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Abstract

In this paper we investigate the solvability of linear forward-backward stochastic
differential equations (FBSDEs, for short). We give sufficient and necessary condi-
tions of the solvability in linear forward-backward stochastic differential equations
and prove it in a special case (ﬁ = 0). These results are extensional work of Ma
& Yong (2000). Then we introduce the relationship between forward equation and
backward equation, we also can get similar sufficient and necessary conditions to
solve linear forward-backward stochastic differential equations by solving a matrix

ordinary differential equation (a Riccati type equation).
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1. Introduction

The theory of backward stochastic differential equations (BSDEs, for short) was pi-
oneered by Pardoux and Peng (1990). It became popular now, and it is an important
field of stochastic analysis due to its connections with stochastic control, mathematical

finance, and partial differential equations.

The main differences between a stochastic differential equation (SDE, for short) and
a deterministic ordinary differential equation (ODE, for short) is that previous one can
not reverse by “time” (the solution should be adapted). In this paper, we only consider
the finite time horizon and a complete filtered probability space which is generated by
Brownian filtration {.%; }+>¢ (Brownian motion is denoted by ;). When we want to solve

the terminal value problem as following:

dYr=0.0 St< T,
YT:§7

where £ € L% (Q;R). Since the only solution is ¥; = & 0 < ¢ < T', which is not necessar-
ily {Z:}+>0-adapted unless { is a constant, the above It6 SDE, does not have a solution

in general!

There are some ways to adjust this difficulty. We want to reformulate the terminal
value problem of an SDE so that it may allow a solution which is {.%;};>¢-adapted. A
reasonable method of modifying the solution Y; = ¢ is { % };>0-adapted, and it satisfies
Yr =& We define

Y, £ B[], 0<t < T.

An important tool in this derivation is the Martingale Representation Theorem (cf. e.g.,
Oksendal (2003), pp. 53-54). Since the above process is clearly a square integrable
{Z}1>0-martingale, an application of the Martingale Representation Theorem leads to

the following representation:

t
Yt:Y0+/ Z,dW,,0 <t <T, as.
0

1



where Z € L%(0,T;R). Writing in a differential form we have

dm - thWt,O S t S T7
Yr=¢.

In other words, if we reformulate the above SDE, looking for not a single {.%#; };>o-adapted
process Y as a solution, we look for a pair (Y, Z), then finding a solution which is {.%#; }+>0-
adapted becomes possible! Adding the extra component Z to the solution is the key factor

that makes finding an adapted solution possible.

We like rewrite integral form as follows:
T
Yt—YT—/ ZdW,, 0 <t <T.
t

We would not distinguish the above integral forms; each of them is called a BSDE. We

emphasize that the stochastic integral is the usual (forward) ito integral.

We give an example in mathematical finance that have motivated the study of the
forward-backward stochastic differential equations (FBSDEs, for short). We consider
option pricing and contingent claim valuation. Consider a market given by one bond and

one stock
dB(t) = rB(t)dt, (bond);

dX; = p(t) Xedt + o(t) XedWy,  (stock).
Now suppose that the agents sell the European option at price y and then invest it
in the market, and we denote their total wealth at each time ¢ by Y;. Clearly, Yy = y.
Assume that at each time ¢ the agents invest part of their wealth, say 7, into the stock,
and invest the rest Y; — m; into bond. If we assume that the portfolio is self-financing,

then it can be easily shown that

dY; = (Y — m)dB; + dmy
=r(Y, — m)dt + p(t)mdt + o(t)m dW;
= {rY, + p(t)m, — rm }dt + o(t)mdW,
= Y, + A(t) Z)dt + Z,dW,



where 7, = o(t)m, and A(t) = % (called the market price of risk). Suppose
contingent claim H = g(X7) € L% (€ R), the purpose of the agent is to choose
with enough money to hedge the payoff H at time ¢t = T, that is, Y > H a.s. Such
an investment, if it exists, is called a hedging strateqy against H. The fair price of
the contingent claim is the small initial income for which the hedging strategy exists.

Otherwise, it is defined by
y* = inf{Yy : I7 such that Y7 > H a.s.}

Now consider agents who are able to choose Z (whence ) by solving following FBSDE
(a decouped FBSDE):

dX; = pu(t) Xydt 4+ o(t) X, dWs,

dY, = [rYs + A\(t) Zi)dt + ZydWs,

Xo =z, ¥%r = g(X7);
An intuitive result is that if above FBSDE has an adapted solution (X, Y, Z), then we let
= %, is the optimal hedging strategy and y = Yj is the fair price!

In the theory of ODE, for any first order linear ODE on finite duration with initial
value problem, there exists a unique solution. But when we consider the boundary value
problem, the uniqueness and existence of solution may not exist. The nonlinear FBSDEs
are more complicated than linear ones. It is also an open problem now. We don’t consider

the nonlinear cases in our study.

Following the Chapter 2 in Ma & Yong (2000), we consider more general case. The
Brownian motion takes value in R?, d € N (not just one dimensional case). In this paper
we want to solve the following linear coupled FBSDE (3):

( d . . . .
dX; = (AX; + BY,)dt + izzl(AZlXt + BYY, + C{Zy)dW},

\ dY, = (AX, + BY,)dt + 3 ZidW}, 0<t<T

i=1

L XOZO,YT:g.

We want to answer the question: Does it have an adapted solution whenever g &



L%, (;R™)? Is the solution unique (under a.s.) or not?

The study proceeds as follows. In Chapter 2, we give the Definitions and Notations
throughout this thesis, and we introduce the general 1to Formula in matrix form. This is
a very useful tool in the study. We formulate our problem and find the unique solution

in the specific space.

In Chapter 3, we want to investigate the solvability of linear FBSDEs. In first section,
we give some necessary conditions (29) and (30) to the solvability. To prove the argu-
ment, we use the variation of constant formula and introduce a linear operator . We
use Burkholder-Davis-Gundy Inequality and Gronwall Inequality to estimate some upper
bounds in this section and the following section. The next section, we deal with the
sufficient conditions. We prove the range space of IC is a closed subspace of L?ng(Q, R™).
Because our FBSDE (3) is a coupled FBSDE, it is easier to prove the pair (X7, Y7) is
the closed subspace of L}T(Q,R"er). But we only want to control the process at the
terminal time 7', it is much more difficult to prove the closeness of R(K). The Lemma 3.5
in the book by Ma & Yong (2000), their argument to prove the closeness of R(K) may be
wrong. They claim the projection of closed subspace in Hilbert space is closed. We give
one counterexample in the Remark 1 after Lemma 4. We use another methods to conquer
this problem. Some estimations are needed, if we can prove E[|Xr[?] < CE[|Yr|?], for
some constant C' > 0 and it does not depend on (Z!,--- , Z%), then we can get result. We
deal with the particular situation in the Appendix. Under the special case (;1 = 0), the

closeness of R(K) can be proved. Our main result is Theorem 3.

In Chapter 4, we give some more precise assumption (the connection between forward
equation and backward equation). Then we can derive the matrix-valued Riccati type
equation. Firstly, we introduce a heuristic derivation. Secondly, by the theory in BSDE
and condition (94), we can get the adapted solution that satisfies FBSDE (3). In the first
section in chapter 3, we can obtain the necessary condition without any more assump-

tion. Under the circumstance, it is also a sufficient condition. Also, we give the explicit



expression of Riccati type equation P. Our major work is Theorem 5. We don’t rely on
any further more assumption, then the linear FBSDE(3) can be solved and derived the

sufficient and necessary conditions.

At last, in Chapter 5 we conclude our work and give some possible extension in the

future work and use the theory in some application fields like mathematical finance.



2. Definitions and Notations

Throughout this paper we let (Q,.%,{%; }i>0, P) be an augmented filtered probabil-
ity space on C([0,00)) which is defined a d-dimensional standard Brownian motion Wy,

such that ., £ o(FW JA), Vt > 0, where the natural filtration FY¥ = c(W,;0 <

s<t), FN Lo Uﬁtw , and the collection of P-null sets .4 = {F C Q : 3G €
£>0
FW with F C G, P(G) =0}. That is, we only consider the Brownian filtration.

We list all the notations that will be frequently used throughout the paper, and give
some definitions related to FBSDEs.

Let Mp,«n(R) be the Banach space consisting of all m x n matrices with entries R

and M, (R) be the set of all square matrices with order n over R with the operator norm

|Al| = +/p(AAT), where p(G) is the spectral radius of G and o(G) is the spectrum of G.
Thus,
(o= Al
p(G) fé?}é' |

Next, we let T' > 0 be fixed. We denote

e for any sub-c-algebra ¢4 C #, LZ(2;R™) to be the set of all ¥-measurable R™-

valued square integrable random vectors;

o 1% (Q; L*(0,T;R")) to be the set of all {.%, },>o-progressively measurable processes

T
X values in R™ such that £ [/ 1X;|?dt| < oo. The notation L2 (0, T;R") is often
0

used for simplicity, when there is no danger of confusion;

o L% (Q;C([0,T];R™)) to be the set of all {.%, };>¢-progressively measurable continuous

processes X taking values in R” such that E [ sup |Xy|?| < oo.

0<t<T

Further, we define

M0, T] £ L% (2 C([0, TER™)) x LH(2 C((0, TER™)) x [L5(0, T;R™). (1)



The norm of this space is defined by

1
d T 2
sup (X[ + sup [V [ iziPa| b @)
0<t<T — Jo

0<t<T

H(X7Y7Z1>"' 7Zd>H - {E

V(X,Y,Z, -, Z%) € M[0,T]. Tt is clear that M0, T] is a Banach space under norm (2).

We are going to study linear FBSDEs in any finite time duration. By deriving a
sufficient and necessary condition of solvability, we obtain a reduction to a simple form

of linear FBSDEs. We concentrate on the following FBSDE:

dX; = (AX; + BY )dt + (A X, + BY, + C{Z})dW],
=1
~ ~ d _
dY, = (AX, + BY,)dt + > ZidW}, 0<t<T (3)
7=
L Xo = O,YT =g.

In what follows, we will let

A, At € M,(R); B, Bi,Ct € Myym(R),i=1,---,d
A € Mypin(R); B € M, (R); (4)
g e L}T(Q;Rm).

Definition 1. (X,Y,Z!,--- | Z%) € MI0,T] is called an adapted solution of (3) if the
following holds ¥t € [0,T], a.s.:

d . . . . .
X, = [(AX, + BY,)ds + Y. [o(AiX, + BiY, + CiZl)dW?,
i=1
Y, =g~ [[(AX, + BY,)ds — 5 [ ZidW.
=1
When (3) admits an adapted solution, we say that (3) is solvable.

By denoting

A B
A=1 . |,

A B

Al Bi Ci (®)
A= | " TPl = M i=1,--.d

O 0 I




We can write (3) as follows:

X X d Xy o .
d =A dt+ > | A +C{Z: | dW},

Yt Yt =1 Yt (7)
Xo = 0, YT =g.

We want to introduce the general 1to Formula in matrix form. If each of the processes
[At]jk7 [Bz]]kaz = 17 U 7d7 ] = 17 T, MM, k= 17 N, and [A\t]jka and [B\;]ﬂm 1= 17 U 7d7
j=1,--- n,k=1,--- lareall in L%(0,T;R) then we can form the following "matrix”

[to processes (in matrix notation)

d
dY, = Audt + 5" BydW;
=

WhereXt: [Xt]jk7 At: [At]jk7 Bz: [B;]jk,lzl, ,d,jzl,"‘ ,m, k': 1, ,n, and
Y;: D/t]]ka A\t:[A\t]jka and EZ:[Az]]k7Z:17 7d)j:17"' y 1, k:17 7l'

Lemma 1 (The General Ito Formula). Let X, Y be "matrices” Ito processes as (8). Then

the process XY is also an Ito process, given by
d(XYs) = (dXy) Y + XodYi 4 d(X,Y),

where (X,Y') is their “generalized” eross-variation process defined by

d
d(X,Y), 2> BiBldt,0 <t <T.
=1

Proof. Since

n

[XYile = ) [ XiljalVilat,

a=1



by Ito Formula

d[XtY;f Jjk — Z d Xt ja[Y; ak Z d Xt ]a Yt]ak + [Xt]]ad[}/;]ak + d([X]jaa [Y]ak>t

- Z <[At] ja Yelandt + Z[Bﬂja[lﬁs]adeZ

a=1 =1
d
HX ol Adandt + [ X o BilardW + Z akdt)
=1
n d N
= ([dX]ja[Yilar + [Xilja[dYilar) + D [Bi Biljdt
=1 =1

= [(dX)Yi]jx + [XedYi] g + [d{X, Y )]
= [(dX)Ye + XedYy + d(X, Y )iljp, j = 1, - smy k=1, L

This completes the proof of the General 1to Formula.



3. Solvability of Linear FBSDEs

In this chapter, we are going to present some solvability results for linear FBSDE (3).
For convenience, we denote hereafter in this chapter that H = LQQT (;R™) and H =
[L%(0,T;R™)]¢ (which are Hilbert spaces to which the final datum g and the processes

(Z!,--- ,Z%) belong, respectively).

3.1. Necessary Conditions

First of all, we let

d
AD, = ADydt + > AL, dWj,t > 0, o)
]

(I)O =3 I
where A and A%, i =1,---,d are defined in (6).

Lemma 2. If ® is the solution of (9), then, ®~" exists and it satisfies the following linear

SDE: j d
Aot =~ ;! {A - Z(AQ)Q} dt = &1 30 AydWy,t > 0,
i=1 =1

(10)
ot =1
Proof. Let us check that (10) is the SDE of ®~!, by the General It Formula,
d(®®; 1) = d(Py) P, " + pd(P, ) + d(P, 7Y,
d d d d
= Adt + > AdW; — [A - Z(Ai)zl dt = AW = (Al)?dt

i=1 i=1 i=1 i=1

=0 =dl.

Due to (9) is the linear SDE and the Existence and Uniqueness Theorem for Stochastic
Differential Equations, ®~! exists and it satisfies (10). ]

10



Moreover, we consider the following General Ito Formula

Xy

Xy

d| ot =d(®; ) + &, 1d +d(d7H, )y
Yt Yt Yt Y
d d
— ;L [A— Z(Aﬁ)Ql Clat-et Y AL T [ awy
i—1 Y, i—1 Y,
X d | X . A
ro Al T a ety (Al | TN | raizy ) aw
Y, =1 Y,
d X, o
— D)y TS (A + AICIZE S dt
=1 Yt

d d
=~ Y " ACIZidt + B Y CLZidW]
il =

So, (X,Y,Z!, .-, Z%) € M0, T] is an adapted solution of (3) if and only if the following

variation of constant formula holds:

X 0 t o Yl ) t -
ot | | = _/ @Slegciz;dH/ 1> ClZAWL0<t<T,
Y, | Yy 0 i=1 0 i=1
or
X, [0 t o | t e oo
— D, —q>t/ @gle§C{Z§ds+®t/ 1N ClZEdWE0 <t < T, (11)
Y, Yy 0 i=1 0 i=1

for some y € R™ with the condition:

0 T . T b
g=[0 I]|Pr — @T/ Oy ACIZids + @T/ o1y " CiZLAW]
y 0 i=1 0 i=1
(12)
Let us introduce an operator K : H — H as follows:
T d T d
KZ',- 29 =[0 I] <—<1>T/ <1>;1ZAgc;z;ds+c1>T/ @;lzc;z;dwg>.
0 i=1 0 i=1
(13)
Then, for given g € H, finding an adapted solution to (3) is equivalent to the following:
Find y € R™ and (Z*,--- ,Z%) € H such that

0 1 d

11



and define (X,Y) by (11). Then (X,Y,Z!,--- Z%) € M|0,T] is an adapted solution of

(3). We now make some findings on ® and K. Let us first give the following lemma.
Lemma 3. For any f € Lz(0,T;R"™™) and h € L% (0, T;R™™), it holds

E[q)t] = 8-At7
E [@t I @glfsds] _ [ A9 B )ds, V<i<T. (15
E [CI% IN c1>;1hde;} = [ Mt AIEhds,i =1, ,d,

Also, it holds that

E { sup H(IDtsz} +FE { sup H<I>;1H2k} < o0,Vk >1 (16)
0<t<T

0<t<T

Proof. We suppose first that (16) holds. Taking expectation in (9), we obtain

dB[®,] = AE[®,)dt, t € [0,T),
(I)O F I

(17)
Thus,
E|og=e1.

We have proved the first equality in (15). Let us prove the second equality in (15).
Set
t
& = @t/ ®; ' f.ds,0 <t <T. (18)
0

By the General 1to Formula

t
dét = (dq)t)/ CI)S_lfst + ftdt
0

d
= (AG +£)dt + ) AigdW.

i=1

Then ¢ satisfies the following SDE:

d . .
dé = (A& +£)dt + > AlgdWi 0 <t <T
=1

i (19)
S = 0.
Taking expectation in (19), we obtain

E[go] = 0.

12



Hence,

%G_AtE[ft] = —Ae ME[g] + A ME[g] + e ME[f] = eV E[f],

1.e.
t
e Elg] = / e~ E[f.]ds.
0
Thus,
t
El¢] = / eI Ef)ds,0 <t <T, (21)
0

proving our claim.

The third one we can set
t
G = @t/ O thydW!,0<t<T. (22)
0
By the General Ito Formula

t 3
d¢, = (d®,) / O, th,dW! + h dW} + d{®, / ® th,dW?,
0 0

= (AG +Alh,)dt + Zd: AL AW, + hydW.
i=1
Then ( satisfies the following SDE:
dG = (AG + Athy)dt + é AL GdW 4 hdW t € [0,T), (23
G =0.

Taking expectation in (23), we obtain

dE[¢] = (AE[G] + AL Elhy])dt, 0 <t < T, (24)

E[¢o] = 0.
Hence,

%eAtE[Q] = —AeME[¢] + Ae M E[G] + e M A Ehy] = e A Elhy,
ie.
Bl = / ¢~ Al Elh,ds.
0
Thus,
t
E[¢] = / e A Elh,)ds,0 <t < T, (25)
0

13



proving our claim.

Now we prove (16). For any & € R process & = ®,&, satisfies the following SDE:

d
d& = AGdt + Y Ai&dW},0 <t <T,
i=1 (26)
§o = &o-

Then E[ sup ]&/]2]“1 < o0o. Since |a + b < (2max{|al, [b]})? < 2P(|al? + |bP) Va,b €
0<t<T
R**™ p > 1, we see that

B| s, I < 5| sup (16 - &l + | <2 (B sup l6 - 6] + o)

0<r<t 0<r<t
- 2k
S 22k {E sup ( gr - 50 _ / Agsds ) + ’50’2k}
0<r<t 0

/Afsds
0
. 2%k
§22k{22kE sup( /.Afsds ) +]§o|2k}
0<r<t 0

2%k
T d if
since &, — & — / Asds = Z/ A& dW! is a martingale with respect to .%,, by the
0 —1

+

+

F . —/OTAﬁsds

Burkholder-Davis-Gundy Inec&uality, 3K > 0 (depending only on k), and Holder Inequal-

2% v k
i |2
] <KE (; /0 AL ds)
d ‘ k / d k—1 d . k
<KE Z( / |A§§3|2ds) S1) | ke Y E ( / |A§§S|2ds)
i=1 \JO i=1 i=1 0

t t k—1 d t
/O AP ds ( /0 1ds) ]:K(td)'f-ligzz{ /0 ]A’lﬁs]%ds}

d ¢
<K@ S IAPE | [ jefa] o<
i=1 0

ity such that

E | sup

0<r<t

& —& —/OTAfsds

d
<Kd"! Z E
=1

14



Using Holder Inequality again, we obtain

d t
B sup [ef] <2 {2% (K(td)k—l Sl | [ lerias] + £
i=1 0

0<r<t

2k

sup
0<r<t

) + |§0|2k]

J
> + \&F’“}

d ropt T r
gz%{a% K S [ [ i) + 8 [ s o [ |A€sl2kd8])+|§o|2k}
LJo | 0

i—1 10<r<t

d ropt . t
gz%{z% K0 Y IAPE | [ lers] + o ape | [ \@st})ﬂfor%}
=1 LJ0 - 0

d t
32%{2% K(Td)k‘lzllAa||2’“+T2’f—1||A||2’“>E{ / sup |5T|2’fds} +|§0|2k},
0 STsSs

=1

/ A&, ds
0

d - - ” r 2k—1
gz%{z% Ky SO | [lePhas] + 2| s [ Lag s ([ 1as)
i=1 -0 - 0 0

0<r<t

and by Gronwall Inequality, we can show that

d
2% (K(Td)k‘1 DY \A§||2’“+T2k‘1llAll2’“>t
:| S e i=1 22k|€0|2k

E [ sup |£T|2k

0<r<t

and

d
94k (K(Td)k_l Z HA”Qk—i—T%_lHAH%)T
E { sup |§t|2k] <e S 22F &)k k> 1 (27)

0<t<T

for some constant KX > 0. Thus, the first term on the left hand side of (16)

d
€ |2k 2% | K(Td) =1 30 ||AL|IPR+T>R 1 A)PR ) T
t < 22k6 i=1

E [ sup ||(I)t||2k:| =F [ sup sup -
0<t<T 0<t<T &0 |60l

is finite. Similarly, one can prove that the second term is finite as well. O

Now, we let Yy = K(Z!,--- ,Z%) and

X ‘ oo t o
= _cpt/ o1y AICIZids + @t/ o'y ClZLAWL0<t<T,
Y 0 i=1 0 i=1
then (X,Y) fulfills the following SDE:
Xy Xy d | Xy o .
d =A dt+ > | A +C{Z; | dW},
Y, Y, i=1 Y,
Xp=0,Y,=0
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From Ito Formula,

) o X, X, X
d(|1Xe]” + 1Y) =2 -d + d( )t
Y, Y, Y
2
X X 1 | X o
=2 Al T YA T vazy) | ar
Y, Y, i—1 Y,
d Xt . Xt .. .
+2) A +CZ | dwy,
=1 Yt Yt

taking expectation in both side,

2
t X, X, 0 X, .
EIX,[2 + Y] = B /2 A 3| +cizi| ds
0 Ys Ys =1 YS

d t d t
gz(HA\HZuAaH?)E[ S pas] 2 max el S | [ 12|
i=1 T i=1

By Gronwall Inequality,
, | . <||A||+2Al||2 :
P+ Yl <2 o JEHIENSTS ) S | [ pas)
hence
, ; i 2T<AH+§||A“||2 Z
BIK(Z, - 2 = BV < 2 maslcile S [z

so K : H — H is a bounded linear operator. Now, if (3) admits an adapted solution, by

taking expectation in (12) and using (15), we obtain

O d (T o d (T o
Egl=[0 1]{e" . y—z / eA<T-S>AgC§E[z;]ds+Z / AT AICIE[ZE )ds
i=1 “0 i=1 v 0

(o 11| 7 |y 29
1
for some y € R™. This leads to the following necessary condition for the solvability of
(3).
Theorem 1. Suppose (3) is solvable Vg € H. Then

det {[O T ]e*” © # 0. (29)
1

16



Proof. Since R(F) = R™ and Jy € R™ such that (28) holds. So we can easily get

O
Rl[O 1] = R™. Then (29) holds. O
I

Let us now present another necessary condition for the solvability of (3).

Theorem 2. Suppose (3) is solvable Vg € H. Then,
det([ 0 1 ]e™C) >0,¥te€[0,T],i=1,---,d. (30)
Consequently, if
T = i:r?}pvdinf{T >0:det([ O T 1e*TClH) =0} < oo, (31)
then, for any T > f, dg € H, such that (3) is not solvable.
Proof. Suppose dsg € [0,7") and some j € {1,--- ,d}, such that
dét([ df [\ ) =\ (32)
Note that sy < 7" has to be true. Then 3n € R™, |n| = 1, such that
F O I [eAT—=0)¢] 07 (33)

We are going to prove that Ve > 0 with so +e < T, dg € L?%Oﬂ(Q; R™) C H, such that
(3) has no adapted solutions. To this end, we let 5 : [0,7] — R be a Lebesgue measurable

function such that

B(s) =+1,Vs € [0,s0 +€]; B(s) = 0,Vs € (so + €, TY;
{s € [s0,st] : B(s) = 1}) = 5%, (34)
{s € [s0,56] : B(s) = —1}) = %52 k€ N,

where m means Lebesgue measure, for some sequence si \, sg and s < so + €. Next, we

define

m({s €
m({s €

d t
G = 2/ B(s)dW,;,0 <t <T (35)
i=1 70

and take g = (mm € L??S()H(Q;Rm) C H. Suppose (3) admits an adapted solution
(X,Y,Z,--- | Z%) € M[0,T] for this g. Then Jy € R™, by (7) and the General Ito

17



Formula

X X X
d| e ! = —Ae M ! dt + e=*td !
Y, Y, Y,
[ X, | X d | x o .
= Ae M| T at et LAl T fa e Y AL T | +aizd | awg
I Y, | Y, i=1 Y,
d
=N A Yt } +c;z;) dw;,
t

with integral form

X 0 dfT X, . .
Sl I + D / e | Al +CiZL | AW,
¢rn Yy i=1 70 Y,
we have
X 0 _ | X, . ,
cn=10 11| " |=10 1]{eT +Z/ AT A +Cizl | awi g,
¢rn y i=1 Y0 Y,
(36)
Multiplying n’ from left to (36) gives the following:
d T 4 L K -
r=at Y [ i+ i) 2 (37)
i=1 Y0
where
T AT 0
a=n"10O TIle eR
y
. X, , (38)
V=010 I]eATIA € L%(:0([0,7)),i=1,--- d,
Vi(s) = {n"[ O I 1eAT=9)Ci}T is analytic, i = 1,--- ,d, ¢ (sq) = 0.
Let us denote .
¢
Gt:a+2/ v (s) - ZLAW! 0 <t < T. (39)
i=1 Y0
Then, it follows that
d(Oy —G) = > +¢'(t) - Zy — B)dW;,0<t <T (40)
i=1

QT— T:O.
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By Ito Formula,
d(0, — G)* = 2(0, — G)d(6, — G) + d(0 — ()

d d
=20 = G) )y + () - Zi = BOAW] + Y i+ () - Zg - B0t
i=1 =1

we have
d T
0= Bl0- a1+ B[ [ i) Zi-sepas] oses
i=1 ¢
Thus,
B(s) — L ='(s)-Z:, ae. s€[0,T], as. Vi=1,--- ,d, (42)
which yields
| Bls) —iFids = | Bifwis) - Zi)ds. v € N (3

Now, we observe and use Cauchy-Schwarz Inequality that (note 77/ € L% (Q; C([0,T1]))
and (34))

[ BU8ts) ~ +iPtas = [ Bllat)= 1+ BIGE — ) - BlGrd — s

2%/ " EIIB() = A F)ds / Bl =) ds
Zsk ; SOE[(l — 7§o)2 + (14 7§0)2] — o(sg — 80),k € N. (44)

(Since {fsto (7] — ~44,)?ds}iss, 18 & submartingale with respect to {%}i>0 and {fsto (2 —
v )?ds}i>s, is a continuous process. By the Theorem 3.13 in Karatzas & Shreve (1998),
t
{E {/ (v — 'ng)st}} is continuous in ¢ € [sg, sk]. By the Mean Value Theorem
t>so

S0
Sk

El(vi = ~4,)%)ds = El(v0 = ~4,)°] = 0 as
Sk — S0 Js
sk \y So.) On the other hand, since ¢/ is anal;ftic with 97 (sg) = 0, we must have

for Integrals, 3¢ € (sg, si) such that

Wi(s) = (s = 50)P(s),0 < s < T, (45)
for some 1) which is analytic and hence bounded on [0, 7]. Hence, we assume that | (s)| <

K, Vs € [0,T]. Consequently,
Sk »

B ) 2P = s = o) [ B 22

S0 S0

Sk ‘
< K2(s — 8)? / B[|Zi2ds. (46)
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Hence, (43)-(44) and (46) imply

S — S . .
T B =) + (L4 32)] — olsi = s0)
Sk ]
<K?(sp — s0)? / E[|Z7)*ds, Yk € N. (47)
S0

Divide sx — s9 and let s; \, so, we get
1 iN2 iN2

This is impossible. Finally, noting the fact that det([ O I |Ci) = det(I) = 1, Vi =
1,---,d,and [ O [ |eM'C! is analytic Vi = 1,--- ,d. We obtain (30). The final assertion

is clear. ]

It is not clear if the drift coefficient also contains some Z° terms since the assumption

with no Z° terms is crucial in the proof.

3.2. Criteria for Solvability

We will use Gronwall Inequality many times, but we now introduce the special case.
Proposition 1 (Gronwall Inquality). Let v(t) : [0,7] — R such that

2
v(t) < C’—i—A/ v(s)ds for0 <t <T
i
for some constants C' and A > 0. Prove that
v(t) < CeAT for0 <t <T. (48)

Proof. If A = 0, the result is clear. We may assume A > 0. Define w(t) = ftTU(S)dS.
Then —w'(t) < C + Aw(t). Consider f(t) = —w(t)e™,

f'(t) = —w'(t)e — Aw(t)e = [—w'(t) — Aw(t)]e? < Ce,

SO

T
—w(T)e +w(t)e = w(t)e < C’/ eMds = %(eAT — e,
t

Deduce that
(AT _ 1) (49)

| Q

w(t) <

20



Use (49) to deduce
v(t) < C + Aw(t) < CetTD

O

Let us now present some results on the operator K (see (13) for definition) which will
lead to some sufficient conditions for solvability of linear FBSDEs.
Lemma 4. Let A= O. Then the range R(K) of IC is closed in H.

Proof. Let us denote Hy = L% (Q;R") and H=Hyx H=1L2% _(Q;R™™). Define

//C\(Z1 = —<I>T/ Z.AZCZZZdS—l-(I)T/ Z@zzdwz 2N e H.
(50)
Then, K is a bounded linear operator and K = CO%EE ]E We claim that the range R(IE)

of K is closed in H. To show this, let us take any convergence sequence

(k)
Xr ic(71 d N
=K(Z', - ,Z%), — (, in H, (51)
v
T
let
X . - dim o7 .
‘o= _(I)t/ @;1ZA§C{Z;de+¢t/ (I)leC{ngdW;,(Z17--- V2, € H,
ng) 0 i=1 7 0 i=1 ’

where (X®) Y *)) is the solution of the following:

;

x k) x () af o x® . Z.
d o =A o A+ A o | T CZy, | AW,
y® y® =~ y®
® (52)
XO
w | =0
\ YO
Then, by Ito Formula,
HXOP ey = | X g X | X
: t
[ ng) ng) d gk)
=2 A dt + Aj +CiZ; . | dWY
Y Y Zl vy
a1 ] xW |
+2_|A yoo | TG A
=1 t
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we have

2

[ w1 | X
2 2 i s irgi
BIXORIvp S [HAL| | ez b
[ r[ x® x®
=B [ |XP)2+ YW - 2/ A ds| . (53)
¢ ng‘) ng)
We note that (recall Ci = ! ) and use the Inequality of Arithmetic and Geometric
I
1
Means to derive aa® + —b* > 2|ab| Va > 0, we get
e
] x® I
Al +CiZyy,
Y ’
® T1° <)
iNT Yirzi i i ¢ iNT gi t i
=[I + (C1)" Cl|Ziy - Zi . + | A} +2(6)" A Ly,
' ; Y(k) Y(k) ’
t t

>|Zi 2 — [ APIXE 2+ YR = 2 i A X 2 + [y P2zt

1 7 7 k k
>|Z! 2 — || AL PR+ e |]—2||01||2||A1||2[|X§>|2+|Y§>|1——|z Wl

—|z W= CIXEPR 4 PP Yi=1, -

for some constant C; > 0. Thus, (53) implies

E|XOP+yPR+Y / rzz,k\%zs]
i=1 vt

k k g X‘(Sk)
<oB KPP yPE -2 [ A
t Y,

k k
IXPP2+ YR+

d
<2 <1 + 2| Al + Z&) E

=1

22

d T X(

k k i t

<8 | [P + PP 23 [ OROP -+ [YOR + |4 |
i=1 71 t

.d (54)

2

+CiZ;,| ds

k)

k)

x®) |

X012 4 [y (k)2
o ds+ZO/ W12 L1y ®2ds

S

/|Xk>|+|Y \MZ/ |Zi | *drds

(55)



Using Gronwall Inequality (Proposition 1), we obtain

E

d T
\ﬁWmW%Z/mwﬂ
i=1 "1t

d 2<1+2||A|+Zdj Ci>(Tt)
<2 (1 + 2[4l + Z@) e E [|X¥>|2 + |Y§f“)|2] 0<t<T. (56)

i=1

From the convergence (51) and (56), we see that (Z!,- -, Z%), is bounded in H. Since H
is a Hilbert space (hence is a reflexive Banach space), the bounded set is weakly sequen-
tially compact. Thus, we may assume that 3(Z',-- -, Z%);, — (Z',--- ,Z%) in H. Then
it is easy to see that f((il, e ,Zd) = (, proving the closeness of R(I/C\)

We take any convergence in R(K)
Y <xzh 28—~ rin H
and {ng)}keN is defined by (51). By Lemma 7 in Appendix, 3C' > 0 with
E[|X® — X{PT< CE[ Y = Y]]

Since {Ygﬂ}keN is a Cauchy sequence in R(K), then {(ng),Yg))}keN is a Cauchy se-
quence in R(K). Due to the closeness in R(K), 3(X, Y) € R(K) with {(Xg@), ch))}keN —

~

(X,Y) in R(K). We get the result Y =n a.s. Hence, R(K) is closed. O

Remark 1. In Ma & Yong (2000), pp. 41. They claim R(K) is closed by following
procedures. First we know that R(le) 1s a Hilbert space with the induced inner product
from that of H. In this space, we define an orthogonal projection Py : H— H by the
following:

0 ~
PH g = ,V 5 GHEH()XH.

n Ui Ui
Then the space

Py (R(K)) = {0} x R(K)

is closed in R(K) and so in H. Hence, R(K) is closed in H.
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The argument is not correct. We give a counterezample. Let H be an infinitely di-
mensional separable Hilbert space, and let {e,}nen be an orthonormal basis. Let Hy =

span{€an_1 tnen and H = span{es, tnen. It is clear that H= Hy® H. Let

nes,_1 + e
fn: 2n—1 2n,7’LEN7
n2+1

and let V = span{f,}

nen- We want to claim Py (V') is not closed in H. Take

yn:ie?_m, ) z":_Vm“

1
f,.,neN,
m

m=1 m=1

then z, € V, ¥n € N.

Hence 'y, € Py(V), and

but'y does not sit in Py(V).

Ify € Py(V), Han}nen with Zai < 00 such that (projection is a continuous mapping)

n=1

o0

y = PH(; anfn) o ;anPH(fn) = ; naQ—n_HeQn-

Hence,
n?+1

a,=————>1#0asn — oco.
n
It is a contradiction.

The following result gives some more information for the operator .

Lemma 5. Let (30) hold and A= O. Then

R(K) ={n € L5, (QR™) : E[n] = 0} = N(E), (57)
N(K) ={(0,---,0)}. (58)

Proof. First of all, by Lemma 4, we see that R(K) is closed. Also, by (13) and Lemma 3,
Vn € R(K),3(Z,--- ,Z%) such that K(Z',--- | Z%) =,
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El) = EK(Z',-- .2 =[0 I]E

T d T d
oy / o'y AICZids + Oy / -1 Zc;‘zgdw;]
0 i=1 0 i=1
=[o 11> - / AT AICIE[Z)ds + / AT ALCIE(ZE)ds = 0;
i=1 0 0
therefore, n € N(E) and R(K) C N(E). Thus, to show (57), it suffice to show that
N(B)(R(K)* = {0}, (59)
If (59) holds, then
H=RK)®RK)* c NE)®RK)" CcH,

hence H = R(K) @ R(K)t = N(FE) @ R(K)*. Therefore, if n € N(E), then Jlu €
R(K),w € R(K)* such that p =u-+w,ie. n—u=w € N(E)R(K)* = {0}, so we
get n=u € R(K) and N(E) = R(K).

We now prove (59). Take n € N(E) () R(K)*. Suppose

0=E[n-KZ, - ,Z9],V(Z', -+ ,Z%) € H. (60)

The above holds V(Z!,--- ,Z%) € H, let 0 < § < T and take

. N O )
(C{)TeA (T=s) [ ] ] Cﬁl[T—é,T](5)7 1=7

7 — 0<s<T (61)
0, L7
Then X, =0,Y,=0,Vs€[0,7 —6). And
X, ¢ . t o
Tl = o, / OTLAICIZIds + @, / OICIZIAWI 0 <t < T. (62)
Y, 0 0
Then, we have
X | X o ‘
d| Tl=al T e+ A T vzl | and
Y, Y, Y,
- (63)
X
Ol =o.
\ Yo
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By Ito Formula,

<~ |2 = 12 Xt Xt Xt
d(’Xt| + ‘Yt| ) =2 _ d | +d< — >t
L t ] Yt Yt
Xt _t . Xt . . .
=2 |- CA| _ |dt+ A _ | +CZ; ) dV}
Y, Y, Y,
) -_ 2
wlA | T v ar,
Y,

using Cauchy-Schwarz Inequality

2

+ClZ7| ds

_ _ t X, X, .
E[X>+|Y*|=E /2 A A
0 Y, Y, Y,

S

t t
<2 (11 IR B[ K + X Pas| +2ciiPe | [ 2P
0 0
and Gronwall Inequality, we obtain
) t
E“Xt|2 + |?t|2] < 2||C{H2€2(HAH+||A]1||2)I€E |:/ |Zg|2d8} 0<t<T. (64)
0

By the General Ito Formula again,

d|e M Et = —Ae™H Et AT /
Yt _Yt_ Yt
X, | X Ix N
=AM | Tt e dal T a4 T | +cizd | and
Y, Y, Y,
—e || O ezt | awd,
t
with integral form
X t | X - .
e T = / e [l | ZF | 4oz | aws.
Y, 0 Y,
Also, we have
1 . f{ Ix1 .\ .
B :/e =LA 7 | 4+ClZ | daw? 0<t<T. (65)
Y, 0 Y,



Since E[n] = 0 and n € H, by the It Representation Theorem, 3(¢t,--- ,(?) € H, such
that

=3 /0 CidWw (66)

Then, from (60) and (65), we have

1 d X7
0 ::12h7'K:<Z y T 7Z )]::ZE n- [() I ] _
Yr

T %1

_F / G0 114 (4| T | £z | as| (67)
0 Y,
This yields
F

T - @) . .
/ el @ | C @ zias
0 I
i[O
0 I

Consequently, (64) and (68) result in (use Tonelli Theorem and Cauchy-Schwarz Inequal-

ity)
T .

/ (C{)TeAT(T—S) ] ¢ :|

T—6
S’|-’431.||€”“4”TE [/ |<J’(|X |2+ |Y l % }

T—
<V2|| AL ||||CI || e GIMAIHIALIDT / ECEP) </ E[!ZiP]dr>2ds
- -5

<vaafliciee i tr [ et ([ egme) s o

By (30), we obtain

T ) T
/ BlcPas <k [ B

T—06 T—6

X,
Y,

—_E ds (68)

E

2

O
I

J
s

ds

C?G’AT(T—S) [

, T s 2
VA [[C] [P IATIHINTR | (B(CP)? (/ E[GP7] T) *
T-6

1

T
S—/ [|C]| Jds + H_AJ“ HCJ||4 2(3)| Al +[14711%) TKQ/ / |(J |drds (70)
2 Jr T—5
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Thus, it follows that
/ E[|¢P)ds < 2||Af|Pcq || CIAH DT 25 | B|¢])ds, (71)
T-6 T-5
with K > 0 being an absolute constant (independent of §). Therefore, for § > 0 small,
we must have

(=0, ae se[T—61T)| as. (72)
This together with (68) implies that
r=5 e O o
E / (CHTeA (T=) ¢ Zids
0 I

T=6 - ol . | X,
=—F / (ATt (T=s) <k ds| . (73)
0 I

Y,

Then, thanks to (30), we can continue the above procedure to conclude that (72) holds
over [0,T|Vj=1,---,d.

If the above argument is not true, 35 = 1,---  d, sé € (0,7T) such that ¢J = 0, a.e.
s € [s),T], a.e., and Ve; € (0,8}), AL IC [sh— €, ) with m(Ae;) > 0 such that
@240 e il e 5
but from above similar procedure, we can find some ¢; > 0 such that
(! =0, ae. s¢ [sg — 5j,sé], a.s.,

it is a contradiction, and hence it follows from (66) that n = 0 a.s. This proves (59).
We now prove (58). Suppose K(Z', - Z%) = 0. Again, we let (X,Y) be defined by
X, t ao t b
T = —@t/ 71y AICIZids + @t/ o1y ClZL AW 0<t<T.
Y, 0 i=1 0 i=1

Like (65), we have

ol

X,
Y,

l4Cizi | dwio<t<T

t d
- [s
0 i=1

|

S
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Then, V(¢!, -+ ,¢%) € H and above, we have

d T
i=1 V0
d T | X, -
=>E / Colo 1AM A | 7 | +CiZi ) ds| . (74)
i=1 0 Y,

This implies that

)

(o 1]erT=9 [ A +CiZ: | =0, ae. s€[0,7)], as.,i=1,---,d  (75)

ol

By (30), we easily see that
s Bi(s)2{[0 1]} 0 1]etTTIAL =1, d

is analytic and hence bounded over [0,7]. From (75), we obtain

. ; X
Z.=-B(s)| |, ae se€[0,T), asi=1,---.,d (76)
Y,
Then (X,Y) is the solution of
Xt Xt d | . _t
dl | =A| _ |[dt+ XA -CB(t)] | _ | dWy,
Y, Y, &l Y,
— (77)
X
Ol =o.
Yo

(76). This proves (58). O
A consequence of the above is the following.

Theorem 3. Linear FBSDE (3) (with A = O) is solvable Vg € H if and only if (29) and
(30) hold. In this case, the adapted solution to (3) is unique (for any given g € H ).

Proof. Theorem 1 and 2 tell us that (29) and (30) are necessary conditions. We now prove
the sufficiency. First of all, for any g € H, we can find y € R™, such that (28) holds (by
(29)). Then we have

g—[0 I]Pr ? y € N(F). (78)
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Next, by (57), 3(Z*,--- ,Z?) € H, such that

g—[0 I]®r ; y=K(Z',-- Z%. (79)

For any pair (y,Z!, -+ ,Z%) € R™ x H, we define (X,Y) by (11). Then one can easily
check that (X,Y,Z!, .- Z%) € M[0,T] is an adapted solution of (3). The uniqueness
follows easily from (30) and (58). O

The above result gives a complete solution to the solvability of linear FBSDE (3)
without any Z’ term in drift coefficient. It is also a problem when we consider the general

linear FBSDE case.
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4. A Riccati Type Equation

First, we consider the following BSDE:

d
dY;=h(t, Y, Z}, - Zdt + > ZidW}, 0 <t <T (80)
=1

YT - g?
where £ € L% (Q,R™) and h € L% (0, T; Wh=(R™ x (R™)4R™)) ie., h:[0,T] x R™ x
(R™)2x Q — R™, such that ({,w) — h(t,y,z!, -, 2% w) is {F }i>0-progressively measur-

able V(y,z',---,z%) € R™ x (R™)? with h(,0,0,--- ,0;w) € L%(0,T;R™) and 3L > 0,

d
|h(y’zl7”. 7Zd) _h<y;217“' ;Zd)| S L (|y_y| +Z|Zl_2’l|> 3

i=1
Vy,z',-- 2% y,72' - 727 € R™, ae. t €[0,T], as. (81)
Denote
N0, T] & L%(9; €0, T; R™)) x [L3(0, T;R™))* (82)
and

1

d T 2
sup Y2+ /Zth 83
0St£T| t] ; ; |Z,| (83)

Then, N[0, 7] is a Banach space under norm (83).

1Y, 2", 2% lvpy = (E

In this chapter, we present another method. It will give a sufficient condition for the
unique solvability of (3). We will obtain a Riccati type equation and a BSDE associated

with (3). Let us now carry heuristic derivation.

Suppose (X,Y,Z',--- ,Z%) € M|0,T] is an adapted solution of (3). We assume that
X and Y are related by

Yt = P(t)Xt + pt,Vt & [07T], a.s. (84)

where P : [0,T] — R™" is a deterministic matrix-valued function and p : [0, 7] xQ — R™
is an {.%#; };>o-adapted process. We are going to derive the equations for P and p. First

of all, from (8) and the terminal condition in (3), we have
g =P(1)Xr+ pr. (85)
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Let us impose

P(T)=0,pr =g (86)

Since g € L;T (Q;R™) and p is required to be {.# };>0-adapted, we should assume that
p satisfies a BSDE:

d
i=1 (87)

Pr=§8g
with a, ', -+ ,q? € L%(0,T;R™) being undetermined. Next, by Ito Formula, we have

=[P(t)X; + P(t)(AX, + BY,) + o]dt
d
[P(t)(ALX, + BiY, + CIZE) + of]dWV;

1

_|_

]

={[P(t) + P(t)A + P(t)BP(t)|X; + P(t)Bp; + oy }dt
d
+ 3 {[P(OAL + PO)BIP(1)X, + P()CiZi + P(t)Bip, + qi}dW;  (88)
i=1
Now compare (88) with the second equation in (3) (note (84)), we obtain that (drift

coefficient)
[P(t) + P(t)A + P(t)BP(t)]X; + P(t)Bp; +a; = [A+ BP(t)]X, + Bp;,  (89)
and (diffusion coefficient)
[P(t)AL + P(t)BiP(t)) X, + P(t)CiZi + P()Bip; +dq. = Zi,i=1,--- ,d (90)
By assuming I — P(¢)C} to be invertible V¢t € [0,T],i = 1,--- ,d, we have from (90) that
Z, = [I - PG H{I(P()A + PO) B P(H)]X, + P(t)Bip + i} i = 1+ .d - (91)
Then, (89) can be written as
0=[P(t)+ P(t)A+ P(t)BP(t) — A — BP(t)]X; + [P(t)B — Blp; + ay.  (92)
Now, we introduce the following differential equation for M,,x,(R)-valued function P:

P(t) + P(t)A+ P(t)BP(t) — A— BP(t) = 0,0 <t < T
P(T)=0

(93)
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We refer to (93) as a Riccati type equation. Suppose (93) admits a solution P over [0, 7]
such that
[I — P(t)Ci] " is bounded ,i =1,--- ,d,Vt € [0, 7). (94)

Then, (92) gives

~

o, = [B - P(t)Blp,

Combining this with (87), we see that one should introduce the following BSDE:

—~ d ) )
dp; = [B — P(t)Blpydt + >, qidWi,0 <t <T
=1

1=

(95)
Pr = 8.

When (93) admits solution P such that (94) holds, BSDE (95) admits a unique solution
(p,a',--+,q%) € N[0, T]. In the form provided here, a proof can be found in several
sources, for instance Ma & Yong (2000), pp. 15-16. From (84) and (91), the forward
equation (X):
(dX, = {[A+ BP()]X, + Bp;}dt
=32 (AL + BP0 + CHlE= POCI [POA] + POBPOIX,
+Bip, + C[T= PO)CI) [P Bipy + i) JAW;,0 < t < T
[ Xo=0

Then we can define the following:

(

A(t) = A+ BP(t),

Al(t) = AL 4+ BIP(t) 4+ Ci[I — P(t)CY " P(t) AL + P(t)BiP(t)],i=1,--- .d
b, = Bp:,

o, = Bip: + Ci[I — P()Ci] ' [P(t) Bipy + qp),i =1, ,d.

(96)

It is clear that A and Zﬁ are time-dependent matrix-valued function and b and &' are
{F# }i>0-adapted processes. Further, under (94), by the Existence and Uniqueness The-
orem for Stochastic Differential Equations, the following SDE admits a unique (strong)
solution:

dX, = [A(t)X, + bydt + i [AL ()X, +F)dW;, 0 <t < T, @)

XOZO.

The following Theorem gives a representation of the adapted solution of FBSDE (3).
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Theorem 4. Let (93) admits a solution P such that (94) holds. Then FBSDE (3) admits

a unique solution (X,Y,Z', -+ Z%) € M[0,T] which is determined by (97), (84) and
(91).

Proof. First of all, a direct computation (from above) shows that the process (X,Y,Z!,--- , Z9)

determined by (97), (84) and (91) is an adapted solution of (3). We now prove the unique-
ness. Let (X,Y,Z!,--- Z%) € M0, T] be any adapted solution of (3). Set

Y, = Pt)X; + ps,

A 98
Z, = [I — P(t)CI|"Y{[P(t) AL + P(t)Bi P(t)]X; + P(t)Bip; + qi},i=1,--- ,d (%)

where P and (p, q?, - -, q?) are (adapted) solutions of (93) and (95), respectively. Denote
Y=Y -Yand Z' = Z — Z'. By the It5 Formula,

dY, = P(t)X,dt + P(t)dX, + dp;

= [A+ BP(t) — P(t)A — P(t)BP(t)|X,dt
d
+ P(t) | (AX, + BY,)dt + > (MiX, + BYY, + CiZ})dW;
2=

~

d
+[B — P(t)Blp,dt + > qidV;

=1
d
+ Z{P(t)B;’ (Y: —Y,) + P(t)B{[P(t)X: 4 pd] + P(t) (A X, + C{Z}) + g }dW,
=1

d
= [AX, + P()B(Y, — Y,) + BY Jdt + Y {P(t)Bi(Y, — Y.) + P(t)CiZi + [[ — P(t)Ci|Z,}dW;

=1
d

= [AX, + P(t)B(Y, = Y,) + BY Jdt + > {P(t)Bi(Y: - Y1) + Z, + P(t)C}(Z} — Z;) }dW]
=1

Then a direct computation shows that (compare to (3))

dY; = [B — P(t)B]Ydt + > _{[l — P(t)C}|Z; — P(t)B}Y}dW},
=1

(2

(99)
Yr=0.

By (94), We may set
Zi = - P()CiZ! — P()BY i =1,--- ,d (100)
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to get the following equivalent BSDE (of (99)):

~ ~ ~ a . .
dY, = [B — P(t)B]Ydt + S ZidW},
i—1

1=

(101)
Yr=0.

It is clear that such a BSDE admits a unique adapted solution (Y, Z!, - -- ,Z9) = (0,0, --- ,0)

a.s. (see Ma & Yong (2000), pp. 15-16). Consequently, Zi=0as,i=1--,d (since

Zi = [I — P(t)Ci]"\[Zi + P(t)BiY,],i = 1,--- ,d). Hence, by (98), we obtain

Y, = P(t)X; + p,

Zi = I - PO P} + POBIP(OIX, + PO Bip + ai}i = 1+ ,d.
(102)

This means that any adapted solution (X, Y, Z!,--- , Z%) of (3) must satisfy (102). Then,
similar to the heuristic derivation above, we have that X has to be the solution of (97).

Hence, we obtain the uniqueness. O

The following result tells us something more.

Proposition 2. Let (93) admits a solution P such that (94) holds for t € [Ty, T] (with
some Ty > 0). Then, YT € [0,T — T, linear FBSDE (3) is uniquely solvable on [0,T].

Proof. Let

Pt)=Pt+T=T),0<t<T. (103)

Then P satisfies (93) with [0, 7] replaced by [0,7] and
[I — P()Ci] ™" is bounded for 0 <t < T,i=1,--- ,d (104)
Thus, Theorem 4.1 applies. O

The above proposition tells that if (93) admits a solution P satisfying (94), FBSDE
(3) is uniquely solvable over any [O,f | (with T<T ). Then in this case, by Theorem 1,
the solvability (3) of FBSDE over [0, 7] admits a solution Vg € L?% (€;R™), of which a

necessary condition is

0]
det [[O T ]eM >0,0<t<T. (105)



Therefore, by Theorem 3, compare (105) and (29), we see that the solvability of Riccati

type equation (93) is only sufficient condition for the solvability of (3).

We have seen that (105) is necessary condition for (93) having a solution P satisfying

(94). The following result gives the inverse of this.

Theorem 5. Let (105) hold. Then (93) admits a unique solution P which has the fol-

lowing representation:

O 1

Pit)==<S[0 1]e*™ [0 1 ]erT) 0<t<T.  (106)
I o)
Moreover, it holds
. 9] '
I-Pt)Ci=<S[0 1 ]eA(T_t) (O T ]eA(T_t) ! 0<t<Ti=1,---.d.
L I

(107)
Consequently, if in addition to (105), (30) holds, then (94) holds and the linear FBSDE
(3) is uniquely solvable with the representation given by (97), (84) and (91).

Proof. We can easily check that (106) is a solution of (93). You can find in Ma & Yong
(2000), pp. 49-50.

Uniqueness is obvious since (93) is a terminal value problem with the right hand side

of the equation being locally Lipschitz.

-1

I-PHCi=T+{[0 1]t (O 1]eAT 0| !
1 O
- - _1 ]
O 0] Cl
_ [ O I ]eA(T—t) [ O I ]eA(T—t) + 1
I 1 O
N o« 1 -
— [ O I ]eA(T—t) 0 } [ O I ]eA(T—t) CI
1 I
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Finally, an easy calculation shows (by (105), (30))

o det ([0 1])eAT0c)
det(I — P(t)CY) = >0,vte[0,T],i=1,---.,d,
@)

I

det [[O T ]eAT=D

and I — P(t)C} is a continuous function on [0,7], Vi = 1,--- ,d, hence (94) holds. Then

we complete proof. O
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5. Conclusion

This study proposed some extension of Ma & Yong (2000). We give the sufficient
and necessary conditions of the linear FBSDE (3), and modify their work to prove the
closeness of R(K) (with A = 0). Then we find the connection between a Riccati type
equation and the linear FBSDE.

There are at least three more possible extensions of our method for future research.
First, we can add nonzero Z;s term in drift coefficient and derive the sufficient and nec-
essary conditions. Second, one can prove or give a counterexample of the closeness in
general case (not just special case in this study). Third, someone can consider some spe-
cial nonlinear cases (like quadratic form) and discuss the solvability of the FBSDE. This
work may be can apply in the mathematical finance like mean-variance portfolio selection

and consider in optimal control and LQ problem (like Zhou and Li (2000)) in the future.
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Appendix

Lemma 6. Consider the following SDE:

p

d . . . . .
dX; = (AX; + B, Y, )dt + Z(A’LtXt +B1 Y+ Ct,Zy)dWy,
=1

=1

L XOZOaY0:O7

where

A, AL [0,T] x Q 5 My (R)

B,Bi,Ci:[0,T] X Q = Myem(R)

B:[0,T] x Q = M,,(R)
all the processes are { F, }1>o-progressively measurable, IM > 0 with | A¢||, [| AL ||, [| Bell, || B 41| [|1CF Ll <
M,i=1---,d, a.e. t €[0,T], a.s. And3b> 0 such that ||B)|| > b a.c. t € [0,T], a.s.

Then there exists ¢ > 0 (independent of (Zy,- -+ ,Z%)), V(Zy,- - ,Z%) € H such that
B[ Xz < cB[Y[’].
Proof. By the Ito Formula,

dlYt|2 — 2Yt . dYt + d<Y>t

d d
= <2Yt BY,+) |z;‘|2> dt+2> Y, - ZidWy,

=1 =1

hence,

E(Y: )= E

t d
/ 2YS-BSYS+Z|ZQ|2ds]
0 i=1
> 2E U \YS|2ds] +) E U |z;|2ds] . (108)
0 i—1 0

Similarly, by the Ito Formula,

d|X,|* = 2X, - dX, + d(X),
d
2X, - (AX; + BY,) + > |A} X, + B, Y, + C} ,Z]?

=1

dt

d
+23° X, - (ALX, + By Y, + L ZDdW],

i=1
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1
taking expectation we get and use the inequality aa® + —b* > 2|ab| Va > 0,
o

E[|Xt|2] =L

t d
/ 2X, - (A X+ B.Y,) + ) _|A} X, + B} Y, +C} ZY] ds]
0

=1

t t 1 t
<2ME [/ ]Xs\st] +aM?E [/ ]Xs\zds] +—FE U \YsPds}
0 0 «Q 0

d t
+3M*) E U Xo? + Y2+ |Zi\2ds]
i=1 0

t 1 t
< M@2+aM +3Md)E [/ |X8|2ds] + (— + 3M2d> E [/ |Y8|2ds]
0 «Q 0
d t
+3M*) E U yzg|2ds] Vo > 0.
i=1 0

By Gronwall Inequality and (108),

1 t d t
E[|X,|] < MErad+3Md)t { (— - 3M2d> E [/ |Ys12ds} +3M? ZE [/ \zg|2ds] }
(6% -
< eM(Q-l—ocM—i-?)Md)t <l i 3M2d) l/\ |Yt ZE |:/ |Zz 2d$:|
o 2b

d t
+3M*Y F U |Zi|2ds} }
i=1 0

M(2+aM+3Md)t { i

= (é - 3M2d) E [[Y?]

2b

d t
1 /1 ;
+{3M2_2_/5(E+BM2(1)} g E[/ |ZZ]2ds}},Va>O,tE[O,T].
i=1 0

Take « sufficient small, we obtain

=€

1 /1
EHXtP] < eM(2+aM+3Md) Qb ( +3M2 ) E UYt’Q] ,Vt c [O,T]

1
let ¢ = M@FaM+3Md)T — 5 < +3M 2d), we complete the argument. O

The following case is that we want to show in the Chapter 3.

Lemma 7. Consider the following SDE:

dX; = (AX; + BY,)dt + > (A X + BYY, + C{ZY)dW},
=1
dY; = BYdt + _ ZidW}, 0<t<T,
i=1
| X0=0,Y,=0,
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the matrices are defined by (4). Then there exists C > 0 (independent of (Zy,- - -

V(Zy,- -+ ,Z%) € H such that
E[X:"] < CE[[Yr[].
Proof. We use the General 1to Formula in e‘Eth,

d
d(e P'Y,) = —Be P'Y,dt + e P'dY, = e P> ZidW].
=1

Now, we consider ete_ﬁth and use the Ito Formula again,
d(ete’ﬁth) = ele By, dt + etd(e’Eth)

d
= e PYdt +ele Py " Zid Wy

i=1

Let Y, = ete_éth, and 2; = ete_EtZ§, we derive the SDE:
( ~ d . 4 S~ X S .
dX; = (AX; + Be 'ePY,)dt + ST (AL X, + Bie 'eBYY, + Cle teBZE)dW],
|
AN A~ d AN, .
0, = Yt + > ZidWi,
i=1

| X0=0.Y,=0,

by Lemma 6, 3¢ > 0 such that
E[IXr[?] < cE[Y 1] < ce® 2B B[ Y 1 [?]

Take C = ce?Te2BIT we prove (109).
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