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Abstract

There are two similarities constructed in earlier works [1], [2], named
inter-feature similarity and inter-link similarity. This work rewrites geomet-
rical relations [3] and constructs them into Hopfield model to improve the
matching result.

Constructing a set of bended-ellipse features is an efficient way for sam-
pling cursive patterns. It converts a pattern into structural features and pro-
vides a natural way for handprinted characters recognition. The idea which
called feature-to-feature adhesion constructs a topological configuration for
a pattern and transforms it into an-undirected graph. The compatibility asso-
ciated with the graph is then formulatedwas an optimization problem and is
solved by a devised Hopfieldmetwork.

Keyword : Handprinted character recognition, Pattern recognition, Hop-
field model, Geometrical relation, Ee_qded—ellipse feature
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Chapter 1

Introduction

Handprinted character recognition is an important application in our life. Many of tech-
nology products nowadays suchias smatt.phone ‘and tablet PC allow users use handwriting
as input. The recognition system for license plate or the postal codes are also the familiar

applications of the handprinted character,recognition system.

o
-

There are several different methods to ggcdmplish handprinted character recognition.
For Chinese characters, ‘a familiar v:va'y to r.e-:cognize them, is to find their radicals first
because these radicals are limited and the recognition are relatively easy. However, most
of those methods have a common defect that they usually require precise extraction of
features and radicals [4], [5], [6]. In the feature-to-feature adhesion method developed
by Liou and Yang [7], they do not segment a pattern into radicals in advance. Instead of
extracting radicals of a pattern, they calculate the probability of each template radical to
be in the character and find the relation between radicals. Then use a Hopfield network
[8] to solve a maximization problem collectively, and use neural network to complete
the classification of characters finally. This method can be applied to not only character
recognition, but also many other pattern recognition tasks while the pattern can be divided

into small components.



In order to generate the features for template radicals and the patterns, Liou and Yang
use the bended-ellipse features [9]. Each feature of a radical or a pattern is represented by
a five dimensional vector which including the coordinates, the direction, the angle, and
the lengths information. Once the features are generated, they will find the topological
relations between those features. They simply obtain a feature-to-feature (FTF) order
by define the “neighbor” of the features. In this way the geometrical relation will be
preserved. Each FTF order can be represented by a symmetric matrix.

After obtaining bended-ellipse features and FTF order information, we can begin the
classification. It is achieved by measuring the compatibility of every radical with the
handprinted pattern and standard jpattetn. The standard pattern which minimizes the dis-
similarity is the classification result. Hor this purpose, Liou @nd Yang define two similarity

| —
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measurements called inter-feature similarity and inter-link similarity to measure the com-
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patibility. The inter-feature’similarity measures the similarity between two features and
the inter-link similarity measures whethér both ¢otresponding feature pairs are neighbors.
Together with these two similarities, the computing of compatibility can be formulated as
an optimization problem, which can be solved by a developed Hopfield network.

The original feature-to-feature adhesion method uses only two similarities for clas-
sification. There are some other relations of features can be included for more accurate
match. In this paper, we improve the method by making some changes to original rules
and adding new similarities among features. We also give some other applications of this
method by reuse the calculated similarities.

The rest of the paper is organized as follows. In chapter 2 we introduce the feature-

to-feature adhesion method, including bended-ellipse features, FTF order, and the details



of the classification. In chapter 3 we give new conditions and changes for classifying im-
provement. Chapter 4 discusses some new applications and shows our results. Chapter 5

provides summary and conclusion.




Chapter 2

Feature-to-Feature Adhesion Method

We will review the original feature-to-feature adhesion method in this section. There
are two major steps in this method and we will discuss them in the following three sub-
sections. In the first and the second subsection we introduce the method for generating

bended-ellipse features and feature-to-feature jorder for a given radical or a pattern [9].

-
-

In the third subsection we showshow to li'-sg above infermation and a devised Hopfield

network to achieve the classifieation.

2.1 Bended-Ellipse Features

Chinese characters are composed by limited radicals. Some radicals may have similar
shapes but in fact they are in different sizes or locations in characters. Fig. 2.1 shows two
examples that radicals appear in different patterns. We should regard them as different
template radicals. This means each radical should be shifted and normalized according to
its position and size in characters. The shapes of these radicals are relatively easy and we
want to decompose them into small features.

We choose L template radicals R', R?, ..., R”. Each radical is composed of a set of

features. For a given radical R7, 1 < j < L, we will generate L’ bended-ellipse features.



Figure 2.1: Chinese charaters with radicals in different locations or sizes.

= .r ,.r' ,-l"'
So we can write R7 = {rl I1 § l < L#} wherg r is ‘:ﬂ_le [th feature vector of the jth
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tQ adg%ed)ﬁ}s an MSD if the length of the

sampling along the skeléf_brr'l of_t
(MSDs) for each seed. A dlréhloﬁzé;dvl;h
line extending from the seed in this d{feél;lbil']!s aflbéalimammum The line must not pass
unprinted area. Without loss of generality, we subsample all the direction in [0, 27) to
decrease the computation. Subsample by every angle is a typical choice for preserving
accuracy. We grow lines from the seed along these directions and stop growing when the
lines reach the boundary. Fig. 2.2(a) shows an example of finding MSD lines of a given
seed. The two bold lines in the example are the MSD lines. They are roughly along the
strokes of the character.

Define I:Z (cv) be the line segment begins from seed p; along direction « and ends at

the boundary. Let | L} («)| denote the length of L7(c). Using the following rule, we can



MSD lines

(a) (b)

Figure 2.2: (a) The MSD lines. (b) The bended-ellipse feature (five dimensional vector).
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where w and O are constants. w is used to control the window size for averaging and O
decides the range of selecting the maximum. We use w = 1 and O = 1 in our work. If o
is an MSD, we call L(c) an MSD line. Fig. 2.2(a) shows two MSD lines.

After obtaining the MSD lines, we are ready for generating bended-ellipse features.
Recall that we picked £’ seeds from the jth template radical R’ and we will generate L’
bended-ellipse features {r{|1 < [ < I’}. Note that each seed may create more than one
feature. So we have L/ > £7. These bended-ellipse features can be represented by five-
dimensional vectors as follows. Let r{ = [x{ , le , u{ , qb{ :Z’f , { g)l] | be the five-dimensional
vector. Without loss of generality we may assume that r{ is generated from the seed pz.

6
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The elements z; and y] in rj are the coordinates of seed p). Let ] and 1/ be the lengths

of the two MSD lines. We set

-/ /!
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be the average length of the two arms. Let ¢, 0 < gfgg < m, be the angle between the two

MSD lines. We define

Ly

™

Let (i{ , Qlj ) be the unit vector extends from the seed p@ and equally divides the angle &{ .
Now every element in r{ is well-defined.  Fig. 2.2(b) depicts a bended-ellipses feature
example.

Note that we will diseard some deformity ellipses. It will exclude several kinds of

noise and decrease the complexity in gutdater processes.| It will speed up the execution
."-l-’__

" a

time also. An ellipse with é{ =0is a:dgger.l.é'rated ellipse that we will discard it. A feature
is also defined as a defect if:it'has a _:small arm (;f- the arm ratio is not uniform. More
precisely, we will use the ellipses which-satisfy r{ 38 .r*, rlj "> r*and 0.5 < rlj / / le ! <2,
where 7* is a constant. In practice we set 7" to be the stroke width of the template pattern.

If a seed has more than two arms, it will generate more than one bended-ellipse fea-
ture. For example, a seed with 3 arms can generate 3 bended-ellipses. In general, a seed

with n, arms, where n, > 2, can generate

Mg
2
bended-ellipses. So a branch will generate C'(3,2) = 3 bended-ellipses and a cross will

generate C'(4,2) = 6 bended-ellipses. Fig. 2.3 gives some examples for indicating that.

We will group the features generated from the same seed to simplify our later processes.



3 arms
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ST T

4 arms

Figure 2.3: A seed with different arm number can generate more than 2 bended-ellipses.

We have discussed how to generate the bended-ellipse features. After applying the
method to all the template radicals, we get R/ = {r{ 1 <1< Li}forl <j < L.Wethen
apply the same process to every of N template patterns to obtain S* = {s’|1 <n < N}

a0t 2t @t ¢ ) s the nth feature vector of the ith

for 1 < i < N, where s!, = [z/50 U
template pattern. For an unknown handprinted paftern-input, we also apply the same pro-

cess to it and we get H = {hr-n|1 < nf <W}, yvﬁé're h,,, ST 0 Yy Uiy O Ty O] 18

T Wy |

| L |
the mth feature vector of the unknown!ha'rﬂﬁh‘rted pattern.

SR

| Y |
o« Ty |
- 1

2.2 Feature-to-Feature Order |'-

As soon as we obtain the bended-ellipse features, we can compute the FTF order. This
order will preserve the geometrical relations between features. The idea is from the in-
telligent cell-to-cell adhesion mechanism [10], [11]. Fig. 2.4 sketches the concept of this
mechanism. We give each block a number and keep track of the interface relations be-
tween them. There will be a unique mark on the interface between two connected block.
With these marks, the topological structure can be reconstructed correctly. Fig. 2.4(a)
shows the reconstruction of the character and Fig. 2.4(b) gives the matrix representation
of the feature-to-feature order.

The computation of the FTF order for bended-ellipse features is similar to the concept
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Figure 2.4: (a) The scattered blocks. (b) Matrix representation of the topological order.

of the cell-to-cell adhesion mechanism but simpler. In our method the features are similar
to the blocks in Fig. 2.4(a). For a given featur‘.@', we define the topological neighbor of
this feature to be the feature which'overlaps it. We then set a link between two features

if these two features are topological neig_lgbors A link is just like a marked adhesion

|
except it is not a unique mark. The uin'queqfss is not necessary because our method will
IRl 1 &

insure there is at most one linlg__betvlee_en (WO featf:r;?s. S¢.the only information we need
to know is whether two features are topological _nei:c.;:hbors or not. The FTF order can
be represented by an undirected graph, where the vertices stand for the features and the
edges stand for the links. Similar to cell-to-cell adhesion, the links can be represented
by a symmetric matrix. Fig. 2.5 gives one example. We use the same character example
to show the similarities and differences. Note that each node (including the degree one
nodes) in Fig. 2.5(a) stands for a seed.

We apply this method to every template radical R7, 1 < j < L. For each R/, the FTF
order we obtained is represented by an L7 x [/ matrix ¥/, Formally, define W/ (I;,15) to

be the element in the /;th row and /5th column of matrix ¥/. And define

1, if there is a link between r{l and r‘ZQ

W (ly, 1) = {

0, otherwise.

9
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Figure 2.5: (a) Graph representation of the FTF order. (b) Matrix representation of the
FTF order.

. ==
The same process is applied to the template patternsxahd unknown handprinted pattern.
We use an N* x N* matrix I*1 to repré_bnt the,-'FTF order of the ith template pattern S’
ﬂ,... .'r -
for1 < ¢ < N and an M* x [} mat 1xmepllesent the FTF order of the unknown
- |
Al |
handprinted pattern H. Fig! 2. 5(b) s[h WS arr“exam[fle A da‘rk box in the matrix means

that there is a link between the cor.respondmg two seeds

A

2.3 C(lassification

We are now ready for finding the most likely standard pattern for the handprinted charac-
ter. Before we discuss the method of the classification, we list the information we have

known.
e [ template radicals R/ = {r{|1 <1< [L'},1<j< Land ¥ for each R/.
e 1 unknown handprinted pattern H = {h,,,|1 <m < M} and Y for H.

e N template patterns S* = {s’|1 <n < N}, 1 <4 < N and I'"? for each S°.

10



We will compare the compatibility of every R’ with H and every S’, then choose the
most likely template pattern to be the classification result. Formally speaking, let c? be
the compatibility between the jth radical R’ and the handprinted pattern H. We will
discuss the method of computing the compatibility ¢! later. Let ¢" = [c}... 1" be
the compatibility vector specifies the overall compatibility between H and all radicals
R'...R". For each template pattern S?, 1 < i < N, we apply the same process to
compute the overall compatibility between S° and all radicals R' ... R’. We represent

7

this overall compatibility by a vector & = [c! ... ¢]".

‘L

Note that the only things we need to,compuie on-line is the vector ¢". The compat-
ibilities between every S’ and evéry R¥ can be prescomputed off-line, which means that
the vectors ¢ for 1 < 4 <%N/can be prepared ih advance:' Once we obtained ", we

| —

can compute the dissimilarity between the'ha'ﬁdprinted pattern and every standard pattern

4]
1

to get the classification result. This dissimilérity, denoted by D(c",¢), 1 < i < N, is
simply defined as

D(e"@)m=lich=el.

We use the template pattern which minimizes the Euclidean distance D(c", ¢') as our
classification result.

Now we introduce the method of computing the compatibility between a radical and
a pattern. We begin this by discussing how to measure the compatibility between the
corresponding feature pairs. Here we will introduce the two similarity measurements in
the original feature-to-feature adhesion method. The first similarity, called inter-feature

similarity, measures the similarity between two feature vectors. Let (r{k, h,,, ), where

11



r{k € R/ and h,,, € H, be one feature pair. We define the inter-feature similarity as
D1<rgk7 hmk> = —||I‘gk - hmk H

The Euclidean distance indicates the similarity of these two features. The bigger value of
D specifies that the two features are more similar. The second similarity is the inter-link
similarity, which measures the similarity between the links of the corresponding feature
pairs. More precisely, let (r{l, h,,,) and (r{Q, h,,,) be the two corresponding feature pairs.

We say that these two feature pairs have high inter-link similarity if
\I/j(ll, lg) =s1%nd Y(ml, mg) =1.

That is, there is a link between r{l, r{Q and there is alinkbetween h,,, , h,,,. Together with

these two similarities, we can/ defin¢ the:compatibility between the two corresponding

feature pairs (r{17 h,,, ) and (r‘ZQ, h;,,) as folli:)_ws:
o Dl.(r{1 ,hm'l)—.le(rgz,hmz) 1 V& B B
DZ(I‘gNr;g?thth) = . ; lqu (lle) = Land Y(m17m2) =1
=5 otherwise.

(2.2)
where 1 1s a large positive constant or 0. We set ;1 = 2 in our work. Note that under this

definition the compatibility of the features is not commutative. That is,
DQ(rgla r{g? hml? hmz) 7& D2<r;27 I‘gl ) hm17 hmz)

and

D2(r{1 ) r{27 hm17 hmz) ?é DQ(I'{N I'{Q, hmg; hm1)

It is straightforward to compute the total compatibility between a radical and a pattern.
The way is just summing all the compatibilities of all the corresponding feature pairs.

The key problem is finding the correspondence between the radical features and pattern

12



features. An idea to achieve this goal is solving the subgraph matching problem. Recall
that with the bended-ellipse features and the FTF order, a radical or a pattern can be
represented by an undirected graph (Fig. 2.5(a)). Let the graph of the jth radical R7 be
G7 and the graph of the handprinted pattern H be G". The subgraph matching problem is
finding the one-to-one correspondence between the nodes of G7 and G".

We will use a route 7 to denote the matched features. Formally we define 1/ =
{(r},h,,)|1 <1 < L7}, where h,,, is matched to r/. If the route 7/ has been decided,
the total compatibility between R’ and H can be computed using the equation in (2.2).
We note that the point correspondence with maximal overall compatibility should have
the sense that both similarity measuseéments are relatively large. So we formulate these

objectives as the following Optimization problem:

| —

e
-
= o

Maximize Z ; TD2 (r{I ; r{2> hmla th) (2.3)

& ja2
This optimization problem caﬁ be slolved by asHopfield network [8]. There are some
other works used a Hopfield network to solve. the pattern recognition problem without
involving the FTF order [12], [13]. The feature-to-feature adhesion method we used gives
us a topological intuition to formulate the energy function.

We use a connectivity matrix V' to represent a route in the Hopfield network. V' is
defined as an L7 by M matrix, where the /th row stands for the feature r{ of the radical
R, and the mth column stands for the feature h,, of the handprinted pattern H. This route
will give us the point correspondence we need as soon as the network has converged. Let
Vim be the element of V' in the /th row and the mth column. The value of V},, is either 1
or 0. V},, = 1 means that h,,, is matched to r{ ; otherwise, V,,, = 0. We will check the

state of V' after the network converged and add (rf ,h,,) to 0 if Vi, = 1.

13



Note that feature-to-feature can not be one-to-many or many-to-one; moreover, our
objective is solving the optimization problem in (2.3). For these purposes, we need the

matrix V' to satisfy the following three rules:
1. There is only one 1 in each row.
2. There is at most one 1 in each column.
3. The overall compatibility according to V' is maximal when the network converges.

We can use the following energy function to formulate above constraints:

ZZ > Vi Vg + 5 ZZZVIWWW+ Z Zvlm_

m1 mo#mi m 5

__ZZZ Z Dy rl> [ mh,.:_..hml)vlmvllm1 | (2.4)

I L#E m mi#m .r"'-fﬂ
where A, B, C, and D are constants to be dt;cided. Here the-first three terms in (2.4) are
designed to make sure that the matrix V satisfies the first-and the second rules [14], and

the last term in (2.4) will make V. satisfy'the third'rule. In the network, the state of VZS?

will change as time goes on. For time step ¢, the state of V,ﬁ,? is defined as

1

Vin = 5(1+ tanh(vj, /o))
_ 0

i =i S 2.5)

where vj is a constant. The last term in (2.5) is the equation of motion which changes the

state of the network. This motion equation is defined as

Won Y A3 Vi, B3 Vi = O Vin 1

mi#m l1#l
+DY Y Dy(r],x b by ) Vi, (2.6)
L1#l m1#m

14



where 7 is a constant.

We need set the initial state of V. A reasonable thought is that if two features are
matched, they should have relatively higher inter-feature similarity. So we use the inter-
feature similarity as the criterion to set the initial value of each V},,,. More precisely, we
set Vlgz) =1if D, (r{ ,h,,) > ¢, where ¢ is the threshold. Else, we set Vlir?) = 0. We use
e = 0.5 in practice. Besides, refer to the work from Aiyer et al. [15], we set A = 500,
B =500, C' = 500/N, and D = 500N /80, where N = Li M in our work. Fig. 2.6 gives
one example that we run the Hopfield network and get its converged result. The black box
shows the place of the element which V;,, = L., We list the matching result on the right

for checking easily. Note that some. féatures may'not-have a matching feature. We also

give a possible best path on the right Bottom as/a reference."~

(0. 0] (10, 18]
1, 3) (11, 20]
2, 7) 1z, -]
3, 5) (13. -]

Figure 2.6: A converged result of the Hopfield network.

After running the Hopfield network for the unknown pattern and every template pat-

- ﬁ T ; - :
tern, we get the overall compatibility vectors & = [c...c"]" and @ = [¢}...c]" for

1 < i < N. For simpler pattern, we use the pattern S* which minimizes D(¢", ¢') as

our classification result. If the patterns are more complex, we will use a four-layer back-

15
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80 80
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Figure 2.7: The concept of the four-layer backpropagation network.

propagation network for the classification [16]. Fig. 2.7 shows the network we use. This

input to train the network

, a
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Chapter 3

Our improve

We have discussed the original feature-to-feature adhesion method. In the original method,
Liou and Yang [7] considered only two similarity measuréments: the inter-feature similar-
ity and the inter-link similarity. In this section, we add two new similarity measurements

for improving the matching result of the-Hopfield,network. We will introduce them in the

L
-

first subsection. Also, we generalize the dé’ﬁpition of the'bended-ellipse feature for fitting
our application and compare the difference between the original and the new definitions.

We get a trade-off and we discuss this in-the second subsection.

3.1 Adding new similarity measurements

Liou and Yang [7] used only the inter-feature similarity and the inter-link similarity in
their classification step. There are a lot of other relations among features that we can use
for classifying. We now discuss two new similarity measurements. First we note that the
inter-link similarity indicates whether there is a link between two features or not, but it
can not tell us the relative direction between them. To solve this problem, we add a new
similarity called inter-direction similarity. This similarity measures the similarity between

the directs of the corresponding feature pairs. Recall that (r{1 ,h,,,) and (r{2, h,,,) are the
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two corresponding feature pairs, where r{k € R’ and h,,, € H for k = 1, 2. The concept
of inter-direction similarity is easy. For example, if r{Q is at the right of r{l and h,,, is at
the right of h,,,,, we say they have high inter-direction similarity. Here we use the eight
cardinal directions for our classification. Fig. 3.1 shows the eight directions we use. In this
example h,,, is at the north-east of h,,,. We will compute the inter-direction similarity

for the corresponding feature pairs according to the angle difference of two directions.

Figure 3.1: The concept of the direction of-two features.
For a given feature r{ , the jother featﬁ%ﬁﬂl be classified into three parts according
. A

to how far they are from r]/ The first part-are the|features which there is a link between
r{ and each of them. There is .a linkln'leans that the. two features are close to each other.
We want to know the similarity between the directions of corresponding feature pairs, but
sometimes some habits in our handwriting will cause big inaccuracies for close features.
An example is provided in fig. 3.2(a). Note that although these two patterns stand for the
same character “a”, the tails of them are totally different. This example tells us that if
features are too close, the relative direction of them may have higher inaccuracies. We
should decrease their influence in computing the inter-direction similarity.

For the feature r{ , those features which are too far away from r{ are not good reference
resources for measuring the inter-direction similarity either. This is because that these
features may not belong to the same radical in the pattern in most cases. Fig. 3.2(b) is a

common example in Chinese character. The template pattern at right is composed of the
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Figure 3.2: (a) Different habits cause different handwriting results. (b) An example of a
radical in a pattern, we don’t want the information from other part of the pattern causing

much noise.

radical at left and another part. Considering the relative directions between the features at
left and the features at right will provide us wrong information, so we will abandon this
part of direction information in cemputing the i1.1t.er—directi0n similarity.

The remainder part are those features which-have middle distances from the feature
r{ . These features are good,candidatés fo.ri;'@ﬁ-yiding the direction information. Note that
in fig. 3.2(a) the tails of two patterns :ar_e diflflr%;rent, _but for those features at the top-middle
of the characters, the directions of tht:e featuressat tflle. tails are about the same. We can use
these middle-distance features to help us decide the relative location of a given feature.

After making up these ideas together, we can replace the equation (2.2) by the following

equation:
(1+/\1) Xﬁl, if\llj(ll,lg) = 1andY(m1,m2) =1
Dy(r] ,v] b)) =4 —p, if Do(r] ,1],) > 0 or Dy(hpy, hyp,) > 0
—(p+ A2), otherwise.
_ Dy(r] ,h,,) +Di(r], h,,)
D, = hr 5 M2l (3.1)
where ’Do(r{ﬂ r{g) = H(l‘{l, yl]1> - (C(Zé, yljz) > Do(hm17 hm2) = H(Imwyml) - (Imw ym2)”

are the Euclidean distances between the location of the features, ¢ is a positive constant.

Here \; and ), specify the inter-direction similarity, we set —0.3 < A\; < 0.3 and —0.5 <
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A2 < 0.5 in our simulations. The larger value means that the corresponding feature pairs
are not similar in directions. Note that our design will reinforce the difference of the
compatibility, so as to improve the result of running the Hopfield network.

Another similarity measurement we add is the inter-ratio similarity, which measures
the similarity between the “neighbor-rate” of the corresponding feature pairs. We only
compute the “neighbor-rate” for connected features, i.e., the feature pairs which there is
a link between them. This strategy can not only save a lot of computing time but also
exclude unnecessary noise. We now introduce the “neighbor-rate” we used. Given two
features with a link between them, say, h,,, , hy,,. We find their topological midpoint o,
then count the number of featureés infa circle range from the midpoint 0. We give the
two features an orientation accordingto their ordery so we can define the “left-hand side”

Y —

and the “right-hand side” of these two féat’}'ffes. Fig. 3.3(a) depicts the concept of our

4]
1

definition. We obtain the “left neighl).o.r—rate’;'and the “right neighbor-rate” by computing
the percentage of the number (;f featlllres at the “left-hand side” and the “right-hand side”
separately. An example is shown in fig::3.3(b): Note that we also count h,,,, and h,,, to
avoid the situation that denominator may equals zero, we let h,,, belongs to the “right-
hand side” and h,,,, belongs to the “left-hand side” to remain the sum of the percentages
is correct.

The reason we only count the number of the features in a particular range totally
agrees with the inter-direction similarity. We don’t want the features from other part in
the pattern causing noise. Now we can compute the differences of the “left neighbor-rate”
and the “right neighbor-rate” between the corresponding feature pairs, and obtain the

inter-ratio similarity by computing the average of above two differences. Together with
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Figure 3.3: (a) The concept of computing the “neighbor-rate.” (b) An example of com-
puting the “neighbor-rate.”

other similarity measurements, we can further replace the equation (3.1) by the following

equation:
(1 P ’Y)(l + Al)@l;. “af \I’j(ll, lz) = 1and Y(ml, mg) =1
Dy(r] ,r), by hyy) = & —p, if’DO(rfl, r{Q) > 0 or Dy(hy,,, hy,) >0
K+ Mg otherwise."
1 B (3.2)

where 7y specify the inter-ratio similarity, v!"rg setl =06 < 7 < 0.5 in our simulations.
Note that our design mostly de_pends:oil the. i:r-lter-lin_k similarity. The reason is that in our
application most features in a'chosen radical are conr;ected. Moreover, a radical in a pat-
tern is always in a specific range. The inter-link similarity will make the matching result
satisfy above property. We have tried separating our new similarity measurements from
the inter-link similarity in the motion equation of the Hopfield network, but the matching
result we got is not good enough, so we choose to combine the inter-direction similarity

and the inter-ratio similarity with the inter-link similarity. Fig. 3.4 gives the improved

result of the example in fig. 2.6 after adding the two new similarity measurements.
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Figure 3.4: The improved result of running Hopfield network.

3.2 Weighted bended-ellipse feature

In the last subsection we have made some improvement based on the inter-link similarity.

Here we make some changes about the“inter-feature similarity. Let us begin from tak-

-

" a

ing a look at the bended-ellipse features c'l'q;sely. Recall that a bended-ellipse feature is
represented by a five-dimensional VCIthOI‘. Fo:r- a gi\.lcn feature r{ = [x{ , ylj , u{ , gf){ i‘{ , { gjlj ]
of a radical, the first two elements mg , le indicate the; geomatric position of r{ , the third
element u] indicate the size of r] and the last two elements indicate the shape of r}.

We have discussed in the previous section that in Chinese characters some radicals
may have similar shapes but different in sizes or locations. The original feature-to-feature
adhesion method suggests that we regard them as different template radicals. Fig. 2.1 has
shown some simple examples, but in fact Chinese characters are much more complex than
these examples. Fig. 3.5 gives some complex examples to indicate this. Sometimes it is
hard for us to list all the possibilities of the locations and the sizes that a radical appears
in all kinds of patterns. It may also waste a lot of time on computing the compatibilities

between the unknown pattern and such a huge amount of template radicals.
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Figure 3.5: More examples of Chinese charaters with the radical in different locations or

sizes.
Our method for solving above problem is quite easy: for a chosen template radical,
we only choose an appropriate amount for the variations of this radical. We observed

that although a chosen radical may have large variations in sizes and locations in different

TS
patterns, their shape are roughly the s same. Sowe ch{ng.e the weight of the elements in
N | = =% —:-E T 5 ,.:

4

P

the bended-ellipse feature_§~ in oragr uefice from the size and the location.

= S i ;
More specifically, we dej_in@f?,- = 1’1 7, W3 Lﬁ, 3,¢>l 3] to be the weighted

g the-we1ght of each element
P
]

L=t |
bended-ellipse feature of the

5T
f&é@ -th? ;’esult of using the weighted
o
bended-ellipse features, here we set "c'blj— ﬁ Yews = 0 1, w3 = 1. We can find that the

in computing the 1nter—feature snﬁd}int

_li'

matching result does not become incorrect; in fact, it even looks better in shape.

= 13
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Figure 3.6: The matching result of using the weighted bended-ellipse features.
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In practice we set wy; = 1, ws =31, the Value; of ws; is between 1 and 4. We do not
set an overgreat value to w3 because there are a lot of similar shape in Chinese characters.
If we only focus on the shape of the features, we will get a wrong matching result with
high probability. In fact, let w3 be slightly larger than w; and w, is a balanced choice.
Each feature will automatically match a similar feature in a local range. Fig. 3.7 shows an
example that the same radical in different locations matches to different parts of a pattern.
Note that under our design, the other similarity measurements can be used to make up
the deficiency of the location and the size information. The inter-link similarity tells us
that if there is a link between two features, then these two features could not be too far.

The size of the shape is then restricted indirectly. The inter-direction similarity gives
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the relatively direction for each feature as we having discussed earlier. The inter-ratio
similarity also provides some location information. For example, if the “right neighbor
rate” of two neighbor features is small, these two features may have a higher chance to
be on the boundary. Using the weighted bended-ellipse features with these similarity
measurements, we can reduce the number of radicals in our database (so as to save the

computation time) without loss the matching accuracy.
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Chapter 4

Applications and discussion

We have introduced some new geometrical relations for improving the original feature-
to-feature adhesion method in the last section. In this'section we discuss some possible
applications of our method. Let'us'begin with an easy application. The recognition of

the vehicle registration plate is a commql}r_a_lpplication in'our life. The numbers and the

e

letters on the license plate are regulflr, an'd'lfl.o;".complex; moreover, the radicals are not
many, so the recognition is qui_te eas§:(. jl"he 6;1y thing we should take care is that we need
to choose radicals in different viewpoints to ensure é. correct matching. Fig. 4.1 gives a
simple example of the matching result of a license plate. Here we can use the unweighted
bended-ellipse features to speed up the process. The same setting can be used to solve the
recognition of the postal codes.

. 26) (10, 35)
27) (11, 37)
28)
. 32)
31)
29)

3 0326PC

. 34)
. 36)

N S

14
o
£

v

T ooNogAaLN—=O

Figure 4.1: The matching result of a license plate.
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Figure 4.2: An example of the matching of the music score.

A more complex application is the recognition of the music score. A music score is
much more complex than a character because there are.a lot of similar shapes in it. The
complicated composition of the ' musi€ score can also-be a big problem. Fig. 4.2 shows
a small example. We use the weighte'd_blended—.'ellipse features in this application and

we focus on the location to discrimi_nhté-t?_e-;rﬁusi.cal notations.. We obtained a correct
| 1)

matching result from a complex pattelrn. The same approach can be applied to some
i 1

similar applications such as the recogilition of the: circnit.diagrams or kinds of pipeline

diagrams.

The feature-to-feature adhesion method can not only find the matched pattern, it can
find the differences of two similar patterns also. The process is exactly the same with
previous discussion. Given two patterns we want to compare, we find the bended-ellipse
features and run the Hopfield network to find the matching result. Then we just list the
inter-feature similarities of the matched feature pairs. Note that we do not need to com-
pute anything more because the inter-feature similarities are prepared in previous process.

Fig. 4.3 lists the similarity of each matched feature pair of previous example. The negative

values at the right show the differences. The smaller value indicates the larger difference
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between two features. If a feature does not match any feature, we set the inter-feature
similarity value of this feature to be infinitely small. Fig. 4.4 gives another example that
we compare two contours of drawing the map of Taiwan. The greenhouse effect causes
the rising of the sea level nowadays. Using this method we can find the change of the
contour of a coastline. The same process can also be used for finding the defects of a chip

or other similar applications.
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Figure 4.4: The difference of two similar contours is found by our method.
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Chapter 5

Summary

The original feature-to-feature adhesion method uses two similarity measurements to
match features for accomplishing thesrecognition of the handprinted characters. This
work we construct two new rules ‘based on the geometrical relations of the bended-ellipse

features. We add them into Hopfield/model to/improve the matching result. In addition,

o
-

we introduce the concept of the weighted Il-)_gnded-ellipse features, which allow us to fo-
cus on specific characteristics (_)f featgr'es. Wlth this generalized definition, we can further
improve the matching result and apply our method to more applications. We also provide
kinds of new applications in this paper. The same approach can be applied to many other

pattern recognition tasks while the pattern can be divided into small components.
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