T T  
 

 and the green curve 

corresponds to a fit to      
1/ 2

0 1 /c c cH T H T T    . The dashed line indicates the 

Pauli limit at zero temperature. 
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Figure 4.20 Hc(T) data taken on the 3.5-nm-thick device. The Black squares represent 

the data taken when a parallel magnetic field is applied to the film and red circles 

represent the data taken when a perpendicular magnetic field is applied to the plane of 

the film. The blue curve correspond to fit      
2

0 1 /c c cH T H T T  
 

 and the green 

curve corresponds to a fit to      
1/ 2

0 1 /c c cH T H T T    . The dashed line indicates 

the Pauli limit at zero temperature. 
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Figure 4.21 Hc(T) data taken on the 4-nm-thick device. The Black squares represent the 

data taken when a parallel magnetic field is applied to the film and red circles represent 

the data taken when a perpendicular magnetic field is applied to the plane of the film. 

The blue curve correspond to fit      
2

0 1 /c c cH T H T T  
 

 and the green curve 

corresponds to a fit to      
1/ 2

0 1 /c c cH T H T T    . The dashed line indicates the 

Pauli limit at zero temperature. 

 Figure 4.21-4.23 show the  cH T  curves. Obviously, parallel critical magnetic 

field is higher than perpendicular. In all cases, the blue curves fit well with all points 

and brown curves can just fit well in the high temperature region which is because the 

Eq (4.3.1) is approximation of cT T .  
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 In [4], they provide another formula to fit the data and analyze the relation between 

upper critical magnetic field and spin-orbit scattering by 

 
1 1

ln 0
2 2 2

pb

c

T

T T


 



     
        

   
, (4.3.4) 

where 
 

2

3

2

B

pb SO

H
     is a parameter of pair breaking and SO  is spin-orbit 

relaxation time. The result is shown in figure 4.22-4.24. 

 

Figure 4.22 Hc(T) data taken on the 3-nm-thick device. The black circles represent the 

data taken when a parallel magnetic field is applied to the film. The red curve 

corresponds to the fit 
1 1

ln 0
2 2 2

pb

c

T

T T


 



     
        

   
 and the blue curve 

corresponds to the fit      
1/ 2

0 1 /c c cH T H T T    . 
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Figure 4.23 Hc(T) data taken on the 3.5-nm-thick device. The black circles represent the 

data taken when a parallel magnetic field is applied to the film. The red curve 

corresponds to the fit 
1 1

ln 0
2 2 2

pb

c

T

T T


 



     
        

   
 and the blue curve 

corresponds to the fit      
1/ 2

0 1 /c c cH T H T T    . 
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Figure 4.24 Hc(T) data taken on the 4-nm-thick device. The black circles represent the 

data taken when a parallel magnetic field is applied to the film. The red curve 

corresponds to the fit 
1 1

ln 0
2 2 2

pb

c

T

T T


 



     
        

   
 and the blue curve 

corresponds to the fit      
1/ 2

0 1 /c c cH T H T T    . 

 The fit to Eq (4.3.4) is better than that to Eq (4.3.2) at low temperatures. According 

to the fit, we have the parameter SO  dependence of thickness.  
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Figure 4.25 H-Vxx curves of 3-nm-thick device. 

 With Hall measurement, figure 4.27 weak anti-localization (WAL) effect. 

According to the WAL theory developed by Hikami, Larkin and Nagaoka, which 

assumes that the EY mechanism is responsible for spin-orbit interaction. 

 Table 4-2 summarizes the measured perpendicular critical magnetic field, parallel 

critical magnetic field, critical temperature, the Pauli paramagnetic limit, and the 

spin-orbit relaxation time for all the devices. We can see that in the 3-nm-thick Al film, 

the parallel magnetic field exceeds the Pauli paramagnetic limit and with decreasing 

thickness, the spin-orbit relaxation time increase. We interpret this as evidence for 

spin-orbit coupling in Al superconducting film. In [7], they show that the spin-orbital 

scattering time SO  decrease with decreasing thickness. Therefore we suggest the 

Elliott-Yafet mechanism is the dominant mechanism for spin-orbit effect in our Al 

nanofilms [8]. 
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Thickness (nm) 3 3.5 4 

Perpendicular Critical Field Hc0+⊥ (kOe) 14.80 4.29 6.86 

Parallel Critical Field Hc0∥ (kOe) 58.89 50.70 47.55 

Critical Temperature (K) 2.61 2.62 2.29 

Pauli Paramagnetic Limit HP (kOe) 48.29 48.47 42.37 

Spin-orbit Relaxation Time (10-13) 6.42 8.60 9.19 

Table 4-2 Key parameters regarding critical fields and temperatures for the samples with 

different thicknesses. 
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Chapter 5 Conclusion 

 

  For the aluminum nanofilms grown by MBE which is studied in this thesis, the 

critical temperature and the critical magnetic field are both larger than those in bulk 

aluminum (1.2 K and 0.1 kOe). 
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Figure 5.1 Critical temperature dependence on thickness (Tc-d). 

 

 As shown in figure 5.1, although the increasing critical temperature can possible 

result from tensile strain, the critical temperature varies with thickness. It should be 

more studied how strain affect the critical temperature. 
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Figure 5.2 Spin-orbit relaxation time dependence on thickness. 

 As shown in figure 5.2, the spin-orbit relaxation time decrease with the decreasing 

thickness of Al nanofilm grown by MBE. The spin-orbit interaction can affect the upper 

critical magnetic field which is dominated by the Pauli limit. 
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Figure 5.3 Parallel critical magnetic field dependence on thickness (d-Hc). 
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 As shown in figures 5.3, the measured parallel critical magnetic field increases 

with decreasing film thickness. Moreover, the parallel critical magnetic field of the 

3-nm-thick device slightly exceeds the Pauli paramagnetic limit. It can be described by 

spin-orbit interaction with EY mechanism. The spin-orbit interaction relaxation time 

decrease with decreasing thickness which may indicate the enhancement of Pauli 

paramagnetic limit by strong spin-orbit interaction. 

 WHH systematically theory studied the relation between the critical magnetic field 

and temperature with considering the orbital limit and spin paramagnetic limit 

simultaneously. However, the general solution is too complicated to deal with so it can 

be used to approximate with different simple case. 

 

 



doi:10.6342/NTU201901959

 57 

Chapter 6 Future Work 

 The upper critical field is one of the fundamental parameters in type-II 

superconductors, which provides important insights on the pair-breaking mechanisms in 

a magnetic field. Furthermore, other superconducting parameters, e.g., the coherence 

length and the anisotropic parameter, can be derived from the upper critical field.  

 The upper critical magnetic field is affected by the direction of applied magnetic 

field. In order to better characterize the anisotropy of the upper critical field, I propose 

to measure an Al nanofilm at different tilt angle, e.g. 30, 45, and 60. The dependence 

of upper critical field can be well scaled by the single band anisotropic 

Ginzburg-Landau (G-L) theory [1] 

  
   

GL 0 2
0 c2

2 2 2
H

cos sin

cH

cH
 

  



, 

(6.1) 

where   is the angle between the magnetic field and the c-axis. The anisotropic 

parameter γ is defined by 2

2

H c

ab c

H c

c c

m H

m H




  , where mab and mc are the effective 

massed of electrons for the in-plane and out-of-plane motion, respectively. 

 Such a measurement may well shed light on how parallel magnetic field and/or 

perpendicular magnetic field can affect BKT superconductivity in our Al nanofilms. 

Moreover, it may well be related to the work on two-dimensional Ising 

superconductivity [2]. 

 Different device structure can also greatly affect the critical magnetic field. It may 

be attributed to the ratio of magnetic length scale to device length scale [3]. I propose to 

study the critical magnetic field in Al nanofilms with different structures. 
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