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Abstract

Over the past few years, RNA-sequencing has become a revolutionary
tool for transcriptomics analysis. The high cost of RNA-sequencing exper-
iment results in the insufficient samples for researchers to conduct a com-
prehensive differential gene analysis. Nowadays, few studies integrate the
cross-laboratory datasets into a big dataset due to the bias from different lab-
oratories experimental procedures. In our study, we investigate the issue of
cross-laboratory feature selection. We consider four prostate cancer RNA-seq
datasets from different laboratories or platforms. Rank-based normalization
is utilized to reduce the bias from the four cross-laboratory datasets. In our
experiments, we combine three datasets into a training set. The remaining
dataset is regarded as the testing set. Random Forest is applied to select dif-
ferential genes from training sets. We then put the training subset with only
differential genes in support vector machine to learn a classification model.
This model then is utilized to predict the class of testing subset with the same
list of differential genes. The predicted results are evaluated by balanced ac-
curacy which is an unbiased measurement. Results show that applying rank-
based normalization can improve the performance of cross-laboratory feature
selection. The performance of Random Forest and rank-based normalization
is also better than a well-known tool, Cuffdiff. In addition, we discuss the
influence caused by various sequencing platforms. The sequencing machine
is also an important factor which affects the preformance of feature selection

on cross-lab RNA-seq datasets.
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Chapter 1

Introduction

By the development of next-generation sequencing technology, RNA-sequencing be-
comes a popular tool in transcriptomics analysis. The high cost of RNA-sequencing ex-
periment results in the insufficient samples for researchers to conduct a comprehensive
differential gene analysis. Hence, the difficulty of feature selection rises due to the unbal-
ance between small number of samples from one laboratory and large number of genes.
To integrate several datasets from different laboratories is a way to overcome this sit-
uation. However, the bias from cross-laboratory datasets influence the performance of
feature selection across datasets. We utilize the rank-based normalization to improve the
performance of cross-laboratory feature selection. Here, we consider the four prostate
cancer RNA-seq datasets and design a experiment to discuss the cross-laboratory issue on

prostate cancer RNA-seq data.

1.1 RNA-sequencing technology

Over the past ten years, Next-generation sequencing (NGS) technology has become
a revolutionary tool for bioinformatics research. NGS technology also known as high-
throughput sequencing means that it can generate a large amount of sequence data in one
run. Different from Sanger Sequencing, the output of NGS is up to several gigabases of
sequence data in a single experimental run. The innovation of DNA sequencing offers

faster and cheaper ways to analyze sequences, and it not only changes the landscape of



genomes sequencing projects but also leads in various sequencing analysis [32, B§].

NGS technology has been applied in a variety of area, including de novo whole-
genome sequencing, resequencing of genomes for variations and profiling mRNAs and
other small and non-coding RNAs. Around 2005, three commercial platform, Roche 454
Genome Sequencer FLX, Illumina Genome Analyzer and Applied Biosystems SOLiD
system dominated the market in the early days of NGS era. Afterward, Helicos Genetic
Analysis System, Pacific Bioscience RS system are introduced one after another. By now,
the sequencing industry has been dominated by Illumina [27].

Recently, by the development of high-throughput sequencing techology, it provides a
new method for both mapping and quantifying transcriptomes. This method, named as
RNA-sequencing (RNA-seq), has clear advantages over existing approaches in transcrip-
tomics analysis and leads to a rapid development of this field, decreasing the running cost
and providing more precise measurement of expression level of transcripts than former
methods [46, 29]. RNA-seq technology uses sequencing to capture all the genes being ex-
pressed in a cell, allowing us to detect thousands of previously unknown genes and variants
of known genes in a single experiment. The most significant characteristics are the abil-
lity not only can measure the expression level but also can detect the sequence structure of
the transcriptome. Some NGS platforms such as [llumina, Applied Biosystems SOLiD,
Roche 454 Life Science and Helicos BioSciences have been used for RNA-seq, and are
all commercial available [24]. RNA-seq technology has been applied to analyse Saccha-
romyces cerevisiae [26], Schizosaccharomyces pombe [49], Arabidopsis thaliana [21] and
mice tissues, human cells and cell lines [25].

Over the last decade, microarray is one of the most important tools for transcriptome
analysis. By the rapid development of RNA-seq, there are several advantages over the
former transcriptome analysis tools. First, RNA-seq is not limited to exsiting reference
genome. Unlike microarray needs to know the sequence of the probe in advance, RNA-
seq do not need to decide the sequence of transcript during sequencing. Therefore, RNA-
seq can be applied to de novo sequencing for non model organisms, or detecting novel

sequence for transcriptome discovery. The second advantage over microarray is that RNA-



seq is more sensitive and accurate. Because of the process of hybridization, microarray has
limited sensitivity for detecting genes expressed at very low or very high levels. Hence,
it has a much lower range of expression level, up to 100-fold from the lowest to highest
one. On the other hand, RNA-seq has a large dynamic range of expression levels which
can reach over five magnitudes [25]. Finally, RNA-seq is more stable and high technical

reproducibility than microarray.

1.2 Feature selection in bioinformatics

Feature selection technique plays an important role in classification of human dis-
eases research. In bioinformatics, each sample usually contains tens of thounsands of
genes (features) and the sample size is usually a few hundreds or less than one hundred.
The imbalance between a very large number of features and small sample size results in
overfitting the training data in classification easily. It not only results in the overfitting
problem, but also the ineffective of performance and high cost of time due to the high
dimension of features. Therefore, it is needed to apply feature selection to improve the
prediction performance and provide a faster and more effective model [37].

There are three catagories of feature selection techniques: filter method, wrapper
method and embedded method. The difference among these three methods is how the
feature selection method interacts with the classfier. The first one, filter technique is con-
ducted independent of the classifier, such as ¢-test [8§] and ANOVA [[13]. It calculates the
score of feature by the property of data, and filters the low score features to obtain the
relevent features. Then, use the remaining features as the input of classifier. The advan-
tages of this method are fast and simple in computation, and it is independent to classifier.
Thus it can be conducted only one time and be evaluted with different classifiers. The dis-
advantage of filter method is that it considers each feature independently and ignores the
feature dependency, and may influence the classification performance. The second one is
wrapper method which uses the classifier to evaluate the performance of the feature subset,
such as Sequential search [[L1, 51] and Recursive Feature Elimination algorithm [53]. It

generates a subset of feature by searching algorithm and puts the subset into the classifier

3



to get the score of that subset repeatly, and chooses optimal subset based on the scores.
The advantages of wrapper method are that it contains interaction between searching fea-
ture subsets and classifier, and it considers the feature dependency. The disadvatage of
this method is the high computational complexity of searching feature subsets and build-
ing models in high dimentional features. The third one is embedded method which feature
selection is a part of constructing models, such as Random Forest [4] and weight vector
of support vector machine [48]. Similar to wrapper method, optimal features are decided
by the performance of classifier, but it does not need to find the subset of features and it
interacts with classifier repeatly. Therefore, the computational complexity is far less than
wrapper method.

Numerous feature selection algorithms have been proposed during the last decades
Several feature selection methods such as t-test, Significance Analysis of Microarrays
(SAM) [45], Random Forest and support vector machine have been widely used in bioin-
formatics. In recent years, there are lots of differential gene expression (DGE) studies for
RNA-seq, and many tools are developed to detect differential gene expression for DGE
analysis, such as Cuffdiff [41], baySeq [9], DESeq [|1], edgeR [36] and NOISeq [40]. In
our study, we used Random Forest for feature selection and compared with the perfor-

mance of Cuffdiff.

1.3 Prostate cancer

Prostate cancer remains the most common cancer among men in recent years. It is the
most frequently diagnosed cancer and the third leading cause of cancer death in males in
economically developed counties [[14]. The incidence rate of prostate cancer varies from
region and races. The developed countries of Europe, North America and Oceania have
higher incidence rates than others, and it’s more than 25-fold to the Asia which is the low-
est region. Some researches show that the utilization of Prostate Specific Antigen (PCA)
for detecting prostate cancer is one of the reasons that make these countries have the higher
incidence rate. Most of the studies of prostate cancer come from the western countries,

and focus on the western population. With the increase of incidence rate of prostate cancer
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in the Asian regions like Japan and China, some of the researches focus on the Asian races.
A recent study [39] conducted a genome-wide association study that identifies five new
susceptibility loci for prostate cancer in the Japanese, which highlighted the genetic het-
erogeneity of prostate cancer susceptibility among different ethnic populations. Another
study [33] is the RNA-seq analysis of prostate cancer in the Chinese, which identifies
recurrent gene fusions, cancer-associated long noncoding RNAs and aberrant alternative

splicings.

1.4 Motivation

The cost of NGS experiment increases the difficulty of feature selection due to the un-
balance between small number of samples from one laboratory and large number of genes.
In the past, analysis of microarray data is also facing the same situation. To overcome
this situation, many studies try to integrate several datasets from different laboratories
into a larger dataset. However, the different experimental conditions between laboratoris,
such as machine and sample preparation, may influence the result of analysis. There-
fore, cross-laboratory becomes a popular topic on microarray data analysis. For analysing
cross-laboratory microarray data, there are several normalization methods to reduce the
influence by different experimental enviroment, such as log transform, mean scale and
rank-base normalization. Not like microarray analysis, the issue of cross-laboratory is
seldom discussed in RNA-seq DGE analysis. There are still some methods like Read Per
Kilobase per Million reads (RPKM) and scale to normalize the gene expression value, but
those methods are not focus on cross-laboratory [35].

In our study, we applied rank-based normalization to reduce influence of cross-laboratory
and chose Random Forest for feature selection. We designed an experiment to evaluate the
performance of rank-based normalization and Random Forest. Finally, we compared the
performance between rank-based normalization plus Random Forest and the differential

gene tool, Cuftdiff.



Chapter 2

Materials and data pre-processing

Though RNA-seq technology is popular recently, still few institutions can conduct
enough experiments for effective analysis because of the high cost of experiment or lack
of samples. Hence, the cross-laboratory or cross-platform analysis become more and more
important. The datasets we used are downloaded from Gene Expression Omnibus or Eu-
ropean Nucleotide Archive. Owing to the datasets coming from different laboratories
or NGS platforms, we will apply sample-wise rank-based normalization to avoid biases
from different experimental conditions after measuring the gene expression value. For
each dataset, we conduct the quality control of raw reads, filtering low quality reads and
too short reads. Next, we map the reads to reference genome (hg19) by TopHat [42] and
use Cufflinks [41] to measuring the gene expression value with gene annotation provided
by UCSC genome browser. TopHat and Cufflinks have been widely used in a number of
recent RNA-seq DGE analysis [41], 34, 43]. After calculate RPKM or FPKM value, we
take the next step of cross-laboratory normalization. We use rank-based normalization to
transfer expression level to rank level, but this step is optional.

For the following procedures, we will define the training set and testing set first. There
are three ways to define the training/testing datasets. First, two datasets are chosen: one
as training and the other as testing. Second, three datasets are combined as training and
the remaining one as testing. Third, three datasets are chosen for leave-one-out cross-
validation (LOO CV): one sample of three datasets is chosen for testing data, and the

other for training data. All the samples of the dataset will be chosen for one time. Every



Training set Testing set

[Quality control by Solexa QAJ [Quality control by Solexa QA]

Mapping to reference genome by TopHat

‘
1

Genel Gene2 Gene3 Gene4 Genes

Gene expression value measurement by Cufflink

Genel Gene2 Gene3 Gened Gene5
FPKM 2.1 4.6 1.9 29 2.5

Rank-based normalization (optional)

Genel Gene2 Gene3 Gene4 Gene5
Rank 4 1 5 2 3

Feature selection by Random Forest

g= <2 %3 2egu 5t

Classification by Support Vector Machine

O , ™ Margin

—{ Prediction result

Figure 2.1: Flowchart of the feature selection on cross-laboratory RNA-seq data.



pair of training set and testing set undergoes below experimental procedure.

From the training datasets, we obtain a significant gene list through the feature selec-
tion method, Random Forest. We change the number of selected significant genes from 5
to 250 by an interval of 5. Then, we utilize support vector machine for the classification
analysis. The balanced accuracy is used to evaluate the results. The whole workflow is
described in Figure 2.1, and details of our methods is described in the following subsec-

tions.

2.1 NGS data collection

Four datasets are from different laboratories or NGS platform. The first dataset, Prostate-
1, is from [|1 §] which adopts [llumina Genome AnalyzerlIl. There are 30 samples in Prostate-
1, including 20 for tumor samples and ten for normal samples. The seconed dataset, de-
noted as Prostate-2, is from [33]. Prostate-2 contains 11 tumor samples and 12 normal
samples obtained from Shanghai Changhai Hospital. It has 28 samples originally, but five
of 28 samples do not be provided for download. Prostate-2 uses [llumina Hiseq 2000. The
last two Prostate-3 and Prostate-4 are from [30]. Prosate-3 and Prostate-4 come from one
institute, and there are 42 tumor samples and 15 normal samples. However, 32 samples
are obtained from Illumina Genome Analyzerl, and the left 25 samples are from Illu-
mina Genome Analyzerll. Hence, we separate 57 samples into two datasets. 32 samples
generated by Illumina Genome Analyzerl are assigned to Prostate-3, and the others are

Prostate-4. The details of the above four datasets are summarized in Table

Table 2.1: Key characteristics of the analyzed data.

Study reference | NGS generation Number of samples | Sample state

Prostate-1 [|15]

[llumina Genome Analyzerll 30 Tumor{20};Normal{10}

Prostate-2 [33] | [llumina Hiseq 2000 23 Tumor{11};Normal {12}
Prostate-3 [30] | Illumina Genome Analyzerl 32 Tumor{25};Normal{7}
Prostate-4 [30] | Illumina Genome Analyzerll 25 Tumor{20};Normal{5}

2 URLs for datasets download:
Prostate-1:http://www.ebi.ac.uk /ena/data/view /SRP002628&
Prostate-2:http://www.ebi.ac.uk/ena/data/view/ERP000550

Prostate-3:http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25183
Prostate-4:http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE25183



http://www.ebi.ac.uk/ena/data/view/SRP002628
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2.2 Data pre-processing

Next generation sequencing technology also known as high-throughput sequencing
means to generate large amount of sequence data in one run. However, with generating
a lot of sequence data, the number of incorrect base calling is also soaring. Therefore,
quality control of sequence data generated from NGS technology is extremely important
for sequence analysis. Further, highly efficient and fast processing tools are required to
handle the large volume of datasets. Here, we use Phred quality score to assess the read

quality and SolexaQA toolkit be choosed for the step of quality chontrol.

2.2.1 Phred quality score

In the next-generation sequencing analysis, the quality of each base of sequence is
important to each process of whole experiment. Sequencing quality metrics can provide
important information for sequencing analysis and it is critical to many downstream pro-
cesses, such as base calling, library preparation, read alignment, and variant detection [[10].
For measuring sequence quality, Phred quality score is the most common metrics in assess-
ing the accuracy of a sequencing platform. Phred quality score is originally designed by
the program Phred for aiding the DNA sequencing in the Human Genome Project. Phred
quality score has become widely accepted to characterize the quality of DNA sequences,
and can be used to compare the efficacy of different sequencing methods. It indicates the
probabillity that a given base is called correct by the sequencing machine.

Phred quality scores () are defined as a property which is logarithmically related to the

base-calling error probabilitie P. Quality score Q is calculated by Eq. .1.

Quality scores range from 4 to about 60, with higher values corresponding to higher qual-
ity, as shown in the Table R.2. For example, if quality score Q is assigned to 30 for a
base, it guarantees that the probabillity of an incorrect base call is one in 1000 times. This

means that the base call accuracy or the probabillity of a correct base call is 99.9%. While



Table 2.2: Interpretation of Phred quality score.

Phred quality score | Probability of incorrect base call | Base call accuracy
10 lin 10 90%

20 1 in 100 99%

30 1 in 1000 99.9%

40 1 in 10000 99.99%

the quality score is set to 20, it means that the probabillity of incorrect base call is 99%,
and it will likely contains an error base for every 100 bp (base pair) sequencing read. High
quality score can provide more confidence to whole experiment. On the other hand, low

quality score may result in inaccurate conclusion and high cost for validation experiments.

2.2.2  Quality control

For the step of quality control, we use SolexaQA toolkit (http://solexaqa.sourceforge.
net). First, low quality reads (Phred score < 20) are trimmed by DynamicTrim which is
provided by SolexaQA toolkit. In this process, each read is croped to its longest contiguous
segment if the quality scores are greater than a threshold. We set the threshold to 20 in this
work. For example, there is a read quality string as follow (30,30,30,30,10,30,25,30,30,30,10).
The fifth base and 11th base will be croped due to the quality scores of these two bases are
smaller than the threshold. Then the string is divided into two substrings (30,30,30,30),
(30,25,30,30,30). The second substring is longer than the first one, so the original string
is trimmed to the substring (30,25,30,30,30). After trimming process, some reads will be
trimmed too short. Thses reads might not only increase the running time of but also the
error rate . Therefore, we only preserve the reads which their lengths are longer than 20

bp on both ends of pair-end format for further analysis.

2.3 Mapping to reference genome

Due to the process of RNA splicing, introns in pre-mRNA are removed, and only exons
and UTRs are transformed to the final mature mRNA. The RNA spicing not only removes

some introns, but also composes some exons to the mRNA or the transcript. Therefore,
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’ exon 1 I exon 2 I exon 3 I exon 5 I exon 6 I exon 8 ‘ transcript

Figure 2.2: RNA-seq reads are mapped to reference genome for detecting the splicing
form. In the upper half figure, blocks are exons, gaps between exons are introns, and the
thick black line beneath exons represent reference genome. To detect transcript splicing
form, we map the reads to each exon. Exons which have no mapping reads are omitted
one gene may has some different transcripts because of RNA-spicing. Then, mapping
RNA-seq sequences to reference genome must detect the spicing cite. Figure is the
detail of mapping reads to reference genome. The blank between exons is intron. Here we
want to map pair-end reads to reference genome, and find the structure of the transcript.
The aligner will detect the splicing cite, and map reads to reference sequence. The exon
which is not mapped will be removed, and the left exons will be gathered into a transcript.
The detection of spicing cite is difficult, so some aligners are designed to RNA-seq reads
specifically.

There are several aligners to map RNA-seq reads to reference genome, like GSNAP
(Genomic Short-read Nucleotide Alignment Program) [50], Stampy [22] and TopHat [42].
These are the mostly used three aligners in RNA-seq analysis. Some studies have dis-
cussed the difference and performance among these three methods [28].

TopHat, which is one of the most commonly used for RNA-seq analysis, is chosen for
the aligner in our study. TopHat uses Bowtie [|L7] to map short reads to reference genome
and TopHat have the procedure to detect potential transcript splicing form. The reference

genome we used is hg19 download from the UCSC website.
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2.4 Quantifying gene expression value

mapped reads : 20 mapped reads : 10
length : 8 kb length : 4 kb
Gene A: Gene B:
Total gene reads = 20 million Total gene reads = 10 million
Total mappped reads = 30 million Total mappped reads = 30 million
Gene length = 8 kilobases Gene length = 4 kilobases
RPKM =20/(30*8) = 0.083 RPKM = 10/(30*4) = 0.083

(a) Sample A

mapped reads : 10 mapped reads : 5
length : 8 kb length : 4 kb
Gene A: Gene B:
Total gene reads = 10 million Total gene reads = 5 million
Total mappped reads = 15 million Total mappped reads = 15 million
Gene length = 8 kilobases Gene length = 4 kilobases
RPKM = 10/(15*8) = 0.083 RPKM = 5/(15*4) = 0.083
(b) Sample B

Figure 2.3: Examples of counting RPKM.

RNA-seq technology uses read count of gene to quantify the gene expression value.
Basically, read count reflects the expressed level of a gene. Only concern the read count
may have some biases because the length of genes are different. The longer gene may
be mapped by more reads than the gene which is shorter. The second reason is that the
total reads between samples are not the same. More total reads of the sample may result
in more reads be mapped to the gene. We use Read Per Kilobase of transcript per million
mapped reads (RPKM) for single-end data and Fragment Per Kilobase of transcript per
Million mapped reads (FPKM) for pair-end data to solve above bias. RPKM (FPKM) is

calculated by Eq. 2.2.

total gene reads
RPKM = 2.2
total mapped reads(million) x gene length 22)

12



Total gene reads are the reads mapped to the gene. Total mapped reads are all reads that
be mapped to the transcriptome, and the unit is million. Gene length is how many bases
the gene contains. Total gene reads divided by total mapped reads means that how many
partitions of reads are mapped to the gene. Next, it has to be divided by the gene length,
because the gene with longer length will be mapped by more reads. For example, there
are two genes in sample A in Figure 2.3(a). The length of Gene A is 8 kilobases, and Gene
B is 4 kilobases. There are 20 million reads and 10 million reads which are mapped to
Gene A and Gene B, respectively. For Gene A, total gene reads is 20 million; mapped
reads is 30 million; gene length is 8 kilobases. The value of RPKM of Gene A equals to
20/(30 * 8) = 0.083. Total gene reads of Gene B is 10 million, and the length of Gene B
is 4 kilobases. The value of RPKM of GeneB equals to 10/(30 % 4) = 0.083, too. Total
reads of Gene A is more than the total reads of Gene B, but the length of Gene B is shorter
than Gene A. Therefore, the expressed level of a base of Gene A is equal to Gene B. Next,
we compare sample A with sample B in Figure 2.3(b). Both gene length of sample B are
equal to sample A, but the reads mapped to Gene A and Gene B are half of sample A. The
RPKM value of Gene A of sample B is 0.083 which is euqal to the RPKM of Gene A of
sample A. The reads mapped to Gene A of sample A is more than the one of sample B,
but the expressed level is equivelant. Because the total mapped reads to transcriptome of
sample A is two times to smaple B, the reads mapped to a gene may increase two times,
too. Using RPKM to quantify gene expressed level can avoid the bias which is resulted
from difference of gene length and sequencing depth.

RPKM and FPKM are almost the same thing. RPKM stands for Reads Per Kilobase
of transcript per Million mapped reads, and FPKM stands for Fragments Per Kilobase
of transcript per Million mapped reads. The difference between RPKM and FPKM is
that RPKM calculates how many reads be mapped on a gene, but FPKM calculates how
many fragments rather than read count. Paired-end RNA-Seq experiments produce two
reads per fragment. Normally, fragment will be mapped two times, then it will double
count the fragment. However, if one of the pair reads has poor quality, then we may count

this fragment only one time, but some fragments two. Therefore, using FPKM is more
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appropriate for analysing pair-end data.
In our study, we use Cufflinks (http://cufflinks.cbcb.umd.edu/index.html) to cal-
culate RPKM and FPKM. Cufflinks uses reads which is mapped to reference genome by

TopHat to calculate RPKM or FPKM for each gene.

2.5 Cross-laboratory normalization

The goal of cross-laboratory in DGE analysis is that whether models bulit from dataset
of one laboratory can differentiate dataset of another. Moreover, we can combine all the
datasets from different laboratories to a huge dataset, and use it to differentiate another
dataset. However, in high throughput technology, there are lots of difference among the
datasets published by different laboratories, such as enviroments, machines, sample races,
and many experiment conditions [23, 12]. The datasets from different laboratories may
have different distribution in raw data. If we comprise these datasets directly, it will influ-
ence the result strongly. It has to be normalized between datasets to the same distribution
before further analysis [|19].

Not only cross-laboratory may have huge influence, but also cross-platform. Several
studies show that even using the same samples, the measurements from different platforms
are still poorly correlated [2, [18]. Therefore, many researches have been conducted to re-
duce the bias which is resulted from cross-laboratory or cross-platform. Many approaches
have been proposed to solve this bias in microarray technology, such as log transform [J],
mean scale, rank-based normalization [52]. In RNA-seq technology, still few research
discuss the normalization problem across laboratories or platforms [[16, 35]

Many studies have shown that the rank-based normalization is effective to raise predic-
tion accuracy and let it more stable than only using expression values. Expression values
may be biased because the scale of each gene may vary among different experimental en-
vironments. To rank gene’s order of a sample instead of using its expression value is much
better to eliminate systematic biases and improve the prediction accuracyn [52]. There are
several variants of rank-based normalization. First, the basic type of rank-based normal-

ization which we used in our study, only use the rank of gene in one sample to replace the
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expression value of the gene [44]. Second, median rank is another rank-based normaliza-
tion. It calculates the median of each gene between the samples and sorts those medians
as the value of rank [47)]. Another rank-based normalization is quantile normalization [3].
The value of rank is measured by taking the average of the expression values of defined
rank in samples, and then replaces the expression value of each gene by the value of its
rank. Some researches show that using simple rank-based normalization performs better
than quantile normalization method [44, B1|]. Then, we choose the simple rank-based nor-
malization. Using the gene’s rank in the sample to replace the expression value. In this
study, we use both RPKM (FPKM) and rank levels for feature selection to observe the
improvement by applying rank-based normalization. After this procedure, we use RPKM

and rank value to do the step of feature selection.
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Chapter 3

Feature selection and classification

Finding relevent genes from tens of thousands of genes is an important and difficult
task in differetial gene analysis. We apply an embedded feature selection method, Random
Forest [4] to select a relevent gene list from the training set. Then, we evaluat the gene list
by checking classification accuracy of testing set by the well-known classifier, Support
Vector Machine (SVM) [7]. We will introduce the details of these two techniques in the

folowing sections.

3.1 Feature selection by Random Forest

Random Forest which is first proposed by Breiman [4] is an embedded feature selec-
tion method which interacts with classifier. We apply Random Forest for feature selection
on training set to obtain a ranking list of gene which is sorted from the most relevent to
the least relevent for classification. We use the ‘randomForest’ [20] of R-package for
this step. In this section, we first introduce the decision tree which Random Forest uses,
and ensemble of all dicision trees. Finally, we introduce the whole procedure of Random

Forest.

3.1.1 Building decision tree

Decision tree is a predictive model which can be used in classification or regression.

Here we use the classification tree. Figure is the structure of a classification tree.
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Figure 3.1: An example of a decision tree.

Assume that a data A has a feature vector X = (21, 2, ..., z,) which is a p-dimensional
vector. We want to predict the class Y = {1, —1} of A from the feature vector X. The
classification tree is a binary tree, and each internal node represents a test to A. At each
internal node of the binary tree, we apply the test to get the outcome (yes or no) to decide
which way A has to go. If the test return yes, then A goes to the left branch, and A goes to
the right branch otherwise. Finally, A reaches the leaf node, where we make a prediction
of class Y.

Constructing classification or regression tree is based on greedy algorithms. The clas-
sification tree is constructed top-down, starting from a root node. For choosing the internal

node, we calculate the value of:
S|+ H(S) = [Sel - H(Sy) — [S¢] - H(Sy), (3.1)

where S denotes the set of samples that reach the node, S; and S denote the subset of S

which the the test is true and false, respectively. The function H is the Shannon entropy:

Y

H(S) == p(e;) - log plcy), (3.2)

=1

where Y is the number of class and p(c;) is the proportion of samples in S belonging to
class ¢;. The feature which maximizes the Eq 3.1/ will be chosen for the internal node, and

remove from the feature vector. The tree is constructed recursively, until all the features
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are assigned for internal node.

3.1.2 Ensemble of trees

Ensemble method is to aggregate the prediction of several trees, and usually improves

the performance of a single tree. The goal of ensemble method is to use diversified models

to reduce the variance. Random Forest is an ensemble of N decision trees {7} (X ), T2(X), ...

where X = (x1, 9, ...,x,) is a p-dimensional vector of features. The ensemble outputs
(Vi = Ty(X),...,Yy = Tn(X)}, where Y;(i = 1, ..., N) is the prediction result of the
tree T;. The outputs of all trees are aggregated to produce one final prediction which is a

vajority vote of trees for classification problem.

3.1.3 Training procedure

Given data on a set of size n, D = {(X1, Y1), (X2, Y2), ..., (Xp, Ys) }, where X is the
feature vector and Y; is the class label of sample 7. The training procedure of Random

Forest is as follow:

1. From training data of n sample, random sampling /V subsets with replacement from

n samples.

2. For each subset, build a decision tree with the following rule: at each internal node

choose the gene which can split the subset best.

3. Repeat above steps until all N trees are constructed well. In our study, we set N to

1000.

3.1.4 Measuring feature importance

Breiman has proposed a procedure to compute the feature importance. Consider out-
of-bag samples S, which are the training samples that are not in the samples which be used
in the construction of emsemble trees. The prediction accuracy p; of S, where ¢ stands for

the i-th tree. Randomly permute the value of gene j in S, to get S,, After permutation, we
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get the predition accuracy p;; of S,,. We can get the importance s; of gene j to average
all the value of p; substrct p;,. At last, sort the important list, and get the top 250 genes

for calssification.

3.2 Classification

To evaluate the performance of feature selection method, the best way is to perform the
classification with the optimal feature set which is selected by feature selection method.
In previous step, We obtained a relevent gene list by applying Random Forest in training
set. We use the gene list to classify testing set by the well-known classifier Support Vector
Machine [7]. Then, we evalute the perfomance of the gene list by checking the prediction
accuracy of the testing set. The package of Support Vector Machine we used is provided

by a R-package ‘€1071’ [6].

3.2.1 [Introduction of Support Vector Machine

Support Vector Machine, a supervised machine learning technique, has been widely
used in various areas of biological classification tasks [[7]. SVM is designed for binary
classification originally, but several methods have been proposed to extend binary classi-
fication to multi-class calssfication. In our stduy, we only consider the binary classifica-
tion.

The concept of binary SVM is trying to find a hyperplane which can separate all the
points apart well. All the points of class A are on one side of the hyperplane, and the
points of class B are on another side. There are many hyperplane to separate n points to
two classes. The best separating hyperplane H is with the largest separation, or margin,
between the two classes. The margin means the distance of H to the nearest point on each
side.

For example, there are 15 points on a plane in Figure B.2. Eight of them are white, and
the other seven are black. In Figure B.2, there are three hyperplanes to separate these 15

points. H is the hyperplane, and the distance between H; and H, is the margin. In Figure
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Figure 3.2: Classification of 15 points.

B.2(a), the hyperplane H is not a good way to separate points, because two white points
are separated to the wrong side. The hyperplane H of Figure and Figure can
separate points to two sides well, but the H in Figure is better than Figure 3.2(b),
because the margin in Figure is larger.

Then, consider n training points: S = {(z;,y;)},7 = 1,...,n, where z; € RP isa vector
of feature of i-th sample, and y; is the class label of sample x;. For binary classification
problem, y; € {—1,1}. The goal is to find the maximum-margin hyperplane that divides
the points into two parts which are y; = 1 and y; = —1. In Figure B.3, assume the
hyperplane H is w'z — b = 0, and H, and H; are w2z — b = 1 and wlz — b = —1,

respectively. The vector w is the normal vector to the hyperplane H. Then, the margin is
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Figure 3.3: Illustration of SVM classification.

the distance between H; and H,, ﬁ All n points will satisfied the following constraints:

wle;, —b> lforally; =1

wlz; —b < —1 forall yi = —1.
We can combine above two constraints to:
yi(wai —b)>1foralll <i<n.

Maximizing the ﬁ equals to minimizing £||w||. Then, finding the largest margin prob-

lem becomes to the following optimization problem:

1,
minimize 511) w

subject to y;(w’ z; —b) > 1fori=1,2,....n (3.3)

Using Lagrange Multiplier Method, this optimization problem can be solved by solving
the dual problem, a quadratic problem to get the hyperplane. After obtaining the optimal

hyperplane to separate training data, we can use this model to predict the testing data.
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3.2.2 Classification using SVM

We evaluate the feature selection method and rank-based normalization by SVM clas-
sification accuracy. Here, we use the ‘e1071’ of R package for SVM. There are three types
of training set and testing set which we mentioned before.

All pairs of training and testing datasets undergo this procedure. After feature selection
for training set, we use SVM to get the training model from training set and use this model

to predict the testing set.

3.3 Evaluation

For classification, the most commonly used prediction mesurement is accuracy. How-
ever, for unbalaced data, a high accuracy by predicting all data to the major class may be
misleading. For example, Prostate-3 has 25 tumor samples, but only 7 normal samples.
Prostate-4 is also unbalaced dataset, 20 for tumor samples, and five for normal samples.

Therefore, we use balanced accuracy for our measurements:

1 TP TN
Balanced accuracy = 5 \ TP FN + TN P

where TP, TN, FP and FN indicate numbers of true positive, true negative, false positive
and false negative. True positive means the sample which is positive and be predicted as
positive. True negative means the sample which is negative and be predicted as negative.

False positive means the sample which is negative and be predicted as positive. False neg-

TP

ative means the sample which is positive and be predicted as negative. 777

is true pos-
itive rate which measures the proportion of actual positives which are correctly predicted,
and % is true negative rate which measures the proportion of actual negatives which
are correctly predicted. If the classifier predict all data to major class, the balaced accuracy
will be only 50%. Hence, balanced accuracy can avoid inflated performance estimates on
imbalanced dataset. Therefore, it is generally believed that the balanced accuracy better

handle the data imbalance and can reveal the performance on cancer classification.
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Chapter 4

Results

In this chapter, we will show all experimental results in figures and tables. The first

result is the comparison of classification performance of three methods:

1. using FPKM for gene expression value and Random Forest for feature selection
2. applying rank-based normalization and Random Forest for feature selection

3. using Cuftdiff for feature selection

It is observed that the results of applying rank-based normalization outperform the other
two in most figures and tables. Moreover, we discuss the influence of cross-laboratoy on
feature selection. The performance is stable and very high with few selected gene in LOO
CV test, but to reach the high performance the number of selected gene must be more
than 125 in cross-laboratory prediction. Furthermore, the prediction may be influenced
by the sequencing platform. It leads the poor performance when Prostate-3 is the training

dataset, and the high performance when Prostate-2 is used for training.

4.1 Results of performance

In Section .3, we introduced the rank-based normalization. Some studies of microar-
ray analysis indicated that the classification accuracy with rank-based normalization is
better than using expression values. In our study, we futher demonstrate that rank-based

normalization is also better than using FPKM in cross-laboratory prediction.
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Figure 4.1: Results of prediction balanced accuracy. Three data sets are combined as the
training data set. The remaining one shown in the legend is regarded as the testing data
set.

In Figure @.1|, each line stands for the balanced accuracy curve of combining three
datasets for training set and one for testing set. For example, the pink line in Figure
is the balanced accuracy curve of using Prostate-2, Prostate-3 and Prostate-4 for training
set and predicting Prostate-1. Figure is the result of using FPKM for gene ex-
pression value and Figure is the result when applying rank-based normalization.
Figure shows that the balanced accuracy of using FPKM is on the range of 50%
to 70%. However, the curve when using rank-based normalization is raised evidently at
gene number more than 125. In Figure §.1(b), the balanced accuracy reached to 90% to
100% at number of gene more than 125 in testing Prostate-3 and Prostate-4, and predicting
Prostate-1 and Prostate-2 also raised to 80% to 85%. All four combination of training and
testing sets have evident raise from using FPKM or RPKM to rank-based normalization.

Figure is the average balanced accuracy of four combination in Figure 4.1(a)-(c).
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For example, the red line of Figure is the average prediction result of applying rank-
based normalization and using Random Forest for feature selection. From Figure #.1(d),
we can observe the clear increase of balanced accuracy after gene number is more than
125. Table concluded the highest balanced accuracy and highest average balanced
accuracy. The highest average balanced accuracy means the highest point in Figure . 1(d).
Predicting Prostate-2 and Prostate-3 have the most growth, almost increasing 40%. For
the average of four combination of combine three datasets for training set, the highest
balanced accuracy of FPKM is only 67.7%, but rank-based normalization is 89.4%.

Figure §.2 is the result of using one dataset for training set to predict another testing
dataset. The left figures of Figure are the result of using FPKM, and the right figures
are using rank-based normalization. In Figure §.2(a), balanced accuracy of predicting
Prostate-3 and Prostate-4 increase to 75% and 80%, and predicting Prostate-2 reaches to
90%. The balanced accuracy of predicting Prostate-3 have a large increase from 50% to
100% in Figure B.2(b). In Figure #.2(d), all the curve have a great improvement after
applying rank-based normalization. Although the highest balanced accuracy of training
Prostate-2 to predict Prostate-1 and Prostate-4 have no improvement, it becomes more
stable after applying rank-based normalization.

In Figure .1 and Table §.1], we can observe that almost all the performance improves
with rank-based normalization, but the performance is still poor when training data is
Prostate-3. The reason for the poor performance of training Prostate-3 to predict others
might be that the distribution of Prostate-3 is far from others or the special property of
Prostate-3. We will discuss this situation in Section 4.3.

Next, we compare the performance of using well-known differetial gene analysis tool,
Cuftdift, with the performance of Random Forest after applying rank-based normalization.
We sort the p-value which calculated by Cuftdiff in ascending order, and choose the top
250 genes for classification. The results of using Cuffdiff for feature selection are in
Figure and Figure #.3, and it is similar to the result of using Random Forest without
rank-based normalization. It performs better in predicting Prostate-4 than Random Forest

without rank-based normalization, but the performance of predicting Prostate-1 is worse.
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Figure shows the performance of using Cuffdift and using Random Forest without
rank-based normalization are both around 60%. The performance of applying rank-based
normalization is higher than others at gene number more than 50. Therefore, the rank-

based normalization is effective in cross-laboratory feature selection.

Table 4.1: Results of highest balanced accuracy.

Training sets Testing sets FPKM Rank Cuffdiff
Prostate-2+3+4  Prostate-1 75 80 77.5
Prostate-1+3+4  Prostate-2 66.6 912 746
Prostate-1+2+4  Prostate-3 59.1 100 54.5
Prostate-1+2+3  Prostate-4 925 975 925

Average highest 67.7 894 67.7
Prostate-1 Prostate-2 82.2 917 829
Prostate-1 Prostate-3 590 738 952
Prostate-1 Prostate-4 67.5 850 925
Average highest 68.8 82.7 83.2
Prostate-2 Prostate-1 80.0 80.0 77.5
Prostate-2 Prostate-3 904 100 69.0
Prostate-2 Prostate-4 84.0 925 875
Average highest 813 883 772
Prostate-3 Prostate-1 50.0 725 725
Prostate-3 Prostate-2 50.0 &7.5 575
Prostate-3 Prostate-4 70.0 85.0 975
Average highest 56.7 80.8 759
Prostate-4 Prostate-1 70.0 82,5 675
Prostate-4 Prostate-2 87.0 913 66.7
Prostate-4 Prostate-3 97.6 100 90.9
Average highest 76.3 88.1 69.5

4.2 Influence of cross-laboratory

Figure §.4 is the LOO CV results of combining three datasets with applying rank-
based normalization. The leave-one-out cross-validation (LOO CV) means that it uses
one sample for testing set and the others for training set, and each sample has the turn for
testing. Then, the validation results are averaged over all rounds. For example, the pink
line in Figure 4.4 is the result of using Prostae-2, Prosate-3 and Prostate-4 for LOO CV. 79
of the total 80 samples use for training set, and the left one is for testing. In LOO CV test,

the balanced accuracy is stable at low selected gene number, but it needs to be more than
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(d) The training data set is Prostate-4.

Figure 4.2: Results of prediction balanced accuracy. The training data set is shown on
each subfigure title, and the testing data set is described in legend.
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Figure 4.3: Results of prediction balanced accuracy when using Cuftdiff for feature se-
lection. The training data set is shown on each subfigure title. And the testing data set is
described in legend.

125 in cross-laboratory feature selection. Due to distribution of four sets is independent,
then prediction across sets is difficult. In addition to the laboratories and platforms are
different, the races of samples are different between datasets. Research shows that even
the same dataset and the same laboratory will get different results by different platforms. In
LOO CV test, the training model learns from different laboratoies which the testing sample
belongs to. Then, it is easy to choose the features to classify testing sample. Therefore, it

can get the high performance when the selected genes are few.

4.3 Influence of NGS platforms

Although rank-based normalization can rescale cross-laboratory data, the performance
is still poor in Figure #.2(c). The reason may be the sequencing machine which generating

Prostate-3 is older than others. Prosate-3 is generated from Illumina Genome Analyzer I
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Figure 4.4: Results of LOOCV when using rank-based normalization.

(GAl), but Prostate-1 and Prostate-4 are both using [llumina Genome Analyzer II (GAII)
and Prostate-2 is using I[llumina Hiseq 2000 which is the newest machine. The detail of
four datasets and platforms are summarized in Table #.2. Prostate-3 is single-end data
which has higher error rate than pair-end data during mapping to reference genome, and
the read count per sample is also fewer than others. The read count of a sample in Prostate-
3 is only 5.3M which is far less than the others. Although the scheme of RPKM (FPKM)
adjust the bias result from different total read count, the few read count may result in
many genes ummapped by reads. On the other hand, Prostate-2 performs well in low
number of selected genes, and the performance is stable. The read count and base count
of each sample in Prostate-2 are far more than other datasets, and [llumina Hiseq 2000
which generates Prostate-2 provides lower error rate and higher perfomance than other
platforms. By the advatage of platform, the information provided by Prostate-2 is more
stable and it can provide feature selection higher performance. Therefore, not only the
cross-laboratoty will affect performance of feature selection, but also the platform used is

the factor.
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Chapter 5

Conclusions and future work

In our study, we apply rank-based normalization to reduce the influence by cross-
laboratory. The performance has a great improvement after appying rank-based normal-
ization. Furthermore, the performance of using Random Forest with applying rank-based
normalization is better than using the well-known differential gene tool Cuffdiff. Although
the prediction result has been improved by rank-based normalization, the balanced accu-
racy is still not good enough. To further improve the performance, it may use better ma-
chine which generates the sequence data. We have discussed that the sequencing machine
is also an important factor which affects the preformance of feature selection on cross-lab
RNA-seq datasets. The better platform provide more effective and stable information for
feature selection, and it performs well in the prediction results. Hence, by the develop-
ment of RNA-seq technology, the data generated by the newer machine would be more
suitable for cross-laboratory analysis.

RNA-sequencing technology provides expression level of genes and sequence struc-
ture of RNA. In our study, we only use gene expression and we want to take an advantage
of sequence structure to further analysis. Next, we want to apply the cross-laboratory
feature selection in gene fusion detection. The gene fusion occurs frequently in prostate
cancer Gene fusion means that two previously separated genes fuse together to a new
gene. Due to the dataset are across different laboratories and different races, we are able

to detect the common gene fusion event in specific race or among different races.
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