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中文摘要

增強式學習曾經是一個熱門的研究主題，但至今增強式學習依然停留在原始階
段，即便最知名的例子，TD-Gammon，一個西洋雙陸棋代理人，仍需要藉由搜尋
的技巧來提升棋力。在本篇論文中應用了監督式學習中的兩個重要技術，大幅提升
增強式學習的能力，分別是大規模資料與線性支持向量回歸。此外，我們也討論了
兩個獨立代理人是否能藉由不斷地競爭去增強彼此能力，我們稱這新的學習模式為
競賽式學習。以上兩個概念將會以五子棋演示，結果顯示所產生的代理人不需藉由
搜尋的技巧，也具有可與人類匹敵的能力，意味著這兩個概念是實際可行，對於棋
類遊戲或是特定應用將會有很大的幫助。

關鍵詞：大規模資料、線性支持向量回歸、增強式學習、競賽式學習、五子棋。
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ABSTRACT

Reinforcement learning has been a promising research topic. However, until now
it almost stays at an initial stage. Even the most successful case, TD-Gammon also
needs assisted by searching techniques. We design a new method to improve the
learning ability of reinforcement learning. The core contributions are using large-scale
data and linear support vector regression. In addition, we discuss that could two
agents improve their abilities by competing with another. We call this framework
as tournament learning. These two concepts would be illustrated with gomoku. The
results, our agents, achieve a competitive level, and it implies our concepts are available
and practical.

KEYWORDS: Large-scale data, Linear support vector regression, Reinforcement Learn-
ing, Tournament Learning, Gomoku.
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CHAPTER I

Introduction

Reinforcement learning (Kaelbling et al., 1996; Sutton and Barto, 1998) has been a

promising research topic, because its purpose is very general. The framework is to train

an agent in an environment, and then the agent can take proper actions while facing

different situations. TD-Gammon by Tesauro (1992, 1995) could be the most successful

case. It is a computer backgammon trained by a reinforcement learning method, and

achieved a level closing the human world-champion. People hope such successful cases

of reinforcement learning also can be applied in other purposes, like automatic driving,

robot or other things human can do. However, until now, reinforcement learning almost

stays at an initial stage. Although it is widely used in many fields, it only has puny

ability and usually must be assisted by other methods. Even TD-Gammon also used

searching techniques. Actually, we do not see any real strong cases yet so we have

doubts about its ability.

Unlike reinforcement learning, supervised learning has been well developed. One

useful tool that we will use is support vector machines (Boser et al., 1992), which use

kernel tricks to map data to high dimensional spaces for separating data. Recently,

two properties, large scale data and linear kernel are promoting. Many studies such

as Hsieh et al. (2008); Joachims (2006); Keerthi and DeCoste (2005); Shalev-Shwartz

et al. (2007) showed in large scale data linear kernel can achieve almost the same
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accuracy as nonlinear kernels, but much reduces training time and prediction time.

Past reinforcement learning has been helped by supervised learning. The issue of

representation is a hard problem of reinforcement learning. Markov decision process

(MDP) Bellman (1957) is a typical model to record the information, but it is impossible

to build a huge lookup table for complex problems. TD-Gammon using neural networks

to simulate the situations in backgammon, but the performance of neural network may

indirectly affect the ability of reinforcement learning.

In this thesis, we invent a new representation method for the difference between

states. It is very simple, and can record a lot of information in tiny storage. With

profuse information we use the modern concepts, large-scale data and effective lin-

ear regression to greatly increase the ability of reinforcement learning and reduce the

training time. We will illustrate our new method with a board game, gomoku. We

also discuss a learning framework, tournament learning. It is a framework used in

the situation without a teacher knowing how to improve the ability of competitors.

Finally, experiments show our method is stable and fast. More importantly, without

any searching technique our gomoku agents can achieve a competitive level.

1.1 Gomoku and Backgammon

Two board games, gomoku and backgammon will be discussed in this thesis. To

clearly understand this thesis we introduce them briefly here.

1.1.1 Gomoku

Gomoku, also called Five in a Row, is a board game. Two players compete on a

15 × 15 board, shown in Figure 1.1. One side owns black stones while another owns

white stones. The player owning black stones plays first. Then both sides alternately

put a stone on an empty intersection. The player that first achieves an unbroken row of
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five or more stones horizontally, vertically, or diagonally is the winner. For convenience,

we call the player who plays first Black, while the other White. Because Black plays

first, it has a big advantage. To make a fair game, there are many extra rules, like

Renju International Federation (RIF), Sakata rule, Yamaguchi rule and others. To

keep easy we use the original rule, and restrict that the first stone must be put at the

center of board, (8, H).

Figure 1.1: A 15× 15 gomoku board.

We choose gomoku because it is easy to learn. A new player can quickly understand

the rule, and become familiar in few games. Although the rule is simple, gomoku is very

profound. For common human players, defeating current high-level gomoku software is

very hard. It means gomoku is not an easy problem. Past reinforcement learning have

not successfully solved a difficult problem like gomoku, so we use it to demonstrate the

ability of our method.

1.1.2 Backgammon

There are many variants backgammons. Here we introduce the simplest version.

Figure 1.2 is a backgammon board, and it is also the initial setting at the opening stage.

3



Each player has 15 stones, and there are 24 triangular cells on the board. Two players

roll a die to determine who plays first. White side moves stones counterclockwise and

red side moves stones clockwise. At every step a player rolls two dices to decide the

number of moves. The special case is player can move stones four times for the same

number. For example, if the player rolls a 5 and a 3, he can move his any stones 5

steps to a legal position and repeat the action for 3 steps; if the player rolls two 3, he

can move any stones 3 steps four times.

Figure 1.2: A backgammon board.

A legal position is an empty cell or a blot. A blot is a cell occupied by one opponent’s

stone. If a player moves his stone to a blot, opponent’s stone will be removed out of

the board, and this stone must restart from beginning. Notice that if there are any

stones out of board, we must move them into the board first or we can not move any

stones on the board. Therefore, sometimes we can not move any stones if the opponent

occupies our aim.

It is needed to move all stones to the last six cells, and then allowed removing the
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stones out of the board. The player who first removes all stones out of the board is

the winner. The winner would get different scores for different cases:

Backgammon: The opponent does not remove any stones out of the board, and

lefts some stones at the first six cells.

Gammon: The opponent does not remove any stones out of the board.

Normal victory: Other situations.

The winner can get 3 scores for Backgammon; 2 scores for Gammon and 1 score

for normal victory.

Because of rolling dice, luck is an important factor in backgammon. Compared

to other board games strategies may not be that effective. Even an expert could be

defeated by a rookie.
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CHAPTER II

Large-scale Data and Linear Reinforcement

Learning

2.1 Background

2.1.1 Reinforcement Learning

Reinforcement learning is a trial and error procedure. It uses an agent to explore

an environment. When an agent takes an action in a state, it would receive the reward.

According to the reward it reconsiders the action. Next time the agent can make a

better decision by this experience. Markov decision process (MDP) is used to record

the information (Bellman, 1957; Kaelbling et al., 1996; Puterman, 1994; Sutton and

Barto, 1998; White, 1991). An MDP consists of four tuples (S,A, P.(·, ·), R.(·, ·)),

where

1. S is a finite set of states.

2. A is a finite set of actions.

3. Pa(s, s
′) is the probability that action a in state s at time t will lead to state s′

at time t+ 1.

4. Ra(s, s
′) is the immediate reward.
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A policy π(s, a) = Pr(at = a|st = s) is a mapping function from states to actions.

There are two types of the value function. The first one is the state-value function:

V π(s) = Eπ[Rt|st = s], which means that from state st following the policy can get

expected reward Rt. Rt =
∑T

k=t rk is the total reward from time t until reaching the

terminal state at time T . In order to avoid that future feedback affects the immediate

reward aggressively, there is a discount factor γ, 0 < γ ≤ 1, so the expansion of the

state-value function is

V π(st) = rt + γrt+1 + γ2rt+2 + . . . (2.1)

where rt is the reward at time t. The second value function is the action-value function:

Qπ(s, a) = E
π

[Rt|st = s, at = a] (2.2)

It differs from the first one by emphasizing the action to take.

The goal of reinforcement learning is finding the best policy π∗ to maximize the

value of every state. That is,

V ∗(s) = max
π

V π(s),∀s ∈ S (2.3)

or

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S, a ∈ A (2.4)

Two famous reinforcement learning methods, temporal difference (TD) learning by

Barto et al. (1989) and Q-learning by Watkins (1989), solve these two types of opti-

mization problems respectively. The basic TD learning, TD(0), uses (2.5) to update

the value of the current state by the value of the next, where α is learning rate.

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)] (2.5)

The update rule in (2.2) is very similar.

Q(st.at)← Q(st, st) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)] (2.6)
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Although there are many research works about reinforcement learning, successful cases

are rare. Most applications are simple toys like maze (Dayan and Hinton, 1993), soccer

(Littman, 1994), elevator dispatching (Sutton and Barto, 1998), cart-pole swing-up

(Doya, 2000) and crawler robot (Tokic et al., 2009). TD-Gammon may be the most

successful case in reinforcement learning, even though it used searching techniques for

prediction. Therefor, the research of reinforcement learning is still at an early stage.

2.1.2 Supervised Learning

Assume we have a set of training data {(x1, y1), (x2, y2), . . . , (xl, yl)}, where every

instance consists of features xi and label yi. Supervised learning finds a function

g : X → Y , where X is the feature space and Y is the label space. If the label is

discrete, it is called classification; if the label is continues, it is called regression. One

popular supervised learning tool is support vector machine (SVM) (Boser et al., 1992).

For classification the following optimization problem is solved.

min
w
f(w) =

1

2
wTw + C

l∑
j=1

ξ(w;xj, yj), (2.7)

where xj ∈ Rn, yj ∈ {−1,+1}, ξ(w;xj, yj) is a loss function, and C ∈ R is a penalty

parameter.

Feature space can be mapped into a high-dimensional space by a nonlinear function.

Using the technique usually can increase the accuracy. Recently researches on linear

classification without using mapping functions have been promoted. For large-scale

sparse data the performance of linear kernel is close to nonlinear kernel, but training

time and predicting time both are much reduced.

The great ability of supervised learning is collecting fractional information to pre-

dict. It has been used in classification, regression, and ranking successfully. If training

data is proper and enough, currently supervised learning tools can get excellent re-
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sults. However, existing research is often restricted these three applications. We think

that supervised learning can be extended to other applications, where reinforcement

learning may be a possible choice. Using modern supervised learning techniques, the

ability of reinforcement learning may be improved.

2.1.3 The High-Level Idea

The ability of past reinforcement learning is restricted by the representational issue

(Tesauro, 1992). The simplest way is recording every MDP discretely, but there is

no sufficient memory to store the huge lookup table. Further, it is impossible to go

through every MDP, so the agent can not take a correct action while encountering

unknown states.

Figure 2.1: The TD-Gammon network. Hidden and output units are sigmods, and
learning rate: α = 0.1; initial weights are set randomly between −0.5 and
0.5.

In earlier works, neural networks have replaced with the lookup table. Using neural

networks can simulate MDPs by fewer inputs. We briefly introduce how TD-Gammon
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used Backpropagation Networks (Nilsson, 1996) to implement reinforcement learning.

Figure 2.1 shows the rough network structure. The updating rule of weights w which

combines TD(λ) with backpropagation is

∆wt = α(yt+1 − yt)
t∑

k=1

λt−k
∂yk
∂w

(2.8)

where λ is the discount factor, α is the learning rate, and yt is the prediction at time

t. With λ = 0.7, α = 0.1 after about 200, 000 games, TD-Gammon can win 66.2% of

10, 000 games against SUN Microsystems Gammontool (Nilsson, 1996).

Although neural networks can reduce the storage, however, the slow convergence is

another issue. Equation (2.8) shows that the update of weights is just depended on few

data. It is not reliable because the agent could change its policy aggressively after just

few games. Hence, even TD-Gammon still needs to use searching techniques. It also

implies neural network may not be the best way to implement reinforcement learning.

We propose a new and simpler reinforcement learning system which tries to solve

these issues. We use Support Vector Regression (SVR) by Vapnik (1995) to implement

reinforcement learning. We treat each MDP as a feature and each reward value as a

target value. The framework is shown in Figure 2.2. It includes seven independent

parts:

1. Extract the features: Extracting the features is like observing the environment

for the agent; more detailed information is more beneficial, but we also need to

consider the issue of storage.

2. Predict: The agent has its weights. In linear regression, the weights are coef-

ficients of the corresponding features. Therefor, the prediction is just the inner

product of features and weights. We call last part and this part as the playing

stage. The agent extracts features, and then uses its weights to determine what

10



Figure 2.2: The framework of the reinforcement learning.

action it should take in the environment.

3. Evaluate the rewards: After the playing stage the agent would receive a result

from the environment. According to the result it revises the original predictions

to be new rewards. For example, in the board games, the agent would receive

a victory or a losing. If it receives a victory, the original predictions would be

increased. We use a temporal difference approach to revise the predictions.

4. Produce the training data: An instance includes features and target values.

We have already extracted the features in the playing stage, and get rewards

at the previous step. However, a contest can provide only a limited amount of

instances, so the playing stage would be repeated many times for more instances.

5. Train the training data: We choose LIBLINEAR (Fan et al., 2008) to train the

training data. LIBLINEAR is designed for large-scale classification and regression.

Two properties, large-scale data and linear kernel, are our core contributions, and

we will explain them later.
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6. Update the weights: After training we get the new weights. Because of using

a linear regressor we can update weights in linear time.

7. Terminate: The new agent has the new action model. If the reinforcement

learning is proper, the ability of the agent should be better. We set the stopping

criterion to control when the whole procedure should be terminated. For exam-

ple, in the board games, we can use the winning ratio as a stopping criterion.

However, the agent may never reach the targeted winning ratio, so a maximal

number of attempts is also used as a stopping criterion.

We explain more about core contributions of using large-scale data and linear sup-

port vector regression. Both TD-gammon and our method need large-scale data to

train the agent, but the key point is how to update the weights. We suggest to train

large-scale data and then update original weights by new weights. This setting is very

different from updating weights many times based on one instance. We think that con-

sidering many different situations can get more reliable results, and more data is more

beneficial. However, collecting large-scale data is time consuming. While collecting

data the agent uses its weights to predict what action should take. Thus, fast predic-

tion is also important. This is achieved by using linear kernel. With the help of these

two properties, our reinforcement learning system can deal with difficult problems in

acceptable time.

Because of these two properties, we call our method large-scale-data linear rein-

forcement learning. We would illustrate it with gomoku and discuss more detailed

issues in the following sections.
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2.2 Extracting Features

We mentioned that the representation issue is important. It is needed to design

a new representation which can represent various states in acceptable storage. TD-

Gammon just used stones’ positions as input, and claimed that it is a “knowledge-

free” approach. The reason is that besides positions it did not add any knowledge.

However, for increasing the ability, it still added some special features as inputs in

latter versions. Undoubtedly, more meaningful features are very helpful for learning.

Without meaningful features the situation is like we want an agent to walk but do not

give it any sensor.

2.2.1 Conditions and States

Figure 2.3: Some terminologies about gomoku.

Figure 2.3 shows some terminologies about gomoku. These terminologies are adopted

through common practice. Five means that five stones are in a row and victory. Open

Four means that four stones are in a row and both sides are empty; Half Four is like

Open Four but there is an opponent’s stone on one side. We also call these terminologies

conditions, and define a vector, state S, to record the conditions of a board.

Intuitively, we can record the number of the conditions in the state, but it is not

proper. For example, an Open Three just represents closing to win, but two Open Three

represents almost winning, so the weight of the latter should be larger than twice of the
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former. Some sample states are shown in Table 2.1. Every element indicates whether

one condition is happening or not.

For example, if there is an Open Four on the board, the value of the 5th element is

1; if there are a Half Four and two Open Three on the board, the value of the 8th and

the 12th element are 1. If a condition is not happening, the value is 0. Because there

are two players, we also need to record the opponent’s states.

Index Element meaning Index Element meaning
1 #Five is 0 10 #Open Three is 0
2 #Five is 1 11 #Open Three is 1
3 #Five is 2 12 #Open Three is 2
4 #Open Four is 0 13 #Half Three is 0
5 #Open Four is 1 14 #Half Three is 1
6 #Open Four is 2 15 #Half Three is 2
7 #Half Four is 0 16 #Open Two is 0
8 #Half Four is 1 17 #Open Two is 1
9 #Half Four is 2 18 #Open Two is 2

Table 2.1: Sample states.

2.2.2 A New Representation: Difference between States

We design a new representation method which is suitable for supervised learning.

We try to represent the action in the state as features. In last subsection, we define a

state S to represent a board, so in a contest, there are t states S1,S2, . . . ,St where t is

the step index, and all elements’ values are 0 or 1. We use the difference between three

states as features. In step j, we make features by differences between Sj−2,Sj−1,and

Sj. Notice that Sj−1 is controlled by the opponent. Because all elements’ values are 0

or 1, the combinations of differences could be {0, 0, 0}, {0, 0, 1}, . . . , {0, 1, 1}, {1, 1, 1}.

Thus, if there are N conditions in a state, the number of features is 8N .

By some examples, we explain the advantages of our representation method. There

are three advantages:
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1. It does not need to define actions, but can capture more slight changes.

2. It has deep consideration by using the information of previous states.

3. It reduces the storage but keeps profuse information.

First, in our example there is no need to define actions. In gomoku, the transition

from one state to the next state could change many conditions. Figure 2.4 is an

example, where from state S6 to state S7 many conditions are changed: Black achieves

an Open Three and a Half Three, and also defends White’s Open Three. Therefore, many

changes could happen at the same time, and it is hard to define an action including

so many changes. In our method, the difference between states exactly means action.

Table 2.2 shows that some features can be captured by our method. We can see that

every change has its meaning. We just focus on what conditions could happen, and

make more different conditions. Based on profuse conditions, we can capture slight

changes.

Table 2.3 shows the rough meaning of differences between three states. For example,

{0, 1, 0}means that a condition did not happen on my last turn, and the opponent made

it happen, but we cancel it again now. It implies the opponent want this condition

happen but we do not permit. We consider that preventing the opponent’s will is

defense.

Figure 2.4: An example of board transition.

Second, deep consideration. A disadvantage of an MDP model is that it considers
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Condition S5 S6 S7 Meaning for Black

Black’s #Open Three is 1 0 0 1 Achieves Open Three
Black’s #Half Three is 1 0 0 1 Achieves Half Three
White’s #Open Three is 1 1 1 0 Defends opponent’s Open Three
White’s #Half Three is 1 0 0 1 Lets opponent achieve Half Three
White’s #Open Two is 1 1 0 1 Lets opponent achieve Open Two
White’s #Open Two is 2 0 1 0 Defends opponent’s Open Two

Table 2.2: Some examples of three states of Figure 2.4.

Sj−2
i Sj−1

i Sj
i Meaning

0 0 0 Nothing change
0 0 1 Attack
0 1 0 Defense
0 1 1 Agree opponent’s action
1 0 0 Agree opponent’s action
1 0 1 Defense
1 1 0 Attack
1 1 1 Nothing change

Table 2.3: Rough meaning of the change of three states.

only the current state, but previous states may reveal important information. Figure

2.5 shows that the meaning of {1, 0, 1} and {0, 0, 1} are different. The conditions of

Black’s Open Three in case 1 are {1, 0, 1}, and in case 2 are {0, 0, 1}. Because White

must defend Open Three, Black still can attack by Half Four in both cases. However, if

we consider more deeply, Black has two choices of Half Four in case 1 but only one in

case 2. Thus, for Black, case 1 is more beneficial than case 2. A good strategy usually

needs many steps to achieve. Without the information of previous states it can hardly

be realized.

(a) Case 1: The difference is {1, 0, 1}. (b) Case 2: The difference is {0, 0, 1}.

Figure 2.5: Two cases of the differences of Black’s Open Three.
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Third, our approach reduces the storage but keeps profuse information. Our

method only needs three boolean arrays to record three states. The size of train-

ing data for LIBLINEAR is determined by the number of instances. We restrict the

number of instances to be less than 15, 000, and average number of non-zero features

of an instance is less than 50, so the training data is less than 10MB. The training

result, a set of weights, is also small and less than 1MB.

2.2.3 Trivial and Fractional Information or Strategy

Two famous strategies for gomoku are Victory of Continuous Four (VC4) and

Victory of Continuous Threats (VCT). VC4 is the continuing attack by Four until

victory. Because the opponent must defend Four, we can know the position where the

opponent will put stone. If we still can achieve Four again in our next turn, we can know

the next two actions of the opponent. It means that we can control opponent’s action

and develop a beneficial situation for us at the same time. VCT includes Double Three

and the step before VC4. The effect is very similar to VC4, and it also implies that

we can partially control the opponent. Both VC4 and VCT are excellent strategies for

searching. Currently high-level gomoku software also use them and can make a decision

quickly. However, the strategies are contributed by human but not computers.

In most cases we may not have a good strategy, but can get some trivial and

fractional information. This is a situation that we hope reinforcement learning can

help us. We want to show that even depending on trivial and fractional information,

reinforcement learning may already give good performance.

Of course we can add the features about VC4 and VCT just by spending more

learning time. More informative features are more helpful for learning. From our

viewpoint we do not add features such as VC4, VCT, or others. We hope our method

is a purely reinforcement learning method without any searching technique, and we
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want to show that combining many pieces of trivial information also can achieve a

competitive level.

2.3 Reward Value Evaluation

After a contest we collect a set of instances without reward value y. Notice that

half instances are opponent’s reactions so we discard them. Algorithm 1 is a temporal

difference reward algorithm. Here we write down it in a supervised learning form,

where w is the current weights of the agent and x is the whole instance, so wTxi

is the prediction of instance xi. If the result of the contest is a victory, we set a

positive value for the final reward; if the result is losing, we set an inverse value. k step

means examining the action by the rewards of next 1, . . . , k step. The discount rate

γ controls the future reward effect, and lets the effect of further reward be decreased

exponentially.

Algorithm 1 k-step temporal difference reward algorithm

• Given a set of one contest instances, assume the number of instances is L.

• Set the value of the final reward yL, the step of consideration k and the discount
rate γ.

• For i = L, . . . , 1

yi ← wTxi

yi ← (1− γ)yi + γyi+1 + . . .+ γkyi+k

In our experiments we set k to be four. Because the effect is exponential decreased

by steps, after four or five steps the effects are closed to zero. Figure 2.6 are two

updating examples of different γ. Black-font values are original prediction values.

Red-font values are updated with γ = 0.3, and blue-font are updated with γ = 0.1.

We can see that red-font values are changed aggressively, but with large-scale data, an
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Figure 2.6: An example of updating the reward value. The final reward of a victory is
1, 000. Red-font values are updated with γ = 0.3, and blue-font values are
updated with γ = 0.1.

aggressive update can quickly determine which features are beneficial and which are

harmful.

2.4 Training and Update weights

2.4.1 Settings of LIBLINEAR

Support vector regression (Vapnik, 1995) (SVR) is extend from SVM. The detailed

formula of linear SVR is

min
w

f(w) (2.9)

where

f(w) ≡ 1

2
wTw + C

l∑
i=1

ξε(w;xi, yi),

C > 0 is the regularization parameter, and

ξε(w;xi, yi) =

max(|wTxi − yi| − ε, 0) L1-loss (2.10)

max(|wTxi − yi| − ε, 0)2 L2-loss (2.11)

is the ε-insensitive loss function related with (xi, yi). Thus, if |wTxi − yi| ≤ ε the loss

is zero.
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The latest LIBLINEAR provides some solvers for linear SVR. We have tried many

parameters and solvers, and find out two special viewpoints in our case.

1. Regularization term is not beneficial for regression.

2. Absolute loss is not proper and unfair.

These two viewpoints are very different from our former experience. However, they do

not relate to reinforcement learning, so we did not research them deeply.

In SVM, regularization term enlarges the margin between instances with different

labels. Undoubtedly the concept is very successful, but it does not imply it is suitable

for SVR. We have tried many different values for C, and find out large C always is

better. Figure 2.7 are four examples of regularization term affects SVR. Large C means

the effect of regularization term is less, and with large C the curve is more fit to data.

If the curve is too smooth, like Figure 2.7a, it almost loses the purpose of regression

because of erroneous predictions. To avoid underfitting, we prefer selecting a large C.

It also can be explained by the weight of features. We hope SVR helps us to

determine which features are beneficial and which are harmful. If the differences of

weights are large it is more clear to distinguish. Regularization term is like gravity. It

attracts the value of every weight to zero, so every weight becomes close to each other

and contravene the purpose of SVR.

In our experiments, we set parameter C as a large number to decrease the effect of

the regularization term, but a large C may derive overfitting. For some features which

rarely appear in the training data, their corresponding weights could become very large

to fit target values. For example, assume there is an instance whose non-zero features

indexes are {2, 5, 7} and the target value is 1, 000. If feature indexes 5 and 7 appear in

many instances which have target values close to zero, the weights of these two features

are possibly small. If feature index 2 just appears once in the whole data, its value
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(a) Parameter C = 0.01 (b) Parameter C = 1

(c) Parameter C = 100 (d) Parameter C = 10, 000

Figure 2.7: An example of regularization term affects the SVR. The pictures are cap-
tured from LIBSVM (Chang and Lin, 2011) graphic interface, and the pa-
rameters are -s 3 -t 2.
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will be close to 1, 000 because of large C. Therefor, the weights of rare features are

unreliable. Thus, we delete the features which rarely appear in the training data.

Instance Target value Prediction wT
1 xi Prediction wT

2 xi
x1 1 1.2 200
x2 20 25 500
x3 500 600 1,200
x4 10,000 12,000 10,000
x5 50,000 65,000 50,000

L1-loss 17, 150.2 1,379
L2-loss 229, 012, 500.04 760,001

Relative-loss 6.15 229.4

Table 2.4: An example of different losses.

The lose term plays an important role in our case. We have tried L1-loss and L2-

loss SVR, but neither got good results. A strange phenomenon is that agents can take

a right action at the final stage, but at the primary stage they seem randomly play.

We checked the value of predictions and found out that, the predictions at the primary

stage are always many times greater than its target value.

Because the target values increase exponentially, the differences of them are very

large. The effect of absolute loss is very different for different scales of target values.

For example, a target value y1 = 1, 000 can endure a loss ξ = 10, but for a target value

y2 = 0.0001 a loss ξ = 10 is a disaster.

Table 2.4 shows four examples. There are five instances {x1,x2, . . . ,x5} and two

models, w1 and w2. Notice that we prefer large C in SVR, so we omit the value of

the regularization term. If we use L1 and L2 losses to evaluate these two models, w2

is better than w1. It means we just take care of the instances which have large target

values, and other instances can be discarded.

We consider that the loss should be proportional to the target value, so we design

22



a new loss function, relative loss.

ξε(w;xi, yi) = max(|w
Txi − yi
yi

| − ε, 0) (2.12)

Using relative-loss the effect of every instance becomes equal. In Table 2.4, we can

see that by evaluating the relative loss, w1 is better than w2. Further, parameter ε

becomes more meaningful. For L1-loss and L2-loss SVR, setting a proper ε is difficult.

Now it becomes ε-percentage-insensitive loss function. For example, if ε = 0.1, a target

value 1000 can tolerate the prediction in [1100, 900]; a target value 1 can tolerate the

prediction in [1.1, 0.9]. Besides, using a relative loss reduces the training time.

One issue of using the relative loss is that target values can not be zero. The loss

will be infinity, so we would replace the zero target value with a small value.

2.4.2 Update Weights

We define a terminology “generation” which represents how many times the weight

has been updated. Because of linear kernel, the new weight w∗ can be linearly combined

with the old weight:

wt+1 ← αw∗ + (1− α)wt (2.13)

where α is the learning rate, and t is the generation index. Linear combination is also

an advantage of linear kernel. If using a nonlinear kernel, combination will not be so

easy.

2.5 Prediction

Computer board games usually use searching techniques to simulate possible devel-

opments. After many plies searching must be stopped, and there must be a judgment

function to evaluate the score of the board. We completely only use the prediction of

SVR, so our prediction algorithm is simple and quick.
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The ε-greedy policy (Watkins, 1989) is used to explore unknown situations. It

randomly chooses a choice with probability ε and chooses the best with 1−ε probability.

We slightly modify an ε-greedy policy, that is to set a boundary to discard too bad

choices. We define y∗ as the value of the best choice, and accept a choice j which

satisfies |y∗ − yj| < 0.3|y∗|. Algorithm 2 is our method.

Algorithm 2 Boundary ε-greedy policy algorithm

• Assume p is the vector of all empty positions, and w is the current weights of
the agent.

• For j : every empty position of p

Put the stone at pj and extract the feature xj.

Calculate prediction yj = wTxj and remove the stone at pj.

• Discard too bad choices.

• Choose the best choice with probability 1− ε, or randomly choose an acceptable
choice.

Because calculating prediction yj = wTxj is very fast, time complexity of prediction

is determined by the time for extracting features. If extracting features takes O(F ),

time complexity of prediction is O(F ).
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CHAPTER III

Tournament Learning

Collecting large-scale data is hard. From a supervised learning viewpoint, we would

collect data via playing gomoku with human, but it is impractical.

First, it needs a lot of manpower and spends too much time. If we need only

thousands or tens of thousands of instances, we may collect data by playing with

human. However, reinforcement learning is a trial and error procedure, so it needs

new training data to revise the model. Totally it could need millions of instances, and

nobody can play gomoku so many times.

Second, it is hard to keep the quality of training data. A thought is that we can

design a web site and let many human players play with our agents. By this way

we may collect more data, but players may consist of experts, common players and

rookies. Results of our experiments show that competing with weak opponents can

not improve the ability of our agents. If we can not ensure human players are better

than our agent, more data will be useless.

In reinforcement learning, it often assumes that the environment would respond to

the agent’s actions. That is, we can unlimitedly collect data from the environment. If

the environment is real world or can be simulated, the concept is practicable. However,

in competitive games, like gomoku, the environment can not be simulated, because the

environment is exactly the opponent, another agent. If we simulate an agent which
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can play gomoku, it absolutely violates our purpose.

We consider the agent can improve the ability by competing with another agent.

Like we can learn by competing with peers, classmates, or opponents, and then they

also can learn by competing with us. By virtuous circle, we and our opponents all

become strong. If this concept works, we just wait and the agent will become an

expert without humans’ help.

A similar concept has been used in TD-Gammon. They called it self-teaching, or

self-play. In a self-teaching framework, there is only one agent to compete with itself,

but using an agent to represent two sides may not be appropriate. For example, in

gomoku, playing first and playing second are very different. Black can attack more

aggressively but White should focus on defense. Moreover, in some extra rules Black

can not win the game by achieving Double Three or Double Four, but White can.

We use two agents to represent two sides respectively, and design a framework so

that two agents can stably improve. Because the procedure continuously plays games,

we call it tournament learning.

3.1 Tournament Learning

Tournament learning is suited for competitive games with two competitors. It is

the result tested by many experiments. The framework is shown in Algorithm 3. First,

both agents randomly play with opponents and update weights. Second, choosing one

side to challenge its opponent until defeating the opponent. We define defeating by a

winning ratio greater than 0.75. If one side can defeat its opponent, we then choose

another side to challenge its opponent. Third, repeating the last two steps until one

side can not defeat another in enough attempts. The maximal number of attempts is

thus used as a stopping criterion. If one side can not defeat opponent in a maximal
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number of attempts, it may never defeat the opponent forever and we terminate the

whole procedure.

Algorithm 3 Tournament Learning for Gomoku

Given two agents {w0
B, w

0
W}, one represents Black and another represents White.

Initial {w0
B, w

0
W} = {0,0}, set maximum attempt M .

Choose w0
B randomly play with the opponent, then update w0

B to w1
B.

Choose w0
W randomly play with the opponent, then update w0

W to w1
W .

While true

For p = Black,White

Choose agent wtp to challenge the opponent.

While iteration < M

Challenge the opponent and update wtp to wt+1
p .

If defeat the opponent, break.

If the iteration reaches M , break whole procedure.

We use Figure 3.1 to illustrate the concept of tournament learning. There are two

agents Blue and Red, and from ape to human there are five levels, Blue1 to Blue5 and

Red1 to Red5. The bold arrows mean their evolutions, and the thin arrows mean the

opponent they compete with. At initial stage, they are weak. The procedure starts

from that Blue1 challenges Red1. After a few generations, Blue1 becomes stronger and

evolves into Blue2. Blue2 has a good ability to overwhelm Red1, and then Red1 turns

to challenge Blue2. After a few generations, Red1 also becomes stronger and evolves

into Red2. By repeating these steps, finally, Blue and Red both have great abilities and

evolve into humans.

3.2 Chaos Learning, Degeneration and Huge Gap

There are four parameters related to tournament learning. They are
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Figure 3.1: Tournament learning.

N : Number of instances.

R: Alternant ratio.

M : Maximal number of attempts.

n̄: Number of non-zero features.

These four parameters are very important in tournament learning, and we will discuss

them in this section. In fact, it is not easy to realize tournament learning, and after

many experiments we find out three failed cases. They are chaos Learning, degeneration

and huge gap.

The first case is chaos learning, illustrated with Figure 3.2a. For tournament learn-

ing, it must guarantee that the agent has a reliable learning ability. If the agent does

not, it even can not defeat current opponent. In our reinforcement learning method,

a reliable learning ability depends on detailed features and N . Features like sensor,

eye or ear, provide the information in the environment; instances like experiences, and

consider more experiences together is better. Thus we need to make profuse features

and set a large N to guarantee the learning ability.

28



Even with a large N , a low alternant ratio R can lead to chaos learning. For a

low R, like R = 0.3, when the winning ratio of one side is 0.5, the winning ratio of

another side also is about 0.5. Because both winning ratios are greater than 0.3 , they

train alternately. We consider that learning from an opponent with the same ability

as ourself can give us only limited knowledge. The reason is that if the opponent is

not strong, winning the game may not mean we make good choices. It is very possible

that the opponent makes mistakes, so the data of this game are noise. The noise will

let the agent take bad actions but still can win the game. Next turn the opponent will

also learn wrong information from the agent. It is a vicious circle, and let the learning

become chaos and slow.

(a) Chaos Learning.

(b) Degeneration. (c) Huge gap.

Figure 3.2: Two special cases of tournament learning.
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The second case is degeneration, illustrated with Figure 3.2b. While we defined

the defeating opponent, we had considered that the agent should defeat more than one

opponent. Otherwise, overfitting may occur. However, we found out the performance

may become worse, because we play with some weak opponents. To confirm it, we

design an experiment that let a strong agent always learn from a weak agent. The

result is, although the strong agent always can defeat the weak agent, its ability does

not improve. For example, a professional basketball player always plays with a child.

He can easily defeat a child, but after a long time he will forget his skills. Thus, keeping

the quality of opponents is very important. Bad opponents are harmful for learning.

The third case is huge gap, illustrated with Figure 3.2c. It is a reversed case of

degeneration. In the beginning of this chapter, we have mentioned that collecting data

via playing with human is not proper. When the agent is weak, defeating human is

very difficulty and it would collect a data which all instances with a negative reward.

Next generation, it still collects a data which all instances with a negative reward. No

matter what actions it takes, it always receives bad rewards, so it can not find out a

good model. After a few generations the model will collapse, because all weights are

negative and close to the final reward.

Nonetheless, if the agent has a very powerful learning ability, it could avoid the

situation. However, a powerful learning ability depends on a large N , so collecting

data via playing with human is still hard to realize.
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CHAPTER IV

Experiments

4.1 Conditions and Settings of Experiments

The ability of an agent is very related to features. To defeat human expert, the

agent needs large and detailed conditions. Because we make hundreds of conditions,

we just describe them roughly. There are five types of conditions:

1. Fundamental conditions: Fundamental conditions are shown in Figure 2.3. How-

ever, we slightly revise it. We prefer a condition which is greater or less than a

number not equal to a number. For example, we would like use a condition like the

number of Open Three is greater than zero, but not equal to zero.

2. The threats of one occupied intersection: The threats mean some threatening

conditions, like Open Three, Half Four and Open Four. An intersection has four

directions, so some intersections may have more than two threats, like Double Three,

Double Four and Four Three. These intersections are critical.

3. The threats of one empty intersection: Some empty intersections where we

put a stone can achieve the conditions of type 2, They are also critical, because we

must prevent that the opponent achieves these conditions.
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4. The positions during primary stages: Most intersections are empty during the

primary stage, so the conditions are fewer. Position is the rare information we can

use. It also called “chess opening”, but ours is simpler. In first three steps, the

stone in the square consist of (6, F ), (6, J), (10, F ), (10, J) is a condition, and else

the square consist of (4, D), (4, L), (12, D), (12, L) is another condition, and else is

another.

5. Manual link above conditions: Some conditions could change its weights if

other specific conditions happen. For example, Open Three is a positive condition,

but if the opponent has already achieved Half Four, we must defend Half Four first.

Thus, the weight of Open Three would decrease in this case. If we add a new

condition which includes these two conditions, the new condition will help Open

Three to keep its positive weight. This method is very like low-degree polynomial

data mappings (Chang et al., 2010), but to restrict the number of features we only

link the important conditions manual.

To avoid overfitting, after collecting data, we delete the features which rarely appear.

We delete the features whose numbers of appearances is less than 5. Because the agent

has different strategies at different generations, the numbers of non-zero features n̄ are

different. Average n̄ are between 2, 000 to 2, 500. Number of instances N and alternant

ratio R are variables, and we will try some combination in experiments. The reward

function is fixed. We set k to be four and γ to be 0.3. In order to make observation,

we do not set the maximal number of attempts and the procedure is stopped manually

when achieving our purpose.

The parameters of LIBLINEAR are fixed. Although different parameters could affect

the performance, we would like to focus on reinforcement learning rather than super-

vised learning. We use relative loss and the parameters are -p 0.1 -c 100, 000, 000, 000
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-B 0 -e 50.

4.2 Episode of Tournament Learning

In this section, we examine the episode of tournament learning. Figure 4.3 is the

results. The x-axis is the generation and y-axis is the wining ratio. The alternant

point means that one side defeats the opponent and take turns to train, so after an

alternant point the agent should face a stronger opponent.

Figure 4.1a and Figure 4.1b use N = 15, 000 and R = 0.75. They respectively

represent result of Black and White. It is an ideal tournament learning. We can see, for

a fixed opponent, our reinforcement learning works very well. Both sides can increase

their ability very stably. During the whole procedure, there are only three alternant

points on Black’s side, and after Black’s 16th generation White can not defeat Black.

The learning rate will be slower after a few alternant points, because the ability of the

opponent is stronger. It also means that the set of features reaches its limitation. If

we want to increase the ability of the agent, we need to add more useful features.

We examine the variable N . We have mentioned that large-scale data is one of

our core contributions. Figures 4.1c and 4.1d are the evidences. The parameters are

N = 500 and R = 0.75. We can see the figure is very zigzag, and it means the learning

is unreliable. When one side defeats the opponent, we are unsure if it happens by

chance or not. Therefore, for stable learning, large-scale data is essential.

Figure 4.2a and Figure 4.2b are another pair of tournament learning. The param-

eters are N = 1, 500 and R = 0.3. The result shows that after few alternant points

they train alternately. It could lead to chaos learning. Another disadvantage is that

with lower R, it is difficult to decide M , the maximal number of attempts.
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(a) N = 15, 000 and R = 0.75, Black’s episode.

(b) N = 15, 000 and R = 0.75, White’s episode.

(c) N = 500 and R = 0.75, Black’s episode.

(d) N = 500 and R = 0.75, White’s episode.

Figure 4.1: Episode of tournament learning.
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(a) N = 15, 000 and R = 0.3, Black’s episode.

(b) N = 15, 000 and R = 0.3, White’s episode.

Figure 4.2: Episode of tournament learning.

4.3 Competing against Unfixed Opponents

Notice that in tournament learning, the agent faces to a fixed opponent, and we

want to ensure that the ability still increases stably when facing different opponents.

Unfortunately, there is no standard to evaluate the level of gomoku, so we choose four

Black agents to be targets. They are trained by tournament learning with parameters

N = 15, 000, R = 0.75, k = 4, γ = 0.3, and the generations of 5, 7, 10, 15.

We examine the winning ratio of every generation of White, and every generation

competes with four targets 50 games respectively. Figure 4.3 shows the results of

comparison between different N and R. The x-axis is the generation of White and

y-axis is the wining ratio.

We can see that when facing different opponents the figure fluctuates more, but the

ability still stably increases. Figures 4.3a, 4.3b and 4.3d are corresponding to Figure

4.1b, 4.2b, 4.1d. We can see the agent trained by ideal tournament learning gets the
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best performance (Figure 4.3a). Although the final average winning ratios in Figure

4.3a and Figure 4.3b are almost the same, the accumulated value of generations are

16 + 45 = 61 and 37 + 45 = 82, so actually Figure 4.3a is 1.3 times faster than Figure

4.3b. It implies that with a lower R and a large N , the agent still can improve its

ability to a strong level, but it takes longer time.

Comparing the winning ratio against Black05 between Figures 4.3a and 4.3b, we

find out something interesting. Black05 is a weak agent, so after few generations White

should overwhelm it. It happens in Figure 4.3a but dose not in Figure 4.3b. Because

in Figure 4.3a, the Black agent learns stiff basic concepts in the primary stage, White

agent can get correct information without noise. Actually Figure 4.3b is close to chaos

learning. White agent always gets noisy data, but with large N it still can increase the

ability stably.

With a larger number of training data N the winning ratio increases more stably,

but it seems unnecessary to set a too large N . The agent trained by parameters

N = 5, 000, R = 0.75 can achieve 0.7 average winning ratio at 40 generations, but

spending the same time the agent trained by parameters N = 15, 000 and R = 75 is

just at generation 13, and winning ratio is just about 0.5. It is a trade-off between

time and stabilization. Empirically, the parameter N at least should be large than 3n̄.

4.4 Experiments of Degeneration and Huge Gap

Figures 4.4a, 4.4b, 4.4c are three experiments of huge gap. Three agents directly

learn from a strong opponent, Black15. The learning ability depends on the number of

instances N , so the agent in Figure 4.4a has the best learning ability, and the agent

in Figure 4.4c has the worst. Because their learning abilities are different, huge gap

only happens in Figure 4.4c. We can see the model absolutely collapses after 100th
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(a) N = 15, 000 and R = 0.75,

(b) N = 15, 000 and R = 0.3,

(c) N = 5, 000 and R = 0.75,

(d) N = 500 and R = 0.75,

Figure 4.3: The performance when facing different opponents.

generation in Figure 4.4c.

Figure 4.4d is the experiments of degeneration. To distinguish from chaos learning,

we set the agent to have a powerful learning ability, N = 15, 000. In the first 45
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generations, it directly learns from Black15, and in the rest 45 generations it learns

from Black05. We can see that after 45th generation, the agent overwhelms Black05

and the winning ratio almost reaches 100%, but the winning ratio against Black15 and

Black10 decreases. Fortunately, although the degeneration really happens, it dose not

happen suddenly.

4.5 The Gomoku Game

We design a Java applet to demonstrate the abilities of our agents. It is available

at http://www.csie.ntu.edu.tw/~r97144/TL/TL_v01.html.
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(a) N = 15, 000, White agent directly learn from Black15.

(b) N = 5, 000, White agent directly learn from Black15.

(c) N = 500, White agent directly learn from Black15.

(d) N = 15, 000, White agent directly learn for Black15 in first 45 generations, and learn from Black05

in rest generations.

Figure 4.4: Degeneration and huge gap
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CHAPTER V

Conclusions and Future Work

In this thesis, we use the modern techniques of supervised learning to improve the

ability of reinforcement learning. Past reinforcement learning just can deal with easy

problems. Our method can deal with complex problems like gomoku, and without

any searching technique it achieves a competitive level. It implies our method has a

powerful learning ability. We also realize tournament learning, and by experiments we

see some interesting observations.

Our work is just a preliminary study. There are many future works which have

great potentials.

1. Add short searching feature. In the thesis, to proof our method is a pure rein-

forcement learning, we discard any search features. However, if we add some such

features, the agent’s ability will be greatly increased.

2. Solve the problem that can not be solved by searching. In board games, go is

the hardest problem. Using searching techniques becomes impractical because the

search tree is too huge. Our method is more like human brain, because it estimate

every step by conditions or trends.

3. It can be parallelized easily. The bottleneck of our method is collecting data. For-

tunately, collecting data can be parallelized. Figure 5.1 is the framework. The root
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computer transits two agents’ model to leaf computers, and then every leaf com-

puter starts to collect data. Finally, the root computer collects data from all leaf

computers and trains the whole data. After updating the agent’s model, we repeat

the above steps. If we can collect more data in acceptable time, we can add more

features, and the learning ability will be greatly increased.

Figure 5.1: The framework of parallel processing.
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