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中文摘要中文摘要中文摘要中文摘要    
   在這篇文章中，我們考慮非零解在時諧性麥克斯威爾系統的局部行為，其系統為非等向

性的媒體。而我們主要得到的結果是此系統的強連續延拓性在某些條件之下將會成立，並且

導出強連續延拓性的定量分析，也可以得到非零解趨近到零的速度。 

  我們主要運用到的工具為 Carleman 估計導出 Three-balls 不等式，再運用另一個 Carleman

估計以及 Three-balls 不等式推導出 Doubling 不等式，因此可得出強連續延拓性的定量分析。 
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Abstract 
    In this article, we consider the local behavior of a non-trivial solution for the time-harmonic 

Maxwell system with anisotropic media. The main result of this article is the bound on the 

vanishing order of the solution of the Maxwell system, which is a quantitative estimate of the strong 

unique continuation property(SUCP). And the most important tool is Carleman estimate. Our 

strategy in the proof is to derive doubling inequality through three-balls inequality. 
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Quantitative uniqueness estimate of strong unique

continuation property for the Maxwell system with

anisotropic media

1. Introduction

The Maxwell system is firstly mentioned by James C lerk M axwell in the pa-

per ”On Physical Lines of Force” which is published in 1861. He derived it from

Gauss′s law, Faraday′s law and Ampre′s circuital law. Furthermore, he derived

electromagnetic wave equations in 1865 and claim that light is an electromagnetic

wave. In fact, he established the fundamental electrodynamics and had a significant

impact on modern physics.

1. Gauss′s law: The total electric flux coming out of a closed surface is equal to

the total charge enclosed by that closed surface. It means that

©
∫∫

ε0E · dA = Q

2. Gauss law for the Magnetic Fields: The total magnetic flux coming out of a

closed surface is always zero. It means that

©
∫∫

µ0H · dA = 0

3. Faraday′s law: The line integral of electric field over a closed contour is equal

to the time rate of change of the total magnetic flux that goes through any

arbitrary surface that is bounded by the closed contour. It means that∮
E · ds =

∂

∂t

∫∫
µ0H · dA

4. Ampre′s circuital law: The line integral of magnetic field over a closed contour

is equal to the total current plus the time rate of change of the total electric
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flux that goes through any arbitrary surface that is bounded by the closed

contour. It means that∮
H · ds =

∫∫
J · dA+

∂

∂t

∫∫
ε0E · dA

where E is the electric field, H is the magnetic field, J is the current density, Q

is the total charge, ε0 is the permittivity of vacuum, and µ0 is the permeability of

vacuum.

Actually, Maxwell system can describe more complicated physical phenomenon

in real life, so it has a general form, which is depending on the medium. Now we

assume J = 0 to simplify the problem.

So we can define that E = (E1, E2, E3) is the electric field, H = (H1, H2, H3) is

the magnetic field and ω is the frequency in a domain Ω. Denote the time-harmonic

Maxwell system with anisotropic media curlE = −iωµH

curlH = iωεE
in Ω (1.1)

where Ω is an open subset of R3 containing 0, ω ∈ C\ {0},and ε(x),µ(x) are two real

symmetric matrix-valued and positive-definite functions in Ω satisfying the following

property :

(a) ε(0) = hµ(0) where h is a constant.

(b) ε,µ ∈ C2 (Ω)

We can reduce the Maxwell system to a weakly coupled second order elliptic system.

Denote that

γkjl =


1 , if (k,j,l) is an even permutation of (1,2,3)

−1, if (k,j,l) is an odd permutation of (1,2,3)

0 , otherwise
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From the Maxwell system we can obtain that ∂kE = ∇Ek − iωγkµH

∂kH = ∇Hk + iωγkεE

By simple calculation and (1.1), we know that div(curlH) = 0

div(curlE) = 0
⇒

 div(εE) = 0

div(µH) = 0

So we have that for k = 1, 2, 3, the following formulas is called (1.2) 0 = ∂kdiv(εE) = div(ε∇Ek) + div(∂kε · E − iωεγkµH)

0 = div(µ∇Hk) + div(∂kµ ·H + iωµγkεE)

Now let P (x,D) =
∑
j,k

ajk(x)DjDk be an elliptic operator in Ω such that ajk(0) is

a symmetric and positive-definite matrix and ajk(x) ∈ C2 (Ω) , so we can rewrite

(1.2) 
P1(x,D)E + 2∇E · divε+ E · ε̃−

3∑
k=1

div(iωεγkµH) = 0

P2(x,D)H + 2∇H · divµ+ E · µ̃+
3∑

k=1

div(iωµγkεE) = 0

where

P1(x,D) =
3∑

i,j=1

εij(x)DiDj , P2(x,D) =
3∑

k,l=1

µkl(x)DkDl,

ε̃ =
3∑

m,n=1

DmDnε(x) , µ̃ =
3∑

m,n=1

DmDnµ(x)

So it implies that |P1(x,D)E| ≤ α1|E|+ α2|∇E|+ α3|∇H| ≤ α4|U |+ α5|∇U |

|P2(x,D)H| ≤ β1|H|+ β2|∇H|+ β3|∇E| ≤ β4|U |+ β5|∇U |
(1.3)

where U = (E,H) is the non-trivial solution for the (1.1), αi, βi are constants for

i = 1, 2, 3, 4, 5, and by (1.3) we can assume that M1 = max{α4, α5} and M2 =

max{β4, β5} ⇒  |P1(x,D)E| ≤M1|U |+M2|∇U |

|P2(x,D)H| ≤M1|U |+M2|∇U |
(1.4)
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2. The main theorems

Theorem 1 There exists a positive number R1 < 1 such that if 0 < r1 < r2 < r3 ≤

R0 and r1/r3 < r2/r3 < R1 then∫
|x|<r2

|U |2dx ≤ C

(∫
|x|<r1

|U |2dx
)τ (∫

|x|<r3
|U |2dx

)1−τ

for U = (E,H) ∈ (L2(BR0))
6 where BR0 ⊂ Ω and U is the non-trivial solution for

the (1.1), where C depend on r1/r3, r2/r3 ,P1(x,D) and P2(x,D) and 0 < τ < 1 is

only depending on r1/r3, r2/r3.

And then we want to show the quantitative estimate of strong unique continuation

property for the Maxwell system. The strong unique continuation means that

For all U = (E,H) ∈ H1
loc(Ω) vanishes of infinite order at 0, then U=0 in Ω

Theorem 2 gives the upper bound on the vanishing order of the solution of the

Maxwell system, and theorem 3 is the quantitative estimate of strong unique con-

tinuation property.

Theorem 2 If U = (E,H) ∈ (L2
loc(Ω))6 is a non-trivial solution of Maxwell system,

then we can find a constant R2 depending on P1(x,D) , P2(x,D) and constant m1

depending on P1(x,D), P2(x,D) and ||U ||L2(|x|<R2
2)
/||U ||L2(|x|<R4

2)
satisfying∫

|x|<R
|U |2dx ≥ KRm1

where R is sufficient small and the constant K depending on R2 , U .

Theorem 3 Let U = (E,H) ∈ (L2
loc(Ω))6 be a non-trivial solution to the Maxwell

system. Then there exists positive constant R3 and C3 depending on P1(x,D) ,

P2(x,D) and m1 such that if 0 < r ≤ R3,∫
|x|<2r

|U |2dx ≤ C3

∫
|x|<r
|U |2dx

where m1 is the constant obtained in theorem 2.
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3. Proofs

Proof of the theorem 1

First we denote that ϕβ = ϕβ(|x|) = exp((
β

2
)(log|x|)2) and recall a Carleman

estimate [1]:

Lemma For any β > 0 large enough. Let S be a small neighborhood of 0, and

u : S\{0} ⊂ Ω→ R and that u ∈ H2(S\{0}) with compact support. Then we have

β3

∫
ϕ2
β|x|−n|u|2dx+ β

∫
ϕ2
β|x|−n+2|∇u|2dx ≤ C̃0

∫
ϕ2
β|x|−n+4|P (x,D)u|2dx

(1.5)

for some positive constant C̃0 depending only on P (x,D). Now ε, µ are C2 func-

tions, and U = (E,H) ∈ (L2
loc(Ω))6 then U = (E,H) ∈ (H1

loc(Ω))6 [2] and us-

ing regularization, Friedrich ′s Lemma and ellipticity of P (x,D). We can see that

U = (E,H) ∈ (H2
loc(Ω\{0}))6.

Consider that 0 < r1 < r2 < R < 1, BR ⊂ Ω where R is a constant. Define a

cut-off function φ(x) ∈ C∞0 (Rn) satisfying 0 ≤ φ(x) ≤ 1 and

φ(x) =


0, if |x| ≤ r1

e

1, if
r1
2
≤ |x| ≤ er2

0, if |x| ≥ 3r2

where exp(1) = e. And it is easy to know that for all multiindex α and C1,C2 are

constants. |D
αφ(x)| ≤ C1r

−|α|
1 , ∀ r1

e
≤ |x| ≤ r1

2

|Dαφ(x)| ≤ C2r
−|α|
2 , ∀ er2 ≤ |x| ≤ 3r2

(1.6)

We assume n = 3 in the lemma because of the domain Ω ∈ R3 and then apply

(1.5) to φE and φH. Firstly, we consider φE and use (1.4),(1.5),(1.6) and Cauchy-

Schwarz inequality. We obtain

β3

∫
r1/2<|x|<er2

ϕ2
β|x|−3|E|2dx+ β

∫
r1/2<|x|<er2

ϕ2
β|x|−1|∇E|2dx

≤ β3

∫
ϕ2
β|x|−3|φE|2dx+ β

∫
ϕ2
β|x|−1|∇φE|2dx
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≤ C̃0

∫
ϕ2
β|x||P1(x,D)(φE)|2dx

≤ C̃0

{∫
r1/2<|x|<er2

ϕ2
β|x|(2M2

1 |φU |2 + 2M2
2 |φ∇U |2)dx

+

∫
r1/e<|x|<r1/2

ϕ2
β|x|−3(C1|U |2 + C2|x|2|∇U |2)dx

+

∫
er2<|x|<3r2

ϕ2
β|x|−3(C1|U |2 + C2|x|2|∇U |2)dx

}
≤ C̃1

{∫
r1/2<|x|<er2

ϕ2
β(|x|−3|U |2 + |x|−1|∇U |2)dx

+

∫
r1/e<|x|<r1/2

ϕ2
β|x|−3(|U |2 + |x|2|∇U |2)dx

+

∫
er2<|x|<3r2

ϕ2
β|x|−3(|U |2 + |x|2|∇U |2)dx

}
≤ C̃2

{∫
r1/2<|x|<er2

ϕ2
β(|x|−3|U |2 + |x|−1|∇U |2)dx

+r−31 ϕ2
β(r1/e)

∫
r1/e<|x|<r1/2

(|U |2 + |x|2|∇U |2)dx

+r−32 ϕ2
β(er2)

∫
er2<|x|<3r2

(|U |2 + |x|2|∇U |2)dx
}

(1.7)

where C̃1 = max{2C̃0M
2
1 , 2C̃0M

2
2 , C̃0C1, C̃0C2} and C̃1e

3 = C̃2

We introduce a corollary in [3]

Corollary For 0 < a3 < a1 < a2 < a4 such that Ba4r ⊂ Ω, we can show the follow-

ing inequality

∫
a1r<|x|<a2r

||x||α|Dαu|2dx ≤ C ′
∫
a3r<|x|<a4r

|u|2dx

where C ′ is a constant independent of r and |α| ≤ 2.

So by the corollary, it implies (1.8)

β3

∫
r1/2<|x|<er2

ϕ2
β|x|−3|E|2dx+ β

∫
r1/2<|x|<er2

ϕ2
β|x|−1|∇E|2dx

≤ C̃3

{∫
r1/2<|x|<er2

ϕ2
β(|x|−3|U |2 + |x|−1|∇U |2)dx

+r−31 ϕ2
β(r1/e)

∫
r1/4<|x|<r1

|U |2dx+ r−32 ϕ2
β(er2)

∫
2r2<|x|<4r2

|U |2dx
}

where C̃1,C̃2,C̃3 are independent of r1,r2.

And we have the same conclusion for the φH, so we obtained

β3

∫
r1/2<|x|<er2

ϕ2
β|x|−3|H|2dx+ β

∫
r1/2<|x|<er2

ϕ2
β|x|−1|∇H|2dx
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≤ C̃3

{∫
r1/2<|x|<er2

ϕ2
β(|x|−3|U |2 + |x|−1|∇U |2)dx

+r−31 ϕ2
β(r1/e)

∫
r1/4<|x|<r1

|U |2dx+ r−32 ϕ2
β(er2)

∫
2r2<|x|<4r2

|U |2dx
}

(1.9)

Therefore, we can combine the inequality (1.8) and (1.9) such that

β3

∫
r1/2<|x|<er2

ϕ2
β|x|−3(|E|2 + |H|2)dx+ β

∫
r1/2<|x|<er2

ϕ2
β|x|−1(|∇E|2 + |∇H|2)dx

= β3

∫
r1/2<|x|<er2

ϕ2
β|x|−3|U |2dx+ β

∫
r1/2<|x|<er2

ϕ2
β|x|−1|∇U |2dx

≤ 2C̃3

{∫
r1/2<|x|<er2

ϕ2
β(|x|−3|U |2 + |x|−1|∇U |2)dx

+r−31 ϕ2
β(r1/e)

∫
r1/4<|x|<r1

|U |2dx+ r−32 ϕ2
β(er2)

∫
2r2<|x|<4r2

|U |2dx
}

Now let β0 ≥ 1 and β3 ≥ β ≥ β0 ≥ 3C̃3, then we can get another inequality (1.10)

∫
r1/2<|x|<er2

ϕ2
β|x|−3|U |2dx+

∫
r1/2<|x|<er2

ϕ2
β|x|−1|∇U |2dx

≤ C̃4

{
r−31 ϕ2

β(r1/e)

∫
r1/4<|x|<r1

|U |2dx+ r−32 ϕ2
β(er2)

∫
2r2<|x|<4r2

|U |2dx
}

where C̃4 = 1/C̃3, and it is easy to get that

r−32 ϕ2
β(r2)

∫
r1/2<|x|<r2

|U |2dx ≤
∫
r1/2<|x|<r2

ϕ2
β|x|−3|U |2dx ≤

∫
r1/2<|x|<er2

ϕ2
β|x|−3|U |2dx

≤ C̃4

{
r−31 ϕ2

β(r1/e)

∫
r1/4<|x|<r1

|U |2dx+ r−32 ϕ2
β(er2)

∫
2r2<|x|<4r2

|U |2dx
}

Dividing the term r−32 ϕ2
β(r2), we obtain∫

r1/2<|x|<r2
|U |2dx ≤ C̃4

{
(r2/r1)

3[ϕ2
β(r1/e)/ϕ

2
β(r2)]

∫
r1/4<|x|<r1

|U |2dx

+[ϕ2
β(er2)/ϕ

2
β(r2)]

∫
2r2<|x|<4r2

|U |2dx
}

≤ C̃5

{
(r2/r1)

3[ϕ2
β(r1/e)/ϕ

2
β(r2)]

∫
|x|<r1

|U |2dx

+(r2/r1)
3[ϕ2

β(er2)/ϕ
2
β(r2)]

∫
|x|<4r2

|U |2dx
}

(1.11)

where C̃5 = max{C̃4, 1}

By choosing such C̃5, we know that

C̃5(r2/r1)
3[ϕ2

β(r1/e)/ϕ
2
β(r2)] > 1

7



for 0 < r1 < r2 ≤ 1.

Adding

∫
|x|<r1/2

|U |2dx to the both sides of (1.11) and r2 < 1/4, and then we have∫
|x|<r2

|U |2dx ≤ C̃5

{
(r2/r1)

3[ϕ2
β(r1/e)/ϕ

2
β(r2)]

∫
|x|<r1

|U |2dx

+(r2/r1)
3[ϕ2

β(er2)/ϕ
2
β(r2)]

∫
|x|<1

|U |2dx
}

+C̃5(r2/r1)
3[ϕ2

β(r1/e)/ϕ
2
β(r2)]

∫
|x|<r1/2

|U |2dx

≤ 2C̃5

{
(r2/r1)

3[ϕ2
β(r1/e)/ϕ

2
β(r2)]

∫
|x|<r1

|U |2dx

+(r2/r1)
3[ϕ2

β(er2)/ϕ
2
β(r2)]

∫
|x|<1

|U |2dx
}

Assume A = (log r1 − 1)2 − (log r2)
2, B = −1 − 2 log r2, and A > 0, B > 0 by

simple computation. Therefore, the above inequality becomes

∫
|x|<r2

|U |2dx ≤ 2C̃5(r2/r1)
3

{
exp(Aβ)

∫
|x|<r1

|U |2dx+ exp(−βB)

∫
|x|<1

|U |2dx
}

(1.12)

By standard argument, we consider two cases

Case1 : If exp(Aβ0)

∫
|x|<r1

|U |2dx < exp(−β0B)

∫
|x|<1

|U |2dx and pick β > β0 such

that

exp(Aβ)

∫
|x|<r1

|U |2dx = exp(−βB)

∫
|x|<1

|U |2dx

so we have the following important inequality∫
|x|<r2

|U |2dx ≤ 4C̃5(r2/r1)
3exp(Aβ)

∫
|x|<r1

|U |2dx

= 4C̃5(r2/r1)
3

(
exp(Aβ)

∫
|x|<r1

|U |2dx
) B

A+B
(
exp(−βB)

∫
|x|<1

|U |2dx
) A

A+B

= 4C̃5(r2/r1)
3

(∫
|x|<r1

|U |2dx
) B

A+B
(∫

|x|<1

|U |2dx
) A

A+B

Case2 : If exp(Aβ0)

∫
|x|<r1

|U |2dx ≥ exp(−β0B)

∫
|x|<1

|U |2dx, then we have∫
|x|<r2

|U |2dx ≤
(∫

|x|<1

|U |2dx
) B

A+B
(∫

|x|<1

|U |2dx
) A

A+B

≤ exp(β0B)

(∫
|x|<r1

|U |2dx
) B

A+B
(∫

|x|<1

|U |2dx
) A

A+B

By the arguments, we can take C̃6 = max
{
exp(β0B), 4C̃5(r2/r1)

3
}

and get that
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∫
|x|<r2

|U |2dx ≤ C̃6

(∫
|x|<r1

|U |2dx
) B

A+B
(∫

|x|<1

|U |2dx
) A

A+B

(1.13)

For the general case, we can assume that R1 ≤ 1/4 and 0 < r1 < r2 < r3 ≤ R0 with

r1/r3 < r2/r3 ≤ 1/4.

By scaling, Ũ(y) = U(r3y) , ε̃ij(y) = εij(r3y) , µ̃ij(y) = µij(r3y) We can have the

same conclusion by above argument and obtain∫
|y|<r2/r3

|Ũ |2dx ≤ C

(∫
|y|<r1/r3

|Ũ |2dx
)τ(∫

|y|<1

|Ũ |2dx
)1−τ

(1.14)

where τ = B/(A+B) and C = max
{
exp(β0B), 4C̃5(r2/r1)

3
}

 A =
(

log (r1/r3)− 1
)2 − ( log (r2/r3)

)2
B = −1− 2 log (r2/r3)

Providing r3 < 1 and C̃5 can be chosen independent of r3. So undoing the change

of variable of (1.14), we have∫
|x|<r2

|U |2dx ≤ C

(∫
|x|<r1

|U |2dx
)τ(∫

|x|<r3
|U |2dx

)1−τ

(1.15)

The proof is now complete.

And then we are going to prove that the Maxwell system have the strong unique

continuation property, so we have to prove the two theorems by using theorem 1.

9



Proof of the theorem 2 and theorem 3

Without loss of generality, we can use the change of coordinates and property (a)

to obtain that

P1(0, D) =
3∑

i,j=1

ε(0)DiDj = ∆

P2(0, D) =
3∑

i,j=1

µ(0)DiDj =
P1(0, D)

h
=

∆

h

So we recall another Carleman estimate[1] : For any u ∈ H2
loc(Rn\{0}) with compact

support and for any m ∈ {j +
1

2
|j ∈ N} we have that

∑
|α|≤2

∫
m2−2|α||x|−2m+2|α|−n|Dαu|2dx ≤ C

∫
|x|−2m+4−n|∆u|2dx (2.1)

where C only depends on the dimension n.

And from the previous description, we know that U = (E,H) ∈ (H2
loc(Ω\{0}))6,

so we can use the Carleman estimate for U .

Define a cut-off function χ(x) ∈ C∞0 (Rn) satisfying 0 ≤ χ(x) ≤ 1 and

χ(x) =


0, if |x| ≤ δ

3

1, if
δ

2
≤ |x| ≤ (R0 + 1)R0R

4
= r4R

0, if |x| ≥ 2r4R

where δ ≤ R2
0R/4 , R0 > 0 is a small number and it will be determined later, and

R is sufficiently small satisfying 0 < R ≤ R0. Using the (2.1) for χE and χH. Now

for χE, we can derive that∑
|α|≤2

m2−2|α|
∫
δ/2≤|x|≤r4R

|x|−2m+2|α|−3|DαE|2dx

≤
∑
|α|≤2

m2−2|α|
∫
|x|−2m+2|α|−3|Dα(χE)|2dx

≤ C

∫
|x|−2m+1|∆(χE)|2dx

≤ C

∫
δ/2≤|x|≤r4R

|x|−2m+1|∆E|2dx+ C

∫
|x|>r4R

|x|−2m+1|∆(χE)|2dx

+C

∫
δ/3≤|x|≤δ/2

|x|−2m+1|∆(χE)|2dx (2.2)
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On the right hand side of (2.2), the first term we use the triangle inequality (2.3)

C

∫
δ/2≤|x|≤r4R

|x|−2m+1|∆E − P1(x,D)E + P1(x,D)E|2dx

≤ C

∫
δ/2≤|x|≤r4R

|x|−2m+1|∆E − P1(x,D)E|2dx

+C

∫
δ/2≤|x|≤r4R

|x|−2m+1|P1(x,D)E|2dx

and the first term of the right hand side of (2.3), we can find out that

C

∫
δ/2≤|x|≤r4R

|x|−2m+1|∆E − P1(x,D)E|2dx

= C

∫
δ/2≤|x|≤r4R

|x|−2m+1|(P1(0, D)− P1(x,D))E|2dx

= C

∫
δ/2≤|x|≤r4R

|x|−2m+1|
3∑

i,j=1

(εij(0)− εij(x))DiDjE|2dx

≤ C

∫
δ/2≤|x|≤r4R

(|x|sup|ε′ij(x)|)2|x|−2m+1

3∑
i,j=1

|DiDjE|2dx

≤ C ′
∑
α=2

r24R
2

∫
δ/2≤|x|≤r4R

|x|−2m+1|DαE|2dx (2.4)

since εij(x) is C2-function and C,C ′ are constants.

So by (2.2),(2.3),(2.4) and (1.4) we obtain∑
|α|≤2

m2−2|α|
∫
δ/2≤|x|≤r4R

|x|−2m+2|α|−3|DαE|2dx

≤ C ′
∑
α=2

r24R
2

∫
δ/2≤|x|≤r4R

|x|−2m+1|DαE|2dx

+2CM2
1

∫
δ/2≤|x|≤r4R

|x|−2m+1|U |2dx+2CM2
2

∫
δ/2≤|x|≤r4R

|x|−2m+1|∇U |2dx

+C

∫
|x|>r4R

|x|−2m+1|∆(χE)|2dx+C

∫
δ/3≤|x|≤δ/2

|x|−2m+1|∆(χE)|2dx (2.5)

And we can have the same argument for χH to get that∑
|α|≤2

m2−2|α|
∫
δ/2≤|x|≤r4R

|x|−2m+2|α|−3|DαH|2dx

≤ C̃ ′
∑
α=2

r24R
2

∫
δ/2≤|x|≤r4R

|x|−2m+1|DαH|2dx

+2C̃M2
1

∫
δ/2≤|x|≤r4R

|x|−2m+1|U |2dx+2C̃M2
2

∫
δ/2≤|x|≤r4R

|x|−2m+1|∇U |2dx

+C̃

∫
|x|>r4R

|x|−2m+1|∆(χH)|2dx+C̃

∫
δ/3≤|x|≤δ/2

|x|−2m+1|∆(χH)|2dx(2.6)

And then we can derive (2.7) from (2.5),(2.6)
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∑
|α|≤2

m2−2|α|
∫
δ/2≤|x|≤r4R

|x|−2m+2|α|−3|DαU |2dx

≤ C ′′
∑
α=2

r24R
2

∫
δ/2≤|x|≤r4R

|x|−2m+1|DαU |2dx

+CM

∫
δ/2≤|x|≤r4R

|x|−2m+1|U |2dx+ CM

∫
δ/2≤|x|≤r4R

|x|−2m+1|∇U |2dx

+Ĉ

∫
|x|>r4R

|x|−2m+1|∆(χU)|2dx+Ĉ

∫
δ/3≤|x|≤δ/2

|x|−2m+1|∆(χU)|2dx (2.7)

where C ′′ = C ′ + C̃ ′, CM = 2((C + C̃)M2
1 + (C + C̃)M2

2 ) and Ĉ = C + C̃

By choosing

R =
1

m
√
C ′′

and r24R
2 =

R2
0(R0 + 1)2

16m2C ′′

Choosing R0 < 1 (such that
R2

0(R0 + 1)2

16
<

1

2
) and m = m(R0) large enough such

that∑
|α|≤2

m2−2|α|
∫
δ/2≤|x|≤r4R

|x|−2m+2|α|−3|DαU |2dx

≤ 2C

∫
δ/3≤|x|≤δ/2

|x|−2m+1|∆(χU)|2dx+2C

∫
r4R<|x|<2r4R

|x|−2m+1|∆(χU)|2dx(2.8)

The first three terms on right hand side of (2.7) is absorbed by the left hand side

when the |x| is small enough.

And then by the definition of χ, it is easy to obtain that for all multiindex α |D
αχ(x)| ≤ C3δ

−|α|, ∀ δ

3
≤ |x| ≤ δ

2

|Dαχ(x)| ≤ C4(r4R)−|α|, ∀ r4R ≤ |x| ≤ 2r4R
(2.9)

where C3,C4 are constants. Now we provide R0 ≤ 1/16 such that R2
0 ≤ r4, so by

the corollary in theorem 1 and (2.9), we can derive (2.10) from (2.8)

m2(2δ)−2m−3
∫
δ/2≤|x|≤2δ

|U |2dx+m2(R2
0R)−2m−3

∫
2δ<|x|≤R2

0R

|U |2dx

≤
∑
|α|≤2

m2−2|α|
∫
δ/2≤|x|≤r4R

|x|−2m+2|α|−3|DαU |2dx

≤ 2CC3

∑
|α|≤2

δ−4+2|α|
∫
δ/3≤|x|≤δ/2

|x|−2m+1|DαU |2dx

+2CC4

∑
|α|≤2

(r4R)−4+2|α|
∫
r4R<|x|<2r4R

|x|−2m+1|DαU |2dx

≤ C ′3(δ/3)−2m−3
∫
|x|≤δ
|U |2dx+C ′4(r4R)−2m−3

∫
|x|≤R0R

|U |2dx (2.10)

where C ′3,C
′
4 are independent of R0,R and m.
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Adding m2(2δ)2m−3
∫
|x|<δ/2

|U |2dx to both sides of (2.10), we can get the left hand

side

m2(2δ)−2m−3
∫
|x|≤2δ

|U |2dx+m2(R2
0R)−2m−3

∫
2δ<|x|≤R2

0R

|U |2dx

=
1

2
m2(2δ)−2m−3

∫
|x|≤2δ

|U |2dx+
1

2
m2(2δ)−2m−3

∫
|x|≤2δ

|U |2dx

+m2(R2
0R)−2m−3

∫
2δ<|x|≤R2

0R

|U |2dx

≥ 1

2
m2(2δ)−2m−3

∫
|x|≤2δ

|U |2dx+m2(R2
0R)−2m−3

∫
|x|≤2δ

|U |2dx

+m2(R2
0R)−2m−3

∫
2δ<|x|≤R2

0R

|U |2dx

=
1

2
m2(2δ)−2m−3

∫
|x|≤2δ

|U |2dx+m2(R2
0R)−2m−3

∫
|x|≤R2

0R

|U |2dx(2.11)

Combine (2.10) and (2.11), it implies that

1

2
m2(2δ)−2m−3

∫
|x|≤2δ

|U |2dx+m2(R2
0R)−2m−3

∫
|x|≤R2

0R

|U |2dx

≤ (C ′3 +m2)(δ/3)−2m−3
∫
|x|≤δ
|U |2dx+C ′4(r4R)−2m−3

∫
|x|≤R0R

|U |2dx

We can rewrite C ′4(r4R)−2m−3 and get m2(R2
0R)−2m−3C ′4m

−2(
R2

0

r4
)2m+3.

Therefore,

C ′4m
−2(

R2
0

r4
)2m+3 = C ′4m

−2(
4R0

R0 + 1
)2m+3 ≤ C ′4m

−2(4R0)
2m+3 ≤ exp(−2m)

For all R0 ≤ 1/16 and m2 ≥ C ′4. Thus, we can derive
1

2
m2(2δ)−2m−3

∫
|x|≤2δ

|U |2dx+m2(R2
0R)−2m−3

∫
|x|≤R2

0R

|U |2dx

≤ (C ′3+m
2)(δ/3)−2m−3

∫
|x|≤δ
|U |2dx+m2(R2

0R)−2m−3e−2m
∫
|x|≤R0R

|U |2dx

The above argument is valid for all m = m(R0) = j + 1/2 with j ∈ N, and m large

enough. So we can assume a j0 which depends on R0, and Rj = (
√
C ′′(j + 1/2))−1.

For all j ≥ j0, we have the following inequality (2.12)
1

2
m2(2δ)−2m−3

∫
|x|≤2δ

|U |2dx+m2(R2
0Rj)

−2m−3
∫
|x|≤R2

0Rj

|U |2dx

≤ (C ′3+m
2)(δ/3)−2m−3

∫
|x|≤δ
|U |2dx+m2(R2

0Rj)
−2m−3e

−2c
Rj

∫
|x|≤R0Rj

|U |2dx

where c =
1√
C ′′

We can observe that Rj+1 < Rj < 2Rj+1 for all j ∈ N by simple calculation. If we

can find a R such that Rj+1 < R ≤ Rj, it implies R0Rj ≤ 2Rj+1/16 ≤ Rj+1 since

R0 < 1/16 and then we have such relation R0Rj ≤ Rj+1 < R < Rj < 2Rj+1. So we
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can get a conclusion
∫
|x|≤R2

0R

|U |2dx ≤
∫
|x|≤R2

0Rj

|U |2dx

e
−2c
Rj

∫
|x|≤R0Rj

|U |2dx ≤ e
−c
R

∫
|x|≤R

|U |2dx
(2.13)

If there exists a s ∈ N such that

Rj+1 < R2s
0 ≤ Rj for some j ≥ j0 (2.14)

It is just replacing R by R2s
0 on the above description. By (2.12) and (2.13), we can

obtain (2.15)

1

2
m2(2δ)−2m−3

∫
|x|≤2δ

|U |2dx+m2(R2
0Rj)

−2m−3
∫
|x|≤R2s+2

0

|U |2dx

≤ (C ′3+m2)(δ/3)−2m−3
∫
|x|≤δ
|U |2dx+m2(R2

0Rj)
−2m−3exp(−cR−2s0 )

∫
|x|≤R2s

0

|U |2dx

So now our goal is to find a appropriate s and R0 to claim an inequality which

is

exp(−cR−2s0 )

∫
|x|≤R2s

0

|U |2dx ≤ 1

2

∫
|x|≤R2s+2

0

|U |2dx (2.16)

By theorem 1, we assume r1 = R2s+2
0 ,r2 = R2s

0 and r3 = R2s−2
0 where s ≥ 1.

And r1/r3 < r2/r3 ≤ R2
0 ≤ 1/4, then we divide

(∫
|x|<R2s

0

|U |2dx
)1−τ

to both sides

of (1.15)

(∫
|x|<R2s

0

|U |2dx
)τ
≤ C

(∫
|x|<R2s+2

0

|U |2dx
)τ(∫

|x|<R2s−2
0

|U |2dx
/∫

|x|<R2s
0

|U |2dx
)1−τ

and it implies (2.17)

∫
|x|<R2s

0

|U |2dx
/∫

|x|<R2s+2
0

|U |2dx ≤ C
1/τ
(∫

|x|<R2s−2
0

|U |2dx
/∫

|x|<R2s
0

|U |2dx
)a

where C = max
{
exp(β0(−1− 4logR0)), 4C̃5(R0)

−6}

a =
1− τ
τ

=
(4logR0 − 1)2 − (2logR0)

2

−1− 4logR0

by definition of τ in the proof of theorem 1.

We can see that  1 < C ≤ C̃5R
−β1
0

2 < a ≤ −5logR0

(2.18)
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where β1 = max{6, 4β0}.

Because exp(β0(−1− 4logR0) = e−β0R−4β00 and C̃5 ≥ 1, we have first inequality.

For the second inequality, we consider that

a =
−4logR0 + 2− 1/4logR0 + logR0

1/4logR0 + 1
> −3logR0 + 2 > 2

a <
−3logR0 − logR0

1− 1/5
< −5logR0

And we use (2.17) recursively

∫
|x|<R2s

0

|U |2dx
/∫

|x|<R2s+2
0

|U |2dx ≤ C
1/τ
(∫

|x|<R2s−2
0

|U |2dx
/∫

|x|<R2s
0

|U |2dx
)a

≤ C
as−1−1
τ(a−1)

(∫
|x|<R2

0

|U |2dx
/∫

|x|<R4
0

|U |2dx
)as−1

(2.19)

For all s ∈ N. And by definition of a we know that τ = 1/(a + 1), from (2.18) we

have
as−1 − 1

τ(a− 1)
=

(a+ 1)(as−1 − 1)

a− 1
≤ 3as−1

Then we derive the following inequality from (2.19)∫
|x|<R2s

0

|U |2dx
/∫

|x|<R2s+2
0

|U |2dx ≤ C
3(−5logR0)s−1

(∫
|x|<R2

0

|U |2dx
/∫

|x|<R4
0

|U |2dx
)as−1

≤ (C̃3
5R
−3β1
0 )(−5logR0)s−1

(∫
|x|<R2

0

|U |2dx
/∫

|x|<R4
0

|U |2dx
)as−1

Multiply exp(−cR−2s0 ) on both sides, we obtain (2.20)

exp(−cR−2s0 )

∫
|x|<R2s

0

|U |2dx
/∫

|x|<R2s+2
0

|U |2dx

≤ exp(−cR−2s0 )(C̃3
5R
−3β1
0 )(−5logR0)s−1

(∫
|x|<R2

0

|U |2dx
/∫

|x|<R4
0

|U |2dx
)as−1

Let κ = −logR0, and compute log(C̃3
5R
−3β1
0 )(5κ)

s−1

= (5κ)s−1(logC̃3
5 + 3β1κ).

So we can find out that if R0 small enough, it means that κ sufficient large, then we

have (2.21)
cR−2s0

4
> (5κ)s−1(logC̃3

5 + 3β1κ) ⇒ (C̃3
5R
−3β1
0 )(5κ)

s−1

< exp(
cR−2s0

4
) <

1

2
exp(

cR−2s0

2
)

The (2.21) holds for all s ∈ N, and now we should fix R0 such that (2.21) holds and

the m(R0) and j(R0) are fixed as well. Fixing R0, we can derive from (2.20)
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exp(−cR−2s0 )

∫
|x|<R2s

0

|U |2dx ≤ 1

2
exp(
−cR−2s0

2
)

(∫
|x|<R2

0

|U |2dx
/∫

|x|<R4
0

|U |2dx
)as−1

×∫
|x|<R2s+2

0

|U |2dx

Our goal is (2.16), so coping with the term

(∫
|x|<R2

0

|U |2dx
/∫

|x|<R4
0

|U |2dx
)as−1

If we have an estimate that(∫
|x|<R2

0

|U |2dx
/∫

|x|<R4
0

|U |2dx
)as−1

≤ exp(cR−2s0 /2) (2.22)

Then (2.16) is proved for appropriate s. So now we have to find s such that (2.22)

holds.

Assume N =

(∫
|x|<R2

0

|U |2dx
/∫

|x|<R4
0

|U |2dx
)

, take loglog for (2.22), we have

log2− log(ac) + loglogN ≤ s(−2logR0 − loga)

By (2.18), we know −2logR0−loga > 0 for all R0 ≤ 1/16, so we can define a number

s0 as

s0 = min{s ∈ N|s ≥ (log2− log(ac) + loglogN)(−2logR0 − loga)−1}

So the claim (2.16) holds for all s ≥ s0.

But now s should also be chosen to assure (2.14) holds.

Let s1 be the smallest positive integer such that R2s1
0 ≤ Rj0 , then we can find a

j1 ∈ N with j1 ≥ j0 such that Rj1+1 < R2s1
0 ≤ Rj1 . We now can define sp depending

on P1(x,D) , P2(x,D) and N as

sp = max{s0, s1}

For this sp, (2.14),(2.21),(2.22) hold. Thus, we set m = j1 +
1

2
and m1 = 3 + 2m

plus into (2.15).

(
m1 − 3

8
)2(2δ)−2(

m1−3
2

)−3
∫
|x|≤2δ

|U |2dx+(
m1 − 3

8
)2(R2

0Rj1)
−2(m1−3

2
)−3
∫
|x|≤R2sp+2

0

|U |2dx

≤ (C ′3 + (
m1 − 3

2
)2)(δ/3)−2(

m1−3
2

)−3
∫
|x|≤δ
|U |2dx (2.23)

So consider the second term of the left hand side of (2.23)

1

8
(m1 − 3)2(R2

0Rj1)
−m1

∫
|x|≤R2sp+2

0

|U |2dx ≤ (C ′3 + (
m1 − 3

2
)2)(δ/3)−m1

∫
|x|≤δ
|U |2dx
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then it implies

(m1 − 3)2

8C ′3 + 2(m1 − 3)2
(3R2

0Rj1)
−m1

∫
|x|≤R2sp+2

0

|U |2dx ≤ (δ)−m1

∫
|x|≤δ
|U |2dx (2.24)

(2.24) is valid for all δ ≤ R
2sp+2
0 /4 because of the definition of δ. So the proof of

theorem 2 is complete with R2 = R0. And the first term of the left hand side of

(2.23)

1

8
(m1 − 3)2(2δ)−m1

∫
|x|≤2δ

|U |2dx ≤ (C ′3 + (
m1 − 3

2
)2)(δ/3)−m1

∫
|x|≤δ
|U |2dx

then it implies∫
|x|≤2δ

|U |2dx ≤ 8C ′3 + 2(m1 − 3)2

(m1 − 3)2
6m1

∫
|x|≤δ
|U |2dx (2.25)

(2.25) is valid for all δ ≤ R
2sp+2
0 /4 because of the definition of δ. So the proof of

theorem 3 is complete with R3 = R
2sp+2
0 /4 and C3 =

8C ′3 + 2(m1 − 3)2

(m1 − 3)2
6m1 .
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