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ABSTRACT

Reinforcement learning has been a promising research topic. However, until now
it almost stays at an initial stage. Even the most successful case, TD-Gammon also
needs assisted by searching techniques. We design a new method to improve the
learning ability of reinforcement learning. The core contributions are using large-scale
data and linear support vector regression. In addition, we discuss that could two
agents improve their abilities by competing with another. We call this framework
as tournament learning. These two concepts would be illustrated with gomoku. The
results, our agents, achieve a competitive level, and it implies our concepts are available
and practical.

KEYWORDS: Large-scale data, Linear supportvector regression, Reinforcement Learn-
ing, Tournament Learning, Gomoku. 1+ =
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CHAPTER 1

Introduction

Reinforcement learning (Kaelbling et al., [1996; |[Sutton and Barto, 1998) has been a
promising research topic, because its purpose is very general. The framework is to train
an agent in an environment, and then the agent can take proper actions while facing
different situations. TD-Gammon by Tesaurq:-_(1992, 1995) could be the most successful
case. It is a computer backgammon trained by & reinforcement learning method, and
achieved a level closing the human Wogld;.‘:;h:f;gmpion. f’eople hope such successful cases
of reinforcement learning also can'be ;clmi)ph@d ixl? ::other purposes, like automatic driving,
robot or other things human can do }ilé)wever, él!n-t_ﬂ now, reinforcement learning almost
stays at an initial stage. Although it'is Widel.y used in many fields, it only has puny
ability and usually must be assisted by other methods. Even TD-Gammon also used
searching techniques. Actually, we do not see any real strong cases yet so we have
doubts about its ability.

Unlike reinforcement learning, supervised learning has been well developed. One
useful tool that we will use is support vector machines (Boser et al.| [1992), which use
kernel tricks to map data to high dimensional spaces for separating data. Recently,
two properties, large scale data and linear kernel are promoting. Many studies such

as Hsieh et al. (2008); Joachims| (2006)); [Keerthi and DeCoste (2005); Shalev-Shwartz

et al.| (2007) showed in large scale data linear kernel can achieve almost the same



accuracy as nonlinear kernels, but much reduces training time and prediction time.

Past reinforcement learning has been helped by supervised learning. The issue of
representation is a hard problem of reinforcement learning. Markov decision process
(MDP) Bellman| (1957) is a typical model to record the information, but it is impossible
to build a huge lookup table for complex problems. TD-Gammon using neural networks
to simulate the situations in backgammon, but the performance of neural network may
indirectly affect the ability of reinforcement learning.

In this thesis, we invent a new representation method for the difference between
states. It is very simple, and can record a lot of information in tiny storage. With
profuse information we use the modern concepts, large-scale data and effective lin-
ear regression to greatly increase the ability of reinforcement learning and reduce the
training time. We will illustrate‘our tiew methodwith a board game, gomoku. We
also discuss a learning framework; tou_r_name_nt learning. It is a framework used in
the situation without a teacher knovv;ng‘"_":h&;wvI to improve the ability of competitors.

| .

Finally, experiments show our method is -"St'abllé and fast. More importantly, without
. i1 i 1

any searching technique our gomoku agents can achieve a competitive level.

1.1 Gomoku and Backgammon

Two board games, gomoku and backgammon will be discussed in this thesis. To

clearly understand this thesis we introduce them briefly here.

1.1.1 Gomoku

Gomoku, also called Five in a Row, is a board game. Two players compete on a
15 x 15 board, shown in Figure One side owns black stones while another owns
white stones. The player owning black stones plays first. Then both sides alternately

put a stone on an empty intersection. The player that first achieves an unbroken row of



five or more stones horizontally, vertically, or diagonally is the winner. For convenience,
we call the player who plays first Black, while the other White. Because Black plays
first, it has a big advantage. To make a fair game, there are many extra rules, like
Renju International Federation (RIF), Sakata rule, Yamaguchi rule and others. To
keep easy we use the original rule, and restrict that the first stone must be put at the

center of board, (8, H).

We choose gomoku because it is . A new player can quickly understand
the rule, and become familiar in few games. Although the rule is simple, gomoku is very
profound. For common human players, defeating current high-level gomoku software is
very hard. It means gomoku is not an easy problem. Past reinforcement learning have

not successfully solved a difficult problem like gomoku, so we use it to demonstrate the

ability of our method.

1.1.2 Backgammon

There are many variants backgammons. Here we introduce the simplest version.

Figure[l.2)is a backgammon board, and it is also the initial setting at the opening stage.



Each player has 15 stones, and there are 24 triangular cells on the board. Two players
roll a die to determine who plays first. White side moves stones counterclockwise and
red side moves stones clockwise. At every step a player rolls two dices to decide the
number of moves. The special case is player can move stones four times for the same
number. For example, if the player rolls a 5 and a 3, he can move his any stones 5
steps to a legal position and repeat the action for 3 steps; if the player rolls two 3, he

can move any stones 3 steps four times.

13 141516 1718 19 20 21 22 23 24

4

Figure 1.2: A backgammon board.

A legal position is an empty cell or a blot. A blot is a cell occupied by one opponent’s
stone. If a player moves his stone to a blot, opponent’s stone will be removed out of
the board, and this stone must restart from beginning. Notice that if there are any
stones out of board, we must move them into the board first or we can not move any
stones on the board. Therefore, sometimes we can not move any stones if the opponent
occupies our aim.

It is needed to move all stones to the last six cells, and then allowed removing the



stones out of the board. The player who first removes all stones out of the board is

the winner. The winner would get different scores for different cases:

Backgammon: The opponent does not remove any stones out of the board, and

lefts some stones at the first six cells.
Gammon: The opponent does not remove any stones out of the board.
Normal victory: Other situations.

The winner can get 3 scores for Backgammon; 2 scores for Gammon and 1 score
for normal victory.

Because of rolling dice, luck is an important factor in backgammon. Compared
to other board games strategies mayinot be that effective. Even an expert could be

defeated by a rookie.



CHAPTER 11

Large-scale Data and Linear Reinforcement
Learning

2.1 Background

2.1.1 Reinforcement Learning

Reinforcement learning is a trial and error procedure. It uses an agent to explore
an environment. When an agent, takes‘an actionin, a state, it would receive the reward.
According to the reward it reconsiders :‘.[I;I:u_iﬁgclztion. Next time the agent can make a
better decision by this experience: Markolif dedision ‘process (MDP) is used to record
the information (Bellman) 1957;.Kae!lbling et .z;l"., 1996; Puterman, [1994; Sutton and
Barto, 1998; |White|, [1991)). An MDP“eonsists of four tuples (S, A, P.(-,-), R.(+,-)),

where
1. S is a finite set of states.
2. A is a finite set of actions.

3. P,(s,s') is the probability that action a in state s at time ¢ will lead to state s’

at time ¢ + 1.

4. R,(s,s') is the immediate reward.



A policy 7(s,a) = Pr(a; = als; = s) is a mapping function from states to actions.
There are two types of the value function. The first one is the state-value function:
V7™(s) = Ex[R¢|s: = s|, which means that from state s; following the policy can get
expected reward R;. R; = Z;;th rr is the total reward from time ¢ until reaching the
terminal state at time 7. In order to avoid that future feedback affects the immediate
reward aggressively, there is a discount factor v, 0 < 7 < 1, so the expansion of the

state-value function is
V™(sy) = T4 + Yrep1 + Vriga + ... (2.1)
where r; is the reward at time ¢. The second value function is the action-value function:

Q"(s,a) = E[R[s; = s,a; = d (2.2)

It differs from the first one by emphasizihg the action to take.

The goal of reinforcement léarning-is finding the.best policy 7* to maximize the

~ 1 Fa

value of every state. That is, I ..-"‘;- ,
RN £
a= || f
V() :J! max V7 (s)/Vse S (2.3)
or
Q*(s,a) =max@Q"(s,a),Vs € S,a € A (2.4)

Two famous reinforcement learning methods, temporal difference (TD) learning by
Barto et al.| (1989) and Q-learning by Watkins (1989)), solve these two types of opti-
mization problems respectively. The basic TD learning, TD(0), uses (2.5 to update

the value of the current state by the value of the next, where « is learning rate.
Vi(st) <= V(st) + afrerr £V (se41) — V(se)] (2.5)
The update rule in (2.2)) is very similar.

Q(sp.a¢) < Q(5¢,8¢) + are1 + ’Yméix Q(8t41,a) — Q(s4, ar)] (2.6)



Although there are many research works about reinforcement learning, successful cases
are rare. Most applications are simple toys like maze (Dayan and Hinton, 1993)), soccer
(Littman, |1994)), elevator dispatching (Sutton and Barto| [1998), cart-pole swing-up
(Doyay, [2000) and crawler robot (Tokic et al., [2009). TD-Gammon may be the most
successful case in reinforcement learning, even though it used searching techniques for

prediction. Therefor, the research of reinforcement learning is still at an early stage.

2.1.2 Supervised Learning

Assume we have a set of training data {(x1,41), (€2,v2), ..., (x;,y;)}, where every
instance consists of features a; and label y;. Supervised learning finds a function
g: X — Y, where X is the feature space and Y is the label space. If the label is
discrete, it is called classification; if the labe_l_is continues, it is called regression. One
popular supervised learning tool is"support Vle!;:tor machine (SVM) (Boser et al., 1992).

For classification the following optlmlza,tlon problem is solved.

rmnf FLL w+CZ§ w;x;,Y;), (2.7)

where ; € R", y; € {—1,+1}, §(w;a:j,yj) is'a loss function, and C € R is a penalty
parameter.

Feature space can be mapped into a high-dimensional space by a nonlinear function.
Using the technique usually can increase the accuracy. Recently researches on linear
classification without using mapping functions have been promoted. For large-scale
sparse data the performance of linear kernel is close to nonlinear kernel, but training
time and predicting time both are much reduced.

The great ability of supervised learning is collecting fractional information to pre-
dict. It has been used in classification, regression, and ranking successfully. If training

data is proper and enough, currently supervised learning tools can get excellent re-



sults. However, existing research is often restricted these three applications. We think
that supervised learning can be extended to other applications, where reinforcement
learning may be a possible choice. Using modern supervised learning techniques, the

ability of reinforcement learning may be improved.

2.1.3 The High-Level Idea

The ability of past reinforcement learning is restricted by the representational issue

(Tesauro, [1992). The simplest way is recording every MDP discretely, but there is

no sufficient memory to store the huge lookup table. Further, it is impossible to go
through every MDP, so the agent can not take a correct action while encountering

unknown states.

1 If\-_)\ prediction:
no. of White 2 |\_:)| — y=P: +2Pz2—P:-2Pa

= )

oncell 1 Py b
‘*7 1\_/1 estimated probabilities:

#>3 I‘H_.f'l —

) ) P:= pr(White wins)
2 x 24 cell o '\_)—3' P:z= pr{White gammons)
x 24 cells
— : { ———= Ps=pr(Black wins)
_ |L_/‘_I . e
P (s Pa=pr{Black gammons)
W/ ()
EEF- E:a?z n '-'\:,'J 4 output units
andwho 7 IT/J
moves ()
O
L ,f\;’
198 inputs

Figure 2.1: The TD-Gammon network. Hidden and output units are sigmods, and
learning rate: a = 0.1; initial weights are set randomly between —0.5 and
0.5.

In earlier works, neural networks have replaced with the lookup table. Using neural

networks can simulate MDPs by fewer inputs. We briefly introduce how TD-Gammon



used Backpropagation Networks (Nilsson, [1996) to implement reinforcement learning,.
Figure shows the rough network structure. The updating rule of weights w which

combines TD()\) with backpropagation is

t

Aw; = 04(?Jt+1 - yt) Z A

k=1

Yk

= (2.8)

where A\ is the discount factor, « is the learning rate, and y, is the prediction at time
t. With A = 0.7, = 0.1 after about 200,000 games, TD-Gammon can win 66.2% of
10,000 games against SUN Microsystems Gammontool (Nilsson|, [1996).

Although neural networks can reduce the storage, however, the slow convergence is
another issue. Equation ([2.8]) shows that the update of weights is just depended on few
data. It is not reliable because the agent could change its policy aggressively after just
few games. Hence, even TD-Gammon:still needs to use searching techniques. It also
implies neural network may not.be the best Way t'c.) implement reinforcement learning.

We propose a new and simpler relnfqgﬁmbnt learning system which tries to solve
these issues. We use Support Vector ]T»légrétssw?.l(SVR) by Vapnik| (1995]) to implement
reinforcement learning. We treat each MDP as ‘a feature and each reward value as a

target value. The framework is shown in Figure 2.2, It includes seven independent

parts:

1. Extract the features: Extracting the features is like observing the environment
for the agent; more detailed information is more beneficial, but we also need to

consider the issue of storage.

2. Predict: The agent has its weights. In linear regression, the weights are coef-
ficients of the corresponding features. Therefor, the prediction is just the inner
product of features and weights. We call last part and this part as the playing

stage. The agent extracts features, and then uses its weights to determine what

10



Do not satisfy stopping criterion

Playing Stage

E Updat:
xiract . pdate
Features ‘ Predict ‘ Weights

Satisfy stopping
The stage is continued criterion
Data are not Receive the
enough result Train .
ta Terminate
Produce

Training Data

Training Da
Evaluate -
Rewards

Collect enough data

Figure 2.2: The framework of the reinforcement learning.

action it should take in the environment.

3. Evaluate the rewards: Aﬁ:ﬁr theplayi
& X

P
from the environment. A¢go
&

d‘g%‘mes, the agent would receive
B~ Py |
a victory or a losing. I-fi?{ Tece es‘% icto prgﬁef'original predictions would be
L N3 R 4

. z) % ~ o 3 - . . .
increased. We use a tempor : » oach to revise the predictions.

4. Produce the training data: An instance includes features and target values.
We have already extracted the features in the playing stage, and get rewards
at the previous step. However, a contest can provide only a limited amount of

instances, so the playing stage would be repeated many times for more instances.

5. Train the training data: We choose LIBLINEAR (Fan et al., |2008) to train the

training data. LIBLINEAR is designed for large-scale classification and regression.
Two properties, large-scale data and linear kernel, are our core contributions, and

we will explain them later.

11



6. Update the weights: After training we get the new weights. Because of using

a linear regressor we can update weights in linear time.

7. Terminate: The new agent has the new action model. If the reinforcement
learning is proper, the ability of the agent should be better. We set the stopping
criterion to control when the whole procedure should be terminated. For exam-
ple, in the board games, we can use the winning ratio as a stopping criterion.
However, the agent may never reach the targeted winning ratio, so a maximal

number of attempts is also used as a stopping criterion.

We explain more about core contributions of using large-scale data and linear sup-
port vector regression. Both TD-gammon and our method need large-scale data to
train the agent, but the key point is how toipdate the weights. We suggest to train
large-scale data and then update original Weights'l.oy new weights. This setting is very
different from updating weights many tm:gﬁ,bzised on gne instance. We think that con-
sidering many different situations caq get 1HoTe ,rehable results, and more data is more

3 1
beneficial. However, collecting la,rge—scale data is time consuming. While collecting
data the agent uses its weights to prediet'what action should take. Thus, fast predic-
tion is also important. This is achieved by using linear kernel. With the help of these
two properties, our reinforcement learning system can deal with difficult problems in
acceptable time.

Because of these two properties, we call our method large-scale-data linear rein-

forcement learning. We would illustrate it with gomoku and discuss more detailed

issues in the following sections.

12



2.2 Extracting Features

We mentioned that the representation issue is important. It is needed to design
a new representation which can represent various states in acceptable storage. TD-
Gammon just used stones’ positions as input, and claimed that it is a “knowledge-
free” approach. The reason is that besides positions it did not add any knowledge.
However, for increasing the ability, it still added some special features as inputs in
latter versions. Undoubtedly, more meaningful features are very helpful for learning.
Without meaningful features the situation is like we want an agent to walk but do not

give it any sensor.

2.2.1 Conditions and States

w Five M Open Four M Open Three
I
“ Open Two * Open One _\Tw Half Four
| I I
- Half Three ' “ Half Two ' * Half One
- 000 i i

Figure 2.3: Some terminologies about gomoku.

Figure[2.3|shows some terminologies about gomoku. These terminologies are adopted
through common practice. Five means that five stones are in a row and victory. Open
Four means that four stones are in a row and both sides are empty; Half Four is like
Open Four but there is an opponent’s stone on one side. We also call these terminologies
conditions, and define a vector, state S, to record the conditions of a board.

Intuitively, we can record the number of the conditions in the state, but it is not
proper. For example, an Open Three just represents closing to win, but two Open Three

represents almost winning, so the weight of the latter should be larger than twice of the

13



former. Some sample states are shown in Table 2.1} Every element indicates whether
one condition is happening or not.

For example, if there is an Open Four on the board, the value of the 5th element is
1; if there are a Half Four and two Open Three on the board, the value of the 8h and
the 12th element are 1. If a condition is not happening, the value is 0. Because there

are two players, we also need to record the opponent’s states.

Index | Element meaning | Index | Element meaning
1 #Five is 0 10 #Open Three is 0
2 #Five is 1 11 #0Open Three is 1
3 #Five is 2 12 #0Open Three is 2
4 #0Open Four is 0 13 #Half Three is 0
5 #Open Four is 1 14 #Half Three is 1
6 #0Open Four is 2 15 #Half Three is 2
7 #Half Four is 0 16 #0Open Two is 0
8 #Half Four.is'1 17 #Open Two is 1
9 #Half Four.is 2 ~18 #0pen Two is 2

Table 2,1. Sample states.

| —
=

2.2.2 A New Representation: ]jiﬁ'e.ll‘;:'enc_e between States

We design a new representation méthod which.ds suitable for supervised learning.
We try to represent the action in the state as features. In last subsection, we define a
state S to represent a board, so in a contest, there are ¢ states S', §2,..., 8" where t is
the step index, and all elements’ values are 0 or 1. We use the difference between three
states as features. In step j, we make features by differences between §772, 87~ and
S7. Notice that 877! is controlled by the opponent. Because all elements’ values are 0
or 1, the combinations of differences could be {0,0,0},{0,0,1},...,{0,1,1},{1,1,1}.
Thus, if there are N conditions in a state, the number of features is 8/V.

By some examples, we explain the advantages of our representation method. There

are three advantages:

14



1. It does not need to define actions, but can capture more slight changes.
2. It has deep consideration by using the information of previous states.
3. It reduces the storage but keeps profuse information.

First, in our example there is no need to define actions. In gomoku, the transition
from one state to the next state could change many conditions. Figure is an
example, where from state S° to state S” many conditions are changed: Black achieves
an Open Three and a Half Three, and also defends White’s Open Three. Therefore, many
changes could happen at the same time, and it is hard to define an action including
so many changes. In our method, the difference between states exactly means action.
Table [2.2| shows that some features can be captured by our method. We can see that
every change has its meaning. We.just I'focﬁé' on what conditions could happen, and

make more different conditions; Based.on profuse ‘conditions, we can capture slight

B ) P
— |
changes. | ' < | 'I
m i :
Table[2.3|shows the rough meaginé Lf dqi'fferﬁﬁllces between three states. For example,
@\ | ;

{0, 1,0} means that a condition did 1ot happen on my last turn, and the opponent made
it happen, but we cancel it again now. It implies the opponent want this condition
happen but we do not permit. We consider that preventing the opponent’s will is

defense.

w

ne T
i i [T
S S S

Figure 2.4: An example of board transition.

Second, deep consideration. A disadvantage of an MDP model is that it considers

15



’ Condition ‘ s> §¢ 87 ‘ Meaning for Black ‘
Black’s #0Open Threeis1 |0 0 1 | Achieves Open Three
Black’s #Half Three is 1 0 O 1 | Achieves Half Three
White’s #0pen Threeis 1 | 1 1 0 | Defends opponent’s Open Three
White’s #Half Threeis1 |0 0 1 | Lets opponent achieve Half Three
White’'s #0pen Twois1 |1 0 1 | Lets opponent achieve Open Two
White’'s #0pen Twois2 |0 1 0 | Defends opponent’s Open Two

Table 2.2: Some examples of three states of Figure |2.4]

’5‘5_2 S~ 87 | Meaning ‘

0 0 0 | Nothing change

0 0 1 | Attack

0 1 0 | Defense

0 1 1 | Agree opponent’s action
1 0 0 | Agree opponent’s action
1 0 1 | Defense

1 1 0 | Attack

1 1 1 | Nothing change

Table 2.3: Rough meaning of the change of three states.

only the current state, but previous states may reveal important information. Figure
shows that the meaning of {10, Hf a'{’l'(fl' {I(] 0, 1} are different. The conditions of
Black’s Open Three in case 1 are:{1, b 1} and in"case 2 are {0,0,1}. Because White
must defend Open Three, Black stiﬂ can attack by Half Four in both cases. However, if
we consider more deeply, Black has two choices of Half Four in case 1 but only one in
case 2. Thus, for Black, case 1 is more beneficial than case 2. A good strategy usually

needs many steps to achieve. Without the information of previous states it can hardly

be realized.

SR I S e

D] b b 3 | JiAlE |

(a) Case 1: The difference is {1,0,1}. (b) Case 2: The difference is {0,0,1}.

Figure 2.5: Two cases of the differences of Black’s Open Three.
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Third, our approach reduces the storage but keeps profuse information. Our
method only needs three boolean arrays to record three states. The size of train-
ing data for LIBLINEAR is determined by the number of instances. We restrict the
number of instances to be less than 15,000, and average number of non-zero features
of an instance is less than 50, so the training data is less than 10MB. The training

result, a set of weights, is also small and less than 1MB.

2.2.3 Trivial and Fractional Information or Strategy

Two famous strategies for gomoku are Victory of Continuous Four (VC4) and
Victory of Continuous Threats (VCT). VC4 is the continuing attack by Four until
victory. Because the opponent must defend Four, we can know the position where the
opponent will put stone. If we still can achievg_ Four again in our next turn, we can know
the next two actions of the opponent.«It meatr.ls that we can control opponent’s action
and develop a beneficial situatioﬁ for us at thé. same time. VCT includes Double Three
and the step before VC4. The effectIxF Vqry sumlar to VC4, and it also implies that
we can partially control the oppomenﬁI | Both V'C4 and VCT are excellent strategies for
searching. Currently high-level gomeku softwarealso use them and can make a decision
quickly. However, the strategies are contributed by human but not computers.

In most cases we may not have a good strategy, but can get some trivial and
fractional information. This is a situation that we hope reinforcement learning can
help us. We want to show that even depending on trivial and fractional information,
reinforcement learning may already give good performance.

Of course we can add the features about VC4 and VCT just by spending more
learning time. More informative features are more helpful for learning. From our

viewpoint we do not add features such as VC4, VCT, or others. We hope our method

is a purely reinforcement learning method without any searching technique, and we
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want to show that combining many pieces of trivial information also can achieve a

competitive level.

2.3 Reward Value Evaluation

After a contest we collect a set of instances without reward value y. Notice that
half instances are opponent’s reactions so we discard them. Algorithm [I]is a temporal
difference reward algorithm. Here we write down it in a supervised learning form,
where w is the current weights of the agent and @« is the whole instance, so w’z;
is the prediction of instance ax;. If the result of the contest is a victory, we set a
positive value for the final reward; if the result is losing, we set an inverse value. k step
means examining the action by the rewards of next 1,...,k step. The discount rate

7 controls the future reward effect, andfetsithe effect of further reward be decreased

exponentially.

Algorithm 1 k-step temporal diﬂereq@@énd algorithm

. ; l II' L . .
e Given a set of one contest instancesiassume the number of instances is L.
4 i | 1 |

3N | 1
e Set the value of the final reward yy, the stép'of consideration k£ and the discount
rate . '

e Fori=1L,...,1
y; +— wlx,

Yi — (L =)y + i1 + - -+ 7V Yisn

In our experiments we set k to be four. Because the effect is exponential decreased
by steps, after four or five steps the effects are closed to zero. Figure [2.6| are two
updating examples of different . Black-font values are original prediction values.
Red-font values are updated with v = 0.3, and blue-font are updated with v = 0.1.

We can see that red-font values are changed aggressively, but with large-scale data, an
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-124.09 57.35 143.85 406.04

Figure 2.6: An example of updating the reward value. The final reward of a victory is
1,000. Red-font values are updated with v = 0.3, and blue-font values are
updated with v = 0.1.

aggressive update can quickly determine which. features are beneficial and which are

=k
X

harmful.

2.4 Training and Update \T‘Bﬁx

2.4.1 Settings of LIBLINEAR

Support vector regression m, m 'SVR ) is extend from SVM. The detailed

formula of linear SVR is

min  f(w) (2.9)
where
1
_ 1 7 .
f(w) - §'LU w + CZ;gG(wa wi7yi)7
C > 0 is the regularization parameter, and
max(|lw’z; — y;| —€,0) L1-loss (2.10)
fe(w; Ly, yz) =
max(|w’ x; — yi| — €,0)? L2-loss (2.11)

is the e-insensitive loss function related with (z;, ;). Thus, if [w?x; — y;| < € the loss

is zero.
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The latest LIBLINEAR provides some solvers for linear SVR. We have tried many

parameters and solvers, and find out two special viewpoints in our case.

1. Regularization term is not beneficial for regression.

2. Absolute loss is not proper and unfair.

These two viewpoints are very different from our former experience. However, they do
not relate to reinforcement learning, so we did not research them deeply.

In SVM, regularization term enlarges the margin between instances with different
labels. Undoubtedly the concept is very successful, but it does not imply it is suitable
for SVR. We have tried many different values for C', and find out large C' always is
better. Figure[2.7 are four examples of regularization term affects SVR. Large C' means
the effect of regularization term ig/ess,and vlslf_ith large C' the curve is more fit to data.
If the curve is too smooth, like Figure 1t alﬁlost loses the purpose of regression

because of erroneous predictions.| To a’i}bﬁ ﬁ_'nldlerﬁtting, we prefer selecting a large C.
| | |

It also can be explained by the i%eigjﬂ_; olfl features. We hope SVR helps us to
determine which features are beﬁéﬁpliél and vs!'fl!li:ch are harmful. If the differences of
weights are large it is more clear to distinguish. Regularization term is like gravity. It
attracts the value of every weight to zero, so every weight becomes close to each other
and contravene the purpose of SVR.

In our experiments, we set parameter C' as a large number to decrease the effect of
the regularization term, but a large C' may derive overfitting. For some features which
rarely appear in the training data, their corresponding weights could become very large
to fit target values. For example, assume there is an instance whose non-zero features
indexes are {2, 5,7} and the target value is 1,000. If feature indexes 5 and 7 appear in

many instances which have target values close to zero, the weights of these two features

are possibly small. If feature index 2 just appears once in the whole data, its value
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(a) Parameter C' = 0.01 (b) Parameter C' =1

(c) Parameter C' = 100 (d) Parameter C = 10,000

Figure 2.7: An example of regularization term affects the SVR. The pictures are cap-
tured from LIBSVM (Chang and Lin| [2011)) graphic interface, and the pa-
rameters are -s 3 -t 2.
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will be close to 1,000 because of large C'. Therefor, the weights of rare features are

unreliable. Thus, we delete the features which rarely appear in the training data.

Instance | Target value | Prediction w?x; | Prediction wl x;

T 1 1.2 200

T 20 25 500

T3 500 600 1,200

Ty 10,000 12,000 10,000

x5 50,000 65,000 50,000

L1-loss 17,150.2 1,379
L2-loss 229,012, 500.04 760,001
Relative-loss 6.15 229.4

Table 2.4: An example of different losses.

The lose term plays an important role in our case. We have tried L1-loss and L2-
loss SVR, but neither got good results. A strange phenomenon is that agents can take
a right action at the final stage,/but at the primary stage they seem randomly play.
We checked the value of predictionsfand found ‘out th_a_t, the predictions at the primary
stage are always many times greater tlllag;ts_ ’Icarget value.

Because the target values increasila|exgéneh:tially, the differences of them are very
large. The effect of absolute loss is Vle:ry diffel_"le:rit for different scales of target values.
For example, a target value y; = 1,000 can endure a loss & = 10, but for a target value
yo = 0.0001 a loss & = 10 is a disaster.

Table shows four examples. There are five instances {x1, @, ..., x5} and two
models, w; and w,. Notice that we prefer large C' in SVR, so we omit the value of
the regularization term. If we use L1 and L2 losses to evaluate these two models, w-
is better than w;. It means we just take care of the instances which have large target

values, and other instances can be discarded.

We consider that the loss should be proportional to the target value, so we design
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a new loss function, relative loss.

w'lx;

— Y
—1—¢0 2.12
m | ) (2.12)

§c(w; @, y;) = max(|
Using relative-loss the effect of every instance becomes equal. In Table [2.4] we can
see that by evaluating the relative loss, w; is better than wsy. Further, parameter e
becomes more meaningful. For L1-loss and L2-loss SVR, setting a proper e is difficult.
Now it becomes e-percentage-insensitive loss function. For example, if e = 0.1, a target
value 1000 can tolerate the prediction in [1100,900]; a target value 1 can tolerate the
prediction in [1.1,0.9]. Besides, using a relative loss reduces the training time.

One issue of using the relative loss is that target values can not be zero. The loss

will be infinity, so we would replace the zero target value with a small value.

2.4.2 Update Weights -

We define a terminology “geﬂeratidfif*-.lwhiéh représents how many times the weight
T " |

has been updated. Because of lineas kﬂnéjﬁﬁél new weight w* can be linearly combined
| 5 | i! ;
with the old weight: ! ; })

w ™ qw* + (1< o)w' (2.13)
where « is the learning rate, and ¢ is the generation index. Linear combination is also

an advantage of linear kernel. If using a nonlinear kernel, combination will not be so

easy.
2.5 Prediction

Computer board games usually use searching techniques to simulate possible devel-
opments. After many plies searching must be stopped, and there must be a judgment
function to evaluate the score of the board. We completely only use the prediction of

SVR, so our prediction algorithm is simple and quick.
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The e-greedy policy (Watkins| [1989) is used to explore unknown situations. It
randomly chooses a choice with probability € and chooses the best with 1—e probability.
We slightly modify an e-greedy policy, that is to set a boundary to discard too bad
choices. We define y* as the value of the best choice, and accept a choice 5 which

satisfies |y* — y;] < 0.3|y*|. Algorithm [2]is our method.

Algorithm 2 Boundary e-greedy policy algorithm

e Assume p is the vector of all empty positions, and w is the current weights of
the agent.

e For j : every empty position of p

Put the stone at p; and extract the feature ;.

Calculate prediction y; = w”x; and remove the stone at p;.
e Discard too bad choices.

e Choose the best choice with probability 1 —€, or randomly choose an acceptable
choice.

Because calculating prediction y; 4|l-|'wﬂ‘z>J isvery fast, time complexity of prediction
| | |

iy ] | \
is determined by the time for extractingffeatures: If extracting features takes O(F),

time complexity of prediction is O(FY).
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CHAPTER I11

Tournament Learning

Collecting large-scale data is hard. From a supervised learning viewpoint, we would
collect data via playing gomoku with human, but it is impractical.

First, it needs a lot of manpower and spends too much time. If we need only
thousands or tens of thousands of instance:s_, we.may collect data by playing with
human. However, reinforcemeni? learning is a txial and error procedure, so it needs

new training data to revise the model. Tgxaﬂy it could need millions of instances, and

nobody can play gomoku so many: tirlinks. '1 '. ::

Second, it is hard to keep thé..quisxiity of tII"IE!li-I:liIlg data. A thought is that we can
design a web site and let many human playérs play with our agents. By this way
we may collect more data, but players may consist of experts, common players and
rookies. Results of our experiments show that competing with weak opponents can
not improve the ability of our agents. If we can not ensure human players are better
than our agent, more data will be useless.

In reinforcement learning, it often assumes that the environment would respond to
the agent’s actions. That is, we can unlimitedly collect data from the environment. If
the environment is real world or can be simulated, the concept is practicable. However,

in competitive games, like gomoku, the environment can not be simulated, because the

environment is exactly the opponent, another agent. If we simulate an agent which
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can play gomoku, it absolutely violates our purpose.

We consider the agent can improve the ability by competing with another agent.
Like we can learn by competing with peers, classmates, or opponents, and then they
also can learn by competing with us. By virtuous circle, we and our opponents all
become strong. If this concept works, we just wait and the agent will become an
expert without humans’ help.

A similar concept has been used in TD-Gammon. They called it self-teaching, or
self-play. In a self-teaching framework, there is only one agent to compete with itself,
but using an agent to represent two sides may not be appropriate. For example, in
gomoku, playing first and playing second are very different. Black can attack more
aggressively but White should focus on defense. Moreover, in some extra rules Black
can not win the game by achieving Dolible Three of:Double Four, but White can.

We use two agents to representtwo. _sides respeetively, and design a framework so
that two agents can stably improye. Bec&sﬁ flhe procedure continuously plays games,
we call it tournament learning. . il II I\

3.1 Tournament Learniﬁg

Tournament learning is suited for competitive games with two competitors. It is
the result tested by many experiments. The framework is shown in Algorithm (3| First,
both agents randomly play with opponents and update weights. Second, choosing one
side to challenge its opponent until defeating the opponent. We define defeating by a
winning ratio greater than 0.75. If one side can defeat its opponent, we then choose
another side to challenge its opponent. Third, repeating the last two steps until one
side can not defeat another in enough attempts. The maximal number of attempts is

thus used as a stopping criterion. If one side can not defeat opponent in a maximal
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number of attempts, it may never defeat the opponent forever and we terminate the

whole procedure.

Algorithm 3 Tournament Learning for Gomoku

Given two agents {w%, wl, }, one represents Black and another represents White.
Initial {w%, wY,} = {0,0}, set maximum attempt M.

Choose w% randomly play with the opponent, then update w% to wk.

Choose wY;, randomly play with the opponent, then update w%, to wi.

While true
For p = Black, White

Choose agent wlt) to challenge the opponent.

While iteration < M
Challenge the opponent and update w! to w}t.
If defeat the oppenent, break.

If the iteration réaches M, break whole procedure.

We use Figure to illustratesthe ,co%.Fepﬂ .of tournament learning. There are two
agents Blue and Red, and from ape tq;)_lhul;r:l-;m :;t.fhere are five levels, Blue' to Blue® and
Red! to Red®. The bold arrows mean their evoh.l.tions, and the thin arrows mean the
opponent they compete with. At initial stage, they are weak. The procedure starts
from that Blue' challenges Red'. After a few generations, Blue' becomes stronger and
evolves into Blue?. Blue® has a good ability to overwhelm Red', and then Red' turns
to challenge Blue®. After a few generations, Red' also becomes stronger and evolves

into Red?. By repeating these steps, finally, Blue and Red both have great abilities and

evolve into humans.

3.2 Chaos Learning, Degeneration and Huge Gap

There are four parameters related to tournament learning. They are
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Figure 3.1: Tournament learning.

N: Number of instances.

R: Alternant ratio.

These four parameters are very i
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them in this section. In fact,';it 38
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many experiments we find out thrfeefa}‘léfl ,Caf éJS r”J:h?ey are chaos Learning, degeneration
and huge gap.

The first case is chaos learning, illustrated with Figure For tournament learn-
ing, it must guarantee that the agent has a reliable learning ability. If the agent does
not, it even can not defeat current opponent. In our reinforcement learning method,
a reliable learning ability depends on detailed features and N. Features like sensor,
eye or ear, provide the information in the environment; instances like experiences, and

consider more experiences together is better. Thus we need to make profuse features

and set a large N to guarantee the learning ability.
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Even with a large N, a low alternant ratio R can lead to chaos learning. For a
low R, like R = 0.3, when the winning ratio of one side is 0.5, the winning ratio of
another side also is about 0.5. Because both winning ratios are greater than 0.3 , they
train alternately. We consider that learning from an opponent with the same ability
as ourself can give us only limited knowledge. The reason is that if the opponent is
not strong, winning the game may not mean we make good choices. It is very possible
that the opponent makes mistakes, so the data of this game are noise. The noise will
let the agent take bad actions but still can win the game. Next turn the opponent will
also learn wrong information from the agent. It is a vicious circle, and let the learning

become chaos and slow.

) Chaos Learning.

1
|
1&/ >
L §

bt v —»

b) Degeneration. (¢) Huge gap.

Figure 3.2: Two special cases of tournament learning.
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The second case is degeneration, illustrated with Figure While we defined
the defeating opponent, we had considered that the agent should defeat more than one
opponent. Otherwise, overfitting may occur. However, we found out the performance
may become worse, because we play with some weak opponents. To confirm it, we
design an experiment that let a strong agent always learn from a weak agent. The
result is, although the strong agent always can defeat the weak agent, its ability does
not improve. For example, a professional basketball player always plays with a child.
He can easily defeat a child, but after a long time he will forget his skills. Thus, keeping
the quality of opponents is very important. Bad opponents are harmful for learning.

The third case is huge gap, illustrated with Figure [3.2d It is a reversed case of
degeneration. In the beginning of this chapter, we have mentioned that collecting data
via playing with human is not proper,~When the agent is weak, defeating human is
very difficulty and it would collect /@ data Wthh all instances with a negative reward.
Next generation, it still collects a datanwyieh 511 instances with a negative reward. No

|
matter what actions it takes; it :;:L.l.wallng recelvelzsl bad rewards so it can not find out a
good model. After a few generations ::he model’ will collapse, because all weights are
negative and close to the final reward.

Nonetheless, if the agent has a very powerful learning ability, it could avoid the
situation. However, a powerful learning ability depends on a large N, so collecting

data via playing with human is still hard to realize.
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CHAPTER IV

Experiments

4.1 Conditions and Settings of Experiments

The ability of an agent is very related to features. To defeat human expert, the
agent needs large and detailed conditions.  Because we make hundreds of conditions,

we just describe them roughly. There are-five types of conditions:

1. Fundamental conditions: Fiundamental conditions are shown in Figure[2.3] How-
ever, we slightly revise it. We pr_elfer 'i_L condition-which is greater or less than a

number not equal to a numbet. For: cxample; we would like use a condition like the

number of Open Three is greater than zero,-but not equal to zero.

2. The threats of one occupied intersection: The threats mean some threatening
conditions, like Open Three, Half Four and Open Four. An intersection has four
directions, so some intersections may have more than two threats, like Double Three,

Double Four and Four Three. These intersections are critical.

3. The threats of one empty intersection: Some empty intersections where we
put a stone can achieve the conditions of type 2, They are also critical, because we

must prevent that the opponent achieves these conditions.
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4. The positions during primary stages: Most intersections are empty during the
primary stage, so the conditions are fewer. Position is the rare information we can
use. It also called “chess opening”, but ours is simpler. In first three steps, the
stone in the square consist of (6, F), (6,J), (10, F), (10, J) is a condition, and else
the square consist of (4, D), (4, L), (12, D), (12, L) is another condition, and else is

another.

5. Manual link above conditions: Some conditions could change its weights if
other specific conditions happen. For example, Open Three is a positive condition,
but if the opponent has already achieved Half Four, we must defend Half Four first.
Thus, the weight of Open Three would decrease in this case. If we add a new
condition which includes these two condi’_cions, the new condition will help Open
Three to keep its positive weight- This rr;éthod is wvery like low-degree polynomial
data mappings (Chang et al.,IQOlO) but to restriet the number of features we only

link the important conditions maqu‘al'r: .

To avoid overfitting, after Collectlng data we delete the features which rarely appear.
We delete the features whose numbers of appearances is less than 5. Because the agent
has different strategies at different generations, the numbers of non-zero features n are
different. Average n are between 2,000 to 2, 500. Number of instances N and alternant
ratio R are variables, and we will try some combination in experiments. The reward
function is fixed. We set k to be four and v to be 0.3. In order to make observation,
we do not set the maximal number of attempts and the procedure is stopped manually
when achieving our purpose.

The parameters of LIBLINEAR are fixed. Although different parameters could affect
the performance, we would like to focus on reinforcement learning rather than super-

vised learning. We use relative loss and the parameters are -p 0.1 -¢ 100, 000, 000, 000
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-B 0 -e 50.

4.2 Episode of Tournament Learning

In this section, we examine the episode of tournament learning. Figure is the
results. The z-axis is the generation and y-axis is the wining ratio. The alternant
point means that one side defeats the opponent and take turns to train, so after an
alternant point the agent should face a stronger opponent.

Figure and Figure use N = 15,000 and R = 0.75. They respectively
represent result of Black and White. It is an ideal tournament learning. We can see, for
a fixed opponent, our reinforcement learning works very well. Both sides can increase
their ability very stably. During the whole procedure, there are only three alternant
points on Black’s side, and after Black’s: 16th-generation White can not defeat Black.
The learning rate will be slower. after’a few alterﬂant points because the ability of the

opponent is stronger. It alse means thaﬁhf Ilspt of features reaches its limitation. If
we want to increase the ability of thﬁl %gegé w‘q need'to add more useful features.

We examine the variable N We have mentloned that large-scale data is one of
our core contributions. Figures and are the evidences. The parameters are
N =500 and R = 0.75. We can see the figure is very zigzag, and it means the learning
is unreliable. When one side defeats the opponent, we are unsure if it happens by
chance or not. Therefore, for stable learning, large-scale data is essential.

Figure and Figure are another pair of tournament learning. The param-
eters are N = 1,500 and R = 0.3. The result shows that after few alternant points

they train alternately. It could lead to chaos learning. Another disadvantage is that

with lower R, it is difficult to decide M, the maximal number of attempts.
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Figure 4.1: Episode of tournament learning,.
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Figure 4.2: Episodé of tournament learning.

4.3 Competing against Unfixed-Opponents

gy
_—

| .Ir‘-.._,_.ll.. | 1
Notice that in tournament learnil_?lg, t._ﬂ!:l_e agent faces to a fixed opponent, and we

want to ensure that the ability still ihicroases éfably when facing different opponents.
Unfortunately, there is no standard to-evaluateithe level of gomoku, so we choose four
Black agents to be targets. They are trained by tournament learning with parameters
N =15,000, R =0.75, k = 4, v = 0.3, and the generations of 5,7, 10, 15.

We examine the winning ratio of every generation of White, and every generation
competes with four targets 50 games respectively. Figure 4.3] shows the results of
comparison between different N and R. The z-axis is the generation of White and
y-axis is the wining ratio.

We can see that when facing different opponents the figure fluctuates more, but the

ability still stably increases. Figures [4.3a] and are corresponding to Figure

4.1b} [4.2b} 4.1dl. We can see the agent trained by ideal tournament learning gets the
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best performance (Figure . Although the final average winning ratios in Figure
and Figure are almost the same, the accumulated value of generations are
16 + 45 = 61 and 37 + 45 = 82, so actually Figure is 1.3 times faster than Figure
[4.3D] It implies that with a lower R and a large N, the agent still can improve its

ability to a strong level, but it takes longer time.

Comparing the winning ratio against Black” between Figures [4.3al and [4.3b| we

find out something interesting. Black®

is a weak agent, so after few generations White
should overwhelm it. It happens in Figure but dose not in Figure 4.3bl Because
in Figure [4.3a] the Black agent learns stiff basic concepts in the primary stage, White
agent can get correct information without noise. Actually Figure is close to chaos
learning. White agent always gets noisy data, but with large N it still can increase the
ability stably.

With a larger number of fraining data N thé Wlnmng ratio increases more stably,
but it seems unnecessary to setfa tof M N The agent trained by parameters

Il
N = 5,000, R = 0.75 can achieve q avéraéé Wlnnmg ratio at 40 generations, but

l] 1
spending the same time the agent 'tralr_l_ed by.__parameters N = 15,000 and R = 75 is

just at generation 13, and winning ratio is just about 0.5. It is a trade-off between

time and stabilization. Empirically, the parameter N at least should be large than 3n.

4.4 Experiments of Degeneration and Huge Gap

Figures 4.4al, |4.4b] |4.4c| are three experiments of huge gap. Three agents directly

learn from a strong opponent, Black'®. The learning ability depends on the number of
instances IV, so the agent in Figure has the best learning ability, and the agent
in Figure has the worst. Because their learning abilities are different, huge gap

only happens in Figure 1.4 We can see the model absolutely collapses after 100th
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Figure 4.3: The performance when facing different opponents.

generation in Figure

Figure is the experiments of degeneration. To distinguish from chaos learning,

we set the agent to have a powerful learning ability, N
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In the first 45



generations, it directly learns from Black'®, and in the rest 45 generations it learns
from Black”. We can see that after 45th generation, the agent overwhelms Black”’
and the winning ratio almost reaches 100%, but the winning ratio against Black'® and
Black'® decreases. Fortunately, although the degeneration really happens, it dose not

happen suddenly.

4.5 The Gomoku Game

We design a Java applet to demonstrate the abilities of our agents. It is available

at http://www.csie.ntu.edu.tw/~r97144/TL/TL_vO1.html.
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CHAPTER V

Conclusions and Future Work

In this thesis, we use the modern techniques of supervised learning to improve the
ability of reinforcement learning. Past reinforcement learning just can deal with easy
problems. Our method can deal with complex problems like gomoku, and without
any searching technique it achieyes'a eompetitivedevel. It implies our method has a
powerful learning ability. We also reali%_e tournament learning, and by experiments we
see some interesting observations. .."".::’*- _ !. .

Our work is just a preliminary S'?LLdyE-_THG‘_I‘e are;many future works which have

1] 1
great potentials. . i

1. Add short searching feature. In the thesis, to proof our method is a pure rein-
forcement learning, we discard any search features. However, if we add some such

features, the agent’s ability will be greatly increased.

2. Solve the problem that can not be solved by searching. In board games, go is
the hardest problem. Using searching techniques becomes impractical because the
search tree is too huge. Our method is more like human brain, because it estimate

every step by conditions or trends.

3. It can be parallelized easily. The bottleneck of our method is collecting data. For-

tunately, collecting data can be parallelized. Figure is the framework. The root
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computer transits two agents’ model to leaf computers, and then every leaf com-
puter starts to collect data. Finally, the root computer collects data from all leaf
computers and trains the whole data. After updating the agent’s model, we repeat
the above steps. If we can collect more data in acceptable time, we can add more

features, and the learning ability will be greatly increased.

]
\.\

¥\ 1V
Figure 5.1: The ffﬁmgv&grk:-bf %arallel processing.
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