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1 Introduction

Scale invariant quantities are very usefully in studying the asymptotic behaviour of mean curvature because
selfsimilars appear as we do parabolic rescaling near the singularity. In [3] and [4] Huisken and Hamilton both used
scale invariant quantity to rule out grim reaper as the limit of curve shortening flow with compact embedding initial
condition. In [1], Andrews defined § non-collapsing property for mean convex hypersurface in R"*! which is also
scale invariant. He used maximal principle to prove this property is preserved under the mean curvature flow and
reproved Huisken’s celebrated result: every convex hypersurface in R" ™! would converge to a round point under the
mean curvature flow. In the first part of this paper, we follow the calculation in [1] to prove that § non-collapsing is
preserved for mean curvature flows in $S”*!. In the second part we use a similar method to prove the preservation

of certain convexity condition for mean curvature flows in the hyperboloc space.

Definition 1 Let M™ < R™*! be a closed mean-convezshypersurface bounding an open region Q. For x € M, let
vy be the unit outer normal of M at x, H(x) be the mean om"vature and 6 > 0 be a constant. Denote by B(x,d) the
ball with center x — §/H (z)v, and radius 0{.H (z ) J\I is (’alled mterzor 0 mon-collapsing if for all x € M B(x,0) is

contained in 2. Suppose that M is car_we:z:,‘ thew )| is called emtemor §_non-collapsing if Q is contained in B(x,J)

forallz e M. "'h\"l, ln"j‘f_:"‘l
! (Yo | |
Proposition 1 is proved in [1]. | :.‘_-P",.: I

Proposition 1 Let F': [0,T) x M —-REH bI f(m»%)f s'rﬁz/ ol/embeddings evolved by the mean curvature flow.

Suppose that Mo = F(0, M) is interior(ea:zflér;:ibr) Q-noq-colldpsiné; tlien M, = F(t, M) is also interior(exterior) &

non-collapsing for all t € [0,T).

Consider § non-collapsing for mean-convex hypersurfaces in S"*1. Note that the mean curvature of a geodesic

sphere in S"*! with radius r > 0 is ncot(r). Here we define § non-collapsing in S™*1:

Definition 2 Let M™ — S™t! be a closed mean-convex hypersurface and Q is the domain bounded by M. For
x € M, denote by H(z) the mean curvature of M at x, B(z,8) the geodesic ball with center exp,(— cot™(H (z)/8)vs)
and radius cot 1 (H(x)/8). M is interior § non-collapsing if for any x € M, B(z,d) is contained in Q. Suppose

that M is convex, then M is exterior 6 non-collapsing if Q is contained in B(x,d) for all x € M.

In the (n+1)-dimensional hyperbolic space, a horosphere is a hypersurface which is the limit of geodesic spheres,
passing through a same point and whose center goes to infinity along a geodesic. In other words, horospheres are

the umbilic hypersurfaces with mean curvature equal to n.

Definition 3 Let M"™ «— H"! be a closed convex hypersurface, Q be the domain bounded by M and 6 > 0 be a
constant. For any x € M, denote by N, the complete umbilic hypersurface with mean curvature n/d, tangent to M
at © and has the same normal vector with M at x. M 1is called §-convez if Q is enclosed by N, for any x € M. In

particular, a 1-convex hypersurface is supported by horospheres.



The main result of this paper is the following:

Proposition 2 Let F : [0,T) x M™ — S"! be a family of smooth embeddings evolved by the mean curvature flow.
Suppose that Mo = F(0, M) is interior(exterior) § non-collapsing, then M; = F(t, M) is also interior(exterior) §
non-collapsing for all t € [0,T).

Proposition 3 Let F : [0,T) x M™ — H"*! be a family of smooth embeddings evolved by the mean curvature flow.
Assume that My = F(0, M) is §-convex for some 0 < § < 1. Then then M; = F(t,M) is also §-convex for all
tel0,T).

Remark: It is easy to see that d-convexity implies h;; > 0g;;. In [2], it is proved that a closed hypersurface is

1-convex(supported by horoshperes) if and only if h;; > g;.

ol e
A
2 Evolution Equations of MdF m S”JFI LJ-]R””
& = F @
F :[0,T) x M» — S™*1 is a family of : - gfol\}gi | by the mean curvature flow in S+
0 87+ R™+2 s the standarqub«gdd' . P i olF. i ﬁﬁ-e md-uced metric, A = {h;;} be the second

fundamental form, H be the mean curvature a1 i§ outer 10rmal of F (t, M) in S"*1. In the following,
| -

F and v are considered to be ve@_grs*m —Beltr@ml operator and covariant derivative

with respect to the induced metﬁc.'-u.,(.-, ;';r'éll:-]'p%duct and the standard norm in the

P

Euclidean space.

) ) e, .,.-ji-"."
Lemma 1 The evolution equations are:. i

(a) Z£ = AF +nF " .-*Jr _
R s o[

(b) v — Av+ |APv+2HF

(c) ¥ = AH + (|A]* +n)H

proof:

We use normal coordinates in the calculation. Since F' is evolved by MCF on sphere,

OF
o =AF —(ARF)F

and

0=A(F,F)=2(AF,F)+2n

Then we have (a). For (b), to find the component of 2% in each direction, we compute

ov OF 0 oOH
<a’ %> == < @(‘H”>> = o

ov ov
<E,V> =0 and <E’F> =—(v,—Hv)=H




Thus

ov
— =VH+HF
o~ VA

To calculate V,;v

(Vi) =0, (Viv, F) = — <1/, 3—F.> 0

ort
oF oF
<V Vaa ]> _<V»Vz‘%>:hij
So we get Vv = gkmhmi%.
Av =d"¥V.V.v = d9V.,g""h .8F
v=g jViV =g ig TMW
17 m aF m
97 (g" Vihmig T + 9" hmi(—hjrv — g F))

by Codazzi equation

Then we obtain (b)

For (c)

3 0 Non-collapsing in Sn+f .-—--__.?_:_‘,;_,';-::!_E;E.j.y.‘__.lu-t||-

Lemma 2 F : M" < S"* is interior(exterior) § non-collapsing if and only if

Z(wvy) = Héw)

proof:

IF(y) = F@)|* + 6 (F(y) — F(x),v2) 20(0), ¥V z,ye M

It is clear that F(x)—d/H (x)vy and expp ) (—cot ™ (H(z)/d)vs), considered as vectors in R"*+2 are parallel because

tan (cot™'(H(x)/6)) = 6/H(x). So the intrinsic distance on $"*! from a point p to exXpPp(y)(— cot ™ (H(z)/)vy) is

monotone increasing with respect to the extrinsic distance in R"*2 from p to F(x) — §/H (x)v,. Together with

52

H(z) ] ]
H(x)?

IF(y) = F(2) + z—~val® =

Z(a:,y) = H(SC)

Z > 0 if and only in F(y) € B(z,d). The assertion follows.
Let
H(x,t
20t.9) = TED 0y, 1) PG, )12 46 (B, 1) — Pl 0,00

In the following, H and h;; are the mean curvature and second fundamental form at F(z,t).

principle we need the evolution equation of Z(t, x, y).

To use maximal



Lemma 3

0
(E — Ay — Ay)Z
— (AP +0)Z = 20~ ) + 26 55 (F) - Fla). g )+ 20— OHO = (FGLF@) ()

proof:

By direct computation,

Ao Z = A]J (y) = F(@)|” + H(F(y) = F(2), = Ao F(x)) + nH + (Vo H, Vo | F(y) — F(2)|*)
+O(—ALF(2),vz) + 6 (F(y) — F(x), Agvz) — 2(V . F(2), Vavy) (2)
AyZ = H (F(y) = F(x), AyF(y)) +nH + 5 (A, F(y), v) (3)
and
: 1~" MO g,
G = = ) (F)SF( )1? (1)~ AcF (@) + nHIF() - F@)
AZ - P
+8 (A Fy) = Ao F (), ) + nd (), vg) + Jj(;qr) Agvy + |APv, + 2HF (z)) (4)
&Y
So we get "-m Y - -
(% A —AZ = 1 : +25ﬁi‘j‘<F(y) — F(z), F(z))
= ]
- >‘+ %H
2 l‘ \"I
— (AP +n)Z —2(n — aw : ‘> +\2 n—G8)H(1— (F(y), F(x)))
e, . 1 O
Zogspenels

Lemma 4 At a critical point of Z we can choose a normal coordznate( with respect to the product metric) {07, 8;-’ i=1

such that 07 = 07, j =1,2,...n —1 as vectors in R"™*2 at this critical point.

In the remaining of this section, we always use this normal coordinate to calculate at critical points.
proof:
It is sufficient to show that T, M N T, M is a subspace with dimension at least n — 1. Let N = (F(z) — 6/Huv;).

Since V,Z = 0,
1) 1)
Fly) = F@) + ve LT,M = F(y) = F(z) + 2, € span{F(y), v}
= N € span{F(y),v,} = T,M, T,M C N*
Then the assertion follows. O

At a critical point of Z let v, be a unit vector orthogonal to Ty M and N. Also let ¥, be a unit vector orthogonal

to Ty M, and N. We have Span{F'(y), v, } =Span{N, 7, } and Span{F(z),v,} =Span{N, 7, }. Thus

b .
F(y) = F(2) + 7ve = pvy + ;2N (5)



Lemma 5 The spacial part of L is subelliptic at critical points of Z.

proof:

First note that the differential operator is independent of coordinate choice. If {9%,9%,... 92 8~1y ,8%’ ... .,52} is

»Yno

another coordinate. Let 8;’5 = Al0F and dY = Bi9Y. Then

.- 92
supzvo [ gr gy
Iz 9y <8ﬂ’8”> 0TP0”
_ —1\v — —1\o 71 j T _qs T 82
= (A" (B~ (A™)(B ) A, BL AL BLgY g} <8i’8jy>7axkayl

ik 5l Y 82
=9z 9y <ai ’aj> koYl



At a critical point the spacial part of L corresponds to the matrix

1 1

1 (07, 07)

(0, 0%) 1

If (0%,0Y) € (—1,1), then the eigenspaces with eigenvalue 0 or 2 are n-1 dimensional. And the remaining two

n’-n

eigenvalues are 1 + (07,0Y) and 1 — (0%,0Y). If (0%, 0%) =
i e ‘»ﬂ‘{

S

dimensional.

proof:

Z .
7.ay_7

The general form of 55—

0Z 10H

90 " za0 n)|*5 H ¢
9’z  oH 2 @il ? N . i
5oty = a <“' & 3‘F>‘ 00.07) + 89" i (22, 07)

at a critical point of Z

9?7 = [oH
gk git (07, 0Y) S oy~ Z <@ (F(y) = F(x),0Y) — H + 5hjj)

o (F(y) = F(2), (9,05 0%) — (03.07)" H = 303, 05)"

Combining (1) and (7), we have

Z = (AP 4+n)Z — 2(H — 6hpy) (0%, 5,)°

+2% (F(y) — F(x),0,) (0%, i) + 2(n — §)H(1 — (F(y), F(2)))
From 0 = (%—Zn we get
O 2P (y) ~ @) (H — o) (Fly) ~ F(2).07)
From (5)
(F() = F(@),i3) = (F) - Fa), (F) — F(a) + 2w, = 2)

+1, then the eigenspaces with eigenvalue 0 or 2 are n

O



7 1 P2
= g5t Z—MIIF(y) - F(2)]? - E<F(y) — F(x),N)

Put them together

297 (P y) — F(@), ) 07, 74)
— 41| F(y) — F(a)|~2 (piH 2o lF ) = Pl - 2 (r(y) - F<x>,N>) (H = Shan) (07,7,
— 4P () - F(x)ﬂ*zHT(””"m (02, 53)° Z 1 2(H — 5hy) (05, 7,)°

4pall P(y) — F(@)[|2(H — 5hun) (92, 5,)* (F(y) — F(), N)
Insert (9) into (8)
17 = (|A|2 4P - P e 5 ) 7

~4p2| F(y) = F(@)||7>(H = Shan) (05, 7,)* <€(y)—F( ), N) +2(n = 0)H(1 = (F(y), F(z)))

Together with

we have

—4/72(

Let | = ||F(y) — F(z) + §/Hv,||, then Z‘-Gé,nfoe expteswd Ersfg-Z 43&/’; — 62/H?). By the cosine law
Cieg JERe Il
()N =1 (R (124 (14 62/ 12%) - )
1. 62 -1
=5l =57
Plug (12) into (11)

is obtained.
proof of proposition 2:

Because

|P2| =

(P~ P+ e V)[04 82/ < @+ /04 8%/1)

for any 0 < 7 < T, there is a constant C' > 0 such that

le(z,y,t)] ==

2y H = Oh H ) 2
A+ a e (o )<a"’ ROE F<w>||> (L p2)) <

7



for all (x,y,t) € M x M x [0,7]. Let Z = e~ “*Z. Suppose that Z > 0 as t = 0 and that Z attains —e < 0 first time

at (zo,yo,t0), to < 7. By the above lemma, we have
0> LZ = (c— C)Z + e 2(n — 6)H(1 - (Flyo), F(0)))

>(c—=C)(—¢)>0

It is a contradiction. In the second inequality we use the fact that Z > 0 implies 6 < n. So Z > 0 for all ¢ € [0, 7].
Since T is arbitrary we get Z > 0 for all t € [0,T). Hence we know that interior 4 non-collapsing is preserved.
Similarly, suppose that Z < 0 as ¢t = 0 and that Z attains ¢ > 0 first time at (xo,%0,%0), to < 7. By the above
lemma, we have

0<LZ=(c—C)Z+e “2n

In this section, (,) is the stancf;i}d Innér = (p,p) for all p € R*TL1,

Just like above, we can embed § .‘she sp {E;E RHLL 2 |pl|2 = —1}. Let F :

[0,T) x M™ — H" " — RFLL be.a t?-ml the rma.an curvature flow in H" 1. Let g;; be

the induced metric , A = {h;;} be Eh_e éécon ] ' be the }’hean curvature and v be the unit outer

normal vector of F(¢,M). In the followng' :fE‘EhIS'-'SQCtIOIl b:.('ac ana eﬁre considered to be vectors in R™+1:1,

'..-'..-

Lemma 7 Then the evolution equations are: J'L'.n" o 12 TS &1
(a) &L = AF —nF
(b) 2 5 = Av+ |A|?v — 2HF
(¢) 4 = AH + (|A? —n)H
proof:
Since F is evolved by MCF in H"*!,
OF
=AF + (AF,F
e +¢ ) F

and

= A(F,F)=2(AF,F)+2n

ov OF 0 OH
<aa7> == <”’%<‘H”>> s

ov v
<E,V> =0, <E,F> =—(v,—Hv)=H

Then we have (a). For (b)




Thus

@ =VH-HF
ot
oF
iV =Y % »F = - y - ) =
(Viv,v) =0, (Vv F) <V8m1> 0
By
oF oF
<Vi”v@>:—<”’vi%>=hw
we have V,v = gkmhmi%.
Av = g9V, Vi = g9V g5 b O
V_g J z’/_g jg sz
iJ m oF m
9 (" Vihmiz % + ¢ " hni (= hjrv + g F))

by Codazzi equation
=VH — ]_}4|21/ + HF
g *-'! :ﬁ':“ﬂ"ﬂ""":“‘i{"&';'éf e

then we obtain (b) e B

For (c)
ot
=
= H
o - .y
S = —g*g (2 g, VGN) = A+ (AP - ) H
8\ V& 4 =
Note that d-convexity of F: M™ — H"HL <R L4 s equi¥q:l.enf'. -
i =" & = SN

Zo = 3| F(y) “BEHEHBIE) - F(2),v.) <0

Lemma 8 At a critical point of Zy, we can choose a mormal coordinate {8;”,8;’};;1 (with respect to the product
metric) such that 07 = 8;-’, j=1,2,....n—1 as vectors in R4 at this point. And we also have (9%,0Y) = 1 if

§=1and0< (9%,0Y) <1if0<b<1.

proof:

Following the same argument in section 3, we have T, M N T, M is at least n-1 dimensional. Let N = F(z) — dv,.
0% and 0Y lie in the 2-dimensional subspace 7 = {9%,0%,...,0%_;,N}*. If § = 1, then N is a null vector and the
restrict inner product on 7 degenerates. So we can choose (0%,0%) = 1. For 6 < 1, N is a timelike vector and 7 is
isometric to R%. Thus (9%,9¢) <1 O

By the above lemma, the spacial part of operator L defined in section 3 is still subellptic. Note that if NV is spacelike

then it is not necessarily subelliptic since (97, 9%) might be grater than 1.
Lemma 9 Assume Zy > —2(1 — /1 — 62) at a critical point, then

1
LZo = (|A]” = n)Zo = 5= (n|A* = 20nH +n?)|[F(y) — F()||*



proof:

ANpZy = <F(y) - F(w)a _AacF(x» +n+0 <_A90F(x)7 Vac) + <F(y) - F(x)v Axl/x> —20H
AyZo = (F(y) = F(z), AyF(y)) +n+ 6 (AyF(y), va)
5 = FW) = F2), Ay F(y) = AaF(2)) = || Fy) — F@)|I” +0(AyFy) — ApF(x), va)

-nd <F(y) - F(LL’),VE> =+ 6<F(y) - F(x)»Asz + |A|2Vm - 2HF>

So
0 2
(a — Ay —Ay)Zy = (|A]* —n)Zo
|A|2 2 N 2 2
5 1E@) = F@)I” = 5IF(y) = F@)|" + SH||F(y) - F2)|* - 2n + 26H
And at a critical point ,_'.l,llr_ S EhE B 1{

8

-

Zly

@} F(m'f axjgétz-ah’?mfyg F(z

Then we have

5:' H; . i'r :
8f§‘=ﬁ ;@abwm”}‘

If (=14 8hpn) # 0, then 0F L F(y). So T.M C {F(y), N}*. Because F(y) is parallel to N if and only if Z; =
—2(1 —+/1-482), F(y) and N are linearly independent. Then T, M = span{F(y), N}* = T, M and (9%,9%) = 1

In both cases we have

1
LZo = (|A]” = n)Zo = 5=(n|A|* = 20nH +n?)|[F(y) — F(=)||*

proof of proposition 3:

For the case d =1, fix 0 < 7 < T. There is a constant C' > 0 such that
(|AP —n)| < C

in M x [0,7]. Let Zg = e “*Z;. By My is l-convex we know Zg < 0 ast = 0. If Zy = ¢ > 0 first time at

(0, Yo,t0) € M x M x [0, 7], by lemma 9 we have at (xo, yo, to)
_ - 1
0< LZy < (JA] =n—C)Zy — ™' —(H =n)?|[F(y) = F@)|* < (JA" =n = C)e <0

10



It is a contradiction. So Zy and Zy remain nonpositive in [0, 7]. Thus Z, remains nonpositive as long as the solution
exists.

For the case § < 1,
_ _ 1
0<LZ < (|A|2—n—C)Zo—e_m%(H—n)zIIF(y)—F(ﬂc)ll2—2%_“(1—5)15T||F(y)—F(af)ll2 <(|AP-n—-C)e <0

we use that 1-convexity implies H > n > 0 in the second inequality. Then the result follows. O

11
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