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摘要 

鼻咽癌(Nasopharyngeal Carcinoma, NPC)屬於鼻咽部表皮發生的癌症，常見於

台灣與中國大陸東南沿海。NPC 治療目前主流療程皆以放射線治療暨合併化學

治療，然而局部復發與遠端轉移仍有可能發生，並且治療的副作用常會影響患者

的生活品質。於此，醫界對於傳統 NPC 主流療程仍然積極嘗試開發相關的輔助

替代療程，其中包括免疫療法。 
  病毒、遺傳、與環境相關三項因子皆屬高度關連於鼻咽癌 NPC 發生。病毒方

面，鼻咽癌 NPC 與 EB 病毒(Epstein Barr virus, EBV)相互密切關聯，多數 NPC
細胞皆可測得 EBV 存在。EBV 攻擊 B 淋巴球與抑制細胞毒殺 T 細胞(cytotoxic T 
lymphocyte, CTL)；相異於典型病毒感染，EBV 造成潛伏感染時期宿主細胞表

面僅只呈現少數抗原(包括 EBNA1 與 LMP1, LMP2)，其中功用相較重要關鍵的

潛伏感染時期胞膜蛋白甲(latent infection membrane protein 1, LMP1)，助使潛

伏感染細胞同時具備持續增生能力暨突變遁逃細胞免疫(cell-mediated immunity, 
CMI)的降低 CTL 細胞毒殺辨識，致使長期潛伏感染細胞持續增生癌化。遺傳方

面，台灣族群相較歐美族群流行病學研究調查呈現較高的 NPC 發生機率，似與

二個族群分別具有的人類白血球組織抗原(human leukocyte antigen, HLA)第一

群亞型 A*02:07 與 A*02:01 呈現高度關連的統計要件，台灣族群 NPC 檢體的腫

瘤細胞檢測分析發現，相較常見 LMP 存在些微差異的突變型 N-LMP1 似為免疫

遁逃結果。 
  本論文結構免疫資訊學研究目標設定發展弱化 EBV-LMP1 細胞免疫遁逃相關

NPC 免疫療法，實施對策強化 EBV 潛伏感染細胞相關 LMP1 細胞免疫抗原的

呈現效率，期能提升細胞免疫系統相關 LMP1 辨識毒殺清除效率。結構免疫資

訊演算實作架構建立已知蛋白質結構片段資料庫，利用細胞免疫 CMI 相關細胞

免疫抗原的歐米茄型胜肽表型與聚型(epitope & agretope)，並利用遺傳演算法預

測抗原胺基酸序列之立體結構，據此進行蛋白質-蛋白質對接(protein-protein 
docking, PPD)演算，避免使用 LMP1 或 LMP2 完整蛋白質的致癌風險，進行蛋

白質-蛋白質對接(protein-protein docking, PPD)演算，預測 MHC 與抗原胺基酸

片段之結合強度(即細胞聚型之結合強度)，演算細胞免疫抗原與 A*02:07 功用複

合體強化(Action complex enhancement, Ace)，相關佳化胜肽片段與篩選核可藥

物，分別採取核酸疫苗轉染與直接藥物投用。 
強化 EBV-LMP1 細胞免疫抗原的呈現效率方面，本研究篩選出 LMP1 中胜肽

表型表現較佳之片段，根據其聚型表現，尋求其胺基酸序列之最佳化組合。弱化

EBV-LMP1 細胞免疫遁逃方面，本研究評估目前核可之藥物，篩選出在其存在

的情況下，MHC 與抗原胺基酸片段之結合強度會因而增強者(即細胞聚型之結合
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強度)。經結構免疫資訊演算後得知相關最佳化胜肽片段與篩選核可藥物，可分

別採取核酸疫苗轉殖與直接藥物投用之方式以加強免疫療法的效果。 
  本論文結構免疫資訊學研究發展EBV LMP1免疫遁逃相關NPC免疫療法二項

施行任務，涵蓋活體外(ex vivo)活化 CTL 與活體內(in vivo)強化 CMI：前者分離

個人免疫細胞的巨噬細胞或 B 細胞與 CTL 前驅細胞並以半透網隔分區細胞培

養，併用核酸疫苗呈現與直接藥物使用確效活體外活化 CTL；後者個案臨床療

程僅採直接藥物使用強化抗原呈現效率暨植回活體外活化 CTL 避免核酸疫苗毒

性，或許合併療程期間自體內活化 CTL 達成活體內強化 CMI；預期藉由二項操

作提升臨床療程 NPC-CMI 功用，繼而有效毒殺清理 EBV-LMP1 與 A*02:07 免

疫遁逃暨持續增生的潛伏感染細胞，達成減低癌化風險展現免疫療法效用。 
  關鍵詞：鼻咽癌、EB 病毒、細胞媒介免疫、潛伏感染時期胞膜蛋白甲、胜肽

聚型、功用/聚型複合體強化 
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ABSTRACT 

Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma that occurs on the 
epithelium of nasopharynx. It is a common malignancy in south-east Asia countries 
including Taiwan, Indonesia, Singapore, Malaysia, and Vietnam in addition to Hong 
Kong and southern China. Environmental factors, Ebstein-Barr virus (EBV), and 
genetic susceptibility are thought to play important roles towards the development of 
NPC. The radiotherapy or concurrent chemoradiotherapy of NPC clinical treatment 
may still occur local pathologic failure and distant metastasis in many patients despite 
of some outcome improvements. Moreover, the radiotherapy with chemotherapy often 
accompanies with acute side effects and long-term sequelae including secondary 
malignancy. Pursue for novel approaches aiming at improving outcome and reducing 
demand for conventional cytotoxic therapy seems thus to indicate immunotherapy as 
of an attractive option under development. The crucial advantage of antigen-specific 
immunotherapy is the ability to evaluate and monitor immune responses against 
targeted antigens and to correlate the findings with clinical responses.  

NPC shows strong association with EBV infection that attacks B-lymphocytes as 
primary target towards resulted lifelong latent infection while and as well reveals an 
observed inhibition on specified cytotoxic T lymphocyte (CTL) populations with EBV 
antigenecity specificity. Notably, NPC latent infection case expresses only limited 
EBV viral antigens with less immunogenicity including EBV-encoded nuclear antigen 
(EBNA1) and latent membrane protein 1 and 2 (LMP1 and 2) which is greatly unlike 
that regular EBV latent infection case with expression of many EBV viral antigens in 
symptomatic EBV-related diseases. Both LMP1 and LMP2 may serve potentially as 
better vaccine targets due to the poor processing efficiency over with EBNA antigen 
while in antigen-presenting cells (APC) as of the infected B lymphocytes. However, 
LMP1 and LMP2 are with main shortages both in risky oncogenicity and as well in 
weak immunogenicity by stringent class I major histocompatibility complex (MHC-I) 
presentation in the host cell of infected B lymphocytes in order for cytotoxic T 
lymphocyte (CTL) activations in which as a result shifts the balance towards flexible 
class II-MHC (MHC-II) presentation of infected B lymphocytes in order for T helper 
(Th) lymphocyte activations with subtle feedback network to enhance B lymphocyte 
proliferations towards aberrant tumorigenesis.  

Immunotherapeutic vaccination strategy with immunogenic vaccine polypeptides 
of assembled multiple epitope set is thus preferred whereas the oncogenic full-length 
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LMP1 and/or LMP2 are therefore not recommended. Promising progress in tumor 
growth controlling has been exemplified in animal model studies with polyepitope 
vaccines comprising MHC-I equivalent class I Human Leukocyte Antigen (HLA-I) 
restricted CTL epitope peptides from LMP1 and LMP2 despite of being with notable 
restriction in a relatively narrow spectrum of HLA-I alleles as of genetic susceptibility. 
Thus, prevalent HLA-I alleles in NPC endemic regions as of HLA-A11, A24, B27, 
and B57 should also be included in designing LMP-based vaccine polyepitopes along 
with most common HLA-I alleles such as HLA-A2.  

Likely, the restricted HLA spectrum of genetic susceptibility may indicate that the 
overlooked anchoring agretopes of omega-shape vaccine peptide seems to be required 
for crucial docking onto the MHC-I pocket sub-zones towards adequate antigen 
presentation of peptide epitope on demonstrating immunogenicity. The design 
strategy of MHC-I vaccine peptide thus seemingly demands both optimized agretopes 
and immunogenic epitope to which additional peptide segments for improved APC 
proteasome processing are attached at both flanking sides. The intended vaccine 
peptide of epitope and agretope may be delivered in the format of “in silico DNA 
vaccine” which is constructed with expression DNA sequence deduced from the 
intended vaccine peptide sequence and as well with upstream control sequence of 
LMP1/2 promoter sequence. The developed “in silico DNA vaccine” with intended 
specific expression in EBV latent infection lymphocytes may be verified with NPC 
cell line of EBV-latent infected B lymphocytes for immunogenic induction in order to 
demonstrate the potential ability in shifting cell-mediated immunity (CMI) pathway 
towards MHC-I CTL while away from MHC-II Th cell.  

In this thesis, we verified structure-based immunoinformatic algorithms of 
implemented in-house bmPDA tool in chapter 1 towards important application aspects 
of vasopressin bio-mimicry peptide design of known structure, MHC-I binding 
epitope peptide prediction of unknown structure, and EBV LMP1 related cancer 
vaccine peptide design of combined structure with adequate agretope and epitope for 
MHC-I presentation in designed delivery format likely as of DNA vaccine. The 
implemented algorithm comprises three sections including constructed peptide 
building blocks database, assembled peptide backbone model of building block 
candidates, and predicted peptide surface model of functional peptides.  

Basically, with the concept of tri-peptide fragment assembly in chapter 2, we 
implemented an in-house tool of bio-mimicry peptide design algorithm (bmPDA-tool) 
for modeling given peptide structure. With the extracted penta peptides (penta-pep, 
PDB-5mer) from all entries of current protein data bank (PDB) in order for serving as 
basic bmPDA building blocks, the segmental backbone angles of the 3rd alpha carbon 
(defined as aC[3]) towards neighboring aC[2] and aC[4] as of the middle aC[2~4] in 
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each aC[1~5] building blocks are analyzed and constructed into searchable 
tri-peptides structure string (TPSS-3mer) database which is based on the “structure 
alphabet” with putative 22 clusters according to the parameter values including 
defined theta angle and edge distance, rotation axis, and rotation angle in order for the 
k-mean clustering analysis with bootstrapping 10,000 data entries of tri-peptide 
structures. With structure string alphabet of TPSS database, the mining task for 
similar backbone structure of 9-mer vasopressin peptide simply takes less than 1 
minute for searching exact matches in entire TPSS database transformed and indexed 
from entire PDB.  

First, to model bio-mimicry peptide structures similar to reference peptide with 
known backbone structure in chapter 3, the matched aC[2~4] according to serial 
reference penta peptide structures are mined from in-house penta-pep TPSS database 
with bmPDA tool in order for assembling peptide structure contig. Specifically, two 
mined aC[2~4] building blocks exemplified with KAV and VYN are assembled 
towards KAVYN contig based on superimposing [N\aC/C] co-plane of both [aa] 
tail-with-head amino acids between two mined aC[2~4] blocks in which the spatial 
rotation of mined blocks is accomplished by Quaternion-based approach along with 
the simple spatial shift to avoid potential structural hindrance. All fused peptide 
conformations in respective block combinations of bio-mimicry structures are 
evaluated based on minimal free energy (maximal stability) of each conformation or 
based on maximal structure similarity to reference structure in order for ranking 
optimal structures by Genetic Algorithm (GA) search strategy and/or third party 
program such as ProCheck for instability and Ramachandran plot analysis. The yield 
candidate peptide structures are converted to TPSS data in which vasopressin 9-mer 
peptide with known backbone structure may normally yield about 400 TPSS data 
entries. Second, the selected peptide model with surface structure is converted to 
quantitative structure–activity relationship (QSAR) model which is constructed with 
TPSS data and quantitative descriptors including peptide surface properties of amino 
acids such as exposed surface, accessibility, flexibility, hydrophilicity, charge, and so 
forth towards binary clustering based on structure similarity and/or binding affinity 
with support vector machine (SVM) according to the surface structure of reference 
peptide. 

On the first algorithm validation in chapter 4 exemplified with known backbone 
structure of reference peptide vasopressin 9-mer [1YF4] CYF QNC PRG, our bmPDA 
tool mines bio-mimicry aC[2~4] building blocks from constructed TPSS database 
with qualified [theta/Ad] values in order for assembling candidate peptide 
combinations with highly mimicking reference structure. The bmPDA-designed 
bio-mimicry peptide backbone structures with different amino acid sequences from 
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vasopressin are exemplified with annotated solution numbers (SN) of KGN SVL AIP 
(SN.12), DGN SVL AIP (SN.36), and DGN SVL ADS (SN.37) taken from pooled 
combinations of candidate peptides in which further requires massive computational 
optimization with GA search strategy. The yield candidate peptide structures are 
coded as TPSS data in which vasopressin 9-mer peptide with known backbone 
structure may normally yield about 400 TPSS data entries in addition to the larger 
epitope peptide TMB-355 with about 3,000 TPSS data entries. Thus, the structure 
similarity evaluation on respective assembled structure combinations according to 
reference structures of vasopressin backbone and surface is accomplished by 
evaluating parameters with GA search strategy in physiochemical property, energy 
stability, and docking fitness based on accounted reference peptide structures of 
vasopressin backbone and surface.  

On the second algorithm validation in chapter 5 exemplified with unknown epitope 
structure of EBV LMP1/LMP2 peptide sequence, our bmPDA tool mines bio-mimicry 
aC[2~4] building blocks from constructed TPSS database with qualified [theta/Ad] 
values in order for predicting epitope peptide structure for which the pre-processing 
filtering applies GA search strategy and/or ProCheck analysis in order to preliminarily 
predict and select stable peptide structures from assembled massive candidate block 
combinations and subsequently to be used for assembling runs until completion. 
Again, the predicted candidate epitope backbone and surface structures of assembled 
peptides are coded as TPSS data in order for full-size immunogenic epitope structure 
evaluation by GA search strategy with grouped parameters including physiochemical 
property, energy stability, docking fitness, and so forth. In that, our predicted peptide 
structures of EBV LMP1/2 contain epitope structure regions which demonstrate high 
consistency with epitope antigenecity index measured with NetCTL server, Kolaskar 
and Tongaonkar antigenecity scale, and Bepipred program. Moreover, the peptide 
design application for NPC cancer vaccine of likely omega shape MHC-I vaccine 
peptide from EBV LMP1/LMP2 demands both immunogenic epitope of previous 
session and as well optimal anchoring agretopes onto which respective peptide 
segments for improving proteasomal processing in antigen presentation cell (APC) are 
attached at either flanking sides towards integrated exogenous peptide expression in 
DNA construct.  

Along with prediction methods for LMP1/2 epitope structures in previous session, 
the additional interactions between the potential docking sub-zones in HLA-I antigen 
presentation pocket and the anchoring agretopes of predicted candidate vaccine 
peptides are evaluated with converted QSAR models for accurate docking analysis by 
Molegro Virtual Docker towards mining qualified HLA-specific agretopes. The 
binding affinity between HLA docking sub-zones and peptide anchoring agretopes is 
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evaluated with SVM based on the correlations among the docking scores and the 
quantitative descriptors of amino acid properties. With the reference data set of the 
used epitopes of NPC vaccines in previous studies, the comparison on the predicted 
epitope and agretopes with our bmPDA tool of structural immunoinformatic 
approaches reveals high consistency between the candidate agretope segments and the 
predicted candidate epitope segments of EBV LMP1/LMP2. Moreover, the highly 
potential epitope segment without effective agretope segments maybe replaced with 
proper agretope segments in order to become highly immunogenic epitopes with 
improved antigenecity index when compared to the original peptide structure as of 
poor immunogenic epitopes.  

In chapter 6, we collected approved drugs from Drugbank. Virtual screening was 
done by docking with MHC receptor. Drugs with better binding affinity with MHC 
receptor were collected as possible candidate for adjuvant immunotherapy. Epitopes 
with better performance of antigenecity were collected by the same procedure in 
chapter 5. Epitope structure prediction was done by modeling method in chapter 2. 
MHC receptor and candidate drugs were docked with candidate epitopes. Drugs 
which could enhance the binding affinity between epitope and MHC receptor were 
identified. We suggest drugs with ACE (action complex enhancement) to be adjuvant 
immunotherapy for NPC. 

In conclusion, the in-house designed HLA-I cancer vaccine peptide of epitope and 
agretope flanking with proteasomal processing peptide can be delivered adequately in 
the likely practical format from “in silico DNA vaccine” which is constructed in 
chapter 6 with expression DNA sequence deduced from the designed vaccine peptide 
sequence and as well with upstream control sequence of active LMP1/2 promoter 
sequence. The developed “DNA vaccine of MHC-I cancer peptide in silico” with 
intended specific expression in EBV latent infection lymphocytes can be verified with 
NPC cell line of EBV latent infection for immunogenic induction which may 
demonstrate the potential CMI pathway shifting towards MHC-I Tc of CTL while 
away from MHC-II Th cell. 

Keywords: Nasopharyngeal carcinoma, Epstein-Barr virus, cell-mediated immunity, 
class I human leukocyte antigen, latent membrane protein 1, agretope, action/agretope 
complex enhancer. 
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 Abbrev. Full Term Page

 ACE Agretope complex enhancement 7

 AMA Anchor modified agretope 5

 AMI Antibody Mediated Immunity 4

 APC antigen-presenting cells 3

 CMI Cellular Mediated Immunity 2

 CTL cytotoxic T lymphocytes 2

 EBV Epstein-Barr virus 1

 HLA Human Lymphocyte Antigen 3

 LMP1 Latent Membrane Protein 1 2

 LMP2 Latent Membrane Protein 2 2

 MHC Major Histocompatibility Complex 2

 NPC Nasopharyngeal Carcinoma 1

 PTLD post-transplant lymphoproliferative disorders 2

 Th T helper lymphocyte 3

 SVM Support Vector Machine 4

 SVR Support Vector Regression 16
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Chapter 1 Structural Immunoinformatics on 

Modeling Epitope Variability and Agretope 

Stability 

Immune system is the defense mechanism of our body against infectious agents and other 
foreign organisms in rather complicated process. Immunoinformatics is the computational 
method focusing on immune-related interactions in consists of immune-related databases, 
epitope prediction, vaccine design, and so forth. 

 
In the past, vaccine development depends on biochemical and immunological 

experiments, such as attenuation of the wild type pathogens by random mutations and serial 
passages, X-ray crystallography studies of antibody/antigen structure, phage display library, 
overlapping peptides, NMR, radioimmunoassay, immunofluorescence, ELISA, Western 
blotting, and immunohistochemistry, which is very expensive, time-consuming, with low 
immunogenicity and reversible.[1] In recent, high-throughput experiment and computational 
advance progresses the understanding on immune system greatly. Assisted with epitope 
prediction approach, we can reduce the spectrum of dry lab target proteins and reduce the 
cost of wet lab experiments. 
 

1.1  Background Review 

1.1.1  Nasopharyngeal carcinoma (NPC) 

Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma that occurs on the epithelium 
of nasopharynx.[2] It is a common malignancy in south-east Asia countries including Taiwan, 
Indonesia, Singapore, Malaysia, and Vietnam in addition to Hong Kong and southern 
China.[3] Environmental factors, Epstein-Barr virus (EBV), and genetic susceptibility are 
thought to play important roles towards the development of NPC.  
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The radiotherapy or concurrent chemoradiotherapy of NPC clinical treatment may still 
occur local pathologic failure and distant metastasis in many patients despite of some 
outcome improvements. Moreover, the radiotherapy with chemotherapy often accompanies 
with acute side effects and long-term sequelae including secondary malignancy.[3] Pursue for 
novel approaches aiming at improving outcome and reducing demand for conventional 
cytotoxic therapy seems thus to indicate immunotherapy as of an attractive option under 
development. The crucial advantage of antigen-specific immunotherapy is the ability to 
evaluate and monitor immune responses against targeted antigens and to correlate the 
findings with clinical responses. 

 

1.1.2  Epstein-Barr virus (EBV) 

Epstein-Barr virus (EBV) is a member of the herpesvirus family.[4] It has a double-stranded 
DNA genome of 184-kb pairs in length, encoding nearly 100 proteins.[5] It was the first virus 
to be associated to human cancer. EBV attack B-lymphocyte as primary target, resulting in 
lifelong infection.[5] Presence of EBV genome is demonstrated virtually in most NPC cells 
through oncogenesis process of EBV latent infections. Regardless of geographical origin, 
EBV is uniformly detected in patients with undifferentiated and poorly-differentiated NPC.[6] 
The EBV-NPC oncogenesis process may equip both proliferation advantage and immune 
evasion in order to overcome efficient anti-EBV immune clearance mechanisms of 
antibody-mediated immunity (AMI) of antibody-dependent cell-mediated cytotoxicity 
(ADCC) as well as cell-mediated immunity (CMI) of cytotoxic T lymphocyte 
(CTL)-initiative cytotoxic apoptosis during either latent and/or regular EBV infection phases. 
  

In spite of being a latent infection in B cells, inhibition by a population of EBV-specific 
CTLs was observed.[7] Both in vitro and in vivo, these CTLs have been shown to have potent 
antiviral activity. Growing evidence revealed that cytotoxic T lymphocytes-based 
immunotherapy is effective in other EBV-linked malignancies, such as post-transplant 
lymphoproliferative disorders (PTLD). The success of this therapy has encouraged 
researchers to develop similar strategies for other EBV-positive tumors, such as NPC.  
 

1.1.3  Latent membrane protein 1 and 2 (LMP1/LMP2) 

Notably, NPC latent infection case expresses only limited EBV viral antigens with less 
immunogenicity including EBV-encoded nuclear antigen (EBNA1) and latent membrane 
protein 1 and 2 (LMP1 & LMP2) which is greatly unlike that regular EBV latent infection 
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case with expression of many EBV viral antigens in symptomatic EBV-related diseases.[8] 
Both LMP1 and LMP2 may serve potentially as better vaccine targets due to the poor 
processing efficiency over with EBNA antigen while in antigen-presenting cells (APC) as of 
the infected B lymphocytes according to literatures in murine models.[9]  
 

However, LMP1 and LMP2 are with main shortages both in strong oncogenicity and as 
well in weak immunogenicity by stringent class I major histocompatibility complex (MHC) 
presentation in the host cell of infected B lymphocytes in order for cytotoxic T lymphocyte 
(CTL) activations due to that as a result may shift balance towards flexible MHC-II 
presentation of infected B lymphocytes in order for T helper (Th) lymphocyte activations 
with subtle feedback network to enhance B lymphocyte proliferations towards aberrant 
tumorigenesis.[10] Specifically, the basic proliferation advantage is likely from encoding 
EBV latent infection membrane protein 1 (LMP1) with growth factor receptor-like activity 
and as well the critical immune evasion is likely from ethnic class I human leukocyte antigen 
(HLA1) difference with mutating EBV genome for poor immunogenicity responses at 
AMI-antigen epitopes and CMI-antigen epitopes/agretopes within LMP1/LMP2 and/or 
EBNA of EBV-encoded proteins.  

 

1.1.4  Epitope variability and agretope stability 

Epitope is a part of a protein antigen recognized by either a particular antibody molecule or a 
particular T-cell/B-cell receptor of the immune system.[12] On the other hand, agretope is 
histocompatibility complex (MHC) binding motif of a protein antigen.[13] Highly likely, the 
EBV-NPC immune evasion on ultimatum agretope mutant of CMI maybe the most crucial 
strategy for oncogenic negative selection against which the host immune system cannot 
counter-act efficiently as opposed to that epitope mutants of AMI and CMI in oncogenic cells 
maybe eventually removed with affinity maturations of B cell receptor (BCR) and T cell 
receptor (TCR) by means of hyper mutations with gene rearrangements during the long-term 
process of EBV-related NPC oncogenesis.  
 

1.1.5  Immune evasion 

Modulation of T-cell recognition is of crucial importance for EBV, because this herpesvirus 
resides intracellularly for most of its life cycle. During the latent and lytic phase of EBV 
infection, antigen presentation of host cell via MHC class I and class II is blocked by multiple 
EBV gene products. Detection of cells harboring latent and replicating EBV by CD8+ and 
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CD4+ T lymphocytes is thus prevented. These so-called immune-evasive maneuvers prevent 
the induction of programmed cell death and develop persistent infection and tumor growth 
eventually. The NPC immune evasion of agretope maybe exemplified with the prevalence 
difference on ethnic HLA1 spectrum along with EBV-LMP1 mutant assorts. The A*02:07 
(common in Taiwan population) shows higher prevalence of EBV-NPC than A*02:01 
(common in Caucasian population) while further with additional synergistic B*4601/B*14 
and extended haplotype HLA A*3303- B*5801/2- DRB1*0301- DQB1*0201/2- DPB1*0401.  

 

The EBV-NPC biopsies from Taiwan cases reveal variant NPC-related LMP1 (NLMP1) 
{GenBank: X66863} of immune evasion which shares high amino acid sequence homology 
prominently with prototype B95.8-LMP1 {GenBank: V01555} and CAO-LMP1 in China 
population. Importantly, NLMP1 over-expression in Balb/c class I major histocompatibility 
complex (MHC1)-context towards regressing experimental murine EBV-NPC may be 
resulted likely from regaining strong agretope presentation of NLMP1 in mice MHC1 context 
in disregard of selected immune evasion of original NLMP1 in tumor microenvironment of 
human HLA1 context that was with weak agretope binding in CMI antigen presentation and 
with immune suppression in local immune suppressive cells. The ethnic A*02:07 difference 
of genetic susceptibility to EBV-NPC may indicate that omega-shape NLMP1np in CMI 
antigen presentation is required for crucial docking onto A*02:07 pit while with overlooked 
under-side agretope of head-anchor and tail-anchor along with overstressed bulge-side 
epitope in order for inducing adequate immunogenicity presentation towards effective 
CMI-CTL induction.   

 

1.1.6  Cancer immunotherapy 

Despite recent treatment advances that have improved the quality of life of patients with 
nasopharyngeal cancer, local regional failure and distant metastasis still occur in many 
patients. Innovative therapies are therefore still under developed. Immunotherapy is an 
attractive therapeutic option. There are several advantages to make use of the immune system 
to fight cancer. First, the immune system has the natural ability to specifically identify and 
kill neoplastic cells while sparing normal tissue. Second, the immune system demonstrates 
potential to evolve with the cancer cells. Both humoral and cellular immune system involve 
with cells with a vast array of clonally distributed antigen receptors. The diversity of these 
receptors enables the immune system to recognize foreign and/or altered antigens and to 
discriminate self, or normal cells, from non-self, or cancerous cells.[11]  

The immunotherapeutic regime against EBV-NPC for instance may conveniently exploit 
various aspects including AMI-ADCC with vaccine peptides, CMI-CTL with DNA vaccines, 
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and microenvironment immune suppression with in vitro cell activation towards in vivo 
adoptive cell transfer. The current challenges except vaccine peptides still install obstacles 
including weak HLA1-binding agretope in host cell or dendritic cell, and specific delivery of 
DNA vaccine to host cells without damaging innocent bystander cells. Immunoinformatics is 
with remarkably high practical potential in feasible application of epitope/agretope binders 
onto AMI-BCR and CMI-HLA/TCR towards mining putative anchor modified agretope 
(Ama) and agretope complex enhancer (Ace) with reinforced binding affinity (BAff) of 
NLMP1 agretope and A*02:07 pit in order to likely improve NPC-CMI specifically while 
with low adverse cytotoxic effect due to non-specificity.  

In this study, we implement bio-mimicry peptide design algorithm (bmPDA) comprising 
peptide database construction of building blocks, peptide backbone modeling of building 
block candidates, and quality evaluation on predicted nona-peptide structures. Our bmPDA of 
structure-based immunoinformatic approach aims at designing EBV immunogenicity-related 
omega-shape NLMP1 nona-peptide (NLMP1np) structures. We apply in-house bmPDA-tool 
towards applications of predicting A*02:07-binding EBV-NLMP1np structures in order that 
the verification on putative epitope and agretope quality may be accomplished with 
outsourcing tools of NetCTL server and Molegro Virtual Docker (MVD) software. The BAff 
with designed omega-shape NLMP1np and LMP1np structures on docking both HLA pits of 
A*02:07 {PDB: 3OXS} and A*02:01 {PDB: 1BD2} may be evaluated with MDV tool 
towards mining putative Ama and Ace candidates among which may be identified in 
modified-anchor assorts and FDA-approval drugs based on stable BAff of NLMP1np 
agretope and A*02:07 pit in order to specifically improve NPC CMI yet likely with low 
adverse effect due to non-specificity.  

 

1.2  Specific Aims 

The aim of this thesis was to develop immunotherapy of NPC via CMI-epitopes and 
AMI-agretopes by structural immunoinformatic approach. By our bmPDA algorithm and 
fragment database construction, we hope to predict epitope structure correctly and finding out 
mimic backbone of specific peptide. And depending on accurate docking software, we hope 
to correctly predict binding affinity of antigen to MHC class I molecule (agretope), thus 
better vaccine design and adjuvant drug for immunotherapy will be achieved.  
 

1.3  Thesis Overview 

This dissertation is organized as follows. In Chapter 2, we introduce an algorithm for peptide 
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structure prediction. There are many methods developed for protein structure prediction, and 
this field is still in progress nowadays. However, there are relatively few methods for short 
sequence peptide structure prediction. In the immunoinformatic field, epitope is primarily the 
target of concern, which is consisted of about 8-12 amino acids. After prediction of peptide 
structure from sequence was done, we need to extract the structural information from 
predicted structures. Here we followed the concept of structure alphabet; we identified 22 
states of the structural alphabet that represent pattern profiles of the backbone fragments 
based on our block feature definition. 
 

In chapter 3, we proposed a method for peptide block assembly and developed an 
algorithm for peptide block modeling. Based on the peptide block assembly method and 
peptide structure observation, features of a block of 3 amino acids were defined. 
We developed a methodology to build QSAR models by using SVM. After prediction of 
peptide structure from sequence was done, we need to extract the structural information from 
predicted structures. With the concept of structure alphabet; we looked up 22 states of 
structural alphabet that represent backbone pattern profiles based on defined block feature 
definition. After the peptide model had been generated, it was converted to structural string 
specifically.[14] Combined with other physiochemical properties (amino acid symbol, 
hydropathy, polarity, side chain charge) of peptide blocks, the MHC binding affinity was 
predicted by SVM. 
 

In chapter 4, we develop a method called “bio-mimicry peptide design“. Follow the 
concept of inverse folding search; we develop an approach to find possible sequence 
combinations mimicking target structure. Evaluation on the structure similarity with target 
peptide, physiochemical property, and structure stability of predicted solutions were done for 
finding better potential candidates.  

 
In chapter 5, we applied the above structural immunoinformatic approaches for 

nasopharyngeal carcinoma (NPC) vaccine design. NPC is a common malignancy in southern 
China, Hong Kong, and south-east Asia countries including Taiwan, Singapore, Malaysia, 
Indonesia, and Vietnam. It is strongly associated with Epstein-Barr virus (EBV). 
Immunotherapy for NPC is currently focusing on the tumor-associated antigens called LMP1 
and LMP2. However, poor antigenecity of LMP1/LMP2 limited the efficacy of EBV vaccine 
in NPC immunotherapy. We predicted the structure of every possible epitopes of 
LMP1/LMP2 from sequence, docked them with MHC-I molecule, and compare the docking 
result with predicted antigenecity of LMP1/LMP2 from several epitope prediction servers. 
Epitopes with better performance of antigenecity were collected as candidates for polyepitope 
regimen. According to the preference observation on known epitopes, residues on specific 
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position of the candidate epitopes were modified to become epitopes with even better 
antigenecity. Agretope performance was evaluated by binding affinity prediction from 
docking with MHC receptor. We suggest epitopes with better performance on epitope and 
agretope to be candidates of polyepitope regimen on NPC immunotherapy.  

 
In chapter 6, we collected approved drugs from DrugBank. Virtual screening was done 

by docking with MHC receptor. Drugs with better binding affinity with MHC receptor were 
collected as possible candidate for adjuvant immunotherapy. Epitopes with better 
performance of antigenecity were collected by the same procedure in chapter 5. Epitope 
structure prediction was done by modeling method in chapter 2. MHC receptor and candidate 
drugs were docked with candidate epitopes. Drugs which could enhance the binding affinity 
between epitope and MHC receptor were identified. We suggest drugs with ACE (action 
complex enhancement) to be adjuvant immunotherapy for NPC. 

 
Finally, in chapter 7, we presented summary and future perspectives. 
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Chapter 2 Peptide Structure Indexing with Tri-mer 

Blocks and Structure Strings 

2.1  Introduction 

Description of 3D information of protein structures is the first step for structural 
bioinformatics. Protein structure is defined by four distinct levels: primary, secondary, tertiary, 
and quaternary structures. There are further description systems in each specific level. In this 
chapter, we develop a protein backbone description system based on features of 3mers 
peptide block. Fragment databases are constructed based on our method. Further simplified 
description system called “structural alphabets” was developed. Based on structural alphabet 
and other physiochemical properties of peptides, a structure-based epitope prediction was 
also achieved. 
 

2.1.1  Peptide structure features   

Description of local protein structures is essential for structural bioinformatics. Traditionally, 
protein backbone structures can be described by secondary structure such as α-helix, β-strand 
and coil. However, description of protein structures by only three states is oversimplified. 
There are some other definitions developed for describe protein structure. Different strategies 
had been used such as dihedral angle, backbone curvature and torsion. In this study, we 
develop a protein backbone description based on features of 3mers peptide block. 

 

2.1.2  Structure alphabet   

By clustering certain features of protein structures in a chosen number of states, we can 
define a prototype which is representative of the local structures in each cluster. These 
libraries of local structures prototypes are called “structural alphabets”.[15] They complement 
each other to form a ‘universal code’ of local conformations. There are several structural 
alphabets being developed by different methods such as cluster analysis, Kohonen maps and 
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Hidden Markov Models.[16] By encoding protein structure as 1D sequence, structural 
alphabets has been applied on many fields such as decoy generation, local structure 
prediction, structural comparison, alignments, and mining, structure reconstruction from Ca, 
and so on.[16]  

 

2.2  Method 

2.2.1  Defined structure features of tri-peptide building blocks 

Features of a 3mers block were defined as (1) theta angle: by Cα[-1]:Cα[0]:Cα[+1], (2) arm 
distances between Cα[-1]:Cα[0] and Cα[0]:Cα[+1], (3) Rotation angle and rotation axis of 
two planes formed respectively by Cα[-1]:N[-1]:C[-1] and Cα[+1]:N[+1]:C[+1] (Figure 2-1).  
 

 

2.2.2  Basic ideas of bio-mimicry peptide design algorithm (bmPDA) 

For manipulate the peptide blocks, an algorithm for peptide blocks assembly was developed. 
The basic principle is (1) make use of the actual existing structures as building blocks , (2) 
use 3mers as building blocks and one more residue at both end as conformational limiting 
constraint (3) replace the last residue of one block with the leading residue of another block. 
Under the above principles, bio-mimicry peptide design algorithm (bmPDA) was developed. 
Our implemented in-house bmPDA tool for modeling omega-shape nona-peptide structures 
of class I HLA pit structure comprises two sectors: preparation of tri-peptide building blocks 
and optimization of predicted candidate structures.  
 

Fig. 2-1 Tri-peptide building blocks with defined features of theta angle and arm distances [tA/aD] of 
middle aC[2~4] grouped into 22 clusters. 
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2.2.3  Construction of tri-peptide structure part (TPSP-5mer) library 

Based on the concept of assembled penta-peptide from fusing identical tail and head residues 
of serial tri-peptide candidates in realistic presence structures from protein data bank (PDB), 
we implemented bmPDA tool for preparing required tri-peptide structure part (TPSP) denoted 
as alpha carbon 2~4 (aC{2~4}) in order to show source templates of penta-peptide denoted as 
aC{1~5} which are entirely extracted from all available protein structure entries in RCSB 
PDB (www.pdb.org).  

The aC{1~5} penta-peptide library at 40GB data size extracted from all known PDB 
entries until 22 JAN, 2010 comprises 45,141,909 blocks with middle portion for preparing 
middle segment aC{2~4} TPSP database. In addition, the applied TPSP features of 
tri-alpha-carbon (3aC{-1~0~+1}) backbone are respectively annotated with convenient 
parameters including theta-angle and arm-distances {tA/aD} and rotation index of bilateral 
terminal residues.  

 

2.2.4  Construction of tri-peptide structure string (TPSS-3mer) database 

Following the concept of structure alphabet, we construct the tri-peptide structure string 
(TPSS-3mer) database with identified 22 cluster states of the structural alphabet that 
represent pattern profiles of tri-peptide backbone structures based on our building block 
feature definition including theta angle, edge distances, and rotation angles and distances. 
Having done with peptide structure prediction from peptide sequence, we convert all PDB 
entries into structural alphabet strings in order for backbone searching or extracting blocks 
from known PDB structure files (Table 2-1). 
 
The tri-peptides structure string (TPSS-3mer) database comprising putative 22 “structure 
alphabet” clusters is based on tA/aD values of respective aC{2~4} TPSP in order for 
comparing structure similarity among given TPSP sets. The statistical analysis is 
accomplished towards 22 k-mean clusters with about 223,050 tA/aD values of aC{2~4} 
TPSP from applied penta-peptide blocks extracted from 1,000 protein structures randomly 
selected from PDB. In that, the TPSS database of converted structure alphabet for entire PDB 
structure entries may take at less than 50 MB data size based on compact 22 tA/aD cluster 
values and may take 500MB data size with detailed annotation contents. The searching 
performance of structure similarity on given nona-peptide structure through TPSS database of 
entire PDB library may take less than 50 seconds with regular NoteBook PC for mining exact 
match TPSS candidate structures within overall penta-peptide blocks.  



 

11 
 

 

Reference epitope structures of omega-shape octa-peptides, nona-peptides, and 
deca-peptides extracted from PDB as reference templates are converted as TPSS structure 
sequences to become loose structure reference for inferring unknown structure epitopes 
towards loose structure similarity models in order for subsequent virtual docking with HLA1 
pit structure. The HLA1 pit structures of both A*02:07 { 3OXS} of Taiwan population and 
A*02:01 {1BD2} of Caucasian population are converted as spatial regression axis to assist 
the virtual docking with designed nona-peptide structure upon evaluation. Immune Epitope 
Database (IEDB) inferred position-specific preference on HLA1-binding nona-peptide at 
position {2nd; 9th} amino acids of agretope head-anchor and tail-anchor may indicate 
respective preference with strong agretope anchor {L/M; I/L/V} rather than with tolerated 
{I/Q/V; A/M}.    

 
Table 2-1 TPSS database of 22 clustering matrix assigned in English alphabet characters except 
[J,U,O,X] for structural string data conversion and illustrated with cluster distribution of percentage 
and instance number. 

Cluster  
symbol 

C alpha distance 
arm 1

C alpha distance 
arm 2

C alpha 
angle

Ca-N vector 
angle

plane rotation 
angle

Percentage 
(%) 

Instance 
Number

A 4.4187 4.4094 1.7115 2.1612 2.2219 3% 11998
B 3.8990 3.8913 1.5860 1.6774 1.8083 15% 59657
C 4.5855 4.4426 1.6357 0.7546 2.1371 2% 8779
D 3.8299 3.8295 2.0735 0.8649 1.0812 5% 20472
E 3.8967 3.8932 2.0996 1.6037 1.9411 3% 13310
F 4.0889 4.0638 1.6465 0.4079 1.5149 2% 8836
G 3.8370 3.8518 2.1091 1.0285 1.8692 4% 15751
H 4.3305 4.2964 1.6116 1.0598 1.2222 5% 17820
I 3.8564 3.8670 1.6132 1.8624 1.7653 15% 57255
K 3.8342 3.8502 2.2842 0.4272 2.0378 2% 8341
L 3.9041 3.9356 1.9001 0.5015 0.6959 5% 17972
M 3.9737 3.9763 2.3243 2.0920 1.4676 2% 8427
N 4.4889 4.5327 1.8651 2.1660 0.8041 2% 6727
P 3.8148 3.8132 2.2800 0.3220 1.3125 4% 14350
Q 4.1179 4.1199 1.6206 1.2939 1.8264 4% 13883
R 4.0264 3.9265 2.2301 2.3018 2.5706 2% 8121
S 3.8618 3.8670 2.1328 1.3833 1.2832 4% 17400
T 3.9361 3.9526 1.9107 0.3189 2.6691 2% 6858
V 3.7942 3.7953 2.1049 0.1378 0.2468 6% 23338
W 4.1290 4.1868 1.6202 1.6354 1.2376 5% 19498
Y 4.1302 4.1443 1.6750 2.1397 1.4272 3% 13065
Z 3.8116 3.812 2.2908 0.3062 0.6892 5% 19261

 

2.3  Result  

2.3.1  Penta-peptide (PDB-5mer) structure library   

The PDB-5mer Library at 40GB data size (data not shown) comprises 45,141,909 penta 
peptide blocks extracted from all known PDB entries until 22 JAN, 2010. The tri-peptide of 



 

12 
 

PDB-5mer mid blocks (shown in Figure 2-1) are annotated with theta angle and arm 
distances [tA/aD] of middle aC[2~4] segment backbone in each aC[1~5] building blocks.   
 

2.3.2  Structural alphabet   

The aC[2~4] block backbones are analyzed and constructed into tri-peptides structure string 
(TPSS) database with assigned “structure alphabet” characters for putative 22 clusters based 
on aC[2~4] tA/aD values. The clustering analysis is accomplished towards 22 k-mean 
clusters with about 223,050 PDB-5mer blocks extracted from randomly selected 1,000 PDB 
sequences (Table 2-2).   
 
Table 2-2 TPSS database implemented similarity distance matrix.  

  A B C D E F G H I K L M N P Q R S T V W Y Z
A 0 0.73 0.90 1.59 1.41 0.55 1.05 5.03 0.46 1.47 0.76 1.58 1.51 1.80 0.49 2.49 1.27 0.90 1.56 4.60 0.82 1.72
B 0.73 0 0.58 1.21 1.15 0.39 1.38 4.67 0.40 1.55 1.10 1.86 1.94 2.04 0.24 2.81 1.13 1.01 1.91 4.10 1.40 1.98
C 0.90 0.58 0 0.92 0.84 0.59 1.41 4.77 0.83 1.42 1.15 1.81 1.92 2.05 0.60 2.90 0.89 0.95 2.01 4.13 1.59 1.98
D 1.59 1.21 0.93 0 0.33 1.12 1.51 4.20 1.41 1.10 1.38 1.67 2.01 1.85 1.28 2.77 0.54 1.03 2.02 3.53 2.05 1.81
E 1.41 1.15 0.84 0.33 0 1.02 1.25 4.36 1.29 0.88 1.14 1.43 1.74 1.64 1.16 2.59 0.28 0.79 1.80 3.76 1.82 1.59
F 0.55 0.39 0.59 1.12 1.02 0 1.07 4.62 0.34 1.25 0.77 1.54 1.64 1.74 0.29 2.52 0.92 0.70 1.62 4.12 1.16 1.66
G 1.05 1.38 1.41 1.51 1.25 1.07 0 4.61 1.13 0.69 0.32 0.57 0.66 0.79 1.20 1.61 0.99 0.54 0.67 4.36 0.81 0.71
H 5.03 4.67 4.77 4.20 4.36 4.62 4.61 0 4.72 4.27 4.64 4.43 4.73 4.23 4.77 4.23 4.36 4.49 4.43 1.36 4.96 4.27
I 0.46 0.40 0.83 1.41 1.29 0.34 1.13 4.72 0 1.45 0.84 1.65 1.68 1.82 0.25 2.53 1.19 0.89 1.61 4.26 1.04 1.75
K 1.47 1.55 1.42 1.10 0.88 1.25 0.69 4.27 1.45 0 0.79 0.60 1.02 0.80 1.45 1.76 0.63 0.60 1.06 3.93 1.45 0.75
L 0.76 1.10 1.15 1.38 1.14 0.77 0.32 4.64 0.84 0.79 0 0.84 0.89 1.05 0.91 1.84 0.89 0.37 0.91 4.31 0.72 0.97
M 1.58 1.86 1.81 1.67 1.43 1.54 0.57 4.43 1.65 0.60 0.84 0 0.52 0.33 1.71 1.25 1.17 0.90 0.58 4.26 1.24 0.27
N 1.51 1.94 1.92 2.00 1.74 1.64 0.66 4.73 1.68 1.03 0.89 0.52 0 0.66 1.75 1.22 1.49 1.08 0.54 4.61 0.98 0.62
P 1.80 2.04 2.05 1.85 1.64 1.74 0.79 4.23 1.82 0.80 1.05 0.33 0.66 0 1.91 0.97 1.39 1.12 0.5 4.15 1.38 0.09
Q 0.49 0.24 0.60 1.28 1.16 0.29 1.20 4.77 0.25 1.45 0.91 1.71 1.75 1.91 0 2.67 1.1 0.88 1.74 4.25 1.18 1.84
R 2.49 2.81 2.90 2.77 2.59 2.52 1.61 4.23 2.53 1.76 1.84 1.25 1.22 0.97 2.67 0 2.34 2.01 0.98 4.45 1.83 1.03
S 1.27 1.13 0.89 0.54 0.28 0.92 0.99 4.36 1.19 0.63 0.89 1.17 1.49 1.39 1.10 2.34 0 0.55 1.54 3.85 1.60 1.34
T 0.90 1.01 0.95 1.03 0.79 0.7 0.54 4.49 0.89 0.60 0.37 0.90 1.08 1.12 0.88 2.01 0.55 0 1.12 4.09 1.07 1.05
V 1.56 1.91 2.01 2.02 1.80 1.62 0.67 4.43 1.62 1.06 0.91 0.58 0.54 0.50 1.74 0.98 1.54 1.12 0 4.38 0.99 0.46
W 4.60 4.10 4.13 3.53 3.76 4.12 4.36 1.36 4.26 3.93 4.31 4.26 4.61 4.15 4.25 4.45 3.85 4.09 4.38 0 4.75 4.17
Y 0.82 1.40 1.59 2.04 1.82 1.16 0.81 4.96 1.04 1.45 0.72 1.24 0.98 1.38 1.18 1.83 1.60 1.07 0.99 4.75 0 1.31
Z 1.72 1.98 1.98 1.81 1.59 1.66 0.71 4.27 1.75 0.75 0.97 0.27 0.62 0.09 1.84 1.03 1.34 1.05 0.46 4.17 1.31 0

 

 

2.3.3  Tri-peptide structure string (TPSS-3mer) database  

The TPSS database of converted structure alphabet for the entire PDB structure data entries 
may take at less than 50 MB data size based on compact 22 tA/aD cluster values and may 
take 500MB data size with detailed annotation contents. The searching performance on any 
given 9mer peptide structure thru the TPSS database of entire PDB library may take less than 
50 seconds with regular PC for mining TPSS-3mer exact match structures of overall 
PDB-5mer candidate blocks.  
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2.3.4  Application  

Based on the Penta-peptide (PDB-5mer) structure library, Tri-peptide structure string 
(TPSS-3mer) database, and structural alphabet, several tools were developed for 
manipulating protein blocks (Table 2-3). Combining these different tools, we can fulfill many 
structure-related tasks such as extract arbitrary protein blocks, search PDB for peptide blocks 
with similar backbone structure of specific peptide, replace some part of protein with other 
blocks, or even doing structure BLAST over PDB, like 3D-BLAST[14] does.  
 
Table 2-3 Tools implemented for manipulating protein blocks in the initial parts of bmPDA.  

No. Type Task Name of implemented tool 
1 extractor peptide sequence Protein block extractor (by peptide sequence) 
2 extractor structure string Protein block extractor (by structure string) 
3 searcher peptide sequence Search PDB by peptide sequence 
4 searcher structure string Search PDB by structure 
5 calculator superimpose RMSD Block superimpose and RMSD calculation 
6 aligner structure alignment Structure alignment of proteins 
7 merger block merging Protein block merging 

 

2.4  Discussion 

Knowledge of the 3D structure of proteins is important in clarifying their properties, behavior 
and almost all biological condition mediated by proteins, including protein-ligand and 
protein-protein interactions. It is also helpful in drug discovery and protein design.  

 
Comparing with the rapid increasing number of reported protein sequences, protein 

structure determination by experiment is far behind. Thus informational technology for 
protein structure prediction and manipulation are necessary.[17]  

 
Several structural alphabets system had been developed using different methods such as 

cluster analysis, Kohonen maps and Hidden Markov Models. After encoding protein structure 
into structure string, complicated 3D coordinate information is more easily manipulated for 
machine learning or other analysis. The potential of structural alphabets has been shown by 
application on decoy generation[18], local structure prediction[19-21], sequence-based 
structural comparison[22], combined sequence-structure alignments[23], 3D structure 
alignment[24], structure mining[25-29], structural reconstruction from Ca[30], fold 
classification[26], fold prediction[31], structure generation[32], de novo prediction[33, 34], 
de novo backbone design[35], and so on.[16]  
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Chapter 3 Peptide Structure Modeling with 

Backbone Quaternion-GA and Surface 

QSAR-SVR 

3.1  Introduction 

3D protein structures are critical for understanding biology at both molecular and system 
level. However, the speed of sequence publishing into databanks considerably exceeds that of 
structure determination despite the advances in experimental structural biology. Protein 
structure prediction has been a very challenging problem. There are two categories for protein 
structure prediction: Ab initio method and Knowledge based method. Knowledge based 
method can be further classified into comparative modeling, fold recognition and other new 
fold methods. Comparative modeling and fold recognition method are sometimes being 
called “template based modeling”.[36] In this study, we developed an algorithm for short 
peptide structure prediction. 
 

3.1.1  Quaternion (Q4) 

Quaternion method was introduced by Hamilton in the mid-nineteenth century as an 
extension of complex numbers and as a tool for manipulating 3-dimensional vectors.[37] 
Quaternion is a convenient tool for handling spatial rotation problems. It has compact 
representation of rotations, easy to maintain a quaternion’s unit normalization, and derive 
many important results concerning rotations in a simple coordinate-free way. Compare with 
other rotation methods, such as Euler axis system and rotation matrix, quaternion can avoid 
gimbal lock in Euler system, has less floating-point round-off errors than matrix, and 
normalizing a quaternion is computationally less expensive. It is widely used in 
three-dimensional computer graphics and computer vision.  
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3.1.2  Genetic algorithm (GA)  

Inspired from the principles of biological evolutionary theory, genetic algorithm is a 
stochastic computational model to solve optimization problems. GA model the natural 
phenomenon of genetic inheritance based on the principle of “survival of the fittest”. GA had 
been widely used to solve sequential decision process for function optimization, machine 
learning and general optimization problems.[38] 

 

3.1.3  Epitope and agretope prediction  

In the past, vaccine development depends on biochemical and immunological experiment, 
such as phage display library, overlapping peptides, ELISA, NMR, immunofluorescence, 
radioimmunoassay, Western blotting, immunohistochemistry, X-ray crystallography studies 
of antibody/antigen structure and attenuation of the wild type pathogens by random mutations 
and serial passages, which is very expensive, time-consuming, with low immunogenicity and 
reversible. Under the help of epitope prediction approach, we can narrow the spectrum of 
target proteins, and reduce the cost of wet experiments. 

The most predictable part of T cell epitope generation is peptide-MHC binding. MHC-I 
and MHC-II genes are highly polymorphic, and the most of their variable part are located in 
binding pockets that restrict peptide interactions to those with particular amino acids at 
characteristic positions.[39]  

There are four approaches being applied to predict epitopes: sequence-based methods, 
structure based methods, hybrid methods and consensus methods.[1] The majority of epitope 
prediction methods are currently data-driven sequence-based, and they are more reliable than 
structure-based methods. On the other hand, there are several advantages for structured-based 
methods. First, only a smaller dataset is necessary for training. Second, it can predict peptides 
for alleles that have not been extensively studied. Third, discontinuous epitopes are only 
possible to predict by structure-based method. Last, even sequence-based approaches depend 
on structure information to make reliable predictions. However, the development of 
structure-based approach is still greatly limited due to high computational cost, development 
complexity and scarcity of 3D protein structures.[1] 
 

3.1.4  Quantitative structure–activity relationship (QSAR) 

The quantitative structure–activity relationship (QSAR) model combines structure alphabet 
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string and physiochemical properties (amino acid symbol, hydropathy, polarity, and side 
chain charge) of predicted peptide structures. 

 

3.1.5  Support vector machine (SVM) / Support vector regression (SVR) 

Support vector machine (SVM) is a supervised learning method that can be applied on 
classification or regression. It was developed by Vapnik since 1963 based on the Structural 
Risk Minimization Principle. LibSVM is an group of software for support vector 
classification, (C-SVC, nu-SVC), regression (epsilon-SVR, nu-SVR) and distribution 
estimation (one-class SVM)[40].  
 
(A) 

 
(B) 

 

Fig. 3-1 Spatial rotation and aligned fusion with mined TPSS-3mer within similar PDB-5mer 
blocks. (A) rotation and shift for fusion at super-imposed tail-under-head residue thru 
Quaternion and GA; and (B) assembled penta-peptide extended with two tri-peptide building 
blocks. 
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3.2  Method 

3.2.1  Quaternion (Q4) spatial rotation and super-imposition shift to 

assemble peptide from TPSP-5mer building blocks 

For rotation of the blocks, we use Quaternion (Q4) calculation aiming at (1) avoiding gimbal 
lock in Euler system, (2) reducing floating-point round-off errors than matrix, and (3) 
normalizing a quaternion is computationally less expensive. For superimposing the identical 
amino acid residue, firstly we matched two residues by matching Cα atom, alignment was 
done with Cα-N vector, and then rotate with N-Cα-C plane matched (Figure 3-1A).  
 

For modeling of a peptide sequence, the sequence was firstly transformed to contig 
sequences based on overlapping amino acid subsequences, such as the KAV and VYN 
towards KAVYN sequence contig. For each contig sequences, candidate building blocks were 
identified by searching bmPDA 5mer building blocks database (PDB-5mers database) with 
the middle 3mers of the penta-pep matched with the contig sequence. Modeling was done 
with the building blocks assembled by our bmPDA tool (Figure 3-1B).  
 

3.2.2  Peptide modeling 

Epitope structure prediction was done by our modeling method of bmPDA-tool (Figure 3-2). 
Specifically, we mined aC[2~4] building blocks exemplified with KAV and VYN are 
assembled towards KAVYN contig based on superimposing [N\aC/C] co-plane of 
tail-under-head identical residues between two mined aC[2~4] consecutive blocks in which 
spatial rotation is accomplished by Quaternion-based approach along with simple spatial shift 
to avoid potential structural errors. All merged peptide combinations of bio-mimicry 
structures are evaluated either based on free energy of each conformation or based on 
structure similarity to reference structure in order for ranking optimal structures by Genetic 
Algorithm (GA) search strategy (Figure 3-2). [17,18,19] In that, the structure similarity 
between reference structure and bmPDA-tool predicted peptide structures are further verified 
with SuperPose in order to estimate root mean square deviation (RMSD). [20]  
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3.2.3  Structural mining on reference peptide TPSS-3mer conversion 

Following the concept of structural alphabet by Yang, based on our block feature definition, 
we identified 22 states of the structural alphabet that represent pattern profiles of the 
backbone fragments. After the peptide model had been generated, it was converted to 
structural string specifically (Figure 3-2). [14]  
 

3.2.4  Conformation evaluation and GA optimization 

The resulting decoy conformations are then evaluated according to free energy of each 
conformation or structure similarity to target structure. Optimal solution is found by Genetic 
algorithm (GA) search strategy. The similarity evaluation on merged structures with target 
structure is accomplished by checking physiochemical property, energy stability, docking 
fitness with counter-structures of target peptide (Figure 3-2). 
 

3.2.5  Structural QSAR descriptors and data encoding 

The QSAR descriptors comprise structure alphabet string and physiochemical properties 
(amino acid symbol, hydropathy, polarity, and side chain charge) of predicted peptide 
structures (Figure 3-2).  
 

 
Fig. 3-2 Work flow of epitope prediction by bio-mimicry peptide design algorithm (bmPDA) 
based on QSAR. 
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3.2.6  Support vector machine / regression (SVM / SVR) 

SVM was employed to predict the possibility of a sequence of 9 amino acids being an epitope 
of MHC-I. SVM is a supervised learning method developed by Vapnik in 1963 based on the 
Structural Risk Minimization Principle. [19,21,22] SVM had been applied widely in the field 
of computational biology and is a promising technique for data classification. SVR (support 
vector regression) is a version of SVM for regression (Figure 3-2). 

 
The applied LibSVM software is an integrated version on classification or regression 

software comprises support vector classification (C-SVC, nu-SVC), regression (epsilon-SVR, 
nu-SVR) and distribution estimation (one-class SVM). [40]  
 

3.2.7  Modeling omega-shape conformation on HLA1-binding nona-peptide 

structure  

In this study, our bmPDA tool aims at designing omega-shape nona-peptide structures with 
epitope-stemside bulge and agretope-rootside anchors from NLMP1np {X66863} and 
LMP1np {V01555} towards docking HLA1 pit structures of A*02:07 {3OXS} and A*02:01 
{1BD2}. Reference nona-peptide epitopes as of training dataset extracted from IEDB 
(www.immuneepitope.org) contains 3,886 A*02:01-binding epitopes of biological binding 
assay results. Our bmPDA tool models omega-shape nona-peptide epitope structure for 
docking HLA1 pit structure with both tri-peptide finding kernel (TFK) and geometric hashing 
kernel (GHK) respectively for mining and fusing TPSP and for filtering and fitting designed 
candidate structures.  

 

3.2.8  Mining and fusing tri-peptide structure parts into designed 

combinatorial nona-peptide structures         

To model nona-peptide epitope structures of NLMP1 and LMP1 with similar omega-shape 
backbone to reference epitope structure in TPSS format, the TFK module of bmPDA tool 
recursively mines the TPSP database for potential tri-peptide aC{2~4} building blocks 
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according the penta-peptide aC{1~5} sliding window of amino acid sequence within NLMP1 
and LMP1 genomes of EBV strain B95-8 in order for fusing into omega-shape nona-peptide 
structure. Exemplified with NLMP1np- 032/035: LLL-ALL FWL YIV structure with number 
032/035 indicating initial amino acid position, the bmPDA tool respectively mines all the 
aC{1~5} penta-peptide structure candidates of 034: LAL LF and 036: LLF WL according to 
structure similarity of reference epitope structures TPSS in order for retrieving and fusing all 
the aC{2~4} TPSP structure blocks of 035: AL(L) and 037: (L)FW into potential aC{1~5} 
structure combinations of 035: AL(L)FW. The indicated bmPDA design procedure of epitope 
structure on HLA1-binding nona-peptide may recursively process until completion of 
structure modeling covering all serial nona-peptide segments within NLMP1 and LMP1.  

For fusing the aC{2~4} TPSP blocks exemplified with 035: AL(L) candidates and 037: 
(L)FW candidates into potential aC{1~5} combinatorial structure candidates of NLMP1 035: 
AL(L)FW, our bmPDA tool applies quaternions (Q4) approach for spatial rotation and shift 
towards tail(L)-under-head(L) superimposition 035: AL(L)FW based on co-planar 
overlapping of {N\aC/C} amino acid plane with Q4-based spatial processing to avoid 
potential deadly error with Euler angles such as gimbal lock while loss of a degree of 
freedom during spatial rotation. Fused nona-peptide structures with every TPSP blocks in 
numerous combinatorial structure candidates onto converted TPSS format are evaluated 
either based on free energy of each designed structure or based on structure similarity to 
reference structure of omega-shape epitope templates in TPSS format in order for ranking 
optimal structures by genetic algorithm (GA) search strategy. Inspired with biological 
evolutionary principles, GA is a computational stochastic model to solve optimization 
problems.   

Specifically, our Q4-GA module of bmPDA tool evaluates structure similarity on 
respective combinations of merged nona-peptide structure based on collective IEDB 
omega-shape epitope templates in TPSS structure clusters which is accomplished by 
verifying parameters with GA search strategy upon physiochemical property, energy stability, 
and docking fitness according to backbone and surface structure of reference epitope 
templates. In that, the structure similarity between reference structure and predicted 
nona-peptide structures are further verified with Q4-GA based on SuperPose server in order 
to estimate root mean square deviation (RMSD). Thus, Q4-GA module of bmPDA tool 
complies with natural phenomenon of genetic inheritance based on “survival of fittest” 
principle which is widely applied in solving sequential decision process for function 
optimization, machine learning and general optimization problems.  

 

3.2.9  Filtering and fitting designed candidate structures into putative 
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omega-shape nona-peptide structures 

To evaluate nona-peptide epitope structures of NLMP1 and LMP1 with optimal omega-shape 
epitope structure with reference template in detailed TPSS format, the GHK module of 
bmPDA tool filters and fits selected cases of predicted nona-peptide structures in detailed 
TPSS format of quantitative structure–activity relationship (QSAR) model for support vector 
regression (SVR). The evaluation in all the predicted HLA1-binding nona-peptide structures 
of NLMP1 and LMP1 to A*02:07 and A*02:01 pit structures depends upon optimal 
omega-shape conformation with two agretope-rootside anchors at either end and as well one 
epitope-stemside bulge at middle segment.  

Based on the concept of “structure alphabet” in detailed TPSS conversion format, the 
QSAR-SVR module of bmPDA tool encodes QSAR descriptors of peptide surface properties 
of amino acids such as exposed surface, accessibility, flexibility, hydrophilicity, charge, and 
so forth towards binary clusters on structure similarity and/or binding affinity along with 
SVR evaluation according to the reference nona-peptide surface structure. The applied 
LibSVM software set as of a supervised learning method on classification or regression 
comprises support vector classification (C-SVC, nu-SVC), support vector regression 
(epsilon-SVR, nu-SVR) and distribution estimation of support vector machine (one-class 
SVM). Basically, Vapnik developed SVM in 1963 while based on the structural risk 
minimization principle.  

 
Table 3-1 Structural RMSD difference between bmPDA predicted structures and reference structures 
of HLA 0201 epitopes based on TPSS similarity distance matrix..  
Epitope Sequence  Complex PDB ID  Chain RMSD(superpose) 

ALWGFFPVL 1LP9 C 0.27 
ALWGFFPVL 1B0G C 0.35 
FAPGFFPYL 1I7R C 0.05 
GILGFVFTL 1B0R C 0.87 
GILGFVFTL 2VLR C 0.39 
GILGFVFTL 2VLK C 0.19 
GILGFVFTL 1HHI C 0.38 
GLMWLSYFV 3I6G C 2.52 
IISAVVGIL 1QR1 C 0.76 
ILKEPVHGV 1P7Q C 1.06 
ILKEPVHGV 1HHJ C 1.00 
ILSALVGIL 1EEZ C 1.55 
ILSALVGIV 1EEY C 2.73 
IMDQVPFSV 1TVH C 0.15 
ITDQVPFSV 1TVB C 0.15 
LLFGKPVYV 2GIT C 0.73 
LLFGKPVYV 2GJ6 C 1.06 
LLFGYAVYV 1QRN C 0.13 
LLFGYPRYV 1QSE C 0.16 
LLFGYPVAV 1QSF C 0.18 
LLFGYPVYV 1AO7 C 0.15 
NLVPMVAAV 3GSW P 2.25 
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NLVPMVATV 3GSO P 0.30 
NLVPMVAVV 3GSX P 0.83 
NLVPQVATV 3GSV P 0.54 
NLVPSVATV 3GSQ P 0.96 
NLVPTVATV 3GSU P 0.67 
NLVPVVATV 3GSR P 0.89 
RQASLSISV 3BGM C 2.20 
SLLMWITQA 1S9X C 0.92 
SLLMWITQC 2F53 C 0.58 
SLLMWITQS 1S9Y C 0.90 
TLTSCNTSV 1HHG C 1.12 
VLHDDLLEA 3FT3 P 0.70 
Average   0.814412 

 

3.3  Result and Dataset 

3.3.1  Epitope structure prediction by bmPDA 

Epitopes with known structure of HLA A*0201 were collected from IEDB (Immune Epitope 
Database) and PDB databases. Peptide structures predicted by bmPDA were compared with 
the actual structures from PDB. Alignment was done by Superpose and RMSD score was 
calculated. Table 3-1 shows the comparison results from SuperPose.[41] An alignment 
example was illustrated in Figure 3-3. 
 

 
Figure 3-3 Illustrated comparison of SuperPose alignment between bmPDA predicted structure and 
reference structure.   
 

Peptide structures predicted by Pepstr were also compared with the actual structures 
from PDB (Table 3-2). Alignment was done by Superpose and RMSD score was calculated. 
 
Table 3-2 Structural RMSD difference between Pepstr predicted structures and reference structures of 
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HLA 0201 epitopes.   
Epitope Sequence  Complex PDB ID  Chain RMSD 

ALWGFFPVL 1LP9 C 3.01 
FAPGFFPYL 1I7R C 5.97 
GILGFVFTL 1B0R C 4.35 
GILGFVFTL 2VLR C 4.81 
GLMWLSYFV 3I6G C 3.29 
IISAVVGIL 1QR1 C 5.20 
ILKEPVHGV 1P7Q C 3.02 
ILKEPVHGV 1HHJ C 3.14 
ILSALVGIL 1EEZ C 5.23 
ILSALVGIV 1EEY C 6.06 
IMDQVPFSV 1TVH C 5.37 
ITDQVPFSV 1TVB C 3.60 
LLFGKPVYV 2GIT C 5.45 
LLFGKPVYV 2GJ6 C 5.66 
LLFGYAVYV 1QRN C 4.37 
LLFGYPRYV 1QSE C 5.83 
LLFGYPVAV 1QSF C 6.08 
LLFGYPVYV 1AO7 C 2.26 
Average   4.594444 

 
 

 
Figure 3-4 Illustrated comparison of SuperPose alignment between Pepstr predicted structure and 
reference structure.   

 
The RMSD between structure predicted by bmPDA and actual structure was 0.81 (Table 

3-1). The RMSD between structure predicted by Pepstr and actual structure was 4.59(Table 
3-2). The performance of bmPDA is better than Pepstr (Figures 3-3 & 3-4). 
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3.3.2  Prediction efficiency of bmPDA on HLA1-binding omega-shape 

nona-peptide structures 

We extract MHC-I HLA binding data from IEDB (Immune Epitope Database) as our training 
dataset.[42] It contains 3886 binding assay results about HLA-A*0201. The ROC analysis 
results are shown in Figures 3-5, 3-6, and 3-7. The difference between our QSAR-SVR 
model and NetCTL is shown in Table 3-3. Compared with other current epitope prediction 
NetCTL servers which ROC curves shown in Figures 3-8, the performance of our 
QSAR-SVR is statistically no difference with NetCTL (P>0.05).  
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Fig. 3-5 Epitope prediction efficiency of bmPDA QSAR-SVR measured with ROC curve. 
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Fig. 3-6 Epitope prediction efficiency of NetCTL server measured with ROC curve. 
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Fig. 3-7 Pairwise comparison on epitope prediction efficiency with ROC curves of bmPDA 
QSAR-SVR and NetCTL server. 
 
 
Table 3-3 Summary of pairwise comparison on epitope prediction efficiency with ROC curves of 
bmPDA QSAR-SVR and NetCTL server. 
 Area under curve Standard Error 95% Confidence Interval 
 AUC SE 

a,c
 95% CI 

b
  

bmPDA QSAR_SVR  0.924 0.00461 0.915 to 0.932 
NetCTL server  0.932 0.00436 0.923 to 0.940 
Difference of pairwise AUC 0.00804 0.00453 -0.000839 to 0.0169 
z statistic  1.775   
Significance level P = 0.076   
a Hanley & McNeil, 1982 
b Binomial exact 
c Hanley & McNeil, 1983 
 
 

 
Fig. 3-8 Collective comparison on epitope prediction efficiency among five ROC curves of 
various web servers based on 41 A3 restricted epitope-protein pairs from the HIV dataset. [43]   
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The prediction efficiency of bmPDA QSAR-SVR tool and NetCTL server is respectively 
measured with statistical receiver operating characteristic (ROC) curves based on 3,886 
A*02:01-binding assay results from IEDB as of the training dataset. The {bmPDA, NetCTL} 
pairwise comparison of ROC curves with pairwise values of sensitivity {90.3, 86.6}, 
specificity {80.0, 86.8}, criterion {> 0.4368, > 0.6330}, AUC {0.924, 0.932} of area under 
curve, SE {0.00461, 0.00436} of standard error, and 95% CI {0.915~ 0.932, 0.923~ 0.940} 
of 95% confidence interval as well as with pairwise difference value of AUC: 0.00804, SE: 
0.00453, and 95% CI: (-0.000839~ 0.0169) in order for inferring without pairwise 
performance difference between bmPDA and NetCTL based on resulted significance level in 
P value at 0.076 and z statistic value at 1.775, . 

 

3.4  Discussion 

There are four major categories for the method of epitope prediction: sequence-based 
methods, structure based methods, hybrid methods and consensus methods.[1] The majority 
of epitope prediction methods are currently data-driven sequence-based, and they are more 
reliable than structure-based methods. However, there are several advantages for 
structured-based methods. First, only a smaller dataset is necessary for training. Second, it 
can predict peptides for alleles that have not been extensively studied. Third, discontinuous 
epitopes is only possible to predict by structure-based method. Last, even sequence-based 
approaches depend on structure information to make reliable predictions. However, the 
development of structure-based approach is still greatly limited due to high computational 
cost, development complexity and scarcity of 3D protein structures.[1] 
 

In this study, we developed a method to predict MHC-I binding based on SVM. The 
prediction accuracy by ROC analysis is comparative as the best sequence-based method. In 
our method, relative small training set was employed, while other sequence-based method 
usually based on a huge data-mining process. However, the time-consuming peptide 
modeling process was the rate-determine step in our method. Because the relatively low 
demand for training dataset, our method may apply to other field such as MHC-II epitope 
prediction, IgE epitope prediction, etc.  

 
The prediction efficiency of bmPDA with pairwise ROC comparison to NetCTL may 

suggest the compatible performance as outstanding discriminators in which our bmPDA may 
show slightly better sensitivity yet with slightly compromised specificity. In extension to 
NetCTL server capabilities, our bmPDA tool of structural prediction on omega-shape 
nona-peptide conformation and BAff value may offer appropriate power to assay simulated 
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binding onto HLA1 pit among nona-peptide candidates without public known structure 
information. Likely, our bmPDA tool may act as an extension tool for mining HLA1-binding 
peptides within NetCTL server related collaborative style despite that NetCTL server has 
established best performance efficiency with ROC analysis while among same category 
servers in efficiency order including MHC-pathway, EpiJen and MAPPP, and WAPP servers.  
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Chapter 4 Bio-mimicry Peptide Design on Reference 

Peptide Structure Modeling 

4.1  Introduction 

To design bio-mimicry peptide at functional portion of bioactive protein is an important 
bioinformatic task towards intended clinical applications with either agonistic or antagonistic 
activities. Traditional algorithms compare object surface structure at free rotations which may 
cause great time complexities through mining many putative structures that may not even 
exist. Instead, we develop a mining approach in this study based on existing known PDB 
peptide structures.  
 

4.2  Method 

The peptide structure generator software (Figure 4-1) is based on our implemented bmPDA 
tool of conformational anchor spacer hinge (CASH) algorithm in which bmPDA tool 
penta-pep (penta peptides, 5mer) database of is constructed from retracing segmental 5mer 
structures of all current PDB (protein data bank) entries as of basic building blocks of 
bmPDA tool database. Further, the segmental backbone angle of 5mer building blocks is 
exemplified with the aC[3] (alpha carbon 3rd) angle towards neighboring aC[2] and aC[4] as 
of the middle 3mer in each 5mer building blocks. 
 

With reference 12mer oligo peptide for finding candidate peptides with mimicking 
structure of different sequences, the serial penta peptides from reference oligo peptide are 
generated for calculating the described aC[3] angle. Importantly, both frontal and coda aC[3] 
angle are respectively replaced with aC[2] angle and aC[4] angle. All aC[n] angles of 
reference penta peptides are applied for searching bmPDA 5mer building blocks with similar 
aC[n] angle of backbone yet with different amino acid sequence. The resulted bmPDA 5mer 
building blocks with serially similar aC[n] angles to reference penta peptides are accordingly 
assembled to form contig sequences based on overlapping amino acid subsequences, such as 
the KAV and VYN towards KAVYN sequence contig.  
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For forming structural contig based on sequence contig, the identified bmPDA 5mer 

building blocks within different coordination systems are unified into identical coordination 
system by means of shift and rotation as of Quaternion system yet with no rescaling due to 
constant atom distances. The exemplified KAVYN merge from the described KAV and VYN 
with most similar backbone structure with reference oligo peptide is accomplished on 
superimposing both amino acids of both KAV and VYN efficiently by means of matching at 
3 points including N[n], aC[n], and C[n].  
 

Towards mimicking structure of bmPDA structural contig versus reference peptide based 
on similar backbone structure, the distance between side chain and backbone aC[n] as of 
conformational index is subsequently applied for mining best contig structures. The similarity 
evaluation on merged structures with reference structure is accomplished by checking 
physiochemical property, energy stability, docking fitness with counter-structures of reference 
peptide.   
 

The overall workflow of bio-mimicry peptide design algorithm is shown in Figure 4-1. 
 

 

Fig. 4-1 Workflow of bio-mimicry peptide design algorithm (bmPDA). 

 

4.3  Result 

The implemented in-house bio-mimicry peptide design algorithm tool (bmPDA-tool) 
comprises three sections including constructed peptide building blocks database, assembled 
peptide model of building block candidates, and predicted peptide model of functional 
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peptides.  
 

4.3.1  Bio-mimicry peptide structure design: Reference vasopressin 

Part of Bio-mimicry prediction results of vasopressin (Figures 4-2) is listed in Table 4-1. 
Illustrations of the structure of better solutions from bmPDA-prediction are shown in Figures 
4-3 and 4-4. The backbone distance of Solution no. 12 (KGN-SVL-AIP) is 1.736.  

The backbone distance of Solution no. 12 (KGN-SVL-AIP) is 1.736. The backbone 
distance of Solution no. 37 (DGN-SVL-ADS) is 2.300. The structure of solution no. 36 
(DGN-SVL-AIP) and no. 279 (SEA-SKQ-TAA) are also shown in Figures 4-5 and 4-6.  
 
Table 4-1 Bio-mimicry peptide sequences of bmPDA designed vasopressin structure sorted in 
backbone distance order along with appropriate peptide values of Morris class and G-factor.   

Solution no. Structure Sequence Backbone Distance Morris class G-factors 
@289 CYF-QNC-PRG 0 2  3  1 0.17 

3 GEA-SGS-SQV 1.723 4  1  1 0.08 
* 12 KGN-SVL-AIP 1.736 1  1  1 0.24 

13 KGN-SVL-ADS 1.755 1  1  1 0.23 
221 WKG-RTW-EPA 1.852 1  3  1 -0.19 
278 SEA-SGS-SQV 2.148 4  1  1 0.12 
272 SEA-SGS-STP 2.233 4  1  1 -0.10 
* 37 DGN-SVL-ADS 2.300 1  1  1 0.13 

36 DGN-SVL-AIP 2.306 1  1  1 0.13 
 
 

 
Fig. 4-2 Actual reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG in bar. 
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Fig. 4-3 Bio-mimicry reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG 
with selected bmPDA designed solution number 12 in ball-stick format aligned with Vasopressin 
overall structure in bar. 

Fig. 4-4 Bio-mimicry reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG 
with selected bmPDA designed solution number 37 in ball-stick format aligned with Vasopressin 
overall structure in bar. 

Fig. 4-5 Bio-mimicry reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG 
with selected bmPDA designed solution number 36 in ball-stick format. 
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Fig. 4-6 Bio-mimicry reference peptide structure of vasopressin 9-mer [1YF4] CYF-QNC-PRG 
with selected bmPDA designed solution number 279 in ball-stick format. 

 

4.3.2  Antibody vaccine peptide design: TMB-355 bio-mimicry epitope 

TMB-355 is a monoclonal antibody for treatment of HIV. Structure of light chain of 
TMB-355 is shown in Figure 4-7 and 4-8. Part of Bio-mimicry prediction results of Fab 
region of TMB-355 is listed in Table 4-2. Actual reference peptide structure of TMB-355 
light chain (QYY-SYR-TFG-GGT) is shown in Figure 4-9. The bmPDA-predicted peptide 
structure of solution no. 2765 (YIGSGKKTAGAG) and no. 957 (QIGSGKKASG) are shown 
in Figures 4-10 and 4-11. 
 

 
Fig. 4-7 Actual reference peptide structure of TMB-355 light-chain in bar. 
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Fig. 4-8 Actual reference peptide structure of TMB-355 light-chain with green dots indicating 
the target structure at hypervariable region. 
 
 
 
Table 4-2 Bio-mimicry peptide sequences of bmPDA designed structure solutions of TMB-355 
light chain Fab region [QYY-SYR-TFG-GGT] sorted in backbone distance order along with 
appropriate peptide values of Morris class and G-factor. 

Solution no. Structure Sequence Backbone Distance Morris class G-factors 
3053 YSERQLTTFGDK 2.7311 3  1  4 -0.05 
3692 ESEKLKYKVLAS 2.7845 2  2  4 0.05 
3384 DSERQLTTFGDK 2.8166 3  1  1 -0.01 
3794 HPAAGVADGSRR 3.1078 3  2  3 -0.02 
3680 CNYTDKKPVLRS 3.3344 3  4  1 -0.22 
3681 CNYTDKKPVLRT 3.3522 3  4  1 -0.20 
3712 QNGTVLEGPTTG 3.4233 2  2  4 -0.19 
2765 YIGSGKKTAGAG 3.4457 2  1  1 0.12 
2511 VNTVLNGGIRKI 3.4905 4  1  1 -0.10 

 
 

 

Fig. 4-9 Actual reference peptide structure of the target structure at TMB-355 light chain 
hypervariable region as shown in Figure 4-8 in green dots. 
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Fig. 4-10 Bio-mimicry target peptide structure of TMB-355 light chain Fab region with bmPDA 
designed structure of solution number 2765 in ball-stick format aligned with overall Fab 
structure in bar. 
 
 
 

 
Fig. 4-11 Bio-mimicry target peptide structure of TMB-355 light chain Fab region with bmPDA 
designed structure of solution number 957 in ball-stick format aligned with overall Fab 
structure in bar. 
 

4.4  Discussion 

Based on our approach, we can perform an inverse folding search on bioactive peptides. 
Toward peptide backbone alignment, accompanied with physiochemical properties of 
residues, we can search bio-mimicry peptides more efficiently and accurately.  
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Chapter 5 Vaccine Peptide Evaluating towards 

Epitope and/or Agretope Plastic Modeling 

5.1  Introduction  

Nasopharyngeal carcinoma (NPC) is a squamous cell carcinoma that occurs on the epithelium 
of the nasopharynx.[2] It is a common malignancy in southern China, Hong Kong, and 
south-east Asia countries including Taiwan, Singapore, Malaysia, Indonesia, and Vietnam.[3] 
Genetic susceptibility, environment factors, and Epstein-Barr virus (EBV) are thought to play 
roles in the development of NPC. 
 

The treatment nowadays is based on radiotherapy and concurrent chemoradiotherapy. In 
spite of improvement of treatment outcomes, local regional failure and distant metastasis still 
occur in many patients.[3] Moreover, acute side effects and long-term sequelae including 
secondary malignancy are often accompanied with radiation and chemotherapy. Therefore, 
novel approaches aiming to improve outcome and reduce the need for conventional cytotoxic 
therapies are under developed.  
 

Eradication of local regional microscopic and micrometastatic disease with associated 
minimal toxicity to surrounding normal cells is one of the goals of adjuvant cancer 
therapy.[11] Immunotherapy is therefore an attractive option. However, the major obstacle of 
immunotherapy to cancer is absence of suitable molecularly characterized tumor antigens.[44] 
Before the human tumor-associated antigens (TAA) were identified, immunotherapists were 
forced to use undefined tumor antigens derived from tumor cell lines, tissues or their 
corresponding lysates.[11] With the identification of a large series of TAAs and advancement 
of molecular genetics, antigen-specific immunotherapy became possible in these years. The 
main advantage of antigen-specific immunotherapy is the capability to evaluate and monitor 
immune responses to targeted antigens and correlate these findings with clinical 
responses.[11] 
 

EBV is a member of the herpesvirus family.[4] It has a double-stranded DNA genome of 
184-kb pairs in length, encoding nearly 100 proteins.[5] It was the first virus to be associated 
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to human cancer. EBV attack B-lymphocyte as primary target, resulting in lifelong 
infection.[5] In spite of being a latent infection in B cells, inhibition by a population of 
EBV-specific cytotoxic T lymphocytes (CTLs) was observed.[7] Both in vitro and in vivo, 
these CTLs have been shown to have potent antiviral activity.  
 

There are many viral antigens being expressed during EBV latent infection. Unlike other 
EBV-associated diseases, NPC expresses only some less immunogenic viral antigens, 
including EBNA1, LMP1, and LMP2.[8] According to literatures, EBNA antigens are poorly 
processed by antigen-presenting cells, so LMP1 and LMP2 are better potential targets.[9] 
However, according to assays about these sequences, LMP1/LMP2 is not only highly 
oncogenic but also seems to be poorly immunogenic in murine models.[10] Vaccination or 
immunotherapy based on full-length LMP1 is therefore not recommended, and polyepitope 
vaccine based on multiple immunogenic epitope is a preferred strategy. Fortunately, based 
upon the virus isolations from different geographic regions of the world, sequence analysis 
revealed that most of these epitopes are highly conserved and are efficiently recognized by 
individuals of diverse ethnic origin.[9] By using polyepitope vaccine comprising HLA class 
I-restricted CTL epitopes from LMP1 and LMP2, some studies makes promising progress in 
controlling tumor growth in animal model.[10, 45]However, the epitopes being used in 
previous studies were restricted in a relatively narrow spectrum of HLA class I alleles. 
Although HLA A2 is one of the most common HLA class I alleles, other HLA class I alleles 
prevalent in NPC endemic regions of the world (HLA A11, A24, B27, and B57) should also 
be included in LMP-based polyepitope vaccine design.[10]  

 
In this study, we reviewed the epitopes being used in previous studies and compared 

with the prediction result of bioinformatic approach, and try to make additional suggestion 
about other potential epitopes which can be helpful for NPC vaccine design. 
 

All nucleated cells present a selection of the peptides contained in their proteins on the 
cell surface in complex with MHC-I. Cytotoxic T lymphocytes (CTL) can then differentiate 
between healthy cells and infected cells. However, there are only a small fraction of the 
peptides in a pathogen proteome being able to induce a CTL response. This is primarily due 
to the selection process in the antigen-processing steps preceding the CTL response. There is 
only 1 out of 2000 potential peptides will be immunodominant for each MHC-I allele.[46] 

 
Generation of peptides from their precursor polypeptides is necessary for the induction 

of a CTL response. Proteasome is the major cytosolic protease associated with the generation 
of antigenic peptides. After proteasomal cleavage the peptides may be trimmed at the 
N-terminal end by other peptidases in the cytosol. The next step is transporting of the 
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peptides from the cytosol to the interior of the ER. Binding of the peptides to TAP can 
facilitate the transportation.  

 
Further N-terminal trimming of the peptides then proceeds inside the ER, and binding of 

some of the peptides to MHC-I is also done. The MHC-I:peptide complex is then transported 
to the surface of the cell, where it may be recognized by CTL. Binding to MHC-I is the most 
restrictive step in antigen presentation. Estimation for the selectivity showed that about only 1 
out of 200 peptides will bind a given MHC-I allele with sufficient strength to elicit a CTL 
response. However, the proteasomal cleavage and the TAP transport efficiency play some 
roles.[46] 

 
The most predictable part of T cell epitope generation is peptide-MHC binding. MHC-I 

and MHC-II genes are highly polymorphic, and the most of their variable part are located in 
binding pockets that restrict peptide interactions to those with particular amino acids at 
characteristic positions.[39] 

 
In the past, vaccine development depends on biochemical and immunological 

experiment, such as phage display library, overlapping peptides, ELISA, NMR, 
immunofluorescence, radioimmunoassay, Western blotting, immunohistochemistry, X-ray 
crystallography studies of antibody/antigen structure and attenuation of the wild type 
pathogens by random mutations and serial passages, which is very expensive, 
time-consuming, with low immunogenicity and reversible.[1] Under the help of epitope 
prediction approach, we can narrow the spectrum of target proteins, and reduce the cost of 
wet experiments.  

 
    There are four approaches being applied to predict epitopes: sequence-based methods, 
structure based methods, hybrid methods and consensus methods.[1] The majority of epitope 
prediction methods are currently data-driven sequence-based, and they are more reliable than 
structure- based methods. On the other hand, there are several advantages for 
structured-based methods. First, only a smaller dataset is necessary for training. Second, it 
can predict peptides for alleles that have not been extensively studied. Third, discontinuous 
epitopes is only possible to predict by structure-based method. Last, even sequence-based 
approaches depend on structure information to make reliable predictions. However, the 
development of structure-based approach is still greatly limited due to high computational 
cost, development complexity and scarcity of 3D protein structures.[1] 
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5.2  Method 

There are many viral antigens being expressed during EBV latent infection. Unlike other 
EBV-associated diseases, NPC expresses only some less immunogenic viral antigens, 
including EBNA1, LMP1, and LMP2. According to literatures, EBNA antigens are poorly 
processed and presented by antigen-presenting cells, so LMP1 and LMP2 are better potential 
targets. Cytotoxic T lymphocytes have been thought to play the key role in the generation of 
antitumor therapeutic effects, so we focus on the antigenecity of CTL.  
 

5.2.1  Collections of protein sequences and structures 

Protein sequence of EBV LMP1 and LMP2 were collected from National Centre for 
Biotechnology Institute (NCBI) database. Prevalent HLA class I locus of the southern Han 
Chinese population are A2, A11, A24, A33, B13, B15, B38, B40, B46, B58, C1, C3, C7, and 
C8. Structure files of MHC class I molecules were collected from PDB. 
 

5.2.2  Modeling of predicted epitopes 

The models of each predicted epitope were done by our peptide modeling method described 
in chapter 2. Instability and Ramachandran Plot Analysis were done by Pro-Check program.   
 

5.2.3  NetCTL 

NetCTL is a server who integrates predictions of proteasomal cleavage, transporter associated 
with antigen processing (TAP) transport efficiency, and MHC-I binding affinity into a MHC-I 
pathway likelihood score. All MHC-I molecules predictions were done by the NetCTL with 
known protein sequence and predictions for 8-, 9-,10-, and 11-mer peptides were also 
achieved. Optimization was done to achieve high specificity in order to maintain a low false 
positive rate. 
 
The web-based NetCTL tool models human CTL epitopes in any given protein by integrating 
predictions of proteasomal cleavage, TAP transport efficiency, and MHC1-binding affinity. In 
addition, the web-based SYFPEITHI tool evaluates human CTL epitopes by the scoring 
system on given epitope peptide at individual amino acids respectively assigns arbitrary 
positive value within {+1, +15} range based on the preference scale from minimal to optimal 
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despite that the position-specific dislike of amino acids may be assigned with arbitrary 
negative value within {-1, -15} range. The arbitrary values are allocated on frequency of 
respective amino acid in natural ligands, T-cell epitopes, or binding peptides.  

With bmPDA tool of TPSS and QSAR-SVR in addition to NetCTL server on integrated 
antigenecity score, the respective epitope prediction efficiency of NLMP1 and LMP1 is 
tested with statistical approach of receiver operating characteristic (ROC) curve for 
determining the discrimination power with respective efficiency based on derived values of 
area under curve (AUC), sensitivity, specificity, and criterion along with pairwise difference 
of prediction performance based on derived significance level in P value.  

 

5.2.4  Residue Preference of Epitope 

Based on the concept of each MHC molecule potentially presents a distinct set of antigenic 
peptides to the immune system, effort had been made to predict binding motif of different 
MHC alleles. Preferred residue of HLA-A*02:01 (from IEDB) on specific positions is shown 
in Figure 5-1. With hypothesized immune evasion at weak viral agretope anchors, our 
bmPDA tool selects putative NLMP1 nona-peptide structures with weak BAff on docking 
A*02:07 pit while compared with A*02:01 in order for evaluating BAff improvement on 
Ama candidates towards making in vitro DNA vaccine.  
 

The anchor plastics strategy for Ama candidate is based on inferred preference as of 
A*02:01 case at respective positions {2nd; 9th} of nona-peptide with strong anchor {L/M; 
I/L/V} rather than with tolerated anchor {I/Q/V; A/M} in addition to an extra preference at 
position {3rd} with {D/P} as with A*02:07 case only.  

 
Preferred F Y Position FM W  W Y  FW  C-terminal 
Position 1 2 3 4 5 6 7 8 9 

Deleterious DEP Anchor EKR   KR GKR  Anchor 
          
  Preferred 

LM 
      Preferred 

ILV 
          
  Tolerated 

IQV 
      Tolerated 

AM 

Fig. 5-1 Reference HLA-A*02:01 binding nona-peptides with anchor residue preferences in 
respective agretopes from experiment verified IEDB data in part showing high consistency with 
bmPDA identified LMP1 agretope candidates exemplified with VMSD in order for serving as 
strong agretope substitution into weak agretope segment while attached with strong 
immunogenic epitope segment. 
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5.2.5  Molecular Docking 

The interactions between the predicted peptide models and MHC-I are evaluated by Molegro 
Virtual Docker (MVD). [47] Center of MHC-I groove is identified as potential docking site to 
achieve more accurate docking result. In MVD, a heuristic search algorithm named MolDock 
is used for accurate molecular docking. For further docking accuracy improvement, a 
re-ranking scoring function is then introduced. They are useful for evaluation between 
different poses of the same ligand. However, the MolDock and rerank score in MVD are not 
expressed in chemically relevant units. For comparison between multiple ligands, we use a 
regression model for binding affinity estimation. Followed by ‘Tabu clustering’, more 
favorable binding result is achieved in an efficient way.[48] 
 

Optimized NLMP1np {X66863} and LMP1np {V01555} structures towards docking 
A*02:07 {3OXS} and A*02:01 {1BD2} pits are evaluated with regression model of Molegro 
Virtual Docker (MVD) on docking free energy as of binding affinity (BAff) with Tabu 
clustering score in order to avoid sub-optima and local optima along with NetCTL and 
SYFPEITHI web-servers on putative CMI antigenecity with appropriate serve scores.  
 

5.3  Result 

5.3.1  Putative omega-shape nona-peptide structure predicted with TPSP 

library and TPSS database    

The optimal omega-shape conformation of NLMP1np structure is mined from massive 
combinatorial candidates in which are modeled with TPSP candidates through computation 
process with both bmPDA modules of Q4-GA and QSAR-SVR towards the similar structure 
of positive reference templates extracted from PDB dataset. Epitope prediction results from 
NetCTL for LMP1 were plotted in Figure 5-2. Epitope prediction results from SYFPEITHI 
for LMP1 were listed in Figure 5-3. Better epitopes of LMP1 is listed in Table 5-1. The 
predictions were compatible with experiment data from IEDB (Figure 5-4). 
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Fig. 5-2 Overall LMP1 epitope antigenecity of bmPDA predicted peptide structures analyzed by 
NetCTL antigenecity score server towards HLA A*0201. 
 
 

 
Fig. 5-3 Overall LMP1 epitope antigenecity of bmPDA predicted peptide structures analyzed by 
SYFPEITHI antigenecity score server towards HLA A*0201. 
 
 
Table 5-1 Top ranking epitope segments of LMP1 selected by NetCTL and SYFPEITHI towards HLA 
A*0201 with MVD binding affinity attached.   

number sequence MVD binding affinity NetCTL SYFPEITHI 
125 YLLEMLWRL -13.3300 1.5637 30 
35 ALLFWLYIV -13.4630 1.4636 28 

167 LLVDLLWLL -13.8151 1.4324 28 
32 LLLALLFWL -12.5441 1.3659 29 
92 LLLIALWNL -16.1708 1.3255 28 

148 FLDLILLII -18.5444 1.2840 24 
86 LLLMITLLL -3.28964 1.2779 27 

112 FIFGCLLVL -13.6547 1.2517 27 
144 FLAFFLDLI -16.0035 1.2339 25 
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Fig. 5-4 Reference HLA-1 antigenic peptides of LMP1 selected from experiment verified IEDB 
data in part showing high consistency with our bmPDA designed LMP1 vaccine peptide 
candidates. 

 

5.3.2  HLA1 vaccine peptide design: LMP1 agretope prediction 

Agretope docking result from our method for LMP1 is plotted in Figure 5-5. Better agretopes 
of LMP1 is listed in Table 5-2. According to NetCTL, SYFPEITHI, and the docking result of 
our method, the preferred epitope for vaccine design were listed in Table 5-3. 
 

 
Fig. 5-5 LMP1 agretope docking scores of bmPDA predicted peptide structures onto HLA 
A*0201 pocket sub-zones evaluated by Molegro Virtual Docker software. 
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Table 5-2 Top ranking agretopes to HLA A*0201 of LMP1 selected by MVD binding affinity.   

number sequence MVD binding affinity NetCTL SYFPEITHI 
173 WLLLFLAIL -55.6000   
159 YLQQNWWTL -34.6364   
64 IIILIIFIF -34.1266   

171 LLWLLLFLA -33.6373   
222 GRHHLLVSG -31.5068   
36 LLFWLYIVM -30.4040   

135 ATIWQLLAF -29.8328   
149 LDLILLIIA -29.0841   
137 IWQLLAFFL -28.9083   
180 ILIWMYYHG -28.6749   

 
 
Table 5-3 The bmPDA-designed priority LMP1 vaccine peptide candidates towards HLA A*0201 
sorted by [agretope – epitope – agretope] docking scores of MVD binding affinity in comparison 
among antigenicity scores of NetCTL and SYFPEITHI.   

position sequence MVD Binding Affinity NetCTL  SYFPEITHI 
173 WLLLFLAIL -55.59999686 0.9859 29 
159 YLQQNWWTL -34.6364165 1.2840 24 
64 IIILIIFIF -34.12661984 0.4515 16 

171 LLWLLLFLA -33.63727296 1.0874 22 
222 GRHHLLVSG -31.50681184 0.0081 10 
36 LLFWLYIVM -30.4039776 1.0005 18 

135 ATIWQLLAF -29.83278843 0.3298 14 
149 LDLILLIIA -29.08412344 0.0862 13 
137 IWQLLAFFL -28.90825584 0.2581 13 
180 ILIWMYYHG -28.67487832 0.2667 15 

 
 

5.3.3  Putative LMP1 nona-peptide structures of assorted anchors onto 

docking A*02:01 pit 

Based on the existing experimental data, many methods had been developed for predicting  
MHC binding motif. Information about preferred residues on specific position was also 
integrated into IEDB. According to peptide MHC binding motif data from IEDB, substitution 
of residue on position 2 and C-terminal anchors of potential HLA-I: A*02:01-binding 
epitopes was done. After structure prediction by bmPDA and docking by MVD, binding 
affinity result summary is shown in Table 5-4.  
 
Table 5-4 The bmPDA-designed LMP1 priority vaccine peptide candidates with improved 
[agretope – epitope – agretope] HLA-I A*02:01 docking scores in comparison with improved NetCTL 
and SYFPEITHI antigenecity scores in which original bmPDA-predicted peptide structures in weak 
agretope group I/Q/V and A/M are modified towards new bmPDA-predicted peptide structures with 
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substituted strong agretope group L/M and I/L/V.  
 Sequence NetCTL SYFPEITHI MVD binding affinity 
 YLLEMLWRL 1.5754 30 -10.2532 
 YMLEMLWRL 1.5857 28 -18.4164 
 YLLEMLWRI 1.5376 28 -13.6425 

*  YLLEMLWRV 1.5570 30 -33.7690 
 YMLEMLWRI 1.5349 26 -19.1742 
 YMLEMLWRV 1.5595 28 -13.0074 
 ALLFWLYIV 1.4500 28 -20.5003 
 AMLFWLYIV 1.5000 26 -30.8523 
 ALLFWLYII 1.3600 26 -25.0526 

* ALLFWLYIL 1.4000 28 -38.8726 
 AMLFWLYII 1.4000 24 -17.3758 
 AMLFWLYIL 1.4500 26 -28.7211 
 LLVDLLWLL 1.4700 28 -11.1361 
 LMVDLLWLL 1.4936 26 -9.32915 

*  LLVDLLWLI 1.4374 26 -13.2684 
 LLVDLLWLV 1.4664 28 -5.6147 
 LMVDLLWLI 1.4464 24 -11.1991 
 LMVDLLWLV 1.4837 26 -10.3239 
 LLLALLFWL 1.4195 29 -13.1378 
 LMLALLFWL 1.4403 27 -22.6202 
 LLLALLFWI 1.3509 27 -13.7874 
 LLLALLFWV 1.4105 29 -12.4064 
 LMLALLFWI 1.3649 25 -17.6992 

*  LMLALLFWV 1.4302 27 -35.1014 
 LLLIALWNL 1.3461 28 -16.6802 
 LMLIALWNL 1.3932 26 -20.0396 
 LLLIALWNI 1.2997 26 -10.9213 
 LLLIALWNV 1.3755 28 -13.8491 
 LMLIALWNI 1.3230 24 -18.0534 

*  LMLIALWNV 1.4087 26 -26.6008 
*  FLDLILLII 1.3504 24 -24.3467 
 FMDLILLII 1.3486 22 -14.3563 
 FLDLILLIL 1.3256 26 -8.5435 
 FLDLILLIV 1.4062 26 -17.9722 
 FMDLILLIL 1.3934 24 -7.9018 
 FMDLILLIV 1.4400 24 -16.6111 
 LLLMITLLL 1.3029 27 -13.1837 

*  LMLMITLLL 1.3564 25 -20.2986 
 LLLMITLLI 1.2659 25 -9.8575 
 LLLMITLLV 1.3428 27 -12.3941 
 LMLMITLLI 1.3035 23 -15.3174 
 LMLMITLLV 1.3924 25 -10.4206 
 FIFGCLLVL 1.3194 27 -13.8768 
 FLFGCLLVL 1.4435 29 -26.7132 
 FMFGCLLVL 1.4676 27 -26.5304 
 FIFGCLLVI 1.2739 25 -11.8059 

*  FIFGCLLVV 1.3658 27 -27.2390 
 FLFGCLLVI 1.4128 27 -13.2616 
 FLFGCLLVV 1.4587 29 -21.5721 
 FMFGCLLVI 1.4262 25 -15.5724 
 FMFGCLLVV 1.4768 27 -25.2802 

 
After residue substitution, we collected more peptides with relative better NetCTL and 

SYFPEITHI antigenecity scores on HLA-I A*0201. Binding affinity was then predicted by 
MVD. List of epitopes with good epitope score (NetCTL and SYFPEITHI antigenecity scores) 
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and agretope score (MVD binding affinity) is shown in Table 5-5. Initially, the bmPDA tool 
designs omega-shape nona-peptide structures only upon the top 8 ranking candidates 
including 1/125 (1.570), 2/167 (1.470), 3/035 (1.450), 4/032 (1.420), 5/148 (1.350), 6/092 
(1.346), 7/112 (1.319), and 8/086 (1.303) of original LMP1np structures which are 
conveniently selected on the NetCTL and/or SYFPEITHI antigenicity scores after performing 
nona-peptide scanning throughout full length LMP1 amino acid sequence.  

 
The appropriate omega-shape conformation of nona-peptide structures for docking 

A*02:01 pit including top 8 LMP1np candidates are selected from massive combinatorial 
structures which are modeled with TPSP candidates through computation process with both 
bmPDA Q4-GA and QSAR-SVR modules according to the positive reference template 
structures extracted from PDB dataset. For docking onto A*02:01 pit structure, the applied 
LMP1np structures based on the above LMP1np order of NetCTL score ranking may show 
rather inconsistent ranking order along with greater difference in simulated MDV BAff 
values as of 8/125 (-10.253), 7/167 (-11.136), 2/035 (-20.500), 6/032 (-13.138), 1/148 
(-24.347), 3/092 (-16.680), 4/112 (-13.877), and 5/086 (-13.184) with BAff ranking indicated.  
 
Table 5-5 LMP1 candidate epitopes with good epitope score and agretope score 

Modified Epitopes 
YLLEMLWRV 
ALLFWLYIL  
LLVDLLWLI 

LMLALLFWV 
LMLIALWNV 

FLDLILLII 
LMLMITLLL 
FIFGCLLVV 
FMAFFLDLI 
LMVLYSFAI 

 

5.4  Conclusion and Future Works 

 
Knowledge of the 3D structure of epitopes is essential in structural immunoinformatics. With 
the structure of peptides binding to MHC molecules, further elucidation about immune 
reactions such as epitope-MHC molecular interactions can be done. There are many methods 
developed for protein structure prediction, however, there are relatively few methods for 
short sequence peptide structure prediction. In the immunoinformatic field, epitope is 
primarily the target of concern, which is consisted of about 8-12 amino acids. There is little 
previous effort for structural prediction of peptides binding to MHC Class I molecules.[49]  
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The bmPDA structure prediction result of epitope revealed our method was good at 
predicting structure of short sequence of peptide such as epitope. This is compatible with the 
previous experience that protein threading method is more accurate in short sequence of 
protein than homology modeling. 

 
Based on the structure prediction result, we can actually simulate the binding between 

peptide and MHC molecules, instead of other indirect method. For binding affinity evaluation 
between peptide and MHC class I molecule, docking is done with MVD regression model 
based on tabu clustering in order to avoid GA sub-optima and GA local optima.[48] 

 
The intended vaccine peptide of epitope and agretope may be delivered in the format of 

“in silico DNA vaccine” which is constructed with expression DNA sequence deduced from 
the intended vaccine peptide sequence and as well with upstream control sequence of 
LMP1/2 promoter sequence. The developed “in silico DNA vaccine” with intended specific 
expression in EBV latent infection lymphocytes may be verified with NPC cell line of 
EBV-latent infected B lymphocytes for immunogenic induction in order to demonstrate the 
potential ability in shifting cell-mediated immunity (CMI) pathway towards MHC-I Tc cell of 
CTL while away from MHC-II Th cell.  
 

The BAff evaluation of predicted nona-peptide agretope structure towards docking 
HLA1 pit structure exploits MVD regression model with tabu clustering parameter in order to 
avoid sub-optima and local optima with GA method. In that, the HLA1 BAff of predicted 
activity with tabu clustering parameter may show good correlation with experiment activity 
and as well may show better reproducibility of computation result when compared with 
default rerank score of MVD regression model. The BAff computation time with 
nona-peptide structure on docking HLA1 pit structure is respectively 150 minutes or 40 
minutes in average with default parameter or tabu clustering parameter in MVD regression 
model.  

 
In addition to antigenecity priority on LMP1np epitope candidates in original amino acid 

sequence, the LMP1 agretope anchor plastics candidates based on bmPDA structure modeling 
may comply with inferred position-specific preference on A*02:01 pit binding nona-peptide 
at positions {2nd; 9th} with {L/M; I/L/V} towards improving MVD BAff vale while in 
disregard of tolerated {I/Q/V; A/M}. Notably, putative LMP1np structures of bmPDA 
prediction match with compatible biological experiment verified IEDB entries of A*02:01 
epitopes ID 1377922~1377926 from Herpesvirus 4 Strain B95-8 with LMP1np-125(~133) 
published by Khanna R et al. in 1988. Despite of top ranking antigenecity scores with 
NetCTL and SYFPEITHI severs with LMP1np-125 {L; L} within preferred {L/M; I/L/V} 
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anchor group, the MDV BAff value of LMP1np-125 structural docking appears at the last 
ranking position within the indicated group in original amino acid sequence whereas the 
LMP1np-125 {L; V}.  

 

With the priority LMP1 epitope candidates for HLA1 predicted with the antigenicity scores 
of NetCTL and/or SYFPEITHI servers, our bmPDA designed nona-peptide structures may 
further contribute on the need of structural evaluation in order to move on the diligence in 
practical feasibility towards application direction of mining Ama candidates of in vitro DNA 
vaccine for in vitro cell activation and Ace candidates of in vivo twin adhesive for in vivo 
subject therapy based on MDV BAff values. Despite of accords in good antigenicity scores 
level of NetCTL and SYFPEITHI, NetCTL score rankings within Ama group of {L/M; I/L/V} 
seem to be more consistent with MVD BAff value rankings of our bmPDA designed 
LMP1np:Ama structures while at noticeable inconsistency with SYFPEITHI score rankings. 
Moreover, high NetCTL antigenicity scores of top 8 candidates with the distribution range 
from 1.575 to 1.303) may fail to offer adequate {L/M; I/L/V} intra-group resolution as in 
contrast to the distribution range of low score antigenicity cases; whereas BAff value range 
from -24.347 to -10.253 of top 8 candidates may offer appropriate power for differentiation 
among LMP1np:Ama candidates as to be a supplemental indicator for analyzing 
HLA1-binding nona-peptides.   
 

Instead of external delivery in vaccine peptide towards regular AMI induction, the intended 
vaccine peptide of HLA1 binder epitope and agretope for CMI induction shall in future take 
internal delivery strategy in the format of DNA vaccine which is constructed with coding 
sequence DNA insert deduced from intended HLA1 binder peptide sequence and as well with 
upstream control sequence of appropriate promoters. The intended CMI vaccine peptide thus 
in the format of in vitro DNA vaccine may serve good application for in vitro cell activation 
towards in vivo adoptive cell transfer with mixed lymphocyte reaction (MLR) plate separated 
with dialysis membrane from host cell and antigen presenting cell (APC), T cytotoxic (Tc) 
cell, and T helper (Th) cell. The in vitro DNA vaccine is hypothesized with practical 
feasibility while bypassing immune suppression within in vivo tumor microenvironment and 
while avoiding adverse clinical cytotoxicity on innocent bystander cells due to in vivo 
non-specific delivery of DNA vaccines.  
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Chapter 6 NPC-CMI Peptide Evaluating towards 

HLA1 and Agretope Complex Enhancements 

6.1  Introduction 

Nasopharyngeal carcinoma (NPC) at nasopharynx epithelium of squamous cell origin is 
common in south-eastern Asia countries including Taiwan, Indonesia, Singapore, Malaysia, 
and Vietnam in addition to Hong Kong and southern China.[2] Genetic susceptibility, 
environmental factors, and Epstein-Barr virus (EBV) infections comprises the important 
interplays towards NPC oncogenesis. [4] The EBV of herpesvirus family with 184-kB 
double-stranded DNA genome for encoding nearly 100 viral proteins often attacks the 
primary target of B lymphocytes and often results in lifetime latent infection.[7] Presence of 
EBV genome is demonstrated virtually in most NPC cells through oncogenesis process of 
EBV latent infections.  
 

In background review, the EBV-NPC oncogenesis process may equip both proliferation 
advantage and immune evasion in order to overcome efficient anti-EBV immune clearance 
mechanisms of antibody-mediated immunity (AMI) with antibody-dependent cell-mediated 
cytotoxicity (ADCC) as well as cell-mediated immunity (CMI) with cytotoxic T lymphocyte 
(CTL)-initiative cytotoxic apoptosis during either latent and/or regular EBV infection phases. 
[7] Specifically, the basic proliferation advantage is likely from encoding EBV latent 
infection membrane protein 1 (LMP1) with growth factor receptor-like mutants and as well 
the critical immune evasion is likely from mutating EBV genome for poor immunogenicity 
responses at AMI-antigen epitopes and CMI-antigen epitopes/agretopes within LMP1/LMP2 
and/or EBNA of EBV-encoded proteins.[8] Highly likely, the EBV-NPC immune evasion on 
ultimatum CMI-agretope mutant maybe the most crucial strategy for oncogenic negative 
selection against which the host immune system cannot counter-act efficiently despite that the 
other EBV-NPC immune evasions on AMI-epitopes and CMI-epitopes in oncogenic cells 
maybe eventually removed with affinity maturations of B cell receptor (BCR) and T cell 
receptor (TCR) through gene hyper mutations during the entire long-term process of 
EBV-NPC oncogenesis.[8]  

 



 

49 
 

The EBV-NPC immune evasion of CMI-agretope mutant maybe well exemplified with 
the interplay case of ethnic prevalence difference on class I human leukocyte antigen (HLA1) 
spectrum with additional LMP1 mutant assorts. The HLA A*0207 (common in Taiwan 
population) shows higher chances of EBV-NPC than the A*0201 (common in Caucasian 
population) even further with additional synergistic B*4601/B*14 and extended haplotype 
HLA A*3303- B*5801/2- DRB1*0301- DQB1*0201/2- DPB1*0401. [11,12] The EBV-NPC 
biopsies in Taiwan population select LMP1 variants of immune evasion NLMP1 which 
shares high amino acid sequence homology prominently with prototype B95.8-LMP1 and 
CAO-LMP1 in China population. Importantly, the NLMP1 over-expression in Balb/c class I 
major histocompatibility complex (MHC1)-context towards regressing the experimental 
murine EBV-NPC of NLMP1 expression may result from regaining strong CMI agretope 
presentation of NLMP1 in mice MHC1 context in disregard of the original selected immune 
evasion of NLMP1 in human HLA1 context likely with weak agretope binding 
presentation.[11,12,13] The restricted HLA1 spectrum of genetic susceptibility may indicate 
that the overlooked anchoring CMI-agretope of omega-shape nona-peptide is required for 
crucial docking onto HLA1-cleft in order for adequate CMI-epitope immunogenicity 
presentation towards effective CMI induction. 

 
Immunoinformatics is with remarkably high practical potential in application aspect of 

epitope/agretope peptide binders with AMI-antibody and CMI-HLA1/2 towards screening the 
putative agretope complex enhancement (Ace) molecules with increased binding affinity 
(BAff) of NLMP1 agretope and HLA A*0207 in order likely to specifically improve 
EBV-NPC CMI with low non-specific adverse. Our structure-based immunoinformatic 
approach aims at EBV-LMP1 immunogenicity-related omega-shape nona-peptide design.[1] 
The bio-mimicry peptide design algorithm tool (bmPDA-tool) implements three sections 
including peptide building blocks database construction, peptide backbone modeling of 
building block candidates, and quality evaluation of predicted nona-peptide structures.[1] 

 
Considerably, the restricted HLA spectrum may indicate the crucially overlooked 

agretopes of vaccine peptide for anchoring onto both ends of antigen pit in MHC-I with 
which seems to be required for adequate antigen presentation on peptide epitope towards 
good immunogenicity. The design strategy of MHC-I vaccine peptide thus seemingly 
demands both optimized agretopes and immunogenic epitope to which additional peptide 
segments for improved APC proteasome processing are attached at both flanking sides.  

 
The immunotherapeutic regime against EBV-NPC for instance may conveniently exploit 

various aspects including AMI-ADCC with vaccine peptides, CMI-CTL with DNA vaccines, 
and microenvironment immune suppression with in vitro cell activation towards in vivo 
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adoptive cell transfer. The current challenges except vaccine peptides still install obstacles 
including weak HLA1-binding agretope in host cell or dendritic cell, and specific delivery of 
DNA vaccine to host cells without damaging innocent bystander cells.[15,16,17,18] 
Immunoinformatics is with remarkably high practical potential in feasible application of 
epitope/agretope binders onto AMI-BCR and CMI-HLA/TCR towards mining putative 
anchor modified agretope (Ama) and agretope complex enhancer (Ace) with reinforced 
binding affinity (BAff) of NLMP1 agretope and A*02:07 pit in order to likely improve 
NPC-CMI specifically while with low adverse cytotoxic effect due to non-specificity.  

 

In this study, we implement bio-mimicry peptide design algorithm (bmPDA) comprising 
peptide database construction of building blocks, peptide backbone modeling of building 
block candidates, and quality evaluation on predicted nona-peptide structures. Our bmPDA of 
structure-based immunoinformatic approach aims at designing EBV immunogenicity-related 
omega-shape NLMP1 nona-peptide (NLMP1np) structures. We apply in-house bmPDA-tool 
towards applications of predicting A*02:07-binding EBV-NLMP1np structures in order that 
the verification on putative epitope and agretope quality may be accomplished with 
outsourcing tools of NetCTL server and Molegro Virtual Docker (MVD) software. The BAff 
with designed omega-shape NLMP1np and LMP1np structures on docking both HLA pits of 
A*02:07 {PDB: 3OXS} and A*02:01 {PDB: 1BD2} may be evaluated with MDV tool 
towards mining putative Ama and Ace candidates among which may be identified in 
modified-anchor assorts and FDA-approval drugs based on stable BAff of NLMP1np 
agretope and A*02:07 pit in order to specifically improve NPC CMI yet likely with low 
adverse effect due to non-specificity.  

 

6.2  Method 

The overall workflow is shown in Figure 6-1. 
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Fig. 6-1 Work flow of identification towards action/agretope complex enhancement (Ace) drugs. 

 
 

6.2.1  Material preparation 

LMP1 epitopes with good epitope score (NetCTL and SYFPEITHI antigenecity scores) and 
agretope score (MVD binding affinity) were collected as method in chapter 5. Structure files 
of HLA A*0201 and HLA A*0207 MHC class I molecules were collected from PDB. 
Structure files of FDA approved drugs were collected from DrugBank. 
 

6.2.2  virtual screening for approved drugs 

Virtual screening deals with large number of ligands against a receptor in reasonable time. 
The interactions between the drugs and MHC-I molecules are evaluated by Molegro Virtual 
Docker (MVD)[47]. Virtual screening was done for finding drugs with better binding affinity 
to HLA A*0201/HLA A*0207.  
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6.2.3  identification of action/agretope complex enhancement (Ace) drugs 

After virtual screening, MHC-drug complex were docked with peptides for better epitope and 
agretope performance. Binding affinity was evaluated and compared with the original binding 
affinity without drugs. If the binding affinity increases, the drug will be viewed as 
action/agretope complex enhancement (Ace) molecule for improving binding affinity of 
predicted nona-peptide structures.  

With hypothesized immune evasion at weak viral agretope anchors, our bmPDA tool 
selects putative NLMP1np structures with weak BAff value on docking ethnic A*02:07 and 
A*02:01 pit structures in order for evaluating BAff improvement on Ace candidates towards 
making in vivo twin adhesives. The twin adhesives strategy for Ace candidate is based on 
A*02:07 pit with better BAff on docking while at the presence of small chemical molecules 
from DrugBank of 1,435 FDA-approval drugs. With internal delivery in medication towards 
regular CMI induction, the intended Ace candidates for agretope anchors may in future take 
internal delivery strategy for CMI induction in the format of in vivo twin adhesive towards 
therapeutic drug for new indications.  

The Ace candidates from FDA-approval drugs to in vivo twin adhesive thus in disease 
treatment format may serve good application for in vivo subject therapy towards likely in 
vivo NPC-CMI activation against latent infection phase NPC host cells with MLR in tumor 
microenvironment including in vivo adoptive cell transfer of in vitro activation cells and from 
local APC, Tc, Th, and myeloid derived suppressor cells (MDSC). The in vivo subject 
therapy towards likely NPC-CMI improvement with Ace candidates are speculated with 
practical feasibility while inducing specific cytotoxicity only upon NPC cells with in vivo 
specific presence of targeted weak NLMP1np anchors despite of in vivo non-specific 
distribution of Ace candidates.  

 

6.3  Result and Dataset 

Along with NetCTL antigenicity scores for HLA1 epitopes, our bmPDA-designed 
nona-peptide structures may move onto structural evaluation in feasible application practice 
of mining Ama candidates of in vitro DNA vaccine for in vitro cell activation and Ace 
candidates of in vivo twin adhesive for in vivo subject therapy based on MDV BAff values. 
For immune evasion likely towards tumorigenesis, the optimal NLMP1np structures of 
omega-shape conformation which are hypothesized to dock differently on A*02:07 and 
A*02:01 may have been somehow revealed with our bmPDA tool based on BAff value. The 
feasible applications of mining Ama candidates of in vitro DNA vaccine for in vitro cell 
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activation and Ace candidates of in vivo twin adhesive for in vivo subject therapy may have 
been somehow revealed again with preliminary results on the case of NLMP1np structures 
and A*02:07 pit structure.  

 

6.3.1  Putative NLMP1 nona-peptide structures onto docking ethnic 

A*02:01 versus A*02:07 pits    

Better epitopes of LMP1 to HLA A*0201 is shown in Table 6-1. Virtual Screening Result for 
Drug on better epitopes of LMP1 to HLA A*0201 is shown in Table 6-2. Binding affinity 
evaluation between epitopes, HLA A*0201 MHC molecules, and adjuvant drug is shown in 
Table 6-3. 
 
Table 6-1 The bmPDA-designed priority LMP1 nona-peptide agretopes to HLA A*0201 sorted with 
[agretope – epitope – agretope] docking scores in comparison among NetCTL and SYFPEITHI 
antigenicity scores.  

position sequence Binding Affinity  NetCTL  
125 YLLEMLWRL -13.3300 1.5637 
35 ALLFWLYIV -13.4630 1.4636 

167 LLVDLLWLL -13.8151 1.4324 
32 LLLALLFWL -12.5441 1.3659 
92 LLLIALWNL -16.1708 1.3255 

148 FLDLILLII -18.5444 1.2840 
 
 
Table 6-2 Virtual screening for Ace drug candidates on the bmPDA-designed priority LMP1 
nona-peptide agretopes to HLA A*0201.   

ID DrugBank ID Name Binding Affinity  
Drug_868  DB00868 Benzonatate -848.723 
Drug_770  DB00770 Alprostadil -570.985 
Drug_442  DB00442  Entecavir  -525.688 
Drug_585  DB00585  Nizatidine  -509.538 
Drug_927  DB00927  Famotidine  -502.321 

 
 
Table 6-3 Binding affinity evaluation with Ace drugs towards bmPDA-designed priority LMP1 
nona-peptide agretopes onto HLA A*0201.  

LMP1  original DB00868 DB00770 DB00442 DB00585 DB00927

 Binding 
affinity  Benzonatate Alprostadil Entecavir Nizatidine  Famotidine

YLLEMLWRL -13.3300 -8.6442 -7.91187 -25.7789 -12.0708 -14.1084
ALLFWLYIV -13.4630 -18.4250 -18.1605 -52.6991 -26.3374 -17.1538

LLVDLLWLL -13.8151 -20.1659 -3.61057 -7.4801 -18.7837 -9.9925
LLLALLFWL -12.5441 -36.6455 -16.4207 -17.3280 -12.8342 -9.5650
LLLIALWNL -16.1708 -6.8241 -11.333 -11.7121 -17.9643 -10.0029

FLDLILLII -18.5444 -10.8383 -7.2318 -12.4783 -23.4822 -11.4594
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Epitope Docking Result for LMP1 is shown in Table 6-4. Antigenecity was decreased in 

HLA A*0207 than HLA A*0201. Binding affinity was also decreased in HLA A*0207. Both 
epitope and agretope were decreased in HLA A*0207 than HLA A*0201 (Table 6-4). 
Binding affinity of NLMP1 also weakened in binding with HLA A*0207 (Table 6-5).  
 
Table 6-4 The bmPDA-designed priority LMP1 nona-peptide agretopes towards HLA A*0201 and 
A*0207 sorted with [agretope – epitope – agretope] docking scores in comparison among NetCTL 
antigenicity score.   

   HLA A*0201 HLA A*0207
position sequence NetCTL score Binding Affinity Binding Affinity

125 YLLEMLWRL 1.5637 -13.3300 -14.4478
35 ALLFWLYIV 1.4636 -13.4630 -11.1488

167 LLVDLLWLL 1.4324 -13.8151 -12.3144
32 LLLALLFWL 1.3659 -12.5441 -15.2408
92 LLLIALWNL 1.3255 -16.1708 -12.5091

148 FLDLILLII 1.2840 -18.5444 -12.5585
86 LLLMITLLL 1.2779 -3.2896 -5.7820

112 FIFGCLLVL 1.2517 -13.6547 -22.2827
144 FLAFFLDLI 1.2339 -16.0035 -22.1579

 
 
Table 6-5 The bmPDA-designed priority NLMP1 nona-peptide agretopes towards HLA A*0201 and 
A*0207 sorted with [agretope – epitope – agretope] docking scores in comparison among NetCTL 
antigenicity score.   

  HLA A*0201 HLA A*0207
position sequence NetCTL Binding Affinity Binding Affinity

35 ALLFWLYIV 1.4606 -23.8611 -15.6310
166 LLVDLLWLL 1.4140 -16.7493 -5.8554
32 LLLALLFWL 1.3495 -15.0933 -18.9673
92 LLLIALWNL 1.3190 -14.6203 -9.7118

112 FIFGCLLVL 1.2954 -14.8420 -19.5422
86 LLLMITLLL 1.2798 -14.0656 -6.3505

158 YLQQNWWTL 1.2788 -26.0066 -29.4955
142 FILAFFLAI 1.2690 -19.0063 -17.4068
147 FLAIILLII 1.2620 -17.7329 -9.1896
61 MLIIIILII 1.2355 -14.9290 -19.4790

 

On immune evasion likely towards tumorigenesis, optimal NLMP1np structures 
{X66863} of omega-shape conformation may be somewhat revealed on docking unstably 
with A*02:07 {3OXS} pit of Asian and Taiwan population for evading CMI in contrast to 
A*02:01 {1BD2} pit of Caucasian population may be versified with our bmPDA tool based 
on BAff value. With exclusion on NLMP1np-125, the NLMP1np candidates of top ranking 
NetCTL antigenecity scores are similar to LMP1np case {V01555} in which both NLMP1np 
and LMP1np comply with inferred position-specific preference on HLA1-binding 
nona-peptide at positions {2nd; 9th} in {L/M; I/L/V} as of A*02:01 case in addition to an 
extra preference at position {3rd} in {D/P} as of A*02:07 case only.[38] The listed 
NLMP1np candidates with top ranking NetCTL antigenecity scores may all comply with 
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stated preference {L/M; I/L/V} except NLMP1np-112/142 with tolerated {I, L}. In general, 
the resulted BAff values of agretope complex with HLA1 {A*02:07, A*02:01} pit structures 
and NLMP1np agretope structures seem to suggest that N-LMP1np structures show greater 
loss of BAff value especially in A*02:07 docking case which may lose on CMI antigen 
presentation likely for immune evasion.  

Based on available NetCTL score difference of A*02:07 on A*02:01, the rankings of 
NLMP1np structures are as of 1/035 (+0.011), 2/086 (-0.023), 3/112 (-0.024), 4/092 (-0.027), 
5/166 (-0.056), 6/032 (-0.071), and 7/142 (-0.088) with position number of initial amino acid 
indicated. Further based on available BAff value difference of A*02:07 on A*02:01, the 
rankings of NLMP1np structures are as of 1/166 (+10.89), 2/147 (+8.54), 3/035 (+8.23), 
4/086 (+7.72), 5/092 (+4.91), 6/142 (+1.60), 7/158 (-3.49), 8/032 (-3.87), 9/061 (-4.55), and 
10/112 (-4.70). Despite of narrow NetCTL score gaps with losing antigenecity tendency 
among applied NLMP1np except NLMP1np-035 structures, ethnic BAff value differences of 
A*02:07 on A*02:01 in docking NLMP1np structures seem in general to suggest a greater 
tendency of increasing BAff values which may indicate loss of docking stability upon 
NLMP1np-166 (#2), 147 (#9), 035 (#1), 086 (#6), and 092 (#4) as in contrast to a moderate 
tendency of decreasing BAff values which may indicate gain of docking stability upon 
NLMP1np-158 (#7), 032 (#3), 061 (#10), and 112 (#5) with NetCTL rankings numbers 
attached.  

 

The above results seem suggest that A*02:07 pit structure of Asian population may lose 
greater binding stability with NLMP1np structures especially from top ranking antigenecity 
candidates based on NetCTL scores. Particularly, NLMP1np-035/166 structures of top 
1st/2nd NetCTL antigenecity score may lose the most binding stability with A*02:07 pit 
structure of Asian population which may likely take place in EBV latent infection host cells 
with LMP1 proliferative effect at the point of exploiting less efficient antigen presentation to 
Tc-TCR for immune evasions with survival advantages. The survival advantages disclosed 
possibly in EBV latent infection host cells towards NPC tumorigenesis of long-term selection 
process may zoom into negative selection track at certain stage on mutating agretope anchors 
in order for immune evasion onto less efficient CMI clearance while still with original 
epitope bulge of excellent antigenecity.  

 
With this regard, possible remedy for reverting the indicated immune evasion upon 

ethnic difference of HLA1 pits and mutant agretopes of excellent epitope context may 
apparently require to assist ethnic pit and mutant agretope on increasing binding stability in 
that we propose efforts on mining Ama and Ace candidates for intended practical 
applications despite that we not yet put attention on the opposite case of ample 
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HLA1-binding blockers as with excellent agretopes yet with bad epitope. To intended 
practical applications, our bmPDA tool may specifically mine Ama candidates of putative 
NLMP1np structures with lower BAff value of better docking stability towards making in 
vitro DNA vaccine of intracellular expression in order for in vitro cell activation onto in vivo 
adoptive cell transfer while bypassing in vivo immune suppression within tumor 
micro-environment and while avoiding in vivo adverse cytotoxicity upon innocent bystanders 
due to in vivo non-specific delivery of DNA vaccines. Further, our bmPDA tool may mine 
Ace candidates among FDA-approval drugs with lower BAff value of better docking stability 
towards making in vivo twin adhesive between weak ethnic pit of A*02:07 structures and 
weak agretope anchor of NLMP1np structures in order for in vivo subject therapy while 
inducing specific cytotoxicity only upon NPC cells with in vivo specific presence of weak 
ethnic pit and weak agretope anchor despite of in vivo non-specific distribution of Ace drugs. 

 

6.3.2  Mining anchor-modified agretope for NLMP1 nona-peptide on 

docking A*02:07 pit structure 

The feasible application of mining Ama candidates for in vitro DNA vaccine of cell 
activation is pursued on the case of NLMP1np and A*02:07 while with assorted anchors 
which may comply with inferred position-specific preference at respective position {2nd; 9th} 
with {L/M; I/L/V} for A*02:07 and A*02:01 in addition to position {3rd} with {D/P} for 
only A*02:07 towards improving MVD BAff value. On docking A*02:07 pit structure, 
NLMP1np-035 ({L; V}; {M; V}) respectively without or with anchor modification gives 
MVD BAff values (-15.6310; -35.9599) in which notable difference value of 20.33 may 
represent the improvement level. The visualization of agretope complex of NLMP1np-035 
({L; V}; {M; V}) with A*02:07 pit structure seems to shift from slant docking towards 
balanced docking at good improvement of complex stability. On docking A*02:01 pit 
structure, same LMP1np-035 ({L; V}; {M, V}) gives respective MVD BAff values (-20.5003; 
-30.8523) while merely moderate 10.35 of derived difference value.  

To this point, the Ama candidates of putative NLMP1np structures may subsequently be 
verified in the same A*02:07 genetic background with in vitro mixed lymphocyte reaction 
(MLR) comprising host cells transfected with constructs of NLMP1np candidates, Tc cells, 
and Th cells for analyzing CTL activity according to the practical application of making in 
vitro DNA vaccine of intracellular expression in order for in vitro cell activation onto in vivo 
adoptive cell transfer while bypassing in vivo immune suppression within tumor 
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micro-environment and while avoiding in vivo adverse cytotoxicity upon innocent bystanders 
due to in vivo non-specific delivery of DNA vaccines.  

 

6.3.3  Mining agretope complex enhancer for NLMP1 nona-peptide on 

docking A*02:07 pit structure             

HLA alleles are important in the pathogenesis of virally induced tumors. HLA A*0207 is 
more prevalent in Taiwan. Consistent association was found between HLA-A*0207 (common 
among Asian but not among Caucasians) and NPC but not between HLA-A*0201 (most 
common HLA-A2 allele in Caucasians) and NPC [50]. NLMP1 is an EBV strain prominent 
in Taiwanese population.[51] Antigenecity prediction by NetCTLpan for NLMP1 in HLA 
A*0201 and HLA A*0207 is shown in Figure 6-2. NLMP1 Epitopes with good antigenecity 
were selected for candidate epitopes (Table 6-6).  

 

Fig. 6-2 Overall NLMP1 epitope antigenecity of bmPDA predicted peptide structures analyzed 
by NetCTLpan antigenecity score server towards both HLA A*0201 and A*0207. 

 
Table 6-6 Top ranking agretopes of NLMP1 towards HLA A*0207 selected by MVD binding affinity.    

position sequence 
35 ALLFWLYIV 
166 LLVDLLWLL 
32 LLLALLFWL 
92 LLLIALWNL 
112 FIFGCLLVL 
86 LLLMITLLL 
147 FLAIILLII 

 
Virtual Screening Result of FDA approved drug for NLMP1 on HLA A*0207 is shown 

in Table 6-7. Docking result summary is shown in Table 6-8. Entecavir, Nizatidine, 
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Famotidine performed better, so they were viewed as Ace drugs. The feasible application of 
mining Ace candidates for in vivo subject therapy is pursued on the case of NLMP1 and 
A*02:07 while with available DrugBank (www.drugbank.ca) chemicals of 1,435 
FDA-approval drugs and while upon proposed new indication of which aims at improving 
weakened binding of variant NLMP1 agretope and HLA1 pit for reverting in vivo immune 
evasion and at lifting CMI reactivity towards tumor cell removal gain which maybe likely to 
take place at in vivo NPC microenvironment. With the exclusion of NLMP1np-061, 142, and 
158, the rest NLMP1np structures are evaluated including NLMP1np-166 (#2), 147 (#9), 035 
(#1), 086 (#6), and 092 (#4) of greater loss on docking stability with top NetCTL rankings 
attached and NLMP1np-158 (#7), 032 (#3), and 112 (#5) of moderate gain on docking 
stability.  

 

Among 1,435 FDA-approval drug structures from DrugBank, the harvest of mining Ace 
candidates may be exemplified with DB585 Nizatidine, DB868 Benzonatate, DB442 
Entecavir, DB927 Famotidine, and DB770 Alprostadil according to docking stability gain of 
less BAff value while docking NLMP1np structures onto A*02:07 pit structure. Moreover, 
Ace candidates are in general class of Histamine-2 receptor antagonist (H2-blocker) with 
literature reports showing CMI enhancement effects for supplementing cancer therapy 
additionally exemplified with an especially interesting Ace candidate {Entecavir} for clinical 
indication of treating HBV chronic infection that has concluded clinical trial in Taiwan.  

 
Table 6-7 Virtual screening for Ace drug candidates on the bmPDA-designed priority NLMP1 
nona-peptide agretopes to HLA A*0207. 

ID DrugBank ID Name Binding Affinity 
Drug_868 DB00868 Benzonatate -858.24
Drug_770 DB00770 Alprostadil -535.50
Drug_927 DB00927 Famotidine -507.71
Drug_442 DB00442 Entecavir -505.93
Drug_585 DB00585 Nizatidine -490.57

 
 
Table 6-8 The bmPDA-designed priority NLMP1 nona-peptide agretopes towards HLA A*0207 
sorted with [agretope – epitope – agretope] docking scores in comparison among NetCTL antigenicity 
score. 

NLMP1  original DB00868 DB00770 DB00927 DB00442 DB00585

 Binding 
affinity  Benzonatate Alprostadil Famotidine Entecavir  Nizatidine 

ALLFWLYIV -15.6310 -17.4564 -20.3148 -15.2905 -32.6494 -17.8726
LLVDLLWLL -5.8553 -13.8805 -10.5714 -10.6011 -17.3471 -9.4336
LLLALLFWL -18.9673 -15.3687 -9.9673 -8.3331 -22.0679 -12.6647
LLLIALWNL -9.7116 -36.4624 -7.3806 -17.4920 -9.2982 -7.7141
FIFGCLLVL -19.5422 -18.3895 -23.8061 -21.4551 -36.7102 -36.2241
LLLMITLLL -6.3505 -8.2676 -9.5218 -15.7051 -7.1375 -8.7732

FLAIILLII -6.8421 -15.6089 -6.6913 -13.5632 -10.6795 -20.8778
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To this point, Ace candidates of FDA-approval drugs may subsequently be verified in 
genetic background of ethnic A*02:07 on A*02:01 with in vitro mixed lymphocyte reaction 
(MLR) comprising host cells such as tissue cells and/or dendritic cells transfected with in 
vitro DNA vaccine constructs of NLMP1np candidates, Tc cells, and Th cells in order for 
analyzing CTL activity without or with in vitro Ace candidate treatment as of simulating 
practical application of making in vivo twin adhesive between A*02:07 pit structure and 
weak agretope anchor of NLMP1np structures in order for in vivo subject therapy while 
inducing specific cytotoxicity only upon NPC cells with in vivo specific presence of 
intracellular responsive NLMP1np structures despite of in vivo non-specific distribution of 
Ace drugs within host cells of none NLMP1 existence. 

 
On docking A*02:07 pit structure, NLMP1np-035 {L; V} without or with Ace drug 

DB442 Entecavir gives MVD BAff values of (-15.6310 without Ace; -32.6494 with Ace) in 
which notable value difference of 17.02 may represent improvement level. Visualizing 
agretope complex of NLMP1np-035 {L; V} structure with A*02:07 pit structure seems to 
show slant docking towards extending anchor at good improvement of complex stability upon 
trial conditions of without or with Ace drug treatment.  

 

Despite of potential structural difference between parallel Ama and Ace applications 
while with good improvement level of complex stability, the epitope-bulge structures 
between Ama and Ace cases respectively of NLMP1np-035 {M; V} on A*02:07 pit structure 
of balanced docking and of NLMP1np-035 {L; V} on A*02:07 pit structure of slant docking 
at anchor extension may indeed exist minor RMSD structure difference based on SuperPose 
server. Anyhow, minor difference at epitope-bulge of TCR binding may not cause major 
trouble upon practical applications due to that versatile TCR may exist adequate cross 
reactivity and as well flexible TCR may generate adequate variant conformations for 
improving specific binding with different epitope-bulges as of TCR affinity maturation via 
genetic processes of gene rearrangements and so forth.  

 

6.4  Conclusion and Future Works 

HLA alleles are important in the pathogenesis of virally induced tumors. HLA A*0207 is 
more prevalent in Taiwan. Consistent association was found between HLA-A*0207 (common 
among Chinese but not among Caucasians) and NPC but not between HLA-A*0201 (most 
common HLA-A2 allele in Caucasians) and NPC. Within the HLA A2 group, only 
HLA-A*0207 alleles (a genotype common among individuals of Chinese descent but rare 
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among Caucasians) is related to NPC risk, although the HLA-A*0201 allele (a genotype 
common among Caucasians) is not associated with NPC. T-cell epitopes of LMP1 and LMP2 
are efficiently presented by HLA-A*0201. Data suggest that the HLA-A*0207 allele is less 
efficient than the HLA-A*0201 allele at inducing cytotoxic T-lymphocyte responses.[50] 

 
Our research result is consistent with previous studies. In our study, both epitope score 

and agretope score were decreased in HLA A*0207 group than in HLA A*0201 group. Based 
on the observation, we can postulate immune reaction of EBV should be weaker in HLA 
A*0207 group. Latent infection may be more prevalent and lead to NPC eventually. That 
could partly explain why NPC is more prevalent in Taiwan compared with western country. 

 
Peptide-based vaccines are safe, stable, and easy to produce in large scale. Specific 

immune responses can also be monitored easily and correlated with clinical responses. 
However, Peptide-based vaccines need to identify the immunogenic epitope of the 
tumor-associated antigen. Most peptide-based vaccines focused on antigenic peptides which 
bind the HLA-A2 molecule due to its high frequency of expression in up to 50% of the 
Caucasian. Compared to bacterial or viral vaccine vectors, immunogenicity of peptide 
vaccines are relatively poor. Researchers in this area had focused on finding adjuvant 
immune-enhancing agents such as chemokines, cytokines, and co-stimulatory molecules to 
enhance the potency of the peptide vaccine. For maximizing the immunological responses 
elicited from peptide-based vaccines, it is important to identify the appropriate adjuvants and 
route of administration[11]. In our study, we demonstrated a method for searching preexisting 
FDA approved drug as adjuvant agent. In adoptive immunotherapy for autologous CTLs 
transfer, our method may be applied in similar way. 

 
In our study, Entecavir, Nizatidine, Famotidine were viewed as ACE (agretope complex 

enhancement) drugs. Entecavir is an antiviral drug used in the treatment of hepatitis B 
infection. Our result implied that it may have some immune regulatory effect besides antiviral 
function.  Surprisingly, Nizatidine and Famotidine enhance agretope complex in our study. 
These histamine-2 antagonist are used for treatment of peptic ulcer for a long time. However, 
there are some studies mentioned about their immune-related function.[52-57] Other than 
effect on histamine receptor, these drugs may have role in cell-mediated immunity. It is very 
interesting for further investigation.   
 



 

61 
 

 

Chapter 7 Summary and Future Works 

In this thesis, structural bioinformatics are applied to solve problems of EBV-related 
immunotherapy. Our system can be applied on both two important aspect of immune reaction: 
AMI-Epitopes and CMI-Agretopes. We applied structure-based immunoinformatics methods 
of in-house bmPDA tool for practical applications of immunotherapy that specifically covers 
the case of designing NLMP1np structure and docking HLA1 A*02:07 pit structure in order 
for mining intended Ama and Ace candidates. Our preliminary results of bmPDA tool that 
designs putative structures unknown for nona-peptides and measures binding stability of 
action complex may likely be a supplementing extension for NetCTL server of antigenecity 
score.  

With the intention to explore the possibility of differential agretope binding stability as a 
pathway of immune evasion among ethnic populations, our results may at least shed some 
light on the predisposing mechanism towards NPC formation due to ethnic difference of 
A*02:07 versus A*02:01 in which NPC-related NLMP1np structures may lose greater 
agretope binding stability especially among top antigenecity NLMP1np structures of high 
NetCTL scores while still as of defective binders of HLA1 A*02:07 pit structure. Without 
even doing detailed analysis on the defective HLA1 binders of octa-peptide and deca-peptide 
structures and on the effective HLA1 blockers of oligo-peptide structures with strong 
agretope binding stability yet with rather inadequate epitope antigenecity, we still feel 
educational with the stated shedding of light in which we feel the need of Ama and Ace 
candidates to be the remedy for reverting inefficient agretope binding while with appropriate 
formats of practical application in future.  

The NLMP1 agretope-oriented immune evasion for negative selection on HLA1 A*02:07 
host cell with survival advantage for advancing oncogenesis may simply due to the innate 
agretope inefficiency and as well the mutant agretope inefficiency on docking A*02:07 pit 
structure for CMI induction after latent infection stage. On the opposite case, the NLMP1 
epitope-oriented immune evasion may simply be successful merely in a short term manner 
due to the innate adaptive variation mechanism of BCR and TCR genes within proliferative 
lymphocytes towards selecting affinity maturation for efficient immune removal while 
comparing to the less efficiency on innate adaptive variation of HLA1 genes.  

Specifically, it is likely that the ethnic difference between A*02:07 and A*02:01 pit 
structures on docking NLMP1np structures does render the host cell of A*02:07 genetic 
background with survival advantage for negative selection from efficient CMI removal as of 
immune evasion especially until latent infection stage with merely NLMP1 and EBNA 
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expression and whereas without survival advantage for negative selection from efficient AMI 
removal while during regular infection stage with many viral envelop proteins expressed on 
host cell membrane. Subsequently, it is likely that the survival advantage for negative 
selection favors NLMP1np agretope mutants of further less efficient binding onto A*02:07 
pit structure in which may render the host cell even greater ability of immune evasion from 
efficient CMI removal.  

Our proposed remedy of Ama and Ace candidates for abolishing the suggested immune 
evasion on reverting the NLMP1 agretope inefficiency on docking A*02:07 pit structure may 
likely be the practical applications of in vitro DNA vaccine and in vivo twin adhesive. 
Detailed computational study may need to be done with preliminary Ace drugs as of true 
positive cases on agretope complexes in order for verifying the complete exclusion on being 
intermediate complex enhancer (Ice) as of false negative cases along the antigen presentation 
pathway of class I MHC pertaining to intermediate complexes exemplified with calnexin and 
Tapasin and so forth. Meanwhile, the Ama and Ace candidates either in respective or cocktail 
format may subsequently be verified in same A*02:07 genetic background with in vitro 
mixed lymphocyte reaction (MLR) of Th cells, Tc cells, and host cells transfected with in 
vitro DNA vaccine of NLMP1np Ama candidates in order for analyzing CTL activity without 
or with treatment of Ace candidates.  

Interestingly, the Ace candidates from available DrugBank chemicals of 1,435 
FDA-approved drugs towards potential clinical indications have come out to be in general 
classes of Histamine-2 receptor antagonist (H2-blocker) and anti-HBV drug Entecavir with 
literature reports showing CMI enhancement effects for cancer therapy supplements. Notably, 
the clinical indication of Entecavir for improving histological inflammation on treating HBV 
chronic infection may be with subtle supportive linking with our initiative exploration in 
recent progress which is to investigate whether or not that Entecavir may enhance HBeAg 
agretope binding to HLA1 for improved HBeAg-CMI efficiency towards reducing chronic 
infection and as well may in turn assist HLA1 in abolishing immune evasion of HBeAg 
agretope towards reducing HBV HCC oncogenesis potential as of the common remedy 
similarly proposed on EBV NPC case.  

 
We summarize the results of previous chapters in the following sections. 

7.1  Summary 

In this dissertation, we try to apply structural bioinformatics in NPC immunotherapy. NPC is 
strongly related with EBV, so we mainly focus on EBV-related immune responses.  
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In the chapter 1 of this dissertation, we reviewed the carcinogenesis of NPC and 
EBV-related immune response, and problems of immunotherapy. We try to solve them by 
structural immunoinformatics.  
 

In the chapter 2 of this dissertation, we developed a block feature definition system for 
describing protein structures. Followed the concept of structure alphabet, we extract the 
structural information from protein structures and identified 22 states of the structural 
alphabet that represent pattern profiles of the backbone fragments based on our block feature 
definition. Basic structural immunoinformatic databases were then constructed, such as 5mers 
fragment library and TPSS. Several tools are also developed for peptide block manipulation. 

 
In chapter 3, we proposed a method named bmPDA for peptide block assembly and 

developed an algorithm for peptide block modeling by genetic algorithm. Epitopes with 
known structure of HLA A*0201 were collected from IEDB(Immune Epitope Database) and 
PDB databases. Peptide structures predicted by our bmPDA method were compared with the 
actual structures from PDB. Alignment was done by Superpose and RMSD score was 
calculated. The result is good compare to the result of other short peptide structure prediction 
server. After prediction of peptide structure from sequence was done, we extract the structural 
information from predicted structures as structure alphabet and build a QSAR model for 
epitope prediction by using SVR. ROC analysis revealed our QSAR-SVR model is 
comparable with the best sequence-based epitope prediction server NetCTL. 

 
In chapter 4, we develop a method called “bio-mimicry peptide design“. Follow the 

concept of inverse folding search, we develop an approach to find possible sequence 
combinations mimicking target structure. Evaluation on the structure similarity with target 
peptide, physiochemical property, and structure stability of predicted solutions were done for 
finding better potential candidates. We exemplify our method on two targets: vasopressin and 
a monoclonal antibody TMB-355.  

 
In chapter 5, we applied the above structural immunoinformatic approaches for 

nasopharyngeal carcinoma (NPC) vaccine design. NPC is a common malignancy in southern 
China, Hong Kong, and south-east Asia countries including Taiwan, Singapore, Malaysia, 
Indonesia, and Vietnam. It is strongly associated with Epstein-Barr virus (EBV). 
Immunotherapy for NPC is currently focusing on the tumor-associated antigens called LMP1 
and LMP2. However, poor antigenecity of LMP1/LMP2 limited the efficacy of EBV vaccine 
in NPC immunotherapy. We predicted the structure of every possible epitopes of 
LMP1/LMP2 from sequence, docked them with MHC-I HLA A*0201 molecule, and compare 
the docking result with predicted antigenecity of LMP1/LMP2 from NetCTL and 
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SYFPEITHI prediction servers. Epitopes with better performance of antigenecity were 
collected as candidates for polyepitope regimen. According to the preference observation on 
known epitopes, residues on specific position of the candidate epitopes were modified to 
become epitopes with even better antigenecity. Agretope performance was evaluated by 
binding affinity prediction from docking with MHC receptor. We collected epitopes with 
better performance on epitope and agretope to be candidates of polyepitope regimen on NPC 
immunotherapy.  

 
In chapter 6, we collected approved drugs from DrugBank. Virtual screening was done 

by docking with MHC receptor. Drugs with better binding affinity with MHC receptor were 
collected as possible candidate for adjuvant immunotherapy. Epitopes with better 
performance of antigenecity were collected by the same procedure in chapter 5. Epitope 
structure prediction was done by modeling method in chapter 3. MHC receptor and candidate 
drugs were docked with candidate epitopes. Drugs which could enhance the binding affinity 
between epitope and MHC receptor were identified. We suggest drugs with ACE (action site 
enhancement) to be adjuvant immunotherapy for NPC. 
 

7.2  Future Works 

Our peptide modeling method is based on genetic algorithm and bmPDA block assembly 
method. The performance is good locally but not so good in large molecules. Application on 
the structure prediction of epitopes is perfect, because they are consisted of about 8-12 amino 
acids. But if we want apply our method on structure prediction of large proteins, the impact 
of protein folding still need to be considered.  
 

Despite the good accuracy of our QSAR-SVR epitope prediction method, the 
time-consuming peptide modeling process was the rate-determine step in our method. The 
block picking process during genetic algorithm may be speedup by block clustering. 

Docking is a time-consuming process. Compare to other docking software, the Molegro 
Virtual Docker is more accurate and fast. However, if there is a faster and accurate docking 
software, the process can still be speed-up. 

 
There are several directions for future research: 
1. More peptide Segment sizes: Our epitope modeling method is limited to predict 9mers 

peptides till now. It can be applied to prediction on arbitrary length of protein. However, 
accuracy is still our concern. 
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2. Structure clustering on FluV neutralization epitopes and predictive immune evasions on 
FluV neutralization epitope 

3. Extend the viral oncogenesis model of HLA1 immune evasion at agretope on 
miscellaneous viruses such as HBeAg 
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