
國立臺灣大學電機資訊學院資訊工程學系

碩士論文
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University
Master Thesis

移植計算語言於不同架構設備之開放計算語言與渲染腳本轉

換器設計

O2render : A OpenCL-to-Renderscript Translator for Porting
Across Various GPUs or CPUs

楊證諺

Yang Cheng-yan

指導教授：廖世偉博士

Advisor: Liao Shih-wei, Ph.D.

中華民國 101年 7月
July, 2012

致致致謝謝謝

時光飛逝，碩士的兩年時間一轉眼就過去了。期間幫助過我的人太

多了，謹此述以滿滿的感謝。

首先要感謝我的指導教授廖世偉老師。老師雖然平常工作繁重，但

總是能從其中盡可能的撥出時間給予我們協助，並且適時地在我們遇

到研究瓶頸的時候提供建議。除此之外，老師更是關心我們的生涯發

展以及各種事務。對我而言，老師不只是指導教授，更像是工作上的

夥伴、工作外的朋友。謝謝老師。

接著要感謝的是在碩一時給我許多幫助與指導的歐曜瑋及盧育龍兩

位學長，在研究所學習起步的過程中，他們兩位不厭其煩的回答我問

的問題，並且給予各種建議，讓我能在之後的研究過成中更加順利。

還要謝謝四位口試委員:楊佳玲教授、梁伯嵩博士、陳呈瑋博士與
陳官辰博士能撥空參加我的口試，並且對於我的研究提出許多重要的

建議。謝謝幾位委員及指導教授的指點，讓這篇論文更加完整。

最後感謝父母、家人的全力支持與鼓勵，讓我能在沒有其他生活壓

力的情況下全力投注於研究之上；感謝實驗室的同學、學弟們，大家

彼此之間的討論間學習到了很多東西，並且也讓課業外的研究所生活

更加多采多姿；感謝各位好朋友，在我困頓時給我依靠、在我挫折時

給我勉勵。

結束了十八年的學涯後，期許自己能為為我們的國家、社會貢獻一

些微渺的力量。

i

中中中文文文摘摘摘要要要

現今世界中，數量極為龐大的Android設備可以說是一項最具影響
力的系統。Google最近的Android版本中更是推出了Renderscript架構。

Renderscript為Android目前唯一官方的運算架構，提供了非常良

好的效能與可攜性。但是如果要移植現有已經存在的其他運算架

構例如OpenCL的程式到Android上，則必須要花費時間手動的改寫

成Renderscript才可以享有相同的平行運算效果。
因此，我們提出了O2render系統讓現存的OpenCL程式可以自動

的轉成Renderscript程式，藉此運行於Android系統之上。我們分析
了OpenCL和Renderscript根本上的差異，並且藉由 low-level virtual mac-
hine(LLVM)的前端,Clang,來實作一個OpenCL到Renderscript的轉換器。

ii

Abstract

400-million Android devices are arguably world‘s most impactful real-

time multimedia systems. Google introduced Renderscript language and run-

time in recent Android releases. Renderscript delivers performance and porta-

bility without losing usability. However, it is difficult to reuse software writ-

ten in existing compute languages such as OpenCL. Thus, we develop the

O2render system to enable OpenCL programs on Android devices. We ana-

lyze fundamental differences between OpenCL and Renderscript, and present

our design of a translator between them using low-level virtual machine (LLVM).

We extend LLVM’s frontend, Clang, and show that we achieve about the same

performance in Renderscript with minimal translation overhead.

iii

Contents

致致致謝謝謝 i

中中中文文文摘摘摘要要要 ii

Abstract iii

1 Introduction 1

1.1 Contributions . 2

1.2 Document organization . 2

2 Related Works 3

2.1 Add an abstract level among frameworks 3

2.2 Translate to a common intermediate representation 4

2.3 Translate the source code . 4

3 Overview of OpenCL and Renderscript 5

3.1 OpenCL . 5

3.1.1 Kernel program . 6

3.1.2 Host program and memory model 6

3.2 Renderscript . 8

3.3 Differences between OpenCL and Renderscript execution models 9

4 Issues in translating from OpenCL to Renderscript 11

4.1 Removing unnecessary OpenCL-only qualifiers 11

4.2 Generating a Renderscript kernel file for each OpenCL kernel 12

iv

4.3 Translating OpenCL API calls into Renderscript ones 12

4.4 Modifying the arguments of kernels . 12

4.5 Translating OpenCL kernel function with multiple outputs 13

4.6 Putting it altogether . 14

5 Design and implementation of O2render 16

5.1 Implement O2render as a Clang plugin 16

5.2 Insight into O2render . 17

5.3 Mapping table . 19

6 Evaluation 20

6.1 Grayscale Filter . 20

6.2 Saturation/Gamma Adjuster . 22

7 Conclusion and Future Works 25

7.1 Conclusion . 25

7.2 Future works . 25

Bibliography 27

v

List of Figures

3.1 Example of typical host program execution flow 7

3.2 (a) 3 parts of a Renderscript application (b) Compilation flow of a Ren-

derscript script . 8

3.3 An example of OpenCL work-items and work-group 10

5.1 High level overview of O2render . 17

5.2 Algorithm of traversing AST in Phase 1 18

6.1 O2rendered Grayscale Filter vs. RS Grayscale Filter on Android devices . 21

6.2 O2rendered Saturation/Gamma Adjuster vs. Using new O2render vs. RS

Levels Filter vs. Dalvik Levels Filter . 21

6.3 Input image for O2rendered Grayscale Filter 21

6.4 Output image for O2rendered Grayscale Filter 22

6.5 Input image for Renderscript Levels . 23

6.6 Output image for Renderscript Levels 24

vi

List of Tables

5.1 An Example of O2render Table . 19

6.1 Translation time . 20

vii

Chapter 1

Introduction

As the development of compute languages and multicore processors becomes increas-

ingly prevalent, software applications can achieve better performance via parallel comput-

ing. Parallelization on various types of computing units is referred to as heterogeneous

computing. Open Computing Language (OpenCL) [7] is a heterogeneous computing

framework that provides portability by defining an abstract execution model and a mem-

ory model. Apple proposed OpenCL and released its first implementation of OpenCL 1.0

in the Mac OS X Snow Leopard. OpenCL is now in version 1.2 and is popular among

developers and vendors.

Smartphone-related technologies have advanced rapidly in recent years, partly thank-

ing to the open-source Android project. Many developers and vendors have embraced

the open-source Android platform and have contributed numerous software applications.

However, Android did not have a heterogeneous computing framework such as OpenCL

to allow developers to improve software performance until Google released Renderscript,

a high-performance 3D rendering and heterogeneous computing framework for the An-

droid platform. Because Renderscript [4] is Android’s heterogeneous computing frame-

work, if developers want to reuse existing source code that was originally programmed

for other computing frameworks on Android, they must rewrite the code in Renderscript.

Since Renderscript is relatively new then other heterogeneous computing framework, the

number of programs that are written in it is currently small. Porting existing computing

framework program to Renderscript is a way to speed up heterogeneous computing pro-

1

gressing on Android. Although OpenCL is a popular computing framework, porting an

OpenCL application to a Renderscript one is difficult.

This thesis introduces O2render, an OpenCL to Renderscript translator that enables the

porting of an OpenCL application to a Renderscript application. O2render automatically

translates OpenCL kernels to a Renderscript script, or can create a skeleton of Render-

script script from an OpenCL kernel to enable developers to port OpenCL kernel more

rapidly.

1.1 Contributions

This thesis makes the following contributions:

• We compare Renderscript and OpenCL and present insights into both computing

languages.

• We develop a system to populate a new language’s repertoire. Specifically, we

enable code reuse and reduce the learning curve of a new computing language.

• We show that the resulting Renderscript code achieves about the same performance

and the translation overhead is minimal.

1.2 Document organization

This thesis is organized as follows. Chapter 2 reviews previous research related

to computing frameworks for the Android platform and translation between computing

frameworks. Chapter 3 presents an overview of OpenCL and Renderscript and the differ-

ences between them. Chapter 4 considers issues related to translation from OpenCL to

Renderscript. Chapter 5 explains the design and implementation of O2render. Chapter 6

evaluates O2render’s perfromance. Finally, chapter 7 provides a conclusion and sugges-

tions for future research.

2

Chapter 2

Related Works

Before Renderscript was developed, most Android developers used Android Native

Development Tools (NDK) [6] to write performance-critical code. However, using NDK

caused a high overhead for Java callback, had portability problems, and could not use

parallel computing easily. Despite Android not supporting OpenCL, ZiiLABS enabled

OpenCL on some ZiiLABS platforms and released the ZiiLABS OpenCL SDK [14].

There are three methodologies in translating between computing frameworks: (1) Add

an abstract level library among frameworks; (2) Translate to a common intermediate rep-

resentation (IR) and compile the IR during run-time; or (3) Translate a source code that

uses a particular framework to a modified source code that uses a different framework.

Below we will discuss each methodology in details through examples.

2.1 Add an abstract level among frameworks

Methodology (1) is employed by Swan [8], which is a tool that abstracts CUDA

[12] and OpenCL using a higher-level runtime library. This library adapts to CUDA

or OpenCL at lower level. Specifically, developers convert CUDA or OpenCL API calls

into equivalent Swan calls, and the Swan library maps these calls to CUDA or OpenCL

calls. In addition, Swan provides a Perl script that performs simple CUDA kernel code to

OpenCL kernel code source-to-source translation using regular expression substitutions.

3

2.2 Translate to a common intermediate representation

An example of Methodology (2) is Ocelot [3]. The system enables CUDA applications

to run on non-Nvidia GPU architecture. Ocelot operates in two main steps: It translates

the CUDA Parallel Thread Execution (PTX) assembly to LLVM IR, and then applies

an LLVM code generator to generate native code for the target platform. Ocelot allows

CUDA programs to be executed at full speed on NVIDIA GPUs, AMD GPUs, and x86

CPUs without recompilation.

2.3 Translate the source code

Finally, CU2CL [11] is an example of a CUDA to OpenCL source-to-source translator,

which follows Methodology (3). CU2CL is used as a plug-in for Clang. CU2CL begins

translation using the preprocessor and parser of Clang [1] to obtain the abstract syntax

tree (AST) of the input CUDA source code. Thereafter, CU2CL uses the “AST-Driven

String-Based Translation” method to traverse the AST recursively. If an CU2CL node of

interest is identified, CU2CL uses the Clang Rewriter library to rewrite the AST node.

Finally, the translated OpenCL source code is generated based on the rewritten AST.

4

Chapter 3

Overview of OpenCL and Renderscript

OpenCL and Renderscript are designed to accelerate application performance by dis-

tributing computational workloads to multiple processing cores, such as CPU cores, GPU

cores, and DSP cores, or a combination of these. However, OpenCL and Renderscript

have several differences.

3.1 OpenCL

Before the release of OpenCL, Nvidia designed another computing (language), the

Compute Unified Device Architecture (CUDA), for Nvidia GPUs, while supporting only

Nvidia GPUs is the most notable drawback of CUDA. In order to design a computing (lan-

guage) for various architectures, Apple Inc. in collaboration with Nvidia, AMD, IBM,

and Intel initialized the OpenCL project and proposed it to Khronos Group. Although

OpenCL was very similar to CUDA at the beginning because of the significant contribu-

tion from NVidia, it becomes more applicable to various architectures gradually. OpenCL

defines an abstract layer specification for hardware related functions, which hardware

vendors should follow by for implementing OpenCL supported hardware. Therefore, de-

velopers can speed-up their program performance by using OpenCL API without dealing

with low-level hardware related function calls. Each OpenCL program comprises two

components: kernel program and host program. The following will discuss them in more

detail.

5

3.1.1 Kernel program

Developers have to write kernel code, in a variant of C99, to specify the detail ex-

ecution of compute units. Fortunately, there are bunch of build-in functions which like

integer handling, math and rational handling available for developer to use when writ-

ing kernel programs. But there are also kinds of more important functions that relates to

‘work-item’, the parallel unit of OpenCL. An OpenCL kernel, which is programmed in a

variant of C99, specifies the functions to execute on OpenCL computing units.

3.1.2 Host program and memory model

An OpenCL host program is for setting execution environment for kernels. Figure 3.1

shows an example of typical execution flow of an OpenCL host program. In an OpenCL

host program, developers have to set up the data to be processed first. After the the data are

prepared, OpenCL kernels can then be loaded and compiled, and execute computational

tasks. The communication between host and kernel device relies on OpenCL memory

model. There are four kinds of memory region that can be access by kernels:

1. Global Memory : Read and write are permitted, all work-item in all work-groups

are accessible.

2. Constant Memory : Only read is permitted, all work-item in all work-groups are

accessible. Initialized and allocated in host program.

3. Local Memory : Read and write are permitted, only work-items in the same work-

group are accessible.

4. Private Memory : Read and write are permitted, only can be accessed by the work-

item which defines it.

OpenCL is designed to be portable across various devices. However, developers must

often manually adjust parameters such as the size of the OpenCL work-group and the

hardware-dependent factors in the OpenCL application to obtain better performance [9].

6

Figure 3.1: Example of typical host program execution flow

7

Figure 3.2: (a) 3 parts of a Renderscript application (b) Compilation flow of a Render-
script script

3.2 Renderscript

Google released Renderscript as an official computing framework of Android in 2011

[2]. Renderscript provides high performance and portability across hardware architectures

to Renderscript applications. Although Renderscript provides API for both graphics and

computation, this thesis focuses on computation.

A Renderscript application consists of three parts: 1) a Renderscript host program

written in Dalvik, denoted as “.java file” in Figure 1, 2) one or more Renderscript ker-

nels, and 3) reflected classes in Dalvik. These three parts are denoted as 1, 2, and 3

respectively in Figure 1. The Renderscript kernel, also written in a variant of C99, has

a special function called root() that identifies the pieces of code for parallel execution in

the same manner that an OpenCL kernel does. The Renderscript host program is similar

to other Android applications but further initializes the use of the Renderscript kernel.

The reflected Java classes contain functions enabling the Renderscript host program to

communicate with the kernels during Renderscript runtime, allowing functions such as

memory binding between the host program and the kernels.

Renderscript achieves portability using LLVM [10] technologies. Figure 3.2 shows

the compilation flow for the Renderscript kernels. First, the Renderscript compiler “llvm-

8

rs-cc”, a derivative of the Clang project, compiles Renderscript kernels into LLVM-based

bitcode (IR) files with a .bc filename extension. During compilation, llvm-rs-cc also

generates the corresponding reflected Java classes of the kernels. Thereafter, the bitcode

is packed into an Android application package (.apk file) of the Renderscript application,

and the application is installed on an Android device. When the application is about to

execute, the bitcode is compiled to the appropriate machine code for the device using

libbcc, the back-end compiler of the Renderscript kernels.

3.3 Differences between OpenCL and Renderscript exe-

cution models

The differences between OpenCl and Renderscript is not only in API or code ap-

pearance. OpenCL tends to provide more low level controls to developers so that more

information and operability are available. But on the other side, Renderscript is trying

to offer a more intuitive design, which minimize learning curve and complexity of the

program. Therefore compared to OpenCL, there are some restriction to Renderscript as

the tradeoff. Consequently, the translation is accompanied by some issues.

One major difference between OpenCL and Renderscript is their respective execution

models. Figure 3.3 shows how data are partitioned for parallel processing in OpenCL. A

work-item is a single kernel execution with a set of data, a work-group is a set of work-

items that access the same processing resource, and an NDRange describes the space of

the work-items. Developers have to define how an OpenCL application partitions input

data and executes work-items. In contrast, Renderscript data to be parallel-processed

are first transferred to a Renderscript type “Allocation”. When the special function “rs-

ForEach()” is called in the kernel, or “ForEach root()” is called in the Renderscript host

program, the Renderscript engine can help partition the Allocation for each execution of

the root(), distributing each execution to the processing cores.

9

Figure 3.3: An example of OpenCL work-items and work-group

10

Chapter 4

Issues in translating from OpenCL to

Renderscript

Although the languages of OpenCL and Renderscript are derived from C99, O2render

cannot translate them using string substitution alone. This chapter describes how O2render

achieves the translation from the aspect of implementation.

4.1 Removing unnecessary OpenCL-only qualifiers

The following qualifiers are not necessary to Renderscript kernels and O2render re-

moves them:

1. Address space qualifiers, including global/global, local/local, constant/constant,

and private/private.

2. Function qualifiers, including kernel/kernel.

3. Access qualifiers, including read only/read only, write only/write only, and read

write/read write.

11

4.2 Generating a Renderscript kernel file for each OpenCL

kernel

An OpenCL kernel script file may contain more than one kernel function for parallel

execution, and each kernel function has a distinct function name. However, each Ren-

derscript kernel script file should only have one function for parallel execution and the

function name should be “root”. Therefore, O2render generates a Renderscript script file

for each OpenCL kernel function and renames the OpenCL kernel function as “root”.

4.3 Translating OpenCL API calls into Renderscript ones

In addition, O2render translates OpenCL API calls in an input source code to corre-

sponding Renderscript API calls. Although some APIs, such as mathematical ones, are

similar in OpenCL and Renderscript, others are different. O2render translates these types

of OpenCL API calls into Renderscript API calls that are semantically equivalent. Below

we show a translation for accessing image pixel data. The program of reading image:

/ / OpenCL s t y l e o f a c c e s s i n g image p i x e l da ta

r e a d i m a g e f (srcImg , sample r , (i n t 2) (x , y)) ;

will correspond to the following translation:

/ / R e n d e r s c r i p t s t y l e o f a c c e s s i n g image p i x e l da ta

r sUnpackColo re8888 (∗ (u ch a r 4 ∗) r s G e t E l e m e n t A t (srcImg , x , y)) ;

4.4 Modifying the arguments of kernels

An OpenCL kernel function can have an arbitrary type and number of input argu-

ments. However, arguments for a Renderscript root() should follow these rules: a. The

first argument is optional and points to an input “Allocation” for the root() function; b.

The next argument indicates an output “Allocation” that stores the result returned to the

Renderscript host program; c. Several optional “uint32 t” type arguments for indexing

12

can be placed after the output “Allocation” argument.

The number of input arguments in an OpenCL kernel is typically more than one. A

Renderscript root() can have a maximum of one argument for input. O2render resolves

these issues by translating every arguments of an OpenCL kernel to global variables in

the translated Renderscript script. If an argument of an OpenCL kernel refers to a re-

gion of memory, O2render translate its data type to “rs allocation”, or O2render keeps

its data type in the translated Renderscript script. Thereafter, the Renderscript host pro-

gram transfers input data to the root() through the reflected binding function of the global

variables.

In OpenCL, developers typically use the “get global id” function to obtain the global

work-item ID value. Because the total work-item size is specified in the host program and

usually matches the input data array size, developers typically use this global work-item

ID as a data array index for accessing target data.

Occasionally, developers may use the global work-item ID for another purpose, such

as an integer for computation. Although Renderscript does not have a work-item ID, the

usage of this work-item ID is similar to the index information that is passed into the root()

function. Therefore, O2render maps the “get global id” function to the arguments for

indexing, and uses the “rsGetElementAt()” function to access the data that the arguments

point to in an “rs allocation.”

A sample of the declaration of a translated root() is:

void root(float *result, uint32_t O2Rx, uint32_t O2Ry);

4.5 Translating OpenCL kernel function with multiple

outputs

For most OpenCL kernel function, there are only one output parameter. So we just put

it at the output parameter position in Renderscript root function after translation. Then

we let Renderscript system to(DELETE THIS) distribute which data cell in the allocation

is being handled. This method is intuitive and meets the design of root function.

13

But in the case of translating OpenCL kernel function of multiple output parameters,

similar to the inputs, we have to generate additional global variables for them. Then

developers can generate and bind the output memory allocation to these variables in Ren-

derscript host program via reflected function. Compared to use the output parameter in

root(), we have to specify which data cell of the output allocation is being assigned by

index information that passed to the root().

4.6 Putting it altogether

We will use a kernel in the common GrayScale Filter to illustrate the task of O2render.

Given the kernel sample below:

f l o a t 3 gMonoMult = (f l o a t 3)

(0 . 2 9 9 f , 0 . 587 f , 0 . 114 f) ;

k e r n e l void sample (s a m p l e r t sample r ,

r e a d o n l y i m a g e 2 d t srcImg ,

w r i t e o n l y i m a g e 2 d t ds t Img)

{

f l o a t 4 f4 = r e a d i m a g e f (srcImg ,

sample r ,

(i n t 2)

(g e t g l o b a l i d (0) ,

g e t g l o b a l i d (1))) ;

f l o a t 4 Mono = (f l o a t 4) {0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f } ;

Mono . xyz = d o t (f4 . xyz , gMonoMult) ;

w r i t e i m a g e f (dst Img ,

(i n t 2)

(g e t g l o b a l i d (0) , g e t g l o b a l i d (1)) ,

Mono) ;

}

O2render should generate the following Renderscript code:

#pragma v e r s i o n (1)

#pragma r s j a v a p a c k a g e n a m e (. . .)

14

f l o a t 3 gMonoMult = (f l o a t 3) { 0 . 2 9 9 , 0 . 5 8 7 , 0 .114 } ;

r s a l l o c a t i o n s a m p l e r ;

r s a l l o c a t i o n s rc Img ;

void r o o t (uc h a r 4 ∗ dstImg ,

u i n t 3 2 t O2Rx ,

u i n t 3 2 t O2Ry)

{

f l o a t 4 f4 =

rsUnpackColor8888 (∗ (u ch a r 4 ∗)

r s G e t E l e m e n t A t (

O2RenderIn−>srcImg ,

O2Rx ,

O2Ry)) ;

f l o a t 4 Mono = (f l o a t 4) {0 . 0 f , 0 . 0 f , 0 . 0 f , 0 . 0 f } ;

Mono = d o t (f4 . xyz , gMonoMult) ;

∗ ds t Img = rsPackColo rTo8888 (Mono) ;

}

15

Chapter 5

Design and implementation of O2render

O2render is implemented as a Clang plugin. This method adds extra steps to the

original Clang compilation. This chapter describes how O2render benefits from using

Clang and provides the implementation details for O2render.

5.1 Implement O2render as a Clang plugin

O2render is a source-to-source compiler that operates at the AST level. Parsing in-

put source code to generate AST is the most essential task of many compilers. Clang, a

subproject of LLVM and a front-end compiler for the C language family, provides the nec-

essary components for compiling source code to LLVM IR. The latest version of Clang

supports compiling OpenCL code. Furthermore, Clang provides libraries for develop-

ers to add their own requirements easily in the compilation. Thus, we chose to leverage

Clang to design and implement O2render. O2render uses Clang to parse and generate

AST, focusing on the manipulation of the generated AST using a subclass of Clang “AST-

Consumer.” O2render also uses Clang Rewriter, a Clang library, to perform string-based

rewrite that inserts, removes, and replaces text to specific ranges of the input source code.

The modified result is stored in another buffer, so that the original source and the AST are

not altered.

16

Figure 5.1: High level overview of O2render

5.2 Insight into O2render

Furthermore, O2render uses a two-phase-rewrite strategy. Specifically, O2render can

rewrite during traversing or after traversing.

Figure 5.1 shows the high level overview of O2render. Here O2render takes AST

which is generated by Clang OpenCL parser as input, then outputs Renderscript files.

The flow of O2render has four steps: (1) traversing the AST; (2) identifying and record-

ing AST nodes that O2render is interested in during traversing; (3) rewriting nodes that

O2render is interested in; and (4) rewriting the whole script based on the recorded in-

formation. The first three steps are recursively executed until traversing of the AST is

finished. We refer to these three steps as Phase 1. Thereafter, the fourth step, denoted

as Phase 2, is executed. Figure 5.2 shows the driver for the first three steps algorithmi-

cally. Note that “IsInterest” in the figure checks whether the node is needed for further

process or not. An example of such node is the kernel function declaration in OpenCL.

“NeedRecord” checks if the node is need to be recorded for the rewrite in Phase 2.

Because O2render translates an OpenCL kernel function into a Renderscript script,

a kernel function declaration in the AST is a basic translation unit. O2render begins

translation by recording every argument in the kernel function declaration for the second

phase rewrite. Thereafter, it begins recursively traversing the AST from the root of the

kernel function declaration. When an AST node is found during recursive traversing,

O2render examines its type and value to decide whether it is an interesting node. If so,

17

Figure 5.2: Algorithm of traversing AST in Phase 1

O2render determines whether the node is suitable for immediate rewrite or if O2render

should record the node and leave the rewrite to be performed during the second phase

after the rewrite has finished the recursive traversing.

After recursively traversing the AST, O2render executes the second-phase rewrite that

alters the structure of the AST. The second-phase rewrite obtains the required information

during traversing and performs the following tasks: (1) Adding the “pragma” directives

required by Renderscript; (2) writing the global variables into the script; and (3) rewriting

functions that require additional changes. The function-rewriting example is illustrated as

follows.

/ / OpenCL

w r i t e i m a g e f (dst Img , (i n t 2) (x , y) , Mono) ;

/ / R e n d e r s c r i p t

∗ ds t Img = rsPackColo rTo8888 (Mono) ;

18

Table 5.1: An Example of O2render Table
OpenCL Renderscript

read imagef rsUnpackColor8888(*(uchar4 *)rsGetElementAt(%s,x,y))

write imagef *%s = rsPackColorTo8888(%s)

5.3 Mapping table

O2render has two types of mapping tables for rewrite. The first type records an

OpenCL token string to a Renderscript string pairs that the OpenCL token string can

be simply replaced by the mapped Renderscript string when rewrite. The other type of

table is used for the type of OpenCL token string that cannot be replaced, but instead must

be translated into a semantically equivalent string in Renderscript. This latter type should

record more information than the string-to-string method, including how arguments are

adjusted. Table 5.1 shows an example of this type.

19

Chapter 6

Evaluation

Because Renderscript applications run only on Android, and Android does not sup-

port OpenCL, comparing the execution performance of an OpenCL application with a

Renderscript application that had been translated using O2render is difficult.

Because computational photography is popular for mobile devices and can benefit

from heterogeneous computing, this section examines the correctness and the execution

performance of the translated Renderscript application for computational photography.

Table 6.1 shows the translation time of cases in this section. The experiment are on

the desktop with Intel Core 2 Duo CPU E6550 2.23GHz and 3.4 GB Memory.

6.1 Grayscale Filter

We implement an OpenCL application (OpenCL Grayscale Filter) used to convert

color images to grayscale images by calculating the scalar product of each pixel using

a constant vector. Google provides a Renderscript application (RS Grayscale Filter) [5]

that is a functional equivalent to the OpenCL Grayscale Filter. We translate this OpenCL

Grayscale Filter into a Renderscript application using O2render and compare its perfor-

Table 6.1: Translation time
Program Translation Time (millisecond)

Grayscale Filter 24

Saturation/Gamma Adjuster 38

20

Figure 6.1: O2rendered Grayscale Filter vs. RS Grayscale Filter on Android devices

Figure 6.2: O2rendered Saturation/Gamma Adjuster vs. Using new O2render vs. RS
Levels Filter vs. Dalvik Levels Filter

Figure 6.3: Input image for O2rendered Grayscale Filter

21

Figure 6.4: Output image for O2rendered Grayscale Filter

mance to RS Grayscale Filter.

The performance of the translated OpenCL Grayscale Filter is similar to that of RS

Grayscale Filter, despite their coding being different. In addition, we execute both ap-

plications using the same input image, measure the execution time, and calculate the

averages in milliseconds. Figure 6.1 shows that the execution performance of both appli-

cations is similar. Figure 6.3 and Figure 6.4 show the input and output images from

O2rendered Grayscale Filter. Note that the translation time for an 18-line kernel in

Grayscale Filter is less than one second, which attests to the efficiency of O2render.

6.2 Saturation/Gamma Adjuster

We implement an additional OpenCL application (OpenCL Saturation/Gamma Ad-

juster) that adjusts the saturation and gamma levels of an input image by multiplying

each pixel using a color matrix and calculating a power value for each sub-pixel. Google

has several similar applications, including ones that use Renderscript and Android Java

(Renderscript Levels and Dalvik Levels, respectively) [13]. We translate the OpenCL Sat-

uration/Gamma Adjuster to a Renderscript application using O2render and compared its

performance to Renderscript Levels and Dalvik Levels.Figure 6.2 shows the average ex-

22

Figure 6.5: Input image for Renderscript Levels

ecution performance of the three applications, as well as a manually modified and trans-

lated OpenCL Saturation/Gamma Adjuster. The translated OpenCL Saturation/Gamma

Adjuster is approximately 60 ms slower than is Renderscript Levels. This is because Ren-

derscript provides better-performing APIs than does OpenCL, and the old O2render can-

not map the lines of this type of OpenCL code into this type of Renderscript API. Specif-

ically, the OpenCL Saturation/Gamma Adjuster uses slower read or write calls to convert

images, but the Renderscript Levels calls the “convert float4” or “convert uchar3” (ded-

icated Renderscript APIs that are hardware accelerated) to achieve a better performance.

However, the translated OpenCL Saturation/Gamma Adjuster still performs better than

does the Dalvik Levels.

Even when O2render does not generate the highest performing Renderscript code, de-

velopers can use the translated code as a template and can optimize it manually. These

results also shows that with less than 10 lines of modification, the new version of the trans-

lated OpenCL Saturation/Gamma Adjuster performed as well as the Renderscript Levels.

We have enhanced O2render to leverage dedicated Renderscript APIs using improved

O2render table. As a result, Figure 6.2 shows that this new O2render delivers about the

same performance as Renderscript Levels does. Figure 6.5 and Figure 6.6 present the in-

put and output images from Saturation/Gamma Adjuster. Both the old and new O2render

translate the Adjuster within a second. We find that the efficiency is about producing

every two lines of Renderscript code in one milli-second.

23

Figure 6.6: Output image for Renderscript Levels

24

Chapter 7

Conclusion and Future Works

7.1 Conclusion

This thesis begins by discussing the need to port an existing OpenCL application to a

Renderscript one and the differences between the two frameworks. We create and imple-

ment O2render, an OpenCL to Renderscript translator that leverages the Clang compiler

to simplify porting from OpenCL to Renderscript.

Almost all Android devices are equipped with cameras today, and photography ap-

plication is a popular category of mobile application. Using heterogeneous computing

technologies is an excellent method of improving the performance of computational pho-

tography. By using O2render to leverage existing OpenCL-based computational photog-

raphy application, developers can create high-performance mobile photography applica-

tions more easily.

7.2 Future works

In the future, we will add more specific translation and mapping abilities to O2render.

An ongoing project is to enable O2render to translate from Renderscript script back to

OpenCL kernel, making it a bidirectional translator between OpenCL and Renderscript.

To achieve such goal, O2render will leverage our defined API mapping tables and the

“llvm-rs-cc” program to translate Renderscript to OpenCL. Furthermore, O2render has

25

the potential to support other heterogeneous computing frameworks such as CUDA, be-

cause it is similar to OpenCL and is experimentally supported by Clang already.

26

Bibliography

[1] Clang: a C language family frontend for LLVM. http://clang.llvm.org/.

[2] Renderscript is the official compute API for Android. https://groups.

google.com/forum/#!topic/android-platform/AhYDoDjMlb4.

[3] G. Diamos. The design and implementation ocelot ’ s dynamic binary translator

from ptx to multi-core x86. Computer Engineering, 9:22–39, 2009.

[4] Google. Renderscript. http://developer.android.com/guide/

topics/renderscript/index.html.

[5] Google. Renderscript Compute. http://developer.android.com/

guide/topics/renderscript/compute.html.

[6] Google. Android ndk document, 2012.

[7] K. Group. OpenCL. http://www.khronos.org/opencl/.

[8] M. J. Harvey and G. De Fabritiis. Swan: A tool for porting cuda programs to opencl.

Computer Physics Communications, 182(4):1093–1099, 2011.

[9] K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi. Eval-

uating performance and portability of opencl programs. Science And Technology,

2:52, 2010.

[10] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program

analysis & transformation. International Symposium on Code Generation and Op-

timization 2004 CGO 2004, 53706(c):75–86, 2004.

[11] G. Martinez, M. Gardner, and W. chun Feng. Cu2cl: A cuda-to-opencl translator for

multi- and many-core architectures. In Parallel and Distributed Systems (ICPADS),

2011 IEEE 17th International Conference on, pages 300 –307, December 2011.

[12] NVIDIA. CUDA Toolkit. http://developer.nvidia.com/

cuda-toolkit.

27

[13] R. J. Sams. Levels in Renderscript. http://android-developers.

blogspot.tw/2012/01/levels-in-renderscript.html.

[14] ZiiLABS. ZiiLABS OpenCL. http://www.ziilabs.com/products/

software/opencl.php.

28

