
國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

大規模線性支持向量迴歸

Large-scale Linear Support Vector Regression

何家華

Chia-Hua Ho

指導教授：林智仁 博士

Advisor: Chih-Jen Lin, Ph.D.

中華民國 101年 6月

June, 2012



i



中文摘要

在機器學習中，支持向量迴歸(SVR)與支持向量分類(SVC)是常見的方法，但是
使用再生核函數後，他們的訓練過程常常很費時。近年來的研究發現，不使用再
生核函數的線性SVC在特定領域上有良好的準確度以及快速的訓練及預測時間。
然而，很少研究是著重在線性的SVR上。我們在這篇論文將快速的線性SVC訓練演
算法拓展到線性SVR上。這些方法中，有些方法可以直接套用，有些方法則需要
一些調整。實驗結果發現，我們提出的線性SVR訓練方法可以快速地產生和非線
性SVR一樣好的模型。

關鍵詞: 大規模學習, 支持向量迴歸.
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ABSTRACT

Support vector regression (SVR) and support vector classification (SVC) are pop-

ular learning techniques, but their use with kernels is often time consuming. Recently,

linear SVC without kernels has been shown to give competitive accuracy for some ap-

plications, but enjoys much faster training/testing. However, few studies have focused

on linear SVR. In this thesis, we extend state-of-the-art training methods for linear

SVC to linear SVR. We show that the extension is straightforward for some methods,

but is not trivial for some others. Our experiments demonstrate that for some prob-

lems, the proposed linear-SVR training methods can very efficiently produce models

that are as good as kernel SVR.

KEYWORDS: large scale learning, support vector regression.
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CHAPTER I

Introduction

Support vector regression (SVR) is a widely used regression technique (Vapnik,

1995). It is extended from support vector classification (SVC) by Boser et al. (1992).

Both SVR and SVC are often used with the kernel trick (Cortes and Vapnik, 1995),

which maps data to a higher dimensional space and employs a kernel function. We

refer to such settings as nonlinear SVR and SVC. Although effective training methods

have been proposed (e.g., Chang and Lin, 2011; Joachims, 1998; Platt, 1998), it is well

known that training/testing large-scale nonlinear SVC and SVR is time consuming.

Recently, for some applications such as document classification, linear SVC without

using kernels have shown to give competitive performances, but training and testing

are much faster. A series of studies (e.g., Hsieh et al., 2008; Joachims, 2006; Keerthi

and DeCoste, 2005; Shalev-Shwartz et al., 2007) have made linear classifiers (SVC and

logistic regression) an effective and efficient tool. On the basis of this success, we

are interested in whether linear SVR can be useful for some large-scale applications.

Some available document data come with real-valued labels, so for them SVR rather

than SVC must be considered. In this thesis, we develop efficient training methods

to demonstrate that, similar to SVC, linear SVR can sometimes achieve comparable

performance to nonlinear SVR, but enjoys much faster training/testing.

We focus on methods in the popular package LIBLINEAR (Fan et al., 2008), which
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currently provides two types of methods for large-scale linear SVC.1 The first is a

Newton-type method to solve the primal-form of SVC (Lin et al., 2008), while the

second is a coordinate descent approach for the dual form (Hsieh et al., 2008). We

show that it is straightforward to extend the Newton method for linear SVR, but some

careful redesign is essential for applying coordinate descent methods.

LIBLINEAR offers two types of training methods for linear SVC because they com-

plement each other. A coordinate descent method quickly gives an approximate so-

lution, but may converge slowly in the end. In contrast, Newton methods have the

opposite behavior. We demonstrate that similar properties still hold when these train-

ing methods are applied to linear SVR.

This thesis is organized as follows. In Chapter II, we give the formulation of linear

SVR and discuss some differences between SVC and SVR. In Chapter III, we investigate

two types of optimization methods for training large-scale linear SVR. In particular,

we propose a condensed implementation of coordinate descent methods. We conduct

experiments in Chapter IV on some large regression problems. A comparison between

linear and nonlinear SVR is given, followed by detailed experiments of optimization

methods for linear SVR. Chapter V concludes this work.

1We mean standard SVC using L2 regularization. For L1-regularized problems, the solvers are
different.
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CHAPTER II

Linear Support Vector Regression

Given a set of training instance-target pairs {(xi, yi)}, xi ∈ Rn, yi ∈ R, i = 1, . . . , l,

linear SVR finds a model w such that wTxi is close to the target value yi. It solves

the following regularized optimization problem.

min
w

f(w) (2.1)

where

f(w) ≡ 1

2
wTw + C

l∑
i=1

ξε(w; xi, yi),

C > 0 is the regularization parameter, and

ξε(w; xi, yi) =

max(|wTxi − yi| − ε, 0) or (2.2)

max(|wTxi − yi| − ε, 0)2 (2.3)

is the ε-insensitive loss function associated with (xi, yi). The parameter ε is given so

that the loss is zero if |wTxi−yi| ≤ ε. We refer to SVR using (2.2) and (2.3) as L1-loss

and L2-loss SVR, respectively. It is known that L1 loss is not differentiable, while

L2 loss is differentiable but not twice differentiable. An illustration of the two loss

functions is in Figure 2.1. Once problem (2.1) is minimized, the prediction function is

wTx.

Standard SVC and SVR involve a bias term b so that the prediction function is

wTx + b. Recent works on large-scale linear classification often omit the bias term

3



wTxi − yi
0

loss

−ε ε

L2

L1

Figure 2.1: L1-loss and L2-loss functions.

because it hardly affects the performance on most data. We omit a bias term b in

problem (2.1) as well, although in Chapter 4.5 we briefly investigate the performance

with/without it.

It is well known that the dual problem of L1-/L2-loss SVR is

min
α+,α−

fA(α+,α−) subject to 0 ≤ α+
i , α

−
i ≤ U,∀i = 1, . . . , l, (2.4)

where

fA(α+,α−)

=
1

2
(α+−α−)TQ(α+−α−) +

l∑
i=1

(
ε(α+

i +α−i )−yi(α+
i −α−i )+

λ

2
((α+

i )2+ (α−i )2)
)
.

(2.5)

In Equation (2.5), Q ∈ Rl×l is a matrix with Qij ≡ xTi xj,

λ =

 0

1
2C

, and U =


C if L1-loss SVR,

∞ if L2-loss SVR.

We can combine α+ and α− so that

α =

α+

α−

 and fA(α) =
1

2
αT

 Q̄ −Q

−Q Q̄

α +

εe− y

εe + y


T

α, (2.6)
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where Q̄ = Q+λI, I is the identity matrix, and e is the vector of ones. In this thesis,

we refer to (2.1) as the primal SVR problem, while (2.4) as the dual SVR problem. The

primal-dual relationship indicates that primal optimal solution w∗ and dual optimal

solution (α+)∗ and (α−)∗ satisfy

w∗ =
l∑

i=1

((α+
i )∗ − (α−i )∗)xi.

An important property of the dual problem (2.4) is that at optimum,

(α+
i )∗(α−i )∗ = 0,∀i.

This result can be easily proved by seeing that the function value in (2.5) can become

smaller if both α+
i and α−i are subtracted by a positive constant.

2.1 Differences Between SVC and SVR

SVR is very similar to SVC, although they differ in several aspects. These differ-

ences are not specific to the linear case, but we list them here to help our subsequent

discussion.

1. Labels versus target values: SVC considers class label y ∈ {+1,−1} rather

than a real number.

2. Loss functions: The loss function of SVC is

max(0, 1− yiwTxi) or max(0, 1− yiwTxi)
2.

In classification, we hope ywTx ≥ 1, but in regression we would like to have

−ε ≤ wTx− y ≤ ε.

Consequently, SVR has one more parameter ε than SVC. Parameter selection for

SVR is thus more time consuming.

5



3. Number of dual variables: The dual problem of SVR has 2l variables, while

SVC has only l. If a dual-based solver is applied without a careful design, the

cost may be significantly higher than that for SVC.
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CHAPTER III

Optimization Methods for Training Linear SVR

In this chapter, we extend two linear-SVC methods in LIBLINEAR for linear SVR.

The first is a Newton method for L2-loss SVR, while the second is a coordinate descent

method for L1-/L2-loss SVR.

3.1 A Trust Region Newton Method (TRON) for L2-loss SVR

TRON (Lin and Moré, 1999) is a general optimization method for differentiable

unconstrained and bound-constrained problems, where the primal problem of L2-loss

SVR is a case. Lin et al. (2008) investigate the use of TRON for L2-loss SVC and

logistic regression. In this chapter, we discuss how TRON can be applied to solve large

linear L2-loss SVR.

The optimization procedure of TRON involves two layers of iterations. At the k-th

outer-layer iteration, given the current position wk, TRON sets a trust-region size ∆k

and constructs a quadratic model

qk(s) ≡ ∇f(wk)T s +
1

2
sT∇2f(wk)s

as the approximation to f(wk + s)− f(wk). Then, in the inner layer, TRON solves the

following problem to find a Newton direction under a step-size constraint.

min
s

qk(s) subject to ‖s‖ ≤ ∆k. (3.1)
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Algorithm 1 A trust region Newton method for L2-loss SVR

1. Given w0.

2. For k = 0, 1, 2, . . .

2.1. If (3.2) is satisfied,

return wk.

2.2. Solve subproblem (3.1).

2.3. Update wk and ∆k to wk+1 and ∆k+1.

TRON adjusts the trust region ∆k according to the approximate function reduction

qk(s) and the real function decrease; see details in Lin et al. (2008).

To compute a truncated Newton direction by solving (3.1), TRON needs the gra-

dient ∇f(w) and Hessian ∇2f(w). The gradient of L2-loss SVR is

∇f(w) = w + 2C(XI1,:)
T (XI1,:w − yI1 − εeI1)− 2C(XI2,:)

T (−XI2,:w + yI2 − εeI2),

where

X ≡ [x1, . . . ,xl]
T , I1 ≡ {i | wTxi − yi > ε}, and I2 ≡ {i | wTxi − yi < −ε}.

However, ∇2f(w) does not exist because L2-loss SVR is not twice differentiable. Fol-

lowing Mangasarian (2002) and Lin et al. (2008), we use the generalized Hessian matrix.

Let

I ≡ I1 ∪ I2.

The generalized Hessian can be defined as

∇2f(w) = I + 2C(XI,:)
TDI,IXI,:,

where I is the identity matrix, and D is an l-by-l diagonal matrix with

Dii ≡


1 if i ∈ I,

0 if i /∈ I.

8



For large-scale problems, we can not store an n-by-n Hessian matrix in the memory.

The same problem has occurred in classification, so Lin et al. (2008) applied an iterative

method to solve (3.1). In each inner iteration, only some Hessian-vector products are

required and they can be performed without storing Hessian. We consider the same

setting so that for any vector v ∈ Rn,

∇2f(w)v = v + 2C(XI,:)
T (DI,I(XI,:v)).

For the stopping condition, we follow the current setting in LIBLINEAR to check if

the gradient is small enough in compared to the initial gradient.

‖∇f(wk)‖2 ≤ εs‖∇f(w0)‖2, (3.2)

where w0 is the initial iterate and εs is stopping tolerance given by users. Algorithm

1 gives the basic framework of TRON.

Similar to the situation in classification, the most expensive operation is the Hessian-

vector product. It costs O(|I|n) to evaluate ∇2f(w)v.

3.2 Dual Coordinate Descent Methods (DCD)

In this chapter, we introduce DCD, a coordinate descent method for the dual form

of SVC/SVR. It is used in LIBLINEAR for both L1- and L2-loss SVC. We first extend

the setting of Hsieh et al. (2008) to SVR and then propose a better algorithm using

properties of SVR.

3.2.1 A Direct Extension from Classification to Regression

A coordinate descent method sequentially updates one variable by solving the fol-

lowing subproblem.

min
z

fA(α + zei)− fA(α)

subject to 0 ≤ αi + z ≤ U.

9



where

fA(α + zei)− fA(α) = ∇ifA(α)z +
1

2
∇2
iifA(α)z2

and ei ∈ R2l×1 is a vector with i-th element one and others zero. The optimal value z

can be solved in a closed form, so αi is updated by

αi ← min

(
max

(
αi −

∇ifA(α)

∇2
iifA(α)

, 0

)
, U

)
, (3.3)

where

∇ifA(α) =


(Q(α+ −α−))i + ε− yi + λα+

i , if 1 ≤ i ≤ l,

−(Q(α+ −α−))i−l + ε+ yi−l + λα−i−l, if l + 1 ≤ i ≤ 2l,

and

∇2
iifA(α) =


Q̄ii if 1 ≤ i ≤ l,

Q̄i−l,i−l if l + 1 ≤ i ≤ 2l.

To efficiently implement (3.3), techniques that have been employed for SVC can be

applied. First, we precalculate Q̄ii = xTi xi + λ,∀i in the beginning. Second, (Q(α+ −

α−))i is obtained using a vector u.

(Q(α+ −α−))i = uTxi, where u ≡
l∑

i=1

(α+
i − α−i )xi.

If the current iterate αi is updated to ᾱi by (3.3), then vector u can be maintained by

u←


u + (ᾱi − αi)xi, if 1 ≤ i ≤ l,

u− (ᾱi−l − αi−l)xi−l, if l + 1 ≤ i ≤ 2l.

(3.4)

Both (3.3) and (3.4) cost O(n), which is the same as the cost in classification.

Hsieh et al. (2008) check the projected gradient∇PfA(α) for the stopping condition

because α is optimal if and only if ∇PfA(α) is zero. The projected gradient is defined

10



Algorithm 2 A DCD method for linear L1-/L2-loss SVR

1. Given α+ and α−. Let α=

[
α+

α−

]
and the corresponding u=

∑l
i=1(αi − αi+l)xi.

2. Compute the Hessian diagonal Q̄ii, ∀i = 1, . . . , l.

3. For k = 0, 1, 2, . . .

• For i ∈ {1, . . . , 2l} // select an index to update

3.1. If |∇P
i fA(α)| 6= 0

3.1.1. Update αi by (3.3), where (Q(α+ −α−))i is evaluated by uTxi.

3.1.2. Update u by (3.4).

as

∇P
i fA(α) ≡



min(∇ifA(α), 0) if αi = 0,

max(∇ifA(α), 0) if αi = U,

∇ifA(α) if 0 < αi < U.

(3.5)

If ∇P
i fA(α) = 0, then (3.3) and (3.5) imply that αi needs not be updated. We show

the overall procedure in Algorithm 2.

Hsieh et al. (2008) apply two techniques to make a coordinate descent method

faster. The first one is to permute all variables at each iteration to decide the order for

update. We find that this setting is also useful for SVR. The second implementation

technique is shrinking. By gradually removing some variables, smaller optimization

problems are solved to save the training time. In Hsieh et al. (2008), they remove

those which are likely to be bounded (i.e., 0 or U) at optimum. Their shrinking

strategy can be directly applied here, so we omit details.

While we have directly applied a coordinate descent method to solve (2.4), the

procedure does not take SVR’s special structure into account. Note that α+ and α−

in (2.5) are very related. We can see that in the following situations some operations

in Algorithm 2 are redundant.

11



1. We pointed out in Chapter II that an optimal α of (2.4) satisfies

α+
i α
−
i = 0,∀i. (3.6)

If one of α+ or α− is positive at optimum, it is very possible that the other is

zero throughout all final iterations. Because we sequentially select variables for

update, these zero variables, even if not updated in steps 3.1.1–3.1.2 of Algorithm

2, still need to be checked in the beginning of step 3.1. Therefore, some operations

are wasted. Shrinking can partially solve this problem, but alternatively we may

explicitly use the property (3.6) in designing the coordinate descent algorithm.

2. We show that some operations in calculating the projected gradient in (3.5) are

wasted if all we need is the largest component of the projected gradient. Assume

α+
i > 0 and α−i = 0. If the optimality condition at α−i is not satisfied yet, then

∇P
i+lfA(α) = ∇i+lfA(α) = −(Q(α+ −α−))i + ε+ yi + λα−i < 0.

We then have

0 < −∇i+lfA(α) = (Q(α+ −α−))i − ε− yi − λα−i

< (Q(α+ −α−))i + ε− yi + λα+
i = ∇ifA(α), (3.7)

so a larger violation of the optimality condition occurs at α+
i . Thus, when α+

i > 0

and α−i = 0, checking ∇i+lfA(α) is not necessary if we aim to find the largest

element of the projected gradient.

In the next chapter, we propose a better coordinate descent method for SVR by com-

bining α+ and α− to a vector α+ −α−.

12



3.2.2 A New Coordinate Descent Method by Solving α+ and α− Together

Using the property (3.6), the following problem replaces (α+
i )2 +(α−i )2 in (2.5) with

(α+
i − α−i )2 and gives the same optimal solutions as the dual problem (2.4).

min
α+,α−

1

2
(α+−α−)TQ(α+−α−) +

l∑
i=1

(
ε(α+

i +α−i )− yi(α+
i −α−i ) +

1

2
(α+

i −α−i )2
)
. (3.8)

Further, Equation (3.6) and α+
i ≥ 0, α−i ≥ 0 imply that at optimum,

α+
i + α−i = |α+

i − α−i |.

With Q̄ = Q+ λI and defining

β = α+ −α−,

problem (3.8) can be transformed as

min
β

fB(β) subject to − U ≤ βi ≤ U,∀i, (3.9)

where

fB(β) ≡ 1

2
βT Q̄β − yTβ + ε‖β‖1.

If β∗ is an optimum of (3.9), then

(α+
i )∗ ≡ max(β∗i , 0) and (α−i )∗ ≡ max(−β∗i , 0)

are optimal for (2.4).

We design a coordinate descent method to solve (3.9). Interestingly, (3.9) is in

a form similar to the primal optimization problem of L1-regularized regression and

classification. In LIBLINEAR, a coordinate descent solver is provided for L1-regularized

L2-loss SVC (Yuan et al., 2010). We will adapt some of its implementation techniques

here. A difference between L1-regularized classification and the problem (3.9) is that

(3.9) has additional bounded constraints.

13



Assume β is the current iterate and its i-th component, denoted as a scalar variable

s, is being updated. That is, β is a constant vector in the subsequent discussion. Then

the following one-variable subproblem is solved.

min
s

g(s) subject to − U ≤ s ≤ U, (3.10)

where

g(s) = fB(β + (s− βi)ei)− fB(β)

= ε|s|+ (Q̄β − y)i(s− βi) +
1

2
Q̄ii(s− βi)2 + constant. (3.11)

It is well known that (3.11) can be reduced to “soft-thresholding” in signal processing

and has a closed-form minimum. However, here we decide to give detailed derivations

of solving (3.10) because of several reasons. First, s is now bounded in [−U,U ]. Second,

the discussion will help to explain our stopping condition and shrinking procedure.

To solve (3.10), we start with checking the derivative of g(s). Although g(s) is not

differentiable at s = 0, its derivatives at s ≥ 0 and s ≤ 0 are respectively

g′p(s) = ε+ (Q̄β − y)i + Q̄ii(s− βi) if s ≥ 0, and

g′n(s) = −ε+ (Q̄β − y)i + Q̄ii(s− βi) if s ≤ 0.

Both g′p(s) and g′n(s) are linear functions of s. Further,

g′n(s) ≤ g′p(s),∀s ∈ R.

For any strictly convex quadratic function, the unique minimum occurs when the

first derivative is zero. Because g(s) is only piece-wise quadratic, we consider three

cases in Figure 3.1 according to the values of g′p(s) and g′n(s). In Figure 3.1(a), 0 <

g′n(0) < g′p(0), so g(0) is the smallest on the positive side:

g(0) ≤ g(s), ∀s ≥ 0. (3.12)
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s
0−U U

g′p(s)

g′n(s)

s∗

(a) 0 < g′n(0) < g′p(0).

s
s∗ = 0

g′p(s)

g′n(s)

−U U

(b) g′n(0) ≤ 0 ≤ g′p(0).

s
0

g′p(s)

g′n(s)

s∗

−U U

(c) g′n(0) < g′p(0) < 0.

Figure 3.1: We discuss the minimization of (3.10) using three cases. The y-axis in-
dicates the value of g′p(s) and g′n(s). The point s∗ denotes the optimal
solution.
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For s ≤ 0, g′n(s) = 0 has a root because the line of g′n(s) intersects the x-axis. With

(3.12), this root is the minimum for both s ≤ 0 and s ≥ 0. By solving g′n(s) = 0 and

taking the condition 0 < g′n(0), the solution of (3.10) is

βi −
−ε+ (Q̄β − y)i

Q̄ii

if − ε+ (Q̄β − y)i > Q̄iiβi. (3.13)

We also need to take the constraint s ∈ [−U,U ] in Equation (3.10) into account. If

the value obtained in (3.13) is smaller than −U , then g′n(s) > 0,∀s ≥ −U . That is,

g(s) is an increasing function and the minimum is at s = −U .

The situation is similar in Figure 3.1(c), where the minimum occurs at g′p(s) = 0.

For the remaining case in Figure 3.1(b),

g′n(0) ≤ 0 ≤ g′p(0). (3.14)

Inequalities in (3.14) imply that g(s) is a decreasing function at s ≤ 0, but is an

increasing function at s ≥ 0. Thus, an optimal solution occurs at s = 0. A summary

of the three cases shows that the subproblem (3.10) has the following closed form

solution.

s← max(−U,min(U, βi + d)), (3.15)

where

d ≡



−g′p(βi)

Q̄ii
if g′p(βi) < Q̄iiβi,

−g′n(βi)

Q̄ii
if g′n(βi) > Q̄iiβi,

−βi otherwise.

(3.16)

In (3.16), we simplify the solution form in (3.13) by using the property

g′p(βi) = ε+ (Q̄β − y)i, and g′n(βi) = −ε+ (Q̄β − y)i. (3.17)

Following the same technique in Chapter 3.2.1, we maintain a vector u and calculate
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Algorithm 3 A new DCD method which solves (3.9) for linear L1-/L2-loss SVR

1. Given β and the corresponding u=
∑l

i=1 βixi.

2. Compute the Hessian diagonal Q̄ii, ∀i = 1, . . . , l.

3. For k = 0, 1, 2, . . .

• For i ∈ {1, . . . , l} // select an index to update

3.1. Find s by (3.16), where (Qβ)i is evaluated by uTxi.

3.2. u← u + (s− βi)xi.
3.3. βi ← s.

(Q̄β) by

(Q̄β)i = uTxi + λβi, where u =
l∑

i=1

βixi.

The new DCD method to solve (3.9) is sketched in Algorithm 3.

For the convergence, we show in Appendix A that Algorithm 3 is a special case of the

general framework in Tseng and Yun (2009) for non-smooth separable minimization.

Their Theorem 2(b) implies that Algorithm 3 converges in an at least linear rate.

Theorem 1 For L1-loss and L2-loss SVR, if βk is the k-th iterate generated by Algo-

rithm 3, then {βk} globally converges to an optimal solution β∗. The convergence rate

is at least linear: there are 0 < µ < 1 and an iteration k0 such that

fB(βk+1)− fB(β∗) ≤ µ(fB(βk)− fB(β∗)),∀k ≥ k0.

For the stopping condition and the shrinking procedure, we will mainly follow the

setting in LIBLINEAR for L1-regularized classification. To begin, we study how to

measure the violation of the optimality condition of (3.10) during the optimization

procedure. From Figure 3.1(c), we see that

if 0 < β∗i < U is optimal for (3.10), then g′p(β
∗
i ) = 0.
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Thus, if 0 < βi < U , |g′p(βi)| can be considered as the violation of the optimality. From

Figure 3.1(b), we have that

if β∗i = 0 is optimal for (3.10), then g′n(β∗i ) ≤ 0 ≤ g′p(β
∗
i ).

Thus, 
g′n(βi) if βi = 0 and g′n(βi) > 0,

−g′p(βi) if βi = 0 and g′p(βi) < 0

gives the violation of the optimality. After considering all situations, we know that

βi is optimal for (3.10) if and only if vi = 0,

where

vi ≡



|g′n(βi)| if βi ∈ (−U, 0), or βi = −U and g′n(βi) ≤ 0,

|g′p(βi)| if βi ∈ (0, U), or βi = U and g′p(βi) ≥ 0,

g′n(βi) if βi = 0 and g′n(βi) ≥ 0,

−g′p(βi) if βi = 0 and g′p(βi) ≤ 0,

0 otherwise.

(3.18)

If β is unconstrained (i.e., U =∞), then (3.18) reduces to the minimum-norm sub-

gradient used in L1-regularized problems. Based on it, Yuan et al. (2010) derive their

stopping condition and shrinking scheme. We follow them to use a similar stopping

condition.

‖vk‖1 < εs‖v0‖1, (3.19)

where v0 and vk are the initial violation and the violation in the k-th iteration, respec-

tively. Note that vk’s components are sequentially obtained via (3.18) in l coordinate

descent steps of the k-th iteration.

18



For shrinking, we remove bounded variables (i.e., βi = 0, U , or −U) if they may

not be changed at the final iterations. Following Yuan et al. (2010), we use a “tighter”

form of the optimality condition to conjecture that a variable may have stuck at a

bound. We shrink βi if it satisfies one of the following conditions.

βi = 0 and g′n(βi) < −M < 0 < M < g′p(βi), (3.20)

βi = U and g′p(βi) < −M, or (3.21)

βi = −U and g′n(βi) > M, (3.22)

where

M ≡ max
i
vk−1
i (3.23)

is the maximal violation of the previous iteration. The condition (3.20) is equivalent

to

βi = 0 and − ε+M < (Q̄β)i − yi < ε−M. (3.24)

This is almost the same as the one used in Yuan et al. (2010); see Equation (32) in that

thesis. However, there are some differences. First, because they solve L1-regularized

SVC, ε in (3.24) becomes the constant one. Second, they scale M to a smaller value.

Note that M used in (3.20)–(3.22) controls how aggressive our shrinking scheme is. In

Chapter 4.6, we will investigate the effect of using different M values.

For L2-loss SVR, αi is not upper-bounded in the dual problem, so (3.20) becomes

the only condition to shrink variables. This makes L2-loss SVR have less opportunity

to shrink variables than L1-loss SVR. The same situation has been known for L2-loss

SVC.

In Chapter 3.2.1, we pointed out some redundant operations in calculating the

projected gradient of fA(α+,α−). If 0 < βi < U , we have α+
i = βi and α−i = 0. In

this situation, Equation (3.7) indicates that for finding the maximal violation of the
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optimality condition, we only need to check ∇P
i fA(α) rather than ∇P

i+lfA(α). From

(3.5) and (3.17),

∇P
i fA(α) = (Q̄β − y)i + ε = g′p(β).

This is what we checked in (3.18) when 0 < β < U . Therefore, no operations are

wasted.

Algorithm 4 is the overall procedure to solve (3.9). In the beginning, we set M =∞,

so no variables are shrunk at the first iteration. The set T in Algorithm 4 includes

variables which have not been shrunk. During the iterations, the stopping condition of

a smaller problem of T is checked. If it is satisfied but T is not the full set of variables,

we reset T to be {1, . . . , l}; see the if-else statement in step 6.3 of Algorithm 4. This

setting ensures that the algorithm stops only after the stopping condition for problem

(3.9) is satisfied. Similar approaches have been used in LIBSVM (Chang and Lin, 2011)

and some solvers in LIBLINEAR.

3.3 Difference Between Linear and Nonlinear SVR

The discussion in Chapters 3.2.1–3.2.2 concludes that α+
i and α−i should be solved

together rather than separately. Interestingly, for nonlinear (kernel) SVR, Liao et al.

(2002) argue that the opposite is better. They consider SVR with a bias term, so the

dual problem contains an additional linear constraint.

l∑
i=1

(α+
i − α−i ) = 0.

Because of this constraint, their coordinate descent implementation (called decompo-

sition methods in the SVM community) must select at least two variables at a time.

They discuss the following two settings.

1. Considering fA(α) and selecting i, j ∈ {1, . . . , 2l} at a time.
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2. Selecting i, j ∈ {1, . . . , l} and then updating α+
i , α−i , α+

j , and α−j together. That

is, a four-variable subproblem is solved.

The first setting corresponds to ours in Chapter 3.2.1, while the second is related to

that in Chapter 3.2.2. We think Liao et al. (2002) prefer the first because of the

following reasons, from which we can see some interesting differences between linear

and nonlinear SVM.

1. For nonlinear SVM, we can afford to use gradient information for selecting the

working variables; see reasons explained in Chapter 4.1 of Hsieh et al. (2008).

This is in contrast to the sequential selection for linear SVM. Following the

gradient-based variable selection, Liao et al. (2002, Theorem 3.4) show that if an

optimal (α+
i )∗ > 0, then α−i remains zero in the final iterations without being

selected for update. The situation for (α−i )∗ > 0 is similar. Therefore, their

coordinate descent algorithm implicitly has a shrinking implementation, so the

first concern discussed in Chapter 3.2.1 is alleviated.

2. Solving a four-variable subproblem is complicated. In contrast, for the two-

variable subproblem of α+
i and α−i , we demonstrate in Chapter 3.2.2 that a

simple closed-form solution is available.

3. The implementation of coordinate descent methods for nonlinear SVM is more

complicated than that for linear because of steps such as gradient-based variable

selection and kernel-cache maintenance, etc. Thus, the first setting of minimizing

fA(α) possesses the advantage of being able to reuse the code of SVC. This is

the approach taken by the nonlinear SVM package LIBSVM (Chang and Lin,

2011), in which SVC and SVR share the same optimization solver. In contrast,

for linear SVC/SVR, the implementation is simple, so we can have a dedicated
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code for SVR. In this situation, minimizing fB(β) is more preferable than fA(α).
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Algorithm 4 Details of Algorithm 3 with a stopping condition and a shrinking im-
plementation.

1. Given β and corresponding u =
∑l

i=1 βixi.

2. Set λ = 0 and U = C if L1-loss SVR; λ = 1/(2C) and U =∞ if L2-loss SVR.

3. Compute the Hessian diagonal Q̄ii, ∀i = 1, . . . , l.

4. M ←∞, and compute ‖v0‖1 by (3.18).

5. T ← {1, . . . , l}.

6. For k = 0, 1, 2, . . .

6.1. Randomly permute T .

6.2. For i ∈ T // select an index to update

6.2.1. g′p ← −yi + uTxi + λβi + ε, g′n ← −yi + uTxi + λβi − ε.
6.2.2. Find vki by (3.18).

6.2.3. If any condition in (3.20)–(3.22) is satisfied

T ← T\{i}.
continue

6.2.4. Find s by (3.16).

6.2.5. u← u + (s− βi)xi.
6.2.6. βi ← s.

6.3. If ‖vk‖1/‖v0‖1 < εs

If T = {1, . . . , l}
break

else

T ← {1, . . . , l}, and M ←∞.

else

M ← ‖vk‖∞.
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CHAPTER IV

Experiments

In this chapter, we compare nonlinear/linear SVR and evaluate the methods de-

scribed in Chapters III. Two evaluation criteria are used. The first one is mean squared

error (MSE).

mean squared error =
l∑

i=1

(yi −wTxi)
2.

The other is squared correlation coefficient (R2). Given the target values y and the

predicted values y′, R2 is defined as(∑
i(y
′
i − E[y′i])(yi − E[yi])

)2

σ2
yσ

2
y′

=

(
l
∑

i y
′
iyi − (

∑
i y
′
i)(
∑

i yi)
)2(

l
∑

i y
2
i − (

∑
i yi)

2
)(
l
∑

i y
′2
i − (

∑
i y
′
i)

2
) .

4.1 Experimental Settings

We consider the following data sets in our experiments. All except CTR are publicly

available at LIBSVM data set.1

• MSD: We consider this data because it is the largest regression set in the UCI

Machine Learning Repository (Frank and Asuncion, 2010). It is originally from

Bertin-Mahieux et al. (2011). Each instance contains the audio features of a

song, and the target value is the year the song was released. The original target

1http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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value is from 1922 to 2011, but we follow Bertin-Mahieux et al. (2011) to linearly

scale it to [0, 1].

• TFIDF-2006, LOG1P-2006: This data set comes from some context-based analysis

and discussion of the financial condition of a corporation (Kogan et al., 2009).2

The target values are the log transformed volatilities of the corporation. We use

records in the last year (2006) as the testing data, while the previous five years

(2001–2005) for training.

There are two different feature representations. TFIDF-2006 contains TF-IDF

(term frequency and inverse document frequency) of unigrams, but LOG1P-2006

contains

log(1 + TF),

where TF is the term frequency of unigrams and bigrams. Both representations

also include the volatility in the past 12 months as an additional feature.

• CTR: The data set is from an Internet company. Each feature vector is a binary

representation of a web page and an advertisement block. The target value is

the click-through-rate (CTR) defined as (#clicks)/(#page views).

• KDD2010b: This classification problem comes from KDD Cup 2010. The class

label indicates whether a student answered a problem correctly or not on a online

tutoring system. We consider this problem because of several reasons. First,

we have not found other large and sparse regression problems. Second, we are

interested in the performance of SVR algorithms when a classification problem

is treated as a regression one.

2The raw data are available at http://www.ark.cs.cmu.edu/10K/.
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Table 4.1: Data set statistics: #non-zeros means the number of non-zero elements
in all training instances. Note that data sets are sorted according to the
number of features.

Data
#instances

#features
#non-zeros

range of y
training testing in training

MSD 463,715 51,630 90 41,734,346 [0, 1]
TFIDF-2006 16,087 3,308 150,360 19,971,015 [−7.90,−0.52]
LOG1P-2006 16,087 3,308 4,272,227 96,731,839 [−7.90,−0.52]
CTR 11,382,195 208,988 22,510,600 257,526,282 [0, 1]
KDD2010b 19,264,097 748,401 29,890,095 566,345,888 {0, 1}

The numbers of instances, features, nonzero elements in training data, and the range

of target values are listed in Table 4.1. Except MSD, all others are large sparse data.

We use the zero vector as the initial solution of all algorithms. All implementations

are in C++ and experiments are conducted on a 64-bit machine with Intel Xeon 2.0GHz

CPU (E5504), 4MB cache, and 32GB main memory. Programs used for our experiment

can be found at http://www.csie.ntu.edu.tw/~cjlin/liblinear/exp.html.

4.2 A Comparison Between Two DCD Algorithms

Our first experiment is to compare two DCD implementations (Algorithms 2 and

4) so that only the better one is used for subsequence analysis. For this comparison,

we normalize each instance to a unit vector and consider L1-loss SVR.

Figure 4.1 presents results using parameters C = 1 and ε = 0.1. The x-axis is

the training time, and the y-axis is the relative difference to the dual optimal function

value.

fA(α)− fA(α∗)

|fA(α∗)|
, (4.1)

where α∗ is the optimum solution. We run optimization algorithms long enough to get

an approximate fA(α∗). In Figure 4.1, DCD-1 and DCD-1-sh are Algorithm 2 with-

out/with shrinking, respectively. DCD-2, and DCD-2-sh are the proposed Algorithm

4. If shrinking is not applied, we simply plot the value (4.1) once every eight itera-
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tions. With shrinking, the setting is more complicated because the stopping tolerance

εs affects the shrinking implementation; see step 6.3 in Algorithm 4. Therefore, we run

Algorithms 2 and 4 several times under various εs values to obtain pairs of (training

time, function value).

Results show that DCD-2 is faster than DCD-1. Because the training time (x-axis)

is in log-scale, the difference is significant. This observation is consistent with our

discussion in Chapter 3.2.1 that Algorithm 2 suffers from some redundant operations.

We mentioned that shrinking can reduce the overhead and this is supported by the

result that DCD-1-sh becomes closer to DCD-2-sh. Based on this experiment, we only

use Algorithm 4 in subsequent analysis.

This experiment also reveals how useful the shrinking technique is. For both Algo-

rithms 2 and 4, we clearly observe that shrinking very effectively reduces the training

time.

4.3 A Comparison Between Linear and Nonlinear SVR

We wrote in Chapter I that the motivation of this research work is to check if

for some applications linear SVR can give competitive MSE/R2 with nonlinear SVR,

but enjoy faster training. In this chapter, we compare DCD for linear SVR with the

package LIBSVM (Chang and Lin, 2011) for nonlinear SVR.

For LIBSVM, we consider RBF kernel, so Qij in Equation (2.5) becomes

Qij ≡ e−γ‖xi−xj‖2 ,

where γ is a user-specified parameter. Because LIBSVM’s training time is very long, we

only use 1% training data for MSD, and 0.1% training data for CTR and KDD2010b.

We conduct five-fold cross validation to find the best C ∈ {2−4, 2−3, . . . , 26}, ε ∈

{2−10, 2−8, . . . , 2−2}, and γ ∈ {2−8, 2−7, . . . , 20}. For LIBSVM, we assign 16GB memory

27



(a) MSD (b) TFIDF-2006

(c) LOG1P-2006 (d) CTR

(e) KDD2010b

Figure 4.1: Relative difference to the dual optimal function values of L1-loss SVR using
C = 1 and ε = 0.1. Data instances are normalized to unit vectors. DCD-1-
sh and DCD-2-sh are DCD-1 and DCD-2 with shrinking, respectively. Both
x-axis and y-axis are in log scale.
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Table 4.2: Testing MSE and training time using DCD for linear SVR and LIBSVM for
nonlinear SVR with RBF kernel. Parameter selection is conducted by five-
fold CV. Time means training time in seconds. Because LIBSVM’s running
time is long, for some data, we use only subsets for training.

Data (percentage Linear (DCD) RBF (LIBSVM)
for training) ε C MSE time ε C γ MSE time
MSD (1%) 2−4 25 0.0153 2.38 2−4 25 2−3 0.0129 4.86
TFIDF-2006 2−10 26 0.2031 26.29 2−6 26 20 0.1965 3,847.42
LOG1P-2006 2−4 21 0.1422 12.14 2−10 21 20 0.1381 16,046.7
CTR (0.1%) 2−6 2−3 0.0296 0.05 2−8 2−2 20 0.0294 15.19
KDD2010b (0.1%) 2−4 2−1 0.0979 0.07 2−6 20 20 0.0941 95.07

space for storing recently used kernel elements (called kernel cache). We use stopping

tolerance 0.1 for both methods although their stopping conditions are slightly different.

Each instance is normalized to a unit vector.

In Table 4.2, we observe that for all data sets except MSD, nonlinear SVR gives

only marginally better MSE than linear SVR, but the training time is prohibitively

long. Therefore, for these data sets, linear SVR is more appealing than nonlinear SVR.

4.4 A Comparison Between TRON and DCD on Data with/without
Normalization

TRON and DCD are the two methods discussed in Chapter III for training linear

SVR. We compare them in this chapter. We also check if their behavior is similar to

when they are applied to linear SVC. Because TRON is not applicable to L1-loss SVR,

L2-loss SVR is considered here.

A common practice in document classification is to normalize each feature vector

to have unit length. Because the resulting optimization problem may have a better

numerical condition, this normalization procedure often helps to shorten the training

time. We will investigate its effectiveness for regression data.

We begin with comparing TRON and DCD on the original data without normal-
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ization. Figure 4.2 shows training time versus the relative difference to the optimal

primal function value.

f(w)− f(w∗)

|f(w∗)|
.

Although DCD solves the dual problem, we can obtain a corresponding primal value

using w = XTβ. Primal values obtained in this way may not be decreasing, so DCD’s

curves in Figure 4.2 fluctuate. Because practically users apply TRON or DCD under

a fixed stopping tolerance, we draw two horizontal lines in Figure 4.2 to indicate the

result using a typical tolerance value. We use εs = 0.001 in (3.2) and εs = 0.1 in (3.19).

We observe that DCD outperforms TRON when data have more features. For MSD,

which has only 90 features, DCD’s primal function value is so unstable that it does

not reach the stopping condition for drawing the horizontal line. A primal method like

TRON is more suitable for this data set because of the smaller number of variables.

In contrast, KDD2010b has 29 million features, and DCD is much more efficient than

TRON. This result is consistent with the situation in classification (Hsieh et al., 2008).

Figures 4.3 and 4.4 present testing MSE and R2, respectively. Similar to the results

in Figure 4.2, DCD is better than TRON for data with more features.

Next, we compare TRON and DCD on data normalized to have unit length. Results

of function values, testing MSE, and testing R2 are respectively shown in Figures 4.5–

4.7. From Figures 4.2 and 4.5, both methods have shorter training time for normalized

data. For example, for CTR, DCD is 10 times faster, while TRON is 1.6 times faster.

DCD becomes very fast for all problems including MSD. Therefore, like the classification

case, if data have been properly normalized, DCD is generally faster than TRON.

We can compare Figures 4.1 and 4.5 to check the effect of shrinking for L1-loss and

L2-loss SVR. Clearly, shrinking is more useful for L1-loss SVR as discussed in Chapter

3.2.2.
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(a) MSD (b) TFIDF-2006

(c) LOG1P-2006 (d) CTR

(e) KDD2010b

Figure 4.2: Relative differences to the optimal primal function value of L2-loss SVR
using C = 1 and ε = 0.1. Original data without normalization are used.
The dotted and solid horizontal lines respectively indicate the function
values of TRON using εs = 0.001 in (3.2) and DCD using εs = 0.1 in (3.19).
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(a) MSD (b) TFIDF-2006

(c) LOG1P-2006 (d) CTR

(e) KDD2010b

Figure 4.3: MSE of L2-loss SVR. Settings are the same as those in Figure 4.2.
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(a) MSD (b) TFIDF-2006

(c) LOG1P-2006 (d) CTR

(e) KDD2010b

Figure 4.4: R2 of L2-loss SVR. Settings are the same as those in Figure 4.2.
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(a) MSD (b) TFIDF-2006

(c) LOG1P-2006 (d) CTR

(e) KDD2010b

Figure 4.5: Relative differences to the optimal primal function value of L2-loss SVR
using C = 1 and ε = 0.1. Data instances are normalized to unit vectors.
The dotted and solid horizontal lines respectively indicate the function
values of TRON using εs = 0.001 in (3.2) and DCD using εs = 0.1 in (3.19).
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(a) MSD (b) TFIDF-2006

(c) LOG1P-2006 (d) CTR

(e) KDD2010b

Figure 4.6: MSE of L2-loss SVR. Settings are the same as those in Figure 4.5.
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(a) MSD (b) TFIDF-2006

(c) LOG1P-2006 (d) CTR

(e) KDD2010b

Figure 4.7: R2 of L2-loss SVR. Settings are the same as those in Figure 4.5.
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Table 4.3: MSE without and with data normalization. Parameter selection is only
applied to the normalized data because the running time is too long for the
original data.

Original Normalized Normalized +
Data C = 1, ε = 0.1 C = 1, ε = 0.1 parameter selection

MSE MSE C ε MSE
MSD 0.01474 0.01651 26 2−10 0.01573
TFIDF-2006 0.15170 0.38568 26 2−10 0.38315
LOG1P-2006 0.15606 0.15192 22 2−10 0.13882
CTR 0.02951 0.03020 24 2−8 0.02852
KDD2010b 0.08350 0.08206 2−1 2−10 0.07750

To compare the testing performance without/with data normalization, we show

MSE in Table 4.3. We use TRON because DCD fails on MSD if it is not normalized.

An issue of the comparison between Figures 4.2 and 4.5 is that we use C = 1 and

ε = 0.1 without parameter selection. We tried to conduct parameter selection but

can only report results of the normalized data. The running time is too long for

the original data. From Table 4.3, except TFIDF-2006, normalization does not cause

inferior MSE values. This result indicates that for the practical use of linear SVR,

data normalization is a useful preprocessing procedure.

4.5 With and Without the Bias Term in the SVR Prediction
Function

We omit the bias term in the above discussion because we suspect that it has little

effect on the performance. LIBLINEAR supports a common way to include a bias term

by appending one more feature to each data instance.

xTi ← [xTi , 1] wT ← [wT , b].

We apply TRON on normalized data sets to compare MSE values with and without

the bias term. With the stopping tolerance εs = 0.001, the results in Table 4.4 show
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Table 4.4: MSE of L2-loss SVR with and without the bias term.
Data without bias with bias
MSD 0.01651 0.01479
TFIDF-2006 0.38568 0.38573
LOG1P-2006 0.15192 0.16919
CTR 0.03020 0.03031
KDD2010b 0.08206 0.09699

that MSE values obtained with/without the bias term are not very different. Results

in Table 4.2 also support this finding because LIBSVM solves SVR with a bias term.

4.6 Aggressiveness of DCD’s Shrinking Scheme

In Chapter 3.2.2, we introduced DCD’s shrinking scheme with a parameter M

defined as the maximal violation of the optimality condition. We pointed out that the

smaller M is, the more aggressive the shrinking method is. To check if choosing M by

the way in (3.23) is appropriate, we compare the following settings.

1. DCD-sh: The method in Chapter 3.2.2 using M defined in (3.23).

2. DCD-nnz: M is replaced by M/n̄, where n̄ is the average number of non-zero

feature values per instance.

3. DCD-n: M is replaced by M/n.

Because

M

n
<
M

n̄
< M,

DCD-n is the most aggressive setting, while DCD-sh is the most conservative.

Using L1-loss SVR, Figure 4.8 shows the relationship between the relative difference

to the optimal dual function value and the training time. Results indicate that most

data sets need a more aggressive shrinking strategy. However, if L2-loss SVR is applied

instead, Figure 4.9 shows different results. Except CTR, aggressive shrinking strategies
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make the results worse. A possible reason is that less variables are shrunk for L2-loss

SVR (see explanation in Chapters 3.2.2 and 4.4), so an aggressive strategy may wrongly

shrink some variables.
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(a) MSD (b) TFIDF-2006

(c) LOG1P-2006 (d) CTR

(e) KDD2010b

Figure 4.8: A comparison of three shrinking settings. L1-SVR with C = 1 and ε = 0.1
is applied on normalized data. We show the relative difference to the dual
optimal function values and training time (in seconds).
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(a) MSD (b) TFIDF-2006

(c) LOG1P-2006 (d) CTR

(e) KDD2010b

Figure 4.9: A comparison of three shrinking settings. L2-SVR is used. Other settings
are the same as those in Figure 4.8.
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CHAPTER V

Discussions and Conclusions

In this thesis, we extend LIBLINEAR’s SVC solvers TRON and DCD to solve large-

scale linear SVR problems. The extension for TRON is straightforward, but is not

trivial for DCD. We propose an efficient DCD method to solve a reformulation of the

dual problem. Experiments show that many properties of TRON and DCD for SVC

still hold for SVR.

An interesting future research direction is to apply coordinate descent methods for

L1-regularized least-square regression, which has been shown to be related to problem

(3.9). However, we expect some differences because the former is a primal problem,

while the latter is a dual problem.

If ε = 0, L2-loss SVR is reduced to regularized least-square regression (also called

ridge regression by Hoerl and Kennard, 1970). The dual problem (3.9) becomes a

Table 5.1: L1-/L2-loss SVR and regularized least-square regression. Regularized least-
square regression is the same as L2-loss SVR with ε = 0.

Data
L1-loss SVR L2-loss SVR Least square

ε C MSE time ε C MSE time C MSE time
MSD 2−4 21 0.0149 24.1 2−10 26 0.0149 160.9 21 0.0147 7.1
TFIDF-2006 2−10 26 0.2030 33.2 2−10 26 0.2251 36.7 26 0.2250 37.2
LOG1P-2006 2−4 21 0.1421 17.0 2−10 22 0.1389 14.1 21 0.1383 9.8
CTR 2−6 2−1 0.0287 306.7 2−8 24 0.0287 1049.9 20 0.0283 119.8
KDD2010b 2−4 21 0.0826 253.9 2−10 2−1 0.0775 105.7 2−1 0.0775 105.2
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simple unconstrained quadratic problem. Both our TRON and DCD implementations

can be applied to the situation of ε = 0, so we conduct a preliminary comparison

between linear SVR and least-square regression in Table 5.1. Regularized least-square

regression gives similar MSE to L2-loss SVR. This result seems to indicate that for

these data sets, if L2 loss is considered, there is no need to consider the ε parameter.

For L1-loss SVR and least square regression, the difference is more significant because

of different loss functions. Whether similar observations hold for other large sparse

data is an interesting research problem. Due to the lack of large regression data sets,

we have not been able to conduct more experiments. We hope this work can motivate

more studies and more public data in the near future.

In summary, we have successfully demonstrated that for some document data, the

proposed methods can efficiently train linear SVR, while achieve comparable testing er-

rors to nonlinear SVR. Based on this study, we have expanded the package LIBLINEAR

(after version 1.9) to support large-scale linear SVR.
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APPENDICES
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APPENDIX A. Linear Convergence of Algorithm 3

To apply results in Tseng and Yun (2009), we first check if problem (3.9) is covered

in their study. Tseng and Yun (2009) consider

min
β
F (β) + εP (β), (A.1)

where F (β) is a smooth function and P (β) is proper, convex, and lower semicontinuous.

We can write (3.9) in the form of (A.1) by defining

F (β) ≡ 1

2
βT Q̄β − yTβ, and P (β) ≡


‖β‖1 if − U ≤ βi ≤ U,∀i,

∞ otherwise.

Both F (β) and P (β) satisfy the required conditions. Tseng and Yun (2009) propose a

general coordinate descent method. At each step certain rules are applied to select a

subset of variables for update. Our rule of going through all l indices in one iteration

is a special case of “Gauss-Seidel” rules discussed in their thesis. If each time only one

variable is updated, the subproblem of their coordinate descent method is

min
s


∇iF (β)(s− βi) + 1

2
H(s− βi)2 + ε|s| if − U ≤ s ≤ U,

∞ otherwise,

(A.2)

where H is any positive value. Because we use H = Q̄ii, if Q̄ii > 0, then (3.10) is a

special case of (A.2). We will explain later that Q̄ii = 0 is not a concern.

Next, we check conditions and assumptions required by Theorem 2(b) of Tseng and

Yun (2009). The first one is

‖∇F (β1)−∇F (β2)‖ ≤ L‖β1 − β2‖, ∀β1,β2 ∈ {β | F (β) <∞}.
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Because F (β) is a quadratic function, this condition easily holds by setting the largest

eigenvalue of Q̄ as L. We then check Assumption 1 of Tseng and Yun (2009), which

requires that

λ ≤ Q̄ii ≤ λ̄,∀i, (A.3)

where λ > 0. The only situation that (A.3) fails is when xi = 0 and L1-loss SVR is

applied. In this situation, βT Q̄β is not related to βi and the minimization of −yiβi +

ε|βi| shows that the optimal β∗i is

β∗i =



U if − yi + ε < 0,

−U if − yi − ε > 0,

0 otherwise.

(A.4)

We can remove these variables before applying DCD, so (A.3) is satisfied.1

For Assumption 2 in Tseng and Yun (2009), we need to show that the solution set

of (A.1) is not empty. For L1-loss SVR, following Weierstrass’ Theorem, the compact

feasible domain (β ∈ [−U,U ]l) implies the existence of optimal solutions. For L2-

loss SVR, the strictly quadratic convex F (β) implies that {β | F (β) + εP (β) ≤

F (β0)+εP (β0)} is compact, where β0 is any vector. Therefore, the solution set is also

nonempty. Then Lemma 7 in Tseng and Yun (2009) implies that a quadratic L(β)

and a polyhedral P (β) make their Assumption 2 hold.

Finally, by Theorem 2(b) of Tseng and Yun (2009), {βk} generated by Algorithm

3 globally converges and {fB(βk)} converges at least linearly.
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