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摘要

在晶片設計的流程中，如果流程後期需要修改原本的電路設計，工程變更指

令是一個普遍使用的方法。我們提出新的演算法以優化基於後向切割的工程變更

指令引擎效能。我們藉著後向切割在兩個電路中找出改正配對，接著精鍊這些配

對以去除多餘的部份。實驗結果顯示我們提出的演算法不但減少了修補邏輯電路

的成本也降低了程式運行的時間。除此之外，我們進一步將後向切割應用於等效

驗證，實驗結果說明了我們的演算法是可行的。	

關鍵詞：工程變更指令、後向切割、修補邏輯電路、等效驗證
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ABSTRACT 

 

 Engineering change order (ECO) is a popular approach for rectifying circuit 

errors and specification changes in late design stages. Backward-cut-based ECO solves 

the problem by divide and conquer from the output side to input side. In this thesis, we 

present new algorithms to optimize the performance of ECO engine. We first discover 

the rectification pairs in two circuits by backward-cut approach and then remove the 

redundant parts by refinement technique. The experimental results show that our 

algorithm not only reduce the patch circuit cost but also improve the run time of ECO 

engine. Moreover, we further apply backward-cut approach to the Equivalence 

Checking (EC) and experimental results prove that our algorithms work. 

 

Index Terms – Engineering change order, backward-cut, patch circuit, 

equivalence checking. 
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Chapter 1    Introduction 

 

In VLSI design flow, late design changes are inevitable and the complexity to 

handle these changes is increasing since the modern design size is growing rapidly. If 

these design changes occur towards the end of the design cycle, it is impractical to go 

through the entire VLSI design flow again due to the time-to-market pressure. Moreover, 

significant time and efforts already spent on the original design would be wasted. To deal 

with this problem, a method called Engineering Change Order (ECO) was proposed to 

keep these changes local [1]-[3]. Fig. 1 and Fig. 2 show the purpose and an example of 

ECO. RTL 1 is the original design while RTL 2 represents the new specification, which 

can be viewed as the golden design. Instead of generating a whole new converged netlist 

for the golden design, we compare the original converged netlist with the netlist 

synthesized from the golden RTL by ECO tool. In other words, we want to find the 

minimal difference between the original and the golden (new) circuits. The identified 

logic difference is called the patch, which can be implemented by technology mapping 

with spare cells. More specifically, spare cells are the extra cells inserted to the design 

for the ECO purpose. Normally, they have nothing to do with the function of original 

design. We can then realize the function of computed patch with the available spare cell 

resource. As a result, there is no need to restart the whole design flow from scratch. Since 

the original design is usually optimized after a series of processes, it is hard to revise the 
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netlist to bring in the corresponding RTL changes. Therefore, we need an ECO engine to 

automatically implement these changes.  

 

Fig. 1.    IC design flow and the purpose of a functional ECO tool. [4] 

 

 

 

Fig. 2.    A functional ECO example. [4] 
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ECOs can be divided into functional ECO and timing ECO. Functional ECO 

handles the logical changes to the design, while timing ECO concentrates on improving 

the performance of design or repairing timing violations caused by the specification 

changes. For functional ECO, the target is to fix the logic difference between the original 

and the golden circuits and to make the size of resulted patch as small as possible. By 

adding the patch to the original circuit, two circuits should become functionally 

equivalent. During this stage, we usually focus on the rectification of logic function. In 

contrast, when dealing with timing ECO, we need to consider the physical constraints, 

such as the location of spare cells and the wiring length of composing patch. Recently, 

some researches consider physical issues simultaneously when handling functional 

correction, which is called resource-aware functional ECO [5] [6]. Fig. 3 presents the 

concept of resource-aware functional ECO.  

 

 

Fig. 3.    Resource-aware functional ECO. [5] 
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In this thesis, however, we only discuss the solution to pure functional ECO 

problems. That is to say, we consider no physical constraint during the process and focus 

on how to make the given two circuits functionally equivalent with minimal patch. We 

usually solve the ECO problem by divide and conquer since the modern designs are too 

large. Some researches narrow down the problem by iteratively finding equivalence cuts 

for the original and the golden circuits. We call this approach backward-cut since it 

generates cuts from the output side to the input side of circuits. Fig. 4 illustrates the 

definition of backward and forward direction in a circuit. Both of [7] and [8] demonstrate 

the backward-cut-based ECO techniques.   

Past researches, however, still have room for improvement. As a consequence, we 

propose a two-phases approach, which optimizes backward-cut-based ECO algorithms in 

[7] and [8]. Our approach contains two phases: 1) merging phase: to find the gates in the 

original and golden circuits which are functionally equivalent to each other and then 

merge them into one gate; 2) matching phase: to explore the matches between the original 

and golden circuits in order to identify the minimal regions for rectification. In addition, 

we further apply this backward-cut approach to equivalence checking, which is usually 

solved forwardly. Experimental results show that our idea works.  

The remainder of this paper is organized as follows. Chapter 2 gives some 

preliminaries. Chapter 3 describes our backward-cut-based ECO algorithm in detail. 

Chapter 4 shows our backward-cut-based EC algorithm. Chapter 5 discusses our 
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experimental results. Chapter 6 is the case study, which further explores the result of 

particular testcase. Chapter 7 concludes the thesis and talks about possible future works.  

 

 

Fig. 4.    Definition of backward and forward direction in a circuit. 
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Chapter 2 Preliminaries 

 

In this chapter, we present the prior knowledges related to our work. First, chapter 

2.1 ~ 2.4 describe the fundamental concepts we need for ECO. Chapter 2.5 and 2.6 briefly 

introduces previous works and the criteria of ECO problem, respectively. The techniques 

proposed in past researches are then described in the remaining chapter. 

 

2.1 Boolean Satisfiability  

Boolean satisfiability problem (SAT) is a decision problem taking a propositional 

formula which represents a Boolean function. It would answer whether this formula is 

satisfiable. The formula is satisfiable (SAT) if there is at least an input assignment to 

evaluate the formula to 1 (true). Otherwise, the propositional formula is unsatisfiable 

(UNSAT). If the formula is unsatisfiable, then the Boolean function is proved to be a 

constant 0. A SAT solver is a software program for solving SAT problems. When a SAT 

problem is satisfiable, the solver returns SAT with a satisfying assignment. Our ECO 

engine adopts Minisat [9], which is the most popular SAT solver over the world.  

 

2.2 Equivalence Checking (EC) & Miter  

Two circuits are regarded as functionally equivalent if and only if their output 

values are equal under all input assignments. Equivalence checking plays an important 

role in functional ECO. In the ECO process, we need to check the functional 
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correctness after circuit rectification. If two circuits are non-equivalent, it means that 

there are still errors in the circuit. We usually transform the equivalence checking problem 

to a satisfiability problem with a miter [10]. If we want to check the functional 

equivalence between two Boolean networks F (Original) and G (Golden), then we build 

a miter like Fig. 5, which applies an exclusive-or gate (XOR) to F and G. They are 

functionally equivalent if and only if there is no input assignment making the miter 

outputs 1. That is, two Boolean networks F and G are functionally equivalent if and only 

if the miter of F and G is UNSAT. 

 

 

Fig. 5.    A miter example in [10]. 

 

2.3 AIG, Strash & FRAIG 

And-inverter graph (AIG) is a directed and acyclic graph that represents a 

structural implementation of the logic circuit. In AIG structure, each node represents an 

AND gate and contains two inputs. Each input includes a node it connects to and a flag 

https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)
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to signify whether this input is inverted. Since {AND, NOT} is a functionally complete 

set, every Boolean function can be transformed into an AIG. Fig. 6 illustrates two simple 

AIG examples. Normally, when a circuit problem is modeled in AIG, the implementation 

can be simplified due to the simplicity of the AIG data structure and thus the room to 

optimize the algorithm will become larger. For example, to speed up equivalence 

checking, AIG-based Strash and FRAIG are two commonly used techniques. We can also 

utilize the merged gates discovered in these two processes to guide the pairing during cut-

matching. 

 

Fig. 6.    And-inverter graph example. 

 

 

 

Fig. 7.    Structural hashing example. 
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Structural hashing (Strash) is to map each AND gate and its two inputs into a 

canonical form. Fig. 7 shows the concept of structural hashing. With this method, we can 

efficiently discover some equivalent gates and then merge them.    

Functionally reduced and-inverter graph (FRAIG) [11] technique first find the 

functional equivalent candidates (FEC) by simulation and then check whether they 

are actually equivalent by SAT solver. The algorithm is presented in Fig. 8.  

                                                                        

Algorithm Functionally-Reduced And-Inverter Graph                             

1:  Input: Circuit ckt 

2:  Output: Circuit ckt 

3:  solver ⟵ Init_Proof_Model(ckt) 

4:  classes ⟵ Init_FEC_By_Random_Simulation(ckt) 

5:  for each gate g in ckt in a topological order do 

6:      fec ⟵ Get_FEC(classes, g) 

7:      if fec == null then continue 

8:          for each m in fec do 

9:         if Sat_Check_Equivalence(solver, g, m) == UNSAT then 

10:           Merge(ckt, g, m) 

11:       else 

12:            pattern ⟵ Get_Sat_Pattern(solver) 

13:            classes ⟵ Simulate_And_Update_FEC(classes, pattern) 

14:    end for 

15: end for                                                                 

Fig. 8.    Functionally reduced and-inverter graph algorithm. [8] 

 

2.4 Boolean Matching 

Boolean matching is a problem determining the functional equivalence 

between two Boolean functions under permutations and negations of their inputs and 

outputs. In logic synthesis and verification, Boolean matching has been widely adopted. 
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Besides, it has also been applied to the backward-cut matching in the functional ECO and 

the technology mapping. Given two Boolean functions f(X1) and g(X2) with same amount 

of inputs (|X1| = |X2|). Boolean matching under NPN-equivalence decides whether f and g 

can be functionally equivalent or complementary under negations and permutations of 

the variables of X1 and X2. The first and second “N” in “NPN” represent the negations on 

the inputs and outputs, respectively.  The “P” means the permutations on the inputs. In 

our ECO technique, we apply a simulation-guided cut-matching algorithm to discover the 

output-side boundaries of the patch, which can be viewed as an NP-equivalent Boolean 

matching problem. We check the equivalence between two circuits under the negations 

and permutations on the inputs but the negations on the outputs are excluded.  Moreover, 

the boundaries are not predefined in our cut-matching process so we need to search for 

the matching candidates first. 

 

2.5 Previous Works on Functional ECO  

There are many works focusing on functional ECO in recent years. [12]–[14] 

propose fault models to describe the design errors, such as incorrect gate-type, inverter 

missing, and wire misplaced. These techniques rectify the buggy designs based on their 

fault models. As a result, the patch circuits are usually predictable. In most cases, however, 

these techniques fail to generate the patch circuit since the fault models are not enough to 

represent the functional difference. 
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Fig. 9.    Single-fix interpolation circuit in [17]. 

 

 

Fig. 10.    Partial-fix interpolation circuit in [19]. 

 

Synthesis-based ECO algorithms [15]–[19] explore an internal rectification signal 

by some diagnosis approaches, and then produce a patch function for the functional 

difference by re-synthesis techniques. Despite the fact that these algorithms are able 

to automate the functional ECO flow, relying on a single-fix signal is their main 

disadvantage, as Fig. 9 shows. In the worst case, the only possible single-fix signal is the 

primary output itself in real-world testcases. Therefore, the resulted patches may be 
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extremely large, which is unacceptable. In order to handle these problems, a partial-fix 

interpolation-based ECO engine is proposed in [19]. This ECO engine generates partial 

rectifications iteratively and thus incrementally fix multiple errors in the design as Fig. 

10 shows. Although this technique can deal with the problem more efficiently, it 

considers the errors in the design to be independent. However, there may be some 

correlations between the errors in circuit. As a consequence, the iterative process may not 

be able to converge. A cofactor reduction algorithm in [20] is applied to generate multi-

fix rectification patches by interpolation, which takes multiple errors into consideration 

simultaneously. Fig. 11 presents the algorithm in [20]. 

 

 

Fig. 11.    Cofactor reduction algorithm in [20]. 
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Sweeping-based ECO algorithms are proposed in [21]–[24]. They demonstrate a 

structural comparison between the original and golden circuits. Due to the fact that the 

functional rectifications in RTL often comes from small and local changes, sweeping-

based approaches are very rational for functional ECO. DeltaSyn [24] proposes a dual-

phase flow to first identify the input-side and output-side frontiers of the changes and 

then collect the logic gates within two frontiers to be the patch circuit, as Fig. 12 shows. 

[25] and [26] provide efficient forward sweeping algorithms to merge the functionally 

equivalent gates and then derive the input-side boundary between the original and the 

golden circuits. Nevertheless, it still remains a huge challenge to discover the output-side 

matching boundary. The computational complexity of output-side matching algorithm is 

usually much higher. 

 

 

Fig. 12.    The main phases of DeltaSyn. [24]: 

(a) The original and the modified specification (ECO) are given as inputs. 

(b) Input-side boundary of the changes are identified.  

(c) Output-side boundary of the changes are located and verified. 
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Match-and-Replace (M&R) [7] explores functional matches in the original and 

golden circuits by the cut matching algorithms and SAT-sweeping technique. Fig. 13 and 

Fig. 14 illustrate the concept of M&R and the flow of cut-matching algorithm. In the 

matching phase, M&R first discovers the matched gates (g, g’) of two circuits, where 

gates g and g’ are in the original and the golden circuit, respectively. After that, M&R 

enumerates a cut from the matched gate g randomly, and then gradually selecting the 

candidate gates according to the selected cut of g and the matched gate g′. To get the 

matched cut, the SAT-based matching is applied by constructing a matching matrix 

shown in Fig. 15.  

 

 

Fig. 13.    Match-and-Replace ECO. [7] 
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Fig. 14.    Cut-matching algorithm in [7]. 

 

 

 

Fig. 15.    Matching matrix in [7]. 
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Since M&R generates the cut from the matched gate g without a clue, the 

matching process is extremely time-consuming. Besides, even though we find a matched 

cut, the quality of the matched cut pairing might be poor, which would lead to large patch 

size. As a result, [8] proposes a semi-formal ECO method, where the simulation-guided 

cut-matching algorithm is applied to render a clue based on circuit similarity in matching 

the cuts. Since ECO usually means that multiple design errors or specification changes 

occur in the original circuit and need to be rectified, the gates affected by the buggy gate 

might be functionally non-equivalent with the corresponding gates in the golden circuit. 

The functional difference between these gates, however, is hard to be observed. In other 

words, the values of these gates are different in a few input patterns only and are the same 

for most of them. Therefore, the two gates might be a promising pairing if their responses 

are highly similar. In some multi-errors ECO testcases, however, the performance of [8] 

is not as good as we expect, which implies that there is still room for improvement. Thus, 

we optimize the algorithms in [8] and propose a more efficient ECO engine.     

 

2.6 ECO Problem Formulation and Optimization Criteria 

Given two circuits: original and golden, which are functionally non-equivalent to 

each other. Our ECO engine takes original and golden as inputs and outputs the patched 

circuit. The patched circuit is rectified from original circuit and functionally equivalent 

to the golden circuit. The functional equivalence between the patched and golden circuit 
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is verified by the academic tool ABC [27] using cec command. All circuits are described 

in AIGER [28], which is a circuit format for AIG. 

Accommodating RTL changes with little rectification to the original converged 

design is the core objective of a functional ECO. Therefore, the basic criterion for the 

ECO tool is to make the ECO changes (patch), called “patch size”, as small as possible.  

The second important criterion is the run time of the ECO tool. Since ECOs are 

often done at the later stage of a project, which is very close to Tape Out, we only have 

limited time to handle it. The process of an ECO tool should be finished within a 

reasonable time.   

 

2.7 Rectification Pair 

 

Fig. 16.    An example of rectification pairs. [7] (a) Cir1. (b) Cir2. 

(e, f) and (g, c) are a pair of matched cuts from h ↔ i.  

Thus, e ↔ g and f ↔ c are their rectification pairs.  

 

 

The idea of rectification pair is first introduced by [7]. The definition is shown as 

follows according to [7]:  
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Definition 1: A set of pairs RP_Set:  𝑔 ⃗⃗  ⃗ ↔ 𝑔 ⃗⃗  ⃗′ is called a set of rectification pairs 

if each 𝑔𝑖  ∈ 𝑔 ⃗⃗  ⃗ belongs to the original circuit and 𝑔′𝑖  ∈ 𝑔 ⃗⃗  ⃗′ belongs to the golden one, 

and the original circuit becomes functionally equivalent to the golden one after replacing 

every 𝑔𝑖  with 𝑔′𝑖 .  

For a rectification pair (𝑔𝑖 , 𝑔′𝑖 ), 𝑔𝑖  is called the patched gate and 𝑔′𝑖  is its 

corresponding patch. With the rectification pair, the rectification of functional 

equivalence can be formulated as    

∀X, Ori (X)| 
𝑔 ⃗⃗  ⃗ 

Ｒ
← 𝑔 ⃗⃗  ⃗′(X)

 ≡ Gold (X)                   (1) 

where X is the primary inputs, and 𝑔 ⃗⃗  ⃗ 
Ｒ
← 𝑔 ⃗⃗  ⃗′(X) represents the operation of replacing 

each 𝑔𝑖  ∈ 𝑔 ⃗⃗  ⃗ with 𝑔′𝑖  ∈ 𝑔 ⃗⃗  ⃗′.  

Please note that it is always possible to derive a set of rectification pairs to fix the 

functional differences between the original and the golden circuits. For instance, the 

primary output (PO) pairs form a trivial set of rectification pairs naturally. Thus, replacing 

all outputs in the original circuit with the outputs in the golden circuit is definitely a 

solution to rectification. The patch size, however, might be unacceptably large. The 

following lemma introduces an iterative approach to reduce the patch size: 

Lemma 1: Given a rectification pair P: 𝑔𝑖  ↔ 𝑔′𝑖  ∈ RP_Set, 1 ≤ i ≤ n and a set of 

pairs P_Set: ℎ ⃗⃗⃗   ↔ ℎ ⃗⃗⃗  ′ , the set (RP_Set − {P} + P_Set ) is also a set of rectification pairs 

if P_Set is a set of rectification pairs of P. 

Proof: Since 

∀X, Ori (X)| 
𝑔 ⃗⃗  ⃗  

Ｒ
←  𝑔 ⃗⃗  ⃗′(X)

 ≡ Gold (X).                (2) 
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If a set of pairs P_Set: ℎ ⃗⃗⃗   ↔ ℎ ⃗⃗⃗  ′ is a set of rectification pairs of pair P : 𝑔𝑖  ↔ 𝑔′𝑖 , 

which can be formulated as 

                                                             𝑔𝑖(X)| 
ℎ ⃗⃗  ⃗  

Ｒ
←  ℎ ⃗⃗  ⃗′(X)

 ≡ 𝑔′𝑖(X)                   (3) 

by (2) and (3) 

∀X, Ori (X)| 
𝑔 ⃗⃗  ⃗[1,i−1]

Ｒ
← 𝑔 ⃗⃗  ⃗′[1,i−1](X),   𝑔 ⃗⃗  ⃗[i+1,n]

Ｒ
← 𝑔 ⃗⃗  ⃗′[i+1,n](X),   ℎ ⃗⃗  ⃗ 

Ｒ
← ℎ ⃗⃗  ⃗′(X)  

≡ Gold (X)    (4) 

where 𝑔 ⃗⃗  ⃗[1, i−1] denotes the concatenation of {𝑔1, 𝑔2,... , 𝑔𝑖−1} and g [i+1, n] denotes 

the concatenation of {𝑔𝑖+1, 𝑔𝑖+2,... , 𝑔𝑛}. 

By (4), ( RP_Set − {P} + P_Set ) must also be a set of rectification pairs of Ori(X). 

According to the above lemma, we can iteratively derive a set of new rectification pairs 

on the existing pairs. [7] 

 

2.8 Cut Function 

In our ECO engine, we discover new rectification pairs by a cut-matching algorithm, 

which finds two cut function in original circuit and golden circuit, respectively. After 

replacing the cut in original circuit with the other cut, the two circuits become functionally 

equivalent. According to [7], the cut function is defined as follows: 

Definition 2: Given a cut ( 𝑔1 , 𝑔2 ,... ,  𝑔𝑛 ) in circuit Cir, a cut function 

𝐶𝐹𝐶𝑖𝑟 (𝑔1 ,𝑔2,...,𝑔𝑛)  represents the function of the circuit with respect to (𝑔1, 𝑔2,... , 𝑔𝑛).  

As Cir1 in Fig. 16(a) shows, the output function with respect to (a, b, f ) is  
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h(a, b, c, f )=(a+b)f  and the cut function of the cut (a, b, f ) is 𝐶𝐹ℎ(𝑎,𝑏,𝑓 ) (x1, x2, x3) = 

(x1 + x2)x3, where (x1, x2, x3) are the corresponding input variables of h on (a, b, f ). We 

say two cut functions are equivalent if  

𝐶𝐹𝐶𝑖𝑟( 𝑔 ⃗⃗  ⃗ )  (X) ≡ 𝐶𝐹𝐶𝑖𝑟′( 𝑔 ⃗⃗  ⃗′)  (X) 

is valid. 

Given two equivalent cut functions, called matched cuts, the rectification pairs can 

be easily derived by the following theorem: 

Theorem 1: Given two cuts 𝑔 ⃗⃗  ⃗: (𝑔1, 𝑔2,... , 𝑔𝑛) and 𝑔 ⃗⃗  ⃗′: (𝑔′1, 𝑔′2, 𝑔′𝑛  ) in circuits 

𝐶𝑖𝑟 and 𝐶𝑖𝑟′ , respectively, if 𝐶𝐹𝐶𝑖𝑟( 𝑔 ⃗⃗  ⃗ )  and 𝐶𝐹𝐶𝑖𝑟′( 𝑔 ⃗⃗  ⃗′)   are equivalent, then 𝑔 ⃗⃗  ⃗ ↔ 

𝑔 ⃗⃗  ⃗′ is a set of rectification pairs and the revised circuit 𝐶𝑖𝑟′′(X) : 𝐶𝑖𝑟(X) | 
𝑔 ⃗⃗  ⃗  

Ｒ
←  𝑔 ⃗⃗  ⃗′(X)

 will 

be functionally equivalent to C𝑖𝑟′(X). 

Proof: Since the cut functions 𝐶𝐹𝐶𝑖𝑟( 𝑔 ⃗⃗  ⃗ )  (X) ≡ 𝐶𝐹𝐶𝑖𝑟′( 𝑔 ⃗⃗  ⃗′)  (X), if 𝐶𝑖𝑟 and 𝐶𝑖𝑟′ 

are not functionally equivalent, it must result from the functional differences between 𝑔 ⃗⃗  ⃗ 

and 𝑔 ⃗⃗  ⃗′. Once we do the replacement for every pair in ( 𝑔 ⃗⃗  ⃗, 𝑔 ⃗⃗  ⃗′ ), 𝑔 ⃗⃗  ⃗ become equivalent 

to 𝑔 ⃗⃗  ⃗′. Thus, after replacing, the revised circuit 𝐶𝑖𝑟′′(X) : 𝐶𝑖𝑟(X) | 
𝑔 ⃗⃗  ⃗  

Ｒ
←  𝑔 ⃗⃗  ⃗′(X)

 will be 

functionally equivalent to C𝑖𝑟′(X). 

Concluding the above descriptions, we are able to derive the rectification pairs from 

the matched cuts. In addition, given a rectification pair where two gates are functionally 

non-equivalent, we can iteratively find a matched cut for this pair and thus identify more 

rectification pairs. Therefore, we will keep getting new rectification pairs with smaller 

patches after each iteration. [7] 
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2.9 Similarity between the Candidate Gates 

Exploring equivalent cut function is an important part of cut-matching. However, 

the inputs of cut function, such as  𝑔 ⃗⃗  ⃗ and 𝑔 ⃗⃗  ⃗′, are not yet defined. Therefore, we need to 

find 𝑔 ⃗⃗  ⃗ and 𝑔 ⃗⃗  ⃗′ before checking the equvalence of two cut functions. [8] proposed a 

simulation-guided cut-matching approach to deal with this problem. The first step is to 

discover the candidate gates in the two circuits, respectively. Second, we pair these 

candidate gates according to the simulation results. Two gates might be a promising 

pairing if their simulated responses are highly similar. Finally, we check the equivalence 

between the two resulted cut functions. For instance, given (a, b, c) and (e, f, g) to be the 

candidate gates of 𝑔 ⃗⃗  ⃗ and 𝑔 ⃗⃗  ⃗′, respectively. We first simulate the whole circuits 𝐶𝑖𝑟(X) 

and C𝑖𝑟′(X) with lots of patterns. After that, we calculate the similarity between these six 

candidate gates. If a has the highest similarity to e out of (e, f, g), then we pair a and e. 

For b and c, the pairing principle is the same. Figure 22(a) shows how to simulate the 

whole circuit. We bind the inputs of the two circuits and only check the cases with same 

output response.  
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2.10 Output-side Frontier Identification 

                                                                                                                         

Algorithm Basic Output-side Frontier Identification Algorithm                               

1:   Input: Ori_Ckt, Gold_Ckt 

2:   Output: RP_Set 

3:   for each pair(po, po′) in POs do 

4:        if po ≡ po′ then continue 

5:       RP_Set ⟵ RP_Set + pair(po, po′) 

6:   end for 

7:   for each pair(g, g′) in RP_Set do 

8:       (cut, cut′ )⟵  Cut_Matching(g, g′, Ori_Ckt, Gold_Ckt) 

9:       for each pair(n, n′) in (cut, cut′ ) do 

10:         if n ≡ n′ then continue 

11:         RP_Set ⟵ RP_Set + pair(n, n′) 

12:     end for 

13: end for 

14: RP_Set ⟵ Pair_Refinement (RP_Set)                                         

Fig. 17.    Basic output-side frontier identification algorithm.  

 

Fig. 17 shows the basic algorithm of output-side frontier identification. Since all 

PO pairs are trivial rectification pairs, we put all of them into the RP_Set except the one 

with equivalent (po, po′) at the beginning (line 3~6). After that, we apply cut-matching 

algorithm on the existing rectification pairs to explore more rectification pairs iteratively. 

Cut-matching algorithm is invoked on the rectification pair (g, g′). After generating the 

matched cuts, we obtain a set of new matched pairs with the returned matched cuts (cut, 

cut′ ) and the functionally non-equivalent pairs among these matched pairs are added into 

the RP_Set, where we iteratively explore new pairs. The process keeps operating until 

there are no rectification pairs newly derived (line 7~13). Finally, a pair-refinement 

technique is applied to remove the redundant rectification pairs.  
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Chapter 3 Backward-Cut-Based ECO Engine 

 

In this chapter, we present the flow of our dual-phase ECO method. Chapter 3.1 

is the overview while chapter 3.2 and 3.3 detail the techniques in the two phases. 

 

3.1 Overview of Our ECO Engine 

 

 

Fig. 18.    Overview of our dual-phases ECO engine. 
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Fig. 18 shows the flow of our ECO engine, where the merging phase and the 

matching phase represent the input-side and the output-side patch frontier identifications, 

respectively. After reading the original and the golden circuits, we perform Strash and 

FRAIG techniques to explore the functionally equivalent gates and then merge them. The 

matching phase then proceeds to identify the output-side patch boundary. We discover 

rectification pairs by cut-matching algorithm and optimize the rectification pairs by pair-

refinement algorithm. At last, our ECO engine outputs the patched circuit. To verify the 

functional equivalence between the patched and the golden circuits, we use state-of-the-

art academic tool ABC [27]. Fig. 19 illustrates the concept of backward-cut-based ECO, 

which is corresponding to our matching phase. 

 

 

 

                                                          

Fig. 19.    The backward-cut-based ECO 
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3.2 Merging Phase - Input Side Patch Frontier Identification  

Strash and FRAIG techniques explore and merge functionally equivalent gates. For 

a rectification pair (g, g′), a simple way to replace g by g′ is to patch the whole g′ logic to 

g, which might result in a large patch size. Since a merged gate represents the gates in 

both original and golden circuits that are functionally equivalent, we can redirect the wire 

on the merged gates in g′ logic to their corresponding merged gates in the original circuit 

and then obtain a smaller patch. Fig. 20 illustrates an example. When replacing a 

rectification pair (g, g′), we can patch the whole g′ logic to g, which leads the patch size 

to 20. If we reuse the merge gates in the original circuit to form the g′ logic, then the patch 

size is reduced to 2. The higher the level of the merged gate located is, the more the patch 

size we can reduce. The merging frontier is defined as follows according to [8]: 

Definition 3: A merging frontier is a set of merged gates  𝑚 ⃗⃗ ⃗⃗  ⃗ : (𝑚1, 𝑚2,… 𝑚𝑛), 

where all primary inputs can find a cut  𝑔 ⃗⃗⃗⃗  : (𝑔1, 𝑔2,… 𝑔𝑚) in their fanout cone such 

that  𝑔 ⃗⃗⃗⃗  ⊆  𝑚 ⃗⃗ ⃗⃗  ⃗. 

Note that collecting all primary inputs can easily form a merging frontier since they 

are all merged gates naturally. The objective of input-side merging frontier identification 

is to find the highest-level merging frontier by the Strash and FRAIG processes. All gates 

below the input-side merging frontier are regarded as don’t-care gates. [8] 
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Fig. 20.    An example of using merged gates to construct patch. [8] 

 

 

3.3 Matching Phase - Output Side Patch Frontier Identification 

[8] explores the rectification pairs iteratively and terminates when there is no new 

rectification pair found. In addition, a pair-refinement technique is applied to remove the 

redundant pairs and thus reduce the patch size. However, it still takes time to find matched 

cuts for the redundant rectification pairs. If a rectification pair is redundant, then we 

should not waste time to do cut-matching on it. As a result, we propose a new output-side 

identification algorithm, which refines the rectification pairs in each iteration rather 

than after finishing the whole process. This modification avoids spending time exploring 

matched cuts for redundant rectification pairs. Thus, the pair-refinement technique not 
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only reduces the patch size but also save the run time for the next iteration. In some 

complex testcases, this change can highly improve the performance. Fig. 21 presents our 

output-side identification algorithm. 

 

                                                                                                                                          

Algorithm Output-side Identification Algorithm                                                              

1:  Input: Ori_Ckt, Gold_Ckt 

2:  Output: RP_Set 

3:  for each pair(po, po′) in POs do 

4:      if po ≡ po′ then continue 

5:      RP_Set ⟵ RP_Set + pair(po, po′) 

6:  end for 

7:  while RP_Set is changed do 

8:      RP_Set′ ⟵ RP_Set 

9:      for each pair(g, g′) in RP_Set do 

10:          (cut, cut′ )⟵ Cut_Matching(g, g′, Ori_Ckt, Gold_Ckt) 

11:         for each pair(n, n′) in (cut, cut′ ) do 

12:              if n ≡ n′ then continue 

13:           RP_Set′ ⟵ RP_Set′ + pair(n, n′) 

14:         end for 

15:    end for 

16:    RP_Set ⟵ Pair_Refinement(RP_Set′ ) 

17: end while                                                                                                                           

Fig. 21.    Output-side identification algorithm 

 

3.3.1 Cut Matching Algorithm 

[8] simulates the whole circuits with lots of patterns. However, it takes much time 

to do simulation if the circuit is extremely large. Therefore, we modify the method of 

simulation. In our engine, we only simulate the cut function itself rather than the whole 

circuit, which is shown in Fig. 22(b). This modification can save us much run time.  
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                                          (a)                              (b)   

Fig. 22.    The simulation of cut pair candidate. (a) Simulate the whole circuits.  

(b) Simulate the circuits of cut functions only. 

 

Given two circuits 𝐶𝑖𝑟(X) and C𝑖𝑟′(X) with candidate gates (a, b, c) and (e, f, g) that 

can potentially form the matched cuts. We simulate 𝐶𝐹𝐶𝑖𝑟( 𝑎,𝑏,𝑐 )   and  𝐶𝐹𝐶𝑖𝑟′( 𝑒,𝑓,𝑔)  with 

(a, b, c) and (e, f, g) treated as pseudo inputs. The values of pseudo inputs are given 

randomly without any constraint during simulation. For the simulation results, we only 

consider the results where two outputs have same response. Since how the values of 

pseudo inputs vary is what we care. If a has the highest similarity to e out of (e, f, g), then 

we pair a and e. For b and c, the pairing principle is the same. Note that if the similarity 

between a and e is equal to p, then the similarity between a and 𝑒′ is equal to 1-p.  

For those non-merged gates in the cut, we first perform simulation and 

extract their response. After calculating the pairwise similarity, the similarity between 

each non-merged gate is collected. The pairing is then decided by the calculated similarity. 



doi:10.6342/NTU201902346

 29 

To make the pairing more promising, we consider not only the functional circuit similarity 

but also the structural information, which is based on the number of merged gates within 

the fanin cones of each possible pairing, since the merged gate is an important guidance 

in the cut-matching process.  

The flow of the cut-matching algorithm is shown in Fig. 23. We increase the level 

gradually to find more merged gates (line 5, 13). The more the merged gates we find, the 

more the guidance of the cut pairing we get. For each level range, we first discover cut 

pair candidate ( 𝑐𝑎𝑛𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑐𝑎𝑛𝑑′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ), where both of them represents a cut and 

|𝑐𝑎𝑛𝑑⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ |=|𝑐𝑎𝑛𝑑′⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| (line 6). After that, we check the equivalence between two cut functions 

(line 7). If the two cut functions are functionally equivalent, it means this candidate is a 

valid cut pair. Among all the cut pairs we find for (g, g′), the cut pair (𝑐𝑢𝑡⃗⃗⃗⃗⃗⃗ , 𝑐𝑢𝑡′⃗⃗ ⃗⃗ ⃗⃗  ⃗)with the 

smallest patch size is what we output finally. 

                                                                                                                                          

Algorithm Cut-Matching Algorithm                                                                                  

1:  Input: g, g′, Ori_Ckt, Gold_Ckt 

2:  Output: (cut, cut′) 

3:  level ⟵ level_Initial 

4:  patch_Min ⟵ patch_size(g, g′) 

5:  while level < level_Limit do 

6:      (cand, cand′ ) ⟵ Get_Cut_Cands(g, g′, Ori_Ckt, Gold_Ckt, level) 

7:      if two cut functions (g w.r.t cand, g′ w.r.t cand′ ) are equivalent then 

8:          if the patch size of (cand, cand′ ) < patch_Min then  

9:              patch_Min ⟵ patch_size(cand, cand′ ) 

10:            (cut, cut′) ⟵ (cand, cand′ ) 

11:        end if 

12:    end if     

13:    level ⟵ level + 1 

14: end while                                                                                                                       

Fig. 23.    Cut-matching algorithm 
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3.3.2 Rectification Pair Refinement Algorithm  

 After identifying the rectification pairs, a refinement technique is proposed to 

determine the necessity of each rectification pair. A rectification pair is redundant if its 

corresponding functional errors can be covered by other rectification pairs. The core 

objectives of the rectification pair refinement process are 1) to minimize the final patch 

circuit, and 2) to ensure all output functions are correct after the rectification. 

In order to refine the rectification pairs, we construct a rectification pair selector 

RPS( 𝑥⃗⃗ ,  𝑠 ⃗⃗  ⃗), which is a miter and is shown in Fig. 24.  𝑥⃗⃗  and  𝑠 ⃗⃗  ⃗ represent the primary 

inputs and selection signals, respectively. For each rectification pair (𝑔𝑖 , 𝑔′𝑖), we insert 

a MUX(𝑠𝑖 , 𝑔𝑖 , 𝑔′𝑖) on the outputs of  𝑔𝑖 and 𝑔′𝑖, and the original fanouts of 𝑔𝑖  is driven 

by the outputs of the MUX. The assignment of 𝑠𝑖 represents the selection of the patch 

logic. When we assign 1 to 𝑠𝑖 ∈  𝑠 ⃗⃗  ⃗, the fanout of 𝑔𝑖  in the original circuit is driven by 

𝑔′𝑖 , which means this specific patch is committed. On the other hand, when 𝑠𝑖  is 

assigned 0, 𝑔𝑖  in the original circuit would not be replaced and its function remains 

unchanged. The patch selection process can then be formulated as a QBF: 

∃ 𝑠 ⃗⃗  ⃗, ∀ 𝑥⃗⃗ , RPS( 𝑥⃗⃗ ,  𝑠 ⃗⃗  ⃗) ≡ 0                        (5) 

With the rectification pair selector, we are able to derive a valid patch by solving (5). 

Exploring the minimal patch circuit, however, is very inefficient on QBF, since it is an 

optimization problem. Consequently, we propose a feasible rectification pair refinement 

algorithm to get a solution with good quality. The rectification pair refinement algorithm 

is shown in Fig. 25.  
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Fig. 24.    Rectification pair selector. [7]  

 

 

 

                                                                             

Algorithm Rectification Pair Refinement Algorithm                                                       

1:  Input: RP_Set, Miter 

2:  Output: RP_Set_Opt 

3:  for each pair(gi, gi′) in RP_Set with MUX selection signal si do 

4:       si ⟵ 1 

5:  end for 

6:  Sort RP_Set by the decreasing order of patch_size(gi, gi′) 

7:  for each pair(gi, gi′) in RP_Set with MUX selection signal si do 

8:       si ⟵ 0 

9:       if Miter.solve() == SAT then 

10:          RP_Set_Opt ⟵ RP_Set_Opt + pair(g, g′) 

11:         si ⟵ 1 

12:     end if 

13: end for                                                                                                                         

Fig. 25.    Rectification pair refinement algorithm 
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In the beginning of the flow, we replace all patched gates 𝑔𝑖  with 𝑔′𝑖 . That is,  𝑠 ⃗⃗  ⃗ 

= (1, 1, ..., 1) (line 3-5). Note that the original circuit must be equivalent to the golden 

circuit under this assignment since all POs of original circuit are replaced by the 

corresponding ones in golden. After that, we undo a rectification pair replacement 𝑔𝑖  ↔ 

𝑔′𝑖  by assigning 0 to the MUX selection variable 𝑠𝑖 iteratively (line 7, 8). We solve the 

miter for each rectification pair. If the miter is still unsatisfiable, it means the functional 

errors corresponding to this pair are covered by other rectification pairs, and thus we can 

get rid of this rectification pair. Otherwise, the replacement is necessary for the 

rectification since the original and then golden circuits become functionally non-

equivalent without this rectification pair. Therefore, we restore 𝑠𝑖 to 1 and put this pair 

into the optimized RP_Set (line (9~12). Since we tend to discard the rectification pairs 

with large patch size and keep the ones with small patch size, we sort the RP_Set by the 

decreasing order of the patch size of each rectification pair before the undoing process 

(line 6). RP_Set_Opt is the final patch to rectify the revised circuit. 

 

3.3.3 Advanced (Further) Cut Matching Approach 

In [8], we stop the iteration of exploring rectification pairs if there are no new 

equivalent cut functions found. Sometimes, the patch size is still large when the iteration 

ends. To handle this problem, we propose an advanced cut-matching approach. With this 

approach, we can keep discovering rectification pairs even if the cut functions we find 

are non-equivalent.  
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 Given two non-equivalent cut functions. The pairs on these cuts are not valid 

rectification pairs since they cannot fix the function difference between circuits after 

replacement. However, we can still treat them as pseudo POs and do cut-matching for 

them to find more rectification pairs except that the logic of cut function should be added 

to the patch. Fig. 26(a) shows the original method, which would terminate when failing 

to find equivalent cut functions, while Fig. 26(b) presents our advanced cut-matching 

approach, which continues discovering rectification pair for a non-equivalent cut pair. 

Fig. 26(c) compares the resulting patch between them and it is obvious that the patch size 

can be reduced with our approach.  

Theorem 2: Given two circuits 𝐶𝑖𝑟  and 𝐶𝑖𝑟′  with two cuts   𝑔 ⃗⃗⃗⃗  = (𝑔1 , 𝑔2  )  

and  𝑔 ⃗⃗  ⃗′ = (𝑔′1 ,  𝑔′2 ). If 

𝐶𝐹𝐶𝑖𝑟( 𝑔 ⃗⃗  ⃗ )  (X) ≢ 𝐶𝐹𝐶𝑖𝑟′( 𝑔 ⃗⃗  ⃗′)  (X)                       (6) 

is valid and 

      𝑔1(X)| 
ℎ ⃗⃗  ⃗  

Ｒ
←  ℎ ⃗⃗  ⃗′(X)

 ≡ 𝑔′1(X)   and  𝑔2(X)| 
𝑘 ⃗⃗  ⃗  

Ｒ
←  𝑘 ⃗⃗  ⃗′(X)

 ≡ 𝑔′2(X)        (7) 

are discovered, then 

  𝐶𝑖𝑟(X)| 
𝐶𝐹𝐶𝑖𝑟( 𝑔 ⃗⃗  ⃗ )   

Ｒ
←  𝐶𝐹𝐶𝑖𝑟′( 𝑔 ⃗⃗  ⃗′)  

(X) ,   ℎ ⃗⃗  ⃗  
Ｒ
←  ℎ ⃗⃗  ⃗′(X) ,   𝑘 ⃗⃗  ⃗  

Ｒ
←  𝑘 ⃗⃗  ⃗′(X) 

 ≡ 𝐶𝑖𝑟′(X)         (8) 

 

 Proof:  By (7), we know that  𝑔 ⃗⃗⃗⃗  and  𝑔 ⃗⃗  ⃗′  are equivalent after finishing the 

replacement with each pair of ( ℎ ⃗⃗⃗⃗  , ℎ ⃗⃗⃗  ′ ) and ( 𝑘 ⃗⃗⃗⃗  , 𝑘 ⃗⃗⃗  ′ ). Thus, the function difference 

between 𝐶𝑖𝑟  and 𝐶𝑖𝑟′  can be resulted by the inequality of cut functions  

𝐶𝐹𝐶𝑖𝑟( 𝑔 ⃗⃗  ⃗ )  and 𝐶𝐹𝐶𝑖𝑟′( 𝑔 ⃗⃗  ⃗′)  only. If we replace 𝐶𝐹𝐶𝑖𝑟( 𝑔 ⃗⃗  ⃗ )  by 𝐶𝐹𝐶𝑖𝑟′( 𝑔 ⃗⃗  ⃗′)  , then the two 
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circuits 𝐶𝑖𝑟  and 𝐶𝑖𝑟′ must be function equivalent. Since the inequality of two cut 

functions is gone, there exists no function difference between the two circuits. 

 

 

 

 

(a) 

 

 

(b) 

 
(c) 

Fig. 26.    The illustration of advanced cut-matching approach 
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3.4 Repeatedly Solving ECO Algorithm 

Normally, our ECO engine takes the original and the golden circuits as inputs and 

then outputs the patched circuits. The more the two input circuits are similar, the easier 

the ECO process would be. Since it is simple to optimize circuits and find matched cuts 

when the structures of two input circuits are highly similar. Patched circuit is generated 

by revising the original circuit with rectification pairs. Thus, the original and patched 

circuits should be more similar compared to the original and golden circuits. Based on 

these facts, we propose a repeatedly solving algorithm shown in Fig. 27, which takes the 

resulting patched circuit as new golden and solves again (line 5). If the new patched 

circuit has smaller patch size, then we use it to replace the original one (line 6, 7) and the 

process continues. Otherwise, we terminate the operation. Despite the fact that repeatedly 

solving can reduce the patch size, it also increases the run time substantially. Therefore, 

our ECO engine only operates one time (stop at line 3) in default.       

 

                                                                                                                                          

Algorithm Repeatedly Solving Algorithm                                                                        

1:  Input: Ori_Ckt, Gold_Ckt 

2:  Output: Patched_Ckt 

3:  Patched_Ckt ⟵ Backward_Cut_Based_ECO(Ori_Ckt, Gold_Ckt) 

4:  while true do 

5:        Patched_Ckt’ ⟵ Backward_Cut_Based_ECO(Ori_Ckt, Patched_Ckt) 

6:        if patch_size(Patched_Ckt’) < patch_size(Patched_Ckt) then 

7:            Patched_Ckt ⟵ Patched_Ckt’ 

8:        else 

9:            break 

10: end while                                                                                                                      

 

Fig. 27.    The repeatedly solving algorithm 



doi:10.6342/NTU201902346

 36 

Chapter 4 Backward-Cut-Based EC Algorithm 

 

 In this chapter, we apply the backward-cut approach to equivalence checking (EC). 

EC can be solved by a miter but it would be slow if SAT solver has to handle the whole 

circuit. As a result, we usually optimize the circuit by FRAIG first. FRAIG can be view 

as a forward technique since it optimizes the circuit from the input-side to the output-side. 

However, it takes much time to complete FRAIG process for some testcases. Thus, we 

propose a backward-cut-based EC algorithm, which divides the original problem into 

several sub-problems.  

Fig. 28 illustrates our backward-cut-based EC algorithm. Given two circuits 

golden and revised with g and g’ being their output. Similar to ECO, we find the matched 

cuts (𝑐𝑢𝑡⃗⃗⃗⃗⃗⃗ , 𝑐𝑢𝑡′⃗⃗ ⃗⃗ ⃗⃗  ⃗) by cut-matching algorithm (line 5). By the property of matched cuts, we 

can easily derive that golden and revised circuits are functionally equivalent if their 

matched cuts are functional equivalent. Thus, we only need to check the equivalence of 

their matched cuts instead of the whole circuit. If there is no valid cut pair found, then we 

solve the miter of whole circuit, which is named as Basic_EC (line 6). For each pair (n, 

n’) in (cut, cut’), we can treat them as pseudo PO and solve the equivalence of them by 

recursively calling Backward_Cut_Based_EC(n, n’), if n is functionally equivalent to n’, 

then we merge them into one node (line 7~9).  Note that even if n and n’ are non-

equivalent, there is still a chance for g and g’ to be equivalent, since the functional 
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difference between cut and cut’ might be a don’t-care to g and g’. Thus, we have to apply 

Basic_EC on (g, g’) rather than directly response false. 

 

                                                                                                                            . 

Algorithm Backward-Cut-Based EC Algorithm                                                 

1:  Input: g, g’, Gold_Ckt, Rev_Ckt 

2:  Output: whether g and g’ are functionally equivalent 

3:  CutsAreEq = true 

4:  (cut, cut’) ⟵ Cut_Matching(g, g′, Gold_Ckt, Rev_Ckt)  

5:  if (cut, cut’) is empty then return Basic_EC(g, g’) 

6:  for each pair(n, n′) in (cut, cut’) do 

7:      if Backward-Cut-Based EC(n, n’) then 

8:          Merge (n, n’) 

9:     else  

10:        CutsAreEq=false  

11: end for                  

12: if ( CutsAreEq) then  

13:     return true 

14: else  

15:     return Basic_EC(g, g’)                                        

 

Fig. 28.    Backward-cut-based EC algorithm 
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Chapter 5 Experimental Results 

 

We implement our backward-cut-based ECO engine and EC algorithm in C++ 

language and apply MiniSAT [9] as our SAT solver. All of our experiments are conducted 

on a Linux workstation with 128 GB RAM and 2.20 GHz Intel Core i7 CPU.  

 

5.1 ECO 

For ECO, the functional correctness of the experiments was verified by the ABC 

command cec [27]. To generate ECO testcases, [8] modified the benchmarks of iwls2017 

programming contest [29]. Table 1 shows the experimental results under these testcases. 

The first column is the name of circuits. The second and third column show the number 

of primary inputs/outputs and the max/average level of the circuits. The fourth column 

presents the number of three modifications to the circuits. “RW” means gate rewiring. 

We choose two gates f and g, and reconnect one of g’s two fanins to f. Note that we should 

make sure there is no combination loop caused by rewiring. “INV” means inverter 

insertion. An inverter is applied to the output of the selected gate and the function is 

inverted. “TC” means gate type change. We change the type of the selected gate from an 

AND gate to an XOR gate. After these changes, the circuit is resynthesized by ABC 

command dc2 to make the structure less similar. The performance comparison between 

prior work [8] and our ECO engine is shown in remaining columns. The experimental 
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results demonstrate that our ECO engine can rectify the circuits with small patch size 

within reasonable runtime. Also, the runtime of our ECO engine mainly depends on the 

total gate count of the circuit. It is obvious that our engine outperforms [8] on not only 

the patch size but also the run time. For the circuit with high level like y3, our 

improvement on run time is even more conspicuous. Averagely, the patch size and run 

time of our engine is 11% and 60% better than the prior work [8].  

To demonstrate that our engine is generally better, we introduce more ECO testcases. 

ICCAD-2017 CAD contest in resource-aware patch generation [5] provides 20 

representative ECO testcases with physical constraints. Since we focus on functional 

correction only, those physical constraints are excluded. Table 2 shows the performance 

comparison between previous work [8] and our ECO engine. Obviously, we still result in 

a better performance, which reduces 12% in patch size and 74% in run time averagely. 

Note that the testcases we use are slightly different from [5], since the format of original 

testcases doesn’t meet with what our engine requires.  

Chapter 3.4 presents the algorithm of repeatedly solving, which regards patched 

circuit as the new golden and operates the ECO process again. Our engine doesn’t apply 

repeatedly solving in default. That is, the ECO process operates exactly one time. Table 

3 demonstrates the performance of our engine with and without repeatedly solving. 

Although repeatedly solving can lead to 5% improvement of patch size, it also results in 

127% more run time averagely. Therefore, it doesn’t seem worthy to run ECO process 

repeatedly when considering run time cost. 
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Table 1.   Performance comparison under the testcases modified from [29]. 
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Table 2.   Performance comparison under the testcases modified from [5]. 
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Table 3.   Performance comparison between solving repeatedly and one time. 
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In chapter 3, we promote several methods to improve the performance of ECO 

engine. In the remaining section, we demonstrate how each method affects the 

performance individually. First, we define the approach that applying pair-refinement 

after each cut-matching iteration as Method #1, which is illustrated in Fig. 21. Second, 

we define the cut-function simulation as Method #2, which is shown in Fig. 22(b). Note 

that simulating the whole circuit is the original technique, as Fig. 22(a) shows. Chapter 

3.3.3 and Fig. 26 introduce the further cut-matching approach, which we define as 

Method #3. Our ECO engine contains all of these three methods and we remove one 

method from the engine at one time to do three experiments. That is, these three methods 

are our independent variables. The patch size and run time are our dependent variables. 

Table 4, Table 5 and Table 6 show the experimental results of our engine without Method 

#1, Method #2 and Method #3, respectively. By comparing these results, we can find that 

Method #1 reduces the patch size and run time by 2% and 25%, respectively. For the 

circuits with high level ranges like y3, the improvements of run time are extremely 

obvious. Method #2 leads to 24% less run time but has no impact on patch size. In addition, 

Method #3 reduces 2% in patch size but results in 2% more run time. Since the final patch 

size is usually the most important concern in ECO, applying further cut-matching seems 

worthwhile for us. 



doi:10.6342/NTU201902346

 44 

 

Table 4.   Performance comparison between with and without Method #1. 
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Table 5.   Performance comparison between with and without Method #2. 
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Table 6.   Performance comparison between with and without Method #3. 
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5.2 EC  

To produce EC testcases, we pick some circuits from EPFL benchmark [30] and 

then resynthesize them by ABC command dc2. After that, we use EC solver to check 

whether the original circuit and the resynthesized circuit are functionally equivalent. If 

two input circuits are equivalent, the solver returns UNSAT. Otherwise, it returns SAT, 

which means there exists at least one input pattern that can make their output values 

different. All of our testcases result in UNSAT since the function remains unchanged 

after resynthesizing. Run time is our major criterion. We compare the performance 

between FRAIG, which is a forward-based EC method, and our backward-cut-based EC 

approach. Moreover, we combine FRAIG and backward-cut-based EC to see whether it 

leads to a better result. Note that the effort limit of FRAIG can be adjusted. The more the 

efforts we spend on FRAIG, the more the logic gates we merge. Merging more logic gates 

normally means we can spend less time solving miter. However, it also leads to more run 

time of the process of FRAIG. Thus, how to strike a balance between them is a key to 

overall run time. With FRAIG alone, we make full effort and merge logic gate as more 

as possible. With the combination, we put less effort on FRAIG and let our backward-

cut-based EC approach cover the remain parts. The results are shown in Table 4. In some 

testcases, our engine leads to better run time. However, FRAIG technique is also 

dominant on a few testcases. The main problem of our backward-cut-based EC approach 
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is that we can’t guarantee a valid cut found when the structure of two circuits are highly 

dissimilar. Therefore, the process is stuck and increases the run time.      

 

 

Table 7.   Performance comparison between forward and backward approach. 
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Chapter 6 Case Study 

 

In this chapter, we detail the ECO process of our backward-cut-based ECO engine. 

According to Table 1, circuit y3 has the highest level among all benchmarks, which 

exceeds 200. As a result, the initial patch size is very large and it requires multiple cut-

matching iterations to generate the final patch. Thus, we pick one of the five ECO 

testcases modified from circuit y3 to be the representative and demonstrate how we 

reduce the patch during each iteration.  

 The change of patch size after each iteration is shown in Fig. 29. The blue line and 

red line are corresponding to the total patch size and the average level of patched nodes. 

Note that a rectification pair is composed of a node in original circuit and a node in golden 

circuit. The former is called the patched node due to the fact that we replace it with the 

patch, which is the fanin cone of the latter. Initially, we directly pair every non-equivalent 

PO of the golden and the original circuit to form the trivial patch. Therefore, the resulting 

patch size of iteration #0 is extremely large. For each iteration, we discover new 

rectification pairs from the original rectification pairs by cut-matching and then remove 

the redundant parts of rectification pairs by pair-refinement technique. After first cut-

matching iteration, the patch size is reduced from more than 1000 to less than 100, as Fig. 

30 presents.  
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 Fig. 31 illustrates the change of patch distribution from iteration #1 to #5. There are 

eight bubble charts totally. For each chart, y-coordinate represents the level of each 

patched node while x-coordinate represents nothing since the logic gates don’t have actual 

location. In addition, the size of bubble represents the size of this patch. We can observe 

that the level of patched node is gradually decreased after each iteration and so is the total 

size of bubbles. Iteration #1, #2, #3 and #4 are done by the cut-matching technique 

introduced in chapter 3.3.1 and the operation normally terminates when there is no new 

rectification pair found. For the iteration #5, we apply advanced (further) cut-matching 

approach, which is described in chapter 3.3.3 and aimed at further reducing the patch size. 

One patch would be split into two or more smaller parts during further cut-matching since 

we try to expand a pair of cuts which are not functionally equivalent to each other. The 

first part is the logic of non-equivalent cut function and the other parts are the 

corresponding gates on this cut pair. These corresponding gates can be treated as 

rectification pairs and we may find more rectification pairs from them by cut-matching. 

Consequently, the patch size is further reduced.   
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Fig. 29.    The change of patch size after each iteration. 

 

 
Fig. 30.    The change of patch size in iteration #1. 
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Fig. 31.    The change of patch distribution after each iteration. 
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Chapter 7 Conclusion and Future Work 

 

In this thesis, we optimize the algorithms in prior backward-cut-based functional 

ECO work [7] [8] and propose a dual-phase ECO method. In the merging phase, the 

Strash and FRAIG technique identifies the input-side frontier of the patch. In the 

matching phase, a cut-matching algorithm based on simulation is applied to identify the 

output-side frontier of the patch. For each matching iteration, we remove the redundant 

parts of output-side frontier by a pair-refinement algorithm. This move not only reduce 

the patch cost but also save us run time. The experimental results show that our ECO 

engine can rectify multi-errors ECO problems with small patch sizes within reasonable 

run time. In addition, we apply the backward-cut approach to equivalence checking and 

compare the performance with other forward-based method, such as FRAIG. The 

experimental results demonstrate that our backward-cut-based EC method works for 

some testcases. 

For the future work on ECO problems, we plan to design a QBF solving algorithm 

for pair-refinement so that we can refine the rectification pairs more precisely and get a 

smaller patch. For EC, we need a more effective cut-matching algorithm, which can 

generate the matched cuts with high probability even when dealing with complex circuits.  
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