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中文摘要  

 定位技術已在無線感測器網路(WSNs)中被廣泛應用於找出節點之未知位置。

一般在執行定位技術的過程中，會大量佈置錨節點(位置已知之節點)來協助推算其

他節點之位置；然而，同時啟動所有的錨節點並不能明顯地增加定位準確率，反

而會增加額外的能量成本與頻寬成本。在這樣的情況下，通常只需要同時啟動一

部分的錨節點就能達到準確率的要求，因此為了減少成本並延長網路存活時間，

本論文提出了可使錨節點自己安排工作周期的 Adaptive Beacon Duty Scheduling 

(ABDS)演算法。ABDS會在線上即時量測錨節點位置之效益(在此位置啟動錨節點

後可能帶給定位準確率多少助益)，並且根據此量測結果挑出對定位準確率最有效

益的那些錨節點以啟動之，以將同時啟動的錨節點數量最小化。由於在前人的相

關研究中，並未實際去量測不同錨節點位置的不同效益，因此 ABDS 可更佳地適

應充滿無法預測之雜訊的真實環境。此外，為了在 ABDS 中精確地量測錨節點位

置之效益，我們觀察到錨節點對其覆蓋範圍產生的定位效能改善量事實上是非均

勻分布的，並提出了尚未被討論過的 Distribution-Adapted Grid (DAG)量測法以適

應此現象。與前人的方法相比，使用了 DAG量測法的 ABDS可以減少 10%的錨節

點使用量，並且延長 54%的存活時間。 

 

關鍵字：無線感測器網路、定位、錨節點位置、工作排程、睡眠排程。 
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ABSTRACT 

 Within typical localization processes in wireless sensor networks (WSNs), beacon 

nodes which know their locations will broadcast information for localizing an unknown 

location. Although beacon nodes are massively deployed in the terrain, only a fraction 

of the beacon nodes are required to be active for satisfying accuracy requirement. Too 

many active beacon nodes may bring the system with little improvement on localization 

accuracy but waste of both costs of energy and bandwidth. To reduce the costs and 

prolong the system lifetime, we propose the Adaptive Beacon Duty Scheduling (ABDS) 

algorithm that can self-configure beacon duty. ABDS can turn on only the minimum set 

of beacon nodes in a same time according to the online-measured effectiveness of 

beacon locations (the effect of activating a beacon node at the location for improving 

localization performance), which is not considered in previous methods. Moreover, to 

precisely measure the effectiveness of beacon locations in ABDS, we need to realize the 

fact that a beacon node actually contributes non-uniformly distributed impact within its 

coverage. This Distribution-Adapted Grid (DAG) measurement that can adapt the 

non-uniformly distributed impact was not discussed in previous methods. Compared to 

the previous methods, ABDS with the usage of DAG measurement can reduce 10% 

beacon usage and provide 54% longer lifetime. 

 

Keywords: Wireless sensor networks, localization, beacon location, duty scheduling, 

sleep scheduling. 
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Chapter 1 Introduction 

 

1.1  Motivation 

 In wireless sensor networks (WSNs), both network operations and most application 

level tasks require the help of localization algorithms to acquire knowledge of the 

physical locations of devices [1], [2], [3], such as event detection [4], routing [5] and 

coverage [6]. These localization algorithms usually make use of beacon (anchor) nodes, 

whose locations are known prior to perform the localization algorithm, for the purpose 

of estimating unknown locations of other sensor nodes [7], [8], [9]. Locations are then 

computed by proximity-based approaches, range-based approaches, or angle-based 

approaches [3] according to the information gathered from beacon nodes. The accuracy 

of location estimations may increase as a function of the number of covered beacon 

nodes. However, deploying too many beacon nodes brings costs of bandwidth and 

excessive power consumption with limited improvement on localization accuracy, and 

thus leads to shortened system lifetime. Therefore, a scheduling scheme which 

considers effectiveness of beacon locations (the effect of activating a beacon node at the 

location for improving localization performance) to schedule their duty cycle is useful 

for the purpose of increasing system lifetime while maintaining required localization 

accuracy. Most of existing scheduling algorithms are designed for maintaining sensing 

coverage or connectivity [10], [11], [12], [13]. Only a few papers are proposed to 

schedule beacon duty cycle, such as [14], [15], [16], [17]. However, most of them did 

not consider the impact of beacon node deployment, which has been identified as a 

significant factor that has strong influence on localization accuracy [18]. Moreover, they 

are designed to control the density of active beacon nodes. It is not friendly for users (in 
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this thesis, “users” are the people that apply a localization algorithm and a beacon duty 

scheduling algorithm to construct their localization system) to set a desired control point 

of localization accuracy. In [15], the authors propose a scheduling algorithm that 

considers theoretical location error estimation of beacon nodes, which is not able to 

adapt noisy environment in real world. In addition, it is specifically designed for 

distance-based localization and cannot be applied to other kinds of localization 

algorithm.  

 

1.2 Contributions 

As demonstrated in [18], a good beacon deployment can meet the localization 

performance requirement with fewer active beacon nodes. The costs of power and 

bandwidth can be reduced and the system lifetime can be prolonged if only fewer 

beacon nodes are active to strobe at the same time. In real world, noise is inevitable and 

unpredictable in the localization systems. Therefore, a scheduling method that can 

dynamically adapt the noisy environment is necessary for both the purposes of selecting 

minimum active set of beacon nodes to reserve energy and controlling localization 

accuracy to user defined control point.  

In this thesis, we propose Adaptive Beacon Duty Scheduling (ABDS) algorithm 

which can prolong system lifetime while maintaining required localization accuracy. 

The fundamental limitation of previous approaches is that they basically miss the actual 

impact of beacon location in real world. They do not take into account effectiveness of 

beacon location on reducing localization error that cannot be predicted a priori. For 

achieving efficient scheduling, only the minimum set of beacon nodes with best effect 

on localization are expected to be activated in the same time for reducing power 
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consumption and packet traffic. Therefore, an improved measurement to the 

effectiveness of beacon locations that can more precisely dig out beacon nodes with 

better effect on localization is also developed in this thesis. Empirical manners that can 

adapt to terrain conditions are favored in real world because it is hard to build a model 

to fit a certain environment. To our knowledge, little literatures have been published into 

this area, such as [18], [19]. In [18], Max and Grid take localization error and regional 

cumulative localization error as the measurements to the effectiveness of beacon 

locations respectively. In [19], Greedy addresses the beacon placement as a set cover 

problem, and takes coverage degree as the measurement to the effectiveness of beacon 

locations. We observed that after activating an additional beacon node, the impact on 

localization performance does not uniformly distribute in its coverage. The region closer 

to the beacon has better chance to reduce localization error. This phenomenon was not 

discussed in previous studies and should be overcome to get a more precise 

measurement to the effectiveness of beacon locations. Consequently, we improve the 

measurement in Grid and propose the Distribution-Adapted Grid (DAG) measurement 

for designing minimum active beacon nodes deployment in beacon duty scheduling. 

The scheduling algorithm meets following design goals. 

 Maximize system lifetime 

 Distributed 

 Adaptive to noisy environment in real world  

 Can be applied to any types of localization algorithm 

 User defined localization accuracy requirement 
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1.3 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 discusses related 

researches about beacon duty scheduling, measuring effectiveness of beacon locations, 

and localization algorithm. The DAG measurement is developed in Chapter 3. In 

Chapter 4, the ABDS algorithm is developed. Chapter 5 shows the performance 

evaluation of proposed methods. Finally, the conclusions are made in Chapter 6. 
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Chapter 2 Related Works 

 

 In this section, related works are presented in three parts. Section 2.1 introduces 

existing algorithms for scheduling duty cycle of beacon nodes. Two referred works on 

the measurement to the effectiveness of beacon locations are introduced in Section 2.2. 

To explain the phenomenon of non-uniformly distributed impact produced by beacons 

on localization, two localization algorithms are introduced in Section 2.3. 

 

2.1 Beacon Duty Scheduling Algorithms 

In [16], STROBE algorithm is proposed to schedule beacon duty by tuning the 

operation beacon density. STROBE adopts a scheduled rendezvous scheme that 

activates all beacon nodes up at the same time. Beacon nodes then exchange the 

information of activation distribution with their neighbors. If the local density of active 

beacon nodes is under a user defined threshold, the beacon node remains active for 

transmitting beacon signal to maintain the active density requirement. If the density 

exceeds the threshold, the beacon node takes a probability of excess density (e.g., the 

threshold is 7 and the density for now is 9, then the probability is (9-7)/7) to sleep for 

the purpose of reducing density to the threshold. The state transition of STROBE is 

shown in Fig. 2.1.  
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In [17], in order to spread energy consumption over beacon nodes for loading 

balance, the authors proposed E-STROBE, which extends STROBE to consider the 

ratio of remaining energy as a factor in making decision to active or sleep. E-STROBE 

takes a probability of the ratio of remaining energy before entering into the active state. 

Fig. 2.2 illustrates the state transition of E-STROBE. 

 

Fig. 2.1. The state transition of STROBE. 
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In [14], the authors proposed a beacon duty scheduling algorithm inspired by Span 

[10]. The algorithm fuses the parameters of active density and remaining energy into a 

delay time. After a beaconing or sleeping period, each beacon node transits the state to 

calculate the delay time. When the delay timer expires, the beacon node checks the 

active density in its neighborhood. If the density does not satisfy a user defined 

threshold, the beacon node is activated to transmit beacon signal, otherwise it is turned 

off to sleep for reserving energy.  

In [15], the authors of [14] improve their scheduling algorithm by considering the 

theoretical location error estimation [20] rather than the density of beacon nodes as the 

design parameter. The location error estimation, which is specifically designed for 

range-based localization algorithms, makes use of the CRLB that places a lower bound 

on the variance of unbiased estimators [21] and was derived for position estimation in 

[22]. If the estimated location error is above a user defined threshold, the beacon node is 

 

Fig. 2.2. The state transition of E-STROBE. 
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activated to transmit beacon signal, otherwise it is turned off to sleep. 

 

2.2 Related Works on the Measurement of the Effectiveness 

to Beacon Locations 

In the Max algorithm [18], localization error (distance between estimated location 

and actual location) is taken to be the measurement to evaluate the effectiveness of a 

beacon location. The idea is that a location with larger localization error has larger room 

to improve localization performance and thus larger benefit gained by placing a beacon 

node on this location. By this measurement, beacons are placed in an incremental 

manner. Every time the effectiveness for localization performance at each point on the 

terrain is measured, and then an additional beacon is placed on the point with highest 

localization error. The steps to incrementally place beacons are described as following. 

1. The environment terrain is divided into Step× Step squares. 

2. Measure the effectiveness for reducing localization error at each point in the terrain 

that corresponds to a square corner. 

3. Add an additional beacon at the point that has the highest measurement value among 

all points. 

Fig. 2.3 illustrates the Max algorithm. 
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There is an assumption that locations with high localization error are spatially 

correlated in Max. However, a point may get very high localization error while the 

localization error at other points close to it remains low, and that adding an additional 

beacon affects the localization error on its nearby region not just the point where it is 

placed. Based on these observations, the authors proposed the Grid algorithm [18]. In 

Grid, a 2-dimensional rectangular sliding window called “grid” with side length 

gridSide=2R (R is the ideal radius of communication range) is set up and the 

localization errors that lie in the grid are summed up to be the measurement at the center 

of this grid. The Grid measurement is taken to incrementally place beacons (by the steps 

described in Max beacon placement algorithm) in the Grid algorithm, as illustrated in 

Fig. 2.4 

 

Fig. 2.3. Illustration of the Max algorithm. 
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It is a proper concept in Grid to cumulate regional localization error as the 

measurement to decide beacon locations. However, the Grid measurement overestimates 

the ability of a beacon to improve the localization performance on its nearby region in 

such a way that beacon node resources are misspent. The observation of this 

phenomenon and the proposed measurement to more precisely estimate regional 

localization impact are described in Chapter 3. 

 

2.3 Localization Algorithms 

Connectivity based localization. Connectivity based localization [8] adopts beacon 

nodes to periodically transmit beacon signal with a time period T. Nodes with unknown 

location (blind node) listen for a period t >> T to evaluate connectivity. A beacon node 

is considered as connected on the understanding that the packet-receive-ratio from the 

beacon node in the period t exceeds a threshold. After appraising the connectivity of 

 

Fig. 2.4. Illustration of the Grid algorithm. 
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beacon nodes, the blind node estimates its location (Xest, Yest) as the centroid of the 

locations of all connected beacon nodes with the centroid formula shown in Eq. (2.1). 

   1 1, ?, N N
est est

X X Y Y
X Y

N N

  
  
 

 (2.1) 

Pattern matching localization. Based on taking received signal strength indices 

(RSSIs) from beacons as the feature vector of a location, pattern matching localization 

estimates an unknown location with similar features [7]. This localization algorithm 

consists of two phases, namely training phase and locating phase. In the training phase, 

RSSIs on training locations are recorded with the location coordinates, and the collected 

data are used to build a localization model. In the locating phase, a blind node collects 

the RSSIs from beacons to be the feature vector of its location, and then inputs the 

feature vector into the localization model to estimate the unknown location. 
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Chapter 3 Distribution-Adapted Grid Measurement 

  

In order to select out a minimum set of active beacon nodes with best effect on 

localization to satisfy the requirement of localization accuracy, a precise measurement 

to the effectiveness of beacon locations is necessary for efficient beacon duty 

scheduling. Researchers have proposed methods for the measurement in beacon 

placement algorithms [17], [18]. However, the Grid measurement has a defect and 

solutions have not been proposed, hence for better predicting the effectiveness of 

beacon locations, an improved measurement (i.e., Distribution-Adapted Grid or DAG) 

is proposed in this chapter. 

 

3.1 The Problem of Predicting the Effectiveness of a Beacon 

Location 

This thesis addresses the problem of predicting the effectiveness of a beacon 

location as follows. A deployment n

aB  that consists of n  active beacon nodes 

1{ ,..., }n

a ab b  with Cartesian coordinates  1 2

1 1{ , ,..., }n

a ax y z z  that know their 

locations a priori and have an ideal communication radius R  exists in a 

two-dimensional squared terrain     20, 0,T side side    divided into step step  

squares as Fig. 2.3. We denote an active beacon node i

ab  located at i

az  by ( )i i

a ab z  

and the location i

az  of an active beacon node i

ab  by ( )i i

a abz . The localization error   

at a location  ,x y T z  is the Euclidean distance between z  and the estimated 

location  ,x y T z  at it, i.e. 2 2

ˆ,( , ) ( ) ( )n

aB d x x y y       z zz z z . The 
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mean localization error 
mean  on T with a certain active beacon deployment n

aB  is  

 

 
0 0

2

( , ),

( )

( 1)

side step side step
n

a

x yn

mean a

x y B

B
side

step




 





 
. (3.1) 

A measurement to the effectiveness of beacon locations ( , )n

aB z  takes the active 

beacon deployment and measurable information of the location (e.g., measured RSSIs, 

measured distances, packet receiving ratios, etc.) as inputs to predict a location’s 

effectiveness for activating a beacon node to reduce the mean localization error on the 

terrain. That is, for a perfect measurement ( , )n

aB z , given an existing beacon 

deployment n

aB  and   1 1 1,n n n n

a a a aB B b   z , 

 1( , )n

n a meanB  z , (3.2) 

 where 1( ) ( )n n

mean mean a mean aB B      . (3.3) 

The precision of a ( , )n

aB z  can be evaluated by the reduction of mean localization 

error produced via activating a beacon node at the location iz  with maximum 

( , )n

i aB z , i.e., 

 
 

1 1

( )

( , ) ( ) ( , (arg max ( , )) )
n

i a

n n n n n n

mean a a mean a mean a a i a
T B

B B B B b B    

 

  
    

  z z

z . (3.4) 

 

3.2 Developing Distribution-Adapted Grid Measurement 

According to the definition proposed in Section 3.1, the measurements used in 

Max and Grid can be written down as Eq. (3.5) and Eq. (3.6). 

 ( , ) ( , )n n

Max a aB B z z . (3.5) 



 

 14 

  
. .

. .

( , ) ( , ),

R R
x y

step step
n n

Grid a a
R R

x x y y
step step

B x y B 

 

   

  

z z

z z

z  (3.6) 

Although the Grid measurement Grid  can be used to design appropriate beacon 

locations when beacon density is low, it starts to mismeasure the effectiveness of beacon 

locations when the beacon density rises and the ability of a beacon to improve the 

localization performance on its nearby region decays. To consider regional localization 

error is reasonable. However, we observed that the improvement on localization 

performance in the coverage of a beacon node does not distribute uniformly. The 

location where an additional beacon is activated holds best effect of improving 

localization accuracy. This was observed from both connectivity based localization and 

pattern matching localization. 

 

Fig. 3.1. Illustration of the positive effect and negative effect of adding a beacon node in 

connectivity based localization. 
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For the case of connectivity based localization, the estimated location of a blind 

node with unknown location is the centroid of connected beacons. Due to the fact that 

activating an additional beacon that covers it will pull the estimated location to be closer 

to the new beacon, both positive effect and negative effect on the nearby region of a 

new beacon are possible to occur, as illustrated in Fig. 3.1. Therefore, only the locations 

of added beacons always gains improvement on localization performance.   

For the case of pattern matching localization, the information of locations hides in 

RSSI features, hence the pattern matching localization performs better with more 

dissimilar RSSI features. According to the path loss model without the noise term, 

signal strength decreases with the increase of distance in a logarithmic fashion [23], as 

described in Eq. (3.7). 

 0

0

( )
10 log( )

( )

r

r dB

P d d

P d d


 
  

 
, (3.7) 

where Pr(d) is the mean received power at distance d, Pr(d0) is the received power at the 

close-in reference distance d0 and β is the environment-dependent parameter. The closer 

the distance between transmitter and receiver is, the greater the change of RSSI is. Fig. 

3.2 illustrates this phenomenon.  

 

Fig. 3.2. Illustration of the impact of RSSI variation. 
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Even if noise exists in the path loss model in real world, a location closer to the beacon 

has better chance to get a more distinguishable feature and thus better performance of 

pattern matching localization. 

To confirm our observations, Fig. 3.3 shows the distribution of averaged 

improvements on localization error in the coverage of beacons over iterations in an 

incremental beacon placement. The point where a beacon is placed holds best effect to 

improve localization performance as our inference. The ability of a beacon to improve 

the localization performance on its neighboring region decreases with the increase of the 

distance from the beacon. 

To adapt this centralized-distributed improvement on localization and precisely 

measure the effectiveness of beacon locations, we suggest that the region closer to a 

beacon should take a heavier weight in computing the regional localization error over 

 

Fig. 3.3. The distribution of averaged improvements on localization error in the 

coverage of beacons. 
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the beacon coverage. As a result, the Distribution-Adapted Grid (DAG) measurement 

that can more properly measure the effectiveness of a beacon location is proposed in 

this thesis. Two famous centralized distributions, namely Cauchy and Gaussian, are 

considered to weight the regional error. Fig. 3.4 shows the lateral view of the 

improvement distribution shown in Fig. 3.3 and the weight distributions generated by 

Cauchy and Gaussian.  

The Cauchy distribution is more approximative to the improvement distribution, and 

thus adopted to generate a centralized weight distribution to adjust the cumulation 

process in regional localization error to fit the improvement distribution in beacon 

coverage. The three-parameter Cauchy distribution is defined by 

  
2

0 2 2

0

; , ,
( )

f x x I I
x x






 
  

  
, (3.8) 

where 𝛾 is the scale parameter which specifies the half-width at half-maximum, I is the 

height of the peak, and x0 is the location of the peak of this distribution. Because the 

 

Fig. 3.4. The averaged improvement distribution and weight distributions. 
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purpose of this distribution function here is to generate weight distributions, I is taken 

with 1, and (x-x0) can be replaced by the distance D between beacon location and the 

location which contributes its localization error to cumulate regional error. Accordingly, 

the Cauchy-form weight distribution function here is defined by 

  
2

2 2
;

( )
w D

D








. (3.9) 

Fig. 3.5 demonstrates a weight distribution generated by Eq. (3.9) with γ = 1.  

To compute the DAG measurement, the weight distribution is applied to weighting 

the regional localization error. A 2-dimensional rectangular sliding window called 

“centralized-weighting grid (cwg)” with side length gridSide=2R is set up and the 

localization errors that lie in the cwg are summed up with multiplying the corresponding 

weights obtained by substituting the distance from the center of cwg into Eq. (3.9). This 

weighted regional localization error is taken to be the DAG measurement, as defined by  

 

Fig. 3.5. The plot of Cauchy-form weight distribution with γ = 1. 
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In this chapter, we observe that a beacon node contributes a centralized-distributed 

localization improvement in its coverage. Its location holds the best effect to reduce 

localization error, while the amount reduced on neighboring region decreases with the 

increase of the distance from the beacon node. It can result bias in measuring the 

effectiveness of a beacon location if one does not consider the regional error or consider 

the regional error as uniformly distributed. According to the impact distribution shown 

in Fig. 3.3, we select the Cauchy distribution, which can fit the distribution best, to 

design the DAG measurement. DAG can consider the real impact distribution in a 

proper manner and thus measure the effectiveness of a beacon location more precisely.  

Previous measurements were implemented in the manner of incremental beacon 

placement (i.e., given an initial beacon deployment, then iteratively place a beacon node 

at the location with greatest measured effectiveness). Therefore, to evaluate and 

compare the performance of our DAG with previous methods, it will be applied to 

design beacon deployments by incrementally placing beacon nodes in Chapter 5. 

According to Eq. (3.2), a measurement is more precise if the mean localization error 

reduced by activating an additional beacon node with biggest value is greater. 

Accordingly, the localization accuracy can be achieved with fewer active beacon nodes.  
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Chapter 4 Adaptive Beacon Duty Scheduling 

 

Most of previous scheduling algorithms that consider beacon duty cycle take active 

beacon density as the design parameter to adjust beaconing duty and be provided for 

users to set desired control points, such as [14], [16], [17]. Nevertheless, two drawbacks 

majorly exist in such manners.  

 They do not consider the impact of beacon location, which has been identified 

as a significant factor for localization accuracy [18]. The algorithms make 

beacon nodes detect active neighbors and compute local density (density in 

their radio coverage) when the beaconing (sleeping) timers expire, and then 

select beacon nodes to be turned on or turned off to satisfy the density 

requirement according to random factors rather than the impact of beacon 

nodes. Therefore, some beacon nodes located at the locations without any 

benefit on reducing localization error (e.g., the location near to an active 

beacon node) may be turned on to transmit beacon signal, and thus the costs 

of energy and bandwidth are wasted.  

 Density is not an intuitional parameter for setting a desired control point. 

Expressly, one wants to set the requirement of localization accuracy when he 

is building a localization system with a beacon duty scheduling algorithm. 

The relation between density and accuracy depends on the localization 

algorithm used, environmental factors, and power settings of beacon nodes. It 

is inconvenient to readjust the density requirement for desired accuracy 

whenever these conditions change. 
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In [15], a location error estimation method is introduced to evaluate the localization 

error against probability at a beacon location [20], [21], [22]. However, the scheduling 

algorithm attempts to assign more beacon duty to the beacon nodes placed at a location 

with lower estimated error. In the formula of delay time [15], 

 
( )

1
max

i r
i

t

d P E
delay R T

D E

   
       
     

, (4.1) 

a smaller ratio term of location error estimation will result in a shorter delay time, and 

thus make the beacon node earlier to wake up to preempt a beacon duty. As a result, 

beacon nodes located at the locations with less effectiveness on reducing localization 

error are easier to be turned on, hence the costs of energy and bandwidth rise. Although 

the estimation formula considers two environment-dependent parameters, they are fixed 

that do not adapt to the variations in environments. Furthermore, the 

environment-dependent impact of beacon locations is not considered The Gaussian 

noise variable introduced in the estimation is used to describe the spatially distributed 

noise [23], whereas the formula considers it in a time-dependent manner. Moreover, the 

location error estimation is derived for distance-based localization algorithms, hence 

cannot be applied to localization algorithms in other types. 

To effectively reduce cost of beaconing and maximize system lifetime, the impact 

of beacon locations must be adaptively considered in scheduling beacon duty cycle. In 

this chapter, we use the DAG measurement developed in Chapter 3 to design an 

adaptive beacon duty scheduling algorithm. 

 

4.1 Problem of Beacon Duty Scheduling 

Beginning from following the notations defined in Section 3.1, we introduce other 

notations to address the problem of beacon duty scheduling. For a given wireless 
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network N  consists of beacon nodes ib  in B N  that know their locations 

 1... q
z z  and blind nodes in U N  with unknown locations, select a set of active 

beacon nodes n

aB B  to transmit beacon signal in a period 
BT , while the amount of 

mean localization error ( )n

mean aB  remains below a distance threshold D . Other 

beacon nodes m

sB B  in the sleeping state turn off their radio transceiver to reserve 

energy. Neighbors of a beacon node ib  is denoted by 

 ,( ) ( )
i j

i j

r b b thresholdN b b B P d P   , which are the beacon nodes that receive the signal 

from ib  with RSSI greater then received power threshold thresholdP . 

 

4.2 Developing Adaptive Beacon Duty Scheduling 

In this section, we propose Adaptive Beacon Duty Scheduling (ABDS) algorithm, 

which attempts to achieve following design goals. 

 Maximize system lifetime: A beacon duty scheduling algorithm must be able to 

find out redundant beacon nodes that have less effectiveness on reducing 

localization error and make them sleep to reduce power consumption. 

 Distributed: The scheduling algorithm should be distributed that needs only 

local information obtained by 1-hop broadcast from neighbors for two reasons: 

WSNs are usually constructed in an ad-hoc manner, hence it should be able to 

adapt churn (nodes joining or leaving) without coordination provided by a 

central server; information delivery by multi-hop flooding can exponentially 

increase energy consumption that is unfavorable for battery-supported WSNs. 

 Adaptive to noisy environment in real world: Noise in measured signal for 

localization systems is inevitable and unpredictable before applying the 
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system into the working environment (e.g., measure the RSSIs at various 

distances to evaluate noise strength) in real world. In addition, the 

environmental conditions may change and disturbances may occur when the 

system is working. Therefore, an on-line adaptive manner is attractive in this 

scenario.  

 User defined localization accuracy requirement: The mean localization error 

in a terrain should be maintained to satisfy a required threshold. The 

intuitional parameter for setting requirement for a localization system is 

localization error. Accordingly, a beacon duty scheduling algorithm must be 

able to control localization error.  

ABDS mainly consists of decision stage and execution stage. In the decision stage, 

information about local mean error, remaining energy, and effectiveness on reducing 

localization error are computed and exchanged between neighboring beacon nodes in 

B . After making the decision, beacon nodes join the active beacon set n

aB  to take the 

duty to transmit beacon signal or join the sleeping beacon set m

sB  to reserve energy in 

the execution stage. When the timer of execution period expires, a decision is remade 

for rotating the beacon duty. To apply DAG measurement ( , )n

DAG aB z , localization 

errors at neighboring beacon nodes are required, and therefore the decision stage is 

composed of three phases. First, activity information about one-hop neighbors is 

collected. The localization error at beacon nodes’ location can thus be computed and 

exchanged between neighboring beacon nodes in the second phase. With the knowledge 

of localization errors on one-hop neighbors, beacon nodes can then locally compute 

DAG measurement to evaluate their effectiveness on reducing localization error. The 

value of DAG measurement is fused with the ratio of remaining energy and exchanged 
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in the third phase. Finally, the decision can be made according to the comparison of 

active priority with neighbors. The state transition of ABDS can be illustrated by Fig. 

4.1.  

Follows describe the detail of each phase in ABDS. 

 Decision stage-Beacon Signal (DBS) phase: All beacon nodes ib B  start 

with istate active  and set a timer DBST . Active beacon nodes i n

a ab B  

broadcast advertisements in a beaconing interval BT  to announce their 

activity. All ib  turn on the radio transceiver to listen for advertisements from 

their neighboring active beacon nodes and construct active neighbor list 

 ,
( ) ( )i j

a

i j n

a a a r thresholdb b
N b b B P d P   . When the timer DBST  expires, all ib  

enter into next phase. 

 Decision stage-Localization Error (DLE) phase: All beacon nodes ib  set a 

timer DLET . All ib  estimate their location according to the information of 

 

Fig. 4.1. The state transition of ABDS. 
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active neighbor list ( )i

aN b  and compute localization error of ( , ( ))i i

aN b z , 

and then broadcast the value of ( , ( ))i i

aN b z  to neighboring beacon nodes in 

( )iN b  in the beaconing interval 
BT  and listen for 

 ( , ( )) ( )j j j i

aN b b N b z . When the timer 
DLET  expires, all ib  enter into 

next phase. 

 Decision stage-Active Priority (DAP) phase: All beacon nodes ib  set a timer 

DAPT . According to the localization errors distributed in ( )iN b , i.e. 

 ( , ( )) ( )j j j i

aN b b N b z , all ib  can compute 

    
( )

,
;( ) ( , ( ))

j

i j

i

i j j

DAG a thresholb b d

b N b

Nw bd  


 z z , (4.2) 

where threshold  is the user defined mean error threshold. A fused active 

priority AP  can then be computed by 

  ( ) 1
i

i i r
DAG i

i

E
AP ef ef

E


  
      

   

z , (4.3) 

where i

rE  is the remaining energy of ib , i

iE  is the initial energy of ib  at 

time 0, and ef  in the range  0, 1  is an energy factor that decide what 

level should the term of energy ratio 
i

r

i

i

E

E
 be considered. For a ib  with 

0iAP  , it has higher priority to take a beacon duty with higher 
iAP  for the 

reason of activating beacon nodes as few as possible. Otherwise for 0iAP  , 

it has higher priority to sleep with higher 
iAP  (less effect on reducing 

localization error) for inactivating beacon nodes as many as possible. 

Therefore, the energy ratio term is considered in this way to make a beacon 
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node with less energy get a chance to sleep more easily. All ib  broadcast 

their iAP  in 
BT  and listen for  ( )jAP j N i . When the timer 

DAPT  

expires, all ib  check their local mean error for making decision by 

 
 

 
( )

( , ( ))

( )

j i i

j j

a

b N b bi

mean i i

N b

N b b








 z

. (4.4) 

If the state of ib  is active and the local mean error i

mean  is smaller than 

threshold , ib  may be a redundant active beacon node, hence it then compare 

its 
iAP  with other neighbors that have same conditions ( jstate active  and 

j

mean threshold  ) and set its state to be asleep if 
iAP  is the greatest one. 

Otherwise, if the state of ib  is asleep and the local mean error i

mean  is 

greater than threshold , ib  is a candidate to be active to reduce localization 

error, hence it then compare its 
iAP  with other neighbors that have same 

conditions ( jstate asleep  and j

mean threshold  ) and set its state to be active 

if 
iAP  is the greatest one. This can be expressed by 

    i i i

mean thresholdstate asleep state active      

   ( ) ( ) ( ) :j i j j i j

mean thresholdb N b state active AP AP         (4.5) 

and 

    >i i i

mean thresholdstate active state asleep     

  ( ) ( ) ( ) :j i j j i j

mean thresholdb N b state asleep AP AP        . (4.6) 

After making the decision, ib  enters into execution stage to transmit beacon 

signal or sleep according to the decision. If istate active , ib  joins n

aB  
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and broadcasts beacon signal in next stage. Otherwise, if istate asleep , ib  

joins m

sB  and sleep for reserving energy. 

 Execution stage-Beacon Only (BO) phase: All i n

a ab B  set a timer BOT  at 

the start time in BO. All i

ab  periodically transmit beacon signal at intervals 

BT  and sleep for the remainder of the intervals. When the timer BOT  expires, 

all i

ab  transition back to the DBS phase. 

 Execution stage-Sleep (SL) phase: All i m

s sb B  set a timer SLT  at the start 

time in SL and then go to sleep. When the timer SLT  expires, all i

sb  

transition back to the DBS phase. 
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Chapter 5 Evaluations 

 

Simulations and evaluations of proposed DAG measurement and ABDS algorithm 

are carried out in MATLAB 7.11.0 with a wireless sensor network simulated by the 

typical shadowing propagation model [23]. To confirm our observations in Section 3.2, 

the DAG measurement is evaluated on both connectivity based localization and pattern 

matching localization. To compare with previous methods, the ABDS algorithm is 

evaluated on connectivity based localization for the comparison with STROBE and 

E-STROBE, and on maximum-likelihood estimator (MLE) for the comparison with 

Gribben’s method in [15]. 

 

5.1 Environment Model 

The log-normal shadowing model is adopted to generate simulated terrains with 

real-world noise condition. Based on the path loss model as defined in Eq. (3.7), the 

Gaussian random variable with zero mean and standard deviation db  (shadowing 

deviation)  0,db dbX N   is added to make the propagation model noisy. It reflects 

the variation of the mean received power at certain distance. The overall log-normal 

shadowing model is represented by 

 
 
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. (5.1) 

The mean received power from beacons at each point on a random generated terrain is 

calculated by Eq. (5.1) and applied to perform further simulations. 
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5.2 Evaluation of the DAG Measurement 

To be compared with previous measurements proposed in beacon placement 

algorithms, proposed DAG measurement is applied to incrementally place beacon nodes 

to design beacon deployments. Not only referred works in [18], but also a recent 

empirical method namely Greedy [19], which allows adaptation to terrain conditions 

and takes connected beacon density as the measurement to incrementally place beacons 

to design beacon deployment, was carried out in simulations and compared with 

proposed DAG measurement.  

 

5.2.1 Localization Algorithms 

The incremental beacon placement process was performed on connectivity based 

localization and pattern matching localization. Connectivity based localization 

algorithm computes the centroid of connected beacons as the estimated location for a 

blind node. If the mean received power exceeds the receiving threshold thresholdP , a blind 

node is identified as connected with the beacon node. Subsequent to computing mean 

received power by Eq. (5.1), connectivity is evaluated by applying following condition, 

 ( )r thresholdP d P . (5.2) 

In the pattern matching localization algorithm, the k-nearest neighbor (KNN) algorithm, 

which uses Euclidian distance to find out k nearest patterns and select the mode to be 

the output, is applied to extract signal feature of locations. This localization algorithm 

comprises training phase and locating phase. The half of data points (feature vector of 

signal strengths and corresponding location coordinate) are uniformly chosen to be the 

training data set to establish feature database amid the training phase. The training data 

selection is illustrated in Fig. 5.1. In the locating phase, an unknown location is 
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estimated by the KNN operation on its signal strength feature. 

 

5.2.2 Simulation Parameters 

The values of log-normal shadowing model parameters are chosen from the ranges 

of their typical values in indoor environments [23]. Pr(d0) is obtained by the experiment 

in an indoor environment. The parameters and corresponding values used in this 

simulation are summarized in Table 5.1. They do not exactly reflect the details of a real 

environment, but are representative of the range of environments in which the 

algorithms may be applied. 

 

5.2.3 Performance Metrics 

For the simulations performed with connectivity based localization, Eq. (3.1) is 

 

Fig. 5.1. Solid circles mark the training data points. 

Table 5.1. Parameters and their values used in the simulations of incremental beacon 

placement. 
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used to evaluate and compare the performances of various measurements used to design 

beacon deployment. However, according to the fact that the locations of training data 

are known, for the simulations with pattern matching localization, only the data points 

which are not in the training data set are chosen to examine the mean localization error. 

Therefore, following equation is used to examine the mean localization error in the 

pattern matching localization. 

 

 
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 (5.3) 

 

5.2.4 Simulation Flow 

DAG, Max, Grid, and Greedy were evaluated in the simulations carried out in 

MATLAB to incrementally place beacons (by the steps described in Section 2.2) 

respectively. In each of simulation rounds, initially 20 beacons are randomly placed in 

the terrain. After examining the localization errors on the terrain, the location without a 

beacon that has highest measurement value is chosen to place an additional beacon. 

Then the mean localization error is re-examined. Fig. 6 shows the flow chart to illustrate 

the flow of incremental beacon placement. There is a random factor in the initial state 

(i.e., random beacon placement). To characterize the statistical significance of our 

simulation results, each simulation executes for 10 times with different random initial 

beacon placements. 
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5.2.5 Simulation Results 

Fig. 5.3 shows the final placements of Max, Grid, DAG, and Greedy. According to 

the centralized-distributed improvement on localization, the Grid measurement overly 

expects the ability of a beacon node to reduce the localization error in neighboring 

region. Therefore, many beacon nodes will be designed to place at locations with no any 

benefits on localization. This overestimation flaw of Grid causes a locally dense 

placement behavior that extremely squanders on beacon resource. 

 

Fig. 5.2. Flow chart of incremental beacon placement. 
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Fig. 5.4 and Fig. 5.5 show the simulation results of incrementally placing beacons on 

connectivity based localization and pattern matching localization respectively. The 

averages and 95% confidence intervals are plotted in the figures.  

 

Fig. 5.3. The final beacon placement of Max, Grid, Greedy, and DAG in a 

2-dimentional space. 
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Fig. 5.4. Performance of the measurements to incrementally place beacon nodes with 

connectivity based localization. 

 

Fig. 5.5. Performance of the measurements to incrementally place beacon nodes with 

pattern matching localization. 
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As shown in Fig. 5.4, Grid provides better performances than Max at early placement 

stage. That confirms the idea of considering regional localization error. However, 

because of the locally dense placement behavior, Grid quickly starts to converge and 

provides the saturated localization performance much worse than Max. Although 

Greedy and GWG have similar trends on reducing localization error, DAG performs 

about two times better than Greedy at saturated state. DAG surpasses other three 

methods at early placement stage and provides the saturated performance same as Max 

(around mean error of 4 meters) with less additional beacon number to save 30% 

beacons. Moreover, for the device shortage scenario, it reduces 76% localization error 

compared to Max when only half of the beacons at saturated state (around 150 beacons) 

are placed. This phenomenon also exists in the pattern matching localization as shown 

in Fig. 5.5. DAG can reduce 25% usage of beacons and reduce 61% localization error 

with half of the placed beacons at saturated state.  

 

5.3 Evaluation of the ABDS algorithm 

To evaluate the performance of ABDS, STROBE, E-STROBE, and Gribben’s 

method are also implemented in the simulated wireless sensor network to be compared 

with ABDS. The simulated network is composed of 100 beacon nodes uniformly 

deployed in a square area of size 100 m × 100 m in a grid manner. Beacon duty 

scheduling algorithms are performed on each beacon node. The environmental 

condition (noise distribution) is same across simulations of various beacon duty 

scheduling algorithms. Simulation methodologies are described in following sections. 
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5.3.1 Energy Model 

In addition to the signal propagation model in Section 5.1 and corresponding 

values in 5.2.2, an energy model is introduced to simulate the energy usage of beacon 

duty scheduling algorithms. We use the same energy model in [16], as summarized in 

Table 5.2. This energy model only characterizes the energy usage of the radio 

transceiver and does not model the energy usage of local computation, because typical 

computational costs are much lower than communication costs and thus negligible [15], 

[16], [17], [24].  

 

5.3.2 Localization Algorithms 

STROBE, E-STROBE, and our ABDS are evaluated and compared on connectivity 

based localization. To evaluate and compare Gribben’s method, however, it was 

Table 5.2.  Parameter settings of the energy model in the simulations of beacon 

duty scheduling algorithms. 
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specifically designed for range-based localization methods. The input for localizing a 

blind node is the estimated distance from beacon nodes, which is derived from Eq. (5.1) 

and given by 

 

 
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Accordingly, the scheduling algorithm cannot be applied on proximity-based 

localization. It was evaluated on MLE [22], which is 
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for a node i  with connected active beacon nodes n

aB . Therefore, ABDS is also 

implemented on MLE in another simulation for the comparison with Gribben’s method. 

 

5.3.3 Parameter Setting of Algorithms  

Due to the fact that all beacon nodes are active to exchange information for making 

decision at decision stage and only a fraction of beacon nodes are active at execution 

stage, system lifetime is sensitive to the ratio of time of execution to time of decision. 

Higher ratio can result in longer system lifetime. However, a long time of execution 

stage can bring the system low response to variations. Accordingly, these scheduling 

algorithms need to set a same time of execution stage for fair comparison. Table 5.3, 

Table 5.4, and Table 5.5 summarize the parameters in ABDS, STROBE, E-STROBE, 

and Gribben’s method, and corresponding values set in the simulations. 
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Table 5.3.  Parameters of ABDS and corresponding values. 

 

Table 5.4.  Parameters of STROBE and E-STROBE, and corresponding values. 

 

Table 5.5.  Parameters of Gribben’s method and corresponding values. 

 



 

 39 

5.3.4 Performance Metrics 

During the simulations, as in [16], following metrics are measured periodically for 

a snapshot interval 100 seconds.  

 Mean localization error: The mean localization error is computed by Eq. (3.1) 

according to currently active beacon nodes at the instant.  

 Percentage of active beacon nodes: This is the percentage of total beacon nodes 

that are actively sending beacon signal at any given instant of time (either in 

decision stage or execution stage).  

Other two metrics not a function of time are used. 

 System lifetime: A beacon duty scheduling system is dead if the moving average of 

mean localization error exceeds an error threshold. The system lifetime is the time 

elapsed since the start before the system has died. 

 Mean active ratio: This is the mean active beacon ratio in the duration of system 

lifetime.  

In addition, we take the snapshot of active beacon node distribution to understand 

the outcome of beacon duty distribution produced by various scheduling algorithms.  

 

5.3.5 Simulation Results 

 ABDS, STROBE, and E-STROBE on connectivity based localization 

ABDS, STROBE, and E-STROBE are simulated on connectivity based 

localization. The error threshold for ABDS is set to be 12 m. The density threshold for 

STROBE and E-STROBE is set to be 4 (4 active beacon nodes in a coverage) to control 

the mean error to be under 12 m. Snapshots of the distribution of active beacon nodes in 

ABDS, STROBE, and E-STROBE are shown in Fig. 5.6. Because STROBE and 
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E-STROBE only consider the local density of neighboring active beacon nodes, the 

nodes that should take active beaconing duty are randomly selected out from candidates. 

As a result, some beacon nodes at the location with minimum benefits on localization 

(such as very close to other active beacon nodes) are designed to be active. This 

phenomenon results in the holes of active beacon distribution and waste of power 

resource as described in Section 5.2.  

ABDS considers the effectiveness of beacon locations to assign beaconing duty rather 

than by random. Therefore, ABDS can design more efficient distribution of active 

 

Fig. 5.6. Snapshots of active beacon map of ABDS, STROBE, and E-STROBE on 

connectivity-based localization. 
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beacon nodes with less node resource. Fig. 5.7 plots the mean localization error of these 

three algorithms and Fig. 5.8 plots the active beacon ratio. Table 5.6 summarizes the 

corresponding system lifetime and mean active ratio. As shown in Table 5.6, ABDS 

reduces 10 % beacon usage (mean active ratio) and prolongs 54% lifetime compared to 

STROBE. E-STROBE considers an energy threshold independently after checking the 

density threshold in its scheduling strategy. A beacon node may be turned off even it 

should be active to maintain the density threshold. As shown in Fig. 5.7 and Fig. 5.8, 

this method incrementally decreases the active ratio and increases the mean error with 

the consumption of energy. Therefore, it quickly makes the system dead.  

 

Table 5.6.  Performance comparison of ABDS, STROBE, and E-STROBE. 
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Fig. 5.7. Mean localization error of ABDS, STROBE, and E-STROBE on connectivity-based 

localization. 
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 ABDS and Gribben’s method on MLE localization 

Because Gribben’s method is specifically designed for range-based localization 

approaches, ABDS and Gribben’s method[15] are compared in the simulations on MLE 

localization. The error threshold is set to be 22 m. Snapshots of the distribution of active 

beacon nodes in ABDS and Gribben’s method are shown in Fig. 5.9. The location 

impact of beacon nodes is also considered in Gribben’s method, so it does not activate 

beacon nodes very closely.  

 

Fig. 5.8. Active beacon ratio of ABDS, STROBE, and E-STROBE on connectivity-based 

localization. 
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However, this method does not consider real noise distribution in its model. As a result, 

it cannot adapt the real environment very well. As shown in Fig. 5.10 and Fig. 5.11, 

Gribben’s method activates too many beacon nodes and thus shortens the system 

lifetime. Table 5.7 summarizes the system lifetime and mean active ration of ABDS and 

Gribben’s method. ABDS provides 38% longer lifetime and 12% fewer beacon usage. 

 

Fig. 5.9. Snapshots of active beacon map of ABDS and Gribben’s method on MLE 

localization. 

 

Fig. 5.10. Mean localization error of ABDS and Gribben’s method on MLE localization. 
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Fig. 5.11. Active beacon ratio of ABDS and Gribben’s method on MLE localization. 

Table 5.7.  Performance comparison of ABDS and Gribben’s method. 
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Chapter 6 Conclusions 

In this thesis, in order to efficiently schedule beacon duty cycle, we designed a 

measurement to the effectiveness of beacon locations. We face the improvement 

distribution on localization performance in the coverage of an additional beacon. We 

propose DAG to adapt the non-uniform improvement distribution to avoid the 

overestimation and locally dense placement occurred in the method of Grid. Our 

approach adopts Cauchy distribution to generate a centralized weight distribution. The 

weights are applied to cumulate regional localization error. The purpose is to more 

precisely measure the effectiveness of beacon locations and thus design better beacon 

deployments (with fewer beacon nodes deployed). To evaluate DAG, we compare it 

with the classical Max, Grid, and Greedy methods in the experiments of incremental 

beacon placement. The experiments were carried out in a simulated indoor environment 

built by the log-normal shadowing model. The results demonstrate that the placement of 

additional beacons with the employment of DAG can reduce 30% beacon usage. When 

only half of these beacons at saturated state were placed, DAG reduces 76% localization 

error. 

ABDS for scheduling beacon duty cycle is then designed by the usage of DAG. 

ABDS attempts to achieve following design goals. 

• Maximize system lifetime 

• Distributed algorithm 

• Adaptive to noisy environment in real world  

• Can be applied to any types of localization algorithm 

• User defined localization accuracy requirement 

In real world, noise makes beacon nodes at various locations have different 
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effectiveness to reduce localization error. This impact of beacon location is not 

considered in previous scheduling algorithms. In ABDS, neighboring beacon nodes 

exchange information to compute the DAG measurement and find out the efficient 

beacons. As a result, the requirement of localization error can be satisfied by fewer 

active beacon nodes and the system lifetime can be prolonged. Compared to previous 

method, ABDS can reduce 10% beacon usage and provide 54% longer lifetime. 
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