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中中中文文文摘摘摘要要要

標籤空間降維法（Label Space Dimension Reduction）在多標籤分
類問題（Multi-lable Classification Problem）中是一個有效且有效率

的方法。 現存的標籤空間降維法（例如：壓縮感知（Compressive
Sensing）與主要標籤空間變換（Principal Label Space Transformation））

只利用資料中標籤部份的資訊。在本論文中，我們提出一個能夠同時

考量特徵與標籤之資訊的標籤空間降維法。此稱為條件式主要標籤空

間變換（Conditional Principal Label Space Transformation）之演算法的
設計目的是最小化廣泛使用的漢明虧損的上界。此方法的最小化步驟

能夠透過有效率的執行奇異值分解達成。此外，此方法能夠擴展至核

函數方法，核函數方法允許使用更精密複雜的特徵組合去幫助標籤空

間降維。實驗結果顯示此方法在標籤分類問題中確實比其他現存方法

更有效。

關鍵詞：機器學習、多標籤分類、標籤空間、降維、核函數方法

iii



iv



Abstract

Label space dimension reduction (LSDR) is an efficient and effective paradigm
for multi-label classification with many classes. Existing approaches to LSDR,
such as compressive sensing and principal label space transformation, ex-
ploit only the label part of the dataset, but not the feature part. In this thesis,
we propose a novel approach to LSDR that considers both the label and the
feature parts. The approach, called conditional principal label space trans-
formation, is based on minimizing an upper bound of the popular Hamming
loss. The minimization step of the approach can be carried out efficiently
by a simple use of singular value decomposition. In addition, the approach
can be extended to a kernelized version that allows the use of sophisticated
feature combinations to assist LSDR. The experimental results verify that the
proposed approach is more effective than existing ones to LSDR across many
real-world datasets. Keywords : Machine Learning, Multi-label Classifica-
tion, Label Space, Dimension Reduction, Kernel Method.

v



vi



Contents

致致致謝謝謝 i

中中中文文文摘摘摘要要要 iii

Abstract v

1 Introduction 1

2 Label Space Dimension Reduction 5
2.1 Multi-Label Classification Problem . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Binary Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Label Space Dimension Reduction . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Compressive Sensing . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Principal Label Space Transformation . . . . . . . . . . . . . . . 7
2.2.3 Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . 8

3 Proposed Algorithm 11
3.1 Conditional Principal Label Space Transformation . . . . . . . . . . . . . 12
3.2 Kernelization and Regularization . . . . . . . . . . . . . . . . . . . . . . 14

4 Experiment 17
4.1 Label Space Dimension Reduction with Linear Regression . . . . . . . . 18
4.2 Label Space Dimension Reduction with Kernel Ridge Regression . . . . 22
4.3 Kernel Ridge Regression with a Fixed Parameter Combination . . . . . . 25
4.4 Coupling Label Space Dimension Reduction with the M5P Decision Tree 25
4.5 Comparison CPLST and kernel-CPLST . . . . . . . . . . . . . . . . . . 28
4.6 Optimal Reduced Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.7 Determine Optimal Reduced Size M . . . . . . . . . . . . . . . . . . . . 33
4.8 Discussions and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusions 37

A Speed up Experiment of Kernel Ridge Regression 39
A.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
A.2 Cross Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
A.3 Different Split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

A.3.1 Permutation Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 43
A.3.2 Blockwise Inversion . . . . . . . . . . . . . . . . . . . . . . . . 43

A.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



A.4.1 Experiment of Cross Validation . . . . . . . . . . . . . . . . . . 46
A.4.2 Experiment of Different Split . . . . . . . . . . . . . . . . . . . 46

Bibliography 49

viii



List of Figures

4.1 yeast: test results of label space dimension reduction algorithm when

coupled with linear regression . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 yeast: test result of label space dimension reduction algorithms when

coupled with linear regression . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Hamming loss bound and Hamming loss of CPLST in yeast and emotions 34

ix



x



List of Tables

3.1 Summary of three LSDR algorithms . . . . . . . . . . . . . . . . . . . . 14

4.1 Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Test Hamming loss of PLST and CPLST with linear regression . . . . . . 23

4.3 The parameter range used in each dataset . . . . . . . . . . . . . . . . . 24

4.4 Test Hamming Loss of LSDR algorithm with Kernel Ridge Regression . . 24

4.5 Test Hamming Loss of LSDR algorithm with KRR using a specific pa-

rameter combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Test Hamming loss of LSDR algorithms with M5P . . . . . . . . . . . . 27

4.7 Test Hamming Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.8 Training Hamming Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.9 Optimal reduced size M∗ of LSDR algorithm when coupled with linear

regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.10 Optimal reduced size M∗ of LSDR algorithm when coupled with kernel

ridge regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.11 Time of LSDR algorithm when coupled with kernel ridge regression at

optimal reduced size (sec) . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.12 Time of LSDR algorithm when coupled with kernel ridge regression at

optimal reduced size (sec) . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.1 Inversion vs Diagonalization vs Inverse by Diagonalization . . . . . . . . 46

A.2 Algorithm 2 vs Algorithm 3 . . . . . . . . . . . . . . . . . . . . . . . . 47

xi



xii



Chapter 1

Introduction

The multi-label classification problem is an extension of the traditional multiclass clas-

sification problem. In contrast to the multiclass problem, which associates only a single

label to each instance, the multi-label classification problem allows multiple labels for

each instance. General solutions to this problem meet the demands of many real-world

applications for classifying instances into multiple concepts, including categorization of

text [1], scene [2], genes [3], music [4] and so on. Given the wide range of such ap-

plications, the multi-label classification problem has been attracting much attention of

researchers in machine learning [5, 6].

Label space dimension reduction (LSDR) is a new paradigm in multi-label classifica-

tion [7, 8]. By viewing the set of multiple labels as a high-dimensional vector in some

label space, LSDR approaches use certain assumed or observed properties of the vectors

to “compress” them. The compression step transforms the original multi-label classifica-

tion problem (with many labels) to a small number of learning tasks. If the compression

step, de-compression step, and learning steps can be executed efficiently and effectively,

LSDR approaches can be useful for multi-label classification because of the appropriate

use of joint information within the labels [8].

For instance, compressive sensing [CS; 7] is a representative LSDR approach. Under

the assumption that only a few labels are associated with each example, CS transforms the

multi-label classification problem into a small number of regression tasks. Another rep-

resentative LSDR approach is the principal label space transformation [PLST; 8]. PLST
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takes advantage of the key linear correlations between labels and uses them to build a

small number of regression tasks.

LSDR approaches are homologous to the well-studied feature space dimension reduc-

tion (FSDR) approaches in machine learning. LSDR and FSDR share similar advantages:

they save computational power and storage without much loss of prediction accuracy as

well as improve learning performance by removing irrelevant, redundant, or noisy in-

formation [9]. There are two types of FSDR approaches: unsupervised and supervised.

Unsupervised FSDR considers only feature information during reduction, while super-

vised FSDR considers the additional label information. A typical instance of unsuper-

vised FSDR is principal component analysis [PCA; 10]. PCA transforms the features into

a small number of uncorrelated variables. On the other hand, the representative super-

vised FSDR approaches include supervised principal component analysis [11] and linear

discriminant analysis [12]. In particular, for multi-label classification, a leading super-

vised FSDR approach is canonical correlation analysis [CCA; 13, 14] which is based on

linear projections in both the feature space and the label space. In general, well-tuned

supervised FSDR approaches can perform better than unsupervised ones because of the

additional label information.

It has been argued that PLST can be viewed as the counterpart of PCA in the label

space [8] and is feature-unaware. That is, it considers only the label information dur-

ing reduction. Another LSDR approach, CS, is also a feature-unaware LSDR approach.

Motivated by the superiority of supervised FSDR over unsupervised approaches, we are

interested in studying feature-aware LSDR: LSDR that considers feature information.

In this thesis, we propose a novel feature-aware LSDR approach, conditional princi-

pal label space transformation (CPLST). CPLST combines the concepts of PLST (LSDR)

and CCA (supervised FSDR). Notably, CPLST improves PLST through the addition of

feature information. We derive CPLST by minimizing an upper bound of the popular

Hamming loss and show that CPLST can be accomplished by a simple use of singular

value decomposition (SVD). Moreover, CPLST can be flexibly extended by the kernel

trick with suitable regularization, thereby allowing the use of sophisticated feature in-
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formation to assist LSDR. The experimental results on real-world datasets confirm that

CPLST can reduce the number of learning tasks without loss of prediction performance.

In particular, CPLST is usually significantly better than PLST and other related LSDR

approaches.

The rest of this thesis is organized as follows. In Chapter 2, we define the multi-

label classification problem and review related works. Then, in Chapter 3, we derive the

proposed CPLST approach. Finally, we present the experimental results in Chapter 4 and

conclude our study in Chapter 5.
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Chapter 2

Label Space Dimension Reduction

2.1 Multi-Label Classification Problem

The multi-label classification problem aims at finding a classifier from the input vec-

tor x to a label set Y , where x ∈ Rd, Y ⊆ {1, 2, . . . , K} and K is the number of

classes. The label set Y is often conveniently represented as a label vector, y ∈ {0, 1}K ,

where y[k] = 1 if and only if k ∈ Y . Given a dataset D = {(xn,yn)}Nn=1, which con-

tains N training examples (xn,yn), the multi-label classification algorithm usesD to find

a classifier h: X → Y anticipating that h predicts y well on any future (unseen) test

example (x,y).

2.1.1 Binary Relevance

There are many existing algorithms for solving multi-label classification problems. The

simplest and most intuitive one is binary relevance [15]. Binary relevance decomposes

the original dataset D into K binary classification datasets, Dk = {(xn,yn[k])}Nn=1,

and learns K independent binary classifiers h1, h2, . . . , hK . Each classifier hk is learned

from Dk and is responsible for predicting whether the label set Y includes label k. In

other words, binary relevance transforms any multi-label classification problem into K

binary classification problems, one per label.

When K is small, binary relevance is an efficient and effective baseline algorithm for
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multi-label classification. However, when K is large, the algorithm can be computation-

ally expensive, as discussed next.

2.2 Label Space Dimension Reduction

In several different domains, one can find multi-label classification problems with a large

number of labels. For example, the eurovoc [16] dataset is a text collection of document

about European Union law and contains 3,993 labels.

The large number of labels challenges multi-label classification algorithms in three

major ways [15]. i) The computational cost of training a multi-label classifier may be

significantly increased by the number of labels. For example, although binary relevance

is a highly efficient algorithm, when used to train K binary classifiers, it becomes com-

putationally expensive if K is large. ii) In the prediction phase, the computational cost

of prediction is also strongly affected by the number of labels, K. When K is large, the

algorithms may not be efficient enough for applications that require fast response time.

iii) The amount of storage space needed to save multi-label classifiers for prediction in-

creases with K. For example, binary relevance algorithms require sufficient space to

save K binary classifiers for prediction.

Facing the above challenges, LSDR (Label Space Dimension Reduction) offers a

potential solution to these issues by compressing the K-dimensional label space be-

fore learning. LSDR transforms D into M datasets, where Dm = {(xn, tn[m])}Nn=1,

m = 1, 2, . . . ,M , and M � K such that the multi-label classification problem can

be tackled efficiently without significant loss of prediction performance. In particular,

LSDR involves solving, predicting with, and storing the models for onlyM , instead ofK,

learning tasks. Then, many benefits are realized. i) With an efficient encoding method,

the computational cost of training multi-label classifiers depends primarily on M rather

than K. ii) In the prediction phase, with an efficient decoding method, the computational

cost of prediction also depends mainly on M . iii) The storage space for saving the multi-

label classifier can mainly depend on M if the storage space needed for encoding and

decoding is small enough.
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2.2.1 Compressive Sensing

Compressive sensing [CS; 7], a precursor of LSDR, is based on the assumption that the

label set vector y is sparse (i.e., contains few ones). Then, y can be “compressed” to

a shorter code vector t by projecting y on M random directions v1, · · · ,vM , where

M � K can be determined according to the assumed sparsity level. Setting V =

[v1,v2, · · ·vM ]T , CS transforms the original multi-label classification problem, in which

D = {(xn,yn)}Nn=1, into M regression tasks with Dm = {(xn, tn[m])}Nn=1, where tn =

Vyn. After obtaining a multi-output regressor r(x) for predicting the code vector t, CS

decodes r(x) to the optimal label set vector by solving an optimization problem for each

input x under the sparsity assumption. The prediction phase of CS may be inefficient

because it must solve an optimization problem for each test instance.

2.2.2 Principal Label Space Transformation

Principal label space transformation [PLST; 8] is another approach to LSDR. PLST first

shifts each label set vector y to z = y− ȳ, where ȳ = 1
N

∑N
n=1 yn is the estimated mean

of the label set vectors. Similar to CS, PLST takes a matrix V that linearly maps z to the

code vector t by t = Vz. However, unlike CS, PLST takes principal directions vm (to be

introduced next) rather than the random ones, and does not need to solve an optimization

problem during decoding.

In particular, PLST considers only a matrix V with orthogonal rows, and decodes r(x)

to the predicted labels by

h(x) = round
(
VT r(x) + ȳ

)
.

Such a decoding is called round-based decoding [8]. Tai and Lin [8] prove that when

using round-based decoding and a linear transformation V that contains orthogonal rows,

the common Hamming loss for evaluating multi-label classifiers [17] is bounded by

Training Hamming Loss ≤ c
(∥∥r(X)− ZVT

∥∥2
F

+
∥∥Z− ZVTV

∥∥2
F

)
, (2.1)
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where r(X) contains r(xn)T as rows, Z contains zT
n as rows and c is a constant that

depends on K and N . The matrix ZVT then contains the code vector tTn as rows. The

bound can be divided into two parts. The first part is
∥∥r(X)− ZVT

∥∥2
F

, which represents

the total prediction error from the regressor r(xn) to the desired code vectors tn. The

second part is
∥∥Z− ZVTV

∥∥2
F

, which stands for the total encoding error for projecting

zn into the closest vector in span{v1, · · · ,vM}, which is VT tn.

PLST is derived by minimizing the encoding error [8]. More specifically, PLST finds

the M by K matrix V that solves

min
VVT=I

∥∥Z− ZVTV
∥∥2
F
.

The optimal V can be computed by applying the singular value decomposition on Z

to generate Z = AΣB, and taking as V the M rows of B that correspond to the M

largest singular values. The M vectors v1, · · · ,vM are called the principal directions for

representing zn.

We note that PLST can be viewed as a linear case of the kernel dependency estimation

(KDE) algorithm [18]. Nevertheless, the general nonlinear KDE algorithm must solve a

computationally expensive pre-image problem for each test input x during the prediction

phase. The linearity of PLST avoids the pre-image problem and enjoys efficient round-

based decoding. In this thesis, we will focus on the linear case in order to design efficient

algorithms for LSDR during both the training and prediction phases.

2.2.3 Canonical Correlation Analysis

A related technique that we will consider in this thesis is canonical correlation analy-

sis [13]. CCA is a well-known statistical technique for analyzing the linear relationship

between two multi-dimensional variables. More recently, it has been used for multi-label

classification [14]. Traditionally, CCA is regarded as a feature space dimension reduction

approach in multi-label classification. In this subsection, we discuss whether CCA can

also be viewed as an LSDR approach.
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CCA aims at finding two lists of basis vectors, one for each projected variable, such

that the correlation of the projected variables is maximized. Formally, given an N by d

matrix X with the n-th row being xT
n (which is assumed to be zero mean) as well as an N

by K matrix Z with the n-th row being zT
n (which is assumed to be zero mean), the first

step of CCA identifies two basis vectors wx ∈ Rd and wz ∈ RK such that the correlation

coefficient between the canonical variables cx = Xwx and cz = Zwz is maximized. The

goal can be formalized as the following optimization problem:

max
wx,wz

wT
x XTZwz (2.2)

subject to wT
x XTXwx = wT

z ZTZwz = 1.

After solving (2.2), CCA obtains the first pair of basis vectors (w
(1)
x ,w

(1)
z ) and two vectors

of canonical variables c
(1)
x = Xw

(1)
x and c

(1)
z = Zw

(1)
z . Then, CCA iteratively finds

additional basis vectors w
(i)
x and w

(i)
z . In the i-th iteration, the i-th pair (w

(i)
x ,w

(i)
z ) is

chosen such that the correlation between c
(i)
x = Xw

(i)
x and c

(i)
z = Zw

(i)
z is maximized,

under the constraint that c
(i)
x is uncorrelated to all other c

(j)
x and c

(j)
z for 1 ≤ j < i. That

is, CCA is equivalent to simultaneously solving the following constrained optimization

problem:

max
Wx,Wz

tr
(
WxX

TZWT
z

)
(2.3)

subject to WxX
TXWT

x = WzZ
TZWT

z = I, (2.4)

WxX
TZWT

z is a diagonal matrix. (2.5)

Here, Wx is the matrix with the i-th row (w
(i)
x )

T
, and Wz is the matrix with the i-th

row (w
(i)
z )

T
. Kettenring [19] showed that constraint (2.5) is implied by constraint (2.4).

Therefore, (2.5) can be removed, and problem (2.3) becomes equivalent to

min
Wx,Wz

∥∥XWT
x − ZWT

z

∥∥2
F

(2.6)

subject to WxX
TXWT

x = WzZ
TZWT

z = I.
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When CCA is considered is the context of multi-label classification, X is the matrix

that contains the mean-shifted xT
n as rows and Z is the shifted label matrix that contains

the mean-shifted yT
n as rows. Traditionally, CCA is used as a supervised feature space

dimension reduction approach that discards Wz and uses only Wx to project features

onto a lower-dimension space before learning with binary relevance [14, 20].

On the other hand, due to the symmetry between X and Z, we can also view CCA as

an approach to feature-aware LSDR. In particular, CCA is equivalent to first seeking pro-

jection directions Wz of Z, and then performing a multi-output linear regression from xn

to Wzzn, under the constraints WxX
TXWT

x = I, to obtain Wx. However, the opportu-

nity of using CCA for LSDR has not been seriously studied because Wz does not contain

orthogonal rows. That is, unlike PLST, round-based decoding cannot be used and it is

unclear how to design a suitable decoding scheme with CCA for LSDR.
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Chapter 3

Proposed Algorithm

Inspired by CCA, we first design a variant that involves an appropriate decoding step. As

suggested in Section 2.2.3, CCA is equivalent to finding a projection that minimizes the

squared prediction error under the constraints WxX
TXWT

x = WzZ
TZWT

z = I. If we

drop the constraint on Wx in order to further decrease the squared prediction error and

change WzZ
TZWT

z = I to WzW
T
z = I in order to enable round-based decoding, we

obtain

min
Wx,Wz

∥∥XWT
x − ZWT

z

∥∥2
F

(3.1)

subject to WzW
T
z = I

Problem (3.1) preserves the original objective function of CCA and specifies that Wz

must contain orthogonal rows for applying round-based decoding. We call this algorithm

orthogonally constrained CCA (OCCA). Then, using the Hamming loss bound (2.1),

when V = Wz and r(x) = XWT
z , OCCA minimizes ‖r(x) − ZWT

z ‖ in (2.1) with

the hope that the Hamming loss is also minimized. In other words, OCCA is employed

for the orthogonal directions V that are “easy to learn” (of low prediction error) in terms

of linear regression.

For every fixed Wz = V in (3.1), the optimization problem for Wx is simply a linear

regression from X to ZVT . Then, the optimal Wx can be computed by a closed-form

11



solution

WT
x = X†ZVT ,

where X† is the pseudo inverse of X. When the optimal Wx is inserted back into (3.1),

the optimization problem becomes

min
VVT=I

∥∥XX†ZVT − ZVT
∥∥2
F

(3.2)

which is equivalent to

min
VVT=I

tr
(
VZT (I−H) ZVT

)
. (3.3)

The matrix H = XX† is called the hat matrix for linear regression [21]. Similar to

PLST, by using Eckart-Young theorem [22], we can solve problem (3.3) by consider-

ing the eigenvectors that correspond to the largest eigenvalues of ZT (H − I)Z. Com-

paring OCCA to PLST, we see that they are similarly based on computing the singular

value (eigenvalue) decomposition of a matrix. However, OCCA computes the pseudo

inverse and a few matrix multiplications, and hence is somewhat slower. Unlike PLST,

however, OCCA is feature-aware and captures the input-output relation during label space

dimension reduction.

3.1 Conditional Principal Label Space Transformation

From the previous discussions, OCCA has been shown to capture the input-output relation

in multi-label classification and to minimize the squared prediction error in bound (2.1)

with the “easy” directions. In contrast, PLST minimizes the encoding error in bound (2.1)

with the “principal” directions. In this section, we combine the benefits of the two algo-

rithms, and minimize the two error terms simultaneously with the “conditional principal”

directions. We begin by continuing our derivation of OCCA, which obtains r(x) by a

linear regression from X to ZVT . If we minimize both terms in (2.1) together with such

12



a linear regression, the optimization problem becomes

min
W,VVT=I

c
(∥∥XWT − ZVT

∥∥2
F

+
∥∥Z− ZVTV

∥∥2
F

)
⇒ min

VVT=I
tr
(
VZT (I−H) ZVT + ZTZ−VTVZTZ− ZTZVTV + VTVZTZVTV

)
(3.4)

⇒ min
VVT=I

tr
(
VZT (I−H) ZVT −VZTZVT

)
(3.5)

⇒ max
VVT=I

tr
(
VZTHZVT

)
(3.6)

Equation (3.5) can be derived by cyclic permutation to eliminate the pair V and VT and

combine the last three terms of (3.4).

Problem (3.6) can again be solved by taking the eigenvectors with the largest eigen-

values of ZTHZ as the rows of V. Such a matrix V minimizes the prediction error term

and the encoding error term simultaneously. The resulting algorithm is called conditional

principal label space transformation (CPLST), as shown in Algorithm 1.

Algorithm 1 Conditional Principal Label Space Transformation

1: Let Z = [z1 . . . zN ]T with zn = yn − ȳ.
2: Preform SVD on ZTHZ to obtain ZTHZ = AΣB with σ1 ≥ σ2 ≥ · · · ≥ σN . Let

VM contain the top M rows of B.
3: Encode {(xn,yn)}Nn=1 to {(xn, tn)}Nn=1, where tn = VMzn.
4: Learn a multi-dimension regressor r(x) from {(xn, tn)}Nn=1.
5: Predict the label-set of an instance x by h(x) = round

(
VT

Mr(x) + ȳ
)
.

CPLST balances the squared prediction error with the encoding error and is closely

related with bound (2.1). Moreover, in contrast with PLST, which uses the key uncondi-

tional correlations, CPLST is feature-aware and allows the capture of conditional correla-

tions [23].

We summarizes the three algorithms in Table 3.1, and we will compare them empiri-

cally in Chapter 4. We can observe that the three algorithms are similar. They all operate

with an SVD on a K by K matrix. PLST focuses on the encoding error and does not

consider the features during LSDR, i.e. it is feature-unaware. On the other hand, CPLST

and OCCA are feature-aware approaches, which consider features during label space di-
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mension reduction. When using linear regression as the multi-output regressor, CPLST

simultaneously minimizes the two terms in bound (2.1), while OCCA minimizes only one

term of the bound.

Table 3.1: Summary of three LSDR algorithms

Algorithm Matrix for SVD LSDR Relation to bound (2.1)
PLST ZTZ feature-unaware minimizes the encoding error

(best encoding)
OCCA ZT (H− I)Z feature-aware minimizes the squared pre-

diction error (“easiest” re-
gression tasks)

CPLST ZTHZ feature-aware minimizes both

In contrast to PLST, the two feature-aware approaches OCCA and CPLST must cal-

culate the matrix H. This may result in slower performance than PLST during LSDR if

the dimension d of the input space X is extremely large.

3.2 Kernelization and Regularization

Nonlinear transformation of the feature space is an important technique in machine learn-

ing [24]. This technique is utilized to capture sophisticated relationships between features

and labels by transforming the features into a higher-dimensional feature space before

performing learning algorithms. When the learning algorithms use linear models, the

nonlinear feature transformation can often be conducted implicitly through the kernel

trick – representing the inner product after transformation as a special function called the

kernel [24]. With a proper choice of the kernel, kernelization allows transforming into a

feature space with very high or even infinite number of dimensions. If we are going to use

a feature space with very high dimensions, however, there is a clear danger of overfitting.

Hence, we need to regularize the power of the learning algorithm. In this subsection, we

show that kernelization and regularization can be applied to OCCA and CPLST.

In Section 3.1, we derive OCCA and CPLST by using linear regression as the underly-

ing multi-output regression algorithm. Next, we replace linear regression by its kernelized
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form with `2 regularization, kernel ridge regression [25], as the underlying regression al-

gorithm. Kernel ridge regression(KRR) considers a feature mapping Φ : X → F before

performing regularized linear regression. According to the feature mapping Φ, the kernel

function k(x,x′) = Φ(x)TΦ(x′) is defined as an inner product of x and x′ after mapped

into the space F . On the other hand, kernel ridge regression also adds a `2 regulariza-

tion term 1
2
λ‖w‖2, where λ is the regularization parameter, into the objective function for

regularizing the power of the high-dimensional linear regression.

That is, when given the dataset {(xn, rn)}Nn=1, where rn is the target value of the input

vector, the task of kernel ridge regression is to find an optimal w in the space F such

that w minimizes

N∑
n=1

(wTΦ(xn)− rn)2 +
1

2
λ‖w‖2. (3.7)

In particular, if Φ(x) can be explicitly computed, it is known that the closed-form

solution of (3.7) is [25]

w = ΦT
(
λI + ΦΦT

)−1
r = ΦT (λI + K)−1 r, (3.8)

where r is an N by 1 vector whose n-th element is rn, Φ is the matrix containing Φ(xn)T

as rows, and K is the matrix with Kij = k(xi,xj) = Φ(xi)
TΦ(xj). That is, K = ΦΦT

and is called the kernel matrix of X.

Now, we derive kernel-CPLST by inserting the optimal W into the Hamming loss

bound (2.1). Kernel-CPLST uses KRR as underlying regression problem to map from X

to ZVT and the optimal W would be

WT =ΦT (λI + K)−1 ZVT . (3.9)

When substituting (3.9) into minimizing the loss bound (2.1) and letting Q = (λI+K)−1,
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the optimization problem becomes

min
VVT=I

c
(∥∥ΦWT − ZVT

∥∥2
F

+
∥∥Z− ZVTV

∥∥2
F

)
⇒ min

VVT=I
c
(∥∥ΦΦTQZVT − ZVT

∥∥2
F

+
∥∥Z− ZVTV

∥∥2
F

)
⇒ min

VVT=I
c
(∥∥KQZVT − ZVT

∥∥2
F

+
∥∥Z− ZVTV

∥∥2
F

)
⇒ min

VVT=I
c tr
(
VZT (−2KQ + QKKQ + I) ZVT −VZTZVT

)
⇒ max

VVT=I
c tr
(
VZT (2KQ−QKKQ− I) ZVT + VZTZVT

)
(3.10)

Notice that in equation (3.10), kernel-CPLST do not need to explicitly compute the

matrix Φ and only needs the kernel matrix K (that can be computed through the kernel

function k). Therefore, a high or even an infinite dimensional feature transform can be

used to assist label space dimension reduction in kernel-CPLST through a suitable kernel

function, which is known as the kernel trick [26].

By using Eckart-Young theorem [22], problem (3.10) can again be solved by consid-

ering the eigenvectors with the largest eigenvalues of ZT (2KQ−QKKQ) Z as the rows

of V. Similarly, we can extend OCCA to kernel-OCCA which takes the eigenvectors with

the largest eigenvalues of ZT (2KQ−QKKQ− I) Z as the row of V.

The kernelized formulations are computationally more expensive than linear ones

when N � d, because CPLST and OCCA only need to calculate the pseudo inverse

of the N by d matrix X, while kernel-CPLST and kernel-OCCA need to calculate the in-

version of theN byN kernel matrix. Somehow, kernel-CPLST and kernel-OCCA is more

sophisticated than their linear counterparts and may be able to exploit more complicated

interactions of features to assist label space dimension reduction.
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Chapter 4

Experiment

In this chapter, we conduct experiments on eight real-world datasets to validate the per-

formance of CPLST and other LSDR approaches. In Section 4.1, we compare the per-

formance of different LSDR approaches coupled with linear regression. Then, in Sec-

tion 4.2 and 4.3, we compare the LSDR approaches, including their kernelized version,

when coupled with kernel ridge regression, with either a systematic parameter selection

procedure (Section 4.2) or a fixed parameter setting (Section 4.3). In Section 4.4, we

demonstrate the practical usefulness of the proposed CPLST by using the decision tree

instead of the (kernel) ridge regression as the actual multi-output regression method. In

Section 4.5, we compare CPLST with kernel-CPLST in detail with either linear regression

or kernel ridge regression as the regression method. In Section 4.6, we show the optimal

reduction size of the LSDR approaches. Then, we analysis the hamming loss bound and

try to determine the optimal reduced size in Section 4.7. Finally, we give some discus-

sion about the reason why CPLST would be better than other related FSDR algorithms in

Section 4.8.

The datasets (Table 4.1) are all downloaded from Mulan [27] and cover a variety of

domains. Because kernel ridge regression itself, kernel-OCCA and kernel-CPLST need

to invert an N by N matrix, we can only afford to conduct a fair comparison using mid-

sized (N ≤ 10000) datasets. In each run of the experiment, we randomly sample 80% of

the dataset for training and reserve the other 20% for testing. All the results are reported

with the mean and the standard error over 100 different random runs.
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Table 4.1 shows the datasets we use. Label cardinality of a dataset is the average

number of labels per instance and label density of a dataset is cardinality divided by the

number of labels K [15].

We include PLST, OCCA, CPLST, kernel-OCCA and kernel-CPLST in our compar-

ison. We do not include Compressive Sensing [7] in the comparison because earlier

work [8] has shown that the algorithm is more sophisticated while being inferior to PLST.

In addition to those LSDR approaches, we also consider a simple baseline approach, par-

tial binary relevance (PBR) [8]. PBR randomly selects M labels from the original label

set during training and only learns those M binary classifiers for prediction. For those

unselected labels, PBR directly predicts −1 without any training to match the sparsity

assumption as exploited by Compressive Sensing [7].

Table 4.1: Dataset Statistics

Dataset Domain # Instances # Labels (K) Cardinality Density
bibtex text 7395 159 2.402 0.015
corel5k images 5000 374 3.522 0.009
emotions music 593 6 1.869 0.311
enron text 1702 53 3.378 0.064
genbase biology 662 27 1.252 0.046
medical video 978 45 1.245 0.028
scene image 2407 6 1.074 0.179
yeast biology 2417 14 4.237 0.303

4.1 Label Space Dimension Reduction with Linear Re-

gression

First, we couple PBR, OCCA, PLST and CPLST with linear regression and compare their

test performance on the yeast dataset, which is of 14 classes.

Figure 4.1(a) shows the test Hamming loss with respect to the possible M used. It

is clear that CPLST is significantly better than the other three approaches. With only

three dimensions, the test performance of CPLST is close to the full PBR (which is the

regular binary relevance) using all 14 dimensions. PLST can reach similar performance
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to CPLST only at a larger M . The other two algorithms, OCCA and PBR, are both

significantly worse than CPLST.
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Figure 4.1: yeast: test results of label space dimension reduction algorithm when cou-
pled with linear regression

To understand the cause of the different performance, we also plot the (test) encoding

error
∥∥Z− ZVTV

∥∥2
F

, the prediction error
∥∥XWT − ZVT

∥∥2
F

, and the loss bound (2.1)

in Figure 4.1. Figure 4.1(b) shows the encoding error on the test set, which matches the

design of PLST. Regardless of the approaches used, the encoding error decreases to 0

when all 14 dimensions are used because the {vm}’s are able to span the whole label

space. As expected, PLST achieves the lowest encoding error across every number of

dimensions. CPLST partially minimizes the encoding error in its objective function, and

hence also achieves a decent encoding error. On the other hand, OCCA is blind to and
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hence worst at the encoding error. In particular, the encoding error of OCCA is even

worse than the error of the baseline PBR. The result shows that OCCA pays a big price in

encoding error by focusing on only the prediction error.

Figure 4.1(c) shows the prediction error
∥∥XWT − ZVT

∥∥2
F

on the test set, which

matches the design of OCCA. First, OCCA indeed achieves the lowest prediction error

across all number of dimensions. PLST, which is blind to the prediction error, reaches the

highest prediction error, and is even worse than PBR. The results further reveal the trade-

off between the encoding error and the prediction error: more efficient encodings of the

label space are harder to predict. PLST takes the more efficient encoding to the extreme,

and results in worse prediction error; OCCA, on the other hand, is better in terms of the

prediction error, but leads to the least efficient encoding.

Figure 4.1(d) shows the scaled upper bound (2.1) of the Hamming loss, which equals

the sum of the encoding error and the prediction error. CPLST is designed to knock

down this bound, which explains its behavior in Figure 4.1(d) and echoes its superior

performance in Figure 4.1(a). In fact, Figure 4.1(d) shows that the bound (2.1) is quite

indicative of the performance differences in Figure 4.1(a). The results demonstrate that

CPLST explores the trade-off between the encoding error and the prediction error in an

optimal manner to reach the best performance for label space dimension reduction.

While CPLST is designed for minimizing the upper bound of the Hamming loss,

we also show the results of four popular evaluation measures (the higher the better) for

reference: macro-averaged F1 score, micro-averaged F1 score, the exact match ratio [15],

and the area under curve (AUC) [28].

The F1 measure is the harmonic mean of the precision and the recall:

F1 = 2 · precision · recall
precision + recall

.

The macro-averaged F1 score is the mean of F1 scores of over all labels and thus treats

each label equally. The micro-averaged F1 score, on the other hand, mixes all the labels

together for calculating the precision the recall, and thus favors the classes with more

positive (+1) examples.
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Figure 4.2: yeast: test result of label space dimension reduction algorithms when cou-
pled with linear regression

The exact match ratio for N examples is defined as:

Exact Match Ratio =
1

N

N∑
i=1

[[yi = ỹi]].

Exact match ratio is a very strict measure since the predicted and the target label sets need

to be exactly the same to count as a match.

The AUC is the area under receiver operating characteristic curve [28] and can illus-

trate the performance of a classifier as its discrimination threshold is varied. In particular,

AUC is equal to the probability that a classifier will rank a randomly chosen positive

instance higher than a randomly chosen negative one [28].
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The result of these four measures (the higher the better) are shown in Figure 4.2.

Similar to the results of the Hamming loss, CPLST is the best of the four label space

dimension reduction approaches, better than PLST in particular; while OCCA remains to

be the worst.

The test Hamming loss achieved by PLST and CPLST on other datasets with differ-

ent M are reported in Table 4.2. In most datasets, we can see that CPLST is at least

as effective as PLST. Moreover, in the bibtex, scene and yeast datasets, CPLST

performs significantly better than PLST.

Note that in the medical and enron datasets, all FSDR algorithms overfit when us-

ing many dimensions. That is, the performance of algorithms would be better when using

fewer dimensions than the full binary relevance. These results demonstrate that LSDR ap-

proaches, like their feature space dimension reduction counterparts, can potentially help

resolve the issue of overfitting.

4.2 Label Space Dimension Reduction with Kernel Ridge

Regression

In this Section, we conduct experiments for demonstrating the performance of kernel-

ization and regularization. For kernel-CPLST, we use the Gaussian kernel k(xi,xj) =

exp (−γ‖xi − xj‖2) during label space dimension reduction and take kernel ridge re-

gression with the same kernel and the same regularization parameter as the underlying

multi-output regression method. We also couple PLST with kernel ridge regression for

a fair comparison. The choice of the Gaussian kernel parameter γ and the regularization

parameter λ is done by a 2-stage procedure. The goal of the first stage is to quickly iden-

tify the range of (log2 λ, log2 γ) to be searched further. For each dataset, we take one

particular realization of the random split, and conduct 5-fold cross validation using the

sum of the Hamming loss across all dimension (the area under the curve in Figure 4.1(a))

as the criteria. We examine the choices of some ranges to make sure that the best pa-

rameter combinations of all approaches are not at the boundary of the range. The range
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Table 4.2: Test Hamming loss of PLST and CPLST with linear regression

Dataset Algorithm 20% 40% 60% 80% 100%
bibtex PBR 0.0146 ± 0.0001 0.0140 ± 0.0001 0.0134 ± 0.0001 0.0129 ± 0.0000 0.0123 ± 0.0000

OCCA 0.0140 ± 0.0000 0.0137 ± 0.0000 0.0135 ± 0.0000 0.0129 ± 0.0000 0.0123 ± 0.0000
PLST 0.0129 ± 0.0000 0.0125 ± 0.0000 0.0124 ± 0.0000 0.0123 ± 0.0000 0.0123 ± 0.0000

CPLST 0.0127 ± 0.0000 0.0124 ± 0.0000 0.0123 ± 0.0000 0.0123 ± 0.0000 0.0123 ± 0.0000
corel5k PBR 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000

OCCA 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000
PLST 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000

CPLST 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000
emotions PBR 0.3077 ± 0.0017 0.2738 ± 0.0017 0.2490 ± 0.0015 0.2397 ± 0.0016 0.2040 ± 0.0022

OCCA 0.3125 ± 0.0014 0.2998 ± 0.0014 0.2953 ± 0.0015 0.2984 ± 0.0017 0.2040 ± 0.0022
PLST 0.2207 ± 0.0020 0.2064 ± 0.0023 0.1982 ± 0.0022 0.2013 ± 0.0020 0.2040 ± 0.0022

CPLST 0.2189 ± 0.0019 0.2059 ± 0.0022 0.1990 ± 0.0022 0.2015 ± 0.0021 0.2040 ± 0.0022
enron PBR 0.0645 ± 0.0003 0.0769 ± 0.0004 0.0829 ± 0.0005 0.0937 ± 0.0006 0.1028 ± 0.0007

OCCA 0.0656 ± 0.0002 0.0722 ± 0.0003 0.0820 ± 0.0005 0.0987 ± 0.0006 0.1028 ± 0.0007
PLST 0.0728 ± 0.0004 0.0860 ± 0.0005 0.0946 ± 0.0006 0.1006 ± 0.0007 0.1028 ± 0.0007

CPLST 0.0729 ± 0.0004 0.0864 ± 0.0005 0.0943 ± 0.0006 0.1006 ± 0.0007 0.1028 ± 0.0007
genbase PBR 0.0313 ± 0.0006 0.0224 ± 0.0004 0.0144 ± 0.0003 0.0093 ± 0.0003 0.0007 ± 0.0001

OCCA 0.0455 ± 0.0003 0.0376 ± 0.0005 0.0180 ± 0.0003 0.0165 ± 0.0004 0.0007 ± 0.0001
PLST 0.0169 ± 0.0004 0.0040 ± 0.0002 0.0012 ± 0.0001 0.0009 ± 0.0001 0.0007 ± 0.0001

CPLST 0.0168 ± 0.0004 0.0041 ± 0.0002 0.0012 ± 0.0001 0.0008 ± 0.0001 0.0007 ± 0.0001
medical PBR 0.0645 ± 0.0003 0.0769 ± 0.0004 0.0829 ± 0.0005 0.0937 ± 0.0006 0.1028 ± 0.0007

OCCA 0.0656 ± 0.0002 0.0722 ± 0.0003 0.0820 ± 0.0005 0.0987 ± 0.0006 0.1028 ± 0.0007
PLST 0.0346 ± 0.0004 0.0407 ± 0.0005 0.0472 ± 0.0005 0.0490 ± 0.0005 0.0497 ± 0.0006

CPLST 0.0346 ± 0.0004 0.0406 ± 0.0005 0.0471 ± 0.0005 0.0490 ± 0.0005 0.0497 ± 0.0006
scene PBR 0.1619 ± 0.0004 0.1557 ± 0.0005 0.1496 ± 0.0006 0.1315 ± 0.0007 0.1106 ± 0.0008

OCCA 0.1789 ± 0.0003 0.1665 ± 0.0005 0.1520 ± 0.0005 0.1328 ± 0.0005 0.1106 ± 0.0008
PLST 0.1809 ± 0.0004 0.1718 ± 0.0006 0.1566 ± 0.0007 0.1321 ± 0.0008 0.1106 ± 0.0008

CPLST 0.1744 ± 0.0004 0.1532 ± 0.0005 0.1349 ± 0.0005 0.1209 ± 0.0007 0.1106 ± 0.0008
yeast PBR 0.2330 ± 0.0006 0.2197 ± 0.0007 0.2147 ± 0.0008 0.2029 ± 0.0009 0.2022 ± 0.0009

OCCA 0.2329 ± 0.0006 0.2329 ± 0.0006 0.2364 ± 0.0006 0.2233 ± 0.0007 0.2022 ± 0.0009
PLST 0.2150 ± 0.0008 0.2052 ± 0.0009 0.2033 ± 0.0009 0.2020 ± 0.0009 0.2022 ± 0.0009

CPLST 0.2069 ± 0.0008 0.2041 ± 0.0009 0.2024 ± 0.0009 0.2020 ± 0.0009 0.2022 ± 0.0009

(those within one standard error of the lower one are in bold)

of (log2 λ, log2 γ) of all datasets in second stage is reported in Table 4.3. The second stage

zooms into the smaller range of (log2 λ, log2 γ) and conduct parameter selection with 5-

fold cross validation on the actual training set, which is different across the 100 runs.

After the second stage of the parameter selection procedure, the 80% training set as well

as the selected parameter are fed to the FSDR approaches and the resulting multi-label

classifier is evaluated on the corresponding test set.

When coupled with kernel ridge regression, the comparison between PLST and kernel-

CPLST in terms of the Hamming loss is shown in Table 4.4. Table 4.4 shows that

kernel-CPLST performs well for LSDR and outperforms the feature-unaware PLST in

most cases. In particular, in five out of the eight datasets, kernel-CPLST is significantly

better than PLST regardless of the number of dimensions used. Moreover, kernel-CPLST

with full dimension performs better than other PLST with full dimension in most cases.
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Table 4.3: The parameter range used in each dataset

Dataset log2 λ log2 γ

bibtex {−11,−9, . . . ,−3} {−11,−9, . . . ,−1}
corel5k {−17,−15, . . . ,−3} {−11,−9, . . . , 5}
emotions {−23,−21, . . . ,−11} {−25,−23, . . . ,−11}
enron {−11,−9, . . . , 5} {−17,−15, . . . ,−1}
genbase {−45,−43, . . . ,−11} {−23,−21, . . . ,−3}
medical {−19,−17, . . . ,−1} {−15,−13, . . . ,−1}
scene {−21,−19, . . . , 3} {−9,−7, . . . , 3}
yeast {−19,−17, . . . , 1} {−5,−3, . . . , 7}

Table 4.4: Test Hamming Loss of LSDR algorithm with Kernel Ridge Regression

Dataset Algorithm 20% 40% 60% 80% 100%
bibtex PBR 0.0147 ± 0.0001 0.0141 ± 0.0001 0.0135 ± 0.0001 0.0130 ± 0.0000 0.0125 ± 0.0000

kernel-OCCA 0.0137 ± 0.0000 0.0132 ± 0.0000 0.0125 ± 0.0000 0.0124 ± 0.0000 0.0120 ± 0.0000
PLST 0.0151 ± 0.0000 0.0151 ± 0.0000 0.0151 ± 0.0000 0.0151 ± 0.0000 0.0151 ± 0.0000

kernel-CPLST 0.0127 ± 0.0000 0.0123 ± 0.0000 0.0121 ± 0.0000 0.0120 ± 0.0000 0.0120 ± 0.0000
corel5k PBR 0.0094 ± 0.0000 0.0095 ± 0.0000 0.0095 ± 0.0000 0.0095 ± 0.0000 0.0095 ± 0.0000

kernel-OCCA 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0093 ± 0.0000
PLST 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000

kernel-CPLST 0.0092 ± 0.0000 0.0092 ± 0.0000 0.0092 ± 0.0000 0.0092 ± 0.0000 0.0092 ± 0.0000
emotions PBR 0.3091 ± 0.0018 0.2747 ± 0.0019 0.2501 ± 0.0019 0.2401 ± 0.0020 0.2065 ± 0.0026

kernel-OCCA 0.3112 ± 0.0014 0.2997 ± 0.0014 0.3026 ± 0.0016 0.2985 ± 0.0018 0.1983 ± 0.0025
PLST 0.2218 ± 0.0020 0.2074 ± 0.0023 0.1983 ± 0.0026 0.2000 ± 0.0025 0.2002 ± 0.0025

kernel-CPLST 0.2231 ± 0.0020 0.2071 ± 0.0024 0.1981 ± 0.0025 0.1973 ± 0.0027 0.1988 ± 0.0027
enron PBR 0.0537 ± 0.0002 0.0517 ± 0.0002 0.0467 ± 0.0003 0.0471 ± 0.0003 0.0470 ± 0.0003

kernel-OCCA 0.0636 ± 0.0002 0.0641 ± 0.0002 0.0640 ± 0.0002 0.0607 ± 0.0002 0.0499 ± 0.0003
PLST 0.0460 ± 0.0002 0.0462 ± 0.0002 0.0466 ± 0.0002 0.0468 ± 0.0002 0.0469 ± 0.0002

kernel-CPLST 0.0453 ± 0.0002 0.0454 ± 0.0002 0.0455 ± 0.0002 0.0455 ± 0.0002 0.0456 ± 0.0002
genbase PBR 0.0313 ± 0.0006 0.0225 ± 0.0004 0.0145 ± 0.0004 0.0094 ± 0.0003 0.0008 ± 0.0001

kernel-OCCA 0.0312 ± 0.0006 0.0231 ± 0.0004 0.0195 ± 0.0003 0.0163 ± 0.0003 0.0007 ± 0.0001
PLST 0.0169 ± 0.0004 0.0039 ± 0.0002 0.0014 ± 0.0001 0.0010 ± 0.0001 0.0008 ± 0.0001

kernel-CPLST 0.0170 ± 0.0004 0.0040 ± 0.0002 0.0013 ± 0.0001 0.0009 ± 0.0001 0.0008 ± 0.0001
medical PBR 0.0255 ± 0.0001 0.0192 ± 0.0002 0.0155 ± 0.0002 0.0144 ± 0.0002 0.0139 ± 0.0002

kernel-OCCA 0.0272 ± 0.0001 0.0262 ± 0.0002 0.0246 ± 0.0002 0.0210 ± 0.0002 0.0104 ± 0.0002
PLST 0.0136 ± 0.0002 0.0106 ± 0.0002 0.0103 ± 0.0002 0.0102 ± 0.0002 0.0102 ± 0.0002

kernel-CPLST 0.0131 ± 0.0002 0.0098 ± 0.0002 0.0096 ± 0.0002 0.0096 ± 0.0002 0.0096 ± 0.0002
scene PBR 0.1578 ± 0.0005 0.1494 ± 0.0006 0.1412 ± 0.0008 0.1214 ± 0.0008 0.0849 ± 0.0009

kernel-OCCA 0.1659 ± 0.0007 0.1440 ± 0.0008 0.1273 ± 0.0007 0.1093 ± 0.0006 0.0751 ± 0.0007
PLST 0.1713 ± 0.0004 0.1468 ± 0.0006 0.1173 ± 0.0008 0.0932 ± 0.0011 0.0731 ± 0.0007

kernel-CPLST 0.1733 ± 0.0004 0.1470 ± 0.0006 0.1179 ± 0.0007 0.0905 ± 0.0007 0.0717 ± 0.0007
yeast PBR 0.2320 ± 0.0006 0.2150 ± 0.0007 0.2080 ± 0.0008 0.1913 ± 0.0009 0.1882 ± 0.0009

kernel-OCCA 0.2308 ± 0.0007 0.2280 ± 0.0010 0.2233 ± 0.0011 0.2052 ± 0.0009 0.1882 ± 0.0009
PLST 0.2030 ± 0.0008 0.1913 ± 0.0009 0.1892 ± 0.0009 0.1882 ± 0.0009 0.1881 ± 0.0009

kernel-CPLST 0.2018 ± 0.0008 0.1904 ± 0.0009 0.1875 ± 0.0009 0.1869 ± 0.0009 0.1868 ± 0.0009

(those within one standard error of the lower one are in bold)

In addition, in the medical and enron datasets, we can see that the overfitting prob-

lem is eliminated with regularization (and parameter selection), and hence kernel-CPLST

performs ot only better than PLST with kernel ridge regression, but also better than (un-

regularized) CPLST with linear regression results in Table 4.2.
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4.3 Kernel Ridge Regression with a Fixed Parameter Com-

bination

The experimental results in Section 4.2 show that kernel-CPLST outperforms PLST under

a systematic parameter selection procedure. However, in the real world, the computation

constraints may prevent executing such a procedure. In this section, we conduct exper-

iments using a fixed parameter combination to compare kernel-CPLST and other LSDR

approaches more realistically.

The fixed parameter combination that we use is λ = 10−3 and γ = 10−4, which is

generally within the reasonable range in Table 4.3. The results of the LSDR approaches

coupled with kernel ridge regression is reported in Table 4.5. We can see that under

this setting, the performances of kernel-CPLST and CPLST are similar, while both of

them dominate the other LSDR approaches coupled with kernel ridge regression in four

out of the eight datasets (bibtex, emotions, scene, and yeast). On the other

hand, in remaining datasets (corel5k, enron, genbase, and medical), the results

of kernel-CPLST, CPLST and PLST are similar and dominate other LSDR approaches.

In summary, both kernel-CPLST and CPLST keep performing better than other LSDR

approaches when coupled when a fixed-parameter kernel ridge regression.

4.4 Coupling Label Space Dimension Reduction with the

M5P Decision Tree

CPLST or kernel-CPLST are designed by assuming a specific regression method of ei-

ther linear regression or kernel ridge regression. Next, we demonstrate that the input-

output relationship captured by CPLST (and other feature-aware FSDR approaches) is

not restricted for coupling with linear regression, but can be effective for other regression

methods in the learning stage (step 4 of Algorithm 1). We do so by coupling the LSDR

approaches with the M5P decision tree [29]. M5P decision tree is a non-linear regression

method (different from linear regression) and is quite different from kernel ridge regres-
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Table 4.5: Test Hamming Loss of LSDR algorithm with KRR using a specific parameter
combination

Dataset Algorithm 20% 40% 60% 80% 100%
bibtex PBR 0.0146 ± 0.0001 0.0140 ± 0.0001 0.0133 ± 0.0001 0.0128 ± 0.0000 0.0122 ± 0.0000

OCCA 0.0140 ± 0.0000 0.0138 ± 0.0000 0.0135 ± 0.0000 0.0129 ± 0.0000 0.0122 ± 0.0000
PLST 0.0129 ± 0.0000 0.0125 ± 0.0000 0.0124 ± 0.0000 0.0122 ± 0.0000 0.0122 ± 0.0000

CPLST 0.0127 ± 0.0000 0.0124 ± 0.0000 0.0122 ± 0.0000 0.0122 ± 0.0000 0.0122 ± 0.0000
kernel-OCCA 0.0139 ± 0.0000 0.0138 ± 0.0000 0.0135 ± 0.0000 0.0129 ± 0.0000 0.0122 ± 0.0000
kernel-CPLST 0.0127 ± 0.0000 0.0124 ± 0.0000 0.0123 ± 0.0000 0.0122 ± 0.0000 0.0122 ± 0.0000

corel5k PBR 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000
OCCA 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0093 ± 0.0000
PLST 0.0093 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000

CPLST 0.0093 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000
kernel-OCCA 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0093 ± 0.0000
kernel-CPLST 0.0093 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000 0.0093 ± 0.0000

emotions PBR 0.2919 ± 0.0020 0.2723 ± 0.0024 0.2528 ± 0.0025 0.2344 ± 0.0024 0.1980 ± 0.0026
OCCA 0.3113 ± 0.0014 0.3000 ± 0.0014 0.2951 ± 0.0017 0.2937 ± 0.0018 0.1980 ± 0.0026
PLST 0.2217 ± 0.0023 0.2080 ± 0.0023 0.1961 ± 0.0025 0.1982 ± 0.0023 0.1980 ± 0.0026

CPLST 0.2215 ± 0.0021 0.2049 ± 0.0024 0.1975 ± 0.0025 0.1976 ± 0.0025 0.1980 ± 0.0026
kernel-OCCA 0.3115 ± 0.0015 0.3060 ± 0.0014 0.3023 ± 0.0017 0.2981 ± 0.0016 0.1980 ± 0.0026
kernel-CPLST 0.2205 ± 0.0021 0.2051 ± 0.0023 0.1981 ± 0.0025 0.1968 ± 0.0025 0.1980 ± 0.0026

enron PBR 0.0613 ± 0.0004 0.0593 ± 0.0005 0.0572 ± 0.0005 0.0552 ± 0.0004 0.0533 ± 0.0003
OCCA 0.0636 ± 0.0002 0.0627 ± 0.0002 0.0637 ± 0.0002 0.0643 ± 0.0002 0.0533 ± 0.0003
PLST 0.0507 ± 0.0002 0.0524 ± 0.0003 0.0530 ± 0.0003 0.0533 ± 0.0003 0.0533 ± 0.0003

CPLST 0.0505 ± 0.0002 0.0524 ± 0.0003 0.0530 ± 0.0003 0.0532 ± 0.0003 0.0533 ± 0.0003
kernel-OCCA 0.0635 ± 0.0002 0.0623 ± 0.0002 0.0634 ± 0.0002 0.0635 ± 0.0002 0.0533 ± 0.0003
kernel-CPLST 0.0502 ± 0.0002 0.0524 ± 0.0003 0.0530 ± 0.0003 0.0532 ± 0.0003 0.0533 ± 0.0003

genbase PBR 0.0378 ± 0.0005 0.0287 ± 0.0006 0.0189 ± 0.0006 0.0108 ± 0.0005 0.0016 ± 0.0001
OCCA 0.0465 ± 0.0003 0.0402 ± 0.0005 0.0185 ± 0.0003 0.0169 ± 0.0004 0.0016 ± 0.0001
PLST 0.0175 ± 0.0004 0.0045 ± 0.0002 0.0020 ± 0.0001 0.0017 ± 0.0001 0.0016 ± 0.0001

CPLST 0.0174 ± 0.0004 0.0046 ± 0.0002 0.0020 ± 0.0001 0.0017 ± 0.0001 0.0016 ± 0.0001
kernel-OCCA 0.0415 ± 0.0004 0.0281 ± 0.0004 0.0118 ± 0.0004 0.0075 ± 0.0002 0.0016 ± 0.0001
kernel-CPLST 0.0175 ± 0.0004 0.0046 ± 0.0002 0.0019 ± 0.0001 0.0017 ± 0.0001 0.0016 ± 0.0001

medical PBR 0.0239 ± 0.0003 0.0207 ± 0.0003 0.0173 ± 0.0003 0.0138 ± 0.0003 0.0101 ± 0.0002
OCCA 0.0275 ± 0.0001 0.0260 ± 0.0001 0.0243 ± 0.0001 0.0226 ± 0.0002 0.0101 ± 0.0002
PLST 0.0132 ± 0.0002 0.0102 ± 0.0002 0.0101 ± 0.0002 0.0101 ± 0.0002 0.0101 ± 0.0002

CPLST 0.0132 ± 0.0002 0.0102 ± 0.0002 0.0101 ± 0.0002 0.0101 ± 0.0002 0.0101 ± 0.0002
kernel-OCCA 0.0275 ± 0.0001 0.0265 ± 0.0001 0.0256 ± 0.0001 0.0237 ± 0.0001 0.0101 ± 0.0002
kernel-CPLST 0.0132 ± 0.0002 0.0101 ± 0.0002 0.0101 ± 0.0002 0.0101 ± 0.0002 0.0101 ± 0.0002

scene PBR 0.1665 ± 0.0007 0.1540 ± 0.0008 0.1412 ± 0.0008 0.1283 ± 0.0008 0.1021 ± 0.0008
OCCA 0.1789 ± 0.0003 0.1657 ± 0.0005 0.1494 ± 0.0005 0.1290 ± 0.0005 0.1021 ± 0.0008
PLST 0.1794 ± 0.0004 0.1689 ± 0.0005 0.1519 ± 0.0006 0.1251 ± 0.0009 0.1021 ± 0.0008

CPLST 0.1737 ± 0.0004 0.1506 ± 0.0005 0.1302 ± 0.0006 0.1155 ± 0.0006 0.1021 ± 0.0008
kernel-OCCA 0.1789 ± 0.0003 0.1659 ± 0.0005 0.1494 ± 0.0005 0.1291 ± 0.0005 0.1021 ± 0.0008
kernel-CPLST 0.1740 ± 0.0004 0.1510 ± 0.0005 0.1301 ± 0.0006 0.1157 ± 0.0006 0.1021 ± 0.0008

yeast PBR 0.2277 ± 0.0008 0.2205 ± 0.0009 0.2147 ± 0.0010 0.2070 ± 0.0009 0.2003 ± 0.0008
OCCA 0.2329 ± 0.0006 0.2329 ± 0.0006 0.2365 ± 0.0006 0.2225 ± 0.0007 0.2003 ± 0.0008
PLST 0.2142 ± 0.0008 0.2037 ± 0.0008 0.2018 ± 0.0008 0.2005 ± 0.0008 0.2003 ± 0.0008

CPLST 0.2059 ± 0.0008 0.2019 ± 0.0008 0.2008 ± 0.0008 0.2005 ± 0.0008 0.2003 ± 0.0008
kernel-OCCA 0.2329 ± 0.0006 0.2329 ± 0.0006 0.2367 ± 0.0006 0.2228 ± 0.0007 0.2003 ± 0.0008
kernel-CPLST 0.2059 ± 0.0008 0.2018 ± 0.0008 0.2008 ± 0.0008 0.2005 ± 0.0008 0.2003 ± 0.0008

(those within one standard error of the lowest one are in bold)

sion. We take the implementation from WEKA [30] for M5P with the default parameter

setting. For kernel-CPLST and kernel-OCCA, we use the best parameters (λ, γ) selected

in Section 4.2.

The experimental results are shown in Table 4.6. The relations between PBR, PLST,

OCCA and CPLST when coupled with M5P are similar to the ones when coupled with
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Table 4.6: Test Hamming loss of LSDR algorithms with M5P

Dataset Algorithm 20% 40% 60% 80% 100%
bibtex PBR 0.0152 ± 0.0001 0.0152 ± 0.0001 0.0151 ± 0.0001 0.0150 ± 0.0001 0.0149 ± 0.0001

OCCA 0.0140 ± 0.0001 0.0138 ± 0.0001 0.0137 ± 0.0001 0.0132 ± 0.0001 0.0128 ± 0.0001
PLST 0.0130 ± 0.0001 0.0128 ± 0.0001* 0.0128 ± 0.0001 0.0127 ± 0.0001* 0.0127 ± 0.0001*

CPLST 0.0129 ± 0.0001* 0.0128 ± 0.0001* 0.0127 ± 0.0001* 0.0127 ± 0.0001* 0.0127 ± 0.0001*
kernel-OCCA 0.0140 ± 0.0000 0.0137 ± 0.0000 0.0133 ± 0.0000 0.0132 ± 0.0000 0.0127 ± 0.0000*
kernel-CPLST 0.0130 ± 0.0000 0.0128 ± 0.0000* 0.0128 ± 0.0000 0.0127 ± 0.0000* 0.0127 ± 0.0000*

corel5k PBR 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000*
OCCA 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000*
PLST 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000*

CPLST 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000*
kernel-OCCA 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000*
kernel-CPLST 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000* 0.0094 ± 0.0000*

emotions PBR 0.3118 ± 0.0036 0.2832 ± 0.0034 0.2600 ± 0.0032 0.2512 ± 0.0032 0.2239 ± 0.0033
OCCA 0.3103 ± 0.0034 0.2974 ± 0.0033 0.2932 ± 0.0033 0.2995 ± 0.0035 0.2073 ± 0.0031
PLST 0.2213 ± 0.0030 0.2109 ± 0.0030 0.2039 ± 0.0029 0.2051 ± 0.0029 0.2063 ± 0.0030

CPLST 0.2209 ± 0.0031* 0.2085 ± 0.0032* 0.2004 ± 0.0031* 0.2020 ± 0.0031 0.2046 ± 0.0031*
kernel-OCCA 0.3111 ± 0.0034 0.3008 ± 0.0033 0.3005 ± 0.0034 0.3011 ± 0.0034 0.2080 ± 0.0031
kernel-CPLST 0.2212 ± 0.0032 0.2103 ± 0.0032 0.2004 ± 0.0030* 0.2016 ± 0.0031* 0.2047 ± 0.0030

enron PBR 0.0561 ± 0.0002 0.0552 ± 0.0002 0.0504 ± 0.0002 0.0514 ± 0.0003 0.0516 ± 0.0003
OCCA 0.0637 ± 0.0002 0.0628 ± 0.0002 0.0635 ± 0.0002 0.0626 ± 0.0002 0.0489 ± 0.0002
PLST 0.0490 ± 0.0002 0.0488 ± 0.0002* 0.0489 ± 0.0002* 0.0490 ± 0.0002* 0.0490 ± 0.0002*

CPLST 0.0489 ± 0.0003 0.0489 ± 0.0003 0.0490 ± 0.0003 0.0490 ± 0.0003* 0.0490 ± 0.0003*
kernel-OCCA 0.0635 ± 0.0002 0.0630 ± 0.0002 0.0629 ± 0.0002 0.0623 ± 0.0002 0.0489 ± 0.0002
kernel-CPLST 0.0488 ± 0.0003* 0.0489 ± 0.0003 0.0490 ± 0.0003 0.0490 ± 0.0003* 0.0491 ± 0.0003

genbase PBR 0.0359 ± 0.0009 0.0315 ± 0.0006 0.0255 ± 0.0004 0.0243 ± 0.0004 0.0215 ± 0.0004
OCCA 0.0465 ± 0.0003 0.0448 ± 0.0004 0.0327 ± 0.0004 0.0311 ± 0.0004 0.0212 ± 0.0004
PLST 0.0215 ± 0.0004* 0.0202 ± 0.0004* 0.0195 ± 0.0003* 0.0194 ± 0.0003* 0.0194 ± 0.0003*

CPLST 0.0215 ± 0.0004* 0.0202 ± 0.0004* 0.0195 ± 0.0003* 0.0195 ± 0.0003 0.0195 ± 0.0003
kernel-OCCA 0.0462 ± 0.0004 0.0450 ± 0.0005 0.0427 ± 0.0006 0.0362 ± 0.0007 0.0204 ± 0.0004
kernel-CPLST 0.0215 ± 0.0004* 0.0202 ± 0.0004* 0.0195 ± 0.0003* 0.0195 ± 0.0003 0.0195 ± 0.0003

medical PBR 0.0244 ± 0.0001 0.0168 ± 0.0002 0.0132 ± 0.0002 0.0120 ± 0.0002 0.0108 ± 0.0002
OCCA 0.0275 ± 0.0001 0.0260 ± 0.0001 0.0245 ± 0.0001 0.0225 ± 0.0002 0.0101 ± 0.0002
PLST 0.0127 ± 0.0002 0.0099 ± 0.0002 0.0097 ± 0.0002 0.0097 ± 0.0002 0.0097 ± 0.0002

CPLST 0.0126 ± 0.0002* 0.0099 ± 0.0002 0.0096 ± 0.0002* 0.0096 ± 0.0002* 0.0096 ± 0.0002*
kernel-OCCA 0.0274 ± 0.0001 0.0258 ± 0.0001 0.0251 ± 0.0001 0.0226 ± 0.0002 0.0100 ± 0.0002
kernel-CPLST 0.0126 ± 0.0002* 0.0098 ± 0.0002* 0.0097 ± 0.0002 0.0097 ± 0.0002 0.0097 ± 0.0002

scene PBR 0.1665 ± 0.0005* 0.1650 ± 0.0006 0.1649 ± 0.0008 0.1565 ± 0.0008 0.1369 ± 0.0009
OCCA 0.1789 ± 0.0003 0.1658 ± 0.0005 0.1501 ± 0.0006 0.1437 ± 0.0006 0.1296 ± 0.0009
PLST 0.1802 ± 0.0005 0.1688 ± 0.0007 0.1540 ± 0.0008 0.1396 ± 0.0011 0.1281 ± 0.0008

CPLST 0.1674 ± 0.0005 0.1538 ± 0.0006* 0.1428 ± 0.0007* 0.1289 ± 0.0007* 0.1268 ± 0.0008*
kernel-OCCA 0.1789 ± 0.0003 0.1656 ± 0.0005 0.1525 ± 0.0006 0.1437 ± 0.0007 0.1306 ± 0.0008
kernel-CPLST 0.1837 ± 0.0005 0.1667 ± 0.0007 0.1525 ± 0.0009 0.1370 ± 0.0008 0.1285 ± 0.0009

yeast PBR 0.2379 ± 0.0006 0.2328 ± 0.0006 0.2381 ± 0.0008 0.2351 ± 0.0008 0.2384 ± 0.0008
OCCA 0.2329 ± 0.0006 0.2330 ± 0.0006 0.2339 ± 0.0006 0.2225 ± 0.0008 0.2055 ± 0.0009
PLST 0.2162 ± 0.0008 0.2082 ± 0.0009 0.2071 ± 0.0009 0.2064 ± 0.0009* 0.2067 ± 0.0009

CPLST 0.2083 ± 0.0009* 0.2064 ± 0.0009* 0.2063 ± 0.0009* 0.2064 ± 0.0009* 0.2066 ± 0.0009
kernel-OCCA 0.2329 ± 0.0006 0.2329 ± 0.0006 0.2319 ± 0.0006 0.2215 ± 0.0007 0.2050 ± 0.0009*
kernel-CPLST 0.2162 ± 0.0008 0.2080 ± 0.0009 0.2070 ± 0.0009 0.2064 ± 0.0009* 0.2066 ± 0.0009

(those with the lowest mean are marked with *; those within one standard error of the lowest one are in
bold)

linear regression. In the enron, genbase, and medical datasets, the results of CPLST

and kernel-CPLST are similar to the result of PLST and all of the three dominate other

LSDR algorithms. In particular, in the yeast, scene, and emotions datasets, the re-

sult of CPLST outperforms the result of other LSDR algorithms. This result demonstrates

that the captured input-output relation is also effective for regression methods other than
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linear regression.

Another thing need to notice is that in the scene and yeast datasets, the perfor-

mance of kernel-CPLST is usually between CPLST and PLST and not as good as CPLST

because the Gaussian kernel is a sophisticated kernel mapping and is hard to be fitted by

M5P (which is very different from kernel ridge regression); therefore, M5P cannot fit the

captured relation between the input and the output by kernel-CPLST. That is, when cou-

pled with other regression methods which are different from kernel ridge regression, such

as M5P, using CPLST as the FSDR approach is more promising. An interesting further

work may be to study the kernel (may be not so complicated as the Gaussian kernel) that

can capture input-output relation to be reused by various underlying regression methods.

One more thing is that in all datasets, the performance of these FSDR approaches

is better than a full binary relevance. This result demonstrates the benefit of LSDR for

improving performance through capturing key information.

In summary, the experimental results justify that CPLST is the most effective approach

to LSDR even when coupled with M5P decision tree.

4.5 Comparison CPLST and kernel-CPLST

In this section, we conduct experiments for comparing CPLST and kernel-CPLST in more

detail. Table 4.7 shows the test Hamming loss of four algorithm combinations, CPLST

coupled with linear regression, kernel-CPLST coupled with linear regression, CPLST

coupled kernel ridge regression, and kernel-CPLST coupled with kernel ridge regression,

and Table 4.8 shows the training Hamming loss of those four algorithm combinations.

For kernel-CPLST coupled with linear regression and kernel-CPLST coupled with kernel

ridge regression, we use the best parameter (λ, γ) selected in Section 4.2. For CPLST

coupled with kernel ridge regression, we follow the procedure in Section 4.2 to select the

best parameters (λ, γ) for itself.

In Table 4.7, the performance of these FSDR approaches coupled with kernel ridge

regression is better than the ones coupled with linear regression in most datasets. The

results demonstrate that the underlying regression method is still important.
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Table 4.7: Test Hamming Loss

Dataset Algorithm 20% 40% 60% 80% 100%
bibtex CPLST + LR 0.0127 ± 0.0000 0.0124 ± 0.0000 0.0123 ± 0.0000 0.0123 ± 0.0000 0.0123 ± 0.0000

kernel-CPLST + LR 0.0128 ± 0.0000 0.0125 ± 0.0000 0.0124 ± 0.0000 0.0123 ± 0.0000 0.0123 ± 0.0000
CPLST + KRR 0.0125 ± 0.0000 0.0122 ± 0.0000 0.0120 ± 0.0000 0.0120 ± 0.0000 0.0119 ± 0.0000

kernel-CPLST + KRR 0.0127 ± 0.0000 0.0123 ± 0.0000 0.0121 ± 0.0000 0.0120 ± 0.0000 0.0120 ± 0.0000
corel5k CPLST + LR 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000

kernel-CPLST + LR 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000 0.0094 ± 0.0000
CPLST + KRR 0.0092 ± 0.0000 0.0092 ± 0.0000 0.0092 ± 0.0000 0.0092 ± 0.0000 0.0092 ± 0.0000

kernel-CPLST + KRR 0.0092 ± 0.0000 0.0092 ± 0.0000 0.0092 ± 0.0000 0.0092 ± 0.0000 0.0092 ± 0.0000
emotions CPLST + LR 0.2189 ± 0.0019 0.2059 ± 0.0022 0.1990 ± 0.0022 0.2015 ± 0.0021 0.2040 ± 0.0022

kernel-CPLST + LR 0.2184 ± 0.0020 0.2067 ± 0.0022 0.1988 ± 0.0023 0.1988 ± 0.0023 0.2040 ± 0.0022
CPLST + KRR 0.2238 ± 0.0020 0.2069 ± 0.0024 0.1981 ± 0.0024 0.1979 ± 0.0026 0.1986 ± 0.0026

kernel-CPLST + KRR 0.2231 ± 0.0020 0.2071 ± 0.0024 0.1981 ± 0.0025 0.1973 ± 0.0027 0.1988 ± 0.0027
enron CPLST + LR 0.0729 ± 0.0004 0.0864 ± 0.0005 0.0943 ± 0.0006 0.1006 ± 0.0007 0.1028 ± 0.0007

kernel-CPLST + LR 0.0718 ± 0.0004 0.0862 ± 0.0005 0.0939 ± 0.0006 0.1004 ± 0.0007 0.1028 ± 0.0007
CPLST + KRR 0.0454 ± 0.0002 0.0453 ± 0.0002 0.0454 ± 0.0002 0.0455 ± 0.0002 0.0456 ± 0.0002

kernel-CPLST + KRR 0.0453 ± 0.0002 0.0454 ± 0.0002 0.0455 ± 0.0002 0.0455 ± 0.0002 0.0456 ± 0.0002
genbase CPLST + LR 0.0168 ± 0.0004 0.0041 ± 0.0002 0.0012 ± 0.0001 0.0008 ± 0.0001 0.0007 ± 0.0001

kernel-CPLST + LR 0.0168 ± 0.0004 0.0040 ± 0.0002 0.0013 ± 0.0001 0.0008 ± 0.0001 0.0007 ± 0.0001
CPLST + KRR 0.0168 ± 0.0004 0.0041 ± 0.0002 0.0013 ± 0.0001 0.0009 ± 0.0001 0.0008 ± 0.0001

kernel-CPLST + KRR 0.0172 ± 0.0004 0.0040 ± 0.0002 0.0013 ± 0.0001 0.0009 ± 0.0001 0.0008 ± 0.0001
medical CPLST + LR 0.0346 ± 0.0004 0.0406 ± 0.0005 0.0471 ± 0.0005 0.0490 ± 0.0005 0.0497 ± 0.0006

kernel-CPLST + LR 0.0345 ± 0.0004 0.0403 ± 0.0005 0.0471 ± 0.0005 0.0481 ± 0.0006 0.0497 ± 0.0006
CPLST + KRR 0.0130 ± 0.0002 0.0098 ± 0.0002 0.0096 ± 0.0002 0.0096 ± 0.0002 0.0096 ± 0.0002

kernel-CPLST + KRR 0.0131 ± 0.0002 0.0098 ± 0.0002 0.0096 ± 0.0002 0.0096 ± 0.0002 0.0096 ± 0.0002
scene CPLST + LR 0.1744 ± 0.0004 0.1532 ± 0.0005 0.1349 ± 0.0005 0.1209 ± 0.0007 0.1106 ± 0.0008

kernel-CPLST + LR 0.1776 ± 0.0004 0.1674 ± 0.0006 0.1466 ± 0.0008 0.1279 ± 0.0007 0.1106 ± 0.0008
CPLST + KRR 0.1720 ± 0.0004 0.1364 ± 0.0006 0.1111 ± 0.0006 0.0846 ± 0.0006 0.0722 ± 0.0007

kernel-CPLST + KRR 0.1733 ± 0.0004 0.1470 ± 0.0006 0.1179 ± 0.0007 0.0905 ± 0.0007 0.0717 ± 0.0007
yeast CPLST + LR 0.2069 ± 0.0008 0.2041 ± 0.0009 0.2024 ± 0.0009 0.2020 ± 0.0009 0.2022 ± 0.0009

kernel-CPLST + LR 0.2139 ± 0.0008 0.2052 ± 0.0009 0.2032 ± 0.0009 0.2020 ± 0.0009 0.2022 ± 0.0009
CPLST + KRR 0.1968 ± 0.0008 0.1888 ± 0.0009 0.1871 ± 0.0009 0.1871 ± 0.0009 0.1870 ± 0.0009

kernel-CPLST + KRR 0.2018 ± 0.0008 0.1904 ± 0.0009 0.1875 ± 0.0009 0.1869 ± 0.0009 0.1868 ± 0.0009

(those within one standard error of the lowest one are in bold)

On the other hand, in terms of the LSDR approaches, the performance of CPLST is

usually at least as effective as kernel-CPLST. In particular, in scene and yeast, CPLST

is better than kernel-CPLST regardless of whether it is coupled with linear regression or

kernel ridge regression. If we look the training performance (Table 4.8), it shows that the

training Hamming loss of kernel-CPLST is better than the one of CPLST in some cases

including the bibtex and yeast, but can be overfitting (worse test Hamming loss).

The reason may be because kernel-CPLST is so complicated and thus it incur more risk

of overfitting. In other words, for simple datasets, using kernel-CPLST may be risky; for

more complicated ones; however, kernel-CPSLT can still be useful.

On the basis of Section 4.4 and this section, when we want to choose the suitable

one from these LSDR approaches, CPLST may be the first choice because the captured

input-output relations is more easily utilized by various underlying regression methods
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Table 4.8: Training Hamming Loss

Dataset Algorithm 20% 40% 60% 80% 100%
bibtex CPLST + LR 0.0114 ± 0.0000 0.0100 ± 0.0000 0.0091 ± 0.0000 0.0085 ± 0.0000 0.0080 ± 0.0000

kernel-CPLST + LR 0.0114 ± 0.0000 0.0100 ± 0.0000 0.0093 ± 0.0000 0.0086 ± 0.0000 0.0080 ± 0.0000
CPLST + KRR 0.0094 ± 0.0000 0.0061 ± 0.0000 0.0038 ± 0.0000 0.0021 ± 0.0000 0.0015 ± 0.0000

kernel-CPLST + KRR 0.0090 ± 0.0000 0.0059 ± 0.0000 0.0039 ± 0.0000 0.0022 ± 0.0000 0.0015 ± 0.0000
corel5k CPLST + LR 0.0089 ± 0.0000 0.0089 ± 0.0000 0.0089 ± 0.0000 0.0089 ± 0.0000 0.0089 ± 0.0000

kernel-CPLST + LR 0.0089 ± 0.0000 0.0089 ± 0.0000 0.0089 ± 0.0000 0.0089 ± 0.0000 0.0089 ± 0.0000
CPLST + KRR 0.0023 ± 0.0000 0.0010 ± 0.0000 0.0004 ± 0.0000 0.0001 ± 0.0000 0.0000 ± 0.0000

kernel-CPLST + KRR 0.0021 ± 0.0001 0.0009 ± 0.0001 0.0004 ± 0.0002 0.0001 ± 0.0002 0.0000 ± 0.0000
emotions CPLST + LR 0.2019 ± 0.0003 0.1728 ± 0.0003 0.1574 ± 0.0003 0.1508 ± 0.0004 0.1444 ± 0.0003

kernel-CPLST + LR 0.2016 ± 0.0003 0.1721 ± 0.0003 0.1575 ± 0.0003 0.1508 ± 0.0003 0.1444 ± 0.0003
CPLST + KRR 0.2082 ± 0.0006 0.1820 ± 0.0006 0.1670 ± 0.0007 0.1624 ± 0.0008 0.1577 ± 0.0009

kernel-CPLST + KRR 0.2083 ± 0.0002 0.1811 ± 0.0005 0.1667 ± 0.0007 0.1622 ± 0.0008 0.1578 ± 0.0013
enron CPLST + LR 0.0203 ± 0.0000 0.0121 ± 0.0000 0.0097 ± 0.0000 0.0081 ± 0.0000 0.0076 ± 0.0000

kernel-CPLST + LR 0.0208 ± 0.0000 0.0122 ± 0.0000 0.0097 ± 0.0000 0.0081 ± 0.0000 0.0076 ± 0.0000
CPLST + KRR 0.0282 ± 0.0002 0.0237 ± 0.0002 0.0223 ± 0.0002 0.0217 ± 0.0002 0.0215 ± 0.0002

kernel-CPLST + KRR 0.0283 ± 0.0001 0.0239 ± 0.0001 0.0225 ± 0.0002 0.0220 ± 0.0006 0.0218 ± 0.0006
genbase CPLST + LR 0.0155 ± 0.0001 0.0033 ± 0.0000 0.0009 ± 0.0000 0.0003 ± 0.0000 0.0002 ± 0.0000

kernel-CPLST + LR 0.0155 ± 0.0001 0.0033 ± 0.0000 0.0009 ± 0.0000 0.0003 ± 0.0000 0.0002 ± 0.0000
CPLST + KRR 0.0155 ± 0.0001 0.0032 ± 0.0000 0.0009 ± 0.0000 0.0003 ± 0.0000 0.0002 ± 0.0000

kernel-CPLST + KRR 0.0158 ± 0.0002 0.0032 ± 0.0001 0.0008 ± 0.0000 0.0003 ± 0.0000 0.0001 ± 0.0000
medical CPLST + LR 0.0071 ± 0.0000 0.0022 ± 0.0000 0.0008 ± 0.0000 0.0004 ± 0.0000 0.0002 ± 0.0000

kernel-CPLST + LR 0.0070 ± 0.0000 0.0022 ± 0.0000 0.0008 ± 0.0000 0.0004 ± 0.0000 0.0002 ± 0.0000
CPLST + KRR 0.0074 ± 0.0000 0.0026 ± 0.0000 0.0013 ± 0.0000 0.0009 ± 0.0001 0.0007 ± 0.0001

kernel-CPLST + KRR 0.0073 ± 0.0001 0.0026 ± 0.0002 0.0013 ± 0.0003 0.0009 ± 0.0003 0.0007 ± 0.0000
scene CPLST + LR 0.1732 ± 0.0002 0.1457 ± 0.0001 0.1198 ± 0.0001 0.0970 ± 0.0001 0.0758 ± 0.0001

kernel-CPLST + LR 0.1739 ± 0.0002 0.1577 ± 0.0002 0.1283 ± 0.0003 0.1003 ± 0.0002 0.0758 ± 0.0001
CPLST + KRR 0.1585 ± 0.0004 0.1142 ± 0.0007 0.0861 ± 0.0006 0.0301 ± 0.0009 0.0058 ± 0.0005

kernel-CPLST + KRR 0.1643 ± 0.0011 0.1204 ± 0.0012 0.0822 ± 0.0012 0.0408 ± 0.0007 0.0150 ± 0.0000
yeast CPLST + LR 0.1970 ± 0.0001 0.1886 ± 0.0001 0.1855 ± 0.0001 0.1848 ± 0.0001 0.1848 ± 0.0001

kernel-CPLST + LR 0.2034 ± 0.0001 0.1895 ± 0.0001 0.1859 ± 0.0001 0.1848 ± 0.0001 0.1848 ± 0.0001
CPLST + KRR 0.1270 ± 0.0006 0.0422 ± 0.0004 0.0114 ± 0.0002 0.0016 ± 0.0000 0.0002 ± 0.0000

kernel-CPLST + KRR 0.1147 ± 0.0017 0.0368 ± 0.0036 0.0062 ± 0.0043 0.0016 ± 0.0026 0.0002 ± 0.0000

(those within one standard error of the lowest one are in bold)

than kernel-CPLST. Even when coupling with linear regression or kernel ridge regression

as underlying regression method, kernel-CPLST takes more risk to overfit. However, if

we want to improve the performance further and the major constraints is on the time of

prediction or the storage of model (Section 2.2), checking the performance of kernel-

CPLST would be a good option.

4.6 Optimal Reduced Size

In this section, we conduct experiment to check the optimal reduced sizeM∗. The optimal

reduced size M∗ is defined as the minimum number of dimension at which the Hamming

loss difference between full binary relevance and the LSDR approach is within its respec-

tive standard errors. In other words, this shows the size of needed label space dimension

at which the performance does not significantly degrade. The optimal reduced size of
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label by LSDR algorithm coupled with linear regression and kernel ridge regression are

reported in Table 4.9 and Table 4.10 respectively.

Table 4.9: Optimal reduced size M∗ of LSDR algorithm when coupled with linear regres-
sion

Dataset # Labels (K) PLST CPLST kernel-CPLST
bibtex 159 1 (0.0143 ± 0.0007) 1 (0.0143 ± 0.0007) 1 (0.0144 ± 0.0007)
corel5k 374 33 (0.0094 ± 0.0000) 17 (0.0094 ± 0.0000) 33 (0.0094 ± 0.0000)
emotions 6 3 (0.1928 ± 0.0022) 2 (0.2059 ± 0.0022) 3 (0.1988 ± 0.0023)
enron 53 1 (0.0639 ± 0.0003) 1 (0.0640 ± 0.0003) 1 (0.0637 ± 0.0003)
genbase 27 23 (0.0007 ± 0.0001) 22 (0.0007 ± 0.0001) 22 (0.0008 ± 0.0001)
medical 45 1 (0.0303 ± 0.0003) 1 (0.0303 ± 0.0003) 1 (0.0303 ± 0.0003)
scene 6 5 (0.1094 ± 0.0009) 5 (0.1097 ± 0.0009) 5 (0.1095 ± 0.0009)
yeast 14 9 (0.2024 ± 0.0009) 8 (0.2024 ± 0.0009) 9 (0.2024 ± 0.0009)

Table 4.10: Optimal reduced size M∗ of LSDR algorithm when coupled with kernel ridge
regression

Dataset # Labels (K) PLST CPLST kernel-CPLST
bibtex 159 151 (0.0151 ± 0.0000) 31 (0.0125 ± 0.0000) 42 (0.0125 ± 0.0000)
corel5k 374 1 (0.0094 ± 0.0000) 1 (0.0094 ± 0.0000) 1 (0.0094 ± 0.0000)
emotions 6 2 (0.2074 ± 0.0023) 2 (0.2071 ± 0.0024) 2 (0.2069 ± 0.0024)
enron 53 4 (0.0471 ± 0.0002) 3 (0.0473 ± 0.0002) 3 (0.0471 ± 0.0002)

genbase 27 23 (0.0008 ± 0.0001) 22 (0.0008 ± 0.0001) 22 (0.0008 ± 0.0001)
medical 45 9 (0.0136 ± 0.0002) 8 (0.0135 ± 0.0002) 8 (0.0135 ± 0.0002)
scene 6 5 (0.0723 ± 0.0007) 4 (0.0846 ± 0.0006) 5 (0.0715 ± 0.0007)
yeast 14 9 (0.1885 ± 0.0009) 5 (0.1888 ± 0.0009) 7 (0.1884 ± 0.0009)

Table 4.11: Time of LSDR algorithm when coupled with kernel ridge regression at opti-
mal reduced size (sec)

Dataset PLST CPLST kernel-CPLST
FSDR regression FSDR regression FSDR regression

bibtex 0.256 245797.61 14.321 2089.68 67.81 2930.69
corel5k 0.106 21.778 1.119 26.674 22.328 21.538
emotions 0.002 0.140 0.007 0.129 0.048 0.135
enron 0.020 4.091 1.147 2.765 1.032 2.617

genbase 0.001 3.074 0.287 2.667 0.119 2.656
medical 0.003 2.908 0.814 2.470 0.266 2.463
scene 0.002 10.376 0.157 8.518 1.688 10.022
yeast 0.002 17.209 0.033 10.321 1.701 13.756

Table 4.9 shows the optimal reduced size of PLST, CPLST, and kernel-CPLST when

coupled with linear regression. In four out of the eight datasets (corel5k, emotions,

genbase, and yeast), CPLST can use fewer dimension to get similar performance.
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Table 4.10 shows the optimal reduced size of PLST, CPLST, and kernel-CPLST when

coupled with kernel ridge regression and Table 4.11 shows the corresponding training time

and FSDR time which contains encoding time and decoding time. The computational

time are measured on Intel Xeon E5530 2.4G Processor with 8192KB cache size. All

algorithms including FSDR algorithms and KRR are implemented by MATLAB version

7.14.0.739 (R2012a). We can found that CPLST can use fewer dimension to get similar

performance and reduce the training time (“regression” column in table 4.11). In most of

the dataset, CPLST and kernel-CPLST are better than PLST. Even in those datasets which

the M∗ of CPLST and kernel-CPLST are equal to the one of PLST, the Hamming loss

of CPLST is still better than the one of PLST. The relation between CPLST and kernel-

CPLST is still similar to the previous analysis 4.5. Kernel-CPLST is between CPLST and

PLST and usually slight worse than CPLST. In conclusion, this result verifies that CPLST

(including kernel-CPLST) is better than PLST and can further decrease the number of

need dimension.

Table 4.12: Time of LSDR algorithm when coupled with kernel ridge regression at opti-
mal reduced size (sec)

Dataset PLST CPLST kernel-CPLST
FSDR regression Total FSDR regression Total FSDR regression Total

bibtex 0.256 1538.749 1539.005 14.321 78.882 93.203 74.561 0.907 75.468
corel5k 0.106 21.911 22.016 1.119 21.570 22.689 22.328 0.242 22.570
emotions 0.002 0.065 0.067 0.007 0.053 0.060 0.048 0.005 0.053
enron 0.020 1.140 1.160 1.147 0.900 2.047 1.032 0.051 1.083
genbase 0.001 0.152 0.153 0.287 0.159 0.446 0.119 0.023 0.142
medical 0.003 0.300 0.303 0.814 0.266 1.080 0.266 0.028 0.294
scene 0.002 1.745 1.747 0.157 1.660 1.817 1.688 0.050 1.738
yeast 0.002 1.713 1.715 0.033 1.699 1.732 1.701 0.025 1.726

When coupling with kernel ridge regression with same kernel and regularization pa-

rameter for all labels, kernel ridge regression can reuse the inversion of kernel matrix

which is calculated by kernel-CPLST. Next, we compare the computational time when

considering reusing the inversion of kernel matrix in Table 4.12. From this table, because

the most computational expensive part is the inversion of kernel matrix, the consumed

time of all FSDR methods are similar. In this case, CPLST and kenel-CPLST are still
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useful for saving computational time during prediction phase and reducing the storage

space of models. Notice that reusing the inversion of kernel matrix only holds when

coupling with kernel ridge regression with same kernel and regrularization parameter.

4.7 Determine Optimal Reduced Size M

For determining the optimal reduced size M , we check the eigenvalue of CPLST. The

eigenvalues that CPLST obtains from solving the optimization problem (3.6) is related

to the amount of training hamming loss bound (2.1). By these eigenvalues, the objective

value of (3.6) can be easily calculated by ‖Z‖2F −
∑M

i ei, where ei is the i-th largest

eigenvalue. In this section, we analyze the eigenvalue, hamming loss bound and hamming

loss of CPLST.

Figure 4.3 shows the eigenvalue, hamming loss bound and hamming loss of CPLST

in yeast and emotions dataset when coupling with linear regression. The red lines

mean the hamming loss and the green lines mean the hamming loss bound. The blue lines

mean the eigenvalue. The solid lines mean the training result and the dashed lines mean

the testing result.

From Figure 4.3, we can found that there is a gap between the hamming loss bound

and the actual hamming loss. However, the hamming loss bound and hamming loss share

similar trend. This verifies that we can minimize the hamming loss by minimizing the

hamming loss bound though there is a gap between them.

In the yeast dataset, the training hamming loss bound and the testing hamming loss

bound share similar trend. As the training hamming loss bound decreases, the testing

hamming loss bound and the hamming loss also decrease. Then, we may use the eigen-

values for estimating the training hamming loss bound and decide how many dimensions

we should use.

On the other hand, in the emotions dataset, the training hamming loss bound and

the testing hamming loss bound are somewhat different in the trend. It is thus difficult to

use the eigenvalues in this case.

In conclusion, from the figures, it is still difficult to determine the reduces size by the
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eigenvalues. One possible solution maybe using validation set or cross validation.
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Figure 4.3: Hamming loss bound and Hamming loss of CPLST in yeast and
emotions

4.8 Discussions and Analysis

In this section, we discuss about the reasons that CPLST is better than other related algo-

rithms in three way, dimension reduction, optimization, and output coding method.

From the view of dimension reduction, PLST can be regarded as a feature-unaware di-

mension reduction on label space. That is, like unsupervised dimension reduction on fea-

tures space, PLST projects the original label into new lower dimension subspace without

utilizing the feature information. The lack of awareness on the feature information makes

PLST inferior. CPLST utilizes the feature information and captures the input-output re-

lation with a first-order method: linear regression. CPLST echoes many previous works

(in FSDR) for capturing input-output relationship with linear regression [31, 32, 33] and

therefore achieves better performance.

From the view of optimization, when dealing with minimizing the bound of Hamming

loss, PLST can be split into two stages. The first stage minimizes the encoding error

term by singular value decomposition. Then, the second stage minimizes the squared

prediction error by an underlying regression method. However, in terms of optimization,
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it can be found that this two stages minimization may not guarantee to minimize the whole

bound (2.1). For example, after projection, it may become more “difficult” to learn multi-

dimension regression and the squared prediction error cannot be reduced. On the other

hand, CPLST minimizes the whole bound of Hamming Loss directly; therefore, CPLST

certainly gets better result in the optimization problem.

From the view of output coding method, the previous work of Ferng and Lin [34]

demonstrates the trade-off between the strength of Error Correcting Code (ECC) and the

difficulty of base learning problems. Stronger ECC, it can correct more bit errors, but may

leave more difficult learning problems. On the other hand, with weaker may only be able

to correct few bit errors, but will have simpler learning problems. PLST can be regarded

as a good output coding method that takes the more efficient encoding to the extreme;

nevertheless, following ECC, it may need to face “difficult” regression problems in the

learning step. On the other hand, OCCA manages to minimize the squared prediction

error as mentioned in Section 2.2.3. That is, OCCA aims at finding the transformation

whose projected result ZV is “easiest” to learn by linear regression, but it may lead to

worse encoding method. CPLST can be view as a method to find the best balanced com-

bination between the strength of encoding and the hardness of learning task. Through this

balance situation, CPLST outperforms PLST which focuses on the strength of encoding

and OCCA which focuses on the difficulty of learning task.
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Chapter 5

Conclusions

In this thesis, we studied feature-aware label space dimension reduction (LSDR) ap-

proaches, which utilize the feature information during LSDR and can be viewed as the

counterpart of supervised feature space dimension reduction. We reviewed the precursors

of LSDR, Compressive Sensing and Principal Label Space Transformation (PLST), and

showed that they can be viewed as feature-unaware LSDR approaches. Then, we demon-

strated that canonical correlation analysis (CCA), which transitionally is used as a super-

vised FSDR approach can also be viewed as an approach to feature-aware LSDR. Base on

CCA, we derived a preliminary algorithm, orthogonally constrained CCA (OCCA), which

not only preserves the original objective function of CCA but also can apply the efficient

round-based decoding to. Then, we proposed a novel feature-aware LSDR algorithm,

conditional principal label space transformation (CPLST) which utilizes the key condi-

tional correlations for dimension reduction. Like PLST, CPLST enjoys the theoretical

guarantee in balancing between the prediction error and the encoding error in minimizing

the Hamming loss bound. In addition, we extended CPLST to a kernelized version for

capturing more sophisticated relations between features and labels. We conducted experi-

ments for comparing CPLST and its kernelized version with other LSDR approaches. The

experimental results demonstrated that CPLST is the best among the LSDR approaches

when coupled with linear regression or kernel ridge regression. In particular, CPLST

is better than its feature-unaware precursor, PLST. Moreover, the input-output relation

captured by CPLST can be utilized by regression method other than linear regression.
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Appendix A

Speed up Experiment of Kernel Ridge

Regression

In usual repeated experiment setting of kernel ridge regression, we randomly split dataset

into training part and testing part, perform cross validation for λ on each training part,

and train kernel ridge regression on training part using the best parameter according to

the result cross validation. In this appendix, we show the experiment of kernel ridge

regression under this setting can be speed up by linear algebra.

A.1 Setup

As mentioned in section 3.2, kernel ridge regression considers a feature mapping Φ : X →

F before performing regularized linear regression. According to the feature mapping Φ,

the kernel function k(x,x′) = Φ(x)TΦ(x′) is defined as an inner product of x and x′

after mapped into the space F . On the other hand, kernel ridge regression also adds a `2

regularization term 1
2
λ‖w‖2, where λ is the regularization parameter, into the objective

function for regularizing the power of the high-dimensional linear regression.

That is, when given the dataset {(xn, yn)}Nn=1, where yn is the target value of the input

vector, the task of kernel ridge regression is to find an optimal w in the space F such
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that w minimizes

N∑
n=1

(wTΦ(xn)− yn)2 +
1

2
λ‖w‖2. (A.1)

Equation A.1 can be rewritten in matrix form as

‖Φw − y‖2 +
1

2
λ‖w‖2, (A.2)

where y is an N by 1 vector whose n-th element is yn, Φ is the matrix containing Φ(xn)T

as rows.

In particular, if Φ(x) can be explicitly computed, it is known that the closed-form

solution of (A.2) is [25]

w = ΦT
(
λI + ΦΦT

)−1
y = ΦT (λI + K)−1 y, (A.3)

where K is the matrix with Kij = k(xi,xj) = Φ(xi)
TΦ(xj). That is, K = ΦΦT and is

called the kernel matrix of X.

Equation A.3 can be rewritten as w =
N∑

n=1

αiΦ(xi) with α = yT (λI + K)−1. By

observing w =
N∑

n=1

αiΦ(xi), the most computationally expensive part is calculating

(λI + K)−1 which is to invert a N by N matrix. In particular, if we repeat random

split many times and do cross validation on each training part, the consuming time can be

very expensive. Motivated by this, we explores the potential possibility of speed up the

experiment in this setting.

When considering cross validation on different λ, the matrices need to be inverted

seem “similar”. “Similar” means that the difference of the matrix is only at diagonal

and it is always a constant value. For example, when cross validation on λ1, the matrix

need to be inverted is A1 = (λ1I + K) and when cross validation on λ2, the matrix is

A2 = (λ2I + K). The difference between A1 and A2 is only at diagonal and it is λ1−λ2.

Taking the advantage of this property may be able to speed up the flow of experiment of

kernel ridge regression.
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On the other hand, when considering random splitting data, we image there is a ma-

trix Ã = (λI + K̃) where K̃ is the kernel matrix of all data without partition. Then, after

split, the training part is a subset of all data and the kernel matrix K of training part is K̃

without test part. That is, the matrix need to be inverted for each random split data can be

obtained by removing some rows and corresponding column according the random split

from K̃. Motivate by this, we explore whether the experiment of kernel ridge regression

can be speed up as taking the advantage of this.

A.2 Cross Validation

In this section, we study the speed-up of cross validation when using different λ. The

procedure of cross validation contains two procedure. The first procedure is randomly

partitioning the training part into N subsamples, i.e. N -fold. A single subsample is

retained as the validation data for testing the model performance and the remaining N −

1 subsamples are used as training data, and this is then repeated N times, with each

of the N subsamples use exactly once as the validation data. The second procedure is

using different λ to train model and validating the performance of model on the validation

data. It is obvious that the procedure of N -fold is a special case of random splitting data;

therefore, the N -fold part is leave to next section and we focus on using different λl to

train kernel ridge regression in this section.

When considering cross validation with the parameter set λ = {λ1, λ2 . . . λL}, we

must calculate the inversion of (λ1I + K) , (λ2I + K) . . . (λLI + K). The key idea of

speed-up is performing orthogonal diagonalization [35] on matrix K first. As K is sym-

metry and semi-positive definite, K can be decomposed to

K = QTDQ,

where QT = Q−1 and D is diagonal matrix.
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After obtaining Q and D, the inversion of (λlI + K) for λl can be easily obtained by

(K + λI)−1 = (QTDQ + λI)−1

= (QTDQ + λQTQ)−1

= (QT (D + λI)Q)−1

= QT (D + λI)−1Q

Because D is diagonal matrix, the inversion of matrix (D + λI), which is still a diagonal

matrix, is extreme fast by calculating the reciprocal of each element at diagonal. How-

ever, because orthogonal diagonalization may be not as efficient as inversion, we conduct

experiment about this and check it performance in in section A.4.

A.3 Different Split

In this section, we consider how to speed up when using different training part. When

considering random splitting data, we build Ã = (λI + K̃) and its inversion Ã−1 where

K̃ is the kernel matrix of all data before partition. Then, after split, the training part is

a subset of all data and thus the kernel matrix K of training part is K̃ without test part.

That is, K can be obtained by removing some rows and corresponding column from K̃

and the matrix need to be inverted is A = (λI + K). Notice that A is also able to obtain

by removing some rows and corresponding column from Ã. Then, can we speed up the

inversion of A after pre-calculating the inversion of Ã? In formal, our goal is that given

matrix Ã and its inversion Ã−1, can we calculate A−1 efficiently where A is obtained

by removing rows and columns from Ã? In particular, we define the set of the index of

removed rows and columns is R = (r1, r2, . . . , r|R|), r1 < r2 < · · · < r|R|.

42



A.3.1 Permutation Matrix

When given a matrix Ã, directly calculating A−1 is difficult because the index R which

need to be removed is scattered over the matrix. Therefore, we try to permute the index R

to the end first.

Lemma A.3.1 Let a matrix A be symmetric and its inversion exists. Suppose Â is A

after swapping row (i, j) and column (i, j) and called this operation swap (i, j). Then

Â−1 is A−1 after swap (i, j).

Lemma A.3.1 demonstrates that if we want to calculate A−1 which is Ã after remov-

ingR rows and columns, we can permuteR rows and columns toR′ = (N−|R|+1, N−

|R| + 2, . . . , N) rows and columns first and we call this operation permuting R to R′ on

Ã. That is, when given a matrix Ã and the index R, we in order swap (r1, N − |R|+ 1),

(r2, N − |R|+ 2), . . . , and (r|R|, N) on Ã to get Â and do the same thing on Ã−1 to get

Â−1 first.

Then, the remaining problem is that given our goal is that given matrix Ã and its

inversion Ã−1, can we calculate A−1 efficiently where A is obtained by removing R =

(N − |R|+ 1, N − |R|+ 2, . . . , N) rows and columns from Ã?

A.3.2 Blockwise Inversion

For solving the remaining task we need to first introduce a technique, block matrix inver-

sion [36].

Lemma A.3.2 Let matrix Ã =

 A BT

B C

, where Ã and A are as previous definition.

Then,

Ã−1 =

 A−1 + A−1BTT−1BA−1 −ABTT−1

−T−1BA−1 T−1


T = C−BA−1BT
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Notice that, Lemma A.3.2 is a special case of general block matrix inversion because we

only need this special version in our derivation.

By this lemma, given Ã−1 =

 A′11 A′T21

A′21 A′22

, we can obtain a equation,

A′11 = A−1 + A−1BTT−1BA−1, (A.4)

where matrix A′11, A and B are given and A−1 is our goal. In particular, A−1 in

A−1BTT−1BA−1 can be combined and replaced by the known matrix.

A−1BTT−1BA−1 = A−1BTT−1(TT−1)BA−1 (A.5)

= A′
T
21TA′21 (A.6)

Equation (A.6) can be obtained by substitute A′12 = T−1BA−1 into equation (A.5).

After getting equation (A.6), we can substitute (A.6) into equation (A.4) and obtain

A′11 =A−1 + A′
T
21TA′21

⇒ A−1 =A′11 −A′
T
21TA′21. (A.7)

In equation (A.7), T is unknown and A−1 is our target. The remaining problem is to

calculate matrix T. Observing that T is not only equal to C−BA−1BT but also equal to

A′−122 , T can be obtained by calculating A′−122 and equation (A.7) becomes

A−1 =A′11 −A′
T
21A

′−1
22 A′21. (A.8)

By using equation (A.8), we can obtain two algorithms for calculating A−1 as shown in

Algorithm 2 and Algorithm 3.

The first algorithm (Algorithm 2) is to calculate T by A−122 because no matter in cross

validation or in split dataset, A22 is relative small with respect to A and thus A−122 can be

calculated more efficiently than directly calculating A−1.
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Algorithm 2 Inversion by remove rows and columns
1: Input: Ã−1 and R
2: Permuting R to R′ on Ã−1.
3: Split Ã−1 into Ã11, Ã21, and Ã22.
4: Calculating A−1 = Ã11 − ÃT

21Ã
−1
22 Ã21.

5: Permuting R′ to R on A−1.
6: Output: A−1

The second algorithm (Algorithm 3) is to remove all indexes in R one by one. By

removing one by one, calculating the inversion of Ã22 can be extreme fast, because it is

1-by-1 matrix and can be obtained by reciprocal. However, the trade-off is this procedure

must repeat |R| times and need to perform plenty of matrix multiplications.

Algorithm 3 Inversion by remove rows and columns-one by one
1: Input: Ã−1 and R
2: Let A0 = Ã−1 .
3: for i = 1→ |R| do
4: Run algorithm 2 on Ai−1 and {ri} and get Ai.
5: end for
6: Output: A|R|

For comparing these two algorithms, we conduct experiment for in section A.4.

A.4 Experiment

In this section, we conduct experiment for testing the performance of the method proposed

in section A.2 and section A.3. We use a real world dataset bibtex which contains 7395

instances and 1836 features for comparison. The computational time are measured on

Intel Xeon E5530 2.4G Processor with 8192KB cache size and these method are imple-

mented by MATLAB version 7.14.0.739 (R2012a). In section A.4.1, we compare the time

of calculating the inversion directly and calculating the inversion by using orthogonal di-

agonalization as mention in section A.2. And in section A.4.2, we conduct experiment

about the time of calculating inversion under random split training part.
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A.4.1 Experiment of Cross Validation

In this experiment, because the cross validation is usually performed on the training part;

therefore, it use 5916 instances which is 80% from original data. The measured time is

reported in table A.1.

Inverse Diagonalize Inverse by Diagonalization
Time (s) 49.911741 111.854334 26.635818

Table A.1: Inversion vs Diagonalization vs Inverse by Diagonalization

In table A.1, we can see that the time for diagonalization is roughly as twice much

as inversion. But after the preprocessing of diagonalization, the time of inversion only

need a half of original time. If we check how many experiments need to do for offset the

overhead of preprocessing, it need repeat

Λ =
111.854334

49.911741− 26.635818
≈ 4.8056

times to offset the overhead. It shows that the experiment can be faster when we experi-

ment for over 5 different λ value. And if the experiment for large number of different λ,

it only need a half of original time.

A.4.2 Experiment of Different Split

The experiment in this subsection, we check the result of Algorithm 2 and Algorithm 3.

The situation we experiment is partitioning whole dataset into 80% for training part and

20% for testing part. The measured time is reported in table A.2.

For both Algorithm 2 and Algorithm 3, it need to calculate the inversion of Ã which

the original needn’t to calculate. It can be found that the time of the inversion of Ã is

as twice much as Â in table A.2, because the time complexity of inversion is worse than

linear. Therefore, the inversion of Ã is the overhead for Algorithm 2 and Algorithm 3.

After preprocessing, when we calculate T by the inversion of Ã22 as Algorithm 2, the

time compared with original one is extreme fast and is roughly a tenth of original time.

On the other hand, the time using Algorithm 3 is extreme slow. It may be because the
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number of the multiplication of matrix we need is too many.

Inverse Ã Inverse Â Inverse Â by Algorithm 2 Inverse Â by Algorithm 3
Time(s) 102.664412 50.405461 5.030477 6311.317599

Table A.2: Algorithm 2 vs Algorithm 3

Compared with directly inversing Â, it need

∆ =
102.664412

50.405461− 5.030477
≈ 2.26258

times to offset the overhead. It shows tat the experiment can be faster when we repeat it

over 3 times. If the experiment is repeated many times, it only need a tenth of original

time.
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