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ABSTRACT

Support vector regression (SVR) and support vector classification (SVC) are pop-
ular learning techniques, but their use with kernels is often time consuming. Recently,
linear SVC without kernels has been shown to give competitive accuracy for some ap-
plications, but enjoys much faster training/testing. However, few studies have focused
on linear SVR. In this thesis, we f‘ﬁ-ﬁf@iﬂ@k&é the-art training methods for linear
SVC to linear SVR. We shongt )gt tl;e:’%xtené?ﬂn is s\‘{&@gh‘cforward for some methods,

,a.\.

but is not trivial for soné& ther r experi de ﬂ'strate that for some prob-
o .:_3‘"& .-

lems, the proposed lin@r SV trai%e@ can ery é“_éﬁciently produce models
'h-..

i =
that are as good as kemel s =
= Rl |
41 -
i
Z r S
2,."_!_' e f:h".-

KEYWORDS: large scale learnm'&, é’tﬁfépor’t Vé&qir qeéhkessmn
i (7 (SIS

il



TABLE OF CONTENTS

i
ii
ABSTRACT] iii
LIST OF FIGURESI. . . . . . . .. o .. vi
LIST OF TABLES|. . . . . . . . vii
SRS
e i
CHAPTER @ 2 F W
A 1= L L
3 i '.\{-\. .\_d_
[ 1. Introduction /. . . . S 1
A=l
[ IT. Linear Support Vi P T 3
[ :‘I;‘-:::_ “u ........... 5
-- » - .':\.\
[ III. Optimization Methods for 1nir mear SVR) . . . . ... .. 7
-.-"_I ':u":'\'.l': 1 (.%:":_ =y

- T A y 7l '8
3.1 A Trust Region Newton Method (IRON) for L.2-loss SVR| . . . 7
3.2 Dual Coordinate Descent-Methods (DCD)| . . . . . ... .. .. 9

3.2.1 A Direct Extension from Classification to Regressionl . 9
3.2.2 A New Coordinate Descent Method by Solving a™ and |

| o~ Together| . . . . . .. . ... ... ... ... ... 13
i i inear SVRI . .. ... ... 20

[ IV. Experiments| . . . .. . ... ... ... ... ... .. ........ 24
[4.1  Experimental Settings| . . . . . .. ... ... ... ... ... . 24

[4.2 A Comparison Between Two DCD Algorithms|. . . . . . . . .. 26

[4.3 A Comparison Between Linear and Nonlinear SVR| . . . . . .. 27

.4 A Comparison Between TRON and DCD on Data with/without |
Normalizationl . . . . . . . . . . . . . .. 29

05 Wil Wi e BEsT. e SYR Prodicion F 1 37

[4.6  Aggressiveness of DCD’s Shrinking Scheme]. . . . . . . . . . .. 38

v



APPENDICES| . . . . . . ..o 44

BIBLIOGRAPHY! 48




Figure

LIST OF FIGURES

B1

We discuss the minimization of (3.10) using three cases. The y-axis

indicates the value of g, (s) and g, (s). The point s* denotes the optimal

solution. . . . . . . L.

A1

Relative difference to the dual optimal function values of L1-loss SVR

using C' = 1 and € = 0.1. Data instances are normalized to unit vec-

tors. DCD-1-sh and DCD-2-sh are DCD-1 and DCD-2 with shrinking,

respectively. Both z-axisiand y-axis are in log scale . . . . . ... ..

o

12

Relative diﬂerences_-l.t-b'-'the:-d‘btim&-};‘prim'al.‘-tunction value of L2-loss

SVR using C = 1 and ¢ = 0.1 Oziginal data without normalization
are used. The,dotted solid hor al lines respectively indicate
ON using e, = 0:0017in (3.2) and DCD using
AN A we——

& =01 (319).].

4.3

1
the function valués o
7
MSE of L2-less SVR. Settil?, he same as those in Figure |4.2] . .

4.4

S.-

R? of L.2-loss SVR.

A5

Relative differences optimal

0.1 Data

SVR using C=1an ces érémormalized to unit

vectors. The dotted and solidshoriz lines respectively indicate

‘I

the function values.of TR =10.001 in (3.2) and DCD using

e = 0.1in (3.19). | EN. . My 4w

4.6

MSE of T.2-Toss S R... Sj'et-tinés. are the Sé;he as those in Figure [4.5}| . .

4.7

R? of L2-loss SVR. Settings are the same as those in Figure [4.5l . . .

I3

A comparison of three shrinking settings. L1-SVR with ¢' = 1 and

e = (.1 18 applied on normalized data. We show the relative difterence

to the dual optimal function values and training time (in seconds).| . .

9

A comparison of three shrinking settings. L2-SVR is used. Othe

settings are the same as those in Figure 4.8 . . . . ... ... .. ..

vi



LIST OF TABLES

Table

[4.1 Data set statistics: #non-zeros means the number of non-zero elements |
| in all training instances. Note that data sets are sorted according to |
| the number of features) . . . . . . . . ... oo 26

(4.2 Testing MSE and training time using DCD for linear SVR and LIBSVM |
I for nonlinear SVR. with RBE kernel. Parameter selection 1s con- |
| ducted by five-fold CV. Time means training time in seconds. Because |
| LIBSVM’s running time 1s long, for some data, we use only subsets for |
| tralmng | P - 1;;{-"‘“1 -{T.{L._dn e 29

only applied to tk _ 2d- data
| long for the or,ig: ..... . _'1,_;‘. ........... 37

4.4 MSE of [.2-loss SVR.s ] sterml) . .. ... ... 38
[5.1 L1-/L2-loss VR ar;’d regilariged }é ﬂ-squaiﬁe“regresswn Regularized |
| least-square -Kegres on 18 Itlle L2-1los SVRl:-Wlth e=0] . ... 42

P =

= . bl |

_I__I_ I?- L .':n.,;'

:_:‘:...%;‘ ., _.'_ :rﬂl:
- ..-,- ._,:.. f'hlﬂ
% "

r.n' i
2 J'_-;.-f o7 [Ty

vil



CHAPTER 1

Introduction

Support vector regression (SVR) is a widely used regression technique (Vapnik

1995)). It is extended from support vector classiﬁcation (SVC) by [Boser et al.| (1992).

Both SVR and SVC are often used Wli;lh the kef{lel* trlck (Cortes and Vapnikl| [1995)),

which maps data to a hlgher dfme
A

refer to such settings as "I'lO:Yg-i_il

~) "

have been proposed (e.g:,

employs a kernel function. We

effectlve training methods

1998|; Platt L 1998), it is well

Fd
known that training/testing | a,md, SVR is time consuming.
- e

Recently, for some aI)'Qlic >n ck&'sslﬁ{iation linear SVC without

o]
using kernels have shown to.rgleg-fafompe itive, pe fO’rinances but training and testing

are much faster. A series of studles' (efg T, |}Elah ét al L 2008; [Joachims|, 2006; Keerthil

and DeCoste, 2005; Shalev-Shwartz et al., 2007) have made linear classifiers (SVC and

logistic regression) an effective and efficient tool. On the basis of this success, we
are interested in whether linear SVR can be useful for some large-scale applications.
Some available document data come with real-valued labels, so for them SVR rather
than SVC must be considered. In this thesis, we develop efficient training methods
to demonstrate that, similar to SVC, linear SVR can sometimes achieve comparable

performance to nonlinear SVR, but enjoys much faster training/testing.

We focus on methods in the popular package LIBLINEAR (Fan et al., 2008)), which




currently provides two types of methods for large-scale linear SVCH The first is a
Newton-type method to solve the primal-form of SVC (Lin et al. 2008)), while the
second is a coordinate descent approach for the dual form (Hsieh et al., 2008). We
show that it is straightforward to extend the Newton method for linear SVR, but some
careful redesign is essential for applying coordinate descent methods.

LIBLINEAR offers two types of training methods for linear SVC because they com-
plement each other. A coordinate descent method quickly gives an approximate so-
lution, but may converge slowly in the end. In contrast, Newton methods have the
opposite behavior. We demonstrate that similar properties still hold when these train-
ing methods are applied to linear SVR.

This thesis is organized asfollows: In Challi_ter [} we give the formulation of linear
SVR and discuss some différences heteen SVC a@iid SVR. In Chapter [[TI} we investigate
two types of optimization methods for‘tralnll-ng large- scale linear SVR. In particular,
we propose a condensed implementa Tglf}:e_g,()ll'r(ﬂlnate descent methods. We conduct
experiments in Chapter {lVien'some | rger;égreésfon probléms. A comparison between

|

linear and nonlinear SVR is grvenl ijllowed by|| detaﬂed experiments of optimization

methods for linear SVR. Chapter M concludes this Work

"'We mean standard SVC using L2 regularization. For Ll-regularized problems, the solvers are
different.



CHAPTER 11

Linear Support Vector Regression

Given a set of training instance-target pairs {(x;,y;)}, x; € R", y; e R,i=1,...,1,
linear SVR finds a model w such that w’x; is close to the target value ;. It solves

the following regularized optimization problemnt;
min  f(w) (2.1)
where

—
2
Il
N —
-
—
s
=
=9)

EE(W) X, yz)y

C > 0 is the regularization par-amele'r, and

o max(|wx; = yl[ —#&0) or (2.2)
ge(w;xiayi) - )

max(fwhx; — ;| — €,0)? (2.3)

is the e-insensitive loss function associated with (x;,;). The parameter € is given so

that the loss is zero if [wx; —y;| < e. We refer to SVR using (2.2) and (2.3)) as L1-loss

and L2-loss SVR, respectively. It is known that L1 loss is not differentiable, while

L2 loss is differentiable but not twice differentiable. An illustration of the two loss

functions is in Figure 2.1l Once problem (2.1) is minimized, the prediction function is
wlx.

Standard SVC and SVR involve a bias term b so that the prediction function is

wlx +b. Recent works on large-scale linear classification often omit the bias term



loss

Figure 2.1: L1-loss and L2-loss functions.

because it hardly affects the performance on most data. We omit a bias term b in

problem (2.1)) as well, although in Chapter we briefly investigate the performance

with /without it.
/ N T
It is well known that the @f“prdb_l%m of - /ﬂ’ s SVR is
ﬂhrr.- 1= ""-..{\ 1',:_
._.‘L..:- ~
+ &
i fale &y
:%
where E .
l‘_@:-'-

1 / 5 ]
= (ot —a) Qat —an) £ [+ ar) “ilof -
2 -"'-':':"-_}"- .:1.\__5:;_.. - l§) cﬁl:

In Equation (2.5), Q@ € R™! is a matrix with Q;; = x7'x;,

0 C  if Ll-loss SVR,

A= , and U =

% oo if L2-loss SVR.

We can combine a™ and o~ so that

at Q -Q e —y
o= and  fala) = %aT o+ o, (2.6)

- -Q Q ce +y

(81



where Q = Q + \Z, T is the identity matrix, and e is the vector of ones. In this thesis,
we refer to (2.1) as the primal SVR problem, while (2.4)) as the dual SVR problem. The
primal-dual relationship indicates that primal optimal solution w* and dual optimal

solution (a*)* and (a™)* satisfy

An important property of the dual problem ({2.4)) is that at optimum,
() (e )" =0, Vi.

This result can be easily proved by seeing that the function value in ([2.5)) can become

smaller if both a; and «; are subttacted by a positive constant.
2.1 Differences BetweensSVC and S'VR

r—

SVR is very similar to SVC, althottgh_t};!ey dlffer in several aspects. These differ-

J. 1 I
discussion. | ] - 1]
| |

1. Labels versus target values::SVC con_sid.-e::rs class label y € {41, —1} rather

ences are not specific to the linear Ta‘se E £ we hst them here to help our subsequent

than a real number.
2. Loss functions: The loss function of SVC is
max(0,1 —y;w'x;) or max(0,1 — y;w’ x;)°.
In classification, we hope yw’x > 1, but in regression we would like to have

—eSWTx—yge.

Consequently, SVR has one more parameter € than SVC. Parameter selection for

SVR is thus more time consuming.



3. Number of dual variables: The dual problem of SVR has 2[ variables, while
SVC has only [. If a dual-based solver is applied without a careful design, the

cost may be significantly higher than that for SVC.




CHAPTER I11

Optimization Methods for Training Linear SVR

In this chapter, we extend two linear-SVC methods in LIBLINEAR for linear SVR.
The first is a Newton method for L2-loss SVR, while the second is a coordinate descent

method for L1-/L2-loss SVR.

3.1 A Trust Region Newton Method-(TRON) for L2-loss SVR

TRON (Lin and Moré, [1999) is & gemeral optimization method for differentiable
unconstrained and bound-constrained p;—;;{é.lﬁs, where the primal problem of L2-loss
SVR is a case. Lin et al (2908) i;n\ifesti-g;te the use of, TRON for L2-loss SVC and
logistic regression. In this chapter, Wé diseuss hovx.f TRON can be applied to solve large
linear L2-loss SVR.

The optimization procedure of TRON involves two layers of iterations. At the k-th

outer-layer iteration, given the current position w*, TRON sets a trust-region size A

and constructs a quadratic model
1
a(s) = VF(wh)Ts + §STV2f(Wk)S

as the approximation to f(w* +s) — f(w*). Then, in the inner layer, TRON solves the

following problem to find a Newton direction under a step-size constraint.

min  gx(s) subject to ||s|| < Ag. (3.1)



Algorithm 1 A trust region Newton method for L2-loss SVR

1. Given w.

2. For k=0,1,2,...

2.1. If (3.2) is satisfied,

return w”.

2.2. Solve subproblem (3.1)).
2.3. Update w* and A, to wF*! and Aj,.

TRON adjusts the trust region Ay according to the approximate function reduction

¢x(s) and the real function decrease; see details in Lin et al. (2008).

To compute a truncated Newton dlr(}ctlon by solving (3.1] , TRON needs the gra-
Wi

dient V f(w) and Hessian V2 ﬁ('w) Th§ gra(_al‘%nt of L2-loss SVR is

4 ,:"F':a- .H~ -"'._'-
Viw)=w+20(Xy,. »)E”Q(h JB a-T (=Xp.W+yp — cep,),
?ﬁ "\-1':.."‘ o
& = -
where L
= =

L]

X =[x, ox]'id = ﬁ,{m Wl — y; < —c}.

However, V2 f(w) does n'cﬁ éﬁ\\t eC usei—los R ‘Is nf)'t twice differentiable. Fol-

N
lowing Mangasarian, (2002)) and.ﬂ jm ctal (2.00@;.“/6 usq ﬂhe generalized Hessian matrix.
S Y oy e B
'_l||l j'\. .|I

Let
I=LUL.
The generalized Hessian can be defined as
Vif(w) =T +20(X;.)"' DXy,
where 7 is the identity matrix, and D is an [-by-l diagonal matrix with
1 ifiel,

DiiE
0 ifié¢l.



For large-scale problems, we can not store an n-by-n Hessian matrix in the memory.
The same problem has occurred in classification, so|Lin et al.|(2008]) applied an iterative
method to solve . In each inner iteration, only some Hessian-vector products are
required and they can be performed without storing Hessian. We consider the same

setting so that for any vector v € R”,
V2f(W)V =V + QC(XI,:)T(DL[(XL:V)).

For the stopping condition, we follow the current setting in LIBLINEAR to check if

the gradient is small enough in compared to the initial gradient.
IVFW)llz < e[V (W), (3.2)

where w? is the initial iterateand e;:is stoppihg tolerance given by users. Algorithm
gives the basic framework of TRON:
Similar to the situation #n/classifigdtion, the Thost expensive operation is the Hessian-

vector product. It costs O(|I|r) to eyal_t"g_e.:-yjf(w)v.

| M 1}
3.2 Dual Coordinate De?ient“l\/let_hods (BCD)
2 | )} .
In this chapter, we introducé DCD; a coordi_naté: desecent method for the dual form

of SVC/SVR. It is used in LIBLINEARfor both I'1- and L2-loss SVC. We first extend
the setting of Hsieh et al.| (2008) to SVR and then propose a better algorithm using

properties of SVR.
3.2.1 A Direct Extension from Classification to Regression
A coordinate descent method sequentially updates one variable by solving the fol-
lowing subproblem.
mzin fala+ ze;) — fala)

subject to 0 < a; +2 < U.



where
faler 20 — fa(e) = Vifa(@)z + 5V fa(@):”

and e; € R?*! is a vector with i-th element one and others zero. The optimal value z

can be solved in a closed form, so «; is updated by

o i (max (= T 0) 0} (33)

Viifala)

where

(Qat —a™));+e—y + Ao, if 1 <i<lI,

Vifala) =

—(Qa™ —an))iu+tetyig+ Ao, ifl+1<i<2l

and el
"- 4 fl:fﬂ'
Viifa(a)

applied. First, we preca_'.quilﬁte

e

a7)); is obtained using a vector u:’
=

f-\. :"_l
g
o —

)
o w

If the current iterate «; is updated to a; by (3.3)), then vector u can be maintained by

u+(@i—ai)xi, 1f1§z§l,
u (3.4)

u — (di—l — ai—l)xi—b if [ +1 S 1 S 21.

Both (3.3)) and (3.4)) cost O(n), which is the same as the cost in classification.

Hsieh et al.|(2008) check the projected gradient V¥ f4(a) for the stopping condition

because a is optimal if and only if V¥ f4(«) is zero. The projected gradient is defined

10



Algorithm 2 A DCD method for linear L1-/L2-loss SVR

+
1. Given a™ and a~. Let o= [g] and the corresponding u:Zizl(ai — Q)X

2. Compute the Hessian diagonal Q;;, Vi =1,...,1.
3. For k=0,1,2,...

e Foric{l,...,2l} // select an index to update
3.1, If [V fa(e)| # 0
3.1.1. Update a; by (3.3), where (Q(at — a)); is evaluated by u”’x;.
3.1.2. Update u by .

as
(

min(Vifala); 0) if o, =0,

Vi (e E Srmad (Ve fatad 0) mif Gp= U, (3.5)

V fg(d) e if0<a; < U.
If VI fa(e) = 0, then (B.3) and 1@ th'a’g a; needs not be updated. We show

the overall procedure in Algorlthm I't |

=
- T

Hsieh et al| (2008) apply tweo l:eichniques t(_l) !!make a coordinate descent method
faster. The first one is to permute’all variables at Saeh itieration to decide the order for
update. We find that this setting is alsomuseful for SVR. The second implementation
technique is shrinking. By gradually removing some variables, smaller optimization
problems are solved to save the training time. In [Hsieh et al.| (2008), they remove
those which are likely to be bounded (i.e., 0 or U) at optimum. Their shrinking
strategy can be directly applied here, so we omit details.

While we have directly applied a coordinate descent method to solve , the
procedure does not take SVR’s special structure into account. Note that a™ and a~

in (2.5)) are very related. We can see that in the following situations some operations

in Algorithm 2 are redundant.

11



1. We pointed out in Chapter [[I| that an optimal e of (2.4) satisfies
afa; =0,Vi. (3.6)

If one of a™ or a~ is positive at optimum, it is very possible that the other is
zero throughout all final iterations. Because we sequentially select variables for
update, these zero variables, even if not updated in steps|3.1.1 of Algorithm
2], still need to be checked in the beginning of step[3.1} Therefore, some operations
are wasted. Shrinking can partially solve this problem, but alternatively we may
explicitly use the property in designing the coordinate descent algorithm.

2. We show that some operatlon‘s 1n-(]'alaulaat1?g the projected gradient in are
% =

wasted if all we need ISI"thf-;f largesﬁ -com-p‘i)nent of,jche projected gradient. Assume
h, - .-" _‘_
of >0and o; =0. If the aﬁ__@i-._ is not satisfied yet, then

Ly

L._L"\

mfA(a;' kit

e
| e

We then have -_f
0< —v_gq_l_}{;ﬁd

—gf)) e —yi— Aoy

A :
< (Q(a* —ar )’L:Jra JyzLMa = V,fala), (3.7)

so a larger violation of the optimality condition occurs at ;. Thus, when o > 0
and a; = 0, checking V;;fa(a) is not necessary if we aim to find the largest

element of the projected gradient.

In the next chapter, we propose a better coordinate descent method for SVR by com-

bining a™ and a~ to a vector a™ — .

12



3.2.2 A New Coordinate Descent Method by Solving o™ and a~ Together

Using the property (3.6)), the following problem replaces (a; )*+ (; )% in (2.5)) with

(af — ;)% and gives the same optimal solutions as the dual problem (2.4).

I
1 _ _ _ _
min (@ a7V Qe -a) + 3 (o +ar) ~wloi a7 +
Further, Equation (3.6) and ;" > 0,«; > 0 imply that at optimum,

af +a; =|of —a;l.

With Q = Q + AT and defining

QF< OV, (3.9)
=8

where

are optimal for ({2.4)).
We design a coordinate descent method to solve (3.9). Interestingly, (3.9) is in
a form similar to the primal optimization problem of L1-regularized regression and

classification. In LIBLINEAR, a coordinate descent solver is provided for L1-regularized

L2-loss SVC (Yuan et al., 2010). We will adapt some of its implementation techniques

here. A difference between L1-regularized classification and the problem ({3.9)) is that

(3.9) has additional bounded constraints.

13



Assume 3 is the current iterate and its i-th component, denoted as a scalar variable
s, is being updated. That is, 3 is a constant vector in the subsequent discussion. Then

the following one-variable subproblem is solved.
min g(s) subjectto —U <s<U, (3.10)
where

9(s) = fe(B+ (s — Bi)ei) — f&(B)

= e|s| +(QB —y)i(s = 8;) + %QM(S — Bi)* + constant. (3.11)

It is well known that can be reduced to “soft-thresholding” in signal processing
and has a closed-form minimums Howeyer, here weidecide to give detailed derivations
of solving because of several rea'sogls. Fi;szt, S}E now bounded in [—-U, U]. Second,
the discussion will help to _(f;)tplain olgL‘s":coppiJr}g{;ond.itid'r_i'.__and shrinking procedure.

fo. Y10

| - |
To solve (3.10]), we start with che irlgtﬁé (Ilelrivative of g(s). Although g¢(s) is not

|
differentiable at s = 0, its derivativlas at L?'E 0 8ll’]l_d s'< (_are respectively

el |

gp(s) =€ +"(Q3[L')z - sz(ﬁlllﬁz) ..'.'if s >0, and

gn(s) = —e +(QB —¥)i +Qiils —B)" if s <0.
Both g,(s) and g;(s) are linear functions of s. Further,
9n(8) < g,(s),Vs € R.

For any strictly convex quadratic function, the unique minimum occurs when the
first derivative is zero. Because ¢(s) is only piece-wise quadratic, we consider three
cases in Figure according to the values of g/(s) and g, (s). In Figure 0 <

9,(0) < g,(0), so g(0) is the smallest on the positive side:
g(0) < g(s),Vs > 0. (3.12)

14



Figure 3.1: We discuss the minimization of (3.10)) using three cases. The y-axis in-
dicates the value of g,(s) and g;(s). The point s* denotes the optimal
solution.

15



For s < 0, g/,(s) = 0 has a root because the line of ¢/,(s) intersects the z-axis. With
(3.12)), this root is the minimum for both s < 0 and s > 0. By solving ¢/,(s) = 0 and
taking the condition 0 < ¢/,(0), the solution of (3.10)) is

—e+(QB—y);

KD

if —e+(QB—y)i> Qubi. (3.13)

We also need to take the constraint s € [—U, U] in Equation into account. If
the value obtained in is smaller than —U, then ¢/, (s) > 0,Vs > —U. That is,
g(s) is an increasing function and the minimum is at s = —U.

The situation is similar in Figure where the minimum occurs at g,(s) = 0.

For the remaining case in Figure 3.1(b)},

I I Ll e
I_: = i e 'f.';'_.
) (3.14)
"ﬁ ——
Inequalities in (3.14]) iri‘fp].‘g”-t function at s < 0, but is an
|
increasing function at s > 0 olution occurs at s = 0. A summary
= =
of the three cases shows utﬂlg.a ha:g the following closed form
solution. & ﬂ{?”: A
. Sn .,“'_, A
s’(— rﬁ'éx(f—'-{] mln_E(EJ 6»3 -|— d)l) (3.15)
ol b
= Jr E
where ) SUHGIE
—% if g,(8:) < QiilBi,
d= < _% if g1,(8:) > Quil3i, (3.16)
—B; otherwise.
\
In (3.16)), we simplify the solution form in (3.13) by using the property
9,(Bi) = e+ (QB —y)i, and g,,(8;) = —e+ (QB —y)i. (3.17)

Following the same technique in Chapter [3.2.1] we maintain a vector u and calculate
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Algorithm 3 A new DCD method which solves (3.9) for linear L1-/L2-loss SVR

1. Given B and the corresponding u:Zizl BiX;.
2. Compute the Hessian diagonal Q;;, Vi =1,...,L.
3. For k=0,1,2,...

e Forie {1,...,l} // select an index to update

3.1. Find s by (3.16)), where (Q3); is evaluated by u’x;.
3.2. u+u—+(s—fB)x;.

(@B) by l
(QB); = u'x; + Af;, where u =3 fx;.

i=1
The new DCD method to solve is Isketch‘éd in Algorithm .

For the convergence, we show in Appendix@théf"Algo_rithm is a special case of the
general framework in Tsen-g.and Yun:_(‘Qf)_(.).gl)-’rfor, non-snicoth separable minimization.
Their Theorem 2(b) impliés that Ar I r&ﬁ (!pl{werges in an at least linear rate.

1

- T

L | '
Theorem 1 For L1-loss andf-LQ—loqu SVR; if ,8||’C llz's the k-th iterate generated by Algo-
m’thm@ then {B*} globally convergesdo an optimd?‘solution B*. The convergence rate

15 at least linear: there are 0 < p <1 and-an iteration ko such that

(B = f5(8%) < u(f5(B") — f5(8%)),Vk > k.

For the stopping condition and the shrinking procedure, we will mainly follow the
setting in LIBLINEAR for Ll-regularized classification. To begin, we study how to

measure the violation of the optimality condition of (3.10) during the optimization

procedure. From Figure|3.1(c), we see that

if 0 < ] < U is optimal for (3.10), then g,(5;) = 0.
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Thus, if 0 < 8; < U, |g,(B;)| can be considered as the violation of the optimality. From

Figure |3.1(b), we have that
if 57 = 0 is optimal for (3.10)), then g, (3]) <0 < g,(57).

Thus,
g,(B;) if B =0and g,(8;) > 0,
—g,(Bi) if B =0and g,(8) <0

gives the violation of the optimality. After considering all situations, we know that

B; is optimal for (3.10) if and only if v; = 0,

here G % o "r
w =, iy L ¥ 5 h
’ &, = = B
D o< —Uand g,(5) <0,
Y <

) >0,

(3.18)

v;

i - h'?-_ o
If 3 is unconstrained (i.e., U = &:)fﬂ,jen]'ffeduces to the minimum-norm sub-

gradient used in L1-regularized problems. Based on it, Yuan et al. (2010)) derive their

stopping condition and shrinking scheme. We follow them to use a similar stopping
condition.

v Il < elvlls, (3.19)

where v and v* are the initial violation and the violation in the k-th iteration, respec-
tively. Note that v¥’s components are sequentially obtained via (3.18) in [ coordinate

descent steps of the k-th iteration.
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For shrinking, we remove bounded variables (i.e., 8; = 0, U, or —U) if they may
not be changed at the final iterations. Following Yuan et al. (2010), we use a “tighter”
form of the optimality condition to conjecture that a variable may have stuck at a

bound. We shrink f; if it satisfies one of the following conditions.

Bi= 0 and g (8) < —M < 0 < M < g/(3,), (3.20)
Bi=U and g,(3) < —M, or (3.21)
Bi=—U and g,(5;) > M, (3.22)
where
M, =maxy (3.23)

%
=

is the maximal violation of the mpreviou's' iteration. The condition (3.20) is equivalent

"\-\..

to

Bi= O and — ¢ —}-—J\/_[_<L|('.QF — i <e =M. (3.24)

e |
This is almost the same as the ofie useéd ing¥uan| et al. (2010) see Equation (32) in that

thesis. However, there are some dll%frences FlHt because they solve Ll-regularized
SVC, € in - becomes the constant_one. Se_conai; they scale M to a smaller value.
Note that M used in f con.trols how- aggressive our shrinking scheme is. In
Chapter we will investigate the effect of using different M values.

For L2-loss SVR, «; is not upper-bounded in the dual problem, so becomes
the only condition to shrink variables. This makes L2-loss SVR have less opportunity
to shrink variables than L1-loss SVR. The same situation has been known for L2-loss
SVC.

In Chapter [3.2.1, we pointed out some redundant operations in calculating the
projected gradient of fa(a™,a™). If 0 < 8; < U, we have o = f; and o; = 0. In

this situation, Equation (3.7)) indicates that for finding the maximal violation of the
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optimality condition, we only need to check VF fa(e) rather than V7, f4(ax). From

and (3.17),
Vifale) = (QB —y)i +e=d,(B).

This is what we checked in (3.18) when 0 < 8 < U. Therefore, no operations are
wasted.

Algorithmis the overall procedure to solve . In the beginning, we set M = oo,
so no variables are shrunk at the first iteration. The set 7" in Algorithm [ includes
variables which have not been shrunk. During the iterations, the stopping condition of
a smaller problem of T' is checked. If it is satisfied but 7" is not the full set of variables,
we reset T to be {1,...,1}; see the if-else statement in step of Algorithm . This
setting ensures that the algorithm Stopé'-only "z;-fter the stopping condition for problem

(3.9) is satisfied. Similar approaches have been used in LIBSVM (Chang and Lin, 2011)

and some solvers in LIBLINEAR. [ _ I'J. )
Yal =Xy
=l

: <= |
3.3 Difference Between Llneq“ and Nonlmear SVR

b | |
The discussion in Chaptets|3.2:1H3 |conclules thiat a; and a; should be solved

together rather than separately Interestlngly, for nonhnear (kernel) SVR, |Liao et al.
(2002) argue that the opposite is better. They consider SVR with a bias term, so the

dual problem contains an additional linear constraint.

Because of this constraint, their coordinate descent implementation (called decompo-
sition methods in the SVM community) must select at least two variables at a time.

They discuss the following two settings.

1. Considering fa(a) and selecting 7,7 € {1,...,2l} at a time.
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2. Selecting 7,5 € {1,...,l} and then updating o}, o, ozj, and «; together. That

is, a four-variable subproblem is solved.

The first setting corresponds to ours in Chapter [3.2.1) while the second is related to
that in Chapter [3.2.2 We think Liao et al,| (2002)) prefer the first because of the
following reasons, from which we can see some interesting differences between linear

and nonlinear SVM.

1. For nonlinear SVM, we can afford to use gradient information for selecting the
working variables; see reasons explained in Chapter 4.1 of Hsieh et al.| (2008).
This is in contrast to the sequential selection for linear SVM. Following the
gradient-based variable selection, \Liao etsal' (2002, Theorem 3.4) show that if an
optimal (;")* > 0, then & rema-ins zél;o in./the final iterations without being
selected for update. ;Fhe situation fora; )" % 0is similar. Therefore, their
coordinate descent algorithm 1¢Bhﬁtllyﬂa§ a shrinking implementation, so the

| |

first concern discussed in Chalp}er is,a:,lleviated_.
| - I I !

Figs : i I y
2. Solving a four-variable! subplloiblem is coanl_l_cated. In contrast, for the two-

variable subproblem of @j ‘and" & » we demofistrate in Chapter that a

17

simple closed-form solution is available.

3. The implementation of coordinate descent methods for nonlinear SVM is more
complicated than that for linear because of steps such as gradient-based variable
selection and kernel-cache maintenance, etc. Thus, the first setting of minimizing
fa(a) possesses the advantage of being able to reuse the code of SVC. This is
the approach taken by the nonlinear SVM package LIBSVM (Chang and Lin|
2011), in which SVC and SVR share the same optimization solver. In contrast,

for linear SVC/SVR, the implementation is simple, so we can have a dedicated
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code for SVR. In this situation, minimizing fz(3) is more preferable than f,(c).
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Algorithm 4 Details of Algorithm [3| with a stopping condition and a shrinking im-
plementation.

1.
2.

Given B and corresponding u = 22:1 BiX;.
Set A=0and U = C if L1-loss SVR; A = 1/(2C) and U = oo if L2-loss SVR.

. Compute the Hessian diagonal Q;;, Vi =1,...,L.

M < oo, and compute [|[v°||; by (3.18).
T {1,... 1}
For k=0,1,2,... n: o L‘E'-if‘ﬂ@”ﬁ?ﬁé’:éﬁ_?ﬂ

Jl.'F—'F

6.1. Randomly permu‘&l&'."}-" g
6.2. ForieT i“.f'{:-.”-

B
6.2.1. gpewzmﬁﬂ A i«;—_g;u?%gfﬂ@—e.

T <—~:T\{Z |
contmu

r'-.?_.:'
6.2.6. 5, s S

-'ﬂ’:-
63 T VM /W0 < e 267
Ur={1,...,1}
break
else
T+ {1,...,0}, and M <+ cc.
else

M <+ ||[vF]] o
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CHAPTER IV

Experiments

In this chapter, we compare nonlinear/linear SVR and evaluate the methods de-

scribed in Chapters[[II Two evaluatio? g}iggi% are used. The first one is mean squared
. .“_.:__ i Ay AL

-\..I F= -. o
error (MSE). .,.5'"- gk —-12 e
S = 1 T
2 A= T 2
mean squa wiX;)
s ‘%5 1

The other is squared correlation coe

L]
predicted values y’, R2is definied as
) [P

(520 (5, 00))°

il

- ol

. . "w I-'f'.'-:-I ™ l{:} I...:'I.-
4.1 Experimental Settings" T il
Sy oy () g

We consider the following data sets in our experiments. All except CTR are publicly

available at LIBSVM data set[l]

e MSD: We consider this data because it is the largest regression set in the UCI

Machine Learning Repository (Frank and Asuncion) 2010)). It is originally from

Bertin-Mahieux et al| (2011). Each instance contains the audio features of a

song, and the target value is the year the song was released. The original target

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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value is from 1922 to 2011, but we follow [Bertin-Mahieux et al.| (2011)) to linearly

scale it to [0, 1].

e TFIDF-2006, LOG1P-2006: This data set comes from some context-based analysis
and discussion of the financial condition of a corporation (Kogan et al., 2009)H
The target values are the log transformed volatilities of the corporation. We use

records in the last year (2006) as the testing data, while the previous five years

(2001-2005) for training.

There are two different feature representations. TFIDF-2006 contains TF-IDF
(term frequency and inverse document frequency) of unigrams, but LOG1P-2006
contains

. =
log (1t TE)
where TF is the ternifrequency-ef unigraans and bigrams. Both representations

also include the wvolatility in the_'; ;;g‘lj rhq)nths as an additional feature.
| ” - -

18

o CTR: The data set is/from aniI ternet:company. Hach feature vector is a binary
5 = 1

representation of a web pagel and_amsadvertisement block. The target value is

the click-through-rate (CTR) defined as (#-clicks) /(#page views).

e KDD2010b: This classification problem comes from KDD Cup 2010. The class
label indicates whether a student answered a problem correctly or not on a online
tutoring system. We consider this problem because of several reasons. First,
we have not found other large and sparse regression problems. Second, we are
interested in the performance of SVR algorithms when a classification problem

is treated as a regression one.

2The raw data are available at http://www.ark.cs.cmu.edu/10K/.
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Table 4.1: Data set statistics: #non-zeros means the number of non-zero elements
in all training instances. Note that data sets are sorted according to the
number of features.

#instances #non-zeros
Data training  testing Heatures in training range of y
MSD 463,715 51,630 90 41,734,346 0, 1]
TFIDF-2006 16,087 3,308 150,360 19,971,015 [—7.90,—0.52]
LOG1P-2006 16,087 3,308  4,272227 96,731,839 [—7.90, —0.52]
CTR 11,382,195 208,988 22,510,600 257,526,282 [0, 1]
KDD2010b 19,264,097 748,401 29,890,095 566,345,888 {0,1}

The numbers of instances, features, nonzero elements in training data, and the range
of target values are listed in Table 4.1 Except MSD, all others are large sparse data.

We use the zero vector as the initial solution of all algorithms. All implementations
are in C++ and experiments are conducted on a64-bit machine with Intel Xeon 2.0GHz
CPU (E5504), 4MB cache, and 32GB main melzlln.lory. Programs used for our experiment

can be found at http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html.

4.2 A Comparison Betwegri%p DCD Algorithms

I m |
Our first experiment is'to com;:)aLe two DCD implementations (Algorithms [ and
| |

4)) so that only the better one is/usedsfor subseémence analysis. For this comparison,
we normalize each instance to a unit vector and censider L1-loss SVR.
Figure presents results using parameters C' = 1 and € = 0.1. The z-axis is

the training time, and the y-axis is the relative difference to the dual optimal function

value.
fale) = fa(a”)
|fala®)] 7

where a* is the optimum solution. We run optimization algorithms long enough to get

(4.1)

an approximate fa(a*). In Figure [4.1 DCD-1 and DCD-1-sh are Algorithm [2] with-
out/with shrinking, respectively. DCD-2, and DCD-2-sh are the proposed Algorithm

[ If shrinking is not applied, we simply plot the value (4.1 once every eight itera-
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tions. With shrinking, the setting is more complicated because the stopping tolerance
¢, affects the shrinking implementation; see step [6.3|in Algorithm [dl Therefore, we run
Algorithms [2| and 4| several times under various €, values to obtain pairs of (training
time, function value).

Results show that DCD-2 is faster than DCD-1. Because the training time (z-axis)
is in log-scale, the difference is significant. This observation is consistent with our
discussion in Chapter that Algorithm 2] suffers from some redundant operations.
We mentioned that shrinking can reduce the overhead and this is supported by the
result that DCD-1-sh becomes closer to DCD-2-sh. Based on this experiment, we only
use Algorithm [ in subsequent analysis.

This experiment also reveals how useful thlé_ shrinking technique is. For both Algo-
rithms 2| and 4] we clearly observeshat shrinking Ver.y effectively reduces the training

time. " e

7 ::.". |
i

| _' -1 |
4.3 A Comparison BethTn Ilti‘ff'ef:u; and Nonlinear SVR
I | ¢ :
= | |
We wrote in Chapter [[] that tklei motivatioL? '!of this'research work is to check if
for some applications linear SV.R can give competi-i::ive MSE/R? with nonlinear SVR,
but enjoy faster training. In this chapter, we compare DCD for linear SVR with the
package LIBSVM (Chang and Lin, [2011)) for nonlinear SVR.

For LIBSVM, we consider RBF kernel, so @);; in Equation (2.5)) becomes
Qi = e~ Ixi=x417

where v is a user-specified parameter. Because LIBSVM’s training time is very long, we
only use 1% training data for MSD, and 0.1% training data for CTR and KDD2010b.
We conduct five-fold cross validation to find the best C € {274,273 ... 206} ¢ €

{2710 278 272} and y € {278,277 ..., 2°}. For LIBSVM, we assign 16GB memory
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Figure 4.1: Relative difference to the dual optimal function values of L1-loss SVR using
C =1 and € = 0.1. Data instances are normalized to unit vectors. DCD-1-
sh and DCD-2-sh are DCD-1 and DCD-2 with shrinking, respectively. Both

r-axis and y-axis are in log scale.
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Table 4.2: Testing MSE and training time using DCD for linear SVR and LIBSVM for
nonlinear SVR with RBF kernel. Parameter selection is conducted by five-
fold CV. Time means training time in seconds. Because LIBSVM’s running
time is long, for some data, we use only subsets for training.

Data (percentage Linear (DCD) RBF (LIBSVM)

for training) e C MSE time e C v  MSE time
MSD (1%) 2=T 25 00153 2.38| 2% 2° 273 0.0129 186
TFIDF-2006 2710 26 (02031 26.29| 276 26 20 0.1965 3,847.42
LOG1P-2006 24 21 01422 1214|271 21 20 (0.1381 16,046.7
CTR (0.1%) 276 273 0.0296 0.05| 2% 272 20 0.0294 15.19
KDD2010b (0.1%) | 2=* 27! 0.0979 0.07| 276 20 20 0.0941 95.07

space for storing recently used kernel elements (called kernel cache). We use stopping
tolerance 0.1 for both methods although their stopping conditions are slightly different.
Each instance is normalized to ajunit vector.

In Table we obserye that_for.all datf; .sets except:MSD, nonlinear SVR gives
only marginally better MSE than linear SVR,.but the training time is prohibitively

long. Therefore, for these data sets, hne@VR is more appealing than nonlinear SVR.
l"-f" |

4.4 A Comparison Betwee'n T'I?ON \and DED on Data with /without

Normalization % | |

TRON and DCD are the two methods discussed in Chapter for training linear
SVR. We compare them in this chapter. We also check if their behavior is similar to
when they are applied to linear SVC. Because TRON is not applicable to L1-loss SVR,
L2-loss SVR is considered here.

A common practice in document classification is to normalize each feature vector
to have unit length. Because the resulting optimization problem may have a better
numerical condition, this normalization procedure often helps to shorten the training
time. We will investigate its effectiveness for regression data.

We begin with comparing TRON and DCD on the original data without normal-
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ization. Figure shows training time versus the relative difference to the optimal

primal function value.
fw) = f(w")
[flws)]

Although DCD solves the dual problem, we can obtain a corresponding primal value
using w = X7 3. Primal values obtained in this way may not be decreasing, so DCD’s
curves in Figure 4.2 fluctuate. Because practically users apply TRON or DCD under
a fixed stopping tolerance, we draw two horizontal lines in Figure to indicate the
result using a typical tolerance value. We use €, = 0.001 in and €, = 0.1 in (3.19).

We observe that DCD outperforms TRON when data have more features. For MSD,
which has only 90 features, DCD’s primal function value is so unstable that it does
not reach the stopping condition for dralwing ﬂ;e horizontal line. A primal method like
TRON is more suitable for this data set because of the smaller number of variables.
In contrast, KDD2010b has 29 mllhol}_ﬁeatul;(is and DCD is much more efficient than

|
TRON. This result is consistent Wltllniheﬂfﬁatlbn in classification (Hsieh et al., [2008]).

Figures [4.3) and [4.4] presént teStltl
in Figure [4.2] DCD is better than 'IlRlON for datllal| Wlth more features.

MSE=and Z% respectlvely Similar to the results

Next, we compare TRON and DCD on data tormalized to have unit length. Results
of function values, testing MSE, and testing R? are respectively shown in Figures
[4.7] From Figures and [4.5] both methods have shorter training time for normalized
data. For example, for CTR, DCD is 10 times faster, while TRON is 1.6 times faster.
DCD becomes very fast for all problems including MSD. Therefore, like the classification
case, if data have been properly normalized, DCD is generally faster than TRON.

We can compare Figures[4.1] and [£.5] to check the effect of shrinking for L1-loss and
L2-loss SVR. Clearly, shrinking is more useful for L1-loss SVR as discussed in Chapter

2.2.2l
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Figure 4.2: Relative differences to the optimal primal function value of L2-loss SVR
using C' = 1 and € = 0.1. Original data without normalization are used.
The dotted and solid horizontal lines respectively indicate the function

values of TRON using €, = 0.001 in (3.2)) and DCD using €, = 0.1 in (3.19)).
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values of TRON using e, = 0.001 in and DCD using €, = 0.1 in (3.19)).
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35



<
o
=
S
.
=
(v}

<

o

=
~

=
=

«--< DCD-sh
— DCD — DCD
--- TRON --- TRON

Correlation Coefficient
f=l
o
[}

Correlation Coefficient

0.00
10~

100 107 107 10° 10 101 R 10
Time (sec.) Time (sec.)

(a) MSD (b) TFIDF-2006

0.6 ; T ; 0.04

=
e}
&
+

S04 K
e-- DCD-sh P

--- TRON |,

Correlation Coefficient
Correlation Coefficient
f=l f=l
2 B
)
Q
w)
b

A = . 0.00 : = -
10° 10! 10 10% 10* 10° 10! 10 10% 10*
Time (sec.) Time (sec.)

(c) LOGIP-2006 " A L 9 ) aTr

=
o

=
=

Correlation Coefficient

10t 10° 108 10t 10°
Time (sec.)

(e) KDD2010b

Figure 4.7: R? of L2-loss SVR. Settings are the same as those in Figure .

36



Table 4.3: MSE without and with data normalization. Parameter selection is only
applied to the normalized data because the running time is too long for the
original data.

Original Normalized Normalized +

Data C=1,¢e=0.1|C=1,e=0.1| parameter selection

MSE MSE | C € MSE
MSD 0.01474 0.01651 | 2° 2719 0.01573
TFIDF-2006 0.15170 0.38568 | 26 2710 (.38315
LOG1P-2006 0.15606 0.15192 | 2% 2710 (.13882
CTR 0.02951 0.03020 | 2* 27% 0.02852
KDD2010b 0.08350 0.08206 | 2=t 2710 0.07750

To compare the testing performance without/with data normalization, we show
MSE in Table 13l We use TRON because DCD fails on MSD if it is not normalized.
An issue of the comparison between Figures and is that we use C' = 1 and
e = 0.1 without parameter selectionsWe trlli(:zd to éonduct parameter selection but
can only report results of-the mormalized data. The running time is too long for

the original data. From Table [4.3] e?(cém: TEIDF-2006, normalization does not cause

inferior MSE values. This result ijldicat:q's.; that \foxtthe_practical use of linear SVR,

data normalization is a useful prepli"o'cessing prq'cgdure.

4.5 With and Without the BiasTerm in the SVR Prediction
Function

We omit the bias term in the above discussion because we suspect that it has little
effect on the performance. LIBLINEAR supports a common way to include a bias term

by appending one more feature to each data instance.

x;TF — [xiT, 1] wl [WT, b].

We apply TRON on normalized data sets to compare MSE values with and without

the bias term. With the stopping tolerance e, = 0.001, the results in Table show
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Table 4.4: MSE of L2-loss SVR with and without the bias term.

Data without bias with bias
MSD 0.01651 0.01479
TFIDF-2006 0.38568 0.38573
LOG1P-2006 0.15192 0.16919
CTR 0.03020 0.03031
KDD2010b 0.08206 0.09699

that MSE values obtained with/without the bias term are not very different. Results

in Table also support this finding because LIBSVM solves SVR with a bias term.

4.6 Aggressiveness of DCD’s Shrinking Scheme

In Chapter [3.2.2] we introduced DCD’s shrinking scheme with a parameter M
defined as the maximal violation of the 'optim'@:lity condition. We pointed out that the
smaller M is, the more aggressivesthe shrinking miethod is, To check if choosing M by

the way in (3.23)) is appropriate, we' 'c'_ohmparelf t:ﬁ'e followihg settings.
2 A~

Ne=ad |
~— L |

| 1 -
1. DCD-sh: The method in Chaq)tlrr using M defined in (3.23)).
| s J.\ | I E

A 1 §
2. DCD-nnz: M is replaced:by !]\}(/ 7, Wherellilp is theraverage number of non-zero

feature values per instance:™
3. DCD-n: M is replaced by M/n.

Because

M M
—<T<J\47
n n

DCD-n is the most aggressive setting, while DCD-sh is the most conservative.

Using L1-loss SVR, Figure 4.8 shows the relationship between the relative difference
to the optimal dual function value and the training time. Results indicate that most
data sets need a more aggressive shrinking strategy. However, if L2-loss SVR is applied

instead, Figure [4.9 shows different results. Except CTR, aggressive shrinking strategies
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make the results worse. A possible reason is that less variables are shrunk for L2-loss
SVR (see explanation in Chapters and [4.4), so an aggressive strategy may wrongly

shrink some variables.
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Figure 4.8: A comparison of three shrinking settings. L1-SVR with C' =1 and € = 0.1
is applied on normalized data. We show the relative difference to the dual
optimal function values and training time (in seconds).
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CHAPTER V

Discussions and Conclusions

In this thesis, we extend LIBLINEAR’s SVC solvers TRON and DCD to solve large-
scale linear SVR problems. The extension for TRON is straightforward, but is not
trivial for DCD. We propose an efficient DCD method:to solve a reformulation of the
dual problem. Experiments showuthat many propetties of TRON and DCD for SVC
still hold for SVR.

An interesting future research dirécﬁ&:‘s:‘iq apply coordinate descent methods for
L1-regularized least-square regressic!)q:, Wh_li'_c_}_l has'been shown to be related to problem
(3-9). However, we expect: some dilff_;arences beéafus_e the former is a primal problem,
while the latter is a dual problem.

If e = 0, L2-loss SVR is reduced to regularized least-square regression (also called

ridge regression by |Hoerl and Kennard, 1970). The dual problem ({3.9) becomes a

Table 5.1: L1-/L2-loss SVR and regularized least-square regression. Regularized least-
square regression is the same as L2-loss SVR with € = 0.

Dat L1-loss SVR L2-loss SVR Least square
ara e C MSE time e C MSE time| C' MSE time
MSD 24 21 0.0149 24.1(2710 20 0.0149 160.9| 2! 0.0147 7.1

TFIDF-2006 (2710 26 0.2030 33.2|27%10 26 0.2251  36.7| 20 0.2250 37.2
LOG1P-2006| 2=* 2! 0.1421 17.0(2710 22 0.1389  14.1| 2! 0.1383 9.8
CTR 276 271 0.0287 306.7| 278 2% 0.0287 1049.9| 2° 0.0283 119.8
KDD2010b | 27* 2! 0.0826 253.9|271° 271 0.0775 105.7|27! 0.0775 105.2
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simple unconstrained quadratic problem. Both our TRON and DCD implementations
can be applied to the situation of ¢ = 0, so we conduct a preliminary comparison
between linear SVR and least-square regression in Table [5.1] Regularized least-square
regression gives similar MSE to L2-loss SVR. This result seems to indicate that for
these data sets, if L2 loss is considered, there is no need to consider the e parameter.
For L1-loss SVR and least square regression, the difference is more significant because
of different loss functions. Whether similar observations hold for other large sparse
data is an interesting research problem. Due to the lack of large regression data sets,
we have not been able to conduct more experiments. We hope this work can motivate

more studies and more public data in the near future.

TS LT
I (1 ...l : :
In summary, we have succ_es_s'%ully -‘dé;monfgatedrtbat for some document data, the
_ v ; Bk
" P > 9 :
proposed methods can eﬂi‘é}entlylt inear S hile achieve comparable testing er-

&Y oy <70
rors to nonlinear SVR. \];%Tas!ed"’_ thi (s‘Ehfz, anded the package LIBLINEAR

(after version 1.9) to suppert large-
\.._\_l
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APPENDIX A. Linear Convergence of Algorithm

To apply results in (Tseng and Yun| (2009), we first check if problem ({3.9)) is covered

in their study. T'seng and Yun| (2009) consider

min F'(f3) + eP(8), (A1)

where F(3) is a smooth function and P(f3) is proper, convex, and lower semicontinuous.

We can write (3.9)) in the form of (A.1]) by defining

18], if —U < B <UVi,

L .
x3. . otherwise.

—

‘seng and Yun| (2009) propose a

reqprm%_co

general coordinate desbentﬁm thod certain rules are applied to select a

e )
subset of variables for upd_%lze rule dtgom th h: allr-vl indices in one iteration
wIE .
is a special case of “Gauss-Se»@’e 1 i Hgﬁ‘ thesis. If each time only one
,_,f &
variable is updated, the subp*ro lem t df' thelr Qrdmate descent method is
= o e
£ ...I'_r SmeEgaie)-
VZ-F([‘})(S—BZ-)—F%H(s—ﬁi)2+e|s| if —U<s<U,
min (A.2)
%) otherwise,

where H is any positive value. Because we use H = Qy;, if Q;; > 0, then (3.10) is a
special case of (A.2). We will explain later that Q; = 0 is not a concern.

Next, we check conditions and assumptions required by Theorem 2(b) of

(2009). The first one is

IVE(B1) = VE(By)|| < L[|B1 — B[, VB1, B2 € {B | F(B) < oo}
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Because F'(3) is a quadratic function, this condition easily holds by setting the largest
eigenvalue of (Q as L. We then check Assumption 1 of Tseng and Yun| (2009), which
requires that

A< Qi < AV, (A.3)

where A > 0. The only situation that (A.3)) fails is when x; = 0 and L1-loss SVR is
applied. In this situation, B7Q/3 is not related to B; and the minimization of —y;3; +

€|B;| shows that the optimal 5} is
(

U if —y;+e€<0,
Bi=9-U if —yi—e>0, (A4)

Okl othé_rwise.

\

We can remove these variables before applying DCb', so (A3 is satisﬁed.ﬂ

For Assumption 2 in Tseng and Y@‘-.(QOQQ),.We need fo show that the solution set

f -I-II

of is not empty. For L1-loss ﬁ\fR;:gﬂéWmI Weierstrass’ Theorem, the compact
feasible domain (8 € [=U;U]" ih1'pl ies 11% exlisi;tence of'eptimal solutions. For 1.2-
loss SVR, the strictly quadffa.’:cic Iclofllvex E(3) !'ilnqplies that {B | F(B) +eP(B) <
F(B°) +eP(B")} is compact, Wher.e B%is any vactor: Therefore, the solution set is also
nonempty. Then Lemma 7 in Tseng and Yun! (2009) implies that a quadratic L(3)
and a polyhedral P(83) make their Assumption 2 hold.

Finally, by Theorem 2(b) of [Tseng and Yun| (2009)), {3*} generated by Algorithm

globally converges and {fz(3%)} converges at least linearly.

Acknowledgments

! Actually, we do not remove these variables. Under the IEEE floating-point arithmetic, at the first
iteration, the first two cases in are co and —oo, respectively. Then, projects the value
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