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摘摘摘要要要

本論文為手寫字辨認設計兩項新的幾何規則，並將原有的特徵表示

法做推廣，在應用霍氏模型的方法中得到較好的配對結果。除了手寫

字辨認以外，我們也提出許多符合現今需求的新應用，本論文所提供

的方法能夠繼續發展以解決這些更複雜的應用。

曲橢圓特徵模型適合用來表現複雜的幾何型態，這些特徵點在幾何

上擁有許多規則，我們可以應用霍氏模型記憶這些規則以達成特徵點

的配對。設計更多不同的幾何規則能提升識別率，也能解決許多不同

類型的型態辨識問題。

關鍵字：手寫字辨識、樣式辨識、霍氏模型、幾何規則、曲橢圓特

徵
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Abstract

There are two similarities constructed in earlier works [1], [2], named
inter-feature similarity and inter-link similarity. This work rewrites geomet-
rical relations [3] and constructs them into Hopfield model to improve the
matching result.

Constructing a set of bended-ellipse features is an efficient way for sam-
pling cursive patterns. It converts a pattern into structural features and pro-
vides a natural way for handprinted characters recognition. The idea which
called feature-to-feature adhesion constructs a topological configuration for
a pattern and transforms it into an undirected graph. The compatibility asso-
ciated with the graph is then formulated as an optimization problem and is
solved by a devised Hopfield network.

Keyword : Handprinted character recognition, Pattern recognition, Hop-
field model, Geometrical relation, Bended-ellipse feature
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Chapter 1

Introduction

Handprinted character recognition is an important application in our life. Many of tech-

nology products nowadays such as smart phone and tablet PC allow users use handwriting

as input. The recognition system for license plate or the postal codes are also the familiar

applications of the handprinted character recognition system.

There are several different methods to accomplish handprinted character recognition.

For Chinese characters, a familiar way to recognize them is to find their radicals first

because these radicals are limited and the recognition are relatively easy. However, most

of those methods have a common defect that they usually require precise extraction of

features and radicals [4], [5], [6]. In the feature-to-feature adhesion method developed

by Liou and Yang [7], they do not segment a pattern into radicals in advance. Instead of

extracting radicals of a pattern, they calculate the probability of each template radical to

be in the character and find the relation between radicals. Then use a Hopfield network

[8] to solve a maximization problem collectively, and use neural network to complete

the classification of characters finally. This method can be applied to not only character

recognition, but also many other pattern recognition tasks while the pattern can be divided

into small components.
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In order to generate the features for template radicals and the patterns, Liou and Yang

use the bended-ellipse features [9]. Each feature of a radical or a pattern is represented by

a five dimensional vector which including the coordinates, the direction, the angle, and

the lengths information. Once the features are generated, they will find the topological

relations between those features. They simply obtain a feature-to-feature (FTF) order

by define the “neighbor” of the features. In this way the geometrical relation will be

preserved. Each FTF order can be represented by a symmetric matrix.

After obtaining bended-ellipse features and FTF order information, we can begin the

classification. It is achieved by measuring the compatibility of every radical with the

handprinted pattern and standard pattern. The standard pattern which minimizes the dis-

similarity is the classification result. For this purpose, Liou and Yang define two similarity

measurements called inter-feature similarity and inter-link similarity to measure the com-

patibility. The inter-feature similarity measures the similarity between two features and

the inter-link similarity measures whether both corresponding feature pairs are neighbors.

Together with these two similarities, the computing of compatibility can be formulated as

an optimization problem, which can be solved by a developed Hopfield network.

The original feature-to-feature adhesion method uses only two similarities for clas-

sification. There are some other relations of features can be included for more accurate

match. In this paper, we improve the method by making some changes to original rules

and adding new similarities among features. We also give some other applications of this

method by reuse the calculated similarities.

The rest of the paper is organized as follows. In chapter 2 we introduce the feature-

to-feature adhesion method, including bended-ellipse features, FTF order, and the details
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of the classification. In chapter 3 we give new conditions and changes for classifying im-

provement. Chapter 4 discusses some new applications and shows our results. Chapter 5

provides summary and conclusion.
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Chapter 2

Feature-to-Feature Adhesion Method

We will review the original feature-to-feature adhesion method in this section. There

are two major steps in this method and we will discuss them in the following three sub-

sections. In the first and the second subsection we introduce the method for generating

bended-ellipse features and feature-to-feature order for a given radical or a pattern [9].

In the third subsection we show how to use above information and a devised Hopfield

network to achieve the classification.

2.1 Bended-Ellipse Features

Chinese characters are composed by limited radicals. Some radicals may have similar

shapes but in fact they are in different sizes or locations in characters. Fig. 2.1 shows two

examples that radicals appear in different patterns. We should regard them as different

template radicals. This means each radical should be shifted and normalized according to

its position and size in characters. The shapes of these radicals are relatively easy and we

want to decompose them into small features.

We choose L template radicals R1,R2, . . . ,RL. Each radical is composed of a set of

features. For a given radical Rj , 1 ≤ j ≤ L, we will generate Lj bended-ellipse features.
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日 星 韻 影 響 朝 陽 

口 合 唱 如 同 燈 塔  

Figure 2.1: Chinese charaters with radicals in different locations or sizes.

So we can write Rj = {rjl |1 ≤ l ≤ Lj}, where rjl is the lth feature vector of the jth

template radical.

Now we discuss the method used to generate the bended-ellipse feature fields. Given

a radical Rj , we choose Lj seeds pj` , 1 ≤ ` ≤ Lj . pj` is usually obtained by uniformly

sampling along the skeleton of the radical. We then find the most significant directions

(MSDs) for each seed. A direction (with respect to a seed) is an MSD if the length of the

line extending from the seed in this direction is a local maximum. The line must not pass

unprinted area. Without loss of generality, we subsample all the direction in [0, 2π) to

decrease the computation. Subsample by every angle 2π
72

is a typical choice for preserving

accuracy. We grow lines from the seed along these directions and stop growing when the

lines reach the boundary. Fig. 2.2(a) shows an example of finding MSD lines of a given

seed. The two bold lines in the example are the MSD lines. They are roughly along the

strokes of the character.

Define L̄j`(α) be the line segment begins from seed pj` along direction α and ends at

the boundary. Let |L̄j`(α)| denote the length of L̄j`(α). Using the following rule, we can
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Figure 2.2: (a) The MSD lines. (b) The bended-ellipse feature (five dimensional vector).

find the MSDs of pj`:

Direction α is a MSD if

1

2w + 1

w∑
q=−w

|L̄j`(α + q · π
36

)| > 1

2w + 1

w∑
q=−w

|L̄j`(α + (q + o) · π
36

)| and

1

2w + 1

w∑
q=−w

|L̄j`(α + q · π
36

)| > 1

2w + 1

w∑
q=−w

|L̄j`(α + (q − o) · π
36

)|

for o = 1, ..., O (2.1)

where w and O are constants. w is used to control the window size for averaging and O

decides the range of selecting the maximum. We use w = 1 and O = 1 in our work. If α

is an MSD, we call L̄j`(α) an MSD line. Fig. 2.2(a) shows two MSD lines.

After obtaining the MSD lines, we are ready for generating bended-ellipse features.

Recall that we picked Lj seeds from the jth template radical Rj and we will generate Lj

bended-ellipse features {rjl |1 ≤ l ≤ Lj}. Note that each seed may create more than one

feature. So we have Lj ≥ Lj . These bended-ellipse features can be represented by five-

dimensional vectors as follows. Let rjl = [xjl , y
j
l , u

j
l , φ

j
l x̂
j
l , φ

j
l ŷ
j
l ] be the five-dimensional

vector. Without loss of generality we may assume that rjl is generated from the seed pj` .
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The elements xjl and yjl in rjl are the coordinates of seed pj` . Let rjl
′
and rjl

′′
be the lengths

of the two MSD lines. We set

ujl =
rjl
′
+ rjl

′′

2
.

be the average length of the two arms. Let φ̃jl , 0 < φ̃jl ≤ π, be the angle between the two

MSD lines. We define

φjl =
π − φ̃jl
π

.

Let (x̂jl , ŷ
j
l ) be the unit vector extends from the seed pj` and equally divides the angle φ̃jl .

Now every element in rjl is well-defined. Fig. 2.2(b) depicts a bended-ellipses feature

example.

Note that we will discard some deformity ellipses. It will exclude several kinds of

noise and decrease the complexity in our later processes. It will speed up the execution

time also. An ellipse with φ̃jl = 0 is a degenerated ellipse that we will discard it. A feature

is also defined as a defect if it has a small arm of the arm ratio is not uniform. More

precisely, we will use the ellipses which satisfy rjl
′
> r∗, rjl

′′
> r∗ and 0.5 ≤ rjl

′
/rjl
′′ ≤ 2,

where r∗ is a constant. In practice we set r∗ to be the stroke width of the template pattern.

If a seed has more than two arms, it will generate more than one bended-ellipse fea-

ture. For example, a seed with 3 arms can generate 3 bended-ellipses. In general, a seed

with na arms, where na ≥ 2, can generate(
na

2

)

bended-ellipses. So a branch will generate C(3, 2) = 3 bended-ellipses and a cross will

generate C(4, 2) = 6 bended-ellipses. Fig. 2.3 gives some examples for indicating that.

We will group the features generated from the same seed to simplify our later processes.
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 口  千  才  木 
2 arms 

3 arms 

4 arms 

5 arms 6 arms 

Figure 2.3: A seed with different arm number can generate more than 2 bended-ellipses.

We have discussed how to generate the bended-ellipse features. After applying the

method to all the template radicals, we get Rj = {rjl |1 ≤ l ≤ Lj} for 1 ≤ j ≤ L. We then

apply the same process to every of N template patterns to obtain Si = {sin|1 ≤ n ≤ N i}

for 1 ≤ i ≤ N , where sin = [xin, y
i
n, u

i
n, φ

i
nx̂

i
n, φ

i
nŷ

i
n] is the nth feature vector of the ith

template pattern. For an unknown handprinted pattern input, we also apply the same pro-

cess to it and we get H = {hm|1 ≤ m ≤M}, where hm = [xm, ym, um, φmx̂m, φmŷm] is

the mth feature vector of the unknown handprinted pattern.

2.2 Feature-to-Feature Order

As soon as we obtain the bended-ellipse features, we can compute the FTF order. This

order will preserve the geometrical relations between features. The idea is from the in-

telligent cell-to-cell adhesion mechanism [10], [11]. Fig. 2.4 sketches the concept of this

mechanism. We give each block a number and keep track of the interface relations be-

tween them. There will be a unique mark on the interface between two connected block.

With these marks, the topological structure can be reconstructed correctly. Fig. 2.4(a)

shows the reconstruction of the character and Fig. 2.4(b) gives the matrix representation

of the feature-to-feature order.

The computation of the FTF order for bended-ellipse features is similar to the concept

8
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Figure 2.4: (a) The scattered blocks. (b) Matrix representation of the topological order.

of the cell-to-cell adhesion mechanism but simpler. In our method the features are similar

to the blocks in Fig. 2.4(a). For a given feature, we define the topological neighbor of

this feature to be the feature which overlaps it. We then set a link between two features

if these two features are topological neighbors. A link is just like a marked adhesion

except it is not a unique mark. The uniqueness is not necessary because our method will

insure there is at most one link between two features. So the only information we need

to know is whether two features are topological neighbors or not. The FTF order can

be represented by an undirected graph, where the vertices stand for the features and the

edges stand for the links. Similar to cell-to-cell adhesion, the links can be represented

by a symmetric matrix. Fig. 2.5 gives one example. We use the same character example

to show the similarities and differences. Note that each node (including the degree one

nodes) in Fig. 2.5(a) stands for a seed.

We apply this method to every template radical Rj , 1 ≤ j ≤ L. For each Rj , the FTF

order we obtained is represented by an Lj × Lj matrix Ψj . Formally, define Ψj(l1, l2) to

be the element in the l1th row and l2th column of matrix Ψj . And define

Ψj(l1, l2) =

{
1, if there is a link between rjl1and rjl2
0, otherwise.

9
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Figure 2.5: (a) Graph representation of the FTF order. (b) Matrix representation of the

FTF order.

The same process is applied to the template patterns and unknown handprinted pattern.

We use an N i × N i matrix Γi to represent the FTF order of the ith template pattern Si

for 1 ≤ i ≤ N and an M × M matrix Y to represent the FTF order of the unknown

handprinted pattern H. Fig. 2.5(b) shows an example, A dark box in the matrix means

that there is a link between the corresponding two seeds.

2.3 Classification

We are now ready for finding the most likely standard pattern for the handprinted charac-

ter. Before we discuss the method of the classification, we list the information we have

known.

• L template radicals Rj = {rjl |1 ≤ l ≤ Lj}, 1 ≤ j ≤ L and Ψj for each Rj .

• 1 unknown handprinted pattern H = {hm|1 ≤ m ≤M} and Y for H.

• N template patterns Si = {sin|1 ≤ n ≤ N i}, 1 ≤ i ≤ N and Γi for each Si.

10



We will compare the compatibility of every Rj with H and every Si, then choose the

most likely template pattern to be the classification result. Formally speaking, let chj be

the compatibility between the jth radical Rj and the handprinted pattern H. We will

discuss the method of computing the compatibility chj later. Let ~ch = [ch1 . . . c
h
L]
T be

the compatibility vector specifies the overall compatibility between H and all radicals

R1 . . .RL. For each template pattern Si, 1 ≤ i ≤ N , we apply the same process to

compute the overall compatibility between Si and all radicals R1 . . .RL. We represent

this overall compatibility by a vector ~ci = [ci1 . . . c
i
L]
T .

Note that the only things we need to compute on-line is the vector ~ch. The compat-

ibilities between every Si and every Rj can be pre-computed off-line, which means that

the vectors ~ci for 1 ≤ i ≤ N can be prepared in advance. Once we obtained ~ch, we

can compute the dissimilarity between the handprinted pattern and every standard pattern

to get the classification result. This dissimilarity, denoted by D(~ch,~ci), 1 ≤ i ≤ N , is

simply defined as

D(~ch,~ci) = ‖~ch − ~ci‖.

We use the template pattern which minimizes the Euclidean distance D(~ch,~ci) as our

classification result.

Now we introduce the method of computing the compatibility between a radical and

a pattern. We begin this by discussing how to measure the compatibility between the

corresponding feature pairs. Here we will introduce the two similarity measurements in

the original feature-to-feature adhesion method. The first similarity, called inter-feature

similarity, measures the similarity between two feature vectors. Let (rjlk ,hmk
), where

11



rjlk ∈ Rj and hmk
∈ H, be one feature pair. We define the inter-feature similarity as

D1(r
j
lk
,hmk

) = −‖rjlk − hmk
‖.

The Euclidean distance indicates the similarity of these two features. The bigger value of

D1 specifies that the two features are more similar. The second similarity is the inter-link

similarity, which measures the similarity between the links of the corresponding feature

pairs. More precisely, let (rjl1 ,hm1) and (rjl2 ,hm2) be the two corresponding feature pairs.

We say that these two feature pairs have high inter-link similarity if

Ψj(l1, l2) = 1 and Y(m1,m2) = 1.

That is, there is a link between rjl1 , r
j
l2

and there is a link between hm1 ,hm2 . Together with

these two similarities, we can define the compatibility between the two corresponding

feature pairs (rjl1 ,hm1) and (rjl2 ,hm2) as follows:

D2(r
j
l1
, rjl2 ,hm1 ,hm2) =


D1(r

j
l1
,hm1 )+D1(r

j
l2
,hm2 )

2
, if Ψj(l1, l2) = 1 and Y(m1,m2) = 1

−µ, otherwise.

(2.2)

where µ is a large positive constant or 0. We set µ = 2 in our work. Note that under this

definition the compatibility of the features is not commutative. That is,

D2(r
j
l1
, rjl2 ,hm1 ,hm2) 6= D2(r

j
l2
, rjl1 ,hm1 ,hm2)

and

D2(r
j
l1
, rjl2 ,hm1 ,hm2) 6= D2(r

j
l1
, rjl2 ,hm2 ,hm1).

It is straightforward to compute the total compatibility between a radical and a pattern.

The way is just summing all the compatibilities of all the corresponding feature pairs.

The key problem is finding the correspondence between the radical features and pattern

12



features. An idea to achieve this goal is solving the subgraph matching problem. Recall

that with the bended-ellipse features and the FTF order, a radical or a pattern can be

represented by an undirected graph (Fig. 2.5(a)). Let the graph of the jth radical Rj be

Gj and the graph of the handprinted pattern H be Gh. The subgraph matching problem is

finding the one-to-one correspondence between the nodes of Gj and Gh.

We will use a route ηj to denote the matched features. Formally we define ηj =

{(rjl ,hml
)|1 ≤ l ≤ Lj}, where hml

is matched to rjl . If the route ηj has been decided,

the total compatibility between Rj and H can be computed using the equation in (2.2).

We note that the point correspondence with maximal overall compatibility should have

the sense that both similarity measurements are relatively large. So we formulate these

objectives as the following optimization problem:

Maximize
∑

1≤l1,l2≤Lj

1≤m1,m2≤M

D2(r
j
l1
, rjl2 ,hm1 ,hm2) (2.3)

This optimization problem can be solved by a Hopfield network [8]. There are some

other works used a Hopfield network to solve the pattern recognition problem without

involving the FTF order [12], [13]. The feature-to-feature adhesion method we used gives

us a topological intuition to formulate the energy function.

We use a connectivity matrix V to represent a route in the Hopfield network. V is

defined as an Lj by M matrix, where the lth row stands for the feature rjl of the radical

Rj , and themth column stands for the feature hm of the handprinted pattern H. This route

will give us the point correspondence we need as soon as the network has converged. Let

Vlm be the element of V in the lth row and the mth column. The value of Vlm is either 1

or 0. Vlm = 1 means that hm is matched to rjl ; otherwise, Vlm = 0. We will check the

state of V after the network converged and add (rjl ,hm) to ηj if Vlm = 1.

13



Note that feature-to-feature can not be one-to-many or many-to-one; moreover, our

objective is solving the optimization problem in (2.3). For these purposes, we need the

matrix V to satisfy the following three rules:

1. There is only one 1 in each row.

2. There is at most one 1 in each column.

3. The overall compatibility according to V is maximal when the network converges.

We can use the following energy function to formulate above constraints:

E =
A

2

∑
l

∑
m1

∑
m2 6=m1

Vlm1Vlm2 +
B

2

∑
m

∑
l1

∑
l2 6=l1

Vl1mVl2m +
C

2

∑
l

(
∑
m

Vlm − 1)
2

−D
2

∑
l

∑
l1 6=l

∑
m

∑
m1 6=m

D2(r
j
l , r

j
l1
,hm,hm1)VlmVl1m1 (2.4)

where A,B,C, and D are constants to be decided. Here the first three terms in (2.4) are

designed to make sure that the matrix V satisfies the first and the second rules [14], and

the last term in (2.4) will make V satisfy the third rule. In the network, the state of V (t)
lm

will change as time goes on. For time step t, the state of V (t)
lm is defined as

V
(t)
lm =

1

2
(1 + tanh(v(t)

lm/v0))

v(t)
lm = v(t−1)

lm +
∂v(t)

lm

∂t
(2.5)

where v0 is a constant. The last term in (2.5) is the equation of motion which changes the

state of the network. This motion equation is defined as

∂vlm
∂t

= −vlm
τ
− A

∑
m1 6=m

Vlm1 −B
∑
l1 6=l

Vl1m − C(
∑
m

Vlm − 1)

+D
∑
l1 6=l

∑
m1 6=m

D2(r
j
l , r

j
l1
,hm,hm1)Vl1m1 (2.6)
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where τ is a constant.

We need set the initial state of V . A reasonable thought is that if two features are

matched, they should have relatively higher inter-feature similarity. So we use the inter-

feature similarity as the criterion to set the initial value of each Vlm. More precisely, we

set V (0)
lm = 1 if D1(r

j
l ,hm) > ε, where ε is the threshold. Else, we set V (0)

lm = 0. We use

ε = 0.5 in practice. Besides, refer to the work from Aiyer et al. [15], we set A = 500,

B = 500, C = 500/Ñ , and D = 500Ñ/80, where Ñ = LjM in our work. Fig. 2.6 gives

one example that we run the Hopfield network and get its converged result. The black box

shows the place of the element which Vlm = 1. We list the matching result on the right

for checking easily. Note that some features may not have a matching feature. We also

give a possible best path on the right bottom as a reference.

  

 

Figure 2.6: A converged result of the Hopfield network.

After running the Hopfield network for the unknown pattern and every template pat-

tern, we get the overall compatibility vectors ~ch = [ch1 . . . c
h
L]
T and ~ci = [ci1 . . . c

i
L]
T for

1 ≤ i ≤ N . For simpler pattern, we use the pattern Si which minimizes D(~ch,~ci) as

our classification result. If the patterns are more complex, we will use a four-layer back-
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Figure 2.7: The concept of the four-layer backpropagation network.

propagation network for the classification [16]. Fig. 2.7 shows the network we use. This

network can speed up by using the method by Liou and Yu [2]. We use ~ci, 1 ≤ i ≤ N as

input to train the network, and obtain the classification result when the network converged.
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Chapter 3

Our improve

We have discussed the original feature-to-feature adhesion method. In the original method,

Liou and Yang [7] considered only two similarity measurements: the inter-feature similar-

ity and the inter-link similarity. In this section, we add two new similarity measurements

for improving the matching result of the Hopfield network. We will introduce them in the

first subsection. Also, we generalize the definition of the bended-ellipse feature for fitting

our application and compare the difference between the original and the new definitions.

We get a trade-off and we discuss this in the second subsection.

3.1 Adding new similarity measurements

Liou and Yang [7] used only the inter-feature similarity and the inter-link similarity in

their classification step. There are a lot of other relations among features that we can use

for classifying. We now discuss two new similarity measurements. First we note that the

inter-link similarity indicates whether there is a link between two features or not, but it

can not tell us the relative direction between them. To solve this problem, we add a new

similarity called inter-direction similarity. This similarity measures the similarity between

the directs of the corresponding feature pairs. Recall that (rjl1 ,hm1) and (rjl2 ,hm2) are the
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two corresponding feature pairs, where rjlk ∈ Rj and hmk
∈ H for k = 1, 2. The concept

of inter-direction similarity is easy. For example, if rjl2 is at the right of rjl1 and hm2 is at

the right of hm1 , we say they have high inter-direction similarity. Here we use the eight

cardinal directions for our classification. Fig. 3.1 shows the eight directions we use. In this

example hm2 is at the north-east of hm1 . We will compute the inter-direction similarity

for the corresponding feature pairs according to the angle difference of two directions.

  

 

𝐡𝑚1
 

𝐡𝑚2
 

E 

N 

W 

S 

NE 

SE 

NW 

SW 

Figure 3.1: The concept of the direction of two features.

For a given feature rjl , the other features will be classified into three parts according

to how far they are from rjl . The first part are the features which there is a link between

rjl and each of them. There is a link means that the two features are close to each other.

We want to know the similarity between the directions of corresponding feature pairs, but

sometimes some habits in our handwriting will cause big inaccuracies for close features.

An example is provided in fig. 3.2(a). Note that although these two patterns stand for the

same character “a”, the tails of them are totally different. This example tells us that if

features are too close, the relative direction of them may have higher inaccuracies. We

should decrease their influence in computing the inter-direction similarity.

For the feature rjl , those features which are too far away from rjl are not good reference

resources for measuring the inter-direction similarity either. This is because that these

features may not belong to the same radical in the pattern in most cases. Fig. 3.2(b) is a

common example in Chinese character. The template pattern at right is composed of the
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            木 校 
(a) (b) 

Figure 3.2: (a) Different habits cause different handwriting results. (b) An example of a

radical in a pattern, we don’t want the information from other part of the pattern causing

much noise.

radical at left and another part. Considering the relative directions between the features at

left and the features at right will provide us wrong information, so we will abandon this

part of direction information in computing the inter-direction similarity.

The remainder part are those features which have middle distances from the feature

rjl . These features are good candidates for providing the direction information. Note that

in fig. 3.2(a) the tails of two patterns are different, but for those features at the top-middle

of the characters, the directions of the features at the tails are about the same. We can use

these middle-distance features to help us decide the relative location of a given feature.

After making up these ideas together, we can replace the equation (2.2) by the following

equation:

D2(r
j
l1
, rjl2 ,hm1 ,hm2) =


(1 + λ1)× D̄1, if Ψj(l1, l2) = 1 and Y(m1,m2) = 1

−µ, if D0(r
j
l1
, rjl2) > δ or D0(hm1 ,hm2) > δ

−(µ+ λ2), otherwise.

D̄1 =
D1(r

j
l1
,hm1) +D1(r

j
l2
,hm2)

2
. (3.1)

where D0(r
j
l1
, rjl2) = ‖(xjl1 , y

j
l1

)− (xjl2 , y
j
l2

)‖, D0(hm1 ,hm2) = ‖(xm1 , ym1)− (xm2 , ym2)‖

are the Euclidean distances between the location of the features, δ is a positive constant.

Here λ1 and λ2 specify the inter-direction similarity, we set−0.3 ≤ λ1 ≤ 0.3 and−0.5 ≤
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λ2 ≤ 0.5 in our simulations. The larger value means that the corresponding feature pairs

are not similar in directions. Note that our design will reinforce the difference of the

compatibility, so as to improve the result of running the Hopfield network.

Another similarity measurement we add is the inter-ratio similarity, which measures

the similarity between the “neighbor-rate” of the corresponding feature pairs. We only

compute the “neighbor-rate” for connected features, i.e., the feature pairs which there is

a link between them. This strategy can not only save a lot of computing time but also

exclude unnecessary noise. We now introduce the “neighbor-rate” we used. Given two

features with a link between them, say, hm1 ,hm2 . We find their topological midpoint o,

then count the number of features in a circle range from the midpoint o. We give the

two features an orientation according to their order, so we can define the “left-hand side”

and the “right-hand side” of these two features. Fig. 3.3(a) depicts the concept of our

definition. We obtain the “left neighbor-rate” and the “right neighbor-rate” by computing

the percentage of the number of features at the “left-hand side” and the “right-hand side”

separately. An example is shown in fig. 3.3(b). Note that we also count hm1 and hm2 to

avoid the situation that denominator may equals zero, we let hm1 belongs to the “right-

hand side” and hm2 belongs to the “left-hand side” to remain the sum of the percentages

is correct.

The reason we only count the number of the features in a particular range totally

agrees with the inter-direction similarity. We don’t want the features from other part in

the pattern causing noise. Now we can compute the differences of the “left neighbor-rate”

and the “right neighbor-rate” between the corresponding feature pairs, and obtain the

inter-ratio similarity by computing the average of above two differences. Together with
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Figure 3.3: (a) The concept of computing the “neighbor-rate.” (b) An example of com-

puting the “neighbor-rate.”

other similarity measurements, we can further replace the equation (3.1) by the following

equation:

D2(r
j
l1
, rjl2 ,hm1 ,hm2) =


(1 + γ)(1 + λ1)D̄1, if Ψj(l1, l2) = 1 and Y(m1,m2) = 1

−µ, if D0(r
j
l1
, rjl2) > δ or D0(hm1 ,hm2) > δ

−(µ+ λ2), otherwise.
(3.2)

where γ specify the inter-ratio similarity, we set −0.5 ≤ γ ≤ 0.5 in our simulations.

Note that our design mostly depends on the inter-link similarity. The reason is that in our

application most features in a chosen radical are connected. Moreover, a radical in a pat-

tern is always in a specific range. The inter-link similarity will make the matching result

satisfy above property. We have tried separating our new similarity measurements from

the inter-link similarity in the motion equation of the Hopfield network, but the matching

result we got is not good enough, so we choose to combine the inter-direction similarity

and the inter-ratio similarity with the inter-link similarity. Fig. 3.4 gives the improved

result of the example in fig. 2.6 after adding the two new similarity measurements.
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Figure 3.4: The improved result of running Hopfield network.

3.2 Weighted bended-ellipse feature

In the last subsection we have made some improvement based on the inter-link similarity.

Here we make some changes about the inter-feature similarity. Let us begin from tak-

ing a look at the bended-ellipse features closely. Recall that a bended-ellipse feature is

represented by a five-dimensional vector. For a given feature rjl = [xjl , y
j
l , u

j
l , φ

j
l x̂
j
l , φ

j
l ŷ
j
l ]

of a radical, the first two elements xjl , y
j
l indicate the geomatric position of rjl , the third

element ujl indicate the size of rjl and the last two elements indicate the shape of rjl .

We have discussed in the previous section that in Chinese characters some radicals

may have similar shapes but different in sizes or locations. The original feature-to-feature

adhesion method suggests that we regard them as different template radicals. Fig. 2.1 has

shown some simple examples, but in fact Chinese characters are much more complex than

these examples. Fig. 3.5 gives some complex examples to indicate this. Sometimes it is

hard for us to list all the possibilities of the locations and the sizes that a radical appears

in all kinds of patterns. It may also waste a lot of time on computing the compatibilities

between the unknown pattern and such a huge amount of template radicals.
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 口 圖 噪 靈 器 嘻 嘔 讍 

Figure 3.5: More examples of Chinese charaters with the radical in different locations or

sizes.

Our method for solving above problem is quite easy: for a chosen template radical,

we only choose an appropriate amount for the variations of this radical. We observed

that although a chosen radical may have large variations in sizes and locations in different

patterns, their shape are roughly the same. So we change the weight of the elements in

the bended-ellipse features in order to reduce the influence from the size and the location.

More specifically, we define r̂jl = [ω1x
j
l , ω1y

j
l , ω2u

j
l , ω3φ

j
l x̂
j
l , ω3φ

j
l ŷ
j
l ] to be the weighted

bended-ellipse feature of the original feature rjl . By setting the weight of each element

in the feature, we can emphasize or reduce the importance of particular characteristics

in computing the inter-feature similarity. Fig. 3.6 gives the result of using the weighted

bended-ellipse features, here we set ω1 = 0.1, ω2 = 0.1, ω3 = 1. We can find that the

matching result does not become incorrect; in fact, it even looks better in shape.

  

Figure 3.6: The matching result of using the weighted bended-ellipse features.
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Figure 3.7: Weighted bended-ellipse features provide the “local match” effect.

In practice we set ω1 = 1, ω2 = 1, the value of ω3 is between 1 and 4. We do not

set an overgreat value to ω3 because there are a lot of similar shape in Chinese characters.

If we only focus on the shape of the features, we will get a wrong matching result with

high probability. In fact, let ω3 be slightly larger than ω1 and ω2 is a balanced choice.

Each feature will automatically match a similar feature in a local range. Fig. 3.7 shows an

example that the same radical in different locations matches to different parts of a pattern.

Note that under our design, the other similarity measurements can be used to make up

the deficiency of the location and the size information. The inter-link similarity tells us

that if there is a link between two features, then these two features could not be too far.

The size of the shape is then restricted indirectly. The inter-direction similarity gives
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the relatively direction for each feature as we having discussed earlier. The inter-ratio

similarity also provides some location information. For example, if the “right neighbor

rate” of two neighbor features is small, these two features may have a higher chance to

be on the boundary. Using the weighted bended-ellipse features with these similarity

measurements, we can reduce the number of radicals in our database (so as to save the

computation time) without loss the matching accuracy.
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Chapter 4

Applications and discussion

We have introduced some new geometrical relations for improving the original feature-

to-feature adhesion method in the last section. In this section we discuss some possible

applications of our method. Let us begin with an easy application. The recognition of

the vehicle registration plate is a common application in our life. The numbers and the

letters on the license plate are regular and not complex; moreover, the radicals are not

many, so the recognition is quite easy. The only thing we should take care is that we need

to choose radicals in different viewpoints to ensure a correct matching. Fig. 4.1 gives a

simple example of the matching result of a license plate. Here we can use the unweighted

bended-ellipse features to speed up the process. The same setting can be used to solve the

recognition of the postal codes.

 

Figure 4.1: The matching result of a license plate.
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Figure 4.2: An example of the matching of the music score.

A more complex application is the recognition of the music score. A music score is

much more complex than a character because there are a lot of similar shapes in it. The

complicated composition of the music score can also be a big problem. Fig. 4.2 shows

a small example. We use the weighted bended-ellipse features in this application and

we focus on the location to discriminate the musical notations. We obtained a correct

matching result from a complex pattern. The same approach can be applied to some

similar applications such as the recognition of the circuit diagrams or kinds of pipeline

diagrams.

The feature-to-feature adhesion method can not only find the matched pattern, it can

find the differences of two similar patterns also. The process is exactly the same with

previous discussion. Given two patterns we want to compare, we find the bended-ellipse

features and run the Hopfield network to find the matching result. Then we just list the

inter-feature similarities of the matched feature pairs. Note that we do not need to com-

pute anything more because the inter-feature similarities are prepared in previous process.

Fig. 4.3 lists the similarity of each matched feature pair of previous example. The negative

values at the right show the differences. The smaller value indicates the larger difference
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between two features. If a feature does not match any feature, we set the inter-feature

similarity value of this feature to be infinitely small. Fig. 4.4 gives another example that

we compare two contours of drawing the map of Taiwan. The greenhouse effect causes

the rising of the sea level nowadays. Using this method we can find the change of the

contour of a coastline. The same process can also be used for finding the defects of a chip

or other similar applications.

 

Figure 4.3: An example of the difference between two patterns. The circled place indi-

cates the bigger difference between the features.

 

Figure 4.4: The difference of two similar contours is found by our method.
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Chapter 5

Summary

The original feature-to-feature adhesion method uses two similarity measurements to

match features for accomplishing the recognition of the handprinted characters. This

work we construct two new rules based on the geometrical relations of the bended-ellipse

features. We add them into Hopfield model to improve the matching result. In addition,

we introduce the concept of the weighted bended-ellipse features, which allow us to fo-

cus on specific characteristics of features. With this generalized definition, we can further

improve the matching result and apply our method to more applications. We also provide

kinds of new applications in this paper. The same approach can be applied to many other

pattern recognition tasks while the pattern can be divided into small components.
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