Bl 2B REEHRANZRANAIEEA

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science
National Taiwan University
Master Thesis

M 5T A B RAR R M W 23T 38 5 178 e o R 9%
PEH
O2render : A OpenCL-to-Renderscript Translator for Porting
Across Various GPUs or CPUs

B E T

Yang Cheng-yan

R B L
Advisor: Liao Shih-wei, Ph.D.

FERE 101 57 A
July, 2012

-
-
=

BOL R 0 A RN — IR RE R T o MM H B BRHAK
% T o 2E bl 0 B o

HhERH RO LI B RE L c RAHATHE Y E =
MR P BT A0 4 B M T KA 8 o 3 L B R A8
BB RALGE 0 AR AR SR o PR Sh 0 B R R M KM AR
RABZEAEFH o HRMT » A0 T AL FHL - LHATAE LY
BAE ~ TAESNEGII R o HH LT o

BHEERRO A RF F W R SRR AZE R
Gk A RATE R ALY HBAT 5 AR AL TR LA 6 A K M
BRI o 3 BT A 0 RAREE R PR R T EAmEA o

REHHP O oRERHEAHRR - RO - REFE LR
RERGLARBEZ S AN I EARARGHRIREF S T2
Bk o HHEEZBAL S ML ONE > FBE AL E T -

AR BAH T ~ AT X FRE B > RRAA LA LA TR
HHERT LN EEARRLL BHEREORAL - 2407 XK
WX H RN E LB TRS RE > BURRE S GH AT LS
Fhb REE BRMBATIFMAE > £ KB EIFEEARFE ~ £ RILI0F
B o

BRTHIANFHZERZ > DHFATRALRMOBER - T HTR—
LY 7 F o

€ RS

RAWF Y > HEAE AR K Android X T AR L —AREY F
7189 A28 ° Google ik 4 89 Android & A& F £ & 3 th T Renderscript R 44 ©

Renderscript ZAndroid Bl AI"E — B 7 (9 Z A RA% > /E T EHF R
WO AT - 2T R EBEAACERENEBELR
#5 49) 22 OpenCL A9 #2 X | Android £ » B| /A R M F 89K E
mRenderscript 4 7T A 3 A 48 F 69 FATiE H2OR o

st & AR B T O2render & 4 3% 3 A #90penCLAZ X, 7T VA B %y
69 4% M Renderscripti2 X, » # 3L iE /7 A Android & 4L £ o KM 4 A7
T OpenCL#7Renderscriptik A~ L &9 £ & » i B 35 & low-level virtual mac-
hine(LLVM) &) 77 3% ,Clang, & & £ — 18 OpenCL #| Renderscript 49 345 3 ©

ii

Abstract

400-million Android devices are arguably world‘s most impactful real-
time multimedia systems. Google introduced Renderscript language and run-
time in recent Android releases. Renderscript delivers performance and porta-
bility without losing usability. However, it is difficult to reuse software writ-
ten in existing compute languages such as OpenCL. Thus, we develop the
O2render system to enable OpenCL programs on Android devices. We ana-
lyze fundamental differences between OpenCL and Renderscript, and present
our design of a translator between them using low-level virtual machine (LLVM).
We extend LLVM’s frontend, Clang, and show that we achieve about the same

performance in Renderscript with minimal translation overhead.

il

Contents

LR E
Abstract

1 Introduction
1.1 Contributions o e e e

1.2 Document organizationol

2 Related Works
2.1 Add an abstract level among frameworks
2.2 Translate to a common intermediate representation

2.3 Translate the sourcecode

3 Overview of OpenCL and Renderscript
3.1 OpenCL e e
3.1.1 Kernel program oo
3.1.2 Host program and memory model
32 Renderscript L

3.3 Differences between OpenCL and Renderscript execution models

4 Issues in translating from OpenCL to Renderscript
4.1 Removing unnecessary OpenCL-only qualifiers

4.2 Generating a Renderscript kernel file for each OpenCL kernel

v

ii

iii

4.3 Translating OpenCL API calls into Renderscriptones
4.4 Modifying the arguments of kernels
4.5 Translating OpenCL kernel function with multiple outputs

4.6 Puttingitaltogether Lo

Design and implementation of O2render
5.1 Implement O2render as a Clang plugin
5.2 Imsightinto O2render

5.3 Mappingtable

Evaluation
6.1 GrayscaleFilter

6.2 Saturation/Gamma Adjuster L.

Conclusion and Future Works
7.1 Conclusion e e,

7.2 Future Works L e e e

Bibliography

16
16
17
19

20
20
22

25
25
25

27

List of Figures

3.1
3.2

33

5.1
5.2

6.1
6.2

6.3
6.4
6.5
6.6

Example of typical host program executionflow
(a) 3 parts of a Renderscript application (b) Compilation flow of a Ren-
derscript SCript

An example of OpenCL work-items and work-group

High level overview of O2render

Algorithm of traversing ASTinPhase 1

O2rendered Grayscale Filter vs. RS Grayscale Filter on Android devices .
O2rendered Saturation/Gamma Adjuster vs. Using new OZ2render vs. RS

Levels Filter vs. Dalvik Levels Filter
Input image for O2rendered Grayscale Filter
Output image for O2rendered Grayscale Filter
Input image for Renderscript Levels

Output image for Renderscript Levels

Vi

List of Tables

5.1 An Example of O2render Table

6.1 Translationtime

vii

Chapter 1

Introduction

As the development of compute languages and multicore processors becomes increas-
ingly prevalent, software applications can achieve better performance via parallel comput-
ing. Parallelization on various types of computing units is referred to as heterogeneous
computing. Open Computing Language (OpenCL) [7] is a heterogeneous computing
framework that provides portability by defining an abstract execution model and a mem-
ory model. Apple proposed OpenCL and released its first implementation of OpenCL 1.0
in the Mac OS X Snow Leopard. OpenCL is now in version 1.2 and is popular among
developers and vendors.

Smartphone-related technologies have advanced rapidly in recent years, partly thank-
ing to the open-source Android project. Many developers and vendors have embraced
the open-source Android platform and have contributed numerous software applications.
However, Android did not have a heterogeneous computing framework such as OpenCL
to allow developers to improve software performance until Google released Renderscript,
a high-performance 3D rendering and heterogeneous computing framework for the An-
droid platform. Because Renderscript [4] is Android’s heterogeneous computing frame-
work, if developers want to reuse existing source code that was originally programmed
for other computing frameworks on Android, they must rewrite the code in Renderscript.
Since Renderscript is relatively new then other heterogeneous computing framework, the
number of programs that are written in it is currently small. Porting existing computing

framework program to Renderscript is a way to speed up heterogeneous computing pro-

gressing on Android. Although OpenCL is a popular computing framework, porting an
OpenCL application to a Renderscript one is difficult.

This thesis introduces O2render, an OpenCL to Renderscript translator that enables the
porting of an OpenCL application to a Renderscript application. O2render automatically
translates OpenCL kernels to a Renderscript script, or can create a skeleton of Render-
script script from an OpenCL kernel to enable developers to port OpenCL kernel more

rapidly.

1.1 Contributions

This thesis makes the following contributions:

e We compare Renderscript and OpenCL and present insights into both computing

languages.

e We develop a system to populate a new language’s repertoire. Specifically, we

enable code reuse and reduce the learning curve of a new computing language.

e We show that the resulting Renderscript code achieves about the same performance

and the translation overhead is minimal.

1.2 Document organization

This thesis is organized as follows. Chapter 2 reviews previous research related
to computing frameworks for the Android platform and translation between computing
frameworks. Chapter 3 presents an overview of OpenCL and Renderscript and the differ-
ences between them. Chapter 4 considers issues related to translation from OpenCL to
Renderscript. Chapter 5 explains the design and implementation of O2render. Chapter 6
evaluates O2render’s perfromance. Finally, chapter 7 provides a conclusion and sugges-

tions for future research.

Chapter 2

Related Works

Before Renderscript was developed, most Android developers used Android Native
Development Tools (NDK) [6] to write performance-critical code. However, using NDK
caused a high overhead for Java callback, had portability problems, and could not use
parallel computing easily. Despite Android not supporting OpenCL, ZiiLABS enabled
OpenCL on some ZiiLABS platforms and released the ZiiLABS OpenCL SDK [14].

There are three methodologies in translating between computing frameworks: (1) Add
an abstract level library among frameworks; (2) Translate to a common intermediate rep-
resentation (IR) and compile the IR during run-time; or (3) Translate a source code that
uses a particular framework to a modified source code that uses a different framework.

Below we will discuss each methodology in details through examples.

2.1 Add an abstract level among frameworks

Methodology (1) is employed by Swan [8], which is a tool that abstracts CUDA
[12] and OpenCL using a higher-level runtime library. This library adapts to CUDA
or OpenCL at lower level. Specifically, developers convert CUDA or OpenCL API calls
into equivalent Swan calls, and the Swan library maps these calls to CUDA or OpenCL
calls. In addition, Swan provides a Perl script that performs simple CUDA kernel code to

OpenCL kernel code source-to-source translation using regular expression substitutions.

2.2 Translate to a common intermediate representation

An example of Methodology (2) is Ocelot [3]. The system enables CUDA applications
to run on non-Nvidia GPU architecture. Ocelot operates in two main steps: It translates
the CUDA Parallel Thread Execution (PTX) assembly to LLVM IR, and then applies
an LLVM code generator to generate native code for the target platform. Ocelot allows
CUDA programs to be executed at full speed on NVIDIA GPUs, AMD GPUs, and x86

CPUs without recompilation.

2.3 Translate the source code

Finally, CU2CL [11] is an example of a CUDA to OpenCL source-to-source translator,
which follows Methodology (3). CU2CL is used as a plug-in for Clang. CU2CL begins
translation using the preprocessor and parser of Clang [1] to obtain the abstract syntax
tree (AST) of the input CUDA source code. Thereafter, CU2CL uses the “AST-Driven
String-Based Translation” method to traverse the AST recursively. If an CU2CL node of
interest is identified, CU2CL uses the Clang Rewriter library to rewrite the AST node.

Finally, the translated OpenCL source code is generated based on the rewritten AST.

Chapter 3

Overview of OpenCL and Renderscript

OpenCL and Renderscript are designed to accelerate application performance by dis-
tributing computational workloads to multiple processing cores, such as CPU cores, GPU
cores, and DSP cores, or a combination of these. However, OpenCL and Renderscript

have several differences.

3.1 OpenCL

Before the release of OpenCL, Nvidia designed another computing (language), the
Compute Unified Device Architecture (CUDA), for Nvidia GPUs, while supporting only
Nvidia GPUs is the most notable drawback of CUDA. In order to design a computing (lan-
guage) for various architectures, Apple Inc. in collaboration with Nvidia, AMD, IBM,
and Intel initialized the OpenCL project and proposed it to Khronos Group. Although
OpenCL was very similar to CUDA at the beginning because of the significant contribu-
tion from NVidia, it becomes more applicable to various architectures gradually. OpenCL
defines an abstract layer specification for hardware related functions, which hardware
vendors should follow by for implementing OpenCL supported hardware. Therefore, de-
velopers can speed-up their program performance by using OpenCL API without dealing
with low-level hardware related function calls. Each OpenCL program comprises two
components: kernel program and host program. The following will discuss them in more

detail.

3.1.1 Kernel program

Developers have to write kernel code, in a variant of C99, to specify the detail ex-
ecution of compute units. Fortunately, there are bunch of build-in functions which like
integer handling, math and rational handling available for developer to use when writ-
ing kernel programs. But there are also kinds of more important functions that relates to
‘work-item’, the parallel unit of OpenCL. An OpenCL kernel, which is programmed in a

variant of C99, specifies the functions to execute on OpenCL computing units.

3.1.2 Host program and memory model

An OpenCL host program is for setting execution environment for kernels. Figure 3.1
shows an example of typical execution flow of an OpenCL host program. In an OpenCL
host program, developers have to set up the data to be processed first. After the the data are
prepared, OpenCL kernels can then be loaded and compiled, and execute computational
tasks. The communication between host and kernel device relies on OpenCL memory

model. There are four kinds of memory region that can be access by kernels:

1. Global Memory : Read and write are permitted, all work-item in all work-groups

are accessible.

2. Constant Memory : Only read is permitted, all work-item in all work-groups are

accessible. Initialized and allocated in host program.

3. Local Memory : Read and write are permitted, only work-items in the same work-

group are accessible.

4. Private Memory : Read and write are permitted, only can be accessed by the work-

item which defines it.

OpenCL is designed to be portable across various devices. However, developers must
often manually adjust parameters such as the size of the OpenCL work-group and the

hardware-dependent factors in the OpenCL application to obtain better performance [9].

SiGet the device and create a OpenCL runtime context

clGectPlatformID=(...)

clGetDeviceID= (clPlacform, ...) !

clContext = clCreateContext(...)’
clCommand{umenus = clCreatelCommandfuene(...):

f{Load OpenCL program source file
Fro..

J/Build CpenClL program which just loaded and create kernels

clProgram = clCreateProgramWithSource(...):
clBuildProgram{clProgram, ...):

clEernell = clCreateKernel (clProgram, "kermell" , &errcode):
clEernel? = clCreateFKernel (clProgram, "kermellZ" , &errcode) !

JS/Bind arguments then sengueus the kernel for sexecute

clSetEernelirg(clEernell, ©, ...}

clSecEernelirg(clEernell, 2, ...):

Ffe..

err = clEngueueNDREangeKernel (clCommand{ueuse, clEernell, ...} !
err = clEngueuseReadBuffer (clCommandfuens, ...}’

Figure 3.1: Example of typical host program execution flow

1 2 3

.rs file

i ¥ .
. ; : reflection
(Cipwetie) | > (i
| L

Renderscript

host program

In device

executable

Figure 3.2: (a) 3 parts of a Renderscript application (b) Compilation flow of a Render-
script script

3.2 Renderscript

Google released Renderscript as an official computing framework of Android in 2011
[2]. Renderscript provides high performance and portability across hardware architectures
to Renderscript applications. Although Renderscript provides API for both graphics and
computation, this thesis focuses on computation.

A Renderscript application consists of three parts: 1) a Renderscript host program
written in Dalvik, denoted as “java file” in Figure 1, 2) one or more Renderscript ker-
nels, and 3) reflected classes in Dalvik. These three parts are denoted as /, 2, and 3
respectively in Figure 1. The Renderscript kernel, also written in a variant of C99, has
a special function called root() that identifies the pieces of code for parallel execution in
the same manner that an OpenCL kernel does. The Renderscript host program is similar
to other Android applications but further initializes the use of the Renderscript kernel.
The reflected Java classes contain functions enabling the Renderscript host program to
communicate with the kernels during Renderscript runtime, allowing functions such as
memory binding between the host program and the kernels.

Renderscript achieves portability using LLVM [10] technologies. Figure 3.2 shows

the compilation flow for the Renderscript kernels. First, the Renderscript compiler “llvm-

rs-cc”, a derivative of the Clang project, compiles Renderscript kernels into LLVM-based
bitcode (IR) files with a .bc filename extension. During compilation, llvm-rs-cc also
generates the corresponding reflected Java classes of the kernels. Thereafter, the bitcode
is packed into an Android application package (.apk file) of the Renderscript application,
and the application is installed on an Android device. When the application is about to
execute, the bitcode is compiled to the appropriate machine code for the device using

libbcce, the back-end compiler of the Renderscript kernels.

3.3 Differences between OpenCL and Renderscript exe-
cution models

The differences between OpenCl and Renderscript is not only in API or code ap-
pearance. OpenCL tends to provide more low level controls to developers so that more
information and operability are available. But on the other side, Renderscript is trying
to offer a more intuitive design, which minimize learning curve and complexity of the
program. Therefore compared to OpenCL, there are some restriction to Renderscript as
the tradeoff. Consequently, the translation is accompanied by some issues.

One major difference between OpenCL and Renderscript is their respective execution
models. Figure 3.3 shows how data are partitioned for parallel processing in OpenCL. A
work-item is a single kernel execution with a set of data, a work-group is a set of work-
items that access the same processing resource, and an NDRange describes the space of
the work-items. Developers have to define how an OpenCL application partitions input
data and executes work-items. In contrast, Renderscript data to be parallel-processed
are first transferred to a Renderscript type “Allocation”. When the special function “rs-
ForEach()” is called in the kernel, or “ForEach_root()” is called in the Renderscript host
program, the Renderscript engine can help partition the Allocation for each execution of

the root(), distributing each execution to the processing cores.

NDRange size

NDRange size

work-group size

X

work-group

work-item

work-item

work-item

work-item

WOrk-group size

Figure 3.3: An example of OpenCL work-items and work-group

10

Chapter 4

Issues in translating from OpenCL to

Renderscript

Although the languages of OpenCL and Renderscript are derived from C99, O2render
cannot translate them using string substitution alone. This chapter describes how O2render

achieves the translation from the aspect of implementation.

4.1 Removing unnecessary OpenCL-only qualifiers

The following qualifiers are not necessary to Renderscript kernels and O2render re-

moves them:

1. Address space qualifiers, including __global/global, __local/local, __constant/constant,

and __private/private.
2. Function qualifiers, including __kernel/kernel.

3. Access qualifiers, including __read_only/read_only, __write_only/write_only, and __read

_write/read_write.

11

4.2 Generating a Renderscript kernel file for each OpenCL
kernel

An OpenCL kernel script file may contain more than one kernel function for parallel
execution, and each kernel function has a distinct function name. However, each Ren-
derscript kernel script file should only have one function for parallel execution and the
function name should be “root”. Therefore, O2render generates a Renderscript script file

for each OpenCL kernel function and renames the OpenCL kernel function as “root”.

4.3 Translating OpenCL API calls into Renderscript ones

In addition, O2render translates OpenCL API calls in an input source code to corre-
sponding Renderscript API calls. Although some APIs, such as mathematical ones, are
similar in OpenCL and Renderscript, others are different. O2render translates these types
of OpenCL API calls into Renderscript API calls that are semantically equivalent. Below

we show a translation for accessing image pixel data. The program of reading image:

// OpenCL style of accessing image pixel data

read_imagef (srcImg, sampler, (int2)(x, y));

will correspond to the following translation:

// Renderscript style of accessing image pixel data

rsUnpackColore8888 (x(uchar4 x)rsGetElementAt(srclmg, x, y));

4.4 Modifying the arguments of kernels

An OpenCL kernel function can have an arbitrary type and number of input argu-
ments. However, arguments for a Renderscript root() should follow these rules: a. The
first argument is optional and points to an input “Allocation” for the root() function; b.
The next argument indicates an output “Allocation” that stores the result returned to the

Renderscript host program; c. Several optional “uint32_t” type arguments for indexing

12

can be placed after the output “Allocation” argument.

The number of input arguments in an OpenCL kernel is typically more than one. A
Renderscript root() can have a maximum of one argument for input. O2render resolves
these issues by translating every arguments of an OpenCL kernel to global variables in
the translated Renderscript script. If an argument of an OpenCL kernel refers to a re-
gion of memory, O2render translate its data type to “rs_allocation”, or O2render keeps
its data type in the translated Renderscript script. Thereafter, the Renderscript host pro-
gram transfers input data to the root() through the reflected binding function of the global
variables.

In OpenCL, developers typically use the “get_global_id” function to obtain the global
work-item ID value. Because the total work-item size is specified in the host program and
usually matches the input data array size, developers typically use this global work-item
ID as a data array index for accessing target data.

Occasionally, developers may use the global work-item ID for another purpose, such
as an integer for computation. Although Renderscript does not have a work-item 1D, the
usage of this work-item ID is similar to the index information that is passed into the root()
function. Therefore, O2render maps the “get_global id” function to the arguments for
indexing, and uses the “rsGetElementAt()” function to access the data that the arguments
point to in an “rs_allocation.”

A sample of the declaration of a translated root() is:

void root (float xresult, uint32_t 02Rx, uint32_t O2Ry);

4.5 'Translating OpenCL kernel function with multiple
outputs

For most OpenCL kernel function, there are only one output parameter. So we just put
it at the output parameter position in Renderscript root function after translation. Then
we let Renderscript system to(DELETE THIS) distribute which data cell in the allocation

is being handled. This method is intuitive and meets the design of root function.

13

But in the case of translating OpenCL kernel function of multiple output parameters,
similar to the inputs, we have to generate additional global variables for them. Then
developers can generate and bind the output memory allocation to these variables in Ren-
derscript host program via reflected function. Compared to use the output parameter in
root(), we have to specify which data cell of the output allocation is being assigned by

index information that passed to the root().

4.6 Putting it altogether

We will use a kernel in the common GrayScale Filter to illustrate the task of O2render.

Given the kernel sample below:

float3 gMonoMult = (float3)
(0.299f, 0.587f, 0.114f);
__kernel void sample(sampler_t sampler,
__read_only image2d_t srclmg,

_-write_only image2d_t dstlmg)

float4 f4 = read_imagef (srclmg,
sampler ,
(int2)
(get_global_id (0),
get_global_id (1)));
float4 Mono = (float4){0.0f, 0.0f, 0.0f, 0.0f};
Mono . xyz = dot(f4.xyz,gMonoMult);
write_imagef (dstlmg,
(int2)
(get_global_id (0), get_global_id (1)),
Mono) ;

O2render should generate the following Renderscript code:

#pragma version (1)

#pragma rs java_package_name (...)

14

float3 gMonoMult = (float3){ 0.299, 0.587, 0.114 };
rs_allocation sampler;

rs_allocation srclmg;

void root(uchar4 xdstlmg,

uint32_t O2Rx,

uint32_t O2Ry)

float4 f4 =
rsUnpackColor8888 (x(uchard =)
rsGetElementAt (
O2RenderIn—>srclmg ,
O2Rx,
O2Ry)) ;
float4 Mono = (float4){0.0f, 0.0f, 0.0f, 0.0f};
Mono = dot(f4.xyz,gMonoMult) ;

xdstImg = rsPackColorTo8888 (Mono) ;

15

Chapter 5

Design and implementation of O2render

O2render is implemented as a Clang plugin. This method adds extra steps to the
original Clang compilation. This chapter describes how O2render benefits from using

Clang and provides the implementation details for O2render.

5.1 Implement O2render as a Clang plugin

OZ2render is a source-to-source compiler that operates at the AST level. Parsing in-
put source code to generate AST is the most essential task of many compilers. Clang, a
subproject of LLVM and a front-end compiler for the C language family, provides the nec-
essary components for compiling source code to LLVM IR. The latest version of Clang
supports compiling OpenCL code. Furthermore, Clang provides libraries for develop-
ers to add their own requirements easily in the compilation. Thus, we chose to leverage
Clang to design and implement O2render. O2render uses Clang to parse and generate
AST, focusing on the manipulation of the generated AST using a subclass of Clang “AST-
Consumer.” O2render also uses Clang Rewriter, a Clang library, to perform string-based
rewrite that inserts, removes, and replaces text to specific ranges of the input source code.
The modified result is stored in another buffer, so that the original source and the AST are

not altered.

16

Renderscript
O2render —| | files(*.rs)

(clang plugin) @

OZ2render

openCL
source
files(*.cl)

Final rewrite

Figure 5.1: High level overview of O2render

5.2 Insight into O2render

Furthermore, O2render uses a two-phase-rewrite strategy. Specifically, O2render can
rewrite during traversing or after traversing.

Figure 5.1 shows the high level overview of O2render. Here O2render takes AST
which is generated by Clang OpenCL parser as input, then outputs Renderscript files.
The flow of O2render has four steps: (1) traversing the AST; (2) identifying and record-
ing AST nodes that O2render is interested in during traversing; (3) rewriting nodes that
O2render is interested in; and (4) rewriting the whole script based on the recorded in-
formation. The first three steps are recursively executed until traversing of the AST is
finished. We refer to these three steps as Phase 1. Thereafter, the fourth step, denoted
as Phase 2, is executed. Figure 5.2 shows the driver for the first three steps algorithmi-
cally. Note that “IsInterest” in the figure checks whether the node is needed for further
process or not. An example of such node is the kernel function declaration in OpenCL.
“NeedRecord” checks if the node is need to be recorded for the rewrite in Phase 2.

Because O2render translates an OpenCL kernel function into a Renderscript script,
a kernel function declaration in the AST is a basic translation unit. O2render begins
translation by recording every argument in the kernel function declaration for the second
phase rewrite. Thereafter, it begins recursively traversing the AST from the root of the
kernel function declaration. When an AST node is found during recursive traversing,

O2render examines its type and value to decide whether it is an interesting node. If so,

17

procedure RewriteExpression(expr)
for all subexpr of expr do
RewriteExpression(subexpr)
end for
if IsInterest(expr) then
if NeedRecord(expr) then
Record(expr)
end if
if IsPhaseOneRewriteExpr(expr) then
source = GetRewrittenSourceCode(expr)
newSource = DoPhaseOneRewrite(source)
ReplaceSourceRange(expr, newSource)
end if
end if

end procedure

Figure 5.2: Algorithm of traversing AST in Phase 1

O2render determines whether the node is suitable for immediate rewrite or if O2render
should record the node and leave the rewrite to be performed during the second phase
after the rewrite has finished the recursive traversing.

After recursively traversing the AST, O2render executes the second-phase rewrite that
alters the structure of the AST. The second-phase rewrite obtains the required information
during traversing and performs the following tasks: (1) Adding the “pragma” directives
required by Renderscript; (2) writing the global variables into the script; and (3) rewriting
functions that require additional changes. The function-rewriting example is illustrated as

follows.

// OpenCL

write_imagef (dstimg, (int2)(x,y), Mono);

// Renderscript
xdstImg = rsPackColorTo8888 (Mono) ;

18

Table 5.1: An Example of O2render Table

OpenCL Renderscript
read_imagef | rsUnpackColor8888(*(uchar4 *)rsGetElementAt(%s,X,y))
write_imagef *%s = rsPackColorTo8888(%s)

5.3 Mapping table

O2render has two types of mapping tables for rewrite. The first type records an
OpenCL token string to a Renderscript string pairs that the OpenCL token string can
be simply replaced by the mapped Renderscript string when rewrite. The other type of
table is used for the type of OpenCL token string that cannot be replaced, but instead must
be translated into a semantically equivalent string in Renderscript. This latter type should
record more information than the string-to-string method, including how arguments are

adjusted. Table 5.1 shows an example of this type.

19

Chapter 6

Evaluation

Because Renderscript applications run only on Android, and Android does not sup-
port OpenCL, comparing the execution performance of an OpenCL application with a
Renderscript application that had been translated using O2render is difficult.

Because computational photography is popular for mobile devices and can benefit
from heterogeneous computing, this section examines the correctness and the execution
performance of the translated Renderscript application for computational photography.

Table 6.1 shows the translation time of cases in this section. The experiment are on

the desktop with Intel Core 2 Duo CPU E6550 2.23GHz and 3.4 GB Memory.

6.1 Grayscale Filter

We implement an OpenCL application (OpenCL Grayscale Filter) used to convert
color images to grayscale images by calculating the scalar product of each pixel using
a constant vector. Google provides a Renderscript application (RS Grayscale Filter) [5]
that is a functional equivalent to the OpenCL Grayscale Filter. We translate this OpenCL

Grayscale Filter into a Renderscript application using O2render and compare its perfor-

Table 6.1: Translation time

Program Translation Time (millisecond)
Grayscale Filter 24
Saturation/Gamma Adjuster 38

20

140

120

100

millsecond

20

OZrendered RS Grayscale Filter

Figure 6.1: O2rendered Grayscale Filter vs. RS Grayscale Filter on Android devices

OZrendered with modified RS Levels Filter Dalvik Levels
OZrender Filter

millsecond
s 888 8 8 8§

8

=]

Figure 6.2: O2rendered Saturation/Gamma Adjuster vs. Using new O2render vs. RS
Levels Filter vs. Dalvik Levels Filter

Figure 6.3: Input image for O2rendered Grayscale Filter

21

Figure 6.4: Output image for O2rendered Grayscale Filter

mance to RS Grayscale Filter.

The performance of the translated OpenCL Grayscale Filter is similar to that of RS
Grayscale Filter, despite their coding being different. In addition, we execute both ap-
plications using the same input image, measure the execution time, and calculate the
averages in milliseconds. Figure 6.1 shows that the execution performance of both appli-
cations is similar. Figure 6.3 and Figure 6.4 show the input and output images from
O2rendered Grayscale Filter. Note that the translation time for an 18-line kernel in

Grayscale Filter is less than one second, which attests to the efficiency of O2render.

6.2 Saturation/Gamma Adjuster

We implement an additional OpenCL application (OpenCL Saturation/Gamma Ad-
juster) that adjusts the saturation and gamma levels of an input image by multiplying
each pixel using a color matrix and calculating a power value for each sub-pixel. Google
has several similar applications, including ones that use Renderscript and Android Java
(Renderscript Levels and Dalvik Levels, respectively) [13]. We translate the OpenCL Sat-
uration/Gamma Adjuster to a Renderscript application using O2render and compared its

performance to Renderscript Levels and Dalvik Levels.Figure 6.2 shows the average ex-

22

Figure 6.5: Input image for Renderscript Levels

ecution performance of the three applications, as well as a manually modified and trans-
lated OpenCL Saturation/Gamma Adjuster. The translated OpenCL Saturation/Gamma
Adjuster is approximately 60 ms slower than is Renderscript Levels. This is because Ren-
derscript provides better-performing APIs than does OpenCL, and the old O2render can-
not map the lines of this type of OpenCL code into this type of Renderscript API. Specif-
ically, the OpenCL Saturation/Gamma Adjuster uses slower read or write calls to convert
images, but the Renderscript Levels calls the “convert_float4” or “convert_uchar3” (ded-
icated Renderscript APIs that are hardware accelerated) to achieve a better performance.
However, the translated OpenCL Saturation/Gamma Adjuster still performs better than
does the Dalvik Levels.

Even when O2render does not generate the highest performing Renderscript code, de-
velopers can use the translated code as a template and can optimize it manually. These
results also shows that with less than 10 lines of modification, the new version of the trans-
lated OpenCL Saturation/Gamma Adjuster performed as well as the Renderscript Levels.
We have enhanced OZ2render to leverage dedicated Renderscript APIs using improved
O2render table. As a result, Figure 6.2 shows that this new O2render delivers about the
same performance as Renderscript Levels does. Figure 6.5 and Figure 6.6 present the in-
put and output images from Saturation/Gamma Adjuster. Both the old and new O2render
translate the Adjuster within a second. We find that the efficiency is about producing

every two lines of Renderscript code in one milli-second.

23

Figure 6.6: Output image for Renderscript Levels

24

Chapter 7

Conclusion and Future Works

7.1 Conclusion

This thesis begins by discussing the need to port an existing OpenCL application to a
Renderscript one and the differences between the two frameworks. We create and imple-
ment O2render, an OpenCL to Renderscript translator that leverages the Clang compiler
to simplify porting from OpenCL to Renderscript.

Almost all Android devices are equipped with cameras today, and photography ap-
plication is a popular category of mobile application. Using heterogeneous computing
technologies is an excellent method of improving the performance of computational pho-
tography. By using O2render to leverage existing OpenCL-based computational photog-
raphy application, developers can create high-performance mobile photography applica-

tions more easily.

7.2 Future works

In the future, we will add more specific translation and mapping abilities to O2render.
An ongoing project is to enable O2render to translate from Renderscript script back to
OpenCL kernel, making it a bidirectional translator between OpenCL and Renderscript.
To achieve such goal, O2render will leverage our defined API mapping tables and the

“llvm-rs-cc” program to translate Renderscript to OpenCL. Furthermore, O2render has

25

the potential to support other heterogeneous computing frameworks such as CUDA, be-

cause it is similar to OpenCL and is experimentally supported by Clang already.

26

Bibliography

[1]
(2]

[3]

[4]

[10]

[11]

[12]

Clang: a C language family frontend for LLVM. http://clang.llvm.org/.

Renderscript is the official compute API for Android. https://groups.
google.com/forum/#!topic/android-platform/AhYDoDjM1b4.

G. Diamos. The design and implementation ocelot * s dynamic binary translator

from ptx to multi-core x86. Computer Engineering, 9:22-39, 2009.

Google. Renderscript. http://developer.android.com/guide/

topics/renderscript/index.html.

Google. Renderscript Compute. http://developer.android.com/

guide/topics/renderscript/compute.html.
Google. Android ndk document, 2012.
K. Group. OpenCL. http://www.khronos.org/opencl/.

M. J. Harvey and G. De Fabritiis. Swan: A tool for porting cuda programs to opencl.
Computer Physics Communications, 182(4):1093-1099, 2011.

K. Komatsu, K. Sato, Y. Arai, K. Koyama, H. Takizawa, and H. Kobayashi. Eval-
uating performance and portability of opencl programs. Science And Technology,
2:52,2010.

C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. International Symposium on Code Generation and Op-
timization 2004 CGO 2004, 53706(c):75-86, 2004.

G. Martinez, M. Gardner, and W. chun Feng. Cu2cl: A cuda-to-opencl translator for
multi- and many-core architectures. In Parallel and Distributed Systems (ICPADS),
2011 IEEE 17th International Conference on, pages 300 =307, December 2011.

NVIDIA. CUDA Toolkit. http://developer.nvidia.com/
cuda—-toolkit.

27

[13] R. J. Sams. Levels in Renderscript. http://android-developers.
blogspot.tw/2012/01/1levels-in-renderscript.html.

[14] ZiiLABS. ZiiLABS OpenCL. http://www.ziilabs.com/products/
software/opencl.php.

28

