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ABSTRACT

Within typical localization processes in wireless sensor networks (WSNSs), beacon
nodes which know their locations will broadcast information for localizing an unknown
location. Although beacon nodes are massively deployed in the terrain, only a fraction
of the beacon nodes are required to be active for satisfying accuracy requirement. Too
many active beacon nodes may bring the system with little improvement on localization
accuracy but waste of both costs of energy and bandwidth. To reduce the costs and
prolong the system lifetime, we propose the Adaptive Beacon Duty Scheduling (ABDS)
algorithm that can self-configure beacon duty. ABDS can turn on only the minimum set
of beacon nodes in a same time according to the online-measured effectiveness of
beacon locations (the effect of activating a beacon node at the location for improving
localization performance), which is not considered in previous methods. Moreover, to
precisely measure the effectiveness of beacon locations in ABDS, we need to realize the
fact that a beacon node actually contributes non-uniformly distributed impact within its
coverage. This Distribution-Adapted Grid (DAG) measurement that can adapt the
non-uniformly distributed impact was not discussed in previous methods. Compared to
the previous methods, ABDS with the usage of DAG measurement can reduce 10%

beacon usage and provide 54% longer lifetime.

Keywords: Wireless sensor networks, localization, beacon location, duty scheduling,

sleep scheduling.
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Chapter 1  Introduction

1.1 Motivation

In wireless sensor networks (WSNs), both network operations and most application
level tasks require the help of localization algorithms to acquire knowledge of the
physical locations of devices [1], [2], [3], such as event detection [4], routing [5] and
coverage [6]. These localization algorithms usually make use of beacon (anchor) nodes,
whose locations are known prior to perform the localization algorithm, for the purpose
of estimating unknown locations of other sensor nodes [7], [8], [9]. Locations are then
computed by proximity-based approaches, range-based approaches, or angle-based
approaches [3] according to the information gathered from beacon nodes. The accuracy
of location estimations may increase as a function of the number of covered beacon
nodes. However, deploying too many beacon nodes brings costs of bandwidth and
excessive power consumption with limited improvement on localization accuracy, and
thus leads to shortened system lifetime. Therefore, a scheduling scheme which
considers effectiveness of beacon locations (the effect of activating a beacon node at the
location for improving localization performance) to schedule their duty cycle is useful
for the purpose of increasing system lifetime while maintaining required localization
accuracy. Most of existing scheduling algorithms are designed for maintaining sensing
coverage or connectivity [10], [11], [12], [13]. Only a few papers are proposed to
schedule beacon duty cycle, such as [14], [15], [16], [17]. However, most of them did
not consider the impact of beacon node deployment, which has been identified as a
significant factor that has strong influence on localization accuracy [18]. Moreover, they

are designed to control the density of active beacon nodes. It is not friendly for users (in
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this thesis, “users” are the people that apply a localization algorithm and a beacon duty
scheduling algorithm to construct their localization system) to set a desired control point
of localization accuracy. In [15], the authors propose a scheduling algorithm that
considers theoretical location error estimation of beacon nodes, which is not able to
adapt noisy environment in real world. In addition, it is specifically designed for
distance-based localization and cannot be applied to other kinds of localization

algorithm.

1.2 Contributions

As demonstrated in [18], a good beacon deployment can meet the localization
performance requirement with fewer active beacon nodes. The costs of power and
bandwidth can be reduced and the system lifetime can be prolonged if only fewer
beacon nodes are active to strobe at the same time. In real world, noise is inevitable and
unpredictable in the localization systems. Therefore, a scheduling method that can
dynamically adapt the noisy environment is necessary for both the purposes of selecting
minimum active set of beacon nodes to reserve energy and controlling localization
accuracy to user defined control point.

In this thesis, we propose Adaptive Beacon Duty Scheduling (ABDS) algorithm
which can prolong system lifetime while maintaining required localization accuracy.
The fundamental limitation of previous approaches is that they basically miss the actual
impact of beacon location in real world. They do not take into account effectiveness of
beacon location on reducing localization error that cannot be predicted a priori. For
achieving efficient scheduling, only the minimum set of beacon nodes with best effect

on localization are expected to be activated in the same time for reducing power



consumption and packet traffic. Therefore, an improved measurement to the
effectiveness of beacon locations that can more precisely dig out beacon nodes with
better effect on localization is also developed in this thesis. Empirical manners that can
adapt to terrain conditions are favored in real world because it is hard to build a model
to fit a certain environment. To our knowledge, little literatures have been published into
this area, such as [18], [19]. In [18], Max and Grid take localization error and regional
cumulative localization error as the measurements to the effectiveness of beacon
locations respectively. In [19], Greedy addresses the beacon placement as a set cover
problem, and takes coverage degree as the measurement to the effectiveness of beacon
locations. We observed that after activating an additional beacon node, the impact on
localization performance does not uniformly distribute in its coverage. The region closer
to the beacon has better chance to reduce localization error. This phenomenon was not
discussed in previous studies and should be overcome to get a more precise
measurement to the effectiveness of beacon locations. Consequently, we improve the
measurement in Grid and propose the Distribution-Adapted Grid (DAG) measurement
for designing minimum active beacon nodes deployment in beacon duty scheduling.
The scheduling algorithm meets following design goals.

e  Maximize system lifetime

e Distributed

e  Adaptive to noisy environment in real world

e Can be applied to any types of localization algorithm

e  User defined localization accuracy requirement



1.3  Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 discusses related
researches about beacon duty scheduling, measuring effectiveness of beacon locations,
and localization algorithm. The DAG measurement is developed in Chapter 3. In
Chapter 4, the ABDS algorithm is developed. Chapter 5 shows the performance

evaluation of proposed methods. Finally, the conclusions are made in Chapter 6.



Chapter 2 Related Works

In this section, related works are presented in three parts. Section 2.1 introduces
existing algorithms for scheduling duty cycle of beacon nodes. Two referred works on
the measurement to the effectiveness of beacon locations are introduced in Section 2.2.
To explain the phenomenon of non-uniformly distributed impact produced by beacons

on localization, two localization algorithms are introduced in Section 2.3.

2.1 Beacon Duty Scheduling Algorithms

In [16], STROBE algorithm is proposed to schedule beacon duty by tuning the
operation beacon density. STROBE adopts a scheduled rendezvous scheme that
activates all beacon nodes up at the same time. Beacon nodes then exchange the
information of activation distribution with their neighbors. If the local density of active
beacon nodes is under a user defined threshold, the beacon node remains active for
transmitting beacon signal to maintain the active density requirement. If the density
exceeds the threshold, the beacon node takes a probability of excess density (e.g., the
threshold is 7 and the density for now is 9, then the probability is (9-7)/7) to sleep for
the purpose of reducing density to the threshold. The state transition of STROBE is

shown in Fig. 2.1.



Designated

La<p,—F1
La = locally active beacons La2p,—F2
p, = threshold of active beacons P(T1) = (p,/La)

P(T2) =1-P(T1)
Fig. 2.1. The state transition of STROBE.

In [17], in order to spread energy consumption over beacon nodes for loading
balance, the authors proposed E-STROBE, which extends STROBE to consider the
ratio of remaining energy as a factor in making decision to active or sleep. E-STROBE
takes a probability of the ratio of remaining energy before entering into the active state.

Fig. 2.2 illustrates the state transition of E-STROBE.



T2

La = locally active beacons La<p,—F1

p, = threshold of active beacons Lazp,—F2

E_ - Energy left P(T1) = (p,/La)

E,— Initial Energy P(T2) = 1-P(T1)
P(T3) =E/E,
P(T4) =1-P(T3)

Fig. 2.2. The state transition of E-STROBE.

In [14], the authors proposed a beacon duty scheduling algorithm inspired by Span
[10]. The algorithm fuses the parameters of active density and remaining energy into a
delay time. After a beaconing or sleeping period, each beacon node transits the state to
calculate the delay time. When the delay timer expires, the beacon node checks the
active density in its neighborhood. If the density does not satisfy a user defined
threshold, the beacon node is activated to transmit beacon signal, otherwise it is turned
off to sleep for reserving energy.

In [15], the authors of [14] improve their scheduling algorithm by considering the
theoretical location error estimation [20] rather than the density of beacon nodes as the
design parameter. The location error estimation, which is specifically designed for
range-based localization algorithms, makes use of the CRLB that places a lower bound
on the variance of unbiased estimators [21] and was derived for position estimation in

[22]. If the estimated location error is above a user defined threshold, the beacon node is



activated to transmit beacon signal, otherwise it is turned off to sleep.

2.2 Related Works on the Measurement of the Effectiveness

to Beacon Locations

In the Max algorithm [18], localization error (distance between estimated location
and actual location) is taken to be the measurement to evaluate the effectiveness of a
beacon location. The idea is that a location with larger localization error has larger room
to improve localization performance and thus larger benefit gained by placing a beacon
node on this location. By this measurement, beacons are placed in an incremental
manner. Every time the effectiveness for localization performance at each point on the
terrain is measured, and then an additional beacon is placed on the point with highest

localization error. The steps to incrementally place beacons are described as following.

1. The environment terrain is divided into Stepx Step squares.

2. Measure the effectiveness for reducing localization error at each point in the terrain
that corresponds to a square corner.

3. Add an additional beacon at the point that has the highest measurement value among

all points.

Fig. 2.3 illustrates the Max algorithm.
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Fig. 2.3. lllustration of the Max algorithm.

There is an assumption that locations with high localization error are spatially
correlated in Max. However, a point may get very high localization error while the
localization error at other points close to it remains low, and that adding an additional
beacon affects the localization error on its nearby region not just the point where it is
placed. Based on these observations, the authors proposed the Grid algorithm [18]. In
Grid, a 2-dimensional rectangular sliding window called “grid” with side length
gridSide=2R (R is the ideal radius of communication range) is set up and the
localization errors that lie in the grid are summed up to be the measurement at the center
of this grid. The Grid measurement is taken to incrementally place beacons (by the steps
described in Max beacon placement algorithm) in the Grid algorithm, as illustrated in

Fig. 2.4
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Fig. 2.4. lllustration of the Grid algorithm.

It is a proper concept in Grid to cumulate regional localization error as the
measurement to decide beacon locations. However, the Grid measurement overestimates
the ability of a beacon to improve the localization performance on its nearby region in
such a way that beacon node resources are misspent. The observation of this
phenomenon and the proposed measurement to more precisely estimate regional

localization impact are described in Chapter 3.

2.3  Localization Algorithms

Connectivity based localization. Connectivity based localization [8] adopts beacon
nodes to periodically transmit beacon signal with a time period T. Nodes with unknown
location (blind node) listen for a period t >> T to evaluate connectivity. A beacon node
is considered as connected on the understanding that the packet-receive-ratio from the

beacon node in the period t exceeds a threshold. After appraising the connectivity of
10



beacon nodes, the blind node estimates its location (Xest, Yest) @s the centroid of the

locations of all connected beacon nodes with the centroid formula shown in Eq. (2.1).

(2.1)

X+ + Xy Y, +...+Y
(Xest!Yest"):( : N N : N Nj

Pattern matching localization. Based on taking received signal strength indices
(RSSIs) from beacons as the feature vector of a location, pattern matching localization
estimates an unknown location with similar features [7]. This localization algorithm
consists of two phases, namely training phase and locating phase. In the training phase,
RSSIs on training locations are recorded with the location coordinates, and the collected
data are used to build a localization model. In the locating phase, a blind node collects
the RSSIs from beacons to be the feature vector of its location, and then inputs the

feature vector into the localization model to estimate the unknown location.

11



Chapter 3  Distribution-Adapted Grid Measurement

In order to select out a minimum set of active beacon nodes with best effect on
localization to satisfy the requirement of localization accuracy, a precise measurement
to the effectiveness of beacon locations is necessary for efficient beacon duty
scheduling. Researchers have proposed methods for the measurement in beacon
placement algorithms [17], [18]. However, the Grid measurement has a defect and
solutions have not been proposed, hence for better predicting the effectiveness of
beacon locations, an improved measurement (i.e., Distribution-Adapted Grid or DAG)

is proposed in this chapter.

3.1 The Problem of Predicting the Effectiveness of a Beacon

Location

This thesis addresses the problem of predicting the effectiveness of a beacon

location as follows. A deployment B that consists of n active beacon nodes
{b;,...b} with Cartesian coordinates {z, =(x,y;)eR?,..,z;} that know their

locations a priori and have an ideal communication radius R exists in a

two-dimensional squared terrain T =[0,side]x[0,side] = R* divided into stepxstep
squares as Fig. 2.3. We denote an active beacon node b. located at z! by b!(z!)
and the location z! of an active beacon node b} by z.(b!). The localization error ¢

at a location z:(x, y)eT is the Euclidean distance between z and the estimated

location Ez(x,y)eT at it, i.e. g(z,B;‘)zdz'z:Hz—iuz\f(x—x)er(y—y)z. The

12



mean localization error &,... on T with a certain active beacon deployment B, is

mean

side/step side/step

> &((xy)Bl)

mean (B; ) = = y:(') * (3 1)
(ng +1)?

&

A measurement to the effectiveness of beacon locations /(z,B]) takes the active

beacon deployment and measurable information of the location (e.g., measured RSSIs,
measured distances, packet receiving ratios, etc.) as inputs to predict a location’s

effectiveness for activating a beacon node to reduce the mean localization error on the

terrain. That is, for a perfect measurement w(z,B.), given an existing beacon

a’a

deployment B! and B§+1={B” b”+1(22+1)},

(2,,2,B) o Aé,

mean !

(3.2)

Where Agmean i gmean (B;) N7 gmean (B;Hl) ' (33)

The precision of a w(z,B]) can be evaluated by the reduction of mean localization

error produced via activating a beacon node at the location z, with maximum

w(z;,B]), ie.,

Agmean (B;, Bar\Hl) = gmean (Bg) - Smean ({ B‘: ! b‘:Jrl {(arg max} l//(zi’ Bﬁr‘] ))}) | (34)
z;eT-z(B})

3.2 Developing Distribution-Adapted Grid Measurement

According to the definition proposed in Section 3.1, the measurements used in

Max and Grid can be written down as Eq. (3.5) and Eg. (3.6).

Vi (2.B]) = £(2,B]) . (3.5)

13



R R
ZX+——  Z.y+——

step y step
Ve @B = 3 X e((x¥).B]) (3.6)
x:z.x—% y:z.y—%

Although the Grid measurement ., can be used to design appropriate beacon

locations when beacon density is low, it starts to mismeasure the effectiveness of beacon
locations when the beacon density rises and the ability of a beacon to improve the
localization performance on its nearby region decays. To consider regional localization
error is reasonable. However, we observed that the improvement on localization
performance in the coverage of a beacon node does not distribute uniformly. The
location where an additional beacon is activated holds best effect of improving
localization accuracy. This was observed from both connectivity based localization and

pattern matching localization.

For the case of positive effect For the case of negative effect
Before adding After adding Before adding After adding
a beacon a beacon a beacon a beacon

g
g

[ ] Beacon Node

-

- Newly Added Beacon Node
+ Unknown Location
o

Estimated Location

Fig. 3.1. Illustration of the positive effect and negative effect of adding a beacon node in

connectivity based localization.
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For the case of connectivity based localization, the estimated location of a blind
node with unknown location is the centroid of connected beacons. Due to the fact that
activating an additional beacon that covers it will pull the estimated location to be closer
to the new beacon, both positive effect and negative effect on the nearby region of a
new beacon are possible to occur, as illustrated in Fig. 3.1. Therefore, only the locations
of added beacons always gains improvement on localization performance.

For the case of pattern matching localization, the information of locations hides in
RSSI features, hence the pattern matching localization performs better with more
dissimilar RSSI features. According to the path loss model without the noise term,
signal strength decreases with the increase of distance in a logarithmic fashion [23], as

described in Eq. (3.7).

P(d) | _ d
{WL} = 10ﬂ|09(d0)' (3.7)

where P(d) is the mean received power at distance d, P(do) is the received power at the
close-in reference distance do and g is the environment-dependent parameter. The closer
the distance between transmitter and receiver is, the greater the change of RSSI is. Fig.

3.2 illustrates this phenomenon.

' )

250

200
150

RSSI

\

|\

50 \\
shorter distance with greater \\__1 longer distance with smaller
change amount on RSSI , T Em change amount on RSSI

0 5 10 15
N~————— Distance (m) ——
-/ —_

Fig. 3.2. lllustration of the impact of RSSI variation.
15



Even if noise exists in the path loss model in real world, a location closer to the beacon
has better chance to get a more distinguishable feature and thus better performance of
pattern matching localization.

To confirm our observations, Fig. 3.3 shows the distribution of averaged
improvements on localization error in the coverage of beacons over iterations in an
incremental beacon placement. The point where a beacon is placed holds best effect to
improve localization performance as our inference. The ability of a beacon to improve
the localization performance on its neighboring region decreases with the increase of the

distance from the beacon.

400 —ne 5

averaged improvement on localization error

y coordinate in the coverage of beacons 0 0 ¥ coordinate in the coverage of beacaons

Fig. 3.3. The distribution of averaged improvements on localization error in the

coverage of beacons.

To adapt this centralized-distributed improvement on localization and precisely
measure the effectiveness of beacon locations, we suggest that the region closer to a

beacon should take a heavier weight in computing the regional localization error over
16



the beacon coverage. As a result, the Distribution-Adapted Grid (DAG) measurement
that can more properly measure the effectiveness of a beacon location is proposed in
this thesis. Two famous centralized distributions, namely Cauchy and Gaussian, are
considered to weight the regional error. Fig. 3.4 shows the lateral view of the
improvement distribution shown in Fig. 3.3 and the weight distributions generated by

Cauchy and Gaussian.

100 . . . averaged improvement distribution
— — —weight distribution by Cauchy
90 - 1' — — -weight distribution by Gaussian
=)
T A0k f 1 i
g |
g 0p h 1
= )
2 A0} | E |
=
T a0t I \ .
£
i)
z 40 l’ | .
= |
= gt / -
o ) '.I.
& . Y
Z oot beacon location I 1 §
= -
1]
B
o # Ir . e 1
0 —"_Hgl_ -’l . A :L_H_'__“—*
a ] 10 15 20 25 30

¥ coordinate in the coverage of beacons

Fig. 3.4. The averaged improvement distribution and weight distributions.

The Cauchy distribution is more approximative to the improvement distribution, and
thus adopted to generate a centralized weight distribution to adjust the cumulation
process in regional localization error to fit the improvement distribution in beacon

coverage. The three-parameter Cauchy distribution is defined by

. _ a
f(x,xo,y,l)_ILX_XO)ZJF}/Z] (3.8)

where p is the scale parameter which specifies the half-width at half-maximum, I is the

height of the peak, and xo is the location of the peak of this distribution. Because the

17



purpose of this distribution function here is to generate weight distributions, I is taken
with 1, and (x-xo) can be replaced by the distance D between beacon location and the
location which contributes its localization error to cumulate regional error. Accordingly,

the Cauchy-form weight distribution function here is defined by

2

Fig. 3.5 demonstrates a weight distribution generated by Eq. (3.9) with y=1.

waight

30

y coordinate in cwy (m) \'\_c 10 coardinate in oy ()

Fig. 3.5. The plot of Cauchy-form weight distribution with y = 1.

To compute the DAG measurement, the weight distribution is applied to weighting
the regional localization error. A 2-dimensional rectangular sliding window called
“centralized-weighting grid (cwg)” with side length gridSide=2R is set up and the
localization errors that lie in the cwg are summed up with multiplying the corresponding
weights obtained by substituting the distance from the center of cwg into Eq. (3.9). This

weighted regional localization error is taken to be the DAG measurement, as defined by
18
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step e

Voo @B)= 2 3 w(lxy)=zfi7)-#((xy).B)). (3.10)

In this chapter, we observe that a beacon node contributes a centralized-distributed
localization improvement in its coverage. Its location holds the best effect to reduce
localization error, while the amount reduced on neighboring region decreases with the
increase of the distance from the beacon node. It can result bias in measuring the
effectiveness of a beacon location if one does not consider the regional error or consider
the regional error as uniformly distributed. According to the impact distribution shown
in Fig. 3.3, we select the Cauchy distribution, which can fit the distribution best, to
design the DAG measurement. DAG can consider the real impact distribution in a
proper manner and thus measure the effectiveness of a beacon location more precisely.

Previous measurements were implemented in the manner of incremental beacon
placement (i.e., given an initial beacon deployment, then iteratively place a beacon node
at the location with greatest measured effectiveness). Therefore, to evaluate and
compare the performance of our DAG with previous methods, it will be applied to
design beacon deployments by incrementally placing beacon nodes in Chapter 5.
According to Eq. (3.2), a measurement is more precise if the mean localization error
reduced by activating an additional beacon node with biggest value is greater.

Accordingly, the localization accuracy can be achieved with fewer active beacon nodes.
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Chapter 4  Adaptive Beacon Duty Scheduling

Most of previous scheduling algorithms that consider beacon duty cycle take active

beacon density as the design parameter to adjust beaconing duty and be provided for

users to set desired control points, such as [14], [16], [17]. Nevertheless, two drawbacks

majorly exist in such manners.

They do not consider the impact of beacon location, which has been identified
as a significant factor for localization accuracy [18]. The algorithms make
beacon nodes detect active neighbors and compute local density (density in
their radio coverage) when the beaconing (sleeping) timers expire, and then
select beacon nodes to be turned on or turned off to satisfy the density
requirement according to random factors rather than the impact of beacon
nodes. Therefore, some beacon nodes located at the locations without any
benefit on reducing localization error (e.g., the location near to an active
beacon node) may be turned on to transmit beacon signal, and thus the costs
of energy and bandwidth are wasted.

Density is not an intuitional parameter for setting a desired control point.
Expressly, one wants to set the requirement of localization accuracy when he
is building a localization system with a beacon duty scheduling algorithm.
The relation between density and accuracy depends on the localization
algorithm used, environmental factors, and power settings of beacon nodes. It
is inconvenient to readjust the density requirement for desired accuracy

whenever these conditions change.
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In [15], a location error estimation method is introduced to evaluate the localization
error against probability at a beacon location [20], [21], [22]. However, the scheduling
algorithm attempts to assign more beacon duty to the beacon nodes placed at a location
with lower estimated error. In the formula of delay time [15],

delay, =Hd‘m;(P)}+{1—%}+ R}T, (4.1)

t

a smaller ratio term of location error estimation will result in a shorter delay time, and
thus make the beacon node earlier to wake up to preempt a beacon duty. As a result,
beacon nodes located at the locations with less effectiveness on reducing localization
error are easier to be turned on, hence the costs of energy and bandwidth rise. Although
the estimation formula considers two environment-dependent parameters, they are fixed
that do not adapt to the wvariations in environments. Furthermore, the
environment-dependent impact of beacon locations is not considered The Gaussian
noise variable introduced in the estimation is used to describe the spatially distributed
noise [23], whereas the formula considers it in a time-dependent manner. Moreover, the
location error estimation is derived for distance-based localization algorithms, hence
cannot be applied to localization algorithms in other types.

To effectively reduce cost of beaconing and maximize system lifetime, the impact
of beacon locations must be adaptively considered in scheduling beacon duty cycle. In
this chapter, we use the DAG measurement developed in Chapter 3 to design an

adaptive beacon duty scheduling algorithm.

4.1  Problem of Beacon Duty Scheduling

Beginning from following the notations defined in Section 3.1, we introduce other

notations to address the problem of beacon duty scheduling. For a given wireless
21



network N consists of beacon nodes b' in Bc N that know their locations

{zl...zq} and blind nodes in U = N with unknown locations, select a set of active

beacon nodes B; < B to transmit beacon signal in a period T, while the amount of

mean localization error ¢ ... (B) remains below a distance threshold D . Other

mean

beacon nodes B]' — B in the sleeping state turn off their radio transceiver to reserve

energy. Neighbors  of a  beacon node b' is  denoted by

N(b') = {bi €B|R.(dy ) > Pth,eshold} , which are the beacon nodes that receive the signal

from b' with RSSI greater then received power threshold P, -

4.2 Developing Adaptive Beacon Duty Scheduling

In this section, we propose Adaptive Beacon Duty Scheduling (ABDS) algorithm,

which attempts to achieve following design goals.

e  Maximize system lifetime: A beacon duty scheduling algorithm must be able to
find out redundant beacon nodes that have less effectiveness on reducing
localization error and make them sleep to reduce power consumption.

e Distributed: The scheduling algorithm should be distributed that needs only
local information obtained by 1-hop broadcast from neighbors for two reasons:
WSNs are usually constructed in an ad-hoc manner, hence it should be able to
adapt churn (nodes joining or leaving) without coordination provided by a
central server; information delivery by multi-hop flooding can exponentially
increase energy consumption that is unfavorable for battery-supported WSNS.

e Adaptive to noisy environment in real world: Noise in measured signal for

localization systems is inevitable and unpredictable before applying the
22



system into the working environment (e.g., measure the RSSIs at various
distances to evaluate noise strength) in real world. In addition, the
environmental conditions may change and disturbances may occur when the
system is working. Therefore, an on-line adaptive manner is attractive in this
scenario.

e  User defined localization accuracy requirement: The mean localization error
in a terrain should be maintained to satisfy a required threshold. The
intuitional parameter for setting requirement for a localization system is
localization error. Accordingly, a beacon duty scheduling algorithm must be
able to control localization error.

ABDS mainly consists of decision stage and execution stage. In the decision stage,

information about local mean error, remaining energy, and effectiveness on reducing

localization error are computed and exchanged between neighboring beacon nodes in

B . After making the decision, beacon nodes join the active beacon set B, to take the

duty to transmit beacon signal or join the sleeping beacon set B;" to reserve energy in
the execution stage. When the timer of execution period expires, a decision is remade
for rotating the beacon duty. To apply DAG measurement ., (z,B;), localization

errors at neighboring beacon nodes are required, and therefore the decision stage is
composed of three phases. First, activity information about one-hop neighbors is
collected. The localization error at beacon nodes’ location can thus be computed and
exchanged between neighboring beacon nodes in the second phase. With the knowledge
of localization errors on one-hop neighbors, beacon nodes can then locally compute
DAG measurement to evaluate their effectiveness on reducing localization error. The

value of DAG measurement is fused with the ratio of remaining energy and exchanged
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in the third phase. Finally, the decision can be made according to the comparison of

active priority with neighbors. The state transition of ABDS can be illustrated by Fig.

4.1.

e

Execution stage

e

Decision stage

~

I T——
Beacon Only
phase

7

o

Beacon Signal
phase
(DBS)

\__(BO)
Y

Localization Error Active Priority
phase phase
(DLE) (DAP)

[\

.

Sleep phase
(sL)
—

7 .

Fig. 4.1. The state transition of ABDS.

Follows describe the detail of each phase in ABDS.

Decision stage-Beacon Signal (DBS) phase: All beacon nodes b' B start

with state' =active and set a timer T, . Active beacon nodes b) e B’
broadcast advertisements in a beaconing interval T, to announce their

activity. All b' turn on the radio transceiver to listen for advertisements from

their neighboring active beacon nodes and construct active neighbor list

N, (b") ={b;’ B’

R(d,.)> P[hreshold}' When the timer T, expires, all b’

enter into next phase.
Decision stage-Localization Error (DLE) phase: All beacon nodes b' set a

timer T,.. All b' estimate their location according to the information of
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active neighbor list N_(b') and compute localization error of &(z',N, (b)),
and then broadcast the value of £(z',N_(b')) to neighboring beacon nodes in

N(b") in the beaconing interval Tp and listen  for
{g(zj, Na(b"))‘bj € N(b‘)}. When the timer T, . expires, all b’ enter into

next phase.
Decision stage-Active Priority (DAP) phase: All beacon nodes b' set a timer

T, - According to the localization errors distributed in N(b') , i.e.

{g(zJ,Na(bi))\bJ’eN(bi)},au b' can compute

Vors @)= 2 W(dyi7) (@ N, (O)) = Eurras ). (42)

bieN(b')
where  &,.qoq 1S the user defined mean error threshold. A fused active

priority AP can then be computed by
i i Ei

AP =y, (2 ).{ef -[Eri}r(l—ef )} (4.3)

where E! is the remaining energy of b', E/ is the initial energy of b' at

time 0, and ef in the range [O, 1] is an energy factor that decide what

level should the term of energy ratio % be considered. For a b' with

AP' >0, it has higher priority to take a beacon duty with higher AP' for the
reason of activating beacon nodes as few as possible. Otherwise for AP' <0,
it has higher priority to sleep with higher AP' (less effect on reducing
localization error) for inactivating beacon nodes as many as possible.

Therefore, the energy ratio term is considered in this way to make a beacon
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node with less energy get a chance to sleep more easily. All b' broadcast

their AP' in T, and listen for {AP’[jeN(i)}. When the timer Ty,

expires, all b' check their local mean error for making decision by

Y, @ N,(b))

B bje{N(bi) bi}

mean ~ ; ; (44)
{N(®') b'}

If the state of b' is active and the local mean error &' is smaller than

mean

Ererog» D' May be a redundant active beacon node, hence it then compare

its AP' with other neighbors that have same conditions ( state’ = active and
&) < Ewneson) AN SEL its state to be asleep if AP' is the greatest one.

Otherwise, if the state of b' is asleep and the local mean error & is

mean

greater than &,,...qq» 0 IS @ candidate to be active to reduce localization

error, hence it then compare its AP' with other neighbors that have same

conditions (state’ =asleep and ¢! >, ..4) and set its state to be active

mean

if AP' is the greatest one. This can be expressed by

state' = asleep <> ( state' = active) A (& < Epresnois )
/\(Vbj & N(b")|((state’ = active) A (&lean < Gpvapas)): AP > APj) (4.5)
and
state' = active <> (state' = asleep ) A &> Eiecnond )
/\(Vbj € N(b‘)‘((statej =asleep) A (g . > 8thresho|d)): AP' > AP’ ) (4.6)

After making the decision, b’ enters into execution stage to transmit beacon

signal or sleep according to the decision. If state' =active, b' joins B!
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and broadcasts beacon signal in next stage. Otherwise, if state' =asleep, b'
joins B" and sleep for reserving energy.

Execution stage-Beacon Only (BO) phase: All bl e B! set a timer T,, at
the start time in BO. All b} periodically transmit beacon signal at intervals
T, and sleep for the remainder of the intervals. When the timer T,, expires,
all b} transition back to the DBS phase.

Execution stage-Sleep (SL) phase: All bl e B set a timer T, at the start

time in SL and then go to sleep. When the timer T, expires, all b

transition back to the DBS phase.
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Chapter 5 Evaluations

Simulations and evaluations of proposed DAG measurement and ABDS algorithm
are carried out in MATLAB 7.11.0 with a wireless sensor network simulated by the
typical shadowing propagation model [23]. To confirm our observations in Section 3.2,
the DAG measurement is evaluated on both connectivity based localization and pattern
matching localization. To compare with previous methods, the ABDS algorithm is
evaluated on connectivity based localization for the comparison with STROBE and
E-STROBE, and on maximum-likelihood estimator (MLE) for the comparison with

Gribben’s method in [15].

5.1 Environment Model

The log-normal shadowing model is adopted to generate simulated terrains with
real-world noise condition. Based on the path loss model as defined in Eq. (3.7), the

Gaussian random variable with zero mean and standard deviation o, (shadowing

deviation) X, ~N (0,0'db) is added to make the propagation model noisy. It reflects

the variation of the mean received power at certain distance. The overall log-normal
shadowing model is represented by

{_Pf(do)} :—lO,BIog[dij+ X - (5.1)

P (d) 0

The mean received power from beacons at each point on a random generated terrain is

calculated by Eq. (5.1) and applied to perform further simulations.
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5.2 Evaluation of the DAG Measurement

To be compared with previous measurements proposed in beacon placement
algorithms, proposed DAG measurement is applied to incrementally place beacon nodes
to design beacon deployments. Not only referred works in [18], but also a recent
empirical method namely Greedy [19], which allows adaptation to terrain conditions
and takes connected beacon density as the measurement to incrementally place beacons
to design beacon deployment, was carried out in simulations and compared with

proposed DAG measurement.

5.2.1 Localization Algorithms

The incremental beacon placement process was performed on connectivity based
localization and pattern matching localization. Connectivity based localization
algorithm computes the centroid of connected beacons as the estimated location for a

blind node. If the mean received power exceeds the receiving threshold P, ..., @ blind

node is identified as connected with the beacon node. Subsequent to computing mean

received power by Eq. (5.1), connectivity is evaluated by applying following condition,

P (d) > Rivesnota - (5.2)

In the pattern matching localization algorithm, the k-nearest neighbor (KNN) algorithm,
which uses Euclidian distance to find out k nearest patterns and select the mode to be
the output, is applied to extract signal feature of locations. This localization algorithm
comprises training phase and locating phase. The half of data points (feature vector of
signal strengths and corresponding location coordinate) are uniformly chosen to be the
training data set to establish feature database amid the training phase. The training data

selection is illustrated in Fig. 5.1. In the locating phase, an unknown location is
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estimated by the KNN operation on its signal strength feature.

Co—0—C—0——0
<00
o—0—S—08——0
o OO0 OO0

C—0—CSC—8O

Fig. 5.1. Solid circles mark the training data points.

5.2.2 Simulation Parameters

The values of log-normal shadowing model parameters are chosen from the ranges
of their typical values in indoor environments [23]. P.(do) is obtained by the experiment
in an indoor environment. The parameters and corresponding values used in this
simulation are summarized in Table 5.1. They do not exactly reflect the details of a real
environment, but are representative of the range of environments in which the

algorithms may be applied.

Table 5.1. Parameters and their values used in the simulations of incremental beacon

placement.
Parameter | Side Step R gridSide Y k b dy P.(d)) Oup
-54
Value [00m Im 15m 30m 1 5 1.8 I m 5.5
dbm

5.2.3 Performance Metrics

For the simulations performed with connectivity based localization, Eq. (3.1) is
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used to evaluate and compare the performances of various measurements used to design
beacon deployment. However, according to the fact that the locations of training data
are known, for the simulations with pattern matching localization, only the data points
which are not in the training data set are chosen to examine the mean localization error.
Therefore, following equation is used to examine the mean localization error in the

pattern matching localization.

side/step side/step—xmod 2

£((x,2y+xmod2), B )
gmean (B:) = =2 y:0 (5-3)

B

5.2.4 Simulation Flow

DAG, Max, Grid, and Greedy were evaluated in the simulations carried out in
MATLAB to incrementally place beacons (by the steps described in Section 2.2)
respectively. In each of simulation rounds, initially 20 beacons are randomly placed in
the terrain. After examining the localization errors on the terrain, the location without a
beacon that has highest measurement value is chosen to place an additional beacon.
Then the mean localization error is re-examined. Fig. 6 shows the flow chart to illustrate
the flow of incremental beacon placement. There is a random factor in the initial state
(i.e., random beacon placement). To characterize the statistical significance of our
simulation results, each simulation executes for 10 times with different random initial

beacon placements.
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Is the number
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Fig. 5.2. Flow chart of incremental beacon placement.

5.2.5 Simulation Results

Fig. 5.3 shows the final placements of Max, Grid, DAG, and Greedy. According to
the centralized-distributed improvement on localization, the Grid measurement overly
expects the ability of a beacon node to reduce the localization error in neighboring
region. Therefore, many beacon nodes will be designed to place at locations with no any

benefits on localization. This overestimation flaw of Grid causes a locally dense

placement behavior that extremely squanders on beacon resource.
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Fig. 5.3. The final beacon placement of Max, Grid, Greedy, and DAG in a

2-dimentional space.

Fig. 5.4 and Fig. 5.5 show the simulation results of incrementally placing beacons on

connectivity based localization and pattern matching localization respectively. The

averages and 95% confidence intervals are plotted in the figures.
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Fig. 5.4. Performance of the measurements to incrementally place beacon nodes with

connectivity based localization.
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Fig. 5.5. Performance of the measurements to incrementally place beacon nodes with

pattern matching localization.
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As shown in Fig. 5.4, Grid provides better performances than Max at early placement
stage. That confirms the idea of considering regional localization error. However,
because of the locally dense placement behavior, Grid quickly starts to converge and
provides the saturated localization performance much worse than Max. Although
Greedy and GWG have similar trends on reducing localization error, DAG performs
about two times better than Greedy at saturated state. DAG surpasses other three
methods at early placement stage and provides the saturated performance same as Max
(around mean error of 4 meters) with less additional beacon number to save 30%
beacons. Moreover, for the device shortage scenario, it reduces 76% localization error
compared to Max when only half of the beacons at saturated state (around 150 beacons)
are placed. This phenomenon also exists in the pattern matching localization as shown
in Fig. 5.5. DAG can reduce 25% usage of beacons and reduce 61% localization error

with half of the placed beacons at saturated state.

5.3  Evaluation of the ABDS algorithm

To evaluate the performance of ABDS, STROBE, E-STROBE, and Gribben’s
method are also implemented in the simulated wireless sensor network to be compared
with ABDS. The simulated network is composed of 100 beacon nodes uniformly
deployed in a square area of size 100 m x 100 m in a grid manner. Beacon duty
scheduling algorithms are performed on each beacon node. The environmental
condition (noise distribution) is same across simulations of various beacon duty

scheduling algorithms. Simulation methodologies are described in following sections.
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5.3.1 Energy Model

In addition to the signal propagation model in Section 5.1 and corresponding
values in 5.2.2, an energy model is introduced to simulate the energy usage of beacon
duty scheduling algorithms. We use the same energy model in [16], as summarized in
Table 5.2. This energy model only characterizes the energy usage of the radio
transceiver and does not model the energy usage of local computation, because typical
computational costs are much lower than communication costs and thus negligible [15],

[16], [17], [24].

Table 5.2. Parameter settings of the energy model in the simulations of beacon

duty scheduling algorithms.

Notation Description Value

Py Transmit power of a beacon node’s 660 mW
radio transceiver

Py Receive power 395 mW

P, Idle power 35 mW

Py Sleep power 0 mW

Ty Beaconing interval 1 second

Ty Transmit time of a beacon 0.025 seconds
advertisement

D Initial energy of a beacon node 10000J

5.3.2 Localization Algorithms

STROBE, E-STROBE, and our ABDS are evaluated and compared on connectivity

based localization. To evaluate and compare Gribben’s method, however, it was
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specifically designed for range-based localization methods. The input for localizing a
blind node is the estimated distance from beacon nodes, which is derived from Eq. (5.1)

and given by

d;;=dy| === 5.4
¥ P (d,) (5.4)

Accordingly, the scheduling algorithm cannot be applied on proximity-based

localization. It was evaluated on MLE [22], which is

2 :ar{gigw}in JEZBZQ[In OI?I(JZ—/,CZJ)J , (5.5)
l 1 In(lO) Oy :

for a node i with connected active beacon nodes B . Therefore, ABDS is also

implemented on MLE in another simulation for the comparison with Gribben’s method.

5.3.3 Parameter Setting of Algorithms

Due to the fact that all beacon nodes are active to exchange information for making
decision at decision stage and only a fraction of beacon nodes are active at execution
stage, system lifetime is sensitive to the ratio of time of execution to time of decision.
Higher ratio can result in longer system lifetime. However, a long time of execution
stage can bring the system low response to variations. Accordingly, these scheduling
algorithms need to set a same time of execution stage for fair comparison. Table 5.3,
Table 5.4, and Table 5.5 summarize the parameters in ABDS, STROBE, E-STROBE,

and Gribben’s method, and corresponding values set in the simulations.
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Table 5.3. Parameters of ABDS and corresponding values.

Notation Description Value

Tpps Time of beacon signal phase in 5 seconds
decision stage

Toip Time of localization error phase in Thps
decision stage

Tpup Time of active priority phase in Tpps
decision stage

Tso Time of beacon only phase in 10007 54
execution stage

Ty Time of sleep phase in execution stage 7T

Table 5.4. Parameters of STROBE and E-STROBE, and corresponding values.

Notation Description Value
Ty Time of voting state 5 seconds
Ty Time of designated state 10007,
Ty Time of sleep state Tp
Table 5.5. Parameters of Gribben’s method and corresponding values.
Notation Description Value
delay .. Maximum delay time 5 seconds
Ty Time of reference (for beaconing and  1000delay,,,,
sleeping)
o Scaling factor for error estimation 6.9
Jii Scaling factor for error estimation 139.9
y Scaling factor for error estimation -2.6
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5.3.4 Performance Metrics

During the simulations, as in [16], following metrics are measured periodically for

a snapshot interval 100 seconds.

e Mean localization error: The mean localization error is computed by Eg. (3.1)
according to currently active beacon nodes at the instant.

e Percentage of active beacon nodes: This is the percentage of total beacon nodes
that are actively sending beacon signal at any given instant of time (either in
decision stage or execution stage).

Other two metrics not a function of time are used.

e  System lifetime: A beacon duty scheduling system is dead if the moving average of
mean localization error exceeds an error threshold. The system lifetime is the time
elapsed since the start before the system has died.

e Mean active ratio: This is the mean active beacon ratio in the duration of system
lifetime.

In addition, we take the snapshot of active beacon node distribution to understand

the outcome of beacon duty distribution produced by various scheduling algorithms.

5.3.5 Simulation Results

e ABDS, STROBE, and E-STROBE on connectivity based localization

ABDS, STROBE, and E-STROBE are simulated on connectivity based
localization. The error threshold for ABDS is set to be 12 m. The density threshold for
STROBE and E-STROBE s set to be 4 (4 active beacon nodes in a coverage) to control
the mean error to be under 12 m. Snapshots of the distribution of active beacon nodes in

ABDS, STROBE, and E-STROBE are shown in Fig. 5.6. Because STROBE and
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E-STROBE only consider the local density of neighboring active beacon nodes, the
nodes that should take active beaconing duty are randomly selected out from candidates.
As a result, some beacon nodes at the location with minimum benefits on localization
(such as very close to other active beacon nodes) are designed to be active. This
phenomenon results in the holes of active beacon distribution and waste of power

resource as described in Section 5.2.
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Fig. 5.6. Snapshots of active beacon map of ABDS, STROBE, and E-STROBE on

connectivity-based localization.

ABDS considers the effectiveness of beacon locations to assign beaconing duty rather

than by random. Therefore, ABDS can design more efficient distribution of active
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beacon nodes with less node resource. Fig. 5.7 plots the mean localization error of these
three algorithms and Fig. 5.8 plots the active beacon ratio. Table 5.6 summarizes the
corresponding system lifetime and mean active ratio. As shown in Table 5.6, ABDS
reduces 10 % beacon usage (mean active ratio) and prolongs 54% lifetime compared to
STROBE. E-STROBE considers an energy threshold independently after checking the
density threshold in its scheduling strategy. A beacon node may be turned off even it
should be active to maintain the density threshold. As shown in Fig. 5.7 and Fig. 5.8,
this method incrementally decreases the active ratio and increases the mean error with

the consumption of energy. Therefore, it quickly makes the system dead.

Table 5.6. Performance comparison of ABDS, STROBE, and E-STROBE.

System Lifetime  Mean Active

(100 secs) Ratio (%)
ABDS 9070 31.04
STROBE 5899 34.51
E-STROBE 3787 33.74
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localization.
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localization.

e ABDS and Gribben’s method on MLE localization

Because Gribben’s method is specifically designed for range-based localization
approaches, ABDS and Gribben’s method[15] are compared in the simulations on MLE
localization. The error threshold is set to be 22 m. Snapshots of the distribution of active
beacon nodes in ABDS and Gribben’s method are shown in Fig. 5.9. The location
impact of beacon nodes is also considered in Gribben’s method, so it does not activate

beacon nodes very closely.

43



y coordinate in the terrain

100

o}
ol
70t
g0
50t
st
o

20}

1 I

.

.

10 20 30

L
40

L ' L
50 60 70 80

% coordinate in the terrain

100

Gribben’s method

100

90 B
80 ’ B
701 B
60 B
501 B

w0} g

y coordinate in the terrain

30f B

20F B

+ + -

a 1 L L L ' L L
0 10 20 30 40 50 60 70 80 90

x coordinate in the terrain

100

Fig. 5.9. Snapshots of active beacon map of ABDS and Gribben’s method on MLE

localization.

However, this method does not consider real noise distribution in its model. As a result,

it cannot adapt the real environment very well. As shown in Fig. 5.10 and Fig. 5.11,

Gribben’s method activates too many beacon nodes and thus shortens the system

lifetime. Table 5.7 summarizes the system lifetime and mean active ration of ABDS and

Gribben’s method. ABDS provides 38% longer lifetime and 12% fewer beacon usage.
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Fig. 5.10. Mean localization error of ABDS and Gribben’s method on MLE localization.
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Table 5.7.

Performance comparison of ABDS and Gribben’s method.
System Lifetime  Mean Active
(100 secs) Ratio (%)
ABDS 13718 30.65
Gribben’s
method 9916 34.69
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Chapter 6 Conclusions

In this thesis, in order to efficiently schedule beacon duty cycle, we designed a
measurement to the effectiveness of beacon locations. We face the improvement
distribution on localization performance in the coverage of an additional beacon. We
propose DAG to adapt the non-uniform improvement distribution to avoid the
overestimation and locally dense placement occurred in the method of Grid. Our
approach adopts Cauchy distribution to generate a centralized weight distribution. The
weights are applied to cumulate regional localization error. The purpose is to more
precisely measure the effectiveness of beacon locations and thus design better beacon
deployments (with fewer beacon nodes deployed). To evaluate DAG, we compare it
with the classical Max, Grid, and Greedy methods in the experiments of incremental
beacon placement. The experiments were carried out in a simulated indoor environment
built by the log-normal shadowing model. The results demonstrate that the placement of
additional beacons with the employment of DAG can reduce 30% beacon usage. When
only half of these beacons at saturated state were placed, DAG reduces 76% localization
error.

ABDS for scheduling beacon duty cycle is then designed by the usage of DAG.
ABDS attempts to achieve following design goals.

«  Maximize system lifetime

« Distributed algorithm

« Adaptive to noisy environment in real world

«  Can be applied to any types of localization algorithm
«  User defined localization accuracy requirement

In real world, noise makes beacon nodes at various locations have different
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effectiveness to reduce localization error. This impact of beacon location is not
considered in previous scheduling algorithms. In ABDS, neighboring beacon nodes
exchange information to compute the DAG measurement and find out the efficient
beacons. As a result, the requirement of localization error can be satisfied by fewer
active beacon nodes and the system lifetime can be prolonged. Compared to previous

method, ABDS can reduce 10% beacon usage and provide 54% longer lifetime.
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