
國立臺灣大學電機資訊學院資訊工程學系

碩士論文
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

剛性與柔性解碼之錯誤更正碼於多標籤分類學習之應用

Multi-label Classification
with Hard-/soft-decoded Error-correcting Codes

馮俊菘

Ferng, Chun-Sung

指導教授：林軒田博士

Advisor: Hsuan-Tien Lin, Ph.D.

中華民國 101年 6月
June, 2012





致致致謝謝謝

能寫出這份論文和得到碩士學位，首先我要感謝林軒田老師。謝

謝老師一直以來的指導，每個星期都和我一對一的討論。從一開始領

我進門，與我討論題目、想法和實驗，到最後論文的修改、簡報的技

巧，都是在老師的教導和指引下才能有如此成果。還有要感謝口試委

員李育杰老師和林守德老師，不但百忙之中撥空來參與口試，也給了

我不少有用的建議，讓這篇論文更加完整。

還有，要感謝 217和 536實驗室的同學們，在這兩年願意不時和我

討論，讓我對機器學習以及其他相關領域有更多認識；在我準備口頭

報告和口試的時候願意聽我練習，讓我能表現得更好。此外，也要感

謝我的女朋友琇文，一路上陪著我一起努力，在我遭遇困難的時候給

我安慰、幫我加油打氣，讓我可以繼續前進。

最重要的，要感謝爸爸媽媽，因為有你們的付出和支持，我才能心

無旁鶩的在學業上努力。

在此對所有幫助我的人至上最誠摯的感謝，謝謝你們。

馮俊菘， 2012年 7月

iii



iv



中中中文文文摘摘摘要要要

我們提出一個將錯誤更正碼 (error-correcting codes, ECC)應用於多
標籤分類問題 (multi-label classification)的架構。在這個架構中，我們

以一些基礎學習器 (base learner) 當作有干擾的傳輸頻道， 並用錯誤

更正碼來更正這些基礎學習器的預測錯誤。 透過這個架構，我們可

以用簡單的重複碼 (repetition code)來解釋現有的隨機 k 標籤組演算法

(random k-label-sets, RAKEL)。我們也實驗了各種錯誤更正碼應用在
多標籤分類問題的效果，實驗結果顯示，利用較強的錯誤更正碼可以

改善隨機 k 標籤組演算法的表現； 此外，讓傳統的二元關聯演算法

(binary relevance)學習一些校驗標籤 (parity-checking labels)也會讓它有
更好的表現。而且，由不同的錯誤更正碼的實驗結果可以看出，錯誤

更正碼的強度會影響基礎學習器的難度，妥善平衡兩者可以讓結果變

得更好。最後，我們也設計了一個新的解碼器來處理剛性（二元值）

與柔性（實數值）的線性錯誤更正碼，實驗結果也證實這個新的解碼

器可以提昇這個架構的表現。

關鍵詞：機器學習、多標籤分類、錯誤更正碼、柔性解碼、幾何解碼
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Abstract

We formulate a framework for applying error-correcting codes (ECC) on
multi-label classification problems. The framework treats some base learn-
ers as noisy channels and uses ECC to correct the prediction errors made
by the learners. An immediate use of the framework is a novel ECC-based
explanation of the popular random k-label-sets (RAKEL) algorithm using
a simple repetition ECC. Using the framework, we empirically compare a
broad spectrum of ECC designs for multi-label classification. The results not
only demonstrate that RAKEL can be improved by applying some stronger
ECC, but also show that the traditional Binary Relevance approach can be
enhanced by learning more parity-checking labels. Our study on different
ECC also helps understand the trade-off between the strength of ECC and
the hardness of the base learning tasks. Furthermore, we extend our study
to linear ECC for either hard (binary) or soft (real-valued) bits, and design
a novel decoder for the ECC. We demonstrate that the decoder improves the
performance of our framework.

Keywords : Machine Learning, Multi-label Classification, Error-correcting
Codes, Soft Decoding, Geometric Decoding.
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Chapter 1

Introduction

Multi-label classification is an extension of traditional multi-class classification. In partic-

ular, the latter aims at accurately associating one single label with an instance, while the

former aims at associating a label set. Because of the increasing application needs in do-

mains like text and music categorization [Pestian et al., 2007, Trohidis et al., 2008], scene

analysis [Boutell et al., 2004], and genomics [Elisseeff and Weston, 2002, Diplaris et al.,

2005], multi-label classification is attracting much research attention in recent years.

Error-correcting code (ECC) roots from the information theoretic pursuit of commu-

nication [Shannon, 1948]. In particular, the ECC studies how to accurately recover a

desired signal block after transmitting the block’s encoding through a noisy communica-

tion channel. When the desired signal block is the single label (of some instances) and

the noisy channel consists of some binary classifiers, it has been shown that a suitable use

of the ECC could improve the association (prediction) accuracy of multi-class classifica-

tion [Dietterich and Bakiri, 1995]. In particular, with the help of the ECC, we can reduce

multi-class classification to several binary classification tasks. Then, following the foun-

dation of the ECC in information theory [Shannon, 1948, Mackay, 2003], a suitable ECC

can correct a small portion of binary classification errors during the prediction stage and

thus improve the prediction accuracy. Several designs, including some classic ECC [Diet-

terich and Bakiri, 1995] and some adaptively constructed ECC [Schapire, 1997, Li, 2006],

have reached promising empirical performance for multi-class classification.

While the benefits of the ECC are well established for multi-class classification, the
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corresponding use for multi-label classification remains an ongoing research direction.

Kouzani and Nasireding [2009] take the first step in this direction by proposing a multi-

label classification approach that applies a classic ECC, the Bose-Chaudhuri-Hocquenghem

(BCH) code, using a batch of binary classifiers as the noisy channel. The work is followed

by some extensions to the convolution code [Kouzani, 2010]. Although the approach

shows some good experimental results over existing multi-label classification approaches,

a more rigorous study remains needed to understand the advantages and disadvantages of

different ECC designs for multi-label classification and will be the main focus of this

work.

In this work, we formalize the framework for applying the ECC on multi-label clas-

sification. The framework is more general than both existing ECC studies for multi-class

classification [Dietterich and Bakiri, 1995] and for multi-label classification [Kouzani and

Nasireding, 2009]. Then, we conduct a thorough study with a broad spectrum of classic

ECC designs: repetition code, Hamming code, BCH code, and low-density parity-check

code. The four designs cover the simplest ECC idea to the state-of-the-art ECC in com-

munication systems. Interestingly, such a framework allows us to give a novel ECC-based

explanation to the random k-label sets (RAKEL) algorithm, which is popular for multi-

label classification. In particular, RAKEL can be viewed as a special type of repetition

code coupled with a batch of simple and internal multi-label classifiers.

We empirically demonstrate that RAKEL can be improved by replacing its repetition

code with the Hamming code, a slightly stronger ECC. Furthermore, even better perfor-

mance can be achieved when replacing the repetition code with the BCH code. When

compared with the traditional Binary Relevance (BR) approach without the ECC, multi-

label classification with the ECC can perform significantly better. The empirical results

justify the validity of the ECC framework.

In addition, we design a new decoder for linear ECC by using multiplications to ap-

proximate exclusive-OR operations. This decoder is able to handle not only ordinary

binary bits from the channels, called hard inputs, but also real-valued bits, called soft in-

puts. For multi-label classification using the ECC, the soft inputs can be used to represent

2



the confidence of the internal classifiers. Our newly designed decoder allows a proper

use of the detailed confidence information to produce more accurate predictions. The ex-

perimental results show that this decoder indeed improves the performance of the ECC

framework with either hard or soft inputs.

The thesis is organized as follows. First, we introduce the multi-label classification

problem in Section 1.1, and present related works in Section 1.2. Chapter 2 illustrates the

framework and demonstrates its effectiveness. Chapter 3 presents a new decoder for hard

or soft inputs. Finally we conclude in Chapter 4.

1.1 Problem Setup

Multi-label classification aims at mapping an instance x ∈ Rd to a label-set Y ⊆ L =

{1, 2, . . . , K}, where K is the number of classes. Following the hypercube view of Tai

and Lin [2012], the label set Y can be represented as a binary vector y of length K,

where y[i] is 1 if the ith label is in Y , and 0 otherwise. Consider a training dataset

D = {(xn,yn)}Nn=1. A multi-label classification algorithm uses D to locate a multi-label

classifier h : Rd → {0, 1}K such that h(x) predicts y well on future test examples (x,y).

There are several loss functions for evaluating whether h(x) predicts y well. Two

common ones are:

• subset 0/1 loss: this loss function is arguably one of the most challenging loss functions

because zero (small) loss occurs only when every bit of the prediction is correct.

∆0/1(ỹ,y) = Jỹ 6= yK

• Hamming loss: this loss function considers individual bit differences.

∆HL(ỹ,y) =
1

K

K∑
i=1

Jỹ[i] 6= y[i]K

Dembczyński et al. [2010] show that the two loss functions focus on different statistics

of the underlying probability distribution from a Bayesian perspective. While a wide

3



range of other loss functions exist [Tsoumakas and Vlahavas, 2007], in this paper we

only focus on 0/1 and Hamming because they connect tightly with the ECC framework

that will be discussed.1

1.2 Related Works

The hypercube view [Tai and Lin, 2012] unifies many existing problem transformation ap-

proaches [Tsoumakas and Vlahavas, 2007] for multi-label classification. Problem trans-

formation approaches transform multi-label classification into one or more reduced learn-

ing tasks. For instance, one simple problem transformation approach for multi-label clas-

sification is called Binary Relevance (BR), which learns one binary classifier per indi-

vidual label. Another simple problem transformation approach is called label power-

set (LP), which transforms multi-label classification to one multi-class classification task

with a huge number of extended labels. One popular problem transformation approach

that lies between BR and LP is called random k-label sets (RAKEL) [Tsoumakas and

Vlahavas, 2007], which transforms multi-label classification into many multi-class clas-

sification tasks with a smaller number of extended labels.

Multi-label classification with compressive sensing [Hsu et al., 2009] is a problem

transformation approach that encodes the training label set yn to a shorter, real-valued

codeword vector using compressive sensing. Tai and Lin [2012] study some different

encoding schemes from label sets to real-valued codewords. Note that those encoding

schemes focus on compression—removing the redundancy within the binary signals (label

sets) to form shorter codewords. The compression perspective can lead to not only more

efficient training and testing but also more meaningful codewords.

Compression is a classic task in information theory based on Shannon’s first theo-

rem [Shannon, 1948]. Another classic task in information theory aims at expansion—

adding redundancy in the (longer) codewords to ensure robust decoding against noise

contamination. The power of expansion is characterized by Shannon’s second theo-

1We follow the final remark of Dembczyński et al. [2010] to only focus on the loss functions that are
related to our algorithmic goals.
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rem [Shannon, 1948]. The ECC targets towards using the power of expansion system-

atically. In particular, the ECC works by encoding a block of signal to a longer codeword

b before passing it through the noisy channel and then decoding the received codeword

b̃ back to the block appropriately. Then, under some assumptions [Mackay, 2003], the

block can be perfectly recovered—resulting in zero block-decoding error; in some cases,

the block can only be almost perfectly recovered—resulting in a few bit-decoding errors.

If we take the “block” as the label set y for every example (x,y) and a batch of base

learners as a channel that outputs the contaminated block b̃, the block-decoding error

corresponds to ∆0/1 while the bit-decoding error corresponds to a scaled version of ∆HL.

Such a correspondence motivates us to study whether suitable ECC designs can be used

to improve multi-label classification, which will be formalized in the next chapter.
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Chapter 2

ECC for Multi-label Classification

2.1 ML-ECC Framework

We now describe the ECC framework in detail. The main idea is to use an ECC encoder

enc(·) : {0, 1}K → {0, 1}M to expand the original label set y ∈ {0, 1}K to a codeword

b ∈ {0, 1}M that contains redundant information. Then, instead of learning a multi-label

classifier h(x) between x and y, we learn a multi-label classifier h̃(x) between x and

the corresponding b. In other words, we transform the original multi-label classification

problem into another (larger) multi-label classification task. During prediction, we use

h(x) = dec◦ h̃(x), where dec(·) : {0, 1}M → {0, 1}K is the corresponding ECC decoder,

to get a multi-label prediction ỹ ∈ {0, 1}K . The simple steps of the framework are shown

in Algorithm 1.

Algorithm 1 is simple and general. It can be coupled with any block-coding ECC

and any base learner Ab to form a new multi-label classification algorithm. For instance,

the ML-BCHRF method [Kouzani and Nasireding, 2009] uses the BCH code (see Sub-

section 2.2.3) as the ECC and BR on Random Forest as the base learner Ab. Note that

Kouzani and Nasireding [2009] did not describe why ML-BCHRF may lead to improve-

ments in multi-label classification. Next, we show a simple theorem that connects the

ECC framework with ∆0/1.

Many ECCs can guarantee to correct up to m bit flipping errors in a codeword of

length M . We will introduce some of those ECC in Section 2.2. Then, if ∆HL of h̃ is

7



Algorithm 1 Error-Correcting Framework

• Parameter: an ECC with encoder enc(·) and decoder dec(·); a base multi-label
learner Ab

• Training: Given D = {(xn,yn)}Nn=1,

1. ECC-encode each yn to bn = enc(yn);

2. Return h̃ = Ab
({(

xn,bn
)})

.

• Prediction: Given any x,

1. Predict a codeword b̃ = h̃(x);

2. Return h(x) = dec(b̃) by ECC-decoding.

low, the ECC framework guarantees that ∆0/1 of h is low. The guarantee is formalized as

follows.

Theorem 1 Consider an ECC that can correct up to m bit errors in a codeword of

length M . Then, for any T test examples {(xt,yt)}Tt=1, let bt = enc(yt). If

∆HL(h̃) =
1

T

T∑
t=1

∆HL(h̃(xt),bt) ≤ ε,

then h = dec ◦ h̃ satisfies

∆0/1(h) =
1

T

T∑
t=1

∆0/1(h(xt),yt) ≤
Mε

m+ 1
.

Proof When the average Hamming loss of h̃ is at most ε, h̃ makes at most εTM bits of

error on all bt. Since the ECC corrects up to m bits of errors in one bt, an adversarial has

to make at least m + 1 bits of errors on bt to make h(xt) different from yt. The number

of such bt can be at most εTM
m+1

. Thus, ∆0/1(h) is at most εTM
T (m+1)

.

From Theorem 1, it appears that we should simply use some stronger ECC, for which m

is larger. Nevertheless, note that we are applying the ECC in a learning scenario. Thus,

ε is not a fixed value, but depends on whether Ab can learn well from D̃. Stronger ECC

usually contains redundant bits that come from complicated compositions of the original

bits in y, and the compositions may not be easy to learn. The trade-off has been revealed

8



when applying the ECC to multi-class classification [Li, 2006]. In the next section, we

study the ECC with different strength and empirically verify the trade-off in Section 2.4.

2.2 Review of Classic ECC

Next, we review four ECC designs that will be used in the empirical study. The four

designs cover a broad spectrum of practical choices in terms of strength: the repetition

code, the Hamming on repetition code, the Bose-Chaudhuri-Hocquenghem code, and the

low-density parity-check code.

2.2.1 Repetition Code

One of the simplest ECCs is repetition code (REP) [Mackay, 2003], for which every bit

in y is repeated bM
K
c times in b during encoding. If M is not a multiple of K, then

(M mod K) bits are repeated one more time. The decoding takes a majority vote using

the received copies of each bit. Because of the majority vote, repetition code corrects up

to mREP = 1
2
bM
K
c − 1 bit errors in b. We will discuss the connection between REP and

the RAKEL algorithm in Section 2.3.

2.2.2 Hamming on Repetition Code

A slightly more complicated ECC than REP is called the Hamming code (HAM) [Ham-

ming, 1950], which can correctmHAM = 1 bit error in b by adding some parity check bits

(exclusive-OR operations of some bits in y). One typical choice of HAM is HAM(7, 4),

which encodes any y with K = 4 to b with M = 7. Note that mHAM = 1 is worse than

mREP = 1
2
bM
K
c − 1 when M is large. Thus, we consider applying HAM(7, 4) on every 4

(permuted) bits of REP. That is, to form a codeword b of M bits from a block y of K

bits, we first construct an REP of 4bM/7c + (M mod 7) bits from y; then for every 4

bits in the REP, we add 3 parity bits to b using HAM(7, 4). The resulting code will be

named Hamming on Repetition (HAMR). During decoding, the decoder of HAM(7, 4) is

first used to recover the 4-bit sub-blocks in the REP. Then, the decoder of REP (majority

9



vote) takes place.

It is not hard to compute mHAMR by analyzing the REP and HAM parts separately.

When M is a multiple of 7 and K is a multiple of 4, it can be proved that mHAMR = 4M
7K

,

which is generally better than mREP = 1
2
bM
K
c − 1. Thus, HAMR is slightly stronger

than REP for ECC purposes. We include HAMR in our study to verify whether a simple

inclusion of some parity bits for the ECC can readily improve the performance for multi-

label classification.

2.2.3 Bose-Chaudhuri-Hocquenghem Code

BCH was invented by Bose and Ray-Chaudhuri [1960], and independently by Hocquenghem

[1959]. It can be viewed as a sophisticated extension of HAM and allows correcting mul-

tiple bit errors. BCH with length M = 2p − 1 has (M −K) parity bits, and it can correct

mBCH = M−K
p

bits of error [Mackay, 2003], which is in general stronger than REP and

HAMR. The caveat is that the decoder of BCH is more complicated than the ones of REP

and HAMR.

We include BCH in our study because it is one of the most popular ECCs in real-

world communication systems. In addition, we compare BCH with HAMR to see if a

strong ECC can do better for multi-label classification.

2.2.4 Low-density Parity-check Code

Low-density parity-check code (LDPC) [Mackay, 2003] is recently drawing much re-

search attention in communications. LDPC shares an interesting connection between

ECC and Bayesian learning [Mackay, 2003]. While it is difficult to state the strength of

LDPC in terms of a single mLDPC , LDPC has been shown to approach the theoretical

limit in some special channels [Gallager, 1963], which makes it a state-of-the-art ECC.

We choose to include LDPC in our study to see whether it is worthwhile to go beyond

BCH with more sophisticated encoder/decoders.

10



2.3 ECC View of RAKEL

RAKEL is a multi-label classification algorithm proposed by Tsoumakas and Vlahavas

[2007]. Define a k-label set as a size-k subset of L. Each iteration of RAKEL randomly

selects a (different) k-label set and builds a multi-label classifier on the k labels with a

Label Powerset (LP). After running for R iterations, RAKEL obtains a size-R ensemble

of LP classifiers. The prediction on each label is done by a majority vote from classifiers

associated with the label.

Equivalently, we can draw (with replacement) M = Rk labels first before building

the LP classifiers. Then, selecting k-label sets is equivalent to encoding y by a variant

of REP, which will be called RAKEL repetition code (RREP). Similar to REP, each bit

y[i] is repeated several times in b since label i is involved in several k-label sets. After

encoding y to b, each LP classifier, called k-powerset, acts as a sub-channel that transmits

a size-k sub-block of the codeword b. The prediction procedure follows the decoder of

the usual REP.

The ECC view above decomposes the original RAKEL into two parts: the ECC and

the base learner Ab. Next, we empirically study how the two parts affect the performance

of multi-label classification.

2.4 Experimental Results

We compare RREP, HAMR, BCH, and LDPC with the ECC framework on seven real-

world datasets in different domains: scene, emotions, yeast, tmc2007, genbase,

medical, and enron [Tsoumakas et al., 2010]. The statistics of these datasets are

shown in Table 2.1. All the results are reported with the mean and standard error on ran-

dom splitting test set over 30 runs. The sizes of training and testing sets are set according

to the sizes in original datasets. Note that for tmc2007 dataset, which has 28596 in-

stances in total, we randomly sample 5% for training and another 5% for testing in each

run.

We set RREP with k = 3. Then, for each ECC, we first consider a 3-powerset with

11



Table 2.1: Dataset characteristics

DATASET K TRAINING TESTING FEATURES

SCENE 6 1211 1196 294
EMOTIONS 6 391 202 72
YEAST 14 1500 917 103
TMC2007 22 1430 1430 500
GENBASE 27 463 199 1186
MEDICAL 45 333 645 1449
ENRON 53 1123 579 1001

either Random Forest, non-linear support vector machine (SVM), or logistic regression as

the multi-class classifier inside the 3-powerset. Note that we randomly permute the bits

of b and apply an inverse permutation on b̃ for those ECC other than RREP to ensure that

each 3-powerset works on diverse sub-blocks. In addition to the 3-powerset base learners,

we also consider BR base learners in Subsection 2.4.4.

We take the default Random Forest from Weka [Hall et al., 2009] with 60 trees. For

the non-linear SVM, we use LIBSVM [Chang and Lin, 2001] with the Gaussian ker-

nel and choose (C, γ) by cross validation on training data from {2−5, 2−3, · · · , 27} ×

{2−9, 2−7, · · · , 21}. In addition, we use LIBLINEAR [Fan et al., 2008] for the logistic

regression and choose the parameter C by cross validation from {2−5, 2−3, · · · , 27}.

Note that the experiments taken in this work are generally broader than existing works

that are related to multi-label classification with the ECC in terms of the datasets, the

codes, the “channels,” and the base learners, as shown in Table 2.2. The goal of the exper-

iments is not only to justify that the framework is promising but also to rigorously identify

the best codes, channels, and base learners for solving general multi-label classification

tasks via the ECC.

2.4.1 Validity of ML-ECC Framework

First, we demonstrate the validity of the ML-ECC framework. We fix the codeword

length M to about 20 times larger than the number of labels K. The numbers are in

the form 2p − 1 for integer p because the BCH code only works on such lengths. More
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Table 2.2: Focus of existing works under the ML-ECC framework

work # datasets codes channels base learners

RAKEL 3 RREP k-powerset linear SVM
[Tsoumakas and Vlahavas, 2007]

ML-BCHRF 3 BCH BR Random Forest
[Kouzani and Nasireding, 2009]

ML-BCHRF & ML-CRF 1 convolution, BR Random Forest
[Kouzani, 2010] and BCH

this work 7 RREP, HAMR, 3-powerset, Random Forest,
BCH, and LDPC and BR Gaussian SVM,

logistic regression

(a) 0/1 loss (b) Hamming loss

Figure 2.1: Performance of ML-ECC using the 3-powerset with Random Forests

experiments on different codeword lengths are presented in Section 2.4.2. Here the base

multi-label learner is the 3-powerset with Random Forests. Following the description in

Section 2.3, RREP with the 3-powerset is exactly the same as RAKEL with k = 3.

The results on 0/1 loss is shown in Figure 2.1(a). HAMR achieves lower ∆0/1

than RREP on 5 out of the 7 datasets (scene, emotions, yeast, tmc2007, and

medical) and achieves similar ∆0/1 with RREP on the other 2. This verifies that us-

ing some parity bits instead of repetition improves the strength of ECC, which in turn

improves the 0/1 loss. Along the same direction, BCH performs even better than both

HAMR and RREP, especially on medical dataset. The superior performance of BCH

justifies that the ECC is useful for multi-label classification. On the other hand, another
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Table 2.3: 0/1 loss of ML-ECC using 3-powerset base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (RAKEL) .3390± .0022 .6475± .0057 .7939± .0022 .7738± .0025
Random Forest HAMR .2855± .0022 .6393± .0055 .7789± .0021 .7693± .0024
Random Forest BCH .2671± .0020 .6366± .0061 .7764± .0021 .7273± .0018
Random Forest LDPC .3058± .0024 .6606± .0050 .8080± .0024 .7728± .0022

Gaussian SVM RREP (RAKEL) .2856± .0016 .7759± .0055 .7601± .0023 .7196± .0024
Gaussian SVM HAMR .2635± .0017 .7729± .0052 .7530± .0021 .7162± .0023
Gaussian SVM BCH .2576± .0017 .7744± .0053 .7429± .0017 .7095± .0020
Gaussian SVM LDPC .2780± .0020 .8040± .0044 .7574± .0021 .7403± .0019

Logistic Regression RREP (RAKEL) .3601± .0019 .6949± .0070 .8161± .0017 .7408± .0024
Logistic Regression HAMR .3299± .0018 .6954± .0057 .8061± .0019 .7383± .0025
Logistic Regression BCH .3148± .0018 .7068± .0046 .7899± .0020 .7233± .0024
Logistic Regression LDPC .3655± .0028 .7295± .0056 .8082± .0024 .7562± .0027

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (RAKEL) .0295± .0021 .6508± .0024 .8866± .0038
Random Forest HAMR .0276± .0021 .6420± .0029 .8855± .0036
Random Forest BCH .0263± .0020 .4598± .0036 .8659± .0039
Random Forest LDPC .0288± .0021 .5238± .0032 .8830± .0036

Gaussian SVM RREP (RAKEL) .0295± .0025 .3679± .0036 .8725± .0041
Gaussian SVM HAMR .0303± .0026 .3641± .0031 .8693± .0042
Gaussian SVM BCH .0255± .0019 .3394± .0027 .8477± .0045
Gaussian SVM LDPC .0285± .0021 .3856± .0031 .8666± .0041

Logistic Regression RREP (RAKEL) .3593± .0078 .5507± .0254 .8762± .0035
Logistic Regression HAMR .2275± .0099 .5268± .0230 .8754± .0035
Logistic Regression BCH .0250± .0018 .3797± .0044 .8504± .0042
Logistic Regression LDPC .0325± .0018 .4516± .0083 .8653± .0038

sophisticated code, LDPC, gets higher 0/1 loss than BCH on every dataset, and even

higher 0/1 loss than RREP on the emotions and yeast datasets, which suggest that

LDPC may not be a good choice for the ECC framework.

Next we look at ∆HL shown in Figure 2.1(b). The Hamming loss of HAMR is com-

parable to that of RREP, where each wins on two datasets. BCH beats both HAMR and

RREP on the tmc2007, genbase, and medical datasets but loses on the other four

datasets. LDPC has the highest Hamming loss among the codes on all datasets. Thus,

simpler codes like RREP and HAMR perform better in terms of ∆HL. A stronger code

like BCH may guard ∆0/1 better, but it can pay more in terms of ∆HL.

Similar results show up when using the Gaussian SVM or logistic regression as the

base learner instead of Random Forest, as shown in Tables 2.3 and 2.4. The boldface

entries are the lowest-loss ones for the given dataset and base learner. The results vali-

date that the performance of multi-label classification can be improved by applying the

ECC. More specifically, we may improve the RAKEL algorithm by learning some parity
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Table 2.4: Hamming loss of ML-ECC using 3-powerset base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (RAKEL) .0755± .0006 .1778± .0018 .1884± .0007 .0674± .0003
Random Forest HAMR .0748± .0006 .1798± .0019 .1894± .0008 .0671± .0003
Random Forest BCH .0753± .0007 .1858± .0021 .1928± .0008 .0662± .0003
Random Forest LDPC .0817± .0007 .1907± .0021 .2012± .0007 .0734± .0003

Gaussian SVM RREP (RAKEL) .0719± .0005 .2432± .0021 .1853± .0007 .0613± .0003
Gaussian SVM HAMR .0723± .0005 .2492± .0023 .1868± .0006 .0610± .0003
Gaussian SVM BCH .0739± .0006 .2644± .0019 .1898± .0008 .0629± .0003
Gaussian SVM LDPC .0755± .0006 .2634± .0027 .1917± .0007 .0679± .0003

Logistic Regression RREP (RAKEL) .0915± .0005 .2026± .0025 .1993± .0007 .0634± .0003
Logistic Regression HAMR .0911± .0005 .2064± .0024 .2003± .0007 .0634± .0003
Logistic Regression BCH .0920± .0005 .2233± .0022 .2051± .0008 .0653± .0003
Logistic Regression LDPC .0989± .0007 .2202± .0021 .2054± .0007 .0701± .0003

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (RAKEL) .0012± .0001 .0182± .0001 .0477± .0004
Random Forest HAMR .0012± .0001 .0180± .0001 .0479± .0004
Random Forest BCH .0011± .0001 .0159± .0001 .0506± .0004
Random Forest LDPC .0013± .0001 .0192± .0002 .0538± .0005

Gaussian SVM RREP (RAKEL) .0013± .0001 .0112± .0001 .0449± .0004
Gaussian SVM HAMR .0013± .0001 .0111± .0001 .0449± .0004
Gaussian SVM BCH .0010± .0001 .0114± .0001 .0516± .0006
Gaussian SVM LDPC .0014± .0001 .0140± .0001 .0530± .0005

Logistic Regression RREP (RAKEL) .0179± .0006 .0190± .0011 .0453± .0003
Logistic Regression HAMR .0102± .0005 .0176± .0009 .0454± .0003
Logistic Regression BCH .0013± .0001 .0137± .0003 .0505± .0004
Logistic Regression LDPC .0024± .0002 .0187± .0006 .0528± .0004

bits instead of repetitions. Based on this experiment, we suggest that using HAMR for

multi-label classification will improve the ∆0/1 while maintaining comparable ∆HL with

RAKEL. If we use BCH instead, we will improve ∆0/1 further but may pay for ∆HL.

We also report the micro and macro F1 scores, and also the pairwise label ranking loss in

Tables A.1, A.2, and A.3, respectively.

2.4.2 Comparison of Codeword Length

Now, we compare on the length of codewords M . With larger M , the codes can correct

more errors but the base learners have to take longer time to train. By experimenting

different M , we may find a better trade-off between performance and efficiency.

The performance of the ECC framework with different codeword lengths on the scene

dataset is shown on Figure 2.2. Here, the base learner is again the 3-powerset with Ran-

dom Forests. The codeword length M varies from 31 to 127, which is about 5 to 20 times

of number of labels L. We do not include shorter codewords because their performance
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are not stable. Note that BCH only allows M = 2p − 1 and thus we conduct experiments

of BCH on those codeword lengths.

We first look at the 0/1 loss in Figure 2.2(a). The horizontal axis indicates the code-

word length M and the vertical axis is the 0/1 loss on the test set. We see that ∆0/1 of

RREP stays around 0.335 no matter how long the codewords are. This implies that the

power of repetition bits reaches its limit very soon. For example, when all the 3-powerset

combinations of labels are learned, additional repetitions give very limited improvements.

Therefore, methods using repetition bits only, such as RAKEL, cannot take advantage

from the extra bits in the codewords.

The ∆0/1 of HAMR and BCH are slightly decreasing with M , but the differences be-

tween M = 63 and M = 127 are generally small (smaller than the differences between

M = 31 andM = 63, in particular). This indicates that learning some parity bits provides

additional information for prediction, which cannot be learned easily from repetition bits,

and such information remains beneficial for longer codewords, comparing to repetition

bits. One reason is that the number of 3-powerset combinations of parity bits is exponen-

tially more than that of combinations of labels. The performance of LDPC is not as stable

as the other codes, possibly because of its sophisticated decoding step. Somehow, we still

see that its ∆0/1 decreases slightly with M .

Figure 2.2(b) shows ∆HL versus M for each ECC. The ∆HL of RREP is the lowest

among the codes when M is small, but it remains almost constant when M ≥ 63, while

∆HL of HAMR and BCH are still decreasing. This matches our finding that extra repeti-

tion bits give limited information. WhenM = 127, BCH is comparable to RREP in terms

of ∆HL. HAMR is even better than RREP at that codeword length, and becomes the best

code regarding ∆HL. Thus, while a stronger code like BCH may guard ∆0/1 better, it can

pay more in terms of ∆HL.

As stated in Sections 1.1 and 2.1, the base learners serve as the channels in the ECC

framework and the performance of base learners may be affected by the codes. Therefore,

using a strong ECC does not always improve multi-label classification performance. Next,

we verify the trade-off by measuring the bit error rate ∆BER of h̃, which is defined as the
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(a) 0/1 loss (b) Hamming loss

(c) bit-error rate

Figure 2.2: Varying codeword length on scene: ML-ECC using the 3-powerset with
Random Forests

Hamming loss between the predicted codeword h̃(x) and the actual codeword b. Higher

bit error rate implies that the transformed task is harder.

Figure 2.2(c) shows the ∆BER versus M for each ECC. RREP has almost constant bit

error rate. HAMR also has nearly constant bit error rate but at a higher value. The bit

error rate of BCH is similar to that of HAMR when the codeword is short, but the bit error

rate increases with M . One explanation is that some of the parity bits are harder to learn

than repetition bits. The ratio between repetition bits and parity bits of both RREP and

HAMR codes is a constant of M (RREP has no parity bits, and HAMR has 3 parity bits

for every 4 repetition bits), while BCH has more parity bits with larger M . The different

bit error rates justify the trade-off between the strength of the ECC and the hardness of

the base learning tasks. With more parity bits, one can correct more bit errors, but may
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(a) 0/1 loss (b) Hamming loss

(c) bit-error rate

Figure 2.3: Varying codeword length on yeast: ML-ECC using the 3-powerset with
Random Forests

have harder tasks to learn; when using fewer parity bits or even no parity bits, one cannot

correct many errors, but will enjoy simpler learning tasks.

Similar results show up in other datasets with all three base learners. The performance

on the yeast dataset with the 3-powerset and Random Forests is shown in Figure 2.3.

Because the number of labels in the yeast dataset is about twice of that in the scene

dataset, the codeword length here ranges from 63 to 255, which is also about twice longer

than that in the experiments on the scene dataset. Again, we see that the benefits of

parity bits remain valid for longer codewords than repetition bits and that more parity bits

cause the transformed task harder to learn. This result points out the trade-off between

the strength of the ECC and the hardness of the base learning tasks.
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(a) relative frequency vs. number of bit errors (b) 0/1 loss vs. number of bit errors

(c) Hamming loss vs. number of bit errors

Figure 2.4: Bit errors and losses: the scene dataset, M = 127

2.4.3 Bit Error Analysis

To further analyze the difference between different ECC designs, we zoom in toM = 127

of Figure 2.2. The instances are divided into groups according to the number of bit errors

at that instance. The relative frequency of each group, i.e., the ratio of the group size to

the total number of instances, is plotted in Figure 2.4(a). The average ∆0/1 and ∆HL of

each group are also plotted in Figure 2.4(b) and 2.4(c). The curve of each ECC forms two

peak regions in Figure 2.4(a). Besides the peak at 0, which means no bit error happens

on the instances, the other peak varies from one code to another. The positions of the

peaks suggest the hardness of the transformed learning task, similar to our findings in

Figure 2.2(c).

We can clearly see the difference on the strength of different ECC from Figure 2.4(b).

BCH can tolerate up to 31-bit errors, but its ∆0/1 sharply increases over 0.8 for 32-bit er-
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(a) relative frequency vs. number of labels XOR’ed (b) bit error rate vs. number of labels XOR’ed

Figure 2.5: Parity bits: the scene dataset, 6 labels, M = 127

rors. HAMR can correct 13-bit errors perfectly, and its ∆0/1 increases slowly when more

errors occur. Both RREP and LDPC can perfectly correct only 9-bit errors, but LDPC is

able to sustain a low ∆0/1 even when there are 32-bit errors. It would be interesting to

study the reason behind this long tail from a Bayesian network perspective.

We can also look at the relation between the number of bit errors and ∆HL, as shown

in Figure 2.4(c). The BCH curve grows sharply when the number of bit errors is larger

than 31, which links to the inferior performance of BCH over RREP in terms of ∆HL.

The LDPC curve grows much slower, but its right-sided peak in Figure 2.4(a) still leads

to higher overall ∆HL. On the other hand, RREP and HAMR enjoy a better balance

between the peak position in Figure 2.4(a) and the growth in Figure 2.4(c) and thus lower

overall ∆HL.

Figure 2.4(a) suggests that the transformed learning task of more sophisticated ECC

is harder. The reason is that sophisticated ECC contains many parity bits, which are the

exclusive-or of labels, and the parity bits are harder to learn by the base learners. We

demonstrate this in Figure 2.5 using scene dataset (6 labels) and fixing M = 127. The

codeword bits are divided into groups according to the number of labels XOR’ed to form

the bit. The relative frequency of each group is plotted in Figure 2.5(a). We can see that

all codeword bits of RREP are formed by 1 label, and the bits of HAMR are formed by 1

or 3 labels. For BCH and LDPC, the number of labels XOR’ed in the bits may be none
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(a) relative frequency vs. number of labels XOR’ed (b) bit error rate vs. number of labels XOR’ed

Figure 2.6: Parity bits: the medical dataset, 45 labels, M = 1023

(0) to all (6) labels, while most of the bits are the XOR of half of the labels (3 labels).

Next we show how well the base learners learned on each group in Figure 2.5(b).

Here the base learner is 3-powerset with Random Forests. The figure suggests that the

parity bits (XOR’ing 2 or more labels) result in harder learning tasks and higher bit error

rates than original labels (XOR’ing 1 label). One exception is the bits XOR’ed from all (6)

labels, which is easier to learn than original labels. The reason is that the bit XOR’ed from

all labels is equivalent to the indicator of odd number of labels, and a constant predictor

works well for this because in the scene dataset about 92% of all instances has 1 or 3

labels. Since BCH and LDPC have many bits XOR’ed from 2-4 labels, their bit error

rates are higher than RREP and HAMR as shown in Figure 2.2(c).

These findings also appear on other datasets and other base learners, such as medical

dataset (45 labels, M = 1023) shown in Figure 2.6. BCH and LDPC have many bits

XOR’ed from about half of the labels, and the transformed learning tasks of such bits are

harder to learn than that of original labels.

2.4.4 Comparison with Binary Relevance

In addition to the 3-powerset base learners, we also consider BR base learners, which

simply build a classifier for each bit in the codeword space. Note that if we couple the

ECC framework with RREP and BR, the resulting algorithm is almost the same as the
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(a) 0/1 loss (b) Hamming loss

Figure 2.7: Performance of ML-ECC using Binary Relevance with Random Forests

original BR. For example, using RREP and BR with SVM is equivalent to using BR with

bootstrap aggregated SVM.

We first compare the performance between the ECC designs using the BR base learner

with Random Forests. The result on 0/1 loss is shown in Figure 2.7(a). From the figure,

we can see that BCH and HAMR has superior performance to other ECC, with BCH being

a better choice. RREP (BR), on the other hand, leads to the worst 0/1 loss. The result

again justifies the usefulness of coupling BR with the ECC instead of only the original y.

Note that LDPC also performs better than BR on two datasets, but is not as good as

HAMR and BCH. Thus, over-sophisticated ECC like LDPC may not be necessary for

multi-label classification.

In Figure 2.7(b), we present the results on ∆HL. In contrast to the case when using the

3-powerset base learner, here both HAMR and BCH can achieve better ∆HL than RREP

(BR) in most of the datasets. HAMR wins on three datasets, while BCH wins on four.

Thus, coupling stronger ECC with the BR base learner can improve both ∆0/1 and ∆HL.

However, LDPC performs worse than BR in term of ∆HL, which again shows that LDPC

may not be suitable for multi-label classification.

Experiments with other base learners also support similar findings, as shown in Ta-

bles 2.5 and 2.6. Notice that HAMR performs better than BCH when using Gaussian

SVM base learners. Thus, extending BR by learning some more parity bits and decoding
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Table 2.5: 0/1 loss of ML-ECC using BR base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (BR) .4396± .0022 .6825± .0053 .8332± .0016 .7715± .0023
Random Forest HAMR .3213± .0020 .6573± .0051 .7910± .0020 .7578± .0025
Random Forest BCH .2570± .0022 .6386± .0062 .7792± .0019 .7149± .0022
Random Forest LDPC .3996± .0028 .6939± .0049 .8338± .0015 .7735± .0024

Gaussian SVM RREP (BR) .3378± .0023 .8414± .0051 .7955± .0017 .7281± .0025
Gaussian SVM HAMR .2873± .0017 .8084± .0047 .7681± .0022 .7215± .0025
Gaussian SVM BCH .2550± .0018 .7787± .0048 .7515± .0015 .7053± .0024
Gaussian SVM LDPC .3161± .0023 .8530± .0041 .7963± .0018 .7515± .0023

Logistic Regression RREP (BR) .4821± .0024 .7396± .0049 .8531± .0016 .7458± .0026
Logistic Regression HAMR .4048± .0020 .7170± .0056 .8282± .0015 .7405± .0024
Logistic Regression BCH .3291± .0020 .6982± .0048 .8094± .0020 .7205± .0022
Logistic Regression LDPC .4659± .0028 .7507± .0056 .8565± .0019 .7694± .0027

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (BR) .0303± .0020 .6546± .0025 .8872± .0036
Random Forest HAMR .0288± .0019 .6387± .0025 .8851± .0036
Random Forest BCH .0250± .0019 .4567± .0034 .8737± .0038
Random Forest LDPC .0312± .0022 .5601± .0032 .8876± .0035

Gaussian SVM RREP (BR) .0273± .0021 .3721± .0037 .8720± .0041
Gaussian SVM HAMR .0243± .0022 .3675± .0036 .8718± .0042
Gaussian SVM BCH .0255± .0019 .3499± .0030 .8561± .0043
Gaussian SVM LDPC .0243± .0017 .4226± .0034 .8782± .0037

Logistic Regression RREP (BR) .5084± .0068 .5784± .0282 .8759± .0035
Logistic Regression HAMR .3509± .0089 .5499± .0247 .8740± .0036
Logistic Regression BCH .0295± .0018 .4022± .0076 .8579± .0038
Logistic Regression LDPC .0528± .0031 .5396± .0149 .8795± .0036

them suitably by the ECC is a superior algorithm over the original BR. The micro and

macro F1 scores, and the pairwise label ranking loss are reported in Tables A.12, A.13,

and A.14, respectively.

Comparing Tables 2.3 and 2.5, we see that using 3-powerset achieves lower 0/1 loss

than using BR in most of the cases. However, in terms of ∆HL, as shown in Tables 2.4

and 2.6, there is no clear winner between the 3-powerset and BR.
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Table 2.6: Hamming loss of ML-ECC using BR base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (BR) .0858± .0005 .1811± .0016 .1903± .0006 .0662± .0003
Random Forest HAMR .0728± .0005 .1779± .0017 .1878± .0007 .0652± .0002
Random Forest BCH .0720± .0007 .1828± .0018 .1898± .0008 .0638± .0003
Random Forest LDPC .0832± .0006 .1882± .0017 .1963± .0006 .0721± .0003

Gaussian SVM RREP (BR) .0743± .0005 .2460± .0021 .1866± .0006 .0621± .0003
Gaussian SVM HAMR .0717± .0004 .2480± .0023 .1861± .0007 .0616± .0003
Gaussian SVM BCH .0738± .0005 .2565± .0031 .1880± .0007 .0619± .0003
Gaussian SVM LDPC .0742± .0006 .2532± .0019 .1908± .0006 .0688± .0003

Logistic Regression RREP (BR) .1024± .0006 .2062± .0018 .2000± .0007 .0641± .0003
Logistic Regression HAMR .0959± .0006 .2049± .0022 .2003± .0007 .0635± .0003
Logistic Regression BCH .0955± .0006 .2172± .0023 .2037± .0008 .0638± .0003
Logistic Regression LDPC .1038± .0006 .2133± .0019 .2044± .0008 .0705± .0004

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (BR) .0013± .0001 .0183± .0001 .0474± .0003
Random Forest HAMR .0012± .0001 .0179± .0001 .0474± .0003
Random Forest BCH .0010± .0001 .0152± .0001 .0494± .0004
Random Forest LDPC .0014± .0001 .0203± .0001 .0529± .0004

Gaussian SVM RREP (BR) .0012± .0001 .0113± .0001 .0450± .0004
Gaussian SVM HAMR .0010± .0001 .0112± .0001 .0451± .0004
Gaussian SVM BCH .0010± .0001 .0117± .0001 .0487± .0005
Gaussian SVM LDPC .0011± .0001 .0153± .0001 .0517± .0005

Logistic Regression RREP (BR) .0347± .0007 .0212± .0014 .0455± .0003
Logistic Regression HAMR .0186± .0005 .0191± .0011 .0452± .0003
Logistic Regression BCH .0024± .0002 .0161± .0006 .0472± .0004
Logistic Regression LDPC .0050± .0004 .0234± .0011 .0517± .0004
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Chapter 3

New Decoder for Hard and Soft

Decoding of Error-correcting Codes

In Chapter 2 we demonstrated the effectiveness of applying the ECCs on multi-label clas-

sification. In addition, we showed that the ∆0/1 is upper bounded by a function of ∆HL

in the codewords and the strength of the ECC—the number of bit errors that the ECC is

able to correct. However, sometimes in multi-label classification the bit error rate is high.

If the codeword prediction of an instance has more bit errors than that the ECC is able to

correct, there is no guarantee of the decoding outcome.

The reason is that, the off-the-shelf decoder, e.g., the decoder for the BCH code we

used, takes advantages of the algebraic structure of the ECC to locate possible bit errors.

The decoder decodes b̃ ∈ {0, 1}M to ỹ ∈ {0, 1}K where the encoding of ỹ is approx-

imately the valid codeword closest to b̃ in {0, 1}M . However, when M is large, many

possible values of b̃ are too far away from any valid codeword. If the decoder is able to

correct m bit errors, any vertex of the hypercube {0, 1}M within m-bit difference from

a valid codeword can be perfectly mapped back to a vertex of {0, 1}K . The number of

such vertices is 2K ·
∑m

i=0

(
M
i

)
, which is generally smaller than 2M . For the other vertices,

since they are too far away from any valid codeword, the off-the-shelf decoder cannot uti-

lize the full power of all parity bits but use only k of the M bits, resulting in suboptimal

decoding performance. This also explains the sharp increase of ∆0/1 for the BCH code

25



in Figure 2.4(b), in contrast to the smooth slope for LDPC code, which is decoded using

Belief Propagation algorithm.

We try to overcome this deficiency by proposing a new decoder in Section 3.1, and

experiment on it in Section 3.2. This decoder decodes a vertex of hypercube {0, 1}M to

the interior of the hypercube [0, 1]K , and then round to the nearest vertex of {0, 1}K . The

rounding-based methods have been studied by Tai and Lin [2012]. Because this decoder

takes some geometric information into account, we call it geometric decoder, and call the

off-the-shelf decoder as algebraic decoder.

Another benefit of the geometric decoder is to perform interior-to-interior decoding,

from [0, 1]M to [0, 1]K . In other words, this is a soft-in soft-out decoder [Wolf, 1978,

Hagenuaer et al., 1996]. The soft input bits contain the channel measurement information,

and the value of each bit represents the confidence in the bit being 1. We discuss about

how to gather such information from our channels, the base learners, in Section 3.3 and

present experimental results in Section 3.4.

3.1 Geometric Decoder for Linear Codes

Here we describe our proposed geometric decoder in detail. The geometric decoder maps

a vertex b̃ in {0, 1}M to a point ỹ in the interior of [0, 1]K . Since the output of this decoder

are real values, we call it soft output, in contrast to the binary values, which are called hard

output. As mentioned above, we may convert the soft output of geometric decoder to hard

output by rounding.

Here, we focus on linear codes, whose encoding function can be written as a matrix-

vector multiplication under Galois field GF2. All the repetition code, Hamming code,

BCH code, and LDPC code are linear codes. Let G be the generating matrix of a linear

code, gij ∈ {0, 1}. The encoding is done by b = enc(y) = G ·y (mod 2), or equivalently

we may write the formula in terms of exclusive-OR (XOR) operations:

bi =
⊕
j:gij=1

yj
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That is, the codeword bit bi is the result of XOR of some label bits yj . The XOR operations

are equivalent to multiplications if we map 1→ −1 and 0→ 1. By defining b̂i = 1− 2bi

and ŷj = 1− 2yj , the encoding can also be written as

b̂i =
∏

j:gij=1

ŷj

We denote this form as multiplication encoding.

It is difficult to generalize the XOR operation from binary to real values, but multipli-

cation by itself can be defined on real values. We take this advantage and use it to form

our geometric decoder. Our geometric decoder would find the ỹ that minimizes the L2

distance between b̃ and the multiplication encoding result of the ỹ:

decgeometric(b̃) = argmin
ỹ∈[0,1]K

M∑
i=1

(1− 2b̃i)−
∏

j:gij=1

(1− 2ỹj)

2

Note that the squared L2 distance between codewords is an approximation of the Ham-

ming distance in binary space {0, 1}M .

For repetition code, since only one yj is considered for each bi, the optimal solution

of the problem would be the same as averaging over the predictions on the same label

for each label. However, for general linear codes, there is no efficient way to find the

global optimum since the optimization problem may not be convex. Instead, we may

apply a variant of coordinate descent optimization to find a local minimum. That is, in

each step we optimize only one ỹj while fixing other ỹj . To optimize one ỹj , we only

have to solve a second-order single-variable optimization problem, which has an efficient

analytic solution.

The benefit of using soft output geometric decoder is that the multiplication-approximated

XOR preserves some geometric information. That is, close points in [0, 1]K would also

be close after multiplication encoding. Moreover, the soft outputs condense the space of

valid codewords, so it would be easier to find one close to b̃.
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(a) 0/1 loss (b) Hamming loss

Figure 3.1: Hard-input soft-output geometric decoding results for ML-ECC using BR
with Random Forests

3.2 Experimental Results of Geometric Decoder

The experiments of the proposed geometric decoder are done on the same setting as that

of the off-the-shelf algebraic decoder in Section 2.4. Here, we focus on comparing the

new decoder on HAMR and BCH codes with their algebraic decoder since the previous

experiments have already shown that these codes are the better choices for multi-label

classification.

We first demonstrate the advantage of the proposed geometric decoder over the alge-

braic one using the same codeword predictions as in Section 2.4. The results are shown

in Figure 3.1. Here the base learner is Binary Relevance with Random Forests. In the

figures, alg stands for the algebraic decoder, and geo stands for the proposed geometric

decoder. The soft decoding output of the geometric decoder is rounded back to {0, 1} for

evaluation and comparison.

Figure 3.1(a) shows the result on 0/1 loss. For the BCH code, the proposed geometric

decoder outperforms the algebraic one significantly on almost all datasets, especially the

great improvement on the yeast and medical datasets. For the HAMR code, the

geometric decoder is better than the algebraic one except on the genbase and enron

datasets where both decoders have similar 0/1 loss.

Next we look at the Hamming loss in Figure 3.1(b). For the HAMR code, the proposed
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Table 3.1: 0/1 loss changes when applying the proposed soft-output decoder

ECC base learner scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

HAMR BR,Random Forest −.0101± .0010 −.0094± .0022 −.0077± .0010 −.0012± .0006
HAMR BR,Gaussian SVM −.0047± .0007 −.0145± .0030 −.0031± .0008 −.0009± .0005
HAMR BR,Logistic Regression −.0081± .0010 −.0078± .0028 −.0012± .0008 −.0006± .0005

HAMR 3-powerset,Random Forest −.0099± .0008 −.0071± .0023 −.0101± .0011 −.0014± .0006
HAMR 3-powerset,Gaussian SVM −.0042± .0006 −.0239± .0029 −.0082± .0006 −.0010± .0007
HAMR 3-powerset,Logistic Regression −.0064± .0009 −.0041± .0029 −.0051± .0009 −.0004± .0007

BCH BR,Random Forest −.0100± .0007 −.0101± .0030 −.0575± .0015 −.0231± .0014
BCH BR,Gaussian SVM −.0048± .0005 −.0437± .0039 −.0312± .0012 −.0078± .0014
BCH BR,Logistic Regression −.0127± .0007 −.0096± .0034 −.0396± .0017 −.0103± .0018

BCH 3-powerset,Random Forest −.0114± .0007 −.0087± .0032 −.0529± .0016 −.0210± .0013
BCH 3-powerset,Gaussian SVM −.0048± .0004 −.0343± .0044 −.0250± .0011 −.0090± .0013
BCH 3-powerset,Logistic Regression −.0070± .0006 −.0114± .0030 −.0256± .0014 −.0122± .0013

ECC base learner genbase (M=511) medical (M=1023) enron (M=1023)

HAMR BR,Random Forest −.0008± .0005 −.0010± .0010 −.0006± .0006
HAMR BR,Gaussian SVM −.0012± .0008 −.0004± .0007 .0002± .0005
HAMR BR,Logistic Regression .0032± .0057 .0015± .0010 .0004± .0004

HAMR 3-powerset,Random Forest .0010± .0005 −.0006± .0008 −.0001± .0004
HAMR 3-powerset,Gaussian SVM −.0005± .0004 −.0004± .0007 .0002± .0005
HAMR 3-powerset,Logistic Regression −.0030± .0061 .0004± .0010 −.0004± .0005

BCH BR,Random Forest .0005± .0003 −.0438± .0022 −.0308± .0016
BCH BR,Gaussian SVM −.0000± .0003 −.0068± .0025 −.0133± .0016
BCH BR,Logistic Regression .0127± .0018 −.0318± .0045 −.0217± .0013

BCH 3-powerset,Random Forest .0003± .0004 −.0280± .0018 −.0238± .0018
BCH 3-powerset,Gaussian SVM −.0007± .0003 −.0150± .0018 −.0055± .0016
BCH 3-powerset,Logistic Regression .0003± .0006 −.0216± .0022 −.0139± .0013

method has a small improvement on the scene, emotions, and yeast datasets, and

has similar Hamming loss with the algebraic decoding method on other datasets. How-

ever, for the BCH code, the proposed method has worse Hamming loss on the yeast,

emotions, and enron datasets. The reason may be that the geometric decoder mini-

mizes the distance between approximated enc(ỹ) and b̃ in the codeword space. However,

the BCH code does not preserve the Hamming distance during encoding and decoding

between {0, 1}K and {0, 1}M , so the geometric decoder, which minimizes the distance in

[0, 1]M (and approximately in {0, 1}M ), may not be suitable to the Hamming loss (Ham-

ming distance in {0, 1}K).

Similar results show up when using other base learners, as shown in Table 3.1 and 3.2.

In the tables, each entry reports the difference between the results of the geometric de-

coder and the algebraic decoder. The bold entries indicate that the geometric decoder is

significantly better than the algebraic one. The results validate that the proposed geomet-
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Table 3.2: Hamming loss changes when applying the proposed soft-output decoder

ECC base learner scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

HAMR BR,Random Forest −.0008± .0002 −.0012± .0007 −.0006± .0002 −.0000± .0001
HAMR BR,Gaussian SVM −.0001± .0001 .0035± .0013 −.0003± .0001 −.0001± .0000
HAMR BR,Logistic Regression −.0003± .0002 .0018± .0009 −.0001± .0002 −.0001± .0001

HAMR 3-powerset,Random Forest −.0002± .0002 .0005± .0006 −.0004± .0002 −.0001± .0000
HAMR 3-powerset,Gaussian SVM −.0001± .0001 .0046± .0009 .0001± .0002 .0000± .0001
HAMR 3-powerset,Logistic Regression .0001± .0002 .0029± .0009 .0005± .0002 −.0002± .0001

BCH BR,Random Forest .0011± .0002 .0068± .0009 .0070± .0005 .0005± .0002
BCH BR,Gaussian SVM −.0005± .0002 .0192± .0022 .0073± .0004 .0030± .0001
BCH BR,Logistic Regression .0002± .0002 .0141± .0012 .0079± .0006 .0036± .0002

BCH 3-powerset,Random Forest .0009± .0002 .0035± .0013 .0062± .0005 .0006± .0002
BCH 3-powerset,Gaussian SVM .0004± .0001 .0122± .0023 .0055± .0004 .0025± .0002
BCH 3-powerset,Logistic Regression .0008± .0002 .0089± .0016 .0072± .0005 .0022± .0002

ECC base learner genbase (M=511) medical (M=1023) enron (M=1023)

HAMR BR,Random Forest −.0000± .0000 −.0000± .0000 −.0000± .0000
HAMR BR,Gaussian SVM −.0001± .0000 −.0000± .0000 −.0000± .0000
HAMR BR,Logistic Regression .0001± .0004 .0001± .0000 .0000± .0000

HAMR 3-powerset,Random Forest .0000± .0000 −.0000± .0000 −.0001± .0000
HAMR 3-powerset,Gaussian SVM −.0000± .0000 −.0000± .0000 .0000± .0000
HAMR 3-powerset,Logistic Regression −.0002± .0002 .0000± .0000 −.0001± .0000

BCH BR,Random Forest .0000± .0000 .0002± .0001 .0073± .0003
BCH BR,Gaussian SVM .0000± .0000 .0009± .0001 .0090± .0002
BCH BR,Logistic Regression .0030± .0004 −.0008± .0003 .0086± .0002

BCH 3-powerset,Random Forest .0000± .0000 .0005± .0001 .0083± .0003
BCH 3-powerset,Gaussian SVM .0000± .0000 .0007± .0001 .0082± .0004
BCH 3-powerset,Logistic Regression .0001± .0001 −.0001± .0001 .0077± .0003

ric decoder can decode more accurately (lower 0/1 loss) and with similar Hamming loss

comparing to the algebraic decoder.

3.2.1 Bit Error Analysis

Next, we look deeper into the scene dataset, and fix the base learner to BR with Random

Forests. The instances are grouped by the number of bit errors at that instance. First, we

plot the ratio of the group size to the total number of instances in Figure 3.2 for HAMR

and BCH codes. Besides the highest peak at 0 bit errors, another peak for the BCH code

is at 63 bit errors, which is higher than that for HAMR at 38 bit errors. This suggests that

BCH code is harder to learn, which is consistent to our finding in Section 2.4.3,

Then, we plot the 0/1 loss and Hamming loss in each group for HAMR, as shown in

Figure 3.3. From Figure 3.3(a), we can see that the geometric decoder is able to correct

errors more accurately when there are 16 to 24 bit errors, comparing to the algebraic
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(a) HAMR (b) BCH

Figure 3.2: Bit error distribution of BR with Random Forests on the scene dataset

(a) 0/1 loss vs. number of bit errors (b) Hamming loss vs. number of bit errors

Figure 3.3: Strength of HAMR on the scene dataset and BR with Random Forests

decoding. The ordinary decoding method of HAMR has two-stages, one for HAM(7, 4)

and one for repetition code, and each HAM(7, 4) block is decoded independently. In

the proposed geometric decoding method, the two stages are combined into one, which

enables joint decoding of those HAM(7, 4) blocks and thus ensures that the decoding of

each HAM(7, 4) block is consistent to others. This leads to superior performance of the

proposed decoding method on 0/1 loss. For Hamming loss, as shown in Figure 3.3(b),

the improvement of the geometric decoder at that bit error range is small, which explains

the small improvement on Hamming loss.

We also plot the 0/1 loss and Hamming loss in each group for the BCH code in

Figure 3.4. The algebraic decoder can correctly recover the label vector with no 0/1 loss
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(a) 0/1 loss vs. number of bit errors (b) Hamming loss vs. number of bit errors

Figure 3.4: Strength of BCH on the scene dataset and BR with Random Forests

for instances with at most 31 bit errors, but for instance with 32 bit errors the 0/1 loss

sharply goes up to 0.97. The proposed geometric decoder did a better job for instances

with 32–39 bit errors, so its 0/1 loss goes up more smoothly. This is exactly what we

would like to address in the beginning of this Chapter. On the other hand, in terms of

Hamming loss shown in Figure 3.4(b), the proposed geometric decoder has 0.01–0.025

higher Hamming loss than the algebraic one for instances with 37–45 bit errors, which

yields the slightly worse result of geometric decoder on Hamming loss.

From this analysis, we may conclude that the geometric decoder can improve 0/1 loss

because it really does a better job on the instances far from valid codewords. However,

regarding Hamming loss, the geometric decoder gets improvements for HAMR, but not

for BCH.

3.3 Soft-input Decoding and Bitwise Confidence Estima-

tion for k-powerset Learners

In Section 3.1, we proposed the geometric decoder based on approximating XOR by

multiplication. Since L2 distance in [0, 1]M space is used as optimization criterion, the

input codeword prediction b̃ is not necessary to be in {0, 1}M but can also be in [0, 1]M .

That is, this decoding method supports not only soft outputs but also soft inputs. The soft

32



inputs may come from the confidence of each bit, which the channel, the multi-label base

learner, provides. By considering the confidence of bits, the decoder may rely on high-

confidence bits more and try to correct low-confidence bits. In this way, the performance

of decoders may be further improved.

Since our channel is the base learner, it is possible to gather meaningful soft signals

from the channels, which is the confidence score or probability estimate of the predicting

bit to be 1. It is simple to ask a Binary Relevance learner to provide confidence of each bit,

since confidence or probability estimate is supported by many state-of-the-art binary clas-

sifiers, including Random Forests and SVM [Platt, 1999, Lin et al., 2007]. However, for

a k-powerset learner, things are more complicated. The k-powerset learners take a com-

bination of k bits as a class, and the base learners only output confidence information per

combination of k bits but not per bit. To apply the proposed soft-input geometric decoder,

we have to estimate the confidence of each bit from the confidence of the combinations

of k bits.

A k-powerset learner would output 2k confidence scores, one for each combination of

the k bits b1 · · · bk ∈ {0, 1}k. To estimate per-bit confidence conf(bi = 1) for each bi, we

propose the following methods.

1. Maximum. Pick the combination b∗1 · · · b∗k with the highest confidence and then

assign conf(bi = 1) to be 1 if b∗i = 1, or 0 otherwise. This results in the hard input,

which is the same as what we used in Section 2.4 and 3.2.

2. Marginal probability. The confidence score of each combination can be treated

as the joint probability distributed over the 2K combinations of bits. Then, we

may calculate conf(bi = 1) as marginal probability by summing up the confidence

scores of all combinations with bi = 1.

confmargin(bi) =
∑

b1···bi−1bi+1···bk∈{0,1}k−1

conf(b1 · · · bi−11bi+1 · · · bk)

In contrast to the “maximum” method, the marginal probability takes the whole

distribution into account, so the most probable combination according to marginal
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probability may be different from the one with the highest confidence.

3. Confidence difference. The confidence of the ith bit to be b∗i may be defined as the

difference of confidence scores between the most confident combination b∗1 · · · b∗k

and its neighbor varying only this bit b∗1 · · · b∗i−1b
∗
i b
∗
i+1 · · · b∗k, where b∗i is the negation

of b∗i . Following the idea, we may define conf(bi = 1) as

confdiff (bi) =
1

2
+

1

2

(
conf(b∗1 · · · b∗i−11b

∗
i+1 · · · b∗k)− conf(b∗1 · · · b∗i−10b

∗
i+1 · · · b∗k)

)
Comparing to “marginal probability,” which is essentially the sum of difference

of confidence scores between all pairs of neighboring combinations, this method

only considers the highest-confidence combination and its neighbors. Therefore,

the result of “confidence difference” is consistent with the “maximum” method.

4. Sigmoid functions. We may apply sigmoid functions on the “confidence differ-

ence” to enlarge the small amount of difference. The reason is that small confidence

values make the geometric decoder not stable. We used tanh(αx) as the sigmoid

function.

confs-diff (bi) =
1

2
+

1

2
tanh (α · (2 · confdiff (bi)− 1))

The sigmoid functions may also be applied on the output of “marginal probability,”

resulting in another confidence estimating method confs-margin(·).

Note that the Binary Relevance approach is a special case of k-powerset with k = 1.

Therefore, we may also apply these methods for BR learners. When applying to BR

learners, the “marginal probability” would be the same as taking the confidence of the bit

directly from the BR learner. Moreover, if the confidence is given in probability form, the

“confidence difference” would also be the same.
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(a) 0/1 loss change (b) Hamming loss change

Figure 3.5: Comparison between hard-/soft-input geometric decoders in the ML-ECC
with the BCH code using BR learners

3.4 Experimental Results of Soft-input Geometric Decoder

Now, we experimentally compare the soft-input geometric decoder with the hard-input

one. The settings of these experiments are the same as in Section 2.4 and 3.2.

3.4.1 Soft-input Decoding for Binary Relevance Learners

All of the base learners we used, Random Forests from WEKA, Gaussian SVM from

LIBSVM, and logistic regression from LIBLINEAR, support predicting class probability

distribution. To take the class probability distribution as soft inputs, we first try on Binary

Relevance approaches. In the Binary Relevance approach, each base learner learns a

single bit, so its probability output is indeed the soft signal we want.

The results on the BCH code using the Gaussian SVM base learner is shown in Fig-

ure 3.5. Since the value of ∆0/1 and ∆HL varies greatly from dataset to dataset but little

from decoder to decoder, in the figures, we present the ∆0/1 and ∆HL changes based on

the results of the algebraic decoder. We denote the result of hard-input geometric de-

coder as hard, and that of soft-input geometric decoder as soft. The value lower than

0 means that the geometric decoder performs better than the algebraic one. We can see

from Figure 3.5(a) that the soft-input geometric decoder is similar to or slightly better

than the hard-input one in terms of ∆0/1, and both geometric decoders are significantly
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(a) 0/1 loss change (b) Hamming loss change

Figure 3.6: Comparison between hard-/soft-input geometric decoders in the ML-ECC
with the HAMR code using BR learners

better than the algebraic one. From Figure 3.5(b), we can see that soft-input geometric

decoder is much better than the hard-input one in terms of ∆HL, and it is even better than

the algebraic one on the scene dataset. The result suggests that soft inputs are helpful

on ∆HL and also ∆0/1 for geometric decoder and for BCH code.

In contrast to the BCH code, the results on the HAMR code is a little different, as

shown in Figure 3.6. First, we look at the 0/1 loss shown in Figure 3.6(a). The result

is dataset dependent. Soft-input geometric decoder performs better than both hard-input

one and algebraic one on three datasets, and worse than those two decoders on other

two datasets. In terms of Hamming loss in Figure 3.6(b), soft-input geometric decoder

is significantly better than both hard-input one and algebraic one on four datasets, and

performs similar on the other datasets. The result indicates that soft inputs are helpful on

∆HL, but not on ∆0/1, when applying to HAMR code.

Similar results show up when using other base learners, as shown in Table 3.3 and 3.4.

The bold-face entries are the best entries on each dataset given the ECC and base learner.

We also report the micro and macro F1 scores, and the pairwise label ranking loss in

Tables A.15, A.16, and A.17, respectively. In the tables, we can see that the soft-input

geometric decoder is usually better than the hard-input ones in these measures. This again

shows that the soft inputs, i.e. confidence information from base learners, are useful on
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decoding.

Table 3.3: 0/1 loss of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest HAMR alg-hard .3212± .0021 .6574± .0050 .7910± .0020 .7578± .0025
Random Forest HAMR geo-hard .3111± .0021 .6480± .0051 .7833± .0022 .7566± .0026
Random Forest HAMR geo-soft .3294± .0021 .6584± .0053 .7976± .0020 .7588± .0025

Gaussian SVM HAMR alg-hard .2876± .0018 .8073± .0043 .7681± .0022 .7215± .0025
Gaussian SVM HAMR geo-hard .2829± .0017 .7927± .0051 .7650± .0023 .7205± .0024
Gaussian SVM HAMR geo-soft .2782± .0016 .8155± .0048 .7705± .0021 .7176± .0022

Logistic Regression HAMR alg-hard .4050± .0020 .7175± .0054 .8282± .0015 .7405± .0024
Logistic Regression HAMR geo-hard .3969± .0022 .7097± .0059 .8270± .0016 .7399± .0024
Logistic Regression HAMR geo-soft .3875± .0024 .7177± .0069 .8284± .0016 .7379± .0024

Random Forest BCH alg-hard .2562± .0020 .6404± .0060 .7792± .0019 .7149± .0022
Random Forest BCH geo-hard .2462± .0019 .6304± .0049 .7217± .0022 .6917± .0020
Random Forest BCH geo-soft .2526± .0020 .6264± .0049 .7287± .0022 .6949± .0024

Gaussian SVM BCH alg-hard .2552± .0018 .7809± .0050 .7515± .0015 .7053± .0024
Gaussian SVM BCH geo-hard .2503± .0018 .7371± .0051 .7203± .0018 .6975± .0025
Gaussian SVM BCH geo-soft .2505± .0019 .7350± .0050 .7212± .0021 .6966± .0030

Logistic Regression BCH alg-hard .3291± .0020 .6982± .0048 .8094± .0020 .7205± .0022
Logistic Regression BCH geo-hard .3164± .0017 .6886± .0046 .7698± .0019 .7102± .0021
Logistic Regression BCH geo-soft .3142± .0016 .6787± .0046 .7713± .0023 .7112± .0025

base learner ECC decoder genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest HAMR alg-hard .0288± .0019 .6387± .0025 .8851± .0036
Random Forest HAMR geo-hard .0280± .0019 .6377± .0027 .8845± .0036
Random Forest HAMR geo-soft .0271± .0017 .6373± .0027 .8848± .0036

Gaussian SVM HAMR alg-hard .0243± .0022 .3675± .0036 .8718± .0042
Gaussian SVM HAMR geo-hard .0231± .0021 .3671± .0036 .8720± .0042
Gaussian SVM HAMR geo-soft .0233± .0022 .3627± .0035 .8716± .0043

Logistic Regression HAMR alg-hard .3509± .0089 .5499± .0247 .8740± .0036
Logistic Regression HAMR geo-hard .3541± .0099 .5514± .0249 .8744± .0036
Logistic Regression HAMR geo-soft .2777± .0107 .5301± .0229 .8723± .0036

Random Forest BCH alg-hard .0250± .0019 .4567± .0034 .8737± .0038
Random Forest BCH geo-hard .0255± .0018 .4130± .0037 .8429± .0038
Random Forest BCH geo-soft .0250± .0018 .4157± .0037 .8371± .0043

Gaussian SVM BCH alg-hard .0255± .0019 .3499± .0030 .8561± .0043
Gaussian SVM BCH geo-hard .0255± .0019 .3431± .0034 .8428± .0045
Gaussian SVM BCH geo-soft .0253± .0020 .3376± .0035 .8376± .0045

Logistic Regression BCH alg-hard .0295± .0018 .4022± .0076 .8579± .0038
Logistic Regression BCH geo-hard .0422± .0026 .3704± .0048 .8362± .0040
Logistic Regression BCH geo-soft .0395± .0026 .3670± .0046 .8475± .0040

3.4.2 Soft-input Decoding for k-powerset Learners

We have shown that soft inputs are beneficial for geometric decoder when using Binary

Relevance base learners. Now, we would like to see if we can apply this to the k-powerset

learners. As mentioned in Section 3.3, it is non-trivial to estimate the confidence per bit

from the confidence information on k-powerests, i.e., the probability distribution over 2K
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Table 3.4: Hamming loss of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest HAMR alg-hard .0726± .0005 .1781± .0017 .1878± .0007 .0652± .0002
Random Forest HAMR geo-hard .0718± .0006 .1768± .0017 .1872± .0007 .0651± .0003
Random Forest HAMR geo-soft .0726± .0005 .1763± .0018 .1873± .0007 .0651± .0002

Gaussian SVM HAMR alg-hard .0717± .0004 .2472± .0023 .1861± .0007 .0616± .0003
Gaussian SVM HAMR geo-hard .0716± .0005 .2508± .0023 .1858± .0007 .0615± .0003
Gaussian SVM HAMR geo-soft .0701± .0004 .2441± .0020 .1855± .0007 .0611± .0003

Logistic Regression HAMR alg-hard .0959± .0006 .2047± .0022 .2003± .0007 .0635± .0003
Logistic Regression HAMR geo-hard .0956± .0006 .2065± .0023 .2002± .0007 .0634± .0003
Logistic Regression HAMR geo-soft .0920± .0006 .2032± .0024 .1990± .0007 .0631± .0003

Random Forest BCH alg-hard .0717± .0006 .1826± .0018 .1898± .0008 .0638± .0003
Random Forest BCH geo-hard .0728± .0006 .1895± .0017 .1968± .0010 .0643± .0003
Random Forest BCH geo-soft .0703± .0006 .1822± .0016 .1910± .0008 .0622± .0003

Gaussian SVM BCH alg-hard .0739± .0006 .2569± .0030 .1880± .0007 .0619± .0003
Gaussian SVM BCH geo-hard .0735± .0005 .2761± .0031 .1952± .0007 .0649± .0003
Gaussian SVM BCH geo-soft .0721± .0006 .2614± .0028 .1911± .0007 .0624± .0003

Logistic Regression BCH alg-hard .0955± .0006 .2172± .0023 .2037± .0008 .0638± .0003
Logistic Regression BCH geo-hard .0957± .0006 .2312± .0027 .2116± .0007 .0673± .0003
Logistic Regression BCH geo-soft .0913± .0006 .2170± .0026 .2067± .0008 .0640± .0003

base learner ECC decoder genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest HAMR alg-hard .0012± .0001 .0179± .0001 .0474± .0003
Random Forest HAMR geo-hard .0012± .0001 .0179± .0001 .0474± .0003
Random Forest HAMR geo-soft .0011± .0001 .0179± .0001 .0474± .0003

Gaussian SVM HAMR alg-hard .0010± .0001 .0112± .0001 .0451± .0004
Gaussian SVM HAMR geo-hard .0009± .0001 .0112± .0001 .0450± .0004
Gaussian SVM HAMR geo-soft .0010± .0001 .0111± .0001 .0450± .0004

Logistic Regression HAMR alg-hard .0186± .0005 .0191± .0011 .0452± .0003
Logistic Regression HAMR geo-hard .0187± .0006 .0192± .0011 .0453± .0003
Logistic Regression HAMR geo-soft .0134± .0005 .0180± .0010 .0453± .0003

Random Forest BCH alg-hard .0010± .0001 .0152± .0001 .0494± .0004
Random Forest BCH geo-hard .0010± .0001 .0154± .0001 .0566± .0005
Random Forest BCH geo-soft .0010± .0001 .0150± .0002 .0535± .0004

Gaussian SVM BCH alg-hard .0010± .0001 .0117± .0001 .0487± .0005
Gaussian SVM BCH geo-hard .0010± .0001 .0126± .0001 .0577± .0006
Gaussian SVM BCH geo-soft .0011± .0001 .0121± .0001 .0534± .0005

Logistic Regression BCH alg-hard .0024± .0002 .0161± .0006 .0472± .0004
Logistic Regression BCH geo-hard .0054± .0004 .0154± .0004 .0558± .0004
Logistic Regression BCH geo-soft .0046± .0003 .0141± .0003 .0526± .0004

combinations of labels. Here, we experimentally examine the methods for such estimation

described in Section 3.3.

The results on the BCH code are shown in Figure 3.7. Similar to the above exper-

iments, we also plot the changes on ∆0/1 and ∆HL based on the result of the algebraic

decoder. In the figures, maximum, margin, diff, s-margin, and s-diff stand for

the soft-input geometric decoders using the corresponding confidence estimation methods

described in Section 3.3. Note that maximum is exactly the same as supplying hard-input
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(a) 0/1 loss change (b) Hamming loss change

Figure 3.7: Comparison between hard-/soft-input geometric decoders in the ML-ECC
with the BCH code using 3-powerset learners

to the geometric decoder.

From Figure 3.7(a), we can see that most of the soft-input geometric decoders have

similar performance to the hard-input geometric decoder on ∆0/1, except diff, whose

result is worse than the hard-input one. The result implies that such bitwise soft inputs

calculated from confidence score on k-powersets may not be useful to improve geometric

decoding result in terms of ∆0/1.

Next, we look at the Hamming loss shown in Figure 3.7(b). On the contrary, soft-input

geometric decoders using any confidence estimation method are better than hard-input

geometric decoder on ∆HL. Among the confidence estimation methods, diff is the best

and margin is the second best. These two soft-input geometric decoders are even better

than the algebraic decoder in terms of ∆HL on some datasets.

Putting the results on ∆0/1 and ∆HL together, we can see that for the BCH code, the

soft-input geometric decoder using the “marginal probability” method is a good choice

since it has better ∆HL and similar ∆0/1 comparing to the hard-input geometric decoder.

However, things are different for the HAMR code, as shown in Figure 3.8. From

Figure 3.8(a), the hard-input geometric decoder beats all soft-input ones in terms of ∆0/1.

In the soft-input geometric decoders, s-diff has the best performance. This one is also

the only soft-input geometric decoder, which is better than the algebraic decoder.
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(a) 0/1 loss change (b) Hamming loss change

Figure 3.8: Comparison between hard-/soft-input geometric decoders in the ML-ECC
with the HAMR code using 3-powerset learners

Table 3.5: Comparison of soft-input geometric decoders using different confidence esti-
mation methods on k-powerset learners

code measure order (�: better than; ≈: similar to)

BCH ∆0/1 hard ≈ margin ≈ s-margin ≈ s-diff � algebraic � diff

BCH ∆HL diff � margin � algebraic � s-margin ≈ s-diff � hard

HAMR ∆0/1 hard � s-diff � algebraic � diff � s-margin � margin

HAMR ∆HL margin ≈ s-margin ≈ diff � s-diff � algebraic � hard

The result is turned over when looking at ∆HL in Figure 3.8(b). All soft-input geo-

metric decoders perform better than the hard-input geometric decoder and the algebraic

decoder, but s-diff is the worst among the soft-input geometric decoders.

The results on other datasets are similar, and we summarize them in Table 3.5. The

results have demonstrated that the performance of the soft-input methods is dependent

to the code. In addition, the two evaluation measures, ∆0/1 and ∆HL, focus on different

aspects of multi-label classification and different soft-input methods take different trade-

off between these two measures. It is still an open problem to design a good bitwise

confidence estimation method suitable for both ∆0/1 and ∆HL, or to decode directly from

the confidence on k-powersets.
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3.5 Comparison with Real-valued ECC

Our ML-ECC framework only considers binary ECC. In this section, we compare our

ML-ECC framework with real-valued ECC methods: coding with canonical correlation

analysis (CCA-OC) [Zhang and Schneider, 2011] and max-margin output coding (Max-

Margin) [Zhang and Schneider, 2012]. The former method uses canonical correlation

analysis to find the most linearly-predictable transform of original labels. The latter one

uses metric learning to locate a good encoding function. Both methods uses approximate

inference as their decoding method.

The main difference between the real-valued ECC and our ML-ECC framework is that

our encoding functions transform the label vector into a binary codeword, while the real-

valued ECC methods transform the label vector into a real-valued codeword. Moreover,

the base learners in our framework deal with classification tasks, while the base learners

in those real-valued ECC methods deal with regression tasks.

The experiment setting is basically the same as in Section 2.4, but we only use scene

and emotions datasets, with Random Forests or logistic regression base learners. Both

real-valued ECC methods limit their codeword length to at most twice of the number of

labels, and the codeword contains K binary bits for original labels and at most K real-

valued bits. In the following experiment, we take all 2K binary and real-valued bits for

the real-valued ECC methods. There is a parameter λ in decoding for balancing the two

parts, and we set it to 1 (equally weighted). For our ML-ECC framework, we consider

HAMR and BCH code with the proposed soft-input geometric decoder, and use 127-bit

binary codewords.

The results on Random Forests learners are shown in Table 3.6, and the results on

logistic regression learners are shown in Table 3.7. It can be seen that with a stronger

base learner like Random Forests, the HAMR and BCH codes are better than both real-

valued ECC methods on the two datasets and on most of the measures. With the logistic

regression learner, while BCH code performs the best on scene dataset, it only wins on

0/1 loss on emotions dataset. The real-valued ECC methods give higher micro and

macro F1 score than HAMR and BCH on the emotions dataset. The reason may be
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Table 3.6: Comparison between ML-ECC and real-valued ECC methods using Random
Forests base learners

scene
ECC 0/1 loss Hamming loss Micro-F1 Macro-F1

HAMR-geo-soft .3294± .0021 .0726± .0005 .7710± .0018 .7741± .0017
BCH-geo-soft .2526± .0020 .0703± .0006 .7944± .0019 .8006± .0018
CCA-OC .3165± .0010 .0934± .0003 .7319± .0010 .7403± .0010

emotions
ECC 0/1 loss Hamming loss Micro-F1 Macro-F1

HAMR-geo-soft .6584± .0053 .1763± .0018 .7023± .0031 .6756± .0034
BCH-geo-soft .6264± .0049 .1822± .0016 .7153± .0025 .6975± .0025
CCA-OC .6728± .0021 .2022± .0009 .6920± .0014 .6824± .0014

Table 3.7: Comparison between ML-ECC and real-valued ECC methods using logistic
regression base learners

scene
ECC 0/1 loss Hamming loss Micro-F1 Macro-F1

HAMR-geo-soft .3875± .0024 .0920± .0006 .7156± .0019 .7204± .0017
BCH-geo-soft .3142± .0016 .0913± .0006 .7337± .0016 .7397± .0014
CCA-OC .3599± .0011 .1088± .0004 .6875± .0011 .6952± .0011
MaxMargin .3654± .0023 .1107± .0009 .6820± .0024 .6889± .0025

emotions
ECC 0/1 loss Hamming loss Micro-F1 Macro-F1

HAMR-geo-soft .7177± .0069 .2032± .0024 .6544± .0045 .6310± .0047
BCH-geo-soft .6787± .0046 .2170± .0026 .6652± .0043 .6499± .0044
CCA-OC .6814± .0024 .2068± .0006 .6791± .0008 .6715± .0010
MaxMargin .6855± .0030 .2099± .0009 .6768± .0013 .6679± .0014

that the power of logistic regression base learner is limited, and the parity bits of HAMR

and BCH are too sophisticated for the base learner. On the other hand, the code generated

by CCA-OC and MaxMargin methods are easier to learn for such linear model. For

sufficiently sophisticated base learners, the proposed discrete-ECC-based framework is

the better choice for multi-label classification with error correcting codes.
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Chapter 4

Conclusion

We presented a framework for applying the ECCs on multi-label classification. We then

studied the use of four classic ECC designs, namely the RREP, HAMR, BCH, and LDPC.

We showed that RREP can be used to give a new perspective of the RAKEL algorithm as

a special instance of the framework with the k-powerset as the base learner.

We conducted experiments with the four ECC designs on various real-world datasets.

The experiments further clarified the trade-off between the strength of the ECC and the

hardness of the base learning tasks. Experimental results demonstrated that several ECC

designs can lead to a better use of the trade-off. For instance, HAMR is superior over

RREP for the k-powerset base learners because it leads to a new algorithm that is bet-

ter than the original RAKEL in terms of 0/1 loss while maintaining a comparable level

of Hamming loss; BCH is another superior design, which could significantly improve

RAKEL in terms of 0/1 loss. When compared with the traditional BR algorithm, we

showed that using a stronger ECC like HAMR or BCH can lead to better performance in

terms of both 0/1 and Hamming loss.

The results justify the validity and usefulness of the framework when coupled with

some classic ECC. An interesting future direction is to consider adaptive ECC like the

ones studied for multi-class classification [Schapire, 1997, Li, 2006].

Besides the framework, we also presented a novel geometric decoder for general lin-

ear code based on approximating the XOR operation by multiplication. This decoder is

capable of not only taking hard input as algebraic decoders, but also taking soft input
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from the channel into account. The soft input may be gathered from the base learner

channels as their confidence of an instance to be in one class. The experimental result on

this new decoder demonstrated that this decoder outshines the ordinary decoder in terms

of 0/1 loss and using soft input from the Binary Relevance learner further improves the

performance of this decoder on Hamming loss. We also proposed and studied several

methods to gather soft input from the k-powerset learner. The results show that different

ECC designs match different methods better. It remains an interesting research problem

on appropriately calculating the 1-bit confidence from the k-bit confidence.
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Appendix A

Additional Experiment Results

A.1 ML-ECC Using 3-powerset Base Learners

Table A.1: Micro-F1 of ML-ECC using 3-powerset base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (RAKEL) .7620± .0019 .7058± .0031 .6548± .0016 .5988± .0017
Random Forest HAMR .7777± .0019 .7078± .0032 .6615± .0015 .6025± .0016
Random Forest BCH .7793± .0019 .7029± .0033 .6537± .0016 .6172± .0019
Random Forest LDPC .7586± .0022 .6816± .0037 .6300± .0016 .5787± .0021

Gaussian SVM RREP (RAKEL) .7883± .0014 .5716± .0039 .6743± .0013 .6618± .0018
Gaussian SVM HAMR .7907± .0013 .5747± .0040 .6753± .0012 .6619± .0018
Gaussian SVM BCH .7865± .0016 .5602± .0042 .6687± .0013 .6495± .0019
Gaussian SVM LDPC .7817± .0016 .5222± .0057 .6611± .0015 .6362± .0018

Logistic Regression RREP (RAKEL) .7232± .0016 .6630± .0044 .6445± .0014 .6458± .0022
Logistic Regression HAMR .7321± .0015 .6597± .0043 .6476± .0013 .6433± .0019
Logistic Regression BCH .7319± .0016 .6408± .0041 .6392± .0015 .6309± .0020
Logistic Regression LDPC .7095± .0020 .6292± .0034 .6340± .0019 .6231± .0024

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (RAKEL) .9870± .0009 .5474± .0023 .5400± .0050
Random Forest HAMR .9872± .0011 .5567± .0025 .5376± .0051
Random Forest BCH .9885± .0010 .6786± .0030 .5313± .0048
Random Forest LDPC .9858± .0011 .6125± .0033 .5126± .0057

Gaussian SVM RREP (RAKEL) .9864± .0011 .7837± .0020 .5690± .0053
Gaussian SVM HAMR .9862± .0013 .7837± .0019 .5679± .0055
Gaussian SVM BCH .9888± .0009 .7777± .0021 .5217± .0064
Gaussian SVM LDPC .9850± .0014 .7414± .0020 .5251± .0059

Logistic Regression RREP (RAKEL) .8383± .0041 .7130± .0093 .5668± .0035
Logistic Regression HAMR .9012± .0039 .7259± .0078 .5639± .0036
Logistic Regression BCH .9863± .0011 .7514± .0029 .5321± .0045
Logistic Regression LDPC .9747± .0021 .7021± .0049 .5295± .0047
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Table A.2: Macro-F1 of ML-ECC using 3-powerset base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (RAKEL) .7653± .0019 .6815± .0032 .3736± .0015 .2538± .0034
Random Forest HAMR .7840± .0018 .6868± .0032 .3837± .0016 .2604± .0035
Random Forest BCH .7863± .0019 .6860± .0036 .3859± .0017 .3325± .0033
Random Forest LDPC .7666± .0021 .6566± .0040 .3596± .0016 .2845± .0031

Gaussian SVM RREP (RAKEL) .7955± .0013 .5199± .0043 .4252± .0018 .4586± .0047
Gaussian SVM HAMR .7980± .0014 .5301± .0045 .4254± .0018 .4448± .0045
Gaussian SVM BCH .7940± .0016 .5256± .0048 .4196± .0017 .4238± .0046
Gaussian SVM LDPC .7898± .0016 .4409± .0078 .4146± .0023 .4237± .0041

Logistic Regression RREP (RAKEL) .7298± .0014 .6456± .0043 .3508± .0012 .4004± .0052
Logistic Regression HAMR .7399± .0014 .6438± .0041 .3562± .0013 .3827± .0047
Logistic Regression BCH .7398± .0015 .6267± .0042 .3588± .0021 .3572± .0043
Logistic Regression LDPC .7179± .0019 .6041± .0043 .3500± .0026 .3777± .0046

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (RAKEL) .7529± .0051 .1370± .0030 .1797± .0053
Random Forest HAMR .7530± .0055 .1455± .0034 .1819± .0053
Random Forest BCH .7575± .0056 .2536± .0035 .1950± .0055
Random Forest LDPC .7550± .0058 .2104± .0030 .1770± .0046

Gaussian SVM RREP (RAKEL) .7365± .0060 .3062± .0032 .1329± .0025
Gaussian SVM HAMR .7347± .0060 .3004± .0029 .1316± .0027
Gaussian SVM BCH .7605± .0054 .3103± .0037 .1398± .0043
Gaussian SVM LDPC .7530± .0061 .2888± .0025 .1354± .0031

Logistic Regression RREP (RAKEL) .6045± .0066 .3357± .0050 .1330± .0024
Logistic Regression HAMR .6677± .0086 .3412± .0053 .1279± .0020
Logistic Regression BCH .7600± .0060 .3227± .0038 .1410± .0038
Logistic Regression LDPC .7494± .0075 .3138± .0043 .1386± .0030

Table A.3: Ranking loss of ML-ECC using 3-powerset base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (RAKEL) .1641± .0012 .2130± .0021 .2439± .0012 .2381± .0012
Random Forest HAMR .1407± .0012 .2107± .0023 .2378± .0011 .2356± .0011
Random Forest BCH .1354± .0011 .2139± .0026 .2450± .0013 .2237± .0013
Random Forest LDPC .1498± .0013 .2291± .0028 .2611± .0014 .2416± .0014

Gaussian SVM RREP (RAKEL) .1337± .0008 .3034± .0028 .2299± .0010 .1897± .0014
Gaussian SVM HAMR .1277± .0008 .3041± .0029 .2281± .0010 .1905± .0013
Gaussian SVM BCH .1291± .0010 .3141± .0028 .2333± .0009 .1993± .0013
Gaussian SVM LDPC .1322± .0009 .3285± .0033 .2395± .0012 .1972± .0015

Logistic Regression RREP (RAKEL) .1779± .0010 .2427± .0031 .2495± .0011 .2020± .0016
Logistic Regression HAMR .1660± .0010 .2462± .0030 .2468± .0010 .2046± .0014
Logistic Regression BCH .1634± .0010 .2613± .0030 .2539± .0012 .2116± .0015
Logistic Regression LDPC .1787± .0013 .2649± .0025 .2572± .0015 .2055± .0019

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (RAKEL) .0069± .0005 .2961± .0013 .2745± .0031
Random Forest HAMR .0067± .0005 .2911± .0015 .2748± .0031
Random Forest BCH .0049± .0005 .1834± .0018 .2669± .0032
Random Forest LDPC .0062± .0004 .2161± .0018 .2734± .0034

Gaussian SVM RREP (RAKEL) .0079± .0006 .1301± .0018 .2583± .0032
Gaussian SVM HAMR .0077± .0007 .1312± .0017 .2585± .0034
Gaussian SVM BCH .0054± .0005 .1272± .0014 .2668± .0037
Gaussian SVM LDPC .0070± .0005 .1292± .0014 .2612± .0036

Logistic Regression RREP (RAKEL) .0111± .0005 .0897± .0073 .2608± .0025
Logistic Regression HAMR .0072± .0005 .0896± .0070 .2622± .0025
Logistic Regression BCH .0039± .0004 .1185± .0028 .2640± .0030
Logistic Regression LDPC .0042± .0004 .1041± .0043 .2591± .0032

50



A.2 ML-ECC With Different Codeword Lengths

Table A.4: 0/1 loss of ML-ECC on scene dataset (3-powerset learners)

base learner ECC M = 31 M = 47 M = 63 M = 95 M = 127

Random Forest RREP (RAKEL) .3303± .0036 .3361± .0028 .3349± .0026 .3365± .0025 .3394± .0025
Random Forest HAMR .3070± .0027 .3050± .0028 .2930± .0021 .2923± .0024 .2849± .0020
Random Forest BCH .2822± .0026 — .2713± .0023 — .2669± .0020
Random Forest LDPC .3141± .0036 .3238± .0029 .3169± .0029 .3196± .0029 .3057± .0023

Gaussian SVM RREP (RAKEL) .2855± .0019 .2883± .0019 .2860± .0016 .2868± .0017 .2856± .0016
Gaussian SVM HAMR .2775± .0019 .2743± .0019 .2696± .0016 .2683± .0015 .2639± .0017
Gaussian SVM BCH .2623± .0016 — .2578± .0019 — .2576± .0017
Gaussian SVM LDPC .2828± .0021 .2843± .0023 .2823± .0023 .2829± .0021 .2780± .0020

Logistic Regression RREP (RAKEL) .3667± .0025 .3666± .0022 .3612± .0021 .3637± .0020 .3601± .0019
Logistic Regression HAMR .3548± .0024 .3490± .0025 .3407± .0022 .3389± .0017 .3293± .0017
Logistic Regression BCH .3326± .0027 — .3196± .0020 — .3148± .0018
Logistic Regression LDPC .3719± .0031 .3724± .0030 .3690± .0028 .3696± .0027 .3655± .0028

Table A.5: Hamming loss of ML-ECC on scene dataset (3-powerset learners)

base learner ECC M = 31 M = 47 M = 63 M = 95 M = 127

Random Forest RREP (RAKEL) .0772± .0006 .0762± .0006 .0759± .0006 .0754± .0006 .0755± .0006
Random Forest HAMR .0800± .0008 .0770± .0007 .0759± .0005 .0750± .0007 .0746± .0006
Random Forest BCH .0798± .0008 — .0768± .0007 — .0753± .0007
Random Forest LDPC .0825± .0007 .0807± .0007 .0812± .0008 .0801± .0007 .0819± .0007

Gaussian SVM RREP (RAKEL) .0724± .0005 .0721± .0005 .0718± .0004 .0720± .0005 .0719± .0005
Gaussian SVM HAMR .0750± .0006 .0736± .0006 .0730± .0005 .0728± .0005 .0724± .0005
Gaussian SVM BCH .0748± .0005 — .0738± .0006 — .0739± .0006
Gaussian SVM LDPC .0758± .0006 .0747± .0006 .0754± .0006 .0745± .0005 .0755± .0006

Logistic Regression RREP (RAKEL) .0927± .0006 .0920± .0005 .0917± .0006 .0918± .0006 .0915± .0005
Logistic Regression HAMR .0962± .0008 .0935± .0007 .0924± .0006 .0918± .0005 .0910± .0005
Logistic Regression BCH .0961± .0008 — .0932± .0006 — .0920± .0005
Logistic Regression LDPC .0992± .0007 .0960± .0006 .0967± .0005 .0962± .0007 .0989± .0007
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Table A.6: 0/1 loss of ML-ECC on yeast dataset (3-powerset learners)

base learner ECC M = 63 M = 95 M = 127 M = 191 M = 255

Random Forest RREP (RAKEL) .8130± .0096 .7921± .0021 .7931± .0022 .7947± .0021 .7907± .0023
Random Forest HAMR .8125± .0024 .7949± .0025 .7900± .0023 .7831± .0021 .7791± .0020
Random Forest BCH .7853± .0021 — .7750± .0021 — .7764± .0020
Random Forest LDPC .8081± .0024 .8125± .0019 .8089± .0022 .8178± .0019 .8082± .0024

Gaussian SVM RREP (RAKEL) .7779± .0059 .7647± .0023 .7638± .0024 .7631± .0023 .7601± .0023
Gaussian SVM HAMR .7752± .0026 .7641± .0020 .7600± .0022 .7551± .0018 .7522± .0021
Gaussian SVM BCH .7441± .0021 — .7409± .0020 — .7428± .0017
Gaussian SVM LDPC .7588± .0024 .7684± .0016 .7639± .0022 .7671± .0020 .7574± .0021

Logistic Regression RREP (RAKEL) .8310± .0049 .8202± .0016 .8206± .0020 .8193± .0021 .8161± .0017
Logistic Regression HAMR .8304± .0022 .8158± .0016 .8113± .0020 .8067± .0017 .8064± .0018
Logistic Regression BCH .7953± .0024 — .7887± .0022 — .7899± .0020
Logistic Regression LDPC .8095± .0027 .8140± .0019 .8089± .0026 .8160± .0021 .8082± .0024

Table A.7: Hamming loss of ML-ECC on yeast dataset (3-powerset learners)

base learner ECC M = 63 M = 95 M = 127 M = 191 M = 255

Random Forest RREP (RAKEL) .1963± .0030 .1896± .0008 .1892± .0008 .1887± .0008 .1882± .0008
Random Forest HAMR .1992± .0007 .1937± .0008 .1919± .0007 .1900± .0008 .1895± .0008
Random Forest BCH .1952± .0007 — .1942± .0007 — .1928± .0008
Random Forest LDPC .1990± .0007 .1973± .0007 .1996± .0006 .1989± .0007 .2014± .0007

Gaussian SVM RREP (RAKEL) .1891± .0016 .1862± .0007 .1862± .0007 .1855± .0006 .1853± .0007
Gaussian SVM HAMR .1916± .0007 .1888± .0006 .1882± .0006 .1872± .0006 .1867± .0006
Gaussian SVM BCH .1897± .0008 — .1907± .0007 — .1898± .0008
Gaussian SVM LDPC .1901± .0007 .1912± .0007 .1911± .0006 .1912± .0007 .1917± .0007

Logistic Regression RREP (RAKEL) .2029± .0017 .1999± .0006 .1999± .0007 .1996± .0007 .1993± .0007
Logistic Regression HAMR .2064± .0009 .2027± .0007 .2013± .0007 .2004± .0007 .2004± .0007
Logistic Regression BCH .2059± .0008 — .2057± .0008 — .2051± .0008
Logistic Regression LDPC .2032± .0008 .2025± .0008 .2027± .0008 .2039± .0007 .2054± .0007

Table A.8: 0/1 loss of ML-ECC on emotions dataset (3-powerset learners)

base learner ECC M = 31 M = 47 M = 63 M = 95 M = 127

Random Forest RREP (RAKEL) .6507± .0050 .6475± .0050 .6455± .0052 .6512± .0056 .6465± .0057
Random Forest HAMR .6597± .0053 .6507± .0063 .6512± .0050 .6483± .0053 .6373± .0061
Random Forest BCH .6502± .0058 — .6386± .0054 — .6361± .0057
Random Forest LDPC .6637± .0051 .6787± .0054 .6721± .0051 .6769± .0053 .6619± .0052

Gaussian SVM RREP (RAKEL) .7822± .0063 .7818± .0048 .7782± .0057 .7790± .0045 .7759± .0055
Gaussian SVM HAMR .7965± .0051 .7785± .0063 .7771± .0057 .7769± .0052 .7710± .0054
Gaussian SVM BCH .7979± .0058 — .7774± .0057 — .7744± .0053
Gaussian SVM LDPC .8059± .0053 .8238± .0060 .8104± .0052 .8257± .0050 .8040± .0044

Logistic Regression RREP (RAKEL) .7061± .0067 .6977± .0071 .6982± .0066 .6957± .0067 .6949± .0070
Logistic Regression HAMR .7188± .0063 .7030± .0059 .7071± .0066 .7017± .0063 .6964± .0057
Logistic Regression BCH .7178± .0057 — .7059± .0046 — .7068± .0046
Logistic Regression LDPC .7356± .0054 .7302± .0072 .7287± .0058 .7312± .0056 .7295± .0056
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Table A.9: Hamming loss of ML-ECC on emotions dataset (3-powerset learners)

base learner ECC M = 31 M = 47 M = 63 M = 95 M = 127

Random Forest RREP (RAKEL) .1822± .0018 .1785± .0016 .1778± .0016 .1781± .0018 .1774± .0018
Random Forest HAMR .1889± .0020 .1825± .0020 .1822± .0015 .1814± .0019 .1799± .0020
Random Forest BCH .1928± .0022 — .1856± .0018 — .1859± .0021
Random Forest LDPC .1887± .0019 .1919± .0016 .1895± .0018 .1909± .0017 .1912± .0020

Gaussian SVM RREP (RAKEL) .2475± .0023 .2443± .0021 .2446± .0023 .2446± .0022 .2432± .0021
Gaussian SVM HAMR .2627± .0023 .2534± .0026 .2527± .0022 .2497± .0023 .2489± .0023
Gaussian SVM BCH .2734± .0025 — .2669± .0026 — .2644± .0019
Gaussian SVM LDPC .2635± .0024 .2636± .0019 .2573± .0023 .2625± .0024 .2634± .0027

Logistic Regression RREP (RAKEL) .2065± .0023 .2026± .0025 .2029± .0024 .2017± .0025 .2026± .0025
Logistic Regression HAMR .2170± .0030 .2088± .0023 .2110± .0025 .2092± .0028 .2064± .0024
Logistic Regression BCH .2279± .0021 — .2243± .0025 — .2233± .0022
Logistic Regression LDPC .2207± .0023 .2150± .0027 .2172± .0022 .2186± .0021 .2202± .0021

Table A.10: 0/1 loss of ML-ECC on medical dataset (3-powerset learners)

base learner ECC M = 255 M = 383 M = 511 M = 767 M = 1023

Random Forest RREP (RAKEL) .6633± .0167 .6435± .0030 .6428± .0027 .6475± .0029 .6496± .0024
Random Forest HAMR .6369± .0029 .6424± .0033 .6398± .0031 .6406± .0021 .6417± .0030
Random Forest BCH .4730± .0036 — .4697± .0034 — .4659± .0038
Random Forest LDPC .5237± .0036 .5223± .0032 .5276± .0031 .5250± .0032 .5260± .0032

Gaussian SVM RREP (RAKEL) .3919± .0148 .3702± .0036 .3684± .0034 .3697± .0035 .3680± .0035
Gaussian SVM HAMR .3686± .0036 .3672± .0036 .3684± .0031 .3673± .0029 .3640± .0031
Gaussian SVM BCH .3422± .0028 — .3440± .0028 — .3394± .0027
Gaussian SVM LDPC .3592± .0031 .3677± .0033 .3752± .0036 .3811± .0032 .3856± .0031

Logistic Regression RREP (RAKEL) .5718± .0240 .5549± .0262 .5508± .0252 .5488± .0253 .5507± .0254
Logistic Regression HAMR .5326± .0232 .5321± .0235 .5310± .0229 .5286± .0230 .5269± .0229
Logistic Regression BCH .3895± .0054 — .3871± .0051 — .3798± .0044
Logistic Regression LDPC .4403± .0100 .4470± .0097 .4563± .0094 .4510± .0093 .4516± .0083

Table A.11: Hamming loss of ML-ECC on medical dataset (3-powerset learners)

base learner ECC M = 255 M = 383 M = 511 M = 767 M = 1023

Random Forest RREP (RAKEL) .0195± .0010 .0181± .0001 .0181± .0001 .0182± .0001 .0182± .0001
Random Forest HAMR .0180± .0001 .0181± .0001 .0180± .0001 .0180± .0001 .0180± .0001
Random Forest BCH .0159± .0001 — .0158± .0001 — .0158± .0001
Random Forest LDPC .0171± .0001 .0177± .0001 .0183± .0001 .0189± .0001 .0191± .0002

Gaussian SVM RREP (RAKEL) .0120± .0005 .0113± .0001 .0112± .0001 .0112± .0001 .0112± .0001
Gaussian SVM HAMR .0112± .0001 .0112± .0001 .0112± .0001 .0112± .0001 .0111± .0001
Gaussian SVM BCH .0113± .0001 — .0114± .0001 — .0114± .0001
Gaussian SVM LDPC .0120± .0001 .0126± .0001 .0131± .0001 .0137± .0001 .0140± .0001

Logistic Regression RREP (RAKEL) .0198± .0010 .0193± .0012 .0191± .0011 .0190± .0011 .0190± .0011
Logistic Regression HAMR .0180± .0010 .0180± .0010 .0179± .0010 .0178± .0009 .0176± .0009
Logistic Regression BCH .0139± .0003 — .0137± .0003 — .0137± .0003
Logistic Regression LDPC .0167± .0006 .0175± .0006 .0182± .0007 .0184± .0007 .0187± .0006
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A.3 ML-ECC Using Binary Relevance Base Learners

Table A.12: Micro-F1 of ML-ECC using BR base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (BR) .7058± .0018 .6817± .0034 .6397± .0013 .6044± .0017
Random Forest HAMR .7729± .0016 .6991± .0032 .6575± .0014 .6156± .0015
Random Forest BCH .7889± .0020 .7033± .0028 .6533± .0015 .6319± .0016
Random Forest LDPC .7276± .0022 .6734± .0031 .6350± .0012 .5882± .0019

Gaussian SVM RREP (BR) .7749± .0014 .5068± .0044 .6646± .0013 .6582± .0018
Gaussian SVM HAMR .7881± .0012 .5370± .0039 .6713± .0014 .6578± .0019
Gaussian SVM BCH .7866± .0015 .5538± .0052 .6687± .0013 .6587± .0018
Gaussian SVM LDPC .7781± .0016 .5047± .0047 .6598± .0012 .6332± .0017

Logistic Regression RREP (BR) .6775± .0020 .6344± .0036 .6349± .0015 .6475± .0021
Logistic Regression HAMR .7076± .0017 .6507± .0039 .6406± .0015 .6466± .0020
Logistic Regression BCH .7212± .0018 .6499± .0043 .6374± .0016 .6496± .0019
Logistic Regression LDPC .6772± .0023 .6278± .0039 .6296± .0017 .6257± .0023

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (BR) .9864± .0010 .5432± .0023 .5454± .0046
Random Forest HAMR .9872± .0009 .5591± .0024 .5472± .0046
Random Forest BCH .9892± .0009 .6869± .0032 .5399± .0042
Random Forest LDPC .9844± .0012 .5812± .0028 .5201± .0047

Gaussian SVM RREP (BR) .9874± .0010 .7818± .0022 .5696± .0053
Gaussian SVM HAMR .9894± .0010 .7831± .0021 .5664± .0050
Gaussian SVM BCH .9892± .0008 .7728± .0019 .5466± .0058
Gaussian SVM LDPC .9878± .0008 .7249± .0025 .5349± .0052

Logistic Regression RREP (BR) .7272± .0035 .6935± .0114 .5713± .0034
Logistic Regression HAMR .8326± .0040 .7118± .0091 .5682± .0035
Logistic Regression BCH .9752± .0017 .7284± .0057 .5624± .0044
Logistic Regression LDPC .9492± .0033 .6612± .0077 .5397± .0036
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Table A.13: Macro-F1 of ML-ECC using BR base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (BR) .7045± .0016 .6513± .0037 .3554± .0012 .2596± .0035
Random Forest HAMR .7758± .0016 .6738± .0036 .3802± .0014 .2836± .0035
Random Forest BCH .7950± .0019 .6863± .0030 .3845± .0017 .3528± .0031
Random Forest LDPC .7280± .0020 .6449± .0034 .3676± .0011 .2872± .0032

Gaussian SVM RREP (BR) .7810± .0013 .4362± .0046 .4138± .0018 .4560± .0044
Gaussian SVM HAMR .7950± .0012 .4780± .0043 .4188± .0019 .4262± .0044
Gaussian SVM BCH .7940± .0016 .5190± .0052 .4198± .0020 .4484± .0043
Gaussian SVM LDPC .7845± .0015 .4420± .0048 .4161± .0019 .4165± .0036

Logistic Regression RREP (BR) .6817± .0019 .6062± .0044 .3405± .0016 .4436± .0044
Logistic Regression HAMR .7119± .0015 .6267± .0042 .3445± .0014 .4041± .0048
Logistic Regression BCH .7264± .0016 .6336± .0042 .3482± .0020 .4306± .0044
Logistic Regression LDPC .6803± .0024 .5969± .0050 .3466± .0016 .4050± .0043

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (BR) .7527± .0052 .1338± .0026 .1794± .0052
Random Forest HAMR .7535± .0053 .1447± .0029 .1822± .0054
Random Forest BCH .7589± .0057 .2628± .0036 .1945± .0053
Random Forest LDPC .7499± .0055 .1963± .0027 .1777± .0046

Gaussian SVM RREP (BR) .7659± .0065 .3081± .0034 .1414± .0029
Gaussian SVM HAMR .7628± .0058 .2958± .0028 .1359± .0029
Gaussian SVM BCH .7612± .0052 .3092± .0040 .1706± .0049
Gaussian SVM LDPC .7731± .0060 .2880± .0025 .1476± .0032

Logistic Regression RREP (BR) .5425± .0043 .3252± .0042 .1478± .0027
Logistic Regression HAMR .6052± .0057 .3314± .0057 .1375± .0028
Logistic Regression BCH .7401± .0065 .3137± .0041 .1672± .0037
Logistic Regression LDPC .7183± .0081 .3001± .0040 .1459± .0025

Table A.14: Ranking loss of ML-ECC using BR base learners

base learner ECC scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest RREP (BR) .2113± .0010 .2336± .0023 .2559± .0010 .2357± .0012
Random Forest HAMR .1554± .0010 .2185± .0022 .2422± .0011 .2275± .0011
Random Forest BCH .1294± .0012 .2139± .0019 .2461± .0011 .2148± .0012
Random Forest LDPC .1907± .0013 .2397± .0022 .2585± .0010 .2351± .0013

Gaussian SVM RREP (BR) .1493± .0008 .3375± .0025 .2379± .0010 .1914± .0013
Gaussian SVM HAMR .1348± .0007 .3231± .0024 .2321± .0011 .1937± .0014
Gaussian SVM BCH .1286± .0010 .3179± .0034 .2340± .0010 .1923± .0013
Gaussian SVM LDPC .1435± .0010 .3406± .0024 .2411± .0010 .1973± .0013

Logistic Regression RREP (BR) .2128± .0013 .2627± .0025 .2571± .0012 .1977± .0016
Logistic Regression HAMR .1890± .0011 .2515± .0028 .2523± .0012 .2006± .0015
Logistic Regression BCH .1700± .0011 .2543± .0030 .2559± .0013 .1965± .0015
Logistic Regression LDPC .2100± .0016 .2673± .0026 .2605± .0013 .2012± .0018

base learner ECC genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest RREP (BR) .0075± .0006 .2990± .0014 .2715± .0029
Random Forest HAMR .0068± .0004 .2900± .0014 .2695± .0029
Random Forest BCH .0048± .0005 .1844± .0018 .2660± .0029
Random Forest LDPC .0067± .0004 .2365± .0017 .2713± .0030

Gaussian SVM RREP (BR) .0065± .0005 .1297± .0019 .2574± .0032
Gaussian SVM HAMR .0058± .0005 .1307± .0018 .2596± .0032
Gaussian SVM BCH .0049± .0004 .1265± .0012 .2600± .0034
Gaussian SVM LDPC .0054± .0005 .1311± .0018 .2599± .0033

Logistic Regression RREP (BR) .0199± .0005 .0913± .0075 .2570± .0024
Logistic Regression HAMR .0116± .0005 .0909± .0075 .2601± .0024
Logistic Regression BCH .0041± .0004 .1074± .0039 .2528± .0029
Logistic Regression LDPC .0048± .0005 .0994± .0063 .2562± .0025

55



A.4 ML-ECC With Geometric Decoders

Table A.15: Micro-F1 of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest HAMR alg-hard .7733± .0016 .6992± .0031 .6575± .0014 .6156± .0015
Random Forest HAMR geo-hard .7776± .0017 .7061± .0031 .6614± .0015 .6162± .0016
Random Forest HAMR geo-soft .7710± .0018 .7023± .0031 .6553± .0014 .6159± .0016

Gaussian SVM HAMR alg-hard .7879± .0012 .5375± .0040 .6713± .0014 .6578± .0019
Gaussian SVM HAMR geo-hard .7890± .0013 .5502± .0042 .6726± .0014 .6584± .0019
Gaussian SVM HAMR geo-soft .7929± .0012 .5305± .0041 .6714± .0014 .6598± .0019

Logistic Regression HAMR alg-hard .7076± .0017 .6511± .0040 .6406± .0015 .6466± .0020
Logistic Regression HAMR geo-hard .7096± .0018 .6549± .0041 .6413± .0015 .6470± .0020
Logistic Regression HAMR geo-soft .7156± .0019 .6544± .0045 .6417± .0014 .6486± .0020

Random Forest BCH alg-hard .7897± .0018 .7032± .0028 .6533± .0015 .6319± .0016
Random Forest BCH geo-hard .7897± .0018 .7059± .0027 .6658± .0017 .6490± .0018
Random Forest BCH geo-soft .7944± .0019 .7153± .0025 .6731± .0014 .6582± .0016

Gaussian SVM BCH alg-hard .7864± .0016 .5531± .0051 .6687± .0013 .6587± .0018
Gaussian SVM BCH geo-hard .7886± .0015 .5834± .0047 .6693± .0012 .6426± .0020
Gaussian SVM BCH geo-soft .7924± .0016 .5902± .0046 .6755± .0012 .6590± .0018

Logistic Regression BCH alg-hard .7212± .0018 .6499± .0043 .6374± .0016 .6496± .0019
Logistic Regression BCH geo-hard .7236± .0017 .6471± .0044 .6395± .0013 .6299± .0022
Logistic Regression BCH geo-soft .7337± .0016 .6652± .0043 .6462± .0013 .6480± .0017

base learner ECC decoder genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest HAMR alg-hard .9872± .0009 .5591± .0024 .5472± .0046
Random Forest HAMR geo-hard .9875± .0009 .5604± .0023 .5477± .0045
Random Forest HAMR geo-soft .9878± .0009 .5603± .0024 .5467± .0047

Gaussian SVM HAMR alg-hard .9894± .0010 .7831± .0021 .5664± .0050
Gaussian SVM HAMR geo-hard .9900± .0010 .7831± .0021 .5668± .0052
Gaussian SVM HAMR geo-soft .9897± .0010 .7848± .0021 .5659± .0053

Logistic Regression HAMR alg-hard .8326± .0040 .7118± .0091 .5682± .0035
Logistic Regression HAMR geo-hard .8324± .0043 .7107± .0093 .5677± .0035
Logistic Regression HAMR geo-soft .8742± .0039 .7228± .0080 .5683± .0036

Random Forest BCH alg-hard .9892± .0009 .6869± .0032 .5399± .0042
Random Forest BCH geo-hard .9889± .0009 .7048± .0028 .5283± .0041
Random Forest BCH geo-soft .9891± .0009 .7106± .0030 .5337± .0044

Gaussian SVM BCH alg-hard .9892± .0008 .7728± .0019 .5466± .0058
Gaussian SVM BCH geo-hard .9887± .0008 .7603± .0026 .5128± .0053
Gaussian SVM BCH geo-soft .9887± .0009 .7689± .0026 .5155± .0057

Logistic Regression BCH alg-hard .9752± .0017 .7284± .0057 .5624± .0044
Logistic Regression BCH geo-hard .9451± .0041 .7260± .0053 .5250± .0041
Logistic Regression BCH geo-soft .9532± .0031 .7439± .0036 .5251± .0043
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Table A.16: Macro-F1 of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest HAMR alg-hard .7760± .0016 .6741± .0035 .3802± .0014 .2836± .0035
Random Forest HAMR geo-hard .7808± .0017 .6823± .0034 .3853± .0015 .2837± .0037
Random Forest HAMR geo-soft .7741± .0017 .6756± .0034 .3759± .0014 .2817± .0035

Gaussian SVM HAMR alg-hard .7949± .0012 .4783± .0042 .4188± .0019 .4262± .0044
Gaussian SVM HAMR geo-hard .7961± .0013 .4940± .0051 .4198± .0018 .4269± .0045
Gaussian SVM HAMR geo-soft .8004± .0013 .4624± .0042 .4177± .0017 .4281± .0042

Logistic Regression HAMR alg-hard .7118± .0016 .6269± .0043 .3445± .0014 .4041± .0048
Logistic Regression HAMR geo-hard .7139± .0015 .6320± .0043 .3450± .0013 .4062± .0051
Logistic Regression HAMR geo-soft .7204± .0017 .6310± .0047 .3447± .0012 .4150± .0046

Random Forest BCH alg-hard .7957± .0018 .6860± .0029 .3845± .0017 .3528± .0031
Random Forest BCH geo-hard .7961± .0018 .6910± .0029 .4166± .0018 .3883± .0032
Random Forest BCH geo-soft .8006± .0018 .6975± .0025 .4120± .0016 .3788± .0034

Gaussian SVM BCH alg-hard .7938± .0016 .5181± .0050 .4198± .0020 .4484± .0043
Gaussian SVM BCH geo-hard .7961± .0016 .5582± .0048 .4312± .0019 .3851± .0035
Gaussian SVM BCH geo-soft .8003± .0016 .5607± .0046 .4300± .0019 .3957± .0038

Logistic Regression BCH alg-hard .7264± .0016 .6336± .0042 .3482± .0020 .4306± .0044
Logistic Regression BCH geo-hard .7289± .0015 .6322± .0043 .3583± .0018 .3537± .0035
Logistic Regression BCH geo-soft .7397± .0014 .6499± .0044 .3588± .0017 .3695± .0035

base learner ECC decoder genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest HAMR alg-hard .7535± .0053 .1447± .0029 .1822± .0054
Random Forest HAMR geo-hard .7550± .0053 .1448± .0028 .1836± .0054
Random Forest HAMR geo-soft .7556± .0052 .1449± .0027 .1830± .0053

Gaussian SVM HAMR alg-hard .7628± .0058 .2958± .0028 .1359± .0029
Gaussian SVM HAMR geo-hard .7704± .0068 .2943± .0028 .1358± .0029
Gaussian SVM HAMR geo-soft .7685± .0069 .2932± .0031 .1325± .0027

Logistic Regression HAMR alg-hard .6052± .0057 .3314± .0057 .1375± .0028
Logistic Regression HAMR geo-hard .6074± .0063 .3305± .0052 .1368± .0027
Logistic Regression HAMR geo-soft .6375± .0072 .3371± .0059 .1417± .0024

Random Forest BCH alg-hard .7589± .0057 .2628± .0036 .1945± .0053
Random Forest BCH geo-hard .7580± .0057 .2878± .0038 .1965± .0040
Random Forest BCH geo-soft .7579± .0053 .2860± .0039 .2041± .0051

Gaussian SVM BCH alg-hard .7612± .0052 .3092± .0040 .1706± .0049
Gaussian SVM BCH geo-hard .7609± .0054 .3227± .0044 .1659± .0035
Gaussian SVM BCH geo-soft .7609± .0053 .3174± .0043 .1675± .0045

Logistic Regression BCH alg-hard .7401± .0065 .3137± .0041 .1672± .0037
Logistic Regression BCH geo-hard .6968± .0082 .3091± .0035 .1702± .0032
Logistic Regression BCH geo-soft .7033± .0079 .3235± .0037 .1833± .0040
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Table A.17: Ranking Loss of ML-ECC with hard-/soft-input geometric decoders and BR

base learner ECC decoder scene (M=127) emotions (M=127) yeast (M=255) tmc2007 (M=511)

Random Forest HAMR alg-hard .1553± .0010 .2183± .0021 .2422± .0011 .2275± .0011
Random Forest HAMR geo-hard .0760± .0010 .1707± .0026 .1820± .0012 .1068± .0010
Random Forest HAMR geo-soft .0556± .0007 .1369± .0021 .1569± .0010 .0487± .0005

Gaussian SVM HAMR alg-hard .1351± .0007 .3226± .0025 .2321± .0011 .1937± .0014
Gaussian SVM HAMR geo-hard .0913± .0012 .2685± .0035 .1835± .0011 .0918± .0007
Gaussian SVM HAMR geo-soft .0571± .0008 .2307± .0029 .1547± .0010 .0514± .0005

Logistic Regression HAMR alg-hard .1890± .0011 .2513± .0029 .2523± .0012 .2006± .0015
Logistic Regression HAMR geo-hard .1227± .0015 .2047± .0033 .1990± .0012 .0935± .0009
Logistic Regression HAMR geo-soft .0810± .0007 .1574± .0026 .1689± .0010 .0513± .0005

Random Forest BCH alg-hard .1289± .0011 .2140± .0019 .2461± .0011 .2148± .0012
Random Forest BCH geo-hard .0977± .0011 .1812± .0027 .2181± .0013 .1275± .0009
Random Forest BCH geo-soft .0570± .0007 .1437± .0021 .1737± .0012 .0602± .0006

Gaussian SVM BCH alg-hard .1287± .0010 .3187± .0033 .2340± .0010 .1923± .0013
Gaussian SVM BCH geo-hard .1056± .0011 .2890± .0038 .2164± .0012 .1251± .0010
Gaussian SVM BCH geo-soft .0685± .0009 .2419± .0035 .1767± .0012 .0674± .0007

Logistic Regression BCH alg-hard .1700± .0011 .2543± .0030 .2559± .0013 .1965± .0015
Logistic Regression BCH geo-hard .1361± .0013 .2293± .0040 .2360± .0011 .1320± .0011
Logistic Regression BCH geo-soft .0884± .0008 .1793± .0033 .1924± .0013 .0669± .0007

base learner ECC decoder genbase (M=511) medical (M=1023) enron (M=1023)

Random Forest HAMR alg-hard .0068± .0004 .2900± .0014 .2695± .0029
Random Forest HAMR geo-hard .0038± .0004 .1265± .0020 .1762± .0019
Random Forest HAMR geo-soft .0021± .0003 .0305± .0009 .0765± .0008

Gaussian SVM HAMR alg-hard .0058± .0005 .1307± .0018 .2596± .0032
Gaussian SVM HAMR geo-hard .0028± .0004 .0656± .0014 .1657± .0024
Gaussian SVM HAMR geo-soft .0030± .0006 .0290± .0009 .0828± .0009

Logistic Regression HAMR alg-hard .0116± .0005 .0909± .0075 .2601± .0024
Logistic Regression HAMR geo-hard .0028± .0004 .0451± .0033 .1554± .0020
Logistic Regression HAMR geo-soft .0032± .0005 .0264± .0008 .0811± .0011

Random Forest BCH alg-hard .0048± .0005 .1844± .0018 .2660± .0029
Random Forest BCH geo-hard .0038± .0004 .1227± .0016 .2254± .0022
Random Forest BCH geo-soft .0032± .0005 .0718± .0023 .1465± .0014

Gaussian SVM BCH alg-hard .0049± .0004 .1265± .0012 .2600± .0034
Gaussian SVM BCH geo-hard .0034± .0005 .0863± .0014 .2308± .0030
Gaussian SVM BCH geo-soft .0034± .0006 .0652± .0021 .1435± .0017

Logistic Regression BCH alg-hard .0041± .0004 .1074± .0039 .2528± .0029
Logistic Regression BCH geo-hard .0049± .0006 .0848± .0021 .2251± .0022
Logistic Regression BCH geo-soft .0026± .0004 .0672± .0023 .1786± .0019
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