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Abstract

We formulate a framework for applying error-correcting codes (ECC) on
multi-label classification problems. The framework treats some base learn-
ers as noisy channels and uses ECC to correct the prediction errors made
by the learners. An immediate use of the framework is a novel ECC-based
explanation of the popular random k-label-sets (RAKEL) algorithm using
a simple repetition ECC. Using the framework, we empirically compare a
broad spectrum of ECC designs for multi-label classification. The results not
only demonstrate that RAKEL; can be improved by applying some stronger
ECC, but also show that-the traditional. Binary Relevance approach can be
enhanced by learning more-parity-checking labels. Our study on different
ECC also helps understand the trade-off between the strength of ECC and
the hardness of the base' learning.tasks. Furthermore, we extend our study
to linear ECC for either hard (bmary) or-soft (real-valued) bits, and design
a novel decoder for the ECC. We deﬁnnstrate that the ,decoder improves the

performance of our framework p
1

Keywords: Machine Learning, Multi-labei Classification, Error-correcting
Codes, Soft Decoding, Geometric:Decoding.
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Chapter 1

Introduction

Multi-label classification is an extension of traditional multi-class classification. In partic-
ular, the latter aims at accurately associating oné:single label with an instance, while the
former aims at associating a label set#Because of the-increasing application needs in do-
mains like text and music categorization{Pestianet al., 2007, Trohidis et al., 2008], scene
analysis [Boutell et al., 2004], and genorﬁ@l_ilisseeff and Weston, 2002, |Diplaris et al.,

20035]], multi-label classification i8 attractingfmuch fesearch attention in recent years.

Error-correcting code (ECE).roots from the information theoretic pursuit of commu-
nication [Shannon, 1948|]. In particulary, the ECC studies how to accurately recover a
desired signal block after transmitting the block’s encoding through a noisy communica-
tion channel. When the desired signal block is the single label (of some instances) and
the noisy channel consists of some binary classifiers, it has been shown that a suitable use
of the ECC could improve the association (prediction) accuracy of multi-class classifica-
tion [Dietterich and Bakiri, [1995]]. In particular, with the help of the ECC, we can reduce
multi-class classification to several binary classification tasks. Then, following the foun-
dation of the ECC in information theory [Shannon, |1948, Mackay, 2003], a suitable ECC
can correct a small portion of binary classification errors during the prediction stage and
thus improve the prediction accuracy. Several designs, including some classic ECC [Diet-
terich and Bakiri, 1995] and some adaptively constructed ECC [Schapire, 1997, L1, 2006,

have reached promising empirical performance for multi-class classification.

While the benefits of the ECC are well established for multi-class classification, the



corresponding use for multi-label classification remains an ongoing research direction.
Kouzani and Nasireding [2009] take the first step in this direction by proposing a multi-
label classification approach that applies a classic ECC, the Bose-Chaudhuri-Hocquenghem
(BCH) code, using a batch of binary classifiers as the noisy channel. The work is followed
by some extensions to the convolution code [Kouzani, 2010]. Although the approach
shows some good experimental results over existing multi-label classification approaches,
a more rigorous study remains needed to understand the advantages and disadvantages of
different ECC designs for multi-label classification and will be the main focus of this

work.

In this work, we formalize the framework for applying the ECC on multi-label clas-
sification. The framework is more general than;both existing ECC studies for multi-class
classification [Dietterich and Bakiri;{1995]] and formulti=label classification [[Kouzani and
Nasireding, 2009]]. Then, we conduct a-thorough.study:with a broad spectrum of classic
ECC designs: repetition code, Hamming'qu'gf, BCH code, and low-density parity-check
code. The four designs cover the simplestl.-.qCﬂC idea to the state-of-the-art ECC in com-
munication systems. Interestingly, su_cﬁ a fraﬁlewo_rk allows, us to give a novel ECC-based
explanation to the random A-label'sets (RAKEL) algorithm, which is popular for multi-

label classification. In particular, RAKEL can be viewed as a special type of repetition

code coupled with a batch of simple and internal multi-label classifiers.

We empirically demonstrate that RAKEL can be improved by replacing its repetition
code with the Hamming code, a slightly stronger ECC. Furthermore, even better perfor-
mance can be achieved when replacing the repetition code with the BCH code. When
compared with the traditional Binary Relevance (BR) approach without the ECC, multi-
label classification with the ECC can perform significantly better. The empirical results

justify the validity of the ECC framework.

In addition, we design a new decoder for linear ECC by using multiplications to ap-
proximate exclusive-OR operations. This decoder is able to handle not only ordinary
binary bits from the channels, called hard inputs, but also real-valued bits, called soft in-

puts. For multi-label classification using the ECC, the soft inputs can be used to represent

2



the confidence of the internal classifiers. Our newly designed decoder allows a proper
use of the detailed confidence information to produce more accurate predictions. The ex-
perimental results show that this decoder indeed improves the performance of the ECC
framework with either hard or soft inputs.

The thesis is organized as follows. First, we introduce the multi-label classification
problem in Section|l.1} and present related works in Section Chapter 2]illustrates the
framework and demonstrates its effectiveness. Chapter [3| presents a new decoder for hard

or soft inputs. Finally we conclude in Chapter 4]

1.1 Problem Setup

Multi-label classification aims at‘mappifig an instance'x € R to a label-set Y C L =
{1,2,..., K}, where K is the/ number.of classes, Following the hypercube view of Tai

and Lin| [2012]], the label set Y can be réprésented as a binary vector y of length K,

where y/[i] is 1 if the ¢th label isyin Y, all-qd 0 otherwise., Consider a training dataset
D = {(xp,yn)}\_,. A multi-label cl_as.siﬁca.t-ion algorithm.uses D to locate a multi-label
classifier h: R? — {0, 1}% such that'h (%) prediets y well.on future test examples (x,y).

There are several loss functions for evaluatingi whether h(x) predicts y well. Two
common ones are:

e subset 0/1 loss: this loss function is arguably one of the most challenging loss functions

because zero (small) loss occurs only when every bit of the prediction is correct.

AO/I(yay) = [y #vl]

e Hamming loss: this loss function considers individual bit differences.
| X
Aur(y:y) = 2 >[5l # ylill

=1

Dembczynski et al.| [2010]] show that the two loss functions focus on different statistics

of the underlying probability distribution from a Bayesian perspective. While a wide

3



range of other loss functions exist [T'soumakas and Vlahavas, 2007]], in this paper we
only focus on 0/1 and Hamming because they connect tightly with the ECC framework

that will be discussed /]

1.2 Related Works

The hypercube view [Tai and Lin, 2012] unifies many existing problem transformation ap-
proaches [T'soumakas and Vlahavas, 2007|] for multi-label classification. Problem trans-
formation approaches transform multi-label classification into one or more reduced learn-
ing tasks. For instance, one simple problem transformation approach for multi-label clas-
sification is called Binary Relevance (BR), which learns one binary classifier per indi-
vidual label. Another simple preblemgtransfosmation’.approach is called label power-
set (LP), which transforms multi-label classification to one multi-class classification task
with a huge number of extended labels. \One: popular problem transformation approach
that lies between BR and LP isiealléd rar'i};ﬁq k-label'sets (RAKEL) [Tsoumakas and
Vlahavas, 2007]], which transforms multi—lag-el classification into many multi-class clas-
sification tasks with a smaller r;umbe.r ofiextended labels.

Multi-label classification with compressive sensing [Hsu et al., 2009] is a problem
transformation approach that encodes the training label set y,, to a shorter, real-valued
codeword vector using compressive sensing. [lai and Lin [2012] study some different
encoding schemes from label sets to real-valued codewords. Note that those encoding
schemes focus on compression—removing the redundancy within the binary signals (label
sets) to form shorter codewords. The compression perspective can lead to not only more
efficient training and testing but also more meaningful codewords.

Compression is a classic task in information theory based on Shannon’s first theo-
rem [Shannon, |1948]. Another classic task in information theory aims at expansion—
adding redundancy in the (longer) codewords to ensure robust decoding against noise

contamination. The power of expansion is characterized by Shannon’s second theo-

"'We follow the final remark of Dembczynski et al. [2010] to only focus on the loss functions that are
related to our algorithmic goals.



rem [Shannon, [1948]]. The ECC targets towards using the power of expansion system-
atically. In particular, the ECC works by encoding a block of signal to a longer codeword
b before passing it through the noisy channel and then decoding the received codeword
b back to the block appropriately. Then, under some assumptions [Mackay, [2003], the
block can be perfectly recovered—resulting in zero block-decoding error; in some cases,
the block can only be almost perfectly recovered—resulting in a few bit-decoding errors.

If we take the “block™ as the label set y for every example (x,y) and a batch of base
learners as a channel that outputs the contaminated block b, the block-decoding error
corresponds to A/, while the bit-decoding error corresponds to a scaled version of Ay,
Such a correspondence motivates us to study whether suitable ECC designs can be used

to improve multi-label classification, which will'be formalized in the next chapter.
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Chapter 2

ECC for Multi-label Classification

2.1 ML-ECC Framework

We now describe the ECC framewerk in detail. The main idea is to use an ECC encoder
enc(+): {0,1}% — {0, 1}M to expand the original label\set'y € {0,1}* to a codeword
b € {0, 1} that contains rédundant infor;;lﬁﬂ‘tion. Then,instead of learning a multi-label
classifier h(x) between x and y, we learn.?‘a multi-label classifier A(x) between x and
the corresponding b. In other words, we transform the original multi-label classification
problem into another (larger) multi-label classification task. During prediction, we use
h(x) = deco h(x), where dec(-): {0, 1M 540, 11X is the corresponding ECC decoder,
to get a multi-label prediction y € {0, 1}¥. The simple steps of the framework are shown
in Algorithm 1]

Algorithm [I) is simple and general. It can be coupled with any block-coding ECC
and any base learner A, to form a new multi-label classification algorithm. For instance,
the ML-BCHRF method [Kouzani and Nasireding, [2009] uses the BCH code (see Sub-
section [2.2.3)) as the ECC and BR on Random Forest as the base learner .4;. Note that
Kouzani and Nasireding| [2009] did not describe why ML-BCHRF may lead to improve-
ments in multi-label classification. Next, we show a simple theorem that connects the
ECC framework with Ag ;.

Many ECCs can guarantee to correct up to m bit flipping errors in a codeword of

length M. We will introduce some of those ECC in Section Then, if Ay, of h is
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Algorithm 1 Error-Correcting Framework

e Parameter: an ECC with encoder enc(:) and decoder dec(-); a base multi-label
learner A;

N
n=1°

e Training: Given D = {(x,,,yx)
1. ECC-encode each y,, to b,, = enc(y,);
2. Return h = Ab({ (Xn, bn) })

e Prediction: Given any X,

1. Predict a codeword b = fz(x);

2. Return h(x) = dec(b) by ECC-decoding.

low, the ECC framework guarantees that Ay, of / is low. The guarantee is formalized as

follows.

Theorem 1 Consider an ECC that ean correct'up to m.bit errors in a codeword of

length M. Then, for any T test examples. _{_(‘)'ct, va) b, let by = enc(yy). If

then h = deco h satisfies

Me
m+1

T
1
Aoj1(h) = T Z Aoj1(h(xt),ye) <
t=1

Proof When the average Hamming loss of h is at most €, h makes at most €I'M bits of
error on all b;. Since the ECC corrects up to m bits of errors in one b, an adversarial has

to make at least m + 1 bits of errors on b, to make h(x;) different from y;. The number

of such b, can be at most fﬂvlf Thus, Ag/1(h) is at most % [ |

From Theorem 1], it appears that we should simply use some stronger ECC, for which m
is larger. Nevertheless, note that we are applying the ECC in a learning scenario. Thus,
e is not a fixed value, but depends on whether A, can learn well from D. Stronger ECC
usually contains redundant bits that come from complicated compositions of the original

bits in y, and the compositions may not be easy to learn. The trade-off has been revealed

8



when applying the ECC to multi-class classification [Li, 2006]. In the next section, we

study the ECC with different strength and empirically verify the trade-off in Section [2.4

2.2 Review of Classic ECC

Next, we review four ECC designs that will be used in the empirical study. The four
designs cover a broad spectrum of practical choices in terms of strength: the repetition
code, the Hamming on repetition code, the Bose-Chaudhuri-Hocquenghem code, and the

low-density parity-check code.

2.2.1 Repetition Code

One of the simplest ECCs is repetition'code (REP). [Mackay, [2003]], for which every bit
in y is repeated L%J times'in b during encoding. If*/// is ‘not a multiple of K, then
(M mod K) bits are repeated gne more t'i'j:"igr; The decoding takes a majority vote using
the received copies of each bit. Becatise of the majority vote, repetition code corrects up
to mprep = %L%J — 1 bit errors.in b. {We vs;i-ll discuss the connection between REP and

the RAKEL algorithm in Section [2.3}

2.2.2 Hamming on Repetition Code

A slightly more complicated ECC than REP is called the Hamming code (HAM) [Ham-
ming, |1950], which can correct m g 45, = 1 bit error in b by adding some parity check bits
(exclusive-OR operations of some bits in y). One typical choice of HAM is HAM(7,4),
which encodes any y with K = 4 to b with M = 7. Note that my ), = 1 is worse than
mpep = 5| %] — 1 when M is large. Thus, we consider applying HAM(7,4) on every 4
(permuted) bits of REP. That is, to form a codeword b of M bits from a block y of K
bits, we first construct an REP of 4| M /7| + (M mod 7) bits from y; then for every 4
bits in the REP, we add 3 parity bits to b using HAM(7,4). The resulting code will be
named Hamming on Repetition (HAMR). During decoding, the decoder of HAM(7,4) is

first used to recover the 4-bit sub-blocks in the REP. Then, the decoder of REP (majority

9



vote) takes place.

It is not hard to compute m g a5z by analyzing the REP and HAM parts separately.
When M is a multiple of 7 and K is a multiple of 4, it can be proved that myay g = %’
which is generally better than mrpp = %L%J — 1. Thus, HAMR is slightly stronger
than REP for ECC purposes. We include HAMR in our study to verify whether a simple

inclusion of some parity bits for the ECC can readily improve the performance for multi-

label classification.

2.2.3 Bose-Chaudhuri-Hocquenghem Code

BCH was invented by Bose and Ray-Chaudhuri/{1960], and independently by Hocquenghem
[1959]]. It can be viewed as a sophistieated extension of HAM and allows correcting mul-
tiple bit errors. BCH with lenigth/}/ =22 — 1 has+(M — K')"parity bits, and it can correct
Mpoy = % bits of error [Mackay, ZOdnghich is in general stronger than REP and
HAMR. The caveat is that the decoder of BGH 1s moré complicated than the ones of REP
and HAMR. ]

We include BCH in our study-because it is:one"of the most popular ECCs in real-
world communication systems. In addition; we compare BCH with HAMR to see if a

strong ECC can do better for multi-label classification.

2.2.4 Low-density Parity-check Code

Low-density parity-check code (LDPC) [Mackay, 2003] is recently drawing much re-
search attention in communications. LDPC shares an interesting connection between
ECC and Bayesian learning [Mackay, 2003]]. While it is difficult to state the strength of
LDPC in terms of a single m;ppc, LDPC has been shown to approach the theoretical
limit in some special channels [Gallager, |1963]], which makes it a state-of-the-art ECC.
We choose to include LDPC in our study to see whether it is worthwhile to go beyond

BCH with more sophisticated encoder/decoders.
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2.3 ECC View of RAKEL

RAKEL is a multi-label classification algorithm proposed by Tsoumakas and Vlahavas
[2007]. Define a k-label set as a size-k subset of L. Each iteration of RAKEL randomly
selects a (different) k-label set and builds a multi-label classifier on the k& labels with a
Label Powerset (LP). After running for R iterations, RAKEL obtains a size- R ensemble
of LP classifiers. The prediction on each label is done by a majority vote from classifiers
associated with the label.

Equivalently, we can draw (with replacement) M = Rk labels first before building
the LP classifiers. Then, selecting k-label sets is equivalent to encoding y by a variant
of REP, which will be called RAKEL repetition.code (RREP). Similar to REP, each bit
y|i] is repeated several times in b since label s involved in several k-label sets. After
encoding y to b, each LP classifier, ealled k-powerset, acts as a sub-channel that transmits
a size-k sub-block of the codeword b. The prédiction procedure follows the decoder of

| -

the usual REP. = -
The ECC view above decomposes the 61'si_gina1 RAKEL: into two parts: the ECC and
the base learner A,. Next, we empirically study haw the two parts affect the performance

of multi-label classification.

2.4 Experimental Results

We compare RREP, HAMR, BCH, and LDPC with the ECC framework on seven real-
world datasets in different domains: scene, emotions, yeast, tmc2007, genbase,
medical, and enron [Isoumakas et al., 2010]. The statistics of these datasets are
shown in Table[2.1] All the results are reported with the mean and standard error on ran-
dom splitting test set over 30 runs. The sizes of training and testing sets are set according
to the sizes in original datasets. Note that for tmc2007 dataset, which has 28596 in-
stances in total, we randomly sample 5% for training and another 5% for testing in each
run.

We set RREP with k£ = 3. Then, for each ECC, we first consider a 3-powerset with

11



Table 2.1: Dataset characteristics

DATASET K TRAINING TESTING FEATURES

SCENE 6 1211 1196 294
EMOTIONS 6 391 202 72
YEAST 14 1500 917 103
T™C2007 22 1430 1430 500
GENBASE 27 463 199 1186
MEDICAL 45 333 645 1449
ENRON 53 1123 579 1001

either Random Forest, non-linear support vector machine (SVM), or logistic regression as
the multi-class classifier inside the 3-powerset. Note that we randomly permute the bits
of b and apply an inverse permutation on b for those ECC other than RREP to ensure that
each 3-powerset works on diverse sub-blocks. In-addition to the 3-powerset base learners,
we also consider BR base learnersidn Subsection 2.4.4

We take the default Random Forest fr_ggl Weka [Hall et al., 2009] with 60 trees. For
the non-linear SVM, we use [LIBSVM [é-.l—ll?ri'g and Lin, 2001} with the Gaussian ker-
nel and choose (C, ) by cross vali&dtion Ln training data~from {275 273 ... 27} x
{279,277 ... 2!}, In addition, we :use LIBLINEA_R [Fan et al., 2008] for the logistic
regression and choose the parameter C-by cross validation from {275,273 ... 27},

Note that the experiments taken in this work are generally broader than existing works
that are related to multi-label classification with the ECC in terms of the datasets, the
codes, the “channels,” and the base learners, as shown in Table@ The goal of the exper-
iments is not only to justify that the framework is promising but also to rigorously identify
the best codes, channels, and base learners for solving general multi-label classification

tasks via the ECC.

2.4.1 Validity of ML-ECC Framework

First, we demonstrate the validity of the ML-ECC framework. We fix the codeword
length M to about 20 times larger than the number of labels K. The numbers are in

the form 27 — 1 for integer p because the BCH code only works on such lengths. More

12



Table 2.2: Focus of existing works under the ML-ECC framework

work # datasets  codes channels base learners

RAKEL 3 RREP k-powerset  linear SVM

[Tsoumakas and Vlahavas| 2007

ML-BCHRF 3 BCH BR Random Forest

[Kouzani and Nasireding, 2009]

ML-BCHRF & ML-CRF 1 convolution, BR Random Forest

[Kouzanil 2010] and BCH

this work 7 RREP, HAMR, 3-powerset, Random Forest,
BCH, and LDPC and BR Gaussian SVM,

logistic regression
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(M=127)  (M=127) (M=255] (M=511) (M=511}] (M=1023) (M=1023) (M=127)  (M=127) (M=255) (M=511) (M=511} (M=1023) (M=1023)
(a) 0/1 loss (b) Hamming loss

Figure 2.1: Performance of ML-ECC using the 3-powerset with Random Forests

experiments on different codeword lengths are presented in Section Here the base
multi-label learner is the 3-powerset with Random Forests. Following the description in

Section [2.3] RREP with the 3-powerset is exactly the same as RAKEL with k& = 3.

The results on 0/1 loss is shown in Figure HAMR achieves lower A/
than RREP on 5 out of the 7 datasets (scene, emotions, yeast, tmc2007, and
medical) and achieves similar A,; with RREP on the other 2. This verifies that us-
ing some parity bits instead of repetition improves the strength of ECC, which in turn
improves the 0/1 loss. Along the same direction, BCH performs even better than both
HAMR and RREP, especially on medical dataset. The superior performance of BCH

justifies that the ECC is useful for multi-label classification. On the other hand, another
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Table 2.3: 0/1 loss of ML-ECC using 3-powerset base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest RREP (RAKEL) .3390 £ .0022 .6475 £+ .0057 .7939 £ .0022 7738 +.0025
Random Forest HAMR .2855 4 .0022 .6393 +.0055 7789 £+ .0021 7693 £+ .0024
Random Forest BCH .2671 +.0020 .6366 + .0061 7764 + .0021 7273 £.0018
Random Forest LDPC .3058 £+ .0024 .6606 + .0050 .8080 £ .0024 7728 +.0022
Gaussian SVM RREP (RAKEL) .2856 4+ .0016 7759 £+ .0055 7601 £ .0023 7196 £ .0024
Gaussian SVM HAMR .2635 £+ .0017 7729 + .0052 .7530 £ .0021 7162 £+ .0023
Gaussian SVM BCH .2576 +£.0017 7744 + .0053 7429 +.0017 7095 +.0020
Gaussian SVM LDPC .2780 £ .0020 .8040 £ .0044 7574 £ .0021 .7403 £+ .0019
Logistic Regression ~ RREP (RAKEL) .3601 £+ .0019 .6949 +.0070 .8161 £+ .0017 .7408 £+ .0024
Logistic Regression HAMR .3299 £+ .0018 .6954 + .0057 .8061 £ .0019 .7383 £+ .0025
Logistic Regression ~BCH .3148 + .0018 7068 £ .0046 7899 + .0020 7233 + .0024
Logistic Regression =~ LDPC .3655 £ .0028 7295 £+ .0056 .8082 £ .0024 7562 £ .0027
base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)
Random Forest RREP (RAKEL) .0295 £+ .0021 .6508 £ .0024 .8866 £ .0038
Random Forest HAMR .0276 +.0021 .6420 £+ .0029 .8855 £ .0036
Random Forest BCH .0263 +.0020 .4598 +.0036 .8659 +.0039
Random Forest LDPC .0288 £+ .0021 .5238 +.0032 .8830 £ .0036
Gaussian SVM RREP (RAKEL) .0295 £ .0025 .3679°£ .0036 .8725 £ .0041
Gaussian SVM HAMR 10303 £ .0026 13641 £ .0031 .8693 £ .0042
Gaussian SVM BCH .0255 =+ .0019 3304 £ .0027  .8477 £ .0045
Gaussian SVM LDPC .0285"+..0021 3856, 40031 .8666 £ .0041
Logistic Regression ~ RREP (RAKEL) .3593 & .0078 5507 % .0254 .8762 £+ .0035
Logistic Regression HAMR W 2275 + 0099 .5268 + .0230°%, - 18754 + .0035
Logistic Regression ~ BCH .0250 +.0018 8797 + .0044 .8504 + .0042
Logistic Regression ~ LDPC .0325 £ .0018 fws 1+ 4516,+ .0083 .8653 £ .0038

1l @ |

sophisticated code, LDPC, gets_higlief 0/1 loss than BCH on every dataset, and even

higher 0/1 loss than RREP on the émotions and 3'/.'east datasets, which suggest that

LDPC may not be a good choice for the ECC framework.

Next we look at Ay, shown in Figure The Hamming loss of HAMR is com-
parable to that of RREP, where each wins on two datasets. BCH beats both HAMR and
RREP on the tmc2007, genbase, and medical datasets but loses on the other four
datasets. LDPC has the highest Hamming loss among the codes on all datasets. Thus,
simpler codes like RREP and HAMR perform better in terms of Ay . A stronger code
like BCH may guard A/, better, but it can pay more in terms of Ay

Similar results show up when using the Gaussian SVM or logistic regression as the
base learner instead of Random Forest, as shown in Tables and The boldface
entries are the lowest-loss ones for the given dataset and base learner. The results vali-
date that the performance of multi-label classification can be improved by applying the

ECC. More specifically, we may improve the RAKEL algorithm by learning some parity
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Table 2.4: Hamming loss of ML-ECC using 3-powerset base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest RREP (RAKEL) .0755 4+ .0006 1778 +.0018 .1884 + .0007 .0674 £+ .0003
Random Forest HAMR .0748 + .0006 1798 £+ .0019 .1894 + .0008 .0671 £ .0003
Random Forest BCH .0753 £+ .0007 .1858 +.0021 .1928 4+ .0008 .0662 + .0003
Random Forest LDPC .0817 £+ .0007 .1907 +.0021 .2012 £ .0007 .0734 £+ .0003
Gaussian SVM RREP (RAKEL) .0719 4+ .0005 .2432 4+ .0021 .1853 4+ .0007 .0613 + .0003
Gaussian SVM HAMR .0723 £+ .0005 .2492 +.0023 .1868 £+ .0006 .0610 + .0003
Gaussian SVM BCH .0739 £ .0006 .2644 £+ .0019 .1898 £ .0008 .0629 £ .0003
Gaussian SVM LDPC .0755 4+ .0006 .2634 + .0027 .1917 4+ .0007 .0679 £ .0003
Logistic Regression ~ RREP (RAKEL) .0915 + .0005 .2026 + .0025 .1993 + .0007 .0634 + .0003
Logistic Regression HAMR .0911 + .0005 .2064 £+ .0024 .2003 £ .0007 .0634 + .0003
Logistic Regression ~ BCH .0920 £ .0005 .2233 +.0022 .2051 £ .0008 .0653 £ .0003
Logistic Regression ~ LDPC .0989 £ .0007 .2202 £+ .0021 .2054 £ .0007 .0701 £ .0003
base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)
Random Forest RREP (RAKEL) .0012 £ .0001 .0182 £+ .0001 .0477 +.0004
Random Forest HAMR .0012 £ .0001 .0180 £+ .0001 .0479 + .0004
Random Forest BCH .0011 +.0001 .0159 +.0001 .0506 £ .0004
Random Forest LDPC .0013 £ .0001 .0192 +.0002 .0538 £ .0005
Gaussian SVM RREP (RAKEL) .0013 £ .0001 .0112 4+ .0001 .0449 4+ .0004
Gaussian SVM HAMR 10013 + .0001 .Qill +.0001 .0449 + .0004
Gaussian SVM BCH .0010 + .0001 {0114 4+ .0001 .0516 £ .0006
Gaussian SVM LDPC .0014-+ .0001 0140 +..0001 .0530 £ .0005
Logistic Regression ~ RREP (RAKEL) .0179 =% .0006 .0190 & .0011 .0453 + .0003
Logistic Regression HAMR .0102 £ .0005 .0176 £ .0009 +,.0454 1 .0003
Logistic Regression ~ BCH .0013 +.0001 0137+ .0003 .0505 £ .0004
Logistic Regression ~ LDPC .0024 .0002 1, 0187+ .0006 .0528 £ .0004

| . Ir_ I = - 1

bits instead of repetitions. Based on| tLis e;(:};'erin}e'nt, we suggest that using HAMR for
riys | 1

multi-label classification will improve the?Ag/y*while maintaining comparable A, with

RAKEL. If we use BCH instead, we.will improve Aq,; further but may pay for Ay,

We also report the micro and macro F} scores, and also the pairwise label ranking loss in

Tables[A.1][A.2] and[A.3] respectively.

2.4.2 Comparison of Codeword Length

Now, we compare on the length of codewords M. With larger M, the codes can correct
more errors but the base learners have to take longer time to train. By experimenting
different M, we may find a better trade-off between performance and efficiency.

The performance of the ECC framework with different codeword lengths on the scene
dataset is shown on Figure[2.2] Here, the base learner is again the 3-powerset with Ran-
dom Forests. The codeword length M varies from 31 to 127, which is about 5 to 20 times

of number of labels L. We do not include shorter codewords because their performance
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are not stable. Note that BCH only allows M = 2P — 1 and thus we conduct experiments

of BCH on those codeword lengths.

We first look at the 0/1 loss in Figure The horizontal axis indicates the code-
word length M and the vertical axis is the 0/1 loss on the test set. We see that Ay, of
RREP stays around 0.335 no matter how long the codewords are. This implies that the
power of repetition bits reaches its limit very soon. For example, when all the 3-powerset
combinations of labels are learned, additional repetitions give very limited improvements.
Therefore, methods using repetition bits only, such as RAKEL, cannot take advantage

from the extra bits in the codewords.

The Ay/; of HAMR and BCH are slightly decreasing with A/, but the differences be-
tween M = 63 and M = 127 are generally small (smaller than the differences between
M = 31 and M = 63, in particular). This indicatesithatlearning some parity bits provides
additional information for prediction, which cannet be learned easily from repetition bits,
and such information remains beneﬁcial't?r’;?nger codewords, comparing to repetition
bits. One reason is that the number of ?_;—po.\;\&erset combinations of parity bits is exponen-
tially more than that of combinations of labelé. The performance of LDPC is not as stable
as the other codes, possibly because of its sophisticated decoding step. Somehow, we still

see that its A/, decreases slightly with M.

Figure shows A gy versus M for each ECC. The Agy of RREP is the lowest
among the codes when M is small, but it remains almost constant when M > 63, while
Ap of HAMR and BCH are still decreasing. This matches our finding that extra repeti-
tion bits give limited information. When M = 127, BCH is comparable to RREP in terms
of Ayr. HAMR is even better than RREP at that codeword length, and becomes the best
code regarding Ay ,. Thus, while a stronger code like BCH may guard A, better, it can

pay more in terms of Agy.

As stated in Sections [I.1] and the base learners serve as the channels in the ECC
framework and the performance of base learners may be affected by the codes. Therefore,
using a strong ECC does not always improve multi-label classification performance. Next,

we verify the trade-off by measuring the bit error rate Agpg of h, which is defined as the
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Hamming loss between the predicted codeword fz(x) and the actual codeword b. Higher

bit error rate implies that the transformed task is harder.

Figure shows the Aggpr versus M for each ECC. RREP has almost constant bit
error rate. HAMR also has nearly constant bit error rate but at a higher value. The bit
error rate of BCH is similar to that of HAMR when the codeword is short, but the bit error
rate increases with M. One explanation is that some of the parity bits are harder to learn
than repetition bits. The ratio between repetition bits and parity bits of both RREP and
HAMR codes is a constant of M/ (RREP has no parity bits, and HAMR has 3 parity bits
for every 4 repetition bits), while BCH has more parity bits with larger M. The different
bit error rates justify the trade-off between the strength of the ECC and the hardness of

the base learning tasks. With more parity bits, one can correct more bit errors, but may
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have harder tasks to learn; when using fewer parity bits or even no parity bits, one cannot

correct many errors, but will enjoy simpler learning tasks.

Similar results show up in other datasets with all three base learners. The performance
on the yeast dataset with the 3-powerset and Random Forests is shown in Figure 2.3]
Because the number of labels in the yeast dataset is about twice of that in the scene
dataset, the codeword length here ranges from 63 to 255, which is also about twice longer
than that in the experiments on the scene dataset. Again, we see that the benefits of
parity bits remain valid for longer codewords than repetition bits and that more parity bits
cause the transformed task harder to learn. This result points out the trade-off between

the strength of the ECC and the hardness of the base learning tasks.
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2.4.3 Bit Error Analysis '.

To further analyze the difference between different ECC designs, we zoom in to M = 127
of Figure[2.2] The instances are divided into groups according to the number of bit errors
at that instance. The relative frequency of each group, i.e., the ratio of the group size to
the total number of instances, is plotted in Figure The average Ay/; and Ay, of
each group are also plotted in Figure[2.4(b) and [2.4(c)l The curve of each ECC forms two

peak regions in Figure Besides the peak at 0, which means no bit error happens
on the instances, the other peak varies from one code to another. The positions of the
peaks suggest the hardness of the transformed learning task, similar to our findings in
Figure

We can clearly see the difference on the strength of different ECC from Figure

BCH can tolerate up to 31-bit errors, but its A/, sharply increases over 0.8 for 32-bit er-
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Figure 2.5: Parity bits: the scene dataset, 6 labels, M = 127

rors. HAMR can correct 13-bit erfors perfectly;-and its A/, increases slowly when more
errors occur. Both RREP and LDPE can perfectly.correct only 9-bit errors, but LDPC is
able to sustain a low Ag/; even when there are 32-bit'ertors. It would be interesting to

study the reason behind this long tail fr_orirja'.‘Ba'yesian network perspective.

We can also look at the relation bétiweer_'l\;t_rhe number of bit errors and A gy, as shown
in Figure The BCH curve gré)v;/s sharply v.ivhen the’number of bit errors is larger
than 31, which links to the inferiot'performance:of iBCH over RREP in terms of Ayy.
The LDPC curve grows much slower, but its right-sided peak in Figure still leads
to higher overall Ay;. On the other hand, RREP and HAMR enjoy a better balance
between the peak position in Figure and the growth in Figure and thus lower

overall Agr.

Figure suggests that the transformed learning task of more sophisticated ECC
is harder. The reason is that sophisticated ECC contains many parity bits, which are the
exclusive-or of labels, and the parity bits are harder to learn by the base learners. We
demonstrate this in Figure 2.5|using scene dataset (6 labels) and fixing M = 127. The
codeword bits are divided into groups according to the number of labels XOR’ed to form
the bit. The relative frequency of each group is plotted in Figure We can see that
all codeword bits of RREP are formed by 1 label, and the bits of HAMR are formed by 1

or 3 labels. For BCH and LDPC, the number of labels XOR’ed in the bits may be none
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Figure 2.6: Parity bits: the medical dataset, 45 labels, M = 1023

(0) to all (6) labels, while most of theibits are the_ XOR of half of the labels (3 labels).

Next we show how well the.base learners .'Tearned on each group in Figure
Here the base learner is 3-powerset with Random Forests.-, The figure suggests that the
parity bits (XOR’ing 2 or more labels) resy 1n harder learnlng tasks and higher bit error
rates than original labels (XOR ’ing 1 1abel)"’- e exceptlon is the bits XOR’ed from all (6)
labels, which is easier to learn than oqglnal ITai)els IThe reason is that the bit XOR’ed from
all labels is equivalent to the 1nd1cat(;r ‘of odd nunl‘ﬂ:;er of labels, and a constant predictor
works well for this because in the scehe dataset abeut 92% of all instances has 1 or 3
labels. Since BCH and LDPC have many bits XOR’ed from 2-4 labels, their bit error
rates are higher than RREP and HAMR as shown in Figure

These findings also appear on other datasets and other base learners, such asmedical
dataset (45 labels, M/ = 1023) shown in Figure 2.60 BCH and LDPC have many bits

XOR’ed from about half of the labels, and the transformed learning tasks of such bits are

harder to learn than that of original labels.

2.4.4 Comparison with Binary Relevance

In addition to the 3-powerset base learners, we also consider BR base learners, which
simply build a classifier for each bit in the codeword space. Note that if we couple the

ECC framework with RREP and BR, the resulting algorithm is almost the same as the
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Figure 2.7: Performance of ML-ECC using Binary Relevance with Random Forests

original BR. For example, using RREP:and BR with SVM is equivalent to using BR with

bootstrap aggregated SVM.

We first compare the performance between the ECC designs using the BR base learner
with Random Forests. The result on (/1 lo'ssls shown in Figure From the figure,
we can see that BCH and HAMR has superio:'r_performance toother ECC, with BCH being
a better choice. RREP (BR), on;the other hand, leads to-the worst 0/1 loss. The result
again justifies the usefulness of coupling’BR with'the ECC instead of only the original y.
Note that LDPC also performs better than BR ‘on two datasets, but is not as good as
HAMR and BCH. Thus, over-sophisticated ECC like LDPC may not be necessary for
multi-label classification.

In Figure2.7(b), we present the results on Ay . In contrast to the case when using the
3-powerset base learner, here both HAMR and BCH can achieve better Ay, than RREP
(BR) in most of the datasets. HAMR wins on three datasets, while BCH wins on four.
Thus, coupling stronger ECC with the BR base learner can improve both A/, and Agy.
However, LDPC performs worse than BR in term of Ay, which again shows that LDPC
may not be suitable for multi-label classification.

Experiments with other base learners also support similar findings, as shown in Ta-
bles and Notice that HAMR performs better than BCH when using Gaussian

SVM base learners. Thus, extending BR by learning some more parity bits and decoding
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Table 2.5: 0/1 loss of ML-ECC using BR base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest RREP (BR) .4396 £+ .0022 .6825 +.0053 .8332 £ .0016 7715 £ .0023
Random Forest HAMR .3213 £ .0020 6573 £ .0051 7910 £ .0020 7578 £ .0025
Random Forest BCH .2570 + .0022 .6386 + .0062 7792 +.0019 7149 + .0022
Random Forest LDPC .3996 £ .0028 .6939 +.0049 .8338 +.0015 7735 +.0024
Gaussian SVM RREP (BR) .3378 £+ .0023 .8414 4+ .0051 7955 + .0017 .7281 £.0025
Gaussian SVM HAMR .2873 +.0017 .8084 +.0047 7681 + .0022 7215 4+ .0025
Gaussian SVM BCH .2550 +.0018 7787 4+ .0048 7515 4+ .0015 .7053 + .0024
Gaussian SVM LDPC .3161 £+ .0023 .8530 4+ .0041 7963 £ .0018 7515 +.0023
Logistic Regression ~ RREP (BR) 14821 £ .0024 7396 £ .0049 .8531 £+ .0016 7458 £+ .0026
Logistic Regression HAMR .4048 £ .0020 7170 £ .0056 .8282 4+ .0015 .7405 £+ .0024
Logistic Regression ~ BCH .3291 + .0020 .6982 1+ .0048 .8094 + .0020 7205 + .0022
Logistic Regression ~ LDPC .4659 £ .0028 7507 £ .0056 .8565 £+ .0019 7694 £ .0027
base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)
Random Forest RREP (BR) .0303 £ .0020 .6546 £ .0025 .8872 £ .0036
Random Forest HAMR .0288 £+ .0019 .6387 £ .0025 .8851 £ .0036
Random Forest BCH .0250 +.0019 .4567 +.0034 .8737 +.0038
Random Forest LDPC .0312 £ .0022 .5601 +.0032 .8876 + .0035
Gaussian SVM RREP (BR) .02734£ .0021 .372__1 +.0037 .8720 £+ .0041
Gaussian SVM HAMR .0243 + .0022" .3675:% .0036, .8718 £ .0042
Gaussian SVM BCH 10255 + .0019-" _.3499.4 .0030 .8561 4+ .0043
Gaussian SVM LDPC .0243+.0017 42260034 8782 £ .0037
Logistic Regression ~ RREP (BR) 50844 .0068 5784 £.0282 8759 + .0035
Logistic Regression ~ HAMR 143509 = .0089., .5499 .0247 <%8740 + .0036
Logistic Regression ~BCH 0295 + .0018 .4022 £ .0076 ‘8579 + .0038
Logistic Regression ~ LDPC .0528 £ 0031 e :55?,96'Ij: .0149 .8795 + .0036

et

o |

R || @«
them suitably by the ECC is a _§_upellli r alé&ithlﬁ Ii)ver thg 'original BR. The micro and
macro [ scores, and the pair\;vi.sc' l-albé:l ranking-1oss:are reported in Tables [A.12] [A.T3]
and[A.14] respectively. <
Comparing Tables and we see that using 3-powerset achieves lower 0/1 loss

than using BR in most of the cases. However, in terms of Ay, as shown in Tables @

and [2.6] there is no clear winner between the 3-powerset and BR.
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Table 2.6: Hamming loss of ML-ECC using BR base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest RREP (BR) .0858 4+ .0005 .1811 +.0016 .1903 + .0006 .0662 £+ .0003
Random Forest HAMR .0728 £:0005 1779 +.0017 .1878 4+ .0007 .0652 £ .0002
Random Forest BCH .0720 £ .0007% -1828.4+ .0018 .1898 +.0008 .0638 +.0003
Random Forest LDPC .0832 £+ .0006 - 1882+ .0017 .1963 £ .0006 .0721 £ .0003
Gaussian SVM RREP (BR) 07430005 .2460 £ .OOgi .1866 + .0006 .0621 4+ .0003
Gaussian SVM HAMR .0717 &£ .0004 .2480'+ .0023 .1861 + .0007 .0616 + .0003
Gaussian SVM BCH 70738 & .0005 .2565 £ .0031 111880 =+ .0007 .0619 £+ .0003
Gaussian SVM LDPC 00742 + .0006™, 2582 % .0019 % 21908 -+ .0006 .0688 + .0003
{ ] i
- . o

Logistic Regression ~ RREP (BR) .1024 + .0006 =20 |:|:..0018 .2000 + .0007 .0641 £ .0003
Logistic Regression ~ HAMR .0959 + .0006 _;,'.?29,59 +.0022 | .2003+.0007 .0635 +.0003
Logistic Regression ~BCH .0955 + .0006 2L l:t|.0023 .2037= .0008 .0638 + .0003
Logistic Regression ~ LDPC .1038 + .0006 :I'[l2133 fi::,0019 =2044 + .0008 .0705 £+ .0004
base learner ECC genbase () =d1 1) Tmedical dJ\/{:lOZ3) enron (M=1023)

Random Forest RREP (BR) 0013 =, )Otl .0183 i ]0001 70474 + .0003

Random Forest HAMR .0012£:0004 .0179:=".0001 .0474 + .0003

Random Forest BCH 00100001 .01523 .0001 .0494 + .0004

Random Forest LDPC .0014 &£ .000L .0203% .0001 .0529 £ .0004

Gaussian SVM RREP (BR) .0012 £ .0001 :0113 £ 0001 .0450 £+ .0004

Gaussian SVM HAMR .0010 + .0001 .0112 + .0001 .0451 + .0004

Gaussian SVM BCH .0010 + .0001 .0117 4+ .0001 .0487 + .0005

Gaussian SVM LDPC .0011 £ .0001 .0153 4+ .0001 .0517 + .0005

Logistic Regression ~ RREP (BR) .0347 £ .0007 .0212 £+ .0014 .0455 4+ .0003

Logistic Regression ~ HAMR .0186 4+ .0005 .0191 4+ .0011 .0452 +.0003

Logistic Regression ~ BCH .0024 + .0002 .0161 + .0006 .0472 £+ .0004

Logistic Regression ~ LDPC .0050 £ .0004 .0234 £+ .0011 .0517 £+ .0004
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Chapter 3

New Decoder for Hard and Soft

Decoding of Error-correcting Codes

In Chapter [2] we demonstrated the effectiveness/of applying the ECCs on multi-label clas-
sification. In addition, we showed that théf:%g /1 1slupper/bounded by a function of Apy,
in the codewords and the strength of the E(f(_l—the numbet of bit errors that the ECC is
able to correct. However, sometimes in multi-label ¢lassification the bit error rate is high.
If the codeword prediction of an instange:has more bit errors than that the ECC is able to

correct, there is no guarantee of the decoding outcome.

The reason is that, the off-the-shelf decoder, e.g., the decoder for the BCH code we
used, takes advantages of the algebraic structure of the ECC to locate possible bit errors.
The decoder decodes b € {0,1}M to y € {0, 1} where the encoding of y is approx-
imately the valid codeword closest to b in {0,1}™. However, when M is large, many
possible values of b are too far away from any valid codeword. If the decoder is able to
correct m bit errors, any vertex of the hypercube {0, 1}* within m-bit difference from
a valid codeword can be perfectly mapped back to a vertex of {0, 1}*. The number of
oM

such vertices is 2. """ (]\f ) , which is generally smaller than

. For the other vertices,
since they are too far away from any valid codeword, the off-the-shelf decoder cannot uti-
lize the full power of all parity bits but use only k of the M bits, resulting in suboptimal

decoding performance. This also explains the sharp increase of A/, for the BCH code
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in Figure [2.4(b)] in contrast to the smooth slope for LDPC code, which is decoded using
Belief Propagation algorithm.

We try to overcome this deficiency by proposing a new decoder in Section [3.1] and
experiment on it in Section This decoder decodes a vertex of hypercube {0, 1} to
the interior of the hypercube [0, 1]%, and then round to the nearest vertex of {0, 1}%. The
rounding-based methods have been studied by Tai and Lin|[2012]. Because this decoder
takes some geometric information into account, we call it geometric decoder, and call the
off-the-shelf decoder as algebraic decoder.

Another benefit of the geometric decoder is to perform interior-to-interior decoding,
from [0, 1]M to [0,1]*. In other words, this is a soft-in soft-out decoder [Wolf, [1978,
Hagenuaer et al.,|1996]]. The soft input bits contain the.channel measurement information,
and the value of each bit represents. the,eonfidence in the bit being 1. We discuss about
how to gather such information from our channels, the base learners, in Section 3.3 and
present experimental results in Section @:_

- =

3.1 Geometric Decoder for Linear Codes

Here we describe our proposed geometric decoder in detail. The geometric decoder maps
a vertex b in {0, 1} to a point ¥ in the interior of [0, 1]%. Since the output of this decoder
are real values, we call it soft output, in contrast to the binary values, which are called hard
output. As mentioned above, we may convert the soft output of geometric decoder to hard
output by rounding.

Here, we focus on linear codes, whose encoding function can be written as a matrix-
vector multiplication under Galois field GF5,. All the repetition code, Hamming code,
BCH code, and LDPC code are linear codes. Let G be the generating matrix of a linear
code, g;; € {0, 1}. The encoding is done by b = enc(y) = G -y (mod 2), or equivalently

we may write the formula in terms of exclusive-OR (XOR) operations:

bi = @?/j

J:9i5=1
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That is, the codeword bit b; is the result of XOR of some label bits 7/;. The XOR operations
are equivalent to multiplications if we map 1 — —1 and 0 — 1. By defining by =1 —2b,

and y; = 1 — 2y;, the encoding can also be written as

b= ] 4

J:gi;=1

We denote this form as multiplication encoding.

It is difficult to generalize the XOR operation from binary to real values, but multipli-
cation by itself can be defined on real values. We take this advantage and use it to form
our geometric decoder. Our geometric decoder would find the y that minimizes the L-

distance between b and the multiplication encoding result of the y:

decgeomerric(b) =argmin s | (1=2b;) = \J] (@ - 23)

j:gij=1
e

- =

Note that the squared L distance between/codewords is an-approximation of the Ham-

ming distance in binary space {0, 1} ¥ |

For repetition code, since only one y; is considered for each b;, the optimal solution
of the problem would be the same as averaging over the predictions on the same label
for each label. However, for general linear codes, there is no efficient way to find the
global optimum since the optimization problem may not be convex. Instead, we may
apply a variant of coordinate descent optimization to find a local minimum. That is, in
each step we optimize only one y; while fixing other ;. To optimize one ¥;, we only
have to solve a second-order single-variable optimization problem, which has an efficient

analytic solution.

The benefit of using soft output geometric decoder is that the multiplication-approximated
XOR preserves some geometric information. That is, close points in [0, 1]% would also
be close after multiplication encoding. Moreover, the soft outputs condense the space of

valid codewords, so it would be easier to find one close to b.
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Figure 3.1: Hard-input soft-output geometric decoding results for ML-ECC using BR
with Random Forests

3.2 Experimental Results of Geometric Decoder

The experiments of the proposed geometnic decoder are'done on the same setting as that
of the off-the-shelf algebraic decoder in S.:__gé:tion Here,swe focus on comparing the
new decoder on HAMR and BCH cades Wi:tl_‘l their algebraic decoder since the previous
experiments have already shown that these codes are the-better choices for multi-label
classification.

We first demonstrate the advantage of the proposed geometric decoder over the alge-
braic one using the same codeword predictions as in Section The results are shown
in Figure 3.1l Here the base learner is Binary Relevance with Random Forests. In the
figures, alg stands for the algebraic decoder, and geo stands for the proposed geometric
decoder. The soft decoding output of the geometric decoder is rounded back to {0, 1} for
evaluation and comparison.

Figure shows the result on 0/1 loss. For the BCH code, the proposed geometric
decoder outperforms the algebraic one significantly on almost all datasets, especially the
great improvement on the yeast and medical datasets. For the HAMR code, the
geometric decoder is better than the algebraic one except on the genbase and enron

datasets where both decoders have similar 0/1 loss.

Next we look at the Hamming loss in Figure|3.1(b). For the HAMR code, the proposed
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Table 3.1: 0/1 loss changes when applying the proposed soft-output decoder

ECC base learner scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
HAMR  BR,Random Forest —.0101 +£.0010 —.0094 +.0022 —.0077+.0010 —.0012 + .0006
HAMR  BR,Gaussian SVM —.0047 +£.0007 —.0145 +.0030 —.0031+.0008 —.0009 + .0005
HAMR  BR,Logistic Regression —.0081 +£.0010 —.0078 +.0028 —.0012+.0008 —.0006 + .0005
HAMR  3-powerset,Random Forest —.0099 +£.0008 —.0071+.0023 —.0101+.0011 —.0014 + .0006
HAMR  3-powerset,Gaussian SVM —.0042 +.0006 —.0239 +.0029 —.0082+.0006 —.0010 + .0007
HAMR  3-powerset,Logistic Regression ~ —.0064 +.0009 —.0041 £.0029 —.0051 £+ .0009 —.0004 % .0007
BCH BR,Random Forest —.0100 +£.0007 —.0101 +.0030 —.0575+.0015 —.0231 +.0014
BCH BR,Gaussian SVM —.0048 +.0005 —.0437 +.0039 —.0312+.0012 —.0078 +.0014
BCH BR,Logistic Regression —.0127 £.0007 —.0096 +.0034 —.0396 +.0017 —.0103 +.0018
BCH 3-powerset,Random Forest —.0114 +£.0007 —.0087 +.0032 —.0529 +.0016 —.0210 +.0013
BCH 3-powerset,Gaussian SVM —.0048 +£.0004 —.0343 +.0044 —.0250+.0011 —.0090 +.0013
BCH 3-powerset,Logistic Regression ~ —.0070 +.0006 —.0114 +.0030 —.0256 +.0014 —.0122+ .0013
ECC base learner genbase (M=511)  medical (M=1023) enron (M=1023)
HAMR  BR,Random Forest —.0008 +.0005 —.0010 +.0010 —.0006 + .0006
HAMR  BR,Gaussian SVM —.0012 £+ .0008 —.0004 + .0007 .0002 + .0005
HAMR  BR,Logistic Regression .0032 £ .0057 .0015 £ .0010 .0004 £ .0004
HAMR  3-powerset,Random Forest :0010E 10005 "=.0006 20008 —.0001 + .0004
HAMR  3-powerset,Gaussian SVM —.0005 £.0004 --£1-.0004 + .0007 .0002 + .0005
HAMR  3-powerset,Logistic Regression =.0030.4£.0061 .0004 +-.0010 —.0004 + .0005
BCH BR,Random Forest 10005 + .0003  —.0438+ .0022° —.0308 +.0016
BCH BR,Gaussian SVM —.0000.£.0003  =.0068 £.002%, | —.0133 & .0016
BCH BR,Logistic Regression .0127 £ .6018 /' —.0318 +.0045" —.0217 +.0013
BCH 3-powerset,Random Forest 0003+ 0002+ 10280 + .0018  —.0238 + .0018
BCH 3-powerset,Gaussian SVM —.0007 + .0008" _+-.0150 + .0018" —.0055 + .0016
BCH 3-powerset,Logistic Regression —.0139 +.0013

00031+ .oo'o.p © —0216 £10022
| L.
1) | B!

i L
!

method has a small improvement on thé scene; em?;tions, and yeast datasets, and
has similar Hamming loss with the algebraic decoding method on other datasets. How-
ever, for the BCH code, the proposed method has worse Hamming loss on the yeast,
emotions, and enron datasets. The reason may be that the geometric decoder mini-
mizes the distance between approximated enc(y) and b in the codeword space. However,
the BCH code does not preserve the Hamming distance during encoding and decoding
between {0, 1} and {0, 1}, so the geometric decoder, which minimizes the distance in
[0, 1] (and approximately in {0, 1}*), may not be suitable to the Hamming loss (Ham-

ming distance in {0, 1}).

Similar results show up when using other base learners, as shown in Table[3.Tjand[3.2]
In the tables, each entry reports the difference between the results of the geometric de-
coder and the algebraic decoder. The bold entries indicate that the geometric decoder is

significantly better than the algebraic one. The results validate that the proposed geomet-
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Table 3.2: Hamming loss changes when applying the proposed soft-output decoder

ECC base learner scene (M=127)  emotions (M=127) yeast (M=255)  tmc2007 (M=511)
HAMR  BR,Random Forest —.0008 £ .0002 —.0012 £+.0007 —.0006 + .0002 —.0000 + .0001
HAMR  BR,Gaussian SVM —.0001 + .0001 .0035+.0013 —.0003 +.0001 —.0001 +.0000
HAMR  BR,Logistic Regression —.0003 + .0002 .0018 £ .0009 —.0001 +£ .0002 —.0001 + .0001
HAMR  3-powerset,Random Forest —.0002 +£ .0002 .0005 £ .0006 —.0004 £+ .0002 —.0001 + .0000
HAMR  3-powerset,Gaussian SVM —.0001 + .0001 .0046 + .0009 .0001 % .0002 .0000 + .0001
HAMR  3-powerset,Logistic Regression .0001 +£ .0002 .0029 +£ .0009 .0005 £ .0002 —.0002 £ .0001
BCH BR,Random Forest .0011 4+ .0002 .0068 £+ .0009 .0070 % .0005 .0005 £ .0002
BCH BR,Gaussian SVM —.0005 + .0002 .0192 £ .0022 .0073 £ .0004 .0030 £ .0001
BCH BR,Logistic Regression .0002 £ .0002 .0141 £ .0012 .0079 £ .0006 .0036 £ .0002
BCH 3-powerset,Random Forest .0009 + .0002 .0035 +.0013 .0062 % .0005 .0006 £ .0002
BCH 3-powerset,Gaussian SVM .0004 £ .0001 .0122 £ .0023 .0055 £ .0004 .0025 £ .0002
BCH 3-powerset,Logistic Regression .0008 £ .0002 .0089 £ .0016 .0072 £ .0005 .0022 £ .0002
ECC base learner genbase (M=511)  medical (M=1023) enron (M=1023)
HAMR  BR,Random Forest —.0000 + .0000 —.0000 + .0000 —.0000 = .0000
HAMR  BR,Gaussian SVM —.0001 £ .0000 —.0000 £ .0000 —.0000 £ .0000
HAMR  BR,Logistic Regression .0001 =+ .0004 .0001 £ .0000 .0000 =+ .0000
HAMR  3-powerset,Random Forest .0000E 70000 - "=.0000£%0000 —.0001 +.0000
HAMR  3-powerset,Gaussian SVM —.0000 £.0000 ~=£+.0000 +.0000 .0000 £ .0000
HAMR  3-powerset,Logistic Regression £..0002.2£70002 .0000 +..0000.. —.0001 + .0000
BCH BR,Random Forest 10000 + .0000 .0002.+ .0001 .0073 £ .0003
BCH BR,Gaussian SVM .0000 &£ .0000 -..-0009+ .6001 .0090 £ .0002
BCH BR,Logistic Regression .0030 + 9004 ' —.0008 + .0003 .0086 £ .0002
BCH 3-powerset,Random Forest L0000/ 0600.* & | .0005 + .0001 .0083 £ .0003
BCH  3-powerset,Gaussian SVM .0000}= .Q‘gfiﬁ-_;'.- .0007 £ 0001 .0082 = .0004
BCH 3-powerset,Logistic Regression .OO(I)II:I: .0 tl)_é —'.QOOI 40001 .0077 £ .0003

ric decoder can decode more accurately“(lower07/

comparing to the algebraic decoder.

3.2.1 Bit Error Analysis

1 .loss) and with similar Hamming loss

Next, we look deeper into the scene dataset, and fix the base learner to BR with Random

Forests. The instances are grouped by the number of bit errors at that instance. First, we

plot the ratio of the group size to the total number of instances in Figure [3.2] for HAMR

and BCH codes. Besides the highest peak at 0 bit errors, another peak for the BCH code

is at 63 bit errors, which is higher than that for HAMR at 38 bit errors. This suggests that

BCH code is harder to learn, which is consistent to our finding in Section [2.4.3]

Then, we plot the 0/1 loss and Hamming loss in each group for HAMR, as shown in

Figure (3.3] From Figure 3.3(a), we can see that the geometric decoder is able to correct

errors more accurately when there are 16 to 24 bit errors, comparing to the algebraic
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Figure 3.2: Bit error distribution of BR with Random Forests on the scene dataset

(a) 0/1 loss vs. number of bit errors (b) Hamming loss vs. number of bit errors

Figure 3.3: Strength of HAMR on the'scene dataset and BR with Random Forests

decoding. The ordinary decoding method of HAMR has two-stages, one for HAM (7,4)
and one for repetition code, and each HAM(7,4) block is decoded independently. In
the proposed geometric decoding method, the two stages are combined into one, which
enables joint decoding of those H AM (7,4) blocks and thus ensures that the decoding of
each HAM/(7,4) block is consistent to others. This leads to superior performance of the
proposed decoding method on 0/1 loss. For Hamming loss, as shown in Figure
the improvement of the geometric decoder at that bit error range is small, which explains
the small improvement on Hamming loss.

We also plot the 0/1 loss and Hamming loss in each group for the BCH code in

Figure The algebraic decoder can correctly recover the label vector with no 0/1 loss
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Figure 3.4: Strength of BCH on the scene dataset and BR with Random Forests

for instances with at most 31 bit ervors, but for'instance with 32 bit errors the 0/1 loss
sharply goes up to 0.97. The proposed ‘geométric decoder did a better job for instances
with 32-39 bit errors, so its-()/1 10ss goes up more smoothly. This is exactly what we
would like to address in the beginning of this €hapter. 'On the other hand, in terms of
Hamming loss shown in Figure - the pri')posed geometrie decoder has 0.01-0.025
higher Hamming loss than the algebralc one' for instances with 37—45 bit errors, which
yields the slightly worse result‘of gedmetric decoder on Hamming loss.

From this analysis, we may congludé-thatthe geometric decoder can improve 0/1 loss
because it really does a better job on the instances far from valid codewords. However,
regarding Hamming loss, the geometric decoder gets improvements for HAMR, but not

for BCH.

3.3 Soft-input Decoding and Bitwise Confidence Estima-

tion for £-powerset Learners

In Section (3.1, we proposed the geometric decoder based on approximating XOR by
multiplication. Since L, distance in [0, 1]™ space is used as optimization criterion, the
M

input codeword prediction b is not necessary to be in {0, 1}* but can also be in [0, 1]

That is, this decoding method supports not only soft outputs but also soft inputs. The soft
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inputs may come from the confidence of each bit, which the channel, the multi-label base
learner, provides. By considering the confidence of bits, the decoder may rely on high-
confidence bits more and try to correct low-confidence bits. In this way, the performance
of decoders may be further improved.

Since our channel is the base learner, it is possible to gather meaningful soft signals
from the channels, which is the confidence score or probability estimate of the predicting
bit to be 1. It is simple to ask a Binary Relevance learner to provide confidence of each bit,
since confidence or probability estimate is supported by many state-of-the-art binary clas-
sifiers, including Random Forests and SVM [Platt, |1999, Lin et al., 2007|]. However, for
a k-powerset learner, things are more complicated. The k-powerset learners take a com-
bination of £ bits as a class, and the base learners only.output confidence information per
combination of k bits but not per bit. To apply-the propesed soft-input geometric decoder,
we have to estimate the confidence of each bit from'the cenfidence of the combinations

of £ bits.

—=
A k-powerset learner would output 2~ c'o‘nﬁ'dence scores, one for each combination of
1 | 1
the & bits by - - - by, € {0, 1}*/ To estimate pér-bit confidence con f(b; = 1) for each b;, we

propose the following methods:

1. Maximum. Pick the combination bj - b; with the highest confidence and then
assign conf(b; = 1) tobe 1if bf = 1, or 0 otherwise. This results in the hard input,

which is the same as what we used in Section [2.4] and 3.2]

2. Marginal probability. The confidence score of each combination can be treated
as the joint probability distributed over the 2% combinations of bits. Then, we
may calculate con f(b; = 1) as marginal probability by summing up the confidence

scores of all combinations with b; = 1.
CO”fmm«gm(bz’) = Z conf(b1 b 1bjgq - bk)
b1---bi_le.l---bkE{O,l}’“*1

In contrast to the “maximum” method, the marginal probability takes the whole

distribution into account, so the most probable combination according to marginal
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probability may be different from the one with the highest confidence.

3. Confidence difference. The confidence of the sth bit to be b7 may be defined as the
difference of confidence scores between the most confident combination b7 - - - by,

and its neighbor varying only this bit b - - - b;_, b0}, - - - b}, where by is the negation

of b}. Following the idea, we may define conf(b; = 1) as
1 1 k > * > k * % k
confaigs(bi) = §+§ (conf(by -~ by 167y -+ by) — conf(by - - b 0bFyy -+ - b))

Comparing to “marginal probability,” which is essentially the sum of difference
of confidence scores between all pairs of neighboring combinations, this method
only considers the highest-confidence-combination and its neighbors. Therefore,
the result of “confidence difference” is consistent with the “maximum” method.

T i

4. Sigmoid functions. We may apply“q'igmoid functions on the “confidence differ-
ence” to enlarge the small.amount of difference. The reason is that small confidence
values make the geometric decoder not stable’ ' We.used tanh(ax) as the sigmoid

function.

1

1
con fo-giss(bi) = 3 + 5 tanh (o - (2 - confuisp(b;) — 1))

The sigmoid functions may also be applied on the output of “marginal probability,”

resulting in another confidence estimating method con fs-margin (+)-

Note that the Binary Relevance approach is a special case of k-powerset with £ = 1.
Therefore, we may also apply these methods for BR learners. When applying to BR
learners, the “marginal probability” would be the same as taking the confidence of the bit
directly from the BR learner. Moreover, if the confidence is given in probability form, the

“confidence difference” would also be the same.
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Figure 3.5: Comparison between hard-/soft-input geometric decoders in the ML-ECC
with the BCH code using BR learners

3.4 Experimental Results of Soft-input Geometric Decoder

Now, we experimentally compare thessoft-input-geometri¢ decoder with the hard-input
one. The settings of these expetiments aresthe'same as in Section 2.4 and 3.2}

[ |
{

3.4.1 Soft-input Decoding for Binary Relevance Learners

All of the base learners we used, Random Forests from WEKA, Gaussian SVM from
LIBSVM, and logistic regression from LIBLINEAR, support predicting class probability
distribution. To take the class probability distribution as soft inputs, we first try on Binary
Relevance approaches. In the Binary Relevance approach, each base learner learns a
single bit, so its probability output is indeed the soft signal we want.

The results on the BCH code using the Gaussian SVM base learner is shown in Fig-
ure Since the value of A, and Ay, varies greatly from dataset to dataset but little
from decoder to decoder, in the figures, we present the A/, and Ay, changes based on
the results of the algebraic decoder. We denote the result of hard-input geometric de-
coder as hard, and that of soft-input geometric decoder as soft. The value lower than
0 means that the geometric decoder performs better than the algebraic one. We can see
from Figure that the soft-input geometric decoder is similar to or slightly better

than the hard-input one in terms of A1, and both geometric decoders are significantly
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Figure 3.6: Comparison between hard-/soft-input geometric decoders in the ML-ECC
with the HAMR code using BR learners

better than the algebraic one. From Figure [3.5(b)}, we-can see that soft-input geometric
decoder is much better than the hard-input one in-terms of, Ay, and it is even better than
the algebraic one on the scene dataset.. Th; tesult suggests that soft inputs are helpful

on Ay, and also A/, for geometric decodég and for BCH.¢code.

In contrast to the BCH code; the fesults on the HAMR ‘code is a little different, as
shown in Figure First, we look at:the 0/1;loss shown in Figure The result
is dataset dependent. Soft-input geometric decoder performs better than both hard-input
one and algebraic one on three datasets, and worse than those two decoders on other
two datasets. In terms of Hamming loss in Figure soft-input geometric decoder
is significantly better than both hard-input one and algebraic one on four datasets, and
performs similar on the other datasets. The result indicates that soft inputs are helpful on

Apr, but not on A/, when applying to HAMR code.

Similar results show up when using other base learners, as shown in Table[3.3]and [3.4]
The bold-face entries are the best entries on each dataset given the ECC and base learner.
We also report the micro and macro F} scores, and the pairwise label ranking loss in

Tables [A.T5] [A.16] and [A.T7] respectively. In the tables, we can see that the soft-input

geometric decoder is usually better than the hard-input ones in these measures. This again

shows that the soft inputs, i.e. confidence information from base learners, are useful on
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decoding.

Table 3.3: 0/1 loss of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest HAMR  alg-hard .3212 4+ .0021 .6574 £+ .0050 .7910 £ .0020 7578 +.0025
Random Forest HAMR  geo-hard .3111 +.0021 .6480 +.0051 7833 £ .0022 .7566 + .0026
Random Forest HAMR  geo-soft .3294 4+ .0021 .6584 £ .0053 .7976 £+ .0020 7588 +.0025
Gaussian SVM HAMR  alg-hard .2876 +.0018 .8073 £+ .0043 7681 £ .0022 .7215 £+ .0025
Gaussian SVM HAMR  geo-hard .2829 £+ .0017 7927 + .0051 .7650 + .0023 .7205 £ .0024
Gaussian SVM HAMR  geo-soft .2782 4+ .0016 .8155 £ .0048 7705 £ .0021 7176 + .0022
Logistic Regression ~HAMR  alg-hard .4050 £ .0020 7175 £ .0054 .8282 + .0015 .7405 £ .0024
Logistic Regression HAMR  geo-hard .3969 £+ .0022 7097 £ .0059 .8270 £ .0016 7399 +.0024
Logistic Regression HAMR  geo-soft .3875 +.0024 7177 £+ .0069 .8284 + .0016 7379 +.0024
Random Forest BCH alg-hard .2562 £+ .0020 .6404 £ .0060 7792 £+ .0019 7149 £ .0022
Random Forest BCH geo-hard .2462 +.0019 .6304 + .0049 7217 £ .0022 .6917 +.0020
Random Forest BCH geo-soft .2526 £+ .0020 .6264 + .0049 7287 £+ .0022 .6949 £ .0024
Gaussian SVM BCH alg-hard .2552 +.0018 .7809 £ .0050 .7515 4+ .0015 .7053 £ .0024
Gaussian SVM BCH geo-hard .2503 £+.0018 7371 4+ .0051 7203 £+.0018 .6975 +.0025
Gaussian SVM BCH geo-soft .2505 +£.0019 17350£ .0050 7212 £ .0021 .6966 + .0030
Logistic Regression ~BCH alg-hard 23291 £+ .0020 6982 +.:0048 .8094 £ .0020 7205 £ .0022
Logistic Regression ~BCH geo-hard 316414 .0017 .6886"4".0046 .7698 £+ .0019 7102 +.0021
Logistic Regression ~ BCH geo-soft .3142 + .0016 .6787 & .0046 7713 +.0023 7112 £+ .0025
base learner ECC decoder genbasg/(M=511) medical (M=1023)} ' enron (M=1023)
Random Forest HAMR  alg-hard .0288 j:".'()(ilﬂ i, -6387 +.0025 .8851 + .0036
Random Forest HAMR  geo-hard .0280 + .0 L %6377 £.0027 .8845 + .0036
Random Forest HAMR geo-soft |, 0271+ .0087-" 6373 + 0027 8848+ .0036
Gaussian SVM HAMR alg-hard .024!’» .002’1 J .3675 £ .0036 .8718 + .0042
Gaussian SVM HAMR  geo-hard .023 0021 3671 4.0036 .8720 + .0042
Gaussian SVM HAMR  geo-soft 0233 + .0022 -3627 +£.0035 .8716 £+ .0043

L” I’

m I

Logistic Regression HAMR  alg-hard .3509--£ .0089 .51199__;|: .0247 .8740 + .0036
Logistic Regression HAMR  geo-hard = %3541 +..0099 .55144::0249 .8744 + .0036
Logistic Regression HAMR  geo-soft 2777 £.0107 :5301 +.0229 .8723 £ .0036
Random Forest BCH alg-hard .0250 £ .0019 4567 + .0034 .8737 £ .0038
Random Forest BCH geo-hard .0255 +.0018 .4130 + .0037 .8429 £+ .0038
Random Forest BCH geo-soft .0250 £+ .0018 4157 + .0037 .8371 + .0043
Gaussian SVM BCH alg-hard .0255 +.0019 .3499 £ .0030 .8561 £ .0043
Gaussian SVM BCH geo-hard .0255 +.0019 .3431 £+ .0034 .8428 £+ .0045
Gaussian SVM BCH geo-soft .0253 +.0020 .3376 +.0035 .8376 £+ .0045
Logistic Regression ~BCH alg-hard .0295 £+ .0018 14022 £ .0076 .8579 £+ .0038
Logistic Regression ~BCH geo-hard .0422 £ .0026 .3704 + .0048 .8362 + .0040
Logistic Regression ~BCH geo-soft .0395 £+ .0026 .3670 + .0046 .8475 £+ .0040

3.4.2 Soft-input Decoding for k-powerset Learners

We have shown that soft inputs are beneficial for geometric decoder when using Binary

Relevance base learners. Now, we would like to see if we can apply this to the k-powerset

learners. As mentioned in Section it is non-trivial to estimate the confidence per bit

from the confidence information on k-powerests, i.e., the probability distribution over 2%
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Table 3.4: Hamming loss of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest HAMR  alg-hard .0726 £ .0005 1781 + .0017 1878 + .0007 .0652 + .0002
Random Forest HAMR  geo-hard .0718 £+ .0006 1768 + .0017 1872 + .0007 .0651 +.0003
Random Forest HAMR  geo-soft .0726 £ .0005 1763 + .0018 1873 + .0007 .0651 +.0002
Gaussian SVM HAMR  alg-hard .0717 £ .0004 .2472 £ .0023 .1861 + .0007 .0616 £ .0003
Gaussian SVM HAMR  geo-hard .0716 £ .0005 .2508 £ .0023 .1858 +.0007 .0615 %+ .0003
Gaussian SVM HAMR  geo-soft .0701 4+ .0004 .2441 + .0020 .1855 + .0007 .0611 4+ .0003
Logistic Regression ~HAMR  alg-hard .0959 £+ .0006 .2047 +.0022 .2003 £ .0007 .0635 £ .0003
Logistic Regression HAMR  geo-hard .0956 £ .0006 .2065 £ .0023 .2002 £ .0007 .0634 £ .0003
Logistic Regression ~HAMR  geo-soft .0920 £+ .0006 .2032 +.0024 .1990 + .0007 .0631 £+ .0003
Random Forest BCH alg-hard .0717 £ .0006 .1826 + .0018 .1898 + .0008 .0638 +.0003
Random Forest BCH geo-hard .0728 £+ .0006 .1895 £+ .0017 .1968 £ .0010 .0643 £ .0003
Random Forest BCH geo-soft .0703 + .0006 .1822 +.0016 .1910 + .0008 .0622 + .0003
Gaussian SVM BCH alg-hard .0739 £ .0006 .2569 + .0030 .1880 + .0007 .0619 4+ .0003
Gaussian SVM BCH geo-hard .0735 £ .0005 .2761 £ .0031 .1952 £ .0007 .0649 % .0003
Gaussian SVM BCH geo-soft .0721 + .0006 .2614 + .0028 .1911 + .0007 .0624 + .0003
Logistic Regression ~ BCH alg-hard .0955.4-1.0006 12172 +.0023 .2037 + .0008 .0638 +.0003
Logistic Regression ~ BCH geo-hard {0957+ .0006 2312+ .0027 .2116 £ .0007 .0673 £ .0003
Logistic Regression ~BCH geo-soft .0913 +£:.0006 .'. .2170 +.0026 .2067 £ .0008 .0640 4+ .0003
base learner ECC decoder genbase (M=511) “medical (M=1023). enron (M=1023)
Random Forest HAMR  alg-hard .0012 + .0001 .0179 £ .0001 .0474 + .0003
Random Forest HAMR  geo-hard .0012 +.0001 .0179 +.0001 ; .0474 + .0003
Random Forest HAMR  geo-soft .001¥+.0001 § .0179 £ .0001 .0474 + .0003
Gaussian SVM HAMR alg-hard | .0010 4 .000T £ 0112 +.0001 0451 +.0004
Gaussian SVM HAMR  geo-hard '\ .0009 + .0(%'!-__'- 0112+ .0001 * .0450 + .0004
Gaussian SVM HAMR geo-soft .001? :i: .00 % .dl}l +.0001 .0450 £+ .0004

] |
Logistic Regression HAMR  alg-hard .0186 i .000§!: 1 .bll?l +.0011 .0452 + .0003
Logistic Regression HAMR  geo-hard 0187 +.0006  .0192 £.0011 10453 + .0003
Logistic Regression HAMR  geo-soft.._~+ .01314 £ .0005 .0180 £ .0010 .0453 £ .0003

1 i

Random Forest BCH alg-hard 0010 +.0001 10152:0001 .0494 + .0004
Random Forest BCH geo-hard .0010 +:0001 10154'4.0001 .0566 £ .0005
Random Forest BCH geo-soft .0010 £%0001 {0150 &£ .0002 .0535 £ .0004
Gaussian SVM BCH alg-hard .0010 +=:0001 0117 + .0001 .0487 + .0005
Gaussian SVM BCH geo-hard  .0010 £ .0001 .0126 + .0001 .0577 £ .0006
Gaussian SVM BCH geo-soft .0011 4+ .0001 .0121 £ .0001 .0534 £ .0005
Logistic Regression ~ BCH alg-hard .0024 £+ .0002 .0161 £ .0006 .0472 + .0004
Logistic Regression ~ BCH geo-hard .0054 £+ .0004 .0154 £ .0004 .0558 £ .0004
Logistic Regression ~ BCH geo-soft .0046 + .0003 .0141 + .0003 .0526 +.0004

combinations of labels. Here, we experimentally examine the methods for such estimation

described in Section[3.3]

The results on the BCH code are shown in Figure Similar to the above exper-

iments, we also plot the changes on A/; and Ap;, based on the result of the algebraic

decoder. In the figures, maximum, margin, diff, s-margin, and s-diff stand for

the soft-input geometric decoders using the corresponding confidence estimation methods

described in Section Note that maximum is exactly the same as supplying hard-input
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Figure 3.7: Comparison between hard-/soft-input geometric decoders in the ML-ECC
with the BCH code using 3-powerset learners

to the geometric decoder.

From Figure we can see that.most of-the soft“input geometric decoders have
similar performance to the hard-input gebh“iitric decoder on Agy;, except diff, whose
result is worse than the hard-input-one. Th&f result implies-that such bitwise soft inputs
calculated from confidence score. on /_c—power;ets may not-be useful to improve geometric

decoding result in terms of Agy.

Next, we look at the Hamming loss shown in Figure[3.7(b)} On the contrary, soft-input
geometric decoders using any confidence estimation method are better than hard-input
geometric decoder on Ayy. Among the confidence estimation methods, di f £ is the best
and margin is the second best. These two soft-input geometric decoders are even better

than the algebraic decoder in terms of Ay on some datasets.

Putting the results on A /1 and Ay, together, we can see that for the BCH code, the
soft-input geometric decoder using the “marginal probability” method is a good choice
since it has better Ay, and similar A/, comparing to the hard-input geometric decoder.

However, things are different for the HAMR code, as shown in Figure From
Figure the hard-input geometric decoder beats all soft-input ones in terms of A ;.
In the soft-input geometric decoders, s—di f £ has the best performance. This one is also

the only soft-input geometric decoder, which is better than the algebraic decoder.
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Figure 3.8: Comparison between hard-/soft-input geometric decoders in the ML-ECC
with the HAMR code using 3-powerset learners

Table 3.5: Comparison of soft-inputigeometric deceders using different confidence esti-
mation methods on k-powerset learners

code  measure ordef—:-better than; ~: similar to)
—

=

BCH Ao/t hard ~ margin %.'s'li'margin ~s—-diff > algebraic >~ diff

BCH Ayp  diff = margin =<algebraic - 's-margin ~ s—-diff = hard

HAMR Ay, hard »Ts=d1E£f >~ algebrailc ¥'diff » s-margin > margin

HAMR Agr margin&s-margin ~idiff = s-diff > algebraic >~ hard

The result is turned over when looking at Ay in Figure [3.8(b)l All soft-input geo-
metric decoders perform better than the hard-input geometric decoder and the algebraic

decoder, but s—diff is the worst among the soft-input geometric decoders.

The results on other datasets are similar, and we summarize them in Table The
results have demonstrated that the performance of the soft-input methods is dependent
to the code. In addition, the two evaluation measures, Ag/; and Ay, focus on different
aspects of multi-label classification and different soft-input methods take different trade-
off between these two measures. It is still an open problem to design a good bitwise
confidence estimation method suitable for both A/, and A, or to decode directly from

the confidence on k-powersets.
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3.5 Comparison with Real-valued ECC

Our ML-ECC framework only considers binary ECC. In this section, we compare our
ML-ECC framework with real-valued ECC methods: coding with canonical correlation
analysis (CCA-OC) [Zhang and Schneider, [2011]] and max-margin output coding (Max-
Margin) [Zhang and Schneider, |2012]. The former method uses canonical correlation
analysis to find the most linearly-predictable transform of original labels. The latter one
uses metric learning to locate a good encoding function. Both methods uses approximate
inference as their decoding method.

The main difference between the real-valued ECC and our ML-ECC framework is that
our encoding functions transform the labelsvector into a binary codeword, while the real-
valued ECC methods transform the label vector into a real-valued codeword. Moreover,
the base learners in our framework.deal with classifieation tasks, while the base learners
in those real-valued ECC methods deal wit_h regression tasks.

The experiment setting i$ basically the :Tsa‘_i'he as in Section{2.4] but we only use scene
and emot ions datasets, with Random Fofésts ot logistic regression base learners. Both
real-valued ECC methods limit their:c;)deword length to'at most twice of the number of
labels, and the codeword contains /X binary_bits for original labels and at most K real-
valued bits. In the following experiment, we take all 2/ binary and real-valued bits for
the real-valued ECC methods. There is a parameter A in decoding for balancing the two
parts, and we set it to 1 (equally weighted). For our ML-ECC framework, we consider
HAMR and BCH code with the proposed soft-input geometric decoder, and use 127-bit
binary codewords.

The results on Random Forests learners are shown in Table (3.6, and the results on
logistic regression learners are shown in Table It can be seen that with a stronger
base learner like Random Forests, the HAMR and BCH codes are better than both real-
valued ECC methods on the two datasets and on most of the measures. With the logistic
regression learner, while BCH code performs the best on scene dataset, it only wins on
0/1 loss on emotions dataset. The real-valued ECC methods give higher micro and

macro F; score than HAMR and BCH on the emot ions dataset. The reason may be
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Table 3.6: Comparison between ML-ECC and real-valued ECC methods using Random
Forests base learners

Table 3.7:

scene

ECC 0/1 loss Hamming loss Micro-F} Macro-F1
HAMR-geo-soft .3294 + .0021 .0726 £ .0005 7710 £ .0018 7741 £ .0017
BCH-geo-soft .2526 +.0020 .0703 +.0006 .7944 4+ .0019 .8006 £ .0018
CCA-OC .3165 £+ .0010 .0934 + .0003 7319 £ .0010 .7403 £ .0010
emotions
ECC 0/1 loss Hamming loss Micro-F} Macro-F}
HAMR-geo-soft .6584 £ .0053 .1763 4+ .0018 .7023 £ .0031 .6756 £ .0034
BCH-geo-soft .6264 + .0049 1822 +.0016 7153 +.0025 .6975 + .0025
CCA-OC .6728 £ .0021 .2022 £ .0009 .6920 £ .0014 .6824 £+ .0014

Comparison between ML-ECC and real-valued ECC methods using logistic

regression base learners

scene
ECC 0/1 loss Hamming ]0ss Micro- F Macro-Fy
I
HAMR-geo-soft  .3875 & .0024 .0920-+-0006 7156 +£.0019 .7204 £+ .0017
BCH-geo-soft .3142 + .0016 _.+.0913 + .0006 ... 7337 £.0016 .7397 +.0014
CCA-OC .3599 + .0011 .1088 £ .0004 6875 + .0011 .6952 + .0011
MaxMargin .3654 7' .0023 1107 £ .0009. .6820+:.0024 .6889 £ .0025
T g
o | emotiions
ECC 0/1 loss Ha}ﬂﬂfngl loss| | Micro-F} Macro-Fy

HAMR-geo-soft 7177 +£.0069 | 2032=£:0024 | .6544+.0045 = .6310 =+ .0047
BCH-geo-soft 6787 +,0046 | 2170410026 | 6652 0043 6499 £ .0044
CCA-0C 6814 10024 | |.2068£0006| | .6791 £:0008 .6715 +.0010
MaxMargin 6855+ .0030 | .2099+.0009 | | .6768 +.0013.  .6679 +.0014

5 ' 1l
Ty |
| | I

that the power of logistic regression base learner is limited, and the parity bits of HAMR

and BCH are too sophisticated for the base learner. On the other hand, the code generated

by CCA-OC and MaxMargin methods are easier to learn for such linear model. For

sufficiently sophisticated base learners, the proposed discrete-ECC-based framework is

the better choice for multi-label classification with error correcting codes.
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Chapter 4

Conclusion

We presented a framework for applying the ECCs on multi-label classification. We then
studied the use of four classic ECC designs, namely the RREP, HAMR, BCH, and LDPC.
We showed that RREP can be usedito give a new perspective of the RAKEL algorithm as
a special instance of the framework with thE k+powerset as-the base learner.

We conducted experimefits with the folh;’ECC designs on various real-world datasets.
The experiments further clarified the trade-.:;}ff between the'strength of the ECC and the
hardness of the base learning tasks. Experimental results’demonstrated that several ECC
designs can lead to a better use of the trade-off: For instance, HAMR is superior over
RREP for the k-powerset base learners because it leads to a new algorithm that is bet-
ter than the original RAKEL in terms of 0/1 loss while maintaining a comparable level
of Hamming loss; BCH is another superior design, which could significantly improve
RAKEL in terms of 0/1 loss. When compared with the traditional BR algorithm, we
showed that using a stronger ECC like HAMR or BCH can lead to better performance in
terms of both 0/1 and Hamming loss.

The results justify the validity and usefulness of the framework when coupled with
some classic ECC. An interesting future direction is to consider adaptive ECC like the
ones studied for multi-class classification [Schapirel |{1997, L1, 2006].

Besides the framework, we also presented a novel geometric decoder for general lin-
ear code based on approximating the XOR operation by multiplication. This decoder is

capable of not only taking hard input as algebraic decoders, but also taking soft input
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from the channel into account. The soft input may be gathered from the base learner
channels as their confidence of an instance to be in one class. The experimental result on
this new decoder demonstrated that this decoder outshines the ordinary decoder in terms
of 0/1 loss and using soft input from the Binary Relevance learner further improves the
performance of this decoder on Hamming loss. We also proposed and studied several
methods to gather soft input from the k-powerset learner. The results show that different
ECC designs match different methods better. It remains an interesting research problem

on appropriately calculating the 1-bit confidence from the k-bit confidence.

—
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Appendix A

Additional Experiment Results

A.1 ML-ECC Using 3-powerset Base Learners

Table A.1: Micro-£7 0f ML-ECC using 3-powerset base learners

scene (M :_127)i emotions (M=127)

base learner ECC yeast (M=255) tmc2007 (M=511)
Random Forest RREP (RAKEL) 7620 + .(_)019'{.' 770581+ .0031 .6548 £+ .0016 .5988 +.0017
Random Forest HAMR Tt + .¢019 '! | .7078 =+ .0032 6615 + .0015 .6025 + .0016
Random Forest BCH 7793 £ .0019, % 7+5.7029 = .0033 .6537 £+ .0016 6172 +.0019
Random Forest LDPC .7586 j% .0022 .6816 & .0037: .6300 £+ .0016 5787 4+ .0021
Gaussian SVM RREP (RAKEL) , 17883 .0014 5716 0039 | 6743 +.0013  .6618 +.0018
Gaussian SVM HAMR 79074 .0013 .5747 45,0040 .6753 +.0012 .6619 + .0018
Gaussian SVM BCH 7865+ .0016 .5602 + 10042 .6687 £+ .0013 .6495 4+ .0019
Gaussian SVM LDPC 7817 4 .0016 .5222 +:0057 .6611 £+ .0015 .6362 1+ .0018
Logistic Regression ~ RREP (RAKEL) 7232 £+ .0016 .6630 + .0044 .6445 + .0014 .6458 + .0022
Logistic Regression ~ HAMR 7321 +.0015 .6597 +.0043 .6476 +.0013 .6433 +.0019
Logistic Regression ~ BCH .7319 + .0016 .6408 £+ .0041 .6392 £+ .0015 .6309 £+ .0020
Logistic Regression ~ LDPC .7095 £ .0020 .6292 £+ .0034 .6340 £ .0019 .6231 £+ .0024
base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (RAKEL) .9870 4+ .0009 .5474 + .0023 .5400 £+ .0050

Random Forest HAMR 9872 + .0011 5567 £ .0025 .5376 + .0051

Random Forest BCH .9885 +.0010 .6786 +.0030 .5313 £ .0048

Random Forest LDPC .9858 £+ .0011 .6125 4+ .0033 .5126 £ .0057

Gaussian SVM RREP (RAKEL) .9864 + .0011 .7837 4+ .0020 .5690 + .0053

Gaussian SVM HAMR .9862 4+ .0013 7837 +.0019 .5679 + .0055

Gaussian SVM BCH .9888 + .0009 7777 £.0021 .5217 £ .0064

Gaussian SVM LDPC .9850 4+ .0014 .7414 + .0020 .5251 4+ .0059

Logistic Regression ~ RREP (RAKEL) .8383 £+ .0041 .7130 £ .0093 .5668 + .0035

Logistic Regression HAMR .9012 £ .0039 7259 £+ .0078 .5639 + .0036

Logistic Regression ~ BCH 9863 + .0011 .7514 + .0029 .5321 £ .0045

Logistic Regression ~ LDPC .9747 £+ .0021 .7021 £+ .0049 .5295 £ .0047
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Table A.2: Macro-F of ML-ECC using 3-powerset base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest RREP (RAKEL) .7653 £+ .0019 .6815 +.0032 .3736 £+ .0015 .2538 +.0034
Random Forest HAMR .7840 4+ .0018 .6868 +.0032 .3837 £+ .0016 .2604 £+ .0035
Random Forest BCH .7863 + .0019 .6860 £+ .0036 .3859 + .0017 .3325 + .0033
Random Forest LDPC .7666 £+ .0021 .6566 + .0040 .3596 £+ .0016 .2845 4+ .0031
Gaussian SVM RREP (RAKEL) .7955 4+ .0013 .5199 +.0043 .4252 +.0018 .4586 + .0047
Gaussian SVM HAMR .7980 + .0014 .5301 4+ .0045 .4254 4+ .0018 4448 £ .0045
Gaussian SVM BCH .7940 4+ .0016 .5256 +.0048 .4196 £+ .0017 .4238 4+ .0046
Gaussian SVM LDPC .7898 £+ .0016 .4409 £+ .0078 4146 £+ .0023 4237 4+ .0041
Logistic Regression ~ RREP (RAKEL) 7298 £+ .0014 .6456 +.0043 .3508 £ .0012 .4004 + .0052
Logistic Regression ~HAMR 7399 + .0014 .6438 + .0041 .3562 £+ .0013 3827 £.0047
Logistic Regression ~ BCH .7398 +.0015 .6267 £+ .0042 .3588 +.0021 .3572 £+ .0043
Logistic Regression ~ LDPC 7179 4+ .0019 .6041 +.0043 .3500 £ .0026 3777 +.0046
base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (RAKEL) 7529 + .0051 .1370 £ .0030 .1797 £ .0053

Random Forest HAMR 7530 + .0055 .1455 + .0034 .1819 4+ .0053

Random Forest BCH 7575 + .0056 .2536 + .0035 .1950 + .0055

Random Forest LDPC .7550 + .0058 .2104 £+ .0030 1770 £ .0046

Gaussian SVM RREP (RAKEL) .7365 4 :0060 .3062° .0032 .1329 4+ .0025

Gaussian SVM HAMR 17347 4 0060 ‘3004 + .0029 .1316 £+ .0027

Gaussian SVM BCH .7605 + .0054 3103 + .0037 .1398 +.0043

Gaussian SVM LDPC 7530 £..0061 .2888 :t-..QOQE') .1354 £ .0031

Logistic Regression =~ RREP (RAKEL) .6045 £ .0066 .33574.0050 _ ".1330 £ .0024

Logistic Regression ~HAMR 6677 £+ 0086 .344.2 + .0063, -+ 11279 £+ .0020

Logistic Regression ~BCH .7600 + .0060 |'.'3%27;:|: .0038 .1410 4+ .0038

Logistic Regression ~ LDPC 7494 1 QU7 g ||._31i38 +.0043 .1386 + .0030

Table A.3: Ranking loss 011 \
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AL-ECC us‘liﬂllg 3—powérset base learners

base learner ECC scene (M=127) emotions (: =127) yeast (M=255) tmc2007 (M=511)
Random Forest RREP (RAKEL) 1641 £+ .001.2 .2130 + .0021 .2439 £ .0012 .2381 £+ .0012
Random Forest HAMR .1407 £.0012 .2107 £ .0023 .2378 +.0011 .2356 £+ .0011
Random Forest BCH .1354 + .0011 .2139 £+ .0026 .2450 £ .0013 .2237 +£.0013
Random Forest LDPC .1498 £+ .0013 .2291 +.0028 .2611 £+ .0014 .2416 +.0014
Gaussian SVM RREP (RAKEL) .1337 4+ .0008 .3034 +.0028 .2299 £ .0010 .1897 + .0014
Gaussian SVM HAMR 1277 + .0008 .3041 £+ .0029 .2281 +.0010 .1905 +.0013
Gaussian SVM BCH .1291 4+ .0010 .3141 +.0028 .2333 £+ .0009 .1993 4+ .0013
Gaussian SVM LDPC .1322 £+ .0009 .3285 £+ .0033 .2395 £+ .0012 .1972 £+ .0015
Logistic Regression ~ RREP (RAKEL) 1779 £ .0010 .2427 4+ .0031 .2495 £ .0011 .2020 + .0016
Logistic Regression HAMR .1660 £ .0010 .2462 £+ .0030 .2468 +.0010 .2046 £+ .0014
Logistic Regression ~ BCH .1634 £ .0010 .2613 £+ .0030 .2539 £ .0012 .2116 £+ .0015
Logistic Regression =~ LDPC 1787 £+ .0013 .2649 £+ .0025 .2572 £.0015 .2055 £ .0019
base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (RAKEL) .0069 + .0005 .2961 £+ .0013 .2745 £ .0031

Random Forest HAMR .0067 £ .0005 .2911 +.0015 .2748 £+ .0031

Random Forest BCH .0049 £+ .0005 .1834 +.0018 .2669 + .0032

Random Forest LDPC .0062 £ .0004 .2161 +.0018 .2734 £+ .0034

Gaussian SVM RREP (RAKEL) .0079 £ .0006 .1301 £+ .0018 .2583 +.0032

Gaussian SVM HAMR .0077 £+ .0007 1312 +.0017 .2585 +.0034

Gaussian SVM BCH .0054 + .0005 1272 +.0014 .2668 £ .0037

Gaussian SVM LDPC .0070 £ .0005 .1292 4+ .0014 .2612 1+ .0036

Logistic Regression ~ RREP (RAKEL) .0111 £ .0005 .0897 +.0073 .2608 + .0025

Logistic Regression HAMR .0072 £ .0005 .0896 +.0070 .2622 1+ .0025

Logistic Regression ~ BCH .0039 + .0004 1185 +.0028 .2640 £ .0030

Logistic Regression ~ LDPC .0042 + .0004 .1041 £+ .0043 .2591 +.0032
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A.2 ML-ECC With Different Codeword Lengths

Table A.4: 0/1 loss of ML-ECC on scene dataset (3-powerset learners)

base learner ECC M =31 M =47 M =63 M =95 M =127
Random Forest RREP (RAKEL)  .3303+.0036  .3361+.0028  .3349+£.0026  .3365+.0025  .3394 +.0025
Random Forest HAMR 30704+ .0027  .3050 & .0028  .2930 +.0021  .2923 +.0024  .2849 +.0020
Random Forest BCH .2822 + .0026 — .2713 + .0023 — .2669 =+ .0020
Random Forest LDPC 3141 +.0036  .32384.0029  .3169+.0029  .31964.0029  .3057 +.0023
Gaussian SVM RREP (RAKEL)  .28554.0019  .2883+.0019  .2860.0016  .2868 +.0017  .2856 +.0016
Gaussian SVM HAMR 2775+.0019 2743 4+.0019  .2696 +.0016  .2683 4 .0015  .2639 + .0017
Gaussian SVM BCH .2623 + .0016 — .2578 + .0019 — .2576 & .0017
Gaussian SVM LDPC 2828 £.0021  .28434+.0023  .2823+.0023  .28294.0021  .2780 +.0020
Logistic Regression  RREP (RAKEL)  .3667 +.0025  .3666 +.0022  .36124.0021  .3637+.0020  .3601 = .0019
Logistic Regression  HAMR 3548 £.0024  .3490 4+ .0025  .3407 +.0022  .33894.0017  .3293 +.0017
Logistic Regression ~ BCH .3326 + .0027 — .3196 + .0020 — .3148 +.0018
Logistic Regression ~ LDPC 3719 £+ .0031 .3724 £+ .0030 .3690 £ .0028 .3696 £ .0027 .3655 £ .0028
3 =
Table A.5: Hammingloss of ME-ECC on scene dataset (3-powerset learners)
i ¥ gy . J - L
1 f
P B i
base learner ECC M =p] o= s a7 M'=63 M =095 M =127
e |
Random Forest RREP (RAKEL) 0772 +[0006 .0762:.0006 .0759 £ .0006 .0754 +.0006 .0755 «+ .0006
Random Forest HAMR 0800 £.0008 110770 %0007 = 0759 £.0005 .0750+.0007 .0746 +.0006
Random Forest BCH (0798 £.0008 szt | 0768 & .0007 — .0753 4 .0007
Random Forest LDPC 0825 £.0007  .0807 £ 10007 ~0812=.0008  .0801%.0007  .0819 %.0007
I 1 )

Gaussian SVM RREP (RAKEL) . (0724 .0005.4 0721 +.0005 ~.0718+.0004 .0720+.0005 .0719 +.0005
Gaussian SVM HAMR 07807 .0006 0736 & .0006" .+ .0730+£.0005  .0728 £.0005  .0724 +.0005
Gaussian SVM BCH L0748 .0005 A3 .0738 & .0006 — .0739 £ .0006
Gaussian SVM LDPC 07584 .0006  .0747+.0006  .0754+.0006  .0745+.0005  .0755 %+ .0006
Logistic Regression RREP (RAKEL) .0927 +.0006 * .0920 + .0005 .0917 +.0006 .0918 +.0006 .0915 + .0005
Logistic Regression  HAMR 0962 4 .0008  .0935 & .0007  .0924 +.0006  .0918 +.0005 .0910 + .0005
Logistic Regression ~BCH .0961 £ .0008 — .0932 £ .0006 — .0920 £ .0005
Logistic Regression  LDPC .0992 4+ .0007  .0960 & .0006  .0967 &.0005  .0962 +.0007  .0989 %+ .0007
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Table A.6: 0/1 loss of ML-ECC on yeast dataset (3-powerset learners)

base learner ECC M =63 M =95 M =127 M =191 M = 255
Random Forest RREP (RAKEL)  .81304.0096  .79214.0021  .79314.0022  .7947 4+ .0021  .7907 & .0023
Random Forest HAMR 81254 .0024 79494 .0025  .7900 4+ .0023  .7831+.0021  .7791 + .0020
Random Forest BCH 7853 +.0021 — 7750 £ .0021 — 7764 + .0020
Random Forest LDPC 80814.0024  .81254.0019  .80894.0022  .8178+.0019  .8082 % .0024
Gaussian SVM RREP (RAKEL)  .77794+.0059  .7647 +.0023  .7638+£.0024  .7631+.0023  .7601 % .0023
Gaussian SVM HAMR 77524 .0026  .7641+.0020  .7600 +.0022  .7551+.0018  .7522 + .0021
Gaussian SVM BCH 7441 + .0021 — 7409 + .0020 — 7428 +.0017
Gaussian SVM LDPC 7588 4.0024 76844 .0016  .76394.0022  .76714.0020  .7574 +.0021
Logistic Regression ~RREP (RAKEL)  .8310+.0049  .8202+.0016  .8206 +.0020  .8193 +.0021  .8161 + .0017
Logistic Regression ~HAMR 83044 .0022 .81584.0016  .81134.0020 .8067 +.0017  .8064 + .0018
Logistic Regression  BCH 7953 +.0024 — 7887 +.0022 — 7899 + .0020
Logistic Regression  LDPC 8095 +.0027  .8140 +.0019  .8089 4+.0026  .81604.0021  .8082 = .0024
Table A.7: Hamming loss of ML-ECC on yeast dataset (3-powerset learners)
=
base learner ECC M =.63 VIO S : M =127 M =191 M = 255
Random Forest RREP (RAKEL) - .19634.0030  .1896 £.0008 _-1892--.0008 .1887 +.0008 .1882 + .0008
Random Forest HAMR £.1992 + 0007, 1937 0008 '\ 19194 .0007  .1900+.0008  .1895 % .0008
Random Forest BCH 1952£f0007, [ 71942 4 .0007 — 11928 + .0008
Random Forest LDPC 11990 + .odo'?_: 973150007 | .19964.0006 1989 £.0007 2014 % .0007
1— =} 1
Gaussian SVM RREP (RAKEL) 1891 +.0016% 1862 .0007 . .18624.0007 .1855+.0006 1853 +.0007
Gaussian SVM HAMR 1916 = .0007 rt-.1888 4100060 .18824.0006  .1872+.0006  .1867 % .0006
Gaussian SVM BCH .1897 +.0008 ‘1, 1 1907 £ .0007 — .1898 + .0008
Gaussian SVM LDPC 1901 £.0007 1912 £10007 1911 .0006  .19124.0007 1917 +.0007
Logistic Regression ~ RREP (RAKEL) . “32029'4.0017 41999 i 10006 1999 + .0007 .1996 +.0007 .1993 % .0007
Logistic Regression HAMR 2064400090 2027470007, 2013 +.0007  .2004 +.0007  .2004 % .0007
Logistic Regression ~BCH .205972 .0008 - .2057 £ .0008 — .2051 £ .0008
Logistic Regression ~ LDPC 2032+ .0008 ..2025%.0008 | .2027+.0008  .2039 £.0007  .2054 & .0007
Table A.8: 0/1 loss of ML-ECC on emot ions dataset (3-powerset learners)

base learner ECC M =31 M =47 M = 63 M =95 M =127
Random Forest RREP (RAKEL) .6507 &.0050 .6475+.0050  .64554.0052 .6512+.0056  .6465 % .0057
Random Forest HAMR 6597 +.0053  .6507 +.0063 6512+ .0050 .6483 +.0053 .6373 +.0061
Random Forest BCH 6502 + .0058 — 6386 + .0054 — 6361 £ .0057
Random Forest LDPC 6637 +£.0051 6787 +.0054  .67214.0051  .6769+.0053  .6619 = .0052
Gaussian SVM RREP (RAKEL) .7822+.0063 .7818+.0048 .7782+4.0057 .7790+.0045 .7759 + .0055
Gaussian SVM HAMR 7965 +.0051 7785+ .0063 .7771+.0057 .7769+.0052 .7710 +.0054
Gaussian SVM BCH 7979 4 .0058 — 7774+ .0057 — 7744 £ .0053
Gaussian SVM LDPC 8059 4+.0053  .82384+.0060  .81044.0052  .8257 +.0050  .8040 + .0044
Logistic Regression RREP (RAKEL) .7061 +.0067 .6977+.0071 .6982+.0066 .6957 +.0067 .6949 +.0070
Logistic Regression HAMR 7188 4+.0063  .7030 4+ .0059  .70714.0066 .7017 +.0063 .6964 + .0057
Logistic Regression ~BCH 7178 £ .0057 — .7059 £ .0046 — 7068 £ .0046
Logistic Regression  LDPC 73564 .0054 73024 .0072  .7287 4+ .0058  .73124.0056  .7295 + .0056
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Table A.9: Hamming loss of ML-ECC on emot ions dataset (3-powerset learners)

base learner ECC M =31 M =47 M =63 M =95 M =127
Random Forest RREP (RAKEL) .1822 4+ .0018 .1785+.0016 .1778+.0016 .1781+.0018 .1774 4+ .0018
Random Forest HAMR .1889 £ .0020 1825 £ .0020 .1822 £ .0015 .1814 £ .0019 .1799 £ .0020
Random Forest BCH .1928 £ .0022 — .1856 £ .0018 — .1859 £+ .0021
Random Forest LDPC 1887 £ .0019 .1919 £ .0016 .1895 £ .0018 .1909 £ .0017 .1912 £ .0020
Gaussian SVM RREP (RAKEL) .2475+.0023 .2443 +.0021 .2446 +.0023 .2446 +.0022 .2432 + .0021
Gaussian SVM HAMR .2627 £ .0023 .2534 £+ .0026 .2527 £ .0022 .2497 £ .0023 .2489 £ .0023
Gaussian SVM BCH .2734 £ .0025 — .2669 + .0026 — .2644 £+ .0019
Gaussian SVM LDPC .2635 £ .0024 .2636 £+ .0019 .2573 £.0023 .2625 £ .0024 .2634 £ .0027
Logistic Regression ~RREP (RAKEL) .2065 +.0023 .2026 +.0025 .2029 +.0024 .2017 +.0025 .2026 + .0025
Logistic Regression HAMR .2170 £ .0030 .2088 £+ .0023 .2110 £ .0025 .2092 £ .0028 .2064 £+ .0024
Logistic Regression ~ BCH 2279 £ .0021 — .2243 £ .0025 — .2233 £ .0022
Logistic Regression ~ LDPC .2207 £ .0023 .2150 £ .0027 .2172 £ .0022 .2186 £ .0021 .2202 £+ .0021
Table A.10: 0/1 loss of ML-ECC'on medical dataset (3-powerset learners)
base learner ECC M =235 M.= 383 M =511 M =767 M = 1023
Random Forest RREP (RAKEL) 16633 £ .Olﬁ.z "I 6{135:&:‘ .0030 .6428 &£ .0027 .6475 £ .0029 .6496 £+ .0024
Random Forest HAMR .6369 + .0(529_:_-'- .@4_24|:|:..0033 .6398 £ .0031 .6406 £ .0021 .6417 £+ .0030
Random Forest BCH 4730 +.0036 _J_..'.! I—I .4697 + .0034 — .4659 + .0038
Random Forest LDPC 5237 :|:|.0 36 -|I"I-5223 £1.0032 .5276 £ .0031 .5250 +.0032 .5260 £ .0032
1 | 3
Gaussian SVM RREP (RAKEL) 3919 :I:l.OE48 '_"_.'!_.’».702 !I: 10036 13684 £ .0034 .3697 + .0035 .3680 £ .0035
Gaussian SVM HAMR .3686 +/.0036 ~ .3672 !0036 .3684 =+ .0031 .3673 +.0029 .3640 £ .0031
Gaussian SVM BCH 3422 +.0028 i 3440 + .0028 — .3394 +.0027
Gaussian SVM LDPC 12359240031 3677 + 0033 .3752 £ .0036 .3811 £ .0032 .3856 £ .0031
Logistic Regression ~ RREP (RAKEL) 5718 .0240 .5549% .0262 5508 £ .0252 .5488 £ .0253 .5507 £ .0254
Logistic Regression ~HAMR 5326+ .0232 .5321:E .0235 .5310 £ .0229 .5286 £ .0230 .5269 £ .0229
Logistic Regression ~BCH .3895 + .0054 -— .3871 + .0051 — .3798 +.0044
Logistic Regression ~ LDPC 4403 £+ .0100 4470+ .0097 14563 £ .0094 4510 + .0093 4516 £ .0083
Table A.11: Hamming loss of ML-ECC on medical dataset (3-powerset learners)

base learner ECC M = 255 M = 383 M =511 M =767 M = 1023
Random Forest RREP (RAKEL) .0195 £ .0010 .0181 £ .0001 .0181 £ .0001 .0182 £ .0001 .0182 £ .0001
Random Forest HAMR .0180 £ .0001 .0181 £+ .0001 .0180 £ .0001 .0180 + .0001 .0180 £ .0001
Random Forest BCH .0159 + .0001 — .0158 4+ .0001 — .0158 + .0001
Random Forest LDPC .0171 £ .0001 .0177 + .0001 .0183 £ .0001 .0189 £ .0001 .0191 £ .0002
Gaussian SVM RREP (RAKEL) .0120 £ .0005 .0113 £+ .0001 .0112 +.0001 .0112+.0001 .0112 4+ .0001
Gaussian SVM HAMR .0112 +.0001 .0112+.0001 .0112+.0001 .0112+.0001 .0111 4+ .0001
Gaussian SVM BCH .0113 + .0001 — .0114 £ .0001 — .0114 £ .0001
Gaussian SVM LDPC .0120 £ .0001 .0126 £+ .0001 .0131 £ .0001 .0137 £ .0001 .0140 £ .0001
Logistic Regression ~ RREP (RAKEL) .0198 £ .0010 .0193 £+ .0012 .0191 £ .0011 .0190 £+ .0011 .0190 £ .0011
Logistic Regression ~HAMR .0180 £ .0010 .0180 £+ .0010 .0179 £ .0010 .0178 + .0009 .0176 £ .0009
Logistic Regression ~BCH .0139 + .0003 — .0137 +.0003 — .0137 + .0003
Logistic Regression ~ LDPC .0167 £ .0006 .0175 4+ .0006 .0182 £ .0007 .0184 + .0007 .0187 £ .0006
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A.3 ML-ECC Using Binary Relevance Base Learners

Table A.12: Micro-F; of ML-ECC using BR base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest RREP (BR) .7058 £ .0018 .6817 +.0034 .6397 +.0013 .6044 £+ .0017
Random Forest HAMR 7729 £ .0016 .6991 £ .0032 .6575 + .0014 .6156 £ .0015
Random Forest BCH 7889 +.0020 .7033 £.0028 .6533 +.0015 .6319 +.0016
Random Forest LDPC 7276 £ .0022 .6734 £+ .0031 .6350 £ .0012 .5882 £ .0019
Gaussian SVM RREP (BR) 7749 £+ .0014 .5068 + .0044 .6646 £+ .0013 .6582 +.0018
Gaussian SVM HAMR 7881 +.0012 .5370 £+ .0039 .6713 +.0014 .6578 +.0019
Gaussian SVM BCH .7866 £ .0015 .5538 + .0052 .6687 £ .0013 .6587 +.0018
Gaussian SVM LDPC 7781 £+ .0016 .5047 +.0047 .6598 +.0012 .6332 £+ .0017
Logistic Regression ~ RREP (BR) .6775 £ .0020 .6344 £+ .0036 .6349 £+ .0015 .6475 £ .0021
Logistic Regression ~ HAMR .7076 £ .0017 .6507 +.0039 .6406 + .0015 .6466 £ .0020
Logistic Regression ~ BCH 7212 4+ .0018 .6499 + .0043 6374 £+ .0016 .6496 + .0019
Logistic Regression ~ LDPC 6772 £.0023 .6278 £+ .0039 .6296 £+ .0017 .6257 £ .0023
base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (BR) .9864 £:0010 5432 £.:0023 .5454 + .0046

Random Forest HAMR 9872 =£.0009 % .5591-4- .0024 .5472 £+ .0046

Random Forest BCH 9892 + .0009 » .6869 + .0032 .5399 +.0042

Random Forest LDPC .9844°+..0012 .5812.+ .0028: .5201 +.0047

Gaussian SVM RREP (BR) .9874 £ .0010 7818+ .0022 .5696 + .0053

Gaussian SVM HAMR 9894 .0010 .7831 + .0021 +"-.5664 + .0050

Gaussian SVM BCH .9892 + .0008™, 7728 1 .0019 ©+5466 + .0058

Gaussian SVM LDPC .9878 £ .0008=, .E_ .I7I‘2_49|:|:' .0025 .5349 + .0052

— i1

Logistic Regression ~ RREP (BR) » .7272 + .0035 :_1'-(-:,_5235 +.0114 5713 + .0034

Logistic Regression HAMR 8326 +.0040 4711810091 .5682 4 .0035

Logistic Regression ~BCH 9752 + .0017 ]1._?284 #:_.0057 0624 =+ .0044

Logistic Regression ~ LDPC 9492 + .(i)O 3 = =6612 itll0077 H397 £ .0036

|

N
iy |I !Il

54



Table A.13: Macro-F} of ML-ECC using BR base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest RREP (BR) .7045 £ .0016 .6513 £ .0037 .3554 4+ .0012 .2596 £ .0035
Random Forest HAMR 7758 £.0016 .6738 £ .0036 .3802 £+ .0014 .2836 £ .0035
Random Forest BCH .7950 + .0019 .6863 + .0030 .3845 + .0017 .3528 +.0031
Random Forest LDPC .7280 £+ .0020 .6449 £+ .0034 .3676 £+ .0011 .2872 £ .0032
Gaussian SVM RREP (BR) .7810 £+ .0013 14362 £+ .0046 14138 +.0018 .4560 + .0044
Gaussian SVM HAMR .7950 4+ .0012 4780 £ .0043 .4188 4+ .0019 14262 £ .0044
Gaussian SVM BCH .7940 + .0016 .5190 + .0052 4198 £+ .0020 .4484 £+ .0043
Gaussian SVM LDPC .7845 4+ .0015 .4420 4+ .0048 14161 +.0019 4165 £ .0036
Logistic Regression ~ RREP (BR) .6817 £ .0019 .6062 £ .0044 .3405 £+ .0016 .4436 + .0044
Logistic Regression ~HAMR 7119 £ .0015 16267 £ .0042 .3445 £+ .0014 14041 £ .0048
Logistic Regression ~BCH .7264 + .0016 .6336 + .0042 .3482 4+ .0020 .4306 £ .0044
Logistic Regression ~ LDPC .6803 £ .0024 .5969 =+ .0050 .3466 +.0016 .4050 £ .0043
base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (BR) 7527 £ .0052 .1338 £ .0026 1794 £+ .0052

Random Forest HAMR 7535 +.0053 .1447 £+ .0029 .1822 4+ .0054

Random Forest BCH 7589 + .0057 .2628 + .0036 .1945 4+ .0053

Random Forest LDPC .7499 £ .0055 .1963 £+ .0027 1777 £+ .0046

Gaussian SVM RREP (BR) 76594 .0065 .3081 +.0034 .1414 4+ .0029

Gaussian SVM HAMR .7628 £ .0058." .2958_ + .0028 .1359 £+ .0029

Gaussian SVM BCH \7612,% .0052 " .3092+ .0040 .1706 + .0049

Gaussian SVM LDPC .77314.0060 2880 .0025' .1476 £+ .0032

Logistic Regression ~ RREP (BR) 5425 .0043 .3252 £.0042 .. 1478 £ .0027

Logistic Regression ~HAMR 16052 £ .005% .3314 .0057, ' “51375 £ .0028

Logistic Regression ~BCH 7401 4+ .0065 .313'__7 +.0041 71672 4+ .0037

Logistic Regression ~ LDPC 7183 £ .008T % e .3b01'|:|: .0040 .1459 4+ .0025

Table A.14:"Ranking lolss
gt |

=

*_F__';.: | II
SN £
of ML"—EC:d using BR base learners
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base learner ECC scene-(M 2127) emotions (M- §127) yeast (M=255) tmc2007 (M=511)
Random Forest RREP (BR) .2113 £ .0010 .2336' .0023 .2559 £+ .0010 .2357 £ .0012
Random Forest HAMR .1554'4+.0010 .2185 =+ .0022 .2422 +.0011 .2275 4+ .0011
Random Forest BCH .1294 + .0012 .2139+ .0019 .2461 £+ .0011 .2148 +.0012
Random Forest LDPC .1907 £+ .0013 .2397 +.0022 .2585 +.0010 .2351 4+ .0013
Gaussian SVM RREP (BR) .1493 £ .0008 .3375 £+ .0025 .2379 £+ .0010 .1914 + .0013
Gaussian SVM HAMR .1348 £ .0007 .3231 £+ .0024 .2321 +.0011 .1937 £ .0014
Gaussian SVM BCH .1286 +.0010 .3179 £+ .0034 .2340 +.0010 .1923 +.0013
Gaussian SVM LDPC .1435 £ .0010 .3406 £ .0024 .2411 4+ .0010 .1973 £ .0013
Logistic Regression ~ RREP (BR) .2128 £ .0013 .2627 £+ .0025 12571 £.0012 1977 + .0016
Logistic Regression ~HAMR .1890 £ .0011 .2515 +.0028 .2523 +.0012 .2006 £ .0015
Logistic Regression ~BCH .1700 +.0011 .2543 £ .0030 .2559 4+ .0013 .1965 + .0015
Logistic Regression ~ LDPC .2100 £ .0016 .2673 £+ .0026 .2605 £+ .0013 .2012 £ .0018
base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (BR) .0075 £ .0006 .2990 £+ .0014 .2715 4+ .0029

Random Forest HAMR .0068 £ .0004 .2900 £+ .0014 .2695 +.0029

Random Forest BCH .0048 +.0005 .1844 + .0018 .2660 £+ .0029

Random Forest LDPC .0067 £ .0004 .2365 +.0017 .2713 +.0030

Gaussian SVM RREP (BR) .0065 £ .0005 .1297 £+ .0019 .2574 +.0032

Gaussian SVM HAMR .0058 £ .0005 .1307 £+ .0018 .2596 +.0032

Gaussian SVM BCH .0049 + .0004 .1265 £+ .0012 .2600 + .0034

Gaussian SVM LDPC .0054 £ .0005 1311 4+ .0018 .2599 +.0033

Logistic Regression ~ RREP (BR) .0199 + .0005 .0913 + .0075 .2570 £ .0024

Logistic Regression ~HAMR .0116 £ .0005 .0909 + .0075 .2601 £ .0024

Logistic Regression ~ BCH .0041 + .0004 .1074 +.0039 .2528 +.0029

Logistic Regression ~ LDPC .0048 £ .0005 .0994 £+ .0063 .2562 £ .0025
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A.4 ML-ECC With Geometric Decoders

Table A.15: Micro-F} of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)
Random Forest HAMR  alg-hard 7733 +.0016 .6992 £ .0031 .6575 +.0014 .6156 +.0015
Random Forest HAMR  geo-hard  .7776 £+ .0017 .7061 +.0031 .6614 + .0015 .6162 +.0016
Random Forest HAMR  geo-soft 7710 +.0018 .7023 £ .0031 .6553 +.0014 .6159 +.0016
Gaussian SVM HAMR  alg-hard 7879 +.0012 .5375 £+ .0040 6713 £ .0014 .6578 £+ .0019
Gaussian SVM HAMR  geo-hard .7890 £+ .0013 .5502 + .0042 .6726 +.0014 .6584 +.0019
Gaussian SVM HAMR  geo-soft 7929 +.0012 .5305 £ .0041 .6714 + .0014 .6598 +.0019
Logistic Regression ~ HAMR  alg-hard 7076 £+ .0017 .6511 +.0040 .6406 + .0015 .6466 £ .0020
Logistic Regression HAMR  geo-hard 7096 £ .0018 .6549 + .0041 .6413 + .0015 .6470 £+ .0020
Logistic Regression HAMR  geo-soft .7156 + .0019 .6544 + .0045 .6417 + .0014 .6486 + .0020
Random Forest BCH alg-hard 7897 +.0018 .7032 £ .0028 .6533 £+ .0015 .6319 £ .0016
Random Forest BCH geo-hard 7897 £ .0018 7059 £ .0027 .6658 £+ .0017 .6490 £ .0018
Random Forest BCH geo-soft .7944 + .0019 7153 £ .0025 .6731 £ .0014 .6582 +.0016
Gaussian SVM BCH alg-hard .7864 +.0016 .5631 4 .0051 .6687 £+ .0013 .6587 +.0018
Gaussian SVM BCH geo-hard .7886 £ 0015 =#.5834 & .0047 .6693 £ .0012 .6426 £ .0020
Gaussian SVM BCH geo-soft 7924 10016 5902 + 0046 6755 + .0012 .6590 +.0018
Logistic Regression ~BCH alg-hard 7212 0018 6499 :0043 .6374 £+ .0016 .6496 + .0019
Logistic Regression ~BCH geo-hard 7236 & .0017 6471 40044 .6395 £+ .0013 .6299 £ .0022
Logistic Regression ~ BCH geo-soft! 7337+ .0016 .66524.0043 .6462 + .0013 .6480 + .0017
base learner ECC decoder genbase (]!/{ =51 1) ,-"_medical (M=1023) enron (M=1023)
Random Forest HAMR  ‘alg-hard 9872+ .0 i .éSpl +.0024 .5472 £+ .0046
Random Forest HAMR  geo-hard | . .9875 + .0 7 5604 + .0023 5477 £ .0045
Random Forest HAMR  geo-soft .98713 1: .000& .5603 10024 .5467 +.0047

o, i E
Gaussian SVM HAMR  alg-hard .989? i .00X0~" .78#1 +.0021 .5664 + .0050
Gaussian SVM HAMR  geo-hard 9900 = .0010 .’f831 +.0021 .5668 + .0052
Gaussian SVM HAMR  geosSoftyi;.9897  .0010 7$4S 40021 .5659 +.0053
Logistic Regression HAMR  alg-hard 8326 + .0040 71187310091 .5682 + .0035
Logistic Regression HAMR  geo-hard .8324 £10043 27107 + .0093 5677 + .0035
Logistic Regression HAMR  geo-soft .8742 +.0039 7228 + .0080 .5683 + .0036
Random Forest BCH alg-hard .9892 +.0009 16869 £ .0032 .5399 + .0042
Random Forest BCH geo-hard .9889 + .0009 7048 £+ .0028 .5283 £ .0041
Random Forest BCH geo-soft .9891 + .0009 .7106 + .0030 .5337 £ .0044
Gaussian SVM BCH alg-hard .9892 +.0008 7728 +£.0019 .5466 + .0058
Gaussian SVM BCH geo-hard  .9887 £ .0008 .7603 £ .0026 .5128 £+ .0053
Gaussian SVM BCH geo-soft .9887 £+ .0009 7689 £ .0026 .5155 £ .0057
Logistic Regression ~BCH alg-hard 9752 +.0017 .7284 £+ .0057 .5624 + .0044
Logistic Regression ~ BCH geo-hard 19451 £ .0041 7260 £ .0053 .5250 £ .0041
Logistic Regression ~BCH geo-soft .9532 £+ .0031 .7439 + .0036 .5251 £+ .0043
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Table A.16: Macro-F} of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest HAMR  alg-hard 7760 + .0016 .6741 4+ .0035 .3802 +.0014 .2836 +.0035

Random Forest HAMR  geo-hard  .7808 +.0017 .6823 +.0034 .3853 £.0015 .2837 +.0037

Random Forest HAMR  geo-soft 7741 £ .0017 .6756 £ .0034 3759 £ .0014 .2817 4+ .0035

Gaussian SVM HAMR  alg-hard .7949 + .0012 4783 £+ .0042 .4188 + .0019 4262 1+ .0044

Gaussian SVM HAMR  geo-hard .7961 £+ .0013 .4940 + .0051 4198 +.0018 4269 + .0045

Gaussian SVM HAMR  geo-soft .8004 +.0013 .4624 £+ .0042 4177 +.0017 4281 +.0042

Logistic Regression HAMR  alg-hard 7118 + .0016 .6269 £ .0043 .3445 + .0014 4041 £ .0048

Logistic Regression HAMR  geo-hard 7139 £.0015 .6320 + .0043 .3450 + .0013 4062 £ .0051

Logistic Regression HAMR  geo-soft .7204 £:0017 46310+ .0047 .3447 + .0012 .4150 £+ .0046

Random Forest BCH alg-hard 7957 40018 6860 + ;0029 .3845 +.0017 .3528 £ .0031

Random Forest BCH geo-hard 7961 0018 .6910-%0029 .4166 +.0018 .3883 +.0032

Random Forest BCH geo-soft .8006 + .0018 .6975 + .0025 14120 £+ .0016 .3788 £ .0034

Gaussian SVM BCH alg-hard | 793840016 #5181 + .0050 , 4198 £ .0020 4484 1+ .0043

Gaussian SVM BCH geo-hard 7961 +.0016 | .__55'82 +.0048 4312 + .0019 .3851 £ .0035

Gaussian SVM BCH geo-soft .8003 + _UO-]:IG' 1 i .?6_07 +.0046 .4300 + .0019 .3957 £+ .0038
1

Logistic Regression  BCH  Lalg-hard [k .7264 + 0016 == 5336 + .0042 3482 +.0020  .4306 + .0044

Logistic Regression ~BCH geo-hard 17289 + .0015 6322 ££0043 .3583 + .0018 .3537 £ .0035

Logistic Regression ~ BCH geo-soft | 7397 + 0014, .6499 +:.0044," 3588 +.0017 .3695 £ .0035

—— —

base learner ECC decoder _genbase (M=511) meﬁﬁdlal (M=1023) ' enron (M=1023)

Random Forest HAMR alg-hard * ~.7535 1 0053 .111417_ +£..0029 .1822 + .0054

Random Forest HAMR  geo-hard . 7550 +.0053 .1448 £10028  .1836 + .0054

Random Forest HAMR  geo-soft L7556 +£..0052 1449 1+ .0027 .1830 + .0053

Gaussian SVM HAMR  alg-hard 7628 £ :0058 12958 + .0028 .1359 + .0029

Gaussian SVM HAMR  geo-hard  .7704 £+ .0068 2943 +.0028 .1358 +.0029

Gaussian SVM HAMR  geo-soft 7685 +.0069 .2932 +.0031 1325 +.0027

Logistic Regression HAMR  alg-hard .6052 £ .0057 .3314 + .0057 1375 £ .0028

Logistic Regression HAMR  geo-hard .6074 £+ .0063 .3305 £ .0052 .1368 £ .0027

Logistic Regression HAMR  geo-soft .6375 +.0072 .3371 + .0059 1417 + .0024

Random Forest BCH alg-hard 7589 +.0057 .2628 £ .0036 .1945 £ .0053

Random Forest BCH geo-hard 7580 £+ .0057 .2878 +.0038 .1965 £ .0040

Random Forest BCH geo-soft 7579 +.0053 .2860 + .0039 .2041 £ .0051

Gaussian SVM BCH alg-hard 7612 +.0052 .3092 £ .0040 .1706 £ .0049

Gaussian SVM BCH geo-hard  .7609 £ .0054 .3227 +.0044 .1659 £+ .0035

Gaussian SVM BCH geo-soft .7609 £+ .0053 .3174 £+ .0043 1675 + .0045

Logistic Regression ~ BCH alg-hard .7401 £+ .0065 3137 £.0041 1672 £ .0037

Logistic Regression ~BCH geo-hard .6968 £ .0082 .3091 £ .0035 .1702 £ .0032

Logistic Regression ~ BCH geo-soft .7033 +.0079 .3235 +£.0037 .1833 +.0040
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Table A.17: Ranking Loss of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest HAMR  alg-hard .1553 +.0010 .2183 £+ .0021 .2422 4+ .0011 .2275 4+ .0011

Random Forest HAMR  geo-hard .0760 £+ .0010 .1707 £ .0026 .1820 £ .0012 .1068 £ .0010

Random Forest HAMR  geo-soft .0556 + .0007 .1369 + .0021 .1569 + .0010 .0487 + .0005

Gaussian SVM HAMR  alg-hard .1351 £+ .0007 .3226 £+ .0025 .2321 £+ .0011 1937 £+ .0014

Gaussian SVM HAMR  geo-hard .0913 +.0012 .2685 £ .0035 .1835 4+ .0011 .0918 £ .0007

Gaussian SVM HAMR  geo-soft .0571 +.0008 .2307 +£.0029 .1547 +.0010 .0514 + .0005

Logistic Regression HAMR  alg-hard .1890 + .0011 .2513 £+ .0029 .2523 +.0012 .2006 £ .0015

Logistic Regression HAMR  geo-hard .1227 £.0015 .2047 £ .0033 .1990 £ .0012 .0935 £ .0009

Logistic Regression HAMR  geo-soft .0810 £:0007 #1574+ .0026 .1689 + .0010 .0513 +.0005

Random Forest BCH alg-hard 1289 40011 “2140 + ;0019 .2461 £+ .0011 .2148 £ .0012

Random Forest BCH geo-hard .0977 0011 181 2+=0027 .2181 £+ .0013 .1275 £ .0009

Random Forest BCH geo-soft .0570 + .0007 1437+ .0021 1737 £.0012 .0602 + .0006

Gaussian SVM BCH alg-hard | 1287440010 78187 £ .002%3 ] .2340 £+ .0010 .1923 £.0013

Gaussian SVM BCH geo-hard 1056 +.0011 | ._:2890 +.0038 .2164 £+ .0012 .1251 £+ .0010

Gaussian SVM BCH geo-soft .0685 + _6099 1 i .?4_19 +.0035 .1767 £+ .0012 .0674 + .0007
o - -

Logistic Regression ~BCH alg-hard .1700 + ,OIHE;' 2543 £+ .0030 .2559 £+ .0013 .1965 £ .0015

Logistic Regression ~ BCH geo-hard 11361 4 .0013 12293 ££0040 .2360 £ .0011 .1320 £ .0011

Logistic Regression ~BCH geo-soft .0884 1+ .000 _f__ 1793 4= 0033, " .1924 +.0013 .0669 £+ .0007

—— —

base learner ECC decoder - genbase (M=511) meﬁﬁdlal (M=1023) = enron (M=1023)

Random Forest HAMR  alg-hard © * .0068 1 0004 j960 +£..0014 .2695 £ .0029

Random Forest HAMR  geo-hard 0038 +..0004 .12652:10020 1762 £ .0019

Random Forest HAMR  geo-soft 10021 +.:0003 10305 £+ .0009 .0765 + .0008

Gaussian SVM HAMR  alg-hard .0058 £ :0005 1307 £+ .0018 .2596 £ .0032

Gaussian SVM HAMR  geo-hard  .0028 +.0004 .0656 £ .0014 .1657 £+ .0024

Gaussian SVM HAMR  geo-soft .0030 +.0006 .0290 + .0009 .0828 +.0009

Logistic Regression HAMR  alg-hard .0116 £ .0005 .0909 £ .0075 .2601 £ .0024

Logistic Regression HAMR  geo-hard .0028 £+ .0004 .0451 £+ .0033 .1554 £+ .0020

Logistic Regression HAMR  geo-soft .0032 £+ .0005 .0264 + .0008 .0811 + .0011

Random Forest BCH alg-hard .0048 £ .0005 .1844 £ .0018 .2660 £ .0029

Random Forest BCH geo-hard .0038 +.0004 1227 4+ .0016 .2254 4+ .0022

Random Forest BCH geo-soft .0032 £+ .0005 .0718 +.0023 .1465 + .0014

Gaussian SVM BCH alg-hard .0049 + .0004 .1265 £ .0012 .2600 £ .0034

Gaussian SVM BCH geo-hard .0034 4+ .0005 .0863 £+ .0014 .2308 £ .0030

Gaussian SVM BCH geo-soft .0034 £+ .0006 .0652 +.0021 .1435 + .0017

Logistic Regression ~ BCH alg-hard .0041 £ .0004 .1074 £ .0039 .2528 £ .0029

Logistic Regression ~ BCH geo-hard .0049 £ .0006 .0848 £ .0021 .2251 £ .0022

Logistic Regression ~ BCH geo-soft .0026 +.0004 .0672 +.0023 .1786 + .0019
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