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ABSTRACT

Engineering change order (ECO) is a popular approach for rectifying circuit
errors and specification changes in late design stages. Backward-cut-based ECO solves
the problem by divide and conquer from the output side to input side. In this thesis, we
present new algorithms to optimize the performance of ECO engine. We first discover
the rectification pairs in two circuits by backward-cut approach and then remove the
redundant parts by refinement technique. The experimental results show that our
algorithm not only reduce the patch circuit cost but also improve the run time of ECO
engine. Moreover, we further apply backward-cut approach to the Equivalence

Checking (EC) and experimental results prove that our algorithms work.

Index Terms — Engineering change order, backward-cut, patch circuit,

equivalence checking.
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Chapter 1  Introduction

In VLSI design flow, late design changes are inevitable and the complexity to
handle these changes is increasing since the modern design size is growing rapidly. If
these design changes occur towards the end of the design cycle, it is impractical to go
through the entire VLSI design flow again due to the time-to-market pressure. Moreover,
significant time and efforts already spent on the original design would be wasted. To deal
with this problem, a method called Engineering Change Order (ECO) was proposed to
keep these changes local [1]-[3]. Fig. 1 and Fig. 2 show the purpose and an example of
ECO. RTL 1 is the original design while RTL 2 represents the new specification, which
can be viewed as the golden design. Instead of generating a whole new converged netlist
for the golden design, we compare the original converged netlist with the netlist
synthesized from the golden RTL by ECO tool. In other words, we want to find the
minimal difference between the original and the golden (new) circuits. The identified
logic difference is called the patch, which can be implemented by technology mapping
with spare cells. More specifically, spare cells are the extra cells inserted to the design
for the ECO purpose. Normally, they have nothing to do with the function of original
design. We can then realize the function of computed patch with the available spare cell
resource. As a result, there is no need to restart the whole design flow from scratch. Since

the original design is usually optimized after a series of processes, it is hard to revise the
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netlist to bring in the corresponding RTL changes.

automatically implement these changes.
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Fig. 1. IC design flow and the purpose of a functional ECO tool. [4]
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ECOs can be divided into functional ECO and timing ECO. Functional ECO
handles the logical changes to the design, while timing ECO concentrates on improving
the performance of design or repairing timing violations caused by the specification
changes. For functional ECO, the target is to fix the logic difference between the original
and the golden circuits and to make the size of resulted patch as small as possible. By
adding the patch to the original circuit, two circuits should become functionally
equivalent. During this stage, we usually focus on the rectification of logic function. In
contrast, when dealing with timing ECO, we need to consider the physical constraints,
such as the location of spare cells and the wiring length of composing patch. Recently,
some researches consider physical issues simultaneously when handling functional

correction, which is called resource-aware functional ECO [5] [6]. Fig. 3 presents the

H

e

concept of resource-aware functional ECO.
b 4
|

AA .

Fig. 3.  Resource-aware functional ECO. [5]
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In this thesis, however, we only discuss the solution to pure functional ECO
problems. That is to say, we consider no physical constraint during the process and focus
on how to make the given two circuits functionally equivalent with minimal patch. We
usually solve the ECO problem by divide and conquer since the modern designs are too
large. Some researches narrow down the problem by iteratively finding equivalence cuts
for the original and the golden circuits. We call this approach backward-cut since it
generates cuts from the output side to the input side of circuits. Fig. 4 illustrates the
definition of backward and forward direction in a circuit. Both of [7] and [8] demonstrate
the backward-cut-based ECO techniques.

Past researches, however, still have room for improvement. As a consequence, we
propose a two-phases approach, which optimizes backward-cut-based ECO algorithms in
[7] and [8]. Our approach contains two phases: 1) merging phase: to find the gates in the
original and golden circuits which are functionally equivalent to each other and then
merge them into one gate; 2) matching phase: to explore the matches between the original
and golden circuits in order to identify the minimal regions for rectification. In addition,
we further apply this backward-cut approach to equivalence checking, which is usually
solved forwardly. Experimental results show that our idea works.

The remainder of this paper is organized as follows. Chapter 2 gives some
preliminaries. Chapter 3 describes our backward-cut-based ECO algorithm in detail.

Chapter 4 shows our backward-cut-based EC algorithm. Chapter 5 discusses our
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experimental results. Chapter 6 is the case study, which further explores the result of

particular testcase. Chapter 7 concludes the thesis and talks about possible future works.

forward

Pl

backward

Fig. 4.  Definition of backward and forward direction in a circuit.
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Chapter 2 Preliminaries

In this chapter, we present the prior knowledges related to our work. First, chapter
2.1 ~ 2.4 describe the fundamental concepts we need for ECO. Chapter 2.5 and 2.6 briefly
introduces previous works and the criteria of ECO problem, respectively. The techniques

proposed in past researches are then described in the remaining chapter.

2.1 Boolean Satisfiability

Boolean satisfiability problem (SAT) is a decision problem taking a propositional
formula which represents a Boolean function. It would answer whether this formula is
satisfiable. The formula is satisfiable (SAT) if there is at least an input assignment to
evaluate the formula to 1 (true). Otherwise, the propositional formula is unsatisfiable
(UNSAT). If the formula is unsatisfiable, then the Boolean function is proved to be a
constant 0. A SAT solver is a software program for solving SAT problems. When a SAT
problem is satisfiable, the solver returns SAT with a satisfying assignment. Our ECO

engine adopts Minisat [9], which is the most popular SAT solver over the world.

2.2 Equivalence Checking (EC) & Miter
Two circuits are regarded as functionally equivalent if and only if their output
values are equal under all input assignments. Equivalence checking plays an important

role in functional ECO. In the ECO process, we need to check the functional
6
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correctness after circuit rectification. If two circuits are non-equivalent, it means that
there are still errors in the circuit. We usually transform the equivalence checking problem
to a satisfiability problem with a miter [10]. If we want to check the functional
equivalence between two Boolean networks F (Original) and G (Golden), then we build
a miter like Fig. 5, which applies an exclusive-or gate (XOR) to F and G. They are
functionally equivalent if and only if there is no input assignment making the miter
outputs 1. That is, two Boolean networks F and G are functionally equivalent if and only

if the miter of F and G is UNSAT.

1L )-

(z

Fig. 5. A miter example in [10].

2.3 AIG, Strash & FRAIG

And-inverter graph (AIG) is a directed and acyclic graph that represents a
structural implementation of the logic circuit. In AIG structure, each node represents an

AND gate and contains two inputs. Each input includes a node it connects to and a flag
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to signify whether this input is inverted. Since {AND, NOT} is a functionally complete
set, every Boolean function can be transformed into an AIG. Fig. 6 illustrates two simple
AIG examples. Normally, when a circuit problem is modeled in AlG, the implementation
can be simplified due to the simplicity of the AIG data structure and thus the room to
optimize the algorithm will become larger. For example, to speed up equivalence
checking, AlG-based Strash and FRAIG are two commonly used techniques. We can also

utilize the merged gates discovered in these two processes to guide the pairing during cut-

ab a+b
a b a b

Fig. 6.  And-inverter graph example.

A4

Fig. 7. Structural hashing example.

matching.

8
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Structural hashing (Strash) is to map each AND gate and its two inputs into a
canonical form. Fig. 7 shows the concept of structural hashing. With this method, we can
efficiently discover some equivalent gates and then merge them.

Functionally reduced and-inverter graph (FRAIG) [11] technique first find the
functional equivalent candidates (FEC) by simulation and then check whether they

are actually equivalent by SAT solver. The algorithm is presented in Fig. 8.

Algorithm Functionally-Reduced And-Inverter Graph

1: Input: Circuit ckt

2: Output: Circuit ckt

3: solver « Init_Proof_Model(ckt)

4. classes < Init_ FEC_By Random_Simulation(ckt)

5: for each gate g in ckt in a topological order do

6 fec «— Get_FEC(classes, g)

7 if fec == null then continue

8 for each m in fec do

9 if Sat_Check Equivalence(solver, g, m) == UNSAT then

10: Merge(ckt, g, m)

11: else

12: pattern «— Get_Sat_Pattern(solver)

13: classes «— Simulate_And_Update_FEC(classes, pattern)
14: end for

15: end for

Fig. 8.  Functionally reduced and-inverter graph algorithm. [8]

2.4 Boolean Matching
Boolean matching is a problem determining the functional equivalence
between two Boolean functions under permutations and negations of their inputs and

outputs. In logic synthesis and verification, Boolean matching has been widely adopted.
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Besides, it has also been applied to the backward-cut matching in the functional ECO and
the technology mapping. Given two Boolean functions f(X.) and g(X.) with same amount
of inputs (X.| = |X:|). Boolean matching under NPN-equivalence decides whether fand g
can be functionally equivalent or complementary under negations and permutations of
the variables of X. and X.. The first and second “N” in “NPN” represent the negations on
the inputs and outputs, respectively. The “P” means the permutations on the inputs. In
our ECO technique, we apply a simulation-guided cut-matching algorithm to discover the
output-side boundaries of the patch, which can be viewed as an NP-equivalent Boolean
matching problem. We check the equivalence between two circuits under the negations
and permutations on the inputs but the negations on the outputs are excluded. Moreover,
the boundaries are not predefined in our cut-matching process so we need to search for

the matching candidates first.

2.5 Previous Works on Functional ECO

There are many works focusing on functional ECO in recent years. [12]-[14]
propose fault models to describe the design errors, such as incorrect gate-type, inverter
missing, and wire misplaced. These techniques rectify the buggy designs based on their
fault models. As a result, the patch circuits are usually predictable. In most cases, however,
these techniques fail to generate the patch circuit since the fault models are not enough to

represent the functional difference.

10
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Fig. 10. Partial-fix interpolation circuit in [19].

Synthesis-based ECO algorithms [15]-[19] explore an internal rectification signal

by some diagnosis approaches, and then produce a patch function for the functional

difference by re-synthesis techniques. Despite the fact that these algorithms are able

to automate the functional ECO flow, relying on a single-fix signal is their main

disadvantage, as Fig. 9 shows. In the worst case, the only possible single-fix signal is the

primary output itself in real-world testcases. Therefore, the resulted patches may be

11
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extremely large, which is unacceptable. In order to handle these problems, a partial-fix
interpolation-based ECO engine is proposed in [19]. This ECO engine generates partial
rectifications iteratively and thus incrementally fix multiple errors in the design as Fig.
10 shows. Although this technique can deal with the problem more efficiently, it
considers the errors in the design to be independent. However, there may be some
correlations between the errors in circuit. As a consequence, the iterative process may not
be able to converge. A cofactor reduction algorithm in [20] is applied to generate multi-
fix rectification patches by interpolation, which takes multiple errors into consideration

simultaneously. Fig. 11 presents the algorithm in [20].

Algorithm  CofactorReduction(F (%), G(T), )

1: rv-set + {(0,0,...,0)}
2: re-set(Z) « RM(Z,7 = (0,0,...,0))
3: loop

4:  result + SatSolve(rc-set(7))

5:  if result == UNSAT then

6: return UNSAT

7:  else {with SAT assignment "}

8: result + SatSolve(—~RM (% = 7", T))

9: if result == UNSAT then

10: return SAT

11 else {with SAT assignment 7" }

12 ruv-set < rv-set U v"

13: rc-set(T) + re-set() A RM(Z,7=v")
14: end if

15:  end if

16: end loop

Fig. 11. Cofactor reduction algorithm in [20].

12
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Sweeping-based ECO algorithms are proposed in [21]-[24]. They demonstrate a
structural comparison between the original and golden circuits. Due to the fact that the
functional rectifications in RTL often comes from small and local changes, sweeping-
based approaches are very rational for functional ECO. DeltaSyn [24] proposes a dual-
phase flow to first identify the input-side and output-side frontiers of the changes and
then collect the logic gates within two frontiers to be the patch circuit, as Fig. 12 shows.
[25] and [26] provide efficient forward sweeping algorithms to merge the functionally
equivalent gates and then derive the input-side boundary between the original and the
golden circuits. Nevertheless, it still remains a huge challenge to discover the output-side
matching boundary. The computational complexity of output-side matching algorithm is

usually much higher.

-A-

” (b) (c)

(a)

Fig. 12. The main phases of DeltaSyn. [24]:
(a) The original and the modified specification (ECQO) are given as inputs.
(b) Input-side boundary of the changes are identified.
(c) Output-side boundary of the changes are located and verified.

13

d0i:10.6342/NTU201902346



Match-and-Replace (M&R) [7] explores functional matches in the original and
golden circuits by the cut matching algorithms and SAT-sweeping technique. Fig. 13 and
Fig. 14 illustrate the concept of M&R and the flow of cut-matching algorithm. In the
matching phase, M&R first discovers the matched gates (g, g’) of two circuits, where
gates g and g’ are in the original and the golden circuit, respectively. After that, M&R
enumerates a cut from the matched gate g randomly, and then gradually selecting the
candidate gates according to the selected cut of g and the matched gate g'. To get the
matched cut, the SAT-based matching is applied by constructing a matching matrix

shown in Fig. 15.

Patched

Original Golden Match

Rectification
Pairs

| Replace >
® : Unmatched
O : Functionally Equivalent

Fig. 13. Match-and-Replace ECO. [7]

14
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Since M&R generates the cut from the matched gate g without a clue, the
matching process is extremely time-consuming. Besides, even though we find a matched
cut, the quality of the matched cut pairing might be poor, which would lead to large patch
size. As a result, [8] proposes a semi-formal ECO method, where the simulation-guided
cut-matching algorithm is applied to render a clue based on circuit similarity in matching
the cuts. Since ECO usually means that multiple design errors or specification changes
occur in the original circuit and need to be rectified, the gates affected by the buggy gate
might be functionally non-equivalent with the corresponding gates in the golden circuit.
The functional difference between these gates, however, is hard to be observed. In other
words, the values of these gates are different in a few input patterns only and are the same
for most of them. Therefore, the two gates might be a promising pairing if their responses
are highly similar. In some multi-errors ECO testcases, however, the performance of [8]
is not as good as we expect, which implies that there is still room for improvement. Thus,

we optimize the algorithms in [8] and propose a more efficient ECO engine.

2.6 ECO Problem Formulation and Optimization Criteria

Given two circuits: original and golden, which are functionally non-equivalent to
each other. Our ECO engine takes original and golden as inputs and outputs the patched
circuit. The patched circuit is rectified from original circuit and functionally equivalent

to the golden circuit. The functional equivalence between the patched and golden circuit

16
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is verified by the academic tool ABC [27] using cec command. All circuits are described
in AIGER [28], which is a circuit format for AIG.

Accommodating RTL changes with little rectification to the original converged
design is the core objective of a functional ECO. Therefore, the basic criterion for the
ECO tool is to make the ECO changes (patch), called “patch size”, as small as possible.

The second important criterion is the run time of the ECO tool. Since ECOs are
often done at the later stage of a project, which is very close to Tape Out, we only have
limited time to handle it. The process of an ECO tool should be finished within a

reasonable time.

2.7 Rectification Pair

sl =D
TS L

(a) (b)

Fig. 16. Anexample of rectification pairs. [7] (a) Cirl. (b) Cir2.
(e, f) and (g, ¢) are a pair of matched cuts from h < 1i.

Thus, e <> g and f < c are their rectification pairs.

The idea of rectification pair is first introduced by [7]. The definition is shown as

follows according to [7]:

17
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—7

Definition 1: A set of pairs RP_Set: g <> g is called a set of rectification pairs
ifeach g; € g  belongsto the original circuitand g’; € g belongs to the golden one,
and the original circuit becomes functionally equivalent to the golden one after replacing
every g; with g';.

For a rectification pair (g;, g';), g; is called the patched gate and g'; is its
corresponding patch. With the rectification pair, the rectification of functional

equivalence can be formulated as

VX, 0ri X)| & = Gold (X) (1)
Raale)

R
where X is the primary inputs, and g~ < g'(X) represents the operation of replacing

—

each g; € g with g'; € g

Please note that it is always possible to derive a set of rectification pairs to fix the
functional differences between the original and the golden circuits. For instance, the
primary output (PO) pairs form a trivial set of rectification pairs naturally. Thus, replacing
all outputs in the original circuit with the outputs in the golden circuit is definitely a
solution to rectification. The patch size, however, might be unacceptably large. The
following lemma introduces an iterative approach to reduce the patch size:

Lemma 1: Given a rectification pair P: g; < g'; € RP_Set, 1 <i<n and a set of
pairs P_Set: R < h',the set (RP_Set — {P} + P_Set) is also a set of rectification pairs
if P_Set is a set of rectification pairs of P.

Proof: Since

VX, 0ri(X)| & = Gold (X). )
77
18
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If aset of pairs P_Set: h « k' isaset of rectification pairs of pair P : gi < 9
which can be formulated as

gX_r_ =4g:X 3)
R« h1(X)

by (2) and (3)

VX, Ori (X)| = Gold(X)  (4)

R'(X)

3[1,1—1]5?[1,1—1]()(), j[m,n]f 9" li+1,n](X), w&
where g'[1, i—1] denotes the concatenation of {g;, g5.... , gi—1} and g [i+1, n] denotes
the concatenation of {g;,1, Gi+2,-» In}t-

By (4), (RP_Set — {P} + P_Set ) must also be a set of rectification pairs of Ori(X).

According to the above lemma, we can iteratively derive a set of new rectification pairs

on the existing pairs. [7]

2.8 Cut Function

In our ECO engine, we discover new rectification pairs by a cut-matching algorithm,
which finds two cut function in original circuit and golden circuit, respectively. After
replacing the cut in original circuit with the other cut, the two circuits become functionally
equivalent. According to [7], the cut function is defined as follows:

Definition 2: Given a cut (g;, g2... , g ) In circuit Cir, a cut function
CFeir (g,,9,..9,) TEPresents the function of the circuit with respect to (g;, g2, » gn)-

As Cir1 in Fig. 16(a) shows, the output function with respect to (a, b, f) is

19
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h(a, b, ¢, f )=(a+b)f and the cut function of the cut (a, b, f) is CFyqp,ry (X1, X2, X3) =
(x1 + x2)x3, where (X1, X2, x3) are the corresponding input variables of h on (a, b, f ). We
say two cut functions are equivalent if
CFcir(gy X) = CFeiprgry (X)

is valid.

Given two equivalent cut functions, called matched cuts, the rectification pairs can
be easily derived by the following theorem:

Theorem 1: Giventwo cuts g°: (g1, gz, »9n) and g": (91,92, 9’5 ) in circuits

Cir and Cir’, respectively, if CF¢;gy and CFg;r gy are equivalent, then g° <

!

g isaset of rectification pairs and the revised circuit Cir" (X): Cir(X) | & will
g<g'®

be functionally equivalent to Cir’ (X).
Proof: Since the cut functions CFc;.gy (X) = CFeipr gy (X), if Cir and Cir’
are not functionally equivalent, it must result from the functional differences between g’

and g”'. Once we do the replacement for every pairin (g’, g’ ), g become equivalent

—y

to g’. Thus, after replacing, the revised circuit Cir"(X) : Cir(X) | & will be
)

<g'X

functionally equivalent to Cir’(X).

Concluding the above descriptions, we are able to derive the rectification pairs from
the matched cuts. In addition, given a rectification pair where two gates are functionally
non-equivalent, we can iteratively find a matched cut for this pair and thus identify more
rectification pairs. Therefore, we will keep getting new rectification pairs with smaller

patches after each iteration. [7]
20

d0i:10.6342/NTU201902346



2.9 Similarity between the Candidate Gates

Exploring equivalent cut function is an important part of cut-matching. However,
the inputs of cut function, suchas g” and g, are not yet defined. Therefore, we need to
find g~ and g~ before checking the equvalence of two cut functions. [8] proposed a
simulation-guided cut-matching approach to deal with this problem. The first step is to
discover the candidate gates in the two circuits, respectively. Second, we pair these
candidate gates according to the simulation results. Two gates might be a promising
pairing if their simulated responses are highly similar. Finally, we check the equivalence
between the two resulted cut functions. For instance, given (a, b, c) and (e, f, g) to be the
candidate gates of g~ and g, respectively. We first simulate the whole circuits Cir(X)
and Cir'(X) with lots of patterns. After that, we calculate the similarity between these six
candidate gates. If a has the highest similarity to e out of (e, f, g), then we pair a and e.
For b and c, the pairing principle is the same. Figure 22(a) shows how to simulate the
whole circuit. We bind the inputs of the two circuits and only check the cases with same

output response.
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2.10 Output-side Frontier Identification

Algorithm Basic Output-side Frontier Identification Algorithm
1: Input: Ori_Ckt, Gold_Ckt

2: Output: RP_Set

3:  for each pair(po, po') in POs do

4 if po = po’ then continue

5: RP_Set «— RP_Set + pair(po, po')

6

7

8

9

end for

for each pair(g, g') in RP_Set do
(cut, cut')«— Cut_Matching(g, g’, Ori_Ckt, Gold_Ckt)
for each pair(n, n') in (cut, cut’) do

10: if n=n'then continue

11: RP_Set «— RP_Set + pair(n, n’)
12:  end for

13: end for

14: RP_Set «— Pair_Refinement (RP_Set)
Fig. 17. Basic output-side frontier identification algorithm.

Fig. 17 shows the basic algorithm of output-side frontier identification. Since all
PO pairs are trivial rectification pairs, we put all of them into the RP_Set except the one
with equivalent (po, po’) at the beginning (line 3~6). After that, we apply cut-matching
algorithm on the existing rectification pairs to explore more rectification pairs iteratively.
Cut-matching algorithm is invoked on the rectification pair (g, g’). After generating the
matched cuts, we obtain a set of new matched pairs with the returned matched cuts (cut,
cut") and the functionally non-equivalent pairs among these matched pairs are added into
the RP_Set, where we iteratively explore new pairs. The process keeps operating until
there are no rectification pairs newly derived (line 7~13). Finally, a pair-refinement

technique is applied to remove the redundant rectification pairs.
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Chapter 3 Backward-Cut-Based ECO Engine

In this chapter, we present the flow of our dual-phase ECO method. Chapter 3.1

is the overview while chapter 3.2 and 3.3 detail the techniques in the two phases.

3.1 Overview of Our ECO Engine

Ori Ckt Gold Ckt ‘ / \

Gold

Merging Phase /\
| Strash & FRAIG |

Matching Phase M&
Er Cut-Matching i

Pair-Refinement !

__________________

Patched
Ckt

Fig. 18. Overview of our dual-phases ECO engine.
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Fig. 18 shows the flow of our ECO engine, where the merging phase and the
matching phase represent the input-side and the output-side patch frontier identifications,
respectively. After reading the original and the golden circuits, we perform Strash and
FRAIG techniques to explore the functionally equivalent gates and then merge them. The
matching phase then proceeds to identify the output-side patch boundary. We discover
rectification pairs by cut-matching algorithm and optimize the rectification pairs by pair-
refinement algorithm. At last, our ECO engine outputs the patched circuit. To verify the
functional equivalence between the patched and the golden circuits, we use state-of-the-
art academic tool ABC [27]. Fig. 19 illustrates the concept of backward-cut-based ECO,

which is corresponding to our matching phase.
VX, Ori(X)|. x. = Gold(X
( )l R "(X) ( )

Replace

Ori Gold Ori Gold
-—
Patch Size l
X X
Initially, the patch is equal to After finding backward-cut, the patch is reduced

the whole golden circuit :>

Fig. 19. The backward-cut-based ECO
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3.2 Merging Phase - Input Side Patch Frontier Identification

Strash and FRAIG techniques explore and merge functionally equivalent gates. For
a rectification pair (g, g"), a simple way to replace g by g'is to patch the whole g’ logic to
g, which might result in a large patch size. Since a merged gate represents the gates in
both original and golden circuits that are functionally equivalent, we can redirect the wire
on the merged gates in g’ logic to their corresponding merged gates in the original circuit
and then obtain a smaller patch. Fig. 20 illustrates an example. When replacing a
rectification pair (g, g"), we can patch the whole g’ logic to g, which leads the patch size
to 20. If we reuse the merge gates in the original circuit to form the g’ logic, then the patch
size is reduced to 2. The higher the level of the merged gate located is, the more the patch
size we can reduce. The merging frontier is defined as follows according to [8]:

Definition 3: A merging frontier is a set of merged gates m  : (my, m,,... my,),
where all primary inputs can find a cut "g" : (g1, 93...- gm) in their fanout cone such
that g € m.

Note that collecting all primary inputs can easily form a merging frontier since they
are all merged gates naturally. The objective of input-side merging frontier identification
is to find the highest-level merging frontier by the Strash and FRAIG processes. All gates

below the input-side merging frontier are regarded as don’t-care gates. [8]
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O;"I_th GO’d_th m, AXx:merged gate

Fig. 20. Anexample of using merged gates to construct patch. [8]

3.3 Matching Phase - Output Side Patch Frontier Identification

[8] explores the rectification pairs iteratively and terminates when there is no new
rectification pair found. In addition, a pair-refinement technique is applied to remove the
redundant pairs and thus reduce the patch size. However, it still takes time to find matched
cuts for the redundant rectification pairs. If a rectification pair is redundant, then we
should not waste time to do cut-matching on it. As a result, we propose a new output-side
identification algorithm, which refines the rectification pairs in each iteration rather
than after finishing the whole process. This modification avoids spending time exploring

matched cuts for redundant rectification pairs. Thus, the pair-refinement technique not
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only reduces the patch size but also save the run time for the next iteration. In some
complex testcases, this change can highly improve the performance. Fig. 21 presents our

output-side identification algorithm.

Algorithm Output-side Identification Algorithm
1: Input: Ori_Ckt, Gold_Ckt

2: Output: RP_Set

3: for each pair(po, po’) in POs do

4 if po = po’ then continue

5: RP_Set «— RP_Set + pair(po, po')

6

7

8

9

. end for

. while RP_Set is changed do
RP_Set’ «— RP_Set
for each pair(g, g') in RP_Set do

10: (cut, cut' )«— Cut_Matching(g, g', Ori_Ckt, Gold Ckt)
11: for each pair(n, n') in (cut, cut’) do

12: if n = n'then continue

13: RP_Set’ «— RP_Set’ + pair(n, n')

14: end for

15:  end for

16: RP_Set «— Pair_Refinement(RP_Set’)

17: end while

Fig. 21. Output-side identification algorithm

3.3.1 Cut Matching Algorithm

[8] simulates the whole circuits with lots of patterns. However, it takes much time
to do simulation if the circuit is extremely large. Therefore, we modify the method of
simulation. In our engine, we only simulate the cut function itself rather than the whole
circuit, which is shown in Fig. 22(b). This modification can save us much run time.
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Fig. 22. The simulation of cut pair candidate. (a) Simulate the whole circuits.
(b) Simulate the circuits of cut functions only.

Given two circuits Cir(X) and Cir’(X) with candidate gates (a, b, ¢) and (e, f, g) that
can potentially form the matched cuts. We simulate CFg(qpcy and CFeir( 5y With
(a, b, ¢) and (e, f, g) treated as pseudo inputs. The values of pseudo inputs are given
randomly without any constraint during simulation. For the simulation results, we only
consider the results where two outputs have same response. Since how the values of
pseudo inputs vary is what we care. If a has the highest similarity to e out of (e, f, g), then
we pair a and e. For b and c, the pairing principle is the same. Note that if the similarity
between a and e is equal to p, then the similarity between a and e’ is equal to 1-p.

For those non-merged gates in the cut, we first perform simulation and
extract their response. After calculating the pairwise similarity, the similarity between

each non-merged gate is collected. The pairing is then decided by the calculated similarity.
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To make the pairing more promising, we consider not only the functional circuit similarity
but also the structural information, which is based on the number of merged gates within
the fanin cones of each possible pairing, since the merged gate is an important guidance
in the cut-matching process.

The flow of the cut-matching algorithm is shown in Fig. 23. We increase the level
gradually to find more merged gates (line 5, 13). The more the merged gates we find, the

more the guidance of the cut pairing we get. For each level range, we first discover cut

pair candidate ( cand , cand’ ), where both of them represents a cut and
|cand|=|cand’| (line 6). After that, we check the equivalence between two cut functions

(line 7). If the two cut functions are functionally equivalent, it means this candidate is a

valid cut pair. Among all the cut pairs we find for (g, g"), the cut pair (cut, ;t’))with the

smallest patch size is what we output finally.

Alqorlthm Cut-Matching Algorithm
Input: g, g', Ori_Ckt, Gold Ckt
Output: (cut, cut’)
level < level_Initial
patch_Min «— patch_size(g, g")
while level < level Limit do
(cand, cand") «— Get_Cut Cands(g, g', Ori_Ckt, Gold Ckt, level)
if two cut functions (g w.r.t cand, g' w.r.t cand’) are equivalent then
if the patch size of (cand, cand’) < patch_Min then
patch_Min «— patch_size(cand, cand'")
(cut, cut") «— (cand, cand')
end if
end if
13:  level < level +1
14: end while
Fig. 23. Cut-matching algorithm
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3.3.2 Rectification Pair Refinement Algorithm

After identifying the rectification pairs, a refinement technique is proposed to
determine the necessity of each rectification pair. A rectification pair is redundant if its
corresponding functional errors can be covered by other rectification pairs. The core
objectives of the rectification pair refinement process are 1) to minimize the final patch
circuit, and 2) to ensure all output functions are correct after the rectification.

In order to refine the rectification pairs, we construct a rectification pair selector
RPS(%, s), which is a miter and is shown in Fig. 24. ¥ and “s represent the primary
inputs and selection signals, respectively. For each rectification pair (g;, g';), we insert
aMUX(s;, gi, g';)onthe outputs of g; and g';, and the original fanouts of g; is driven
by the outputs of the MUX. The assignment of s; represents the selection of the patch
logic. When we assign 1to s; € “s’, the fanout of g; in the original circuit is driven by
g';, which means this specific patch is committed. On the other hand, when s; is
assigned 0, g; in the original circuit would not be replaced and its function remains
unchanged. The patch selection process can then be formulated as a QBF:

35,VX, RPS(%, 5)=0 (5)

With the rectification pair selector, we are able to derive a valid patch by solving (5).
Exploring the minimal patch circuit, however, is very inefficient on QBF, since it is an
optimization problem. Consequently, we propose a feasible rectification pair refinement
algorithm to get a solution with good quality. The rectification pair refinement algorithm

is shown in Fig. 25.
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Fig. 24. Rectification pair selector. [7]

Algorithm Rectification Pair Refinement Algorithm

1
2
3
4.
5:
6
7
8
9

10:
11:
12:
13:

. Input: RP_Set, Miter
: Output: RP_Set_Opt
. for each pair(gi, gi’) in RP_Set with MUX selection signal si do
Sie—1
end for
. Sort RP_Set by the decreasing order of patch_size(gi, gi")
. for each pair(gi, gi’) in RP_Set with MUX selection signal si do
si—0
if Miter.solve() == SAT then
RP_Set_Opt «— RP_Set_Opt + pair(g, g')
Sie—1
end if
end for

Fig. 25. Rectification pair refinement algorithm
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In the beginning of the flow, we replace all patched gates g; with g';. Thatis, s
= (1, 1, ..., 1) (line 3-5). Note that the original circuit must be equivalent to the golden
circuit under this assignment since all POs of original circuit are replaced by the
corresponding ones in golden. After that, we undo a rectification pair replacement g; <
g'; by assigning 0 to the MUX selection variable s; iteratively (line 7, 8). We solve the
miter for each rectification pair. If the miter is still unsatisfiable, it means the functional
errors corresponding to this pair are covered by other rectification pairs, and thus we can
get rid of this rectification pair. Otherwise, the replacement is necessary for the
rectification since the original and then golden circuits become functionally non-
equivalent without this rectification pair. Therefore, we restore s; to 1 and put this pair
into the optimized RP_Set (line (9~12). Since we tend to discard the rectification pairs
with large patch size and keep the ones with small patch size, we sort the RP_Set by the
decreasing order of the patch size of each rectification pair before the undoing process

(line 6). RP_Set_Opt is the final patch to rectify the revised circuit.

3.3.3 Advanced (Further) Cut Matching Approach

In [8], we stop the iteration of exploring rectification pairs if there are no new
equivalent cut functions found. Sometimes, the patch size is still large when the iteration
ends. To handle this problem, we propose an advanced cut-matching approach. With this
approach, we can keep discovering rectification pairs even if the cut functions we find

are non-equivalent.
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Given two non-equivalent cut functions. The pairs on these cuts are not valid
rectification pairs since they cannot fix the function difference between circuits after
replacement. However, we can still treat them as pseudo POs and do cut-matching for
them to find more rectification pairs except that the logic of cut function should be added
to the patch. Fig. 26(a) shows the original method, which would terminate when failing
to find equivalent cut functions, while Fig. 26(b) presents our advanced cut-matching
approach, which continues discovering rectification pair for a non-equivalent cut pair.
Fig. 26(c) compares the resulting patch between them and it is obvious that the patch size
can be reduced with our approach.

Theorem 2: Given two circuits Cir and Cir’ with two cuts g = (g1, g2 )

and g’ =(g'1, g2 ) If

CFeirgy X) # CFeirrgry (X) (6)
is valid and
g _z_. =g1X) and gX)|_r_. =g°X) )
R <« h1(X) k < k1(X)
are discovered, then
Cir(X)| R R, _r_ =CirX (8)
CFeir(gy < CFeprgry X, B« R'X), k < k' (X)

Proof: By (7), we know that g° and g~ are equivalent after finishing the

replacement with each pair of (Tf, F’) and (?, _l?’). Thus, the function difference
between Cir and Cir’ can be resulted by the inequality of cut functions

CFcir(gy and CFeirgry only. If we replace CFcigy by CFeypr(gry , then the two
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X
J

circuits Cir and Cir’ must be function equivalent. Since the inequa;l;‘,i}t_:s— f two ¢

functions is gone, there exists no function difference between the two mrcﬁﬂ

c,® ¢, ¢ =c,
patch 1 patch 2
(©)
Fig. 26. The illustration of advanced cut-matching approach
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3.4 Repeatedly Solving ECO Algorithm

Normally, our ECO engine takes the original and the golden circuits as inputs and
then outputs the patched circuits. The more the two input circuits are similar, the easier
the ECO process would be. Since it is simple to optimize circuits and find matched cuts
when the structures of two input circuits are highly similar. Patched circuit is generated
by revising the original circuit with rectification pairs. Thus, the original and patched
circuits should be more similar compared to the original and golden circuits. Based on
these facts, we propose a repeatedly solving algorithm shown in Fig. 27, which takes the
resulting patched circuit as new golden and solves again (line 5). If the new patched
circuit has smaller patch size, then we use it to replace the original one (line 6, 7) and the
process continues. Otherwise, we terminate the operation. Despite the fact that repeatedly
solving can reduce the patch size, it also increases the run time substantially. Therefore,

our ECO engine only operates one time (stop at line 3) in default.

Algorithm Repeatedly Solving Algorithm
. Input: Ori_Ckt, Gold_Ckt
Output: Patched_Ckt
Patched_Ckt «— Backward_Cut_Based _ECO(Ori_Ckt, Gold_Ckt)
while true do
Patched Ckt’ «— Backward_Cut_Based_ECO(Ori_Ckt, Patched_Ckt)
if patch_size(Patched Ckt’) < patch_size(Patched_Ckt) then
Patched_Ckt «— Patched Ckt’
else
break
10: end while

© oo N aO kW

Fig. 27. The repeatedly solving algorithm
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Chapter 4 Backward-Cut-Based EC Algorithm

In this chapter, we apply the backward-cut approach to equivalence checking (EC).
EC can be solved by a miter but it would be slow if SAT solver has to handle the whole
circuit. As a result, we usually optimize the circuit by FRAIG first. FRAIG can be view
as a forward technique since it optimizes the circuit from the input-side to the output-side.
However, it takes much time to complete FRAIG process for some testcases. Thus, we
propose a backward-cut-based EC algorithm, which divides the original problem into
several sub-problems.

Fig. 28 illustrates our backward-cut-based EC algorithm. Given two circuits
golden and revised with g and g’ being their output. Similar to ECO, we find the matched
cuts (cut, Jt’)) by cut-matching algorithm (line 5). By the property of matched cuts, we
can easily derive that golden and revised circuits are functionally equivalent if their
matched cuts are functional equivalent. Thus, we only need to check the equivalence of
their matched cuts instead of the whole circuit. If there is no valid cut pair found, then we
solve the miter of whole circuit, which is named as Basic_EC (line 6). For each pair (n,
n’) in (cut, cut’), we can treat them as pseudo PO and solve the equivalence of them by
recursively calling Backward_Cut_Based EC(n, n’), if n is functionally equivalent to n’,
then we merge them into one node (line 7~9). Note that even if n and n’ are non-

equivalent, there is still a chance for g and g’ to be equivalent, since the functional
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difference between cut and cut’ might be a don’t-care to g and g’. Thus, we have to apply

Basic_EC on (g, g’) rather than directly response false.

Alqorlthm Backward-Cut-Based EC Algorithm

©oNO kR

e el ol =

Input: g, g’, Gold Ckt, Rev_Ckt
Output: whether g and g’ are functionally equivalent
CutsAreEq = true
(cut, cut’) «— Cut_Matching(g, g', Gold Ckt, Rev_Ckt)
if (cut, cut’) is empty then return Basic EC(g, g’)
for each pair(n, n') in (cut, cut’) do
if Backward-Cut-Based EC(n, n’) then
Merge (n, n’)
else
CutsAreEqg=false

: end for
. if ( CutsAreEq) then

return true

s else
15:

return Basic EC(g, g°)

Fig. 28. Backward-cut-based EC algorithm
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Chapter 5 Experimental Results

We implement our backward-cut-based ECO engine and EC algorithm in C++
language and apply MiniSAT [9] as our SAT solver. All of our experiments are conducted

on a Linux workstation with 128 GB RAM and 2.20 GHz Intel Core i7 CPU.

5.1ECO

For ECO, the functional correctness of the experiments was verified by the ABC
command cec [27]. To generate ECO testcases, [8] modified the benchmarks of iwls2017
programming contest [29]. Table 1 shows the experimental results under these testcases.
The first column is the name of circuits. The second and third column show the number
of primary inputs/outputs and the max/average level of the circuits. The fourth column
presents the number of three modifications to the circuits. “RW” means gate rewiring.
We choose two gates fand g, and reconnect one of g’s two fanins to f. Note that we should
make sure there is no combination loop caused by rewiring. “INV” means inverter
insertion. An inverter is applied to the output of the selected gate and the function is
inverted. “TC” means gate type change. We change the type of the selected gate from an
AND gate to an XOR gate. After these changes, the circuit is resynthesized by ABC
command dc2 to make the structure less similar. The performance comparison between

prior work [8] and our ECO engine is shown in remaining columns. The experimental
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results demonstrate that our ECO engine can rectify the circuits with small patch size
within reasonable runtime. Also, the runtime of our ECO engine mainly depends on the
total gate count of the circuit. It is obvious that our engine outperforms [8] on not only
the patch size but also the run time. For the circuit with high level like y3, our
improvement on run time is even more conspicuous. Averagely, the patch size and run
time of our engine is 11% and 60% better than the prior work [8].

To demonstrate that our engine is generally better, we introduce more ECO testcases.
ICCAD-2017 CAD contest in resource-aware patch generation [5] provides 20
representative ECO testcases with physical constraints. Since we focus on functional
correction only, those physical constraints are excluded. Table 2 shows the performance
comparison between previous work [8] and our ECO engine. Obviously, we still result in
a better performance, which reduces 12% in patch size and 74% in run time averagely.
Note that the testcases we use are slightly different from [5], since the format of original
testcases doesn’t meet with what our engine requires.

Chapter 3.4 presents the algorithm of repeatedly solving, which regards patched
circuit as the new golden and operates the ECO process again. Our engine doesn’t apply
repeatedly solving in default. That is, the ECO process operates exactly one time. Table
3 demonstrates the performance of our engine with and without repeatedly solving.
Although repeatedly solving can lead to 5% improvement of patch size, it also results in
127% more run time averagely. Therefore, it doesn’t seem worthy to run ECO process

repeatedly when considering run time cost.
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Prior work [24] | Our engine
circuit Pi/po max/avglv | RW INV TC | patch | time(s) | patch | time(s)
5 0 0 24 34.62 16 19.78
6 0 0 39 29.67 59 19.98
y0 128/147 25/17 2 0 2 50 27.90 45 19.70
(8053) 2 2 0 46 50.26 44 20.51
2 2 2 104 42.54 100 19.94
5 0 0 5 23.67 5 9.78
6 0 0 39 22.56 39 9.67
yl 128/94 25/17 2 0 2 5 12.02 5 9.82
(5326) 2 2 0 14 12.77 12 9.68
2 2 2 47 28.56 47 9.60
10 0 0 19 9.20 19 1.01
y2 207/108 48/15 10 0 2 39 11.08 56 1.12
(1415) 10 2 0 38 4.45 38 0.63
10 2 2 79 5.77 64 0.75
5 0 0 58 336.10 58 9.38
6 0 0 70 513.38 70 9.08
y3 512/130 227/225 2 0 2 18 978.50 18 6.76
(2819) 2 2 0 34 166.25 2 8.02
2 2 2 58 698.04 23 6.13
5 0 0 0 38.39 0 35.63
6 0 0 25 37.84 25 33.52
v4 256/129 88/87 2 0 2 2 38.43 2 35.05
(11839) 2 2 0 0 38.07 0 34.39
2 2 2 6 38.49 6 34.50
10 0 0 14 1.93 14 0.43
y5 147/141 14/7 10 0 5 45 3.26 42 0.29
(1147) 10 3 0 31 4.19 31 0.33
10 3 5 46 2.83 45 0.38
Ratio 1.00 1.00 0.89 0.40

Table 1. Performance comparison under the testcases modified from [29].
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Prior work [24] Our engine
circuit pi/po gate patch | time(s) | patch | time(s)
unitl 3/2 6 5 0.04 5 0.01
unit2 157/64 1120 148 1.07 148 0.32
unit3 411/128 2074 11 1.73 11 0.35
unit4 11/6 75 15 0.09 8 0.02
unitS 450/282 24357 281 72.25 112 10.03
unit6 99/128 13828 408 752.32 315 49.66
unit7 207/24 2944 461 2.39 461 0.85
unit8 179/64 2513 160 7.51 160 3.06
unit9 256/245 5849 88 8.95 88 2.39
unit10 32/129 1581 156 66.65 128 3.13
unitll 48/50 2057 12 2.88 5 0.65
unit12 46/27 13804 106 10.65 105 4.70
unitl3 25/39 369 37 0.24 37 0.10
unitl4 17/15 1981 540 6.98 540 1.01
unitl5 198/14 1886 139 3.40 79 0.51
unitl6 417/214 2371 3162 13.30 3162 4.57
unitl?7 136/31 2910 144 1.58 130 0.38
unitl8 245/100 4860 255 4.28 255 1.26
unitl9 99/128 13349 91 350.81 91 73.82
unit20 1874/7105) 30816 81 69.37 50 29.05
Ratio 1.00 1.00 0.88 0.26

Table 2. Performance comparison under the testcases modified from [5].
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Repeatedly One time
pi/po max/avglv | RW INV TC | patch | time(s) | patch time(s)
5 0 0 16 48.57 16 19.78
6 0 0 59 47.64 59 19.98
y0 128/147 25/17 2 0 2 45 72.87 45 19.70
(8053) 2 2 0 34 74.36 44 20.51
2 2 2 100 74.58 100 19.94
5 0 0 5 21.80 5 9.78
6 0 0 19 21.92 39 9.67
yl 128/94 25/17 2 0 2 5 21.07 5 9.82
(5326) 2 2 0 12 21.14 12 9.68
2 2 2 47 28.56 47 9.60
10 0 0 19 2.46 19 1.01
y2 207/108 48/15 10 0 2 56 2.36 56 1.12
(1415) 10 2 0 38 1.19 38 0.63
10 2 2 64 1.41 64 0.75
5 0 0 21 17.85 58 9.38
6 0 0 70 17.46 70 9.08
y3 512/130 2271225 2 0 2 18 13.56 18 6.76
(2819) 2 2 0 2 18.81 2 8.02
2 2 2 23 14.07 23 6.13
5 0 0 0 35.63 0 35.63
6 0 0 25 79.84 25 33.52
y4 256/129 88/87 2 0 2 2 88.55 2 35.05
(11839) 2 2 0 0 34.39 0 34.39
2 2 2 6 71.69 6 34.50
10 0 0 14 1.32 14 0.43
y5 147/141 14/7 10 0 5 42 1.32 42 0.29
(1147) 10 5 0 31 1.64 31 0.33
10 5 5 45 1.74 45 0.38
Ratio 0.95 2.27 1.00 1.00

Table 3. Performance comparison between solving repeatedly and one time.
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In chapter 3, we promote several methods to improve the performance of ECO
engine. In the remaining section, we demonstrate how each method affects the
performance individually. First, we define the approach that applying pair-refinement
after each cut-matching iteration as Method #1, which is illustrated in Fig. 21. Second,
we define the cut-function simulation as Method #2, which is shown in Fig. 22(b). Note
that simulating the whole circuit is the original technique, as Fig. 22(a) shows. Chapter
3.3.3 and Fig. 26 introduce the further cut-matching approach, which we define as
Method #3. Our ECO engine contains all of these three methods and we remove one
method from the engine at one time to do three experiments. That is, these three methods
are our independent variables. The patch size and run time are our dependent variables.
Table 4, Table 5 and Table 6 show the experimental results of our engine without Method
#1, Method #2 and Method #3, respectively. By comparing these results, we can find that
Method #1 reduces the patch size and run time by 2% and 25%, respectively. For the
circuits with high level ranges like y3, the improvements of run time are extremely
obvious. Method #2 leads to 24% less run time but has no impact on patch size. In addition,
Method #3 reduces 2% in patch size but results in 2% more run time. Since the final patch
size is usually the most important concern in ECO, applying further cut-matching seems

worthwhile for us.
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w/o Method #1 Our engine
circuit pi/po max/avglv | RW INV TC | patch | time(s) | patch | time(s)
5 0 0 24 21.42 16 19.78
6 0 0 59 21.00 59 19.98
y0 128/147 25/17 2 0 2 45 20.90 45 19.70
(8053) 2 2 0 49 20.46 44 20.51
2 2 2 103 22.54 100 19.94
5 0 0 5 9.87 5 9.78
6 0 0 39 9.69 39 9.67
yl 128/94 25/17 2 0 2 5 9.89 5 9.82
(5326) 2 2 0 12 9.78 12 9.68
2 2 2 45 9.87 47 9.60
10 0 0 19 1.14 19 1.01
y2 207/108 48/15 10 0 2 56 1.39 56 1.12
(1415) 10 2 0 38 0.65 38 0.63
10 2 2 79 0.86 64 0.75
5 0 0 58 36.40 58 9.38
6 0 0 70 166.49 70 9.08
y3 512/130 227/225 2 0 2 18 62.92 18 6.76
(2819) 2 2 0 2 24.17 2 8.02
2 2 2 23 44.46 23 6.13
5 0 0 0 37.39 0 35.63
6 0 0 25 37.84 25 33.52
v4 256/129 88/87 2 0 2 2 38.41 2 35.05
(11839) 2 2 0 0 38.99 0 34.39
2 2 2 6 39.49 6 34.50
10 0 0 14 0.59 14 0.43
y5 147/141 14/7 10 0 5 42 0.83 42 0.29
(1147) 10 5 0 31 0.48 31 0.33
10 5 5 45 0.61 45 0.38
Ratio 1.00 1.00 0.98 0.75

Table 4. Performance comparison between with and without Method #1.
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w/o Method #2 | Our engine
circuit pi/po max/avglv | RW INV TC | patch | time(s) | patch | time(s)
5 0 0 16 22.19 16 19.78
6 0 0 59 20.57 59 19.98
y0 128/147 25/17 2 0 2 45 22.79 45 19.70
(8053) 2 2 0 44 24.52 44 20.51
2 2 2 100 23.98 100 19.94
5 0 0 5 11.15 5 9.78
6 0 0 39 11.73 39 9.67
yl 128/94 25/17 2 0 2 5 9.84 5 9.82
(5326) 2 2 0 12 10.46 12 9.68
2 2 2 47 12.11 47 9.60
10 0 0 19 1.25 19 1.01
y2 207/108 48/15 10 0 2 56 1.38 56 1.12
(1415) 10 2 0 38 1.00 38 0.63
10 2 2 64 1.12 64 0.75
5 0 0 58 13.47 58 9.38
6 0 0 70 11.39 70 9.08
v3 512/130 2271225 2 0 2 18 9.20 18 6.76
(2819) 2 2 0 2 10.29 2 8.02
2 2 2 23 9.47 23 6.13
5 0 0 0 38.16 0 35.63
6 0 0 25 38.03 25 33.52
y4 256/129 88/87 2 0 2 2 38.49 2 35.05
(11839) 2 2 0 0 38.09 0 34.39
2 2 2 6 38.22 6 34.50
10 0 0 14 0.85 14 0.43
yS 147/141 14/7 10 0 5 44 1.17 42 0.29
(1147) 10 5 0 31 1.16 31 0.33
10 5 5 45 0.99 45 0.38
Ratio 1.00 1.00 1.00 0.76

Table 5. Performance comparison between with and without Method #2.
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w/o Method #3 | Our engine
circuit pPi/po max/avglv | RW INV TC | patch | time(s) | patch | time(s)
5 0 0 16 19.68 16 19.78
6 0 0 59 19.96 59 19.98
y0 128/147 25/17 2 0 2 50 19.65 45 19.70
(8053) 2 2 0 44 20.44 44 20.51
2 2 2 101 19.78 100 19.94
5 0 0 5 9.58 5 9.78
6 0 0 39 9.47 39 9.67
yl 128/94 25/17 2 0 2 5 9.80 5 0.82
(5326) 2 2 0 12 9.63 12 9.68
2 2 2 47 9.45 47 9.60
10 0 0 19 0.96 19 1.01
y2 207/108 48/15 10 0 2 56 0.92 56 1.12
(1415) 10 2 0 38 0.61 38 0.63
10 2 2 64 0.75 64 0.75
5 0 0 58 9.22 58 9.38
6 0 0 70 9.01 70 9.08
y3 512/130 227/225 2 0 2 18 6.54 18 6.76
(2819) 2 2 0 2 8.06 2 8.02
2 2 2 30 5.77 23 6.13
5 0 0 0 35.64 0 35.63
6 0 0 25 33.50 25 33.52
y4 256/129 88/87 2 0 2 2 35.09 2 35.05
(11839) 2 2 0 0 34.42 0 34.39
2 2 2 6 34.56 6 34.50
10 0 0 14 0.41 14 0.43
yS 147/141 14/7 10 0 5 45 0.27 42 0.29
(1147) 10 5 0 31 0.34 31 0.33
10 5 5 45 0.38 45 0.38
Ratio 1.00 1.00 0.98 1.02

Table 6. Performance comparison between with and without Method #3.
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52EC

To produce EC testcases, we pick some circuits from EPFL benchmark [30] and
then resynthesize them by ABC command dc2. After that, we use EC solver to check
whether the original circuit and the resynthesized circuit are functionally equivalent. If
two input circuits are equivalent, the solver returns UNSAT. Otherwise, it returns SAT,
which means there exists at least one input pattern that can make their output values
different. All of our testcases result in UNSAT since the function remains unchanged
after resynthesizing. Run time is our major criterion. We compare the performance
between FRAIG, which is a forward-based EC method, and our backward-cut-based EC
approach. Moreover, we combine FRAIG and backward-cut-based EC to see whether it
leads to a better result. Note that the effort limit of FRAIG can be adjusted. The more the
efforts we spend on FRAIG, the more the logic gates we merge. Merging more logic gates
normally means we can spend less time solving miter. However, it also leads to more run
time of the process of FRAIG. Thus, how to strike a balance between them is a key to
overall run time. With FRAIG alone, we make full effort and merge logic gate as more
as possible. With the combination, we put less effort on FRAIG and let our backward-
cut-based EC approach cover the remain parts. The results are shown in Table 4. In some
testcases, our engine leads to better run time. However, FRAIG technique is also

dominant on a few testcases. The main problem of our backward-cut-based EC approach
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dissimilar. Therefore, the process is stuck and increases the run time.

is that we can’t guarantee a valid cut found when the structure of two circuits are highly

FRAIG | Backward-Cut FRAIG &
Backward-Cut

circuit pi/po gate | level time(s) time(s) time(s)
Adder 256/129 | 1020 | 255 0.90 0.31 0.87
Barrel shifter 135128 | 3336 | 12 1.27 3.27 1.13
Max 512/130 | 2865 | 287 0.72 2.64 2.61
Priority encoder 128/8 978 | 250 0.12 0.10 0.12
RR arbiter 256/129 | 11839 | 87 2755 3.37 23.96
Alu control unit 7/26 693 | 16 0.02 0.02 0.02
Coding-cavlc 10111 693 | 16 0.07 0.06 0.07
i2¢ controller 147/142 | 1342 | 20 0.19 0.27 0.21
Int to float 11/7 260 | 16 0.02 0.02 0.02
XY router 60/30 257 | 54 0.03 0.06 0.05

Voter 1001/1 | 13758 | 70 10.34 654.51 101.33

Table 7. Performance comparison between forward and backward approach.
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Chapter 6 Case Study

In this chapter, we detail the ECO process of our backward-cut-based ECO engine.
According to Table 1, circuit y3 has the highest level among all benchmarks, which
exceeds 200. As a result, the initial patch size is very large and it requires multiple cut-
matching iterations to generate the final patch. Thus, we pick one of the five ECO
testcases modified from circuit y3 to be the representative and demonstrate how we
reduce the patch during each iteration.

The change of patch size after each iteration is shown in Fig. 29. The blue line and
red line are corresponding to the total patch size and the average level of patched nodes.
Note that a rectification pair is composed of a node in original circuit and a node in golden
circuit. The former is called the patched node due to the fact that we replace it with the
patch, which is the fanin cone of the latter. Initially, we directly pair every non-equivalent
PO of the golden and the original circuit to form the trivial patch. Therefore, the resulting
patch size of iteration #0 is extremely large. For each iteration, we discover new
rectification pairs from the original rectification pairs by cut-matching and then remove
the redundant parts of rectification pairs by pair-refinement technique. After first cut-
matching iteration, the patch size is reduced from more than 1000 to less than 100, as Fig.

30 presents.
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Fig. 31 illustrates the change of patch distribution from iteration #1 to #5. There are
eight bubble charts totally. For each chart, y-coordinate represents the level of each
patched node while x-coordinate represents nothing since the logic gates don’t have actual
location. In addition, the size of bubble represents the size of this patch. We can observe
that the level of patched node is gradually decreased after each iteration and so is the total
size of bubbles. Iteration #1, #2, #3 and #4 are done by the cut-matching technique
introduced in chapter 3.3.1 and the operation normally terminates when there is no new
rectification pair found. For the iteration #5, we apply advanced (further) cut-matching
approach, which is described in chapter 3.3.3 and aimed at further reducing the patch size.
One patch would be split into two or more smaller parts during further cut-matching since
we try to expand a pair of cuts which are not functionally equivalent to each other. The
first part is the logic of non-equivalent cut function and the other parts are the
corresponding gates on this cut pair. These corresponding gates can be treated as
rectification pairs and we may find more rectification pairs from them by cut-matching.

Consequently, the patch size is further reduced.

50

d0i:10.6342/NTU201902346



y3(2, 2, 2)

& patchsize @ avglevel

300
*
1000
Q
\
\ .
\ 200
\
100 \ .
\ LI
‘g N T, ... E
@ N e
5 ) MARLTTER °
] \ I LT PP @
[= \ --..‘
- - -
- - 100
10 - ~
~
~
~
~
~
[ I - = - = - - -
1 0
0 1 2 3 4 5
# of Iteration
Fig. 29. The change of patch size after each iteration.
y3(2,22)
Iteration #1
& patchsize @ avglevel
300
@
1000 .
‘ ~
‘--._.h..‘ -.._'.’. 200
g 100 ~< ol o .
@ o _ ?
= -~ -
2 ~ - =2
g S~eal ®
i
10 100
1 0
Initial After cut-matching After pair-refinement
Operation

Fig. 30. The change of patch size in iteration #1.

51

d0i:10.6342/NTU201902346



level

level

140

120

100

80

60

40

20

140

120

100

80

60

40

20

lteration #1

Iteration #3

00 ”

Iteration #2

Iteration #4

Iteration #5 (Further Cut-Matching )

Further Cut-Matching #1

@ ° 0 :

Further Cut-Matching #3

Fig. 31.

52

Further Cut-Matching #2

Further Cut-Matching #4

The change of patch distribution after each iteration.

d0i:10.6342/NTU201902346



Chapter 7 Conclusion and Future Work

In this thesis, we optimize the algorithms in prior backward-cut-based functional
ECO work [7] [8] and propose a dual-phase ECO method. In the merging phase, the
Strash and FRAIG technique identifies the input-side frontier of the patch. In the
matching phase, a cut-matching algorithm based on simulation is applied to identify the
output-side frontier of the patch. For each matching iteration, we remove the redundant
parts of output-side frontier by a pair-refinement algorithm. This move not only reduce
the patch cost but also save us run time. The experimental results show that our ECO
engine can rectify multi-errors ECO problems with small patch sizes within reasonable
run time. In addition, we apply the backward-cut approach to equivalence checking and
compare the performance with other forward-based method, such as FRAIG. The
experimental results demonstrate that our backward-cut-based EC method works for
some testcases.

For the future work on ECO problems, we plan to design a QBF solving algorithm
for pair-refinement so that we can refine the rectification pairs more precisely and get a
smaller patch. For EC, we need a more effective cut-matching algorithm, which can

generate the matched cuts with high probability even when dealing with complex circuits.
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