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中文摘要

在這份論文中，我們研究使用者在多個正交頻率通道環境下之分

散式無線隨意網路中的效能，並提出合適的隨機接取策略。在這類問

題中，無線網路的空間分布特性通常是被忽略的；而我們透過來自隨

機幾何理論的數學工具，對於這樣的問題推導出了其效能指標的解析

解。藉由賽局理論的觀點，我們建構了具有利己特性、在網路中共享

頻譜資源之使用者的互動模型；並且，我們將這樣情境下的效能結果，

與當網路中具有一特定中央控管者或是當使用者具有合作性時之效能

解析解進行比較。此外，我們也對利用通道旁消息於接取決策之影響

進行探討。其中，我們發現若傳送端擁有通道狀態資訊，通道的多樣

性可以被利用，並將有助於使用者效能之提升；但是，當使用者的密

度高，並且使用者知道所有通道的可用性時，效能反而會因此降低，

也就是產生了類似布雷斯悖論的現象。最後，我們提出幾個能更進一

步提升網路效能的機制。藉著利用時域上的資源，我們提出一個接取

控制方法以減輕高使用者密度時的干擾問題。另一方面，在無線電裝

置具有同時接取多個通道的能力、並使用者密度低時，可透過最大比

率合成來利用頻率之多樣性以增進效能。

關鍵詞: 多通道、隨機接取、無線隨意網路、隨機幾何、賽局理論、通

道旁消息。
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Abstract

In this thesis, we study the performance of and devise appropriate

random access strategies for users in a decentralized wireless ad hoc

network operating on multiple orthogonal frequency channels. The spa-

tial factor of such problems which is still lack of study is considered

with the help of tools from stochastic geometry, from which we derived

closed-form expressions for performance metric. The interactions be-

tween selfish users sharing the radio resources are modeled with a game-

theoretic point of view, and the performance are compared with that

in the case when there’s a central entity or when the users are coop-

erative, where we also provide explicit characterizations. The impacts

of utilizing channel side information when making access decisions are

also explored, where with local channel state information (CSI) available

at the transmitter, channel diversity can be exploited and user perfor-

mance can be improved; but when channel availability information are

known by users, a Braess-like paradox, where when more information

is provided the performance however degrades, can occur when the user

density of the network is high. Finally, mechanisms that may further im-

prove the network performance are introduced. Taking advantage of the

time domain resource, an access barring method is proposed to alleviate

the interference problem with high user density. On the other hand,

frequency diversity can be exploited at low user density with Maximal

iv



Ratio Combining (MRC) to improve the performance when the radio

devices are capable of accessing multiple channels simultaneously.

Keywords: Multiple channels, random access, wireless ad hoc networks,

stochastic geometry, game theory, channel side information.
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Chapter 1

Introduction

1.1 Preface

In broadband wireless networks where multiple orthogonal frequency channels

are available for operation, it becomes a critical issue that radio devices choose

suitable communication parameters to best utilize the resources of the network.

This is a specifically important problem with spectrum-agile radios. Empowered by

software-defined radio technologies such as Cognitive Radios (CR) [3], devices are

able to dynamically tune to different frequency channels for channel access in a more

intelligent manner. Since different frequency channels may provide different channel

qualities, which would lead to different throughput experienced by a user, the choice

of frequency channel for data transmission will highly affect the performance of

communication. Thus, a user in the network should make channel selection decisions

properly based on the knowledge of the spectrum environment.

However, since the wireless channel is a shared medium, the performance of com-

munication a user experience is not only determined by the access decisions of itself,

but the influences caused by of sharing spectrum resources with other users in the

network should also be taken into consideration. In particular, when there are other

users performing data transmission in the same channel, co-channel interference

may lead to a substantial degradation of the spectrum performance. Therefore,

there is an inevitable concern on the impact of the interactions among the users
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in the network. Furthermore, in ad hoc networks where centralized coordination

is not possible and each user makes decisions autonomously according to their own

objectives, the medium access strategy taken by a user needs to be carefully devised.

Due to the distributed nature of wireless ad hoc networks, the spatial distribution

of devices/users is an important factor that might affect the network performance.

Many studies on medium access has either ignored or simplified the assumptions for

these aspects in small or local networks. However, for large scale wireless ad hoc

networks, they can no longer be ignored.

In the following we first give a brief review of previous works to demonstrate the

motivation of our work.

1.2 Background study

1.2.1 Traditional random access

Since 1970, when the landmark work by Abramson [4] was proposed to enable the

distributed sharing of a common communication medium by a large amount of users

with a simple protocol – ALOHA. There has been a tremendous amount of study on

random access, where the performance and properties of ALOHA and its improved

version – slotted ALOHA [5, 6] were of specific interest. It is of special concern on

their performance with some given data traffic of users, and the interactions between

and the dynamics of traffic intensity and the corresponding throughput. Analysis

with simplified assumptions can be found in [7], in which an infinite number of users

without buffering are considered, and the stability of slotted ALOHA were studied

in more realistic assumptions with queueing theoretic analysis in [8–10]. In spite

of the simplicity of the slotted ALOHA protocol, its queueing analysis turns out

to be a extremely difficult task due to the complexity of interactions among the

queues [11, 12]. Another line of study is the throughput region of random-access,

defined to be the set of all achievable long-term average rate that can be obtained

by varying access probabilities [13], and was fully characterized in [14].
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1.2.2 Random access in wireless ad hoc networks

Spatial reuse is a key feature in spatially distributed network say, wireless ad

hoc networks [15]. System throughput may be enhanced by allowing simultaneous

data transmissions at different locations of the network. By the distributed nature

of wireless ad hoc networks, the probabilistic reception due to wireless channel and

the spatial distribution of users cannot be ignored. However, most of the studies

of random access mentioned in the previous section did not take these aspects into

consideration. Most of the works assumed a simplified collision channel model, in

which any simultaneous transmission leads to a failure of reception. Furthermore,

they mainly considered or implicitly assumed a star topology, where all users want

to access a single base station or access point. These assumptions and scenarios

obviously does not fit into the case for wireless ad hoc networks.

The study of slotted ALOHA with multipacket reception (MPR), which includes

capture models, was introduced in [12, 16]. By such a model, the effects of prob-

abilistic receptions in wireless channels are captured. However, the models they

considered are still based on a star topology and do not take the spatial distribution

of users into consideration. The results on throughput region by [14] was extended

to a general topology in [13]. With an graph-based model of interfering links, the

model in [13] somehow studied the spatial separation of nodes in the sense that only

links with an edge between the corresponding nodes in the interference graph has

the chance to interact. However, such graph based model is still simplistic since

transmission of signals over wireless channels actually make all the transmitting

links interact by the interference they imposed. Thus, there is a need for a more

precise modeling for the spatial distribution of wireless ad hoc networks.
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1.2.3 Spatial analysis of random access with stochastic ge-

ometry

Stochastic geometry [17,18] provides a general model for the study of spatial dis-

tribution of nodes in wireless networks. By considering the interference imposed by

the active transmitters in the network, the performance of users (outage/through-

put, etc.) in the network can be characterized and in some cases with a closed

form expression, giving insights to the design and analysis of medium access proto-

cols [19, 20] for networks that are spatially distributed.

In [21], a spatial reuse ALOHA (SR-ALOHA) protocol was introduced, and the

study was extended in [20]. The protocol is very simple that a coin is tossed by each

user and it accesses the channel if it gets heads. The bias of the coin is optimized so

that the best performance of the network could be obtained. Despite its simplicity,

the protocol captures how the best spatial reuse can be achieved by considering spa-

tially distributed users and by introducing novel closed form expressions for spatial

averages (e.g. outage, throughput).

The studies in [20,21] are closely related to the concept of transmission capacity

in [22], which is defined as the number of successful transmissions taking place in

the network per unit area subjecting to a constraint on outage probability. By

studying the transmission capacity, some important performance indicators of a

MAC protocol such as throughput and area spectral efficiency can be captured.

In fact, as pointed out in [22], the transmission capacity is in fact the MAC layer

throughput of a wireless network under ALOHA subject to an outage probability

constraint.

However, it should be noted that most works studied with stochastic geometry

are focused on scenarios with only a single channel [20, 23, 24]. In [25], multiple

channels are considered with respect to transmission capacity. Nonetheless, the

work of [25] focused on how many sub-bands a certain total system bandwidth

should be partitioned into such that the transmission capacity is maximized, but

not how a given number of channels should be accessed appropriately.
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1.2.4 Multi-channel random access in wireless networks

As mentioned earlier, in modern broadband wireless networks where multiple

orthogonal frequency channels are available, it is of utter importance on the proper

access of the channels. As identified in [26], two major challenges of multi-channel

MAC lies in channel selection and collision avoidance/resolution [27] by distributed

users in the network which are discussed in the following.

The problems of channel selection in multi-channel MAC is about choosing suit-

able channel by the transmitter/receiver for data transmission. Practical issues and

algorithms for channel negotiation between transmitters and receivers can be found

in [28–30] and the references therein.

Recently, the study of choosing proper frequency channel for channel access has

been extended and has attracted tremendous attention in the context of Dynamic

Spectrum Access (DSA) [31–36]. In [31], a Partially Observable Markov Decision

Process (POMDP) framework was proposed for the sensing and access strategies of

device in decentralized ad hoc networks. The POMDP framework exploits the time-

domain knowledge of the spectrum environment so that channel selection decisions

are made to maximize the long-term performance, but the model did not explicitly

take the multiuser environment into consideration, which is every important in a

netowrk. In [32], access strategies in the presence of multiple user competition are

studied along with tools in classical bandit problems. However, the restriction that

users impose equal impact on each other due to a complete contention relationship

ignores the important factor of the spatial distribution of network devices. Partial

interfering relationship between network devices was treated in [33] with a graph

model. But still, the assumption of a simplified collision model of transmission in

the works above makes it unrealistic in wireless environment where interference from

other users goes through path loss and effects of channel fading which jointly affects

the performance of wireless transmissions.

As for collision avoidance/resolution, we should recall that the fundamental prob-

lem of MAC is to reduce the impact of collisions over the shared medium. In [27],
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a generalized tree expansion structure was proposed for a centralized network. The

collision resolution tree expansion (CRTE) is for handling collisions, while the colli-

sion anticipation tree expansion (CATE) is for splitting the contending users. Some

solutions such as the RAP family [37,38] had been proposed for centralized networks

with star topologies and the key idea lying behind is how the users are split into

groups to avoid/resolve contention.

1.2.5 User interactions in random access with game theory

In wireless networks, the users may be closely related to each other in the decision

they make and the performance they can achieve. The actions. Game theory has

been applied to study the strategic interaction of users with random access in wireless

networks in [39–41]. Selfish behaviors and their resulting performance are studied

at the Nash equilibria. However, in these works, the network models considered

are with a single channel only, and the spatial distribution of nodes are not well

characterized. In [42], the authors considered the spatial distribution of nodes with

stochastic geometry and the interaction between users with game theory. Pricing

are used in order to let the selfish users achieve the socially optimal performance.

However, the issue of how appropriate access strategy should be devised when there

are multiple channels was not taken care of.

1.2.6 Channel-aware random access

Another issue in wireless ad hoc network with random access is the impact

of some channel side information in the process of channel access decision-making

[40, 41, 43, 44]. By exploiting local channel state information (CSI), [44] proposed a

decentralized joint physical-MAC layer optimization that exploits multiuser diversity

in multi-channel wireless ad hoc networks. The network model considered in [44]

is however based on a simplified graphical collision model, where some important

factors such as interference in the network are not completely characterized. In

[40, 41], the interaction between users with CSI are considered with game theory,
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and it was found in [41] that the extra information of CSI may however degrades the

performance. Nonetheless, the network they consider are with a single channel only

and do not take multi-channel into consideration. And still, the aspects of spatial

distribution of nodes are lack of precise characterization.

1.3 Motivation and goal of thesis

As can be seen in the previous section, there has been a lot of works in the liter-

ature on multi-channel random access, interactions between users with game theory

and the spatial aspects of wireless networks with stochastic geometry. However, to

the best of our knowledge, there has not yet been a joint consideration of all the

aspects listed below:

• Multi-channel random access taking the channel qualities/characteristics into

consideration in channel selection.

• Game-theoretic modeling of the interactions of users in the network for con-

tention of resources and the corresponding performance analysis.

• Characterization of the spatially distributed nature of wireless ad hoc net-

work with stochastic geometry and the interaction of users in the sense of the

interference they cause imposed on each other.

The main focus of this thesis is to take all the aspects listed above into consid-

eration. We analyze the behaviors of and devise proper channel access strategies

for users in multi-channel wireless ad hoc networks. With the help of tools from

stochastic geometry, we incorporate important spatial aspects of wireless networks

such as path loss and channel fading that governs the performance of a wireless

transmission. In addition, a game-theoretic point of view, which provides a good

modeling framework for the study of interactions between decentralized competing

users of network resources, is proposed to suggest the users of suitable channel se-

lection strategies. The case where there is a central entity controlling the users or

7



when the users are cooperative is also discussed, and the results are compared to

those with the game-theoretic solution.

Then, the impact of some channel side information is examined, and the best

strategy for channel access with such information is devised along with the corre-

sponding performance comparisons. Finally, we identify and examine mechanisms

that may further improve the performance of the network. On one hand, for that

with the growing density of network devices, the interference-limited nature of net-

work will highly degrades the channel; we propose a access barring method that

exploits the time domain resource by which the throughput of the users can be

substantially improved. On the other hand, when the users have the capability of

accessing multiple channels simultaneously, frequency diversity of the channels is

exploited with Maximal Ratio Combining (MRC) to increase the throughput per-

formance.
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Chapter 2

Preliminaries

2.1 Poisson Point Process

2.1.1 Stationary PPP

A stationary Poisson point process (PPP) [19] with density λ is characterised by the

following properties

• The number of points in a set A ⊂ R2 with area |A| is a Poisson random

variable with mean λ|A|. That is,

Pr (�(A) = k) =
(λ|A|)k

k!
e−λ|A| (2.1)

where �(A) denotes the number of points in A.

• The number of points in disjoint sets are independent.

Throughout this work, we use Ψ = {Xi} to denote the locations of (possibly a subset

of) nodes in a network and Π(λ) to denote a stationary PPP with density λ. With

Ψ = Π(λ), we mean that the nodes specified by Ψ are distributed according to Π(λ).
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2.1.2 Poisson shot noise process

The Poisson shot noise [19] is defined as

I =
∑

Xi∈Π(λ)

HiP |Xi|−α (2.2)

where Hi is a random variable and P is a constant. The Poisson shot noise process

can be used to model the interference received at a node in the network, where P

represents the transmission power and Hi represents the channel fading coefficient.

The Laplace transform of I, is defined and could be obtained as

L{I} , E[e−sI ] = exp
(
−λπP δE[Hδ

i ]Γ(1− δ)sδ
)

(2.3)

where δ , 2
α

and Γ(z) =
∫∞
0

tz−1d−tdt is the Gamma function.

The probability density function (pdf) and cumulative distribution function (cdf)

of I has a closed form expression for a specific case where α = 4 (i.e. δ = 1
2
), where

I has a Lévy distribution with parameter γ = 1
2
λ2π3P

(
E[H

1
2
i ]
)2

[22], pdf

fI(x) =

√
γ

2π

e−
γ
2x

x
3
2

(2.4)

and cdf

FI(x) = erfc
(√

γ

2π

)
(2.5)

where erfc(s) = 2√
π

∫∞
s

exp(−t2)dt is the standard complementary error function.

When Hi is exponentially distributed with mean m which corresponds to the impor-

tant case with Rayleigh fading, we have E[H
1
2
i ] =

√
mπ
2

, and I is then Lévy-distributed

with γ = 1
8
λ2π4mP . Specifically, the cdf of I is given by

FI(x) = erfc
(
λπ2P

1
2m

1
2

4x
1
2

)
(2.6)
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2.1.3 The thinning of a PPP

Consider a set {Ψ(pi)}Ki=1 of K point processes obtained from assigning each

point in Π(λ) to Ψ(pi) independently with probability pi such that
∑K

i=1 pi = 1 (i.e.

thinning [19]). We will have each of the resulting point processes in {Ψ(pi)}Ki=1 a

PPP with density µi , piλ independent of other point processes in the set. That is,

we have Ψ(p(i)) = Π(piλ).

2.2 Performance metrics of MAC with spatial con-

siderations

In this section, we brief some performance metrics that has been proposed in

the literature concerning the spatially distributed nature of wireless networks with

stochastic geometry.

In [45], the notion of transmission capacity is proposed for analysing the perfor-

mance of MAC protocols in spatially distributed wireless ad hoc networks. Funda-

mentally, the transmission capacity captures the area spectral efficiency, reliability,

and throughput of a random access protocol. We start by giving some assumptions

and definitions about transmission capacity, which can be found in detail in [22]:

1. The network is considered with a single snapshot.

2. The network consists of transmitter-receiver pairs. A transmitter and its de-

sired receiver are with a fixed distance r from each other.

3. Each receiver treats interference as noise. The rate of a transmitter-receiver

pair is given by the Shannon capacity.

4. The transmitters form a homogeneous PPP in the R2 plane.

5. Every transmitter decides independently whether to transmit with a common

probability ptx.

Given the assumptions above, we give the notion of outage probability.
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Definition 1 (Outage probability, [22]). The outage probability of a transmitter in

the network is defined as

ν , Pr (log2 (1 + SINR) < R) (2.7)

where R is the information rate of the transmitter-receiver pair and SINR is the

signal-to-interference-ratio at the receiver.

It can be easily seen that the outage probability is dependent on the density of

active transmitters in the network due to interference. Thus, we denote the outage

probability with density of active transmitters in the network being λ as ν(λ).

As for the performance of slotted ALOHA in a system perspective, we have the

following definition for MAC layer throughput.

Definition 2 (MAC layer throughput, [22]). The MAC layer throughput of a wireless

network with slotted ALOHA, where the active transmitters form a PPP with density

λ is

Λ(λ) , λ(1− ν(λ)) (2.8)

The MAC layer throughput is with units of successful transmission per unit area,

and captures the efficiency of a random access protocol in a spatial context as for a

system perspective.

The transmission capacity is then defined in the following.

Definition 3 (Transmission capacity, [22]). The transmission capacity of the net-

work is defined as the maximum spatial density of successful transmissions subject

to an outage probability constraint ν∗. That is,

TC(ν∗) , ν−1(ν∗)(1− ν∗) (2.9)

Note that ν−1(ν∗) is the density of transmitter that can make the outage con-

straint ν∗ satisfied.
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There is a close relationship between transmission capacity and the MAC layer

throughput. In fact, the transmission capacity is the MAC layer throughput maxi-

mization constrained on the outage probability, as was shown in [22]. Specifically,

we have TC(ν∗) = λ∗, where λ∗ solves the following optimization problem:

max
λ

λ(1− ν(λ))

s. t. ν(λ) ≤ ν∗

Another line of study of the performance with spatial aspects of wireless network

is the transport capacity as introduced in the seminal work by Gupta and Kumar [46].

Defined as the maximum distance-weighted sum rate of communication over all pairs

of nodes, transport capacity optimizes all scheduling and routing protocols and the

focus is on the how the sum rate scales asymptotically in the number of nodes [22].

In spite of its generality, the results provided by scaling laws [47] are less specific

about the merit of a MAC protocol. Still another line of study is of an information-

theoretic approach, which is well summarized in [48]. However, it is more suitable

for the study of small isolated networks [22].

2.3 Game theory and decision making

Game theory is a set of tools that can be used to help us understand the phenom-

ena we might observe in the interaction between multiple decision makers. In the

following, we state some simplified concepts and results in traditional game theory

that might be used in this work.

A game is a model that describes the interactions between some decision makers,

called players. Each player in a game make their own decision, called action. We

can represent the set of N players by a set N = {1, 2, · · · , N}, and the set from

which a player i ∈ N choose its action by Ai. A collection of actions of the players

a = (a1, a2, · · · , aN) is called an action profile, and is also referred to as an outcome.

Associated with each player i ∈ N , a utility function ui : A → R describes the
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preferential relation of the outcomes of a game, where A = A1 × A2 × · · · × AN is

the set of outcomes. A higher utility suggests a higher preference of a user to the

outcome, and here we consider rational players that each of them take actions with

the purpose of maximizing their own utilities. In summary, we have:

Definition 4. A game, denoted by the triple ⟨N , (Ai), (ui)⟩, consists of the following

basic elements:

• A finite set N = {1, 2, · · · , N} of N players (decision makers).

• A nonempty set of actions (possible decisions) Ai for each player i ∈ N .

• Associated with each player i ∈ N , a utility function ui : A → R.

Let a−i denote the action profile of players other than i. The notion of a Nash

equilibrium describes a steady state outcome of a game in which players make ra-

tional decisions. More specifically, we have the following definitions.

Definition 5. An action profile a∗ = (a∗1, a
∗
2, · · · , a∗N) ∈ A is a Nash equilibrium if

for any player i ∈ N ,

ui

(
a∗i , a

∗
−i

)
≥ ui

(
ai, a

∗
−i

)
for all ai ∈ Ai (2.10)

We now introduce the notion of mixed strategies, where the players play their

actions in a probabilistic manner.

Definition 6. Consider the game ⟨N , (Ai), (ui)⟩. Suppose Ai = {s(i)1 , s
(i)
2 , · · · , s(i)K }.

Then a mixed strategy for a player i is a probability distribution p(i) = (p
(i)
s1 , p

(i)
s2 , · · · , p

(i)
sK )

over the action set Ai, where 0 ≤ p
(i)
k ≤ 1 for k = 1, 2, · · · , K and

∑K
j=1 p

(i)
j = 1.

A mixed strategy profile p = (p(1), · · · , p(K)) is a collection of mixed strategies of the

players.

The utility function of player i with players using mixed strategies can then be

14



defined as

Ui

(
p(i), p(−i)

)
=
∑
a∈A

(∏
j∈N

p(j)aj

)
ui (a) (2.11)

where p(−i) denotes the mixed strategies adopted by players other than i.

Now, we can define the Nash equilibrium associated with mixed strategies.

Definition 7. A mixed strategy profile p∗ is a mixed strategy Nash equilibrium if for

any user i ∈ N ,

Ui

(
p∗(i), p∗(−i)

)
≥ Ui

(
p(i), p∗(−i)

)
for all p(i) ∈ △(Ai) (2.12)

where △(Ai) is the set of all probability distributions over Ai.

The following lemma will be useful in this work in solving for a Nash equilibrium

of a game.

Lemma 1 ( [49], Lemma 33.2). A mixed strategy profile is a mixed strategy Nash

equilibrium of a finite game if and only if for each player it is indifferent between the

actions in the support of the equilibrium, where the support is defined as the set of

actions which are assigned non-zero probabilities by its mixed strategy in the mixed

strategy profile.

By Lemma 1, we have that p∗ is a mixed strategy Nash equilibrium if for any

player i ∈ N

Ui

(
aj, p

∗(−i)
)
= Ui

(
aj′ , p

∗(−i)
)
, ∀aj, aj′ ∈ Ai, paj , paj′ ̸= 0 (2.13)

where we have defined Ui

(
aj, p

(−i)
)

as the utility obtained by user i when it use the

mixed strategy p
(i)
aj = 1 and p

(i)
aj′ = 0 for aj ̸= aj′ ∈ Ai.
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Chapter 3

System Model

3.1 Network topology and channel model

We consider a wireless ad hoc network in which the transmitters (which we will

also call “users”) are distributed with locations specified by a homogeneous Poisson

Point Process (PPP) with density λ on the 2-D plane. With Ψ = {Xi} denoting the

locations of the transmitters, we have Ψ = Π(λ). We assume that each transmitter

transmits with power P to the its target receiver of distance r away.

Assume the network operates on K frequency channels with equal bandwidth,

denoted by the set K = {1, 2, ..., K}. A channel k ∈ K can be either available for

channel access or not, and a user can utilize a channel for transmission only if the

channel is available. Let Ak denote the indicator variable if channel k is available

Ak =


1, channel k is available

0, o.w.,
(3.1)

and we assume that Ak ∼ Bernoulli(θk), where θk is called the channel available

probability. If we have θk = 1 ∀k ∈ K, this corresponds to traditional random access.

When the channel availability probabilities of different channels are different, it fits

the scenario of Cognitive Radio Networks (CRN) [50] where secondary users (SUs)
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do spectrum sensing1 to identify the state of a licensed channel and access only if the

channel is sensed to be free of primary users where the channel available probability

θk can be considered as the probability of presence of primary users. We assume

that 0 < θk ≤ 1 for that it would be trivial to consider a channel with zero available

probability.

 ݎ

Transmission 

on different 

channels 

Interference 

to the typical 

node 

Transmitter 

Receiver 

Figure 3.1: The locations of the transmitters in the network are distributed according
to a Poisson Point Process, and the intended receiver is of distance r away from a
transmitter. The transmitters are represented by the black dots while the receivers
are represented by the gray dots, and a typical receiver is placed at the origin.
Different colors and line-styles of the bold arrows represent transmissions in different
channels. The dashed arrows in black represent interference relationship to the
typical receiver. This is the modified multi-channel version of the network topology
in [2].

We assume the channel undergoes a general fading with fading coefficients {Hij,k},

where i and j denotes different users in the network and k is the index of correspond-
1In our work, we assume perfect spectrum sensing such that the actual spectrum availabilities

can be obtained. The issue of sensing error is out of the scope of this work.
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Figure 3.2: The network operates under a synchronized slotted structure with K

frequency channels. In each slot, a channel may be available or not, and the prob-
ability of a channel k being available is θk. Note that the available probabilities of
different channels might be different.

ing channel. We assume the fading coefficients between different users are i.i.d., but

may be non-i.i.d. over different channels. The fading coefficient Hij,k is character-

ized by its cumulative distribution function (cdf) FHij,k
(h) and probability density

function (pdf) fHij,k
(h). The channel strength is determined jointly by pathloss and

fading, i.e. the received signal power at node j due to node i at distance d away

in channel k is Hij,kd
−α, where α > 2 is the pathloss exponent. For convenience

of notation, we represent the fading coefficient of the link for the desired signal in

channel k as HS,k and that for the interference link in channel k as HI,k.
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3.2 MAC mechanism

We assume the network operates under a time-slotted and synchronized struc-

ture. Each user in the network selects one of the K frequency channels in each time

slot for channel access according to some access strategy based on its knowledge

(e.g. channel statistics) of the system . We assume the users in the network are

non-cooperative, and each of them intends to maximize its own performance metric.

In particular, we set the performance metric of a user to be the throughput, which

is defined in terms of the average number of successful channel access in a time slot

given its access strategy. A successful channel access in a time slot can occur when

the channel is both available (i.e. Ak = 1 for channel k) and the transmission in

that channel does not encounter an outage, where an outage happens if the channel

cannot support the information rate R of a transmission. That is, an outage occurs

in channel k if

log2

(
1 +

HS,kPr−α

N0 + Ik

)
< R, (3.2)

where Ik is the interference power in channel k and N0 is the power of the background

noise. Thus, the throughput in a channel k (given the user has chosen channel k for

access) can be written as

Tk = θkPr
(

log2

(
1 +

HS,kPr−α

N0 + Ik

)
≥ R

)
(3.3)

When a user adopts a probabilistic channel access strategy, say p = [p1, . . . , pK ],

such that channel k is chosen for access with probability pk, the throughput of the

user can be written as

T =
∑
k∈K

pkTk =
∑
k∈K

pkθkPr
(

log2

(
1 +

HS,kPr−α

N0 + Ik

)
≥ R

)
(3.4)

Finally, the performance in a system perspective which we call the “system

throughput” is defined by multiplying the user throughput by the network density,
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i.e. λT , which has units in successful transmission per unit area [42].

Sensing Packet transmission 

Slot ݐ Slot ሺݐ ൅ ͳሻ Slot ሺݐ െ ͳሻ 

Figure 3.3: A user performs sensing at the beginning of a slot to acquire the avail-
ability of a channel, and it can perform channel access and packet transmission on
a channel only when it is available.
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3.3 General forms of the performance metric with

stochastic geometry

Given the definition in (3.3), we can see that the throughput in channel k is

determined jointly by the channel available probability θk, and the statistics of

the desired signal power, HS,k, and the statistics of the interference power Ik. By

considering a typical user2 where its receiver is centered at the origin of the network,

we can derive the throughput in channel k with tools and techniques from stochastic

geometry.

The interference power Ik seen by the typical receiver is the sum of the signal

power from the other transmitters in the network attenuated by path loss and chan-

nel fading. By letting Ψk denote the set of nodes in Ψ taking transmission in channel

k, we have Ik =
∑

Xi∈Ψk
Hi0,kP |Xi|−α, where Hi0,k is the fading coefficient of node i

to the typical receiver. If the users in Ψ adopts a channel access strategy such that

channel k is chosen for access with probability pk, we then have by the thinning

property of PPP that Ψk = Π(pkλ). The general expression for the throughput in

channel k can the be obtained in the following theorem.

Theorem 1. Given the channel access strategy that a channel k is selected with

probability pk by the users in Ψ = Π(λ), the throughput in channel k is

Tk = θk

∫ ∞

−∞
exp(−ϕN0t)

· exp
(
−pkλπr2(2R − 1)δE[Hδ

I,k]Γ(1− δ)tδ
)
h̃S,k(t)dt (3.5)

where

ϕ , (2R − 1)P−1rα (3.6)

and h̃S,k(t) is the inverse Laplace transform of the complementary cumulative dis-

tribution function (ccdf) of the of the fading coefficient HS,k for the desired signal in
2By Slivnyak’s theorem [17], the performance perceived by the typical pair of transmitter and

receiver represents that of the node-average performance in the network [2].
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channel k.

Proof. With the thinning property of PPP, we have

Ik =
∑

Xi∈Π(pkλ)

Hi0,kP |Xi|−α

By the definition in (3.3), we have

Tk = θkPr
(

log2

(
1 +

HS,kPr−α

N0 + Ik

)
≥ R

)
= θkPr

(
HS,k ≥ (2R − 1)P−1rα(N0 + Ik)

)
(a)
= θkE

[∫ ∞

−∞
exp

(
−(2R − 1)P−1rα(N0 + Ik)t

)
h̃S,k(t)dt

]
= θk

∫ ∞

−∞
exp

(
−(2R − 1)P−1rαN0t

)
E
[
exp

(
−(2R − 1)P−1rαIkt

)]
h̃S,k(t)dt

(b)
= θk

∫ ∞

−∞
exp

(
−(2R − 1)P−1rαN0t

)
· exp

(
−pkλπr2(2R − 1)δE[Hδ

I,k]Γ(1− δ)tδ
)
h̃S,k(t)dt

where (a) follows by using

Pr (HS,k ≥ s) =

∫ ∞

−∞
e−sth̃S,k(t)dt

where h̃S,k(t) = L−1{FHS,k
(s)} is the inverse Laplace transform of the ccdf FHS,k

(s)

of the fading coefficient HS,k for the desired signal in channel k. (b) follows by using

the Laplace transform of the 2D Poisson shot noise process Ik

E[e−sIk ] = exp
(
−µkπP

δE[Hδ
I,k]Γ(1− δ)sδ

)
(3.7)

where µk is the density of Ψk which is pkλ here. The results follows by letting

ϕ , (2R − 1)P−1rα for convenience of notation.

In the following and throughout the remainder of the thesis, we consider the
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case when the channels are Rayleigh faded, and in each channel k ∈ K with average

power E[HS,k] = mS,k and E[HI,k] = mI,k for the desired signal and interference

respectfully. Thus, we have E[Hδ
I,k] = mδ

I,kΓ(1+ δ), and h̃S,k(t) = δ(t−m−1
S,k), where

δ(t) is the Dirac delta function. Without loss of generality, we let mI,k = 1 and

mS,k = mk. The results are given in the following corollary.

Corollary 1. Given the assumptions as in Theorem 1, when the channel undergoes

Rayleigh fading such that E[HS,k] = mk and E[HI,k] = 1, the throughput in a channel

k is

Tk = θk exp(−ϕN0m
−1
k ) exp(−pkρm−δ

k ) (3.8)

where

ρ , λπr2(2R − 1)δΓ(1 + δ)Γ(1− δ) (3.9)

Figure 3.4 gives a plot of the user throughput Tk in channel k as given by equation

(3.8). We can see that the throughput of a user in a channel will be dependent on

the density of transmitting users in that channel pkλ, and the channel qualities mk

and θk. With better channel qualities (higher values of mk and θk), the throughput

in channel k will be higher. However, if the channel is accessed more frequently by

the users in the network (a higher value of pk), the throughput in that channel will

degrade.
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Figure 3.4: User throughput Tk in channel k versus pk.
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3.4 Remarks

3.4.1 Connections to other models

As mentioned earlier, most works on multi-channel random access ignores physi-

cal channel characteristics or spatial distribution of users and considers either graph-

based collision models that do not take into account the aggregate effect of network

or capture models (SINR capture or power capture) ignoring spatial distribution of

users in the network. Compared to previous works, we employ stochastic geometry

to characterize the aggregate effect (interference) caused by spatially distributed

users such that a more precise modeling is provided.

Some connections can be found between our model with those of previous works.

By considering the limiting case when α→∞ with the interference-limited regime

(N0 = 0), our model for successful reception reduces to the protocol model [46],

where transmission by the node Xi to node Xj over channel k is successful if

|Xk −Xj| > |Xi −Xj| = r (3.10)

for every other node Xk transmitting in channel k. That is, transmission by a typical

user in channel k is successful only when there are no other user transmitting in the

same channel within the disc of radius r centered at the desired receiver of the typical

user. This model is often used in graph-based analysis of multi-channel MAC where

corresponding interference graphs are further constructed [33].

Another connection to the traditional non-spatial random access scheme where

N users attempts to access a single receiver (base station or access point) assuming

collision channel model can also be found. In that case, the N users try to make

access through one or multiple, say K, communication channels to the receiver, and

if two or more users transmit in the same channel simultaneously, the transmissions

in that channel fails. In the following, we define the model for non-spatial multi-

channel random access with collision channels. With N users attempting to access

a common receiver through K channels as previously described and with similar
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assumptions as our model but in a non-spatial context, the access by a user in

channel k is successful if channel k is available and no other users are transmitting

in channel k. If each user chooses channel k for access with probability pk, the

expected user throughput in channel k is

T̃k = θk(1− pk)
N−1 (3.11)

The model defined above is similar to that in [32] for cognitive medium access, and

will be used later for discussion of our model in the non-spatial context.

3.4.2 On the transmitter-receiver distance

Throughout this thesis, the distance between a transmitter and its receiver is

assumed to be a fixed constant r as described in Section 3.1. In this section, we show

that how this assumption can be dropped so that the distance for each transmitter-

receiver pair is now a random variable, denoted by r̂, characterized by its pdf fr̂(r).

Consider the interference-limited regime (N0 = 0) with Rayleigh fading for sim-

plicity. With the pdf of r̂ being fr̂(r), the equation for throughput of a user in

channel k can now be derived as

Tk = θkPr
(

log2

(
1 +

HS,kP r̂−α

Ik

)
≥ R

)
= θkPr

(
HS,k ≥ (2R − 1)P−1r̂αIk

)
= θkE

[∫ ∞

−∞
exp

(
−(2R − 1)P−1r̂αIkt

)
h̃S,k(t)dt

]
= θk

∫ ∞

−∞
E
[
exp

(
−(2R − 1)P−1r̂αIkt

)]
h̃S,k(t)dt

= θk

∫ ∞

−∞
E
[
exp

(
−pkλπr̂2(2R − 1)δΓ(1 + δ)Γ(1− δ)tδ

)]
h̃S,k(t)dt

= θkE
[
exp(−pkρ̃m−δ

k r̂2)
]

= θk

∫ ∞

0

exp(−pkρ̃m−δ
k r2)fr̂(r)dr

where ρ̃ , λπ(2R − 1)δΓ(1 + δ)Γ(1− δ).
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Now, consider the scenario where the potential receivers of the network form

a PPP with density λrx denoted by Ψrx, and each transmitter in Ψ chooses the

nearest node in Ψrx as its target receiver. In this case, the cdf of the distance r̂ for

a transmitter-receiver pair can be found to be

Fr̂(r) = 1− e−λrxπr̄2 (3.12)

by considering the non-void probability of a circle with radius r with respect to a

PPP with density λrx. Thus, the pdf of r̂ is

fr̂(r) = 2πrλrxe
−λrxπr2 (3.13)

and in fact, r̂ is Rayleigh distributed with mean 1
2
√
λrx

. The throughput in channel

k now becomes3

Tk = θk

∫ ∞

0

exp(−pkρ̃m−δ
k r2)2πrλrxe

−λrxπr2dr

= 2πλrxθk

∫ ∞

0

re−r2(λrxπ+pkρ̃m
−δ
k )dr

=
λrxπθk

λrxπ + pkρ̃m
−δ
k

=
θk

1 + pk
λ
λrx

(2R − 1)δΓ(1 + δ)Γ(1− δ)m−δ
k

(3.14)

where we have used the integral
∫∞
0

xe−ax2
dx = 1

2a
. Analysis of access strategies can

thus be made.

3Note that we have implicitly assumed that each receiver is capable of receiving more than
one number of transmissions at the same time for two or more transmitters may choose the same
receiver with this model. More discussions on such assumption can be found in [20] and is not our
focus here.

27



Chapter 4

Multi-channel Random Access

Without Channel Side Information

In this chapter, we consider multi-channel random access without channel side

information (more precisely, channel state information and channel availability),

which will be treated in the next chapter. We devise the optimal access strategy

for the uncoordinated users of the network using a game-theoretic point of view. In

addition, we characterizes the optimal access strategy and its corresponding perfor-

mance when there’s a central entity available. Finally, we apply our results to some

special cases, and discuss about their performance which gives some insights to the

designs of different networks.

4.1 Game theoretic design of access strategy

According to the medium access mechanism described in Section 3.2, a user

chooses among the K channels for access with a strategy intended to maximize its

own performance metric. Intuitively, a user can achieve this goal if it chooses the

channel k with the highest available probability θk or with the highest mean of

channel gain mk for channel access. However, we should note that the throughput

in a channel defined in (3.3) is characterized not only by the channel available

probability or channel fading statistics, but also by the received interference power in
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that channel. If all the users naively choose the same channel with the best available

probability or best channel fading statistics for access, the chosen channels might be

crowded with users which lead to high interference and thus high outage probability,

and ultimately results in low throughput in that channel. On the contrary, choosing

a channel with a lower channel available probability or relatively worse channel

fading statistics may however result in a better performance if that channel is not

so crowded.

The main purpose here is to devise appropriate channel access strategies for the

users in the network. From the discussion above, we can see that while the users

makes channel selection decisions independently with a goal of maximizing their own

performance, each of their performance is dependent on the others’ decisions. This

leads to the formulation of a game-theoretic problem of the multi-channel random

access problem.

Specifically, by taking the users in the network as the players in a game, we have

the following multi-channel random access game. The channel selection k of a user

for channel access is the action of a player in the game, and the throughput Tk of

choosing channel k for access is the utility of the corresponding action. Without

loss of generality, we assume that a user use a mixed strategy where a channel is

chosen with a specific probability for access.

Due to the homogeneity of PPP and since each user in the network has the

same objective that its throughput be maximized, we can restrict our attention to

symmetric Nash Equilibria (SNE), in which every user would use the same mixed

strategy p∗ for channel access at the equilibrium. By considering SNE, the original

game which consists of an infinite number of users can be transformed to a equivalent

two-player game, where one player is a typical user and the other player represents

all other users in the network. We denote the utility of the typical node with mixed

strategy p′ = [p′1, . . . , p
′
K ] as U(p′,p), where p = [p1, . . . , pK ] is the mixed strategy

of all the other users. When the channels are Rayleigh faded, the utility function
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could be written according to Corollary 1 as

U(p′,p) =
∑
k∈K

p′kθk exp(−ϕN0m
−1
k ) exp(−pkρm−δ

k ) (4.1)

Since each user in the network chooses its access strategy such that its own utility

is maximized, the SNE p∗ = [p∗1, . . . , p
∗
K ] could be characterized by

U(p∗,p∗) = max
0≤p′≤1∑
k∈K p′k≤1

U(p′,p∗) (4.2)

Lemma 2. The symmetric mixed strategy Nash equilibrium p∗ of the multi-channel

random access game satisfies ∑
k∈S∗

p∗k = 1 (4.3)

where S∗ is the support of the equilibrium.

Proof. This property can be proved by contradiction. Assume that
∑

k∈S∗ p∗k < 1,

and all the users in the network other than the a typical user plays p∗, and the

typical player adopts a strategy p′ similar to p∗ except for channel i ∈ S∗ such that

p′k =


p∗k + (1−

∑
i∈S∗ p∗i ), k = i

p∗k, k ̸= i

, k ∈ K (4.4)

we would have

U(p′,p∗) =
∑
k∈S∗

p′kθk exp(−ϕN0m
−1
k ) exp(−p∗kρm−δ

k )

<
∑
k∈S∗

p∗kθk exp(−ϕN0m
−1
k ) exp(−p∗kρm−δ

k )

= U(p∗,p∗)

which leads to a contradiction to (4.2). Thus, we must have
∑

k∈S∗ p∗k = 1.

With the property in Lemma 1, we can characterize the SNE of the game and
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its corresponding performance with the following theorem.

Theorem 2. The symmetric mixed strategy Nash equilibrium p∗ of the multi-channel

random access game satisfies

p∗k =


mδ

k

ρ

(
ln θk − ϕN0m

−1
k − lnE(S∗)

)
, k ∈ S∗

0, k ∈ K \ S∗
(4.5)

where

E(S) , exp

−(∑
k∈S

mδ
k

)−1(
ρ−

∑
k∈S

mδ
k

(
ln θk − ϕN0m

−1
k

)) (4.6)

and S∗ is the support of the equilibrium. The throughput of a user at the equilibrium

is

T = U(p∗, p∗) = E(S∗) (4.7)

Proof. By Lemma 1, the user would be indifferent between the actions in the support

of the mixed strategy Nash equilibrium, which means that the utility of selecting

the channels in the support S∗ would be equalized to a same value say E. We thus

have

Tk = θk exp(−ϕN0m
−1
k ) exp(−p∗kρm−δ

k ) = E, ∀k ∈ S∗ (4.8)

By taking natural logarithm on both sides and rearranging terms, we have for k ∈ S∗,

p∗k =
mδ

k

ρ

(
ln θk − ϕN0m

−1
k − lnE

)
(4.9)

With Lemma 2, we have
∑

k∈S∗ p∗k = 1. Thus, we can obtain the constant E as

E = exp

−(∑
k∈S∗

mδ
k

)−1(
ρ−

∑
k∈S∗

mδ
k

(
ln θk − ϕN0m

−1
k

)) (4.10)
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The throughput of a user at the equilibrium p∗ is then obtained as

T = U(p∗, p∗) =
∑
k∈S∗

p∗kE = E, (4.11)

Given Theorem 2, the Nash equilibrium strategy of a user in the network and

the corresponding performance could be evaluated. By the fact that the utility of

selecting each channel k in the support S∗ (i.e. the set of channels that will be

chosen with positive probability) is equalized to E(S∗) at the equilibrium, we have

the following relationship

θk exp(−ϕN0m
−1
k ) exp(−p∗kρm−δ

k ) = E(S∗), k ∈ S∗

which can be rearranged to

− ln θk + ϕN0m
−1
k + p∗kρm

−δ
k = − lnE(S∗), k ∈ S∗

and can be explained by a water-filling concept as shown in Fig. 4.1. Each white

block corresponds to a channel, and the length and height of them are related to

the channel qualities mk and θk. The water level corresponds to the fact that the

utility for each channel in the support is equalized at the equilibrium, and the area

of the blue region above each white block is the allocation of access probability p∗k

for channel k at the equilibrium. We can thus see how the access probability of each

channel at the equilibrium is related to its channel qualities. The channels not in

the support S∗ are those whose corresponding white blocks with heights above the

water level. Note that the width of each block is also related to the density of user

λ by the definition of ρ in (3.9). As λ grows, the width of each white block shrinks,

and since the area of the blue regions sums to one (i.e.
∑

k∈S∗ p∗k = 1), the water

level also rises and more channels might then be included in the support.

The support S∗ could be obtained as described in Algorithm 1 with E(S) defined
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Figure 4.1: The water-filling concept of the game-theoretic solution at the equilib-
rium.

as in (4.6), and is explained in the following. The algorithm starts with the candidate

setM for the support which is in the beginning the set K. Finding the support S∗

is equivalent to finding which channels would be flooded along with the water-filling

concept. In the first iteration of the while loop at Step 3, the algorithm equivalently

chooses the channel that has the lowest height of white block in the water-filling

diagram. At Step 4, the chosen channel k∗ is added to the support S∗ and removed

from the candidate set M. With the current set for support S∗, Step 5 excludes

the channels that will never be chosen to be in the support for that the heights of

their corresponding white blocks are already greater than or equal to the current

water level. The while loop continues until the candidate setM is empty (i.e. when

all the K channels have been checked for eligibility to be in the support), in each

iteration adding a channel to the support and excluding channels that will never be

added.
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Algorithm 1 Computing the support of the symmetric mixed strategy Nash equi-
librium
Input: Set of all channels K = [1, . . . , K].
Output: Set of channels S∗ in the support of the Nash equilibrium.

1: S∗ ← ∅,M←K
2: while M ̸= ∅ do
3: Pick one channel k∗ ∈ arg max

i∈M
θi exp

(
−ϕN0m

−1
i

)
4: S∗ ← S∗ ∪ {k∗}, M←M\ {k∗}
5: M←M\

{
k ∈M : θk exp(−ϕN0m

−1
k ) ≤ E(S∗)

}
6: end while
7: return S∗
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4.2 Centralized optimal channel access strategy

When there’s a central entity or when all the users in the network are cooperative,

the channel selection probabilities of each user can be controlled such that network-

wide performance is optimized. In particular, we assume that the network operator is

aimed at maximizing the system throughput λT as defined in Section 3.2. Since the

density of users λ in the network is not affected by the channel selection probabilities,

the equivalent optimization problem of the central entity becomes

max
p

∑
k∈K

pkTk =
∑
k∈K

pkθk exp(−ϕN0m
−1
k ) exp(−pkρm−δ

k ) (4.12)

s. t. pk ≥ 0, k ∈ K (4.13)∑
k∈K

pk ≤ 1 (4.14)

Note that the inequality in (4.14) includes the case when a user might not access

any channel with some nonzero probability, which is not observed in the SNE of the

game in Chapter 4.1. The optimal solution of the centralized multi-channel random

access problem is obtained in the following theorem.

Theorem 3. The optimal channel access strategy of the centralized multi-channel

random access problem is

p∗k =


mδ

k

ρ
,

∑
i∈K mδ

i < ρ

mδ
k

ρ

[
1−W

(
γθ−1

k e1+ϕN0m
−1
k

)]+
,
∑

i∈K mδ
i ≥ ρ

(4.15)

where γ is the constant that satisfies
∑

i∈K p∗i = 1, W (z) is the Lambert W function

with defining equation z = W (z)eW (z), and [x]+ , max{0, x}. The corresponding
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throughput of a user with the optimal access strategy is

T =



1
ρe

∑
k∈K mδ

kθke
−ϕN0m

−1
k ,

∑
k∈K mδ

k < ρ

1

ρ

∑
k∈K

mδ
kθke

−ϕN0m
−1
k

·
[
1−W

(
γθ−1

k e1+ϕN0m
−1
k

)]+
· e

−
[
1−W

(
γθ−1

k e
1+ϕN0m

−1
k

)]+
,
∑

i∈K mδ
i ≥ ρ

(4.16)

Proof. The Karush-–Kuhn–-Tucker (KKT) conditions for optimality gives

(p∗kρm
−δ
k − 1)θk exp(−ϕN0m

−1
k ) exp(−p∗kρm−δ

k )− ξk + γ = 0, k ∈ K

ξkp
∗
k = 0, k ∈ K(∑

k∈K

p∗k − 1

)
γ = 0,

∑
k∈K

p∗k ≤ 1,

p∗k ≥ 0, k ∈ K

ξk ≥ 0, k ∈ K

γ ≥ 0

(4.17)

where ξk and γ are the KKT multipliers.

Consider first the case when
∑

k∈K pk < 1. By complementary slackness, we

have γ = 0. After solving (p∗kρm
−δ
k − 1)θk exp(−ϕN0m

−1
k ) exp(−p∗kρm−δ

k ) − ξk = 0

along with ξkp
∗
k = 0, we obtain ξk = 0 and pk =

mδ
k

ρ
for all k ∈ K. The case now

corresponds to
∑

k∈K pk =
∑

k∈K
mδ

k

ρ
< 1.

Now consider the other case when
∑

k∈K pk = 1. Noting that ξk = 0 acts as an
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slack variable, the conditions can be eliminated to

γ ≥ (1− p∗kρm
−δ
k )θk exp(−ϕN0m

−1
k ) exp(−p∗kρm−δ

k ), k ∈ K

p∗k
[
γ + (p∗kρm

−δ
k − 1)θk exp(−ϕN0m

−1
k ) exp(−p∗kρm−δ

k )
]
= 0, k ∈ K∑

k∈K

p∗k = 1,

p∗k ≥ 0, k ∈ K

γ ≥ 0

(4.18)

If γ ≥ θk exp(−ϕN0m
−1
k ), then p∗k > 0 is impossible since it would imply that

γ ≥ θk exp(−ϕN0m
−1
k )

> (1− p∗kρm
−δ
k )θk exp(−ϕN0m

−1
k ) exp(−p∗kρm−δ

k )

which violates the second condition in (4.18). Thus, we have p∗k = 0 if γ ≥

θk exp(−ϕN0m
−1
k ). If γ < θk exp(−ϕN0m

−1
k ), we must have p∗k > 0 to satisfy the

first condition in (4.18), which by the second condition implies that γ + (p∗kρm
−δ
k −

1)θk exp(−ϕN0m
−1
k ) exp(−p∗kρm−δ

k ) = 0. To solve for p∗k, we observe that

(p∗kρm
−δ
k − 1)θk exp(−ϕN0m

−1
k ) exp(−p∗kρm−δ

k ) + γ = 0

⇒(1− p∗kρm
−δ
k ) exp(1− p∗kρm

−δ
k ) = γθ−1

k exp(1 + ϕN0m
−1
k )

⇒1− p∗kρm
−δ
k = W

(
γθ−1

k exp(1 + ϕN0m
−1
k )
)

⇒p∗k =
mδ

k

ρ

[
1−W

(
γθ−1

k exp(1 + ϕN0m
−1
k )
)]

(4.19)

where in the third line we have used the fact that the equation wew = z has the

solution w = W (z) where W (z) is the Lambert W function. Therefore, we have

p∗k =


mδ

k

ρ

[
1−W

(
γθ−1

k exp(1 + ϕN0m
−1
k )
)]

, γ < θk exp(−ϕN0m
−1
k )

0, γ ≥ θk exp(−ϕN0m
−1
k )

(4.20)
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for the case, where γ is the constant such that
∑

k∈K p∗k = 1. By noting that

1−W
(
γθ−1

k exp(1 + ϕN0m
−1
k )
)
> 0⇐⇒ γ < θk exp(−ϕN0m

−1
k )

we can write

p∗k =
mδ

k

ρ

[
1−W

(
γθ−1

k exp(1 + ϕN0m
−1
k )
)]+ (4.21)

where [x]+ , max{0, x}. Note that this case corresponds to

∑
k∈K

p∗k = 1 =
∑
k∈K

mδ
k

ρ

[
1−W

(
γθ−1

k exp(1 + ϕN0m
−1
k )
)]+ ≤∑

k∈K

mδ
k

ρ

After combining the results for both cases, we have the theorem. Note that the

unique solution satisfying the KKT conditions is globally optimal for that the opti-

mization problem satisfies linear constraint qualification.

Theorem 3 gives the channel access strategy for a user with a centralized opti-

mization perspective that maximizes the system performance. Thus, by noting that

ρ , λπr2(2R−1)δΓ(1+δ)Γ(1−δ) as defined in (3.9), we can see that the centralized

access strategy not only takes the channel qualities into consideration but also the

density of network. When the network is congested with a high density of users

(i.e. when
∑

i∈K mδ
i < ρ), the sum access probability of a user on all channels are

reduced to less than one (as can be seen in the proof) to keep the interference in

the network at the best condition. On the other hand, when the network is not so

congested (i.e. when
∑

i∈K mδ
i ≥ ρ), the sum access probability of a user is one and

the allocation of access probabilities on channels are optimized according to various

channel characteristics.
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4.3 Special cases

4.3.1 With non-i.i.d. channel fading and i.i.d. channel avail-

ability

Consider the case when the availability statistics of channels are i.i.d. and with-

out loss of generality we assume that θk = 1 for all k ∈ K. Furthermore, assume

that the network operates under the interference-limited regime (N0 = 0). Fig. 4.2

gives the throughput versus λ of the game-theoretic and centralized solution. We

can see that as the network density grows, the throughput degrades. At high user

density, the throughput of the game-theoretic solution is lower than the centralized

one because of the selfish behavior of users leading to a social suboptimal result.

However, an interesting finding is that the throughput of both schemes are identical

for user density below a threshold λ̃. This is not a coincidence and we found that in

fact, the access strategy at the equilibrium of the game is actually the same as the

centralized optimal solution. This can be shown by considering the following two

corollaries.

Corollary 2. When θk = 1, ∀k ∈ K, the access strategy of the multi-channel random

access game in the interference-limited regime (N0 = 0) at the equilibrium is

p∗k =
mδ

k∑
i∈K mδ

i

, ∀k ∈ K (4.22)

with support K. The corresponding user throughput at the equilibrium is

T = exp
(
− ρ∑

i∈K mδ
i

)
(4.23)

Proof. We first show that the support of the equilibrium is the set of all channels

K by contradiction. Assume that the Nash equilibrium p∗, which all the users in

the network other than a typical user play, is with support S∗ ⊂ K. Consider the
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Figure 4.2: Throughput versus user density when channel availability statistics are
i.i.d. (θk = 1) of the game-theoretic solution and the centralized solution in the
interference-limited regime (N0 = 0). Before the user density reaches λ̃, the perfor-
mance of the game-theoretic solution and the centralized solution are identical. The
other network parameters are set as α = 4, R = 2 bits/s/Hz, r = 13m, and P = 1.
There are K = 5 channels with m = [0.1, 0.3, 0.7, 0.9, 1.6].

strategy p′, which except for an i ∈ S∗ and j ∈ K \ S∗ such that ∀k ∈ K,

p′k =


p∗i , k = j

0, k = i

p∗k, otherwise

The difference of the utility for the typical user between playing p′ and playing the

equilibrium strategy p∗ is

U(p′,p∗)− U(p∗,p∗) =
[
p′j exp

(
−p∗jρm−δ

j

)
+ p′i exp

(
−p∗i ρm−δ

i

)]
−
[
p∗j exp

(
−p∗jρm−δ

j

)
+ p∗i exp

(
−p∗i ρm−δ

i

)]
= [p∗i · 1 + 0]−

[
0 + p∗i exp

(
−p∗i ρm−δ

i

)]
=p∗i

(
1− exp

(
−p∗i ρm−δ

i

))
≥ 0
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which contradicts (4.2). Thus, we must have the support S∗ = K. As a result of

Theorem 2 with θk = 1 and N0 = 0, we have the theorem.

Corollary 3. When θk = 1, ∀k ∈ K, the centralized optimal access strategy of the

multi-channel random access problem in the interference-limited regime (N0 = 0) is

p∗k =


mδ

k

ρ
,

∑
i∈K mδ

i < ρ

mδ
k∑

i∈K mδ
i
,
∑

i∈K mδ
i ≥ ρ

(4.24)

The corresponding throughput of a user with the optimal access strategy is

T =


∑

k∈K mδ
k

ρe
,

∑
k∈K mδ

k < ρ

exp
(
− ρ∑

k∈K mδ
k

)
,
∑

k∈K mδ
k ≥ ρ

(4.25)

Proof. According to Theorem 3, we have when N0 = 0, θk = 1 and
∑

k∈K mδ
k ≥ ρ

that

p∗k =
mδ

k

ρ
[1−W (γe)] (4.26)

since
∑

k∈K p∗k = 1 in this case and thus we have [1−W (γe)]+ = ρ∑
k∈K mδ

k
> 0, and

the operator [·]+ can be removed. Now W (γe) = 1 − ρ∑
k∈K mδ

k
and the constant γ

times e can be obtained as

γe = W (γe)eW (γe) =

(
1− ρ∑

k∈K mδ
k

)
e
1− ρ∑

k∈K mδ
k

by the definition of the Lambert W function, and the optimal solution is obtained

by plugging in W (γe) = 1− ρ∑
k∈K mδ

k
.

We can see from Corollary 2 that with i.i.d. channel availability statistics in

the interference limited regime, the access probability for a channel given by (4.22)

only depends on the fading statistics of a channel (mk), and is proportional to its

δth power. Each of the K channels are in the support of the equilibrium, and thus

every channel will be accessed with a nonzero probability. Corollary 3 tells us that
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under the aforementioned case, the optimal solution of the centralized scheme has

the same form as that for the game-theoretic scheme when ρ ≤
∑

k∈K mδ
k. Recall

that ρ , λπr2(2R − 1)δΓ(1 + δ)Γ(1 − δ) as defined in (3.9), we can see that this

happens when the user density in the network is less than a threshold, say λ̃. This

result is summarized in Theorem 4.

Theorem 4. The game-theoretic solution of the multi-channel random access prob-

lem with θk = 1 is socially optimal in the interference-limited regime (N0 = 0) when

the density of users λ in the network satisfies

λ ≤ λ̃ ,
∑

k∈K mδ
k

πr2(2R − 1)δΓ(1 + δ)Γ(1− δ)
(4.27)

Proof. This can be observed from Corollary 2 and Corollary 3 with the constraint∑
k∈K mδ

k ≥ ρ and the definition of ρ in (3.9).

As the user density grows higher than λ̃, it would be socially optimal for users not

to access any channel with some nonzero probability, for it will otherwise deteriorate

the performance of channels by enhancing the interference in the network. However,

with the selfish behavior of users, the probability of not accessing any channel would

be zero as implied by Lemma 2, since otherwise it would have incentive to put more

access probability on some channels and then gain more throughput by doing so

unilaterally.

Fig. 4.3a and 4.3b depict the channel access probabilities of both the game-

theoretic and centralized scheme with the same network parameters as for Fig. 4.2

at user density λ = 1.2 × 10−3/m2 and λ = 3 × 10−3/m2, respectively, where the

threshold density is λ̃ = 2.7×10−3/m2 as given by (4.27). It can be seen in Fig. 4.3a

that below the threshold density λ̃, the game-theoretic access strategy is the same

as that with the centralized scheme, and is thus socially optimal. The probabilities

of not accessing any channel are zero for both schemes. When the user density

is above λ̃, the centralized strategy reduced the access probabilities on channels

and put some probability on not accessing any channel while the game-theoretic
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access strategy stays the same. The reason why the channel access probabilities are

reduced in the centralized scheme is that the network is now so crowded that each

user should somehow lower its access attempt. On the other hand, when the users

behave selfishly in high user densities, each of them spend all their efforts for channel

access which makes the network remains crowded and ends in a socially suboptimal

result.
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(a) λ = 1.2× 10−3/m2 < λ̃
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(b) λ = 3× 10−3/m2 > λ̃

Figure 4.3: Channel access probabilities under different user densities, where channel
index 0 is for the probability of not accessing any channel. The threshold density is
λ̃ = 2.7×10−3/m2. The other network parameters are set to the same as in Fig. 4.2,
where m = [0.1, 0.3, 0.7, 0.9, 1.6].
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4.3.2 With i.i.d. channel fading and non-i.i.d. channel avail-

ability

Now, consider another case when the channel fading coefficients are i.i.d. (with-

out loss of generality with mS,k = mI,k = 1) but the channel availability probabilities

are non-i.i.d.. In this case, it is very similar to the study of Opportunistic Spectrum

Access (OSA) in Cognitive Radio Networks (CRN), where licensed primary users

have the priority to utilize the channels and the secondary users can only access

the vacant spectrum opportunities. Analogously, the users in our model are the

secondary users, and can only utilize the channels when they are sensed to be avail-

able for secondary usage. The game-theoretical and centralized access strategy in

this case follows from Theorem 2 and Theorem 3, respectively and are given in the

following corollaries.

Corollary 4. When mk = 1,∀k ∈ K, the access strategy of the multi-channel

random access game in the interference-limited regime (N0 = 0) at the equilibrium

is

p∗k =


1

|S∗| +
1
ρ

ln θk

(
∏

i∈S∗ θi)
1

|S∗|
, k ∈ S∗

0, k ∈ K \ S∗

(4.28)

with support S∗ computed by Algorithm 1. The corresponding throughput of a user

at the equilibrium is

T = exp
(
−
ρ−

∑
k∈S∗ ln θk

|S∗|

)
(4.29)

Proof. The results directly follows from Theorem 2 with some algebraic manipula-

tions.

Corollary 5. When mk = 1,∀k ∈ K, the centralized optimal access strategy of the
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multi-channel random access problem in the interference-limited regime (N0 = 0) is

p∗k =


1
ρ
, ρ > K

1
ρ

[
1−W

(
γθ−1

k e
)]+

, ρ ≤ K

(4.30)

where γ is the constant that satisfies
∑

i∈K p∗i = 1, W (z) is the Lambert W function

with defining equation z = W (z)eW (z), and [x]+ , max{0, x}. The corresponding

throughput of a user with the optimal access strategy is

T =



∑
k∈K θk
ρe , ρ > K

1

ρ

∑
k∈K

θk
[
1−W

(
γθ−1

k e
)]+

e−[1−W(γθ−1
k e)]

+

, ρ ≤ K

(4.31)

Proof. The results directly follows from Theorem 3 with some algebraic manipula-

tions.

Fig. 4.4 gives the throughput versus user density of the game-theoretic and cen-

tralized solution. The phenomenon of identical performance with density less than

a threshold is no longer present. The loss of throughput due to selfish behavior is

small when the density is low but large when the density is high.

As can be seen in Corollary 5, there is still a threshold behavior of the access

strategy for the centralized scheme by noting that the access probability on a chan-

nel is 1
ρ

for ρ > K and 1
ρ

[
1−W

(
γθ−1

k e
)]+ for ρ ≤ K. With the definition of ρ as

given in (3.9), this in fact gives the same density threshold λ̃ as given in (4.27) but

with mk = 1 for all k ∈ K. When the user density is lower than λ̃, the centralized

optimal access strategy is dependent on the channel available probabilities θk, but

when the user density is higher than λ̃, it is actually oblivious of the channel avail-

able probabilities of the channels. This can be observed in Fig. 4.5, and is explained

in the following. With low user density, it would be beneficial for users to put more

probabilities on accessing channels since the interference problem in the network

is still not so obvious. Thus, a user should take careful considerations to on which
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channels should it put access probabilities, depending on the channel available prob-

abilities θk. However, when the user density are higher than λ̃, it would be better

that each channel be accessed with a optimal probability that maximizes expected

throughput in that channel and users not access any channels with a nonzero prob-

ability. And since each user in the network can only access a channel when it is

available, which will be effective throughout the whole network, the access strategy

can be oblivious of the channel available probabilities in this case.

As for the game-theoretic access strategy, we can see from Fig. 4.5 that it takes

more channels into the support of the equilibrium as the network density grows and

more channels are utilized. However, it does not put any probability on not accessing

any channel because of the selfish behavior of users, leading to a suboptimal result

compared to the centralized scheme.
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Figure 4.4: Throughput versus user density when channel fading statistics are
i.i.d. (mk = 1) of the game-theoretic solution and the centralized solution in the
interference-limited regime (N0 = 0). The other network parameters are set as
α = 4, R = 2 bits/s/Hz, r = 13m, and P = 1. There are K = 5 channels with
Θ = [0.1, 0.2, 0.5, 0.85, 0.9].
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(a) λ = 5.0× 10−4/m2 < λ̃
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(b) λ = 5.0× 10−3/m2 > λ̃

Figure 4.5: Channel access probabilities under different user densities, where channel
index 0 is for the probability of not accessing any channel. The threshold density is
λ̃ = 3.5×10−3/m2. The other network parameters are set to the same as in Fig. 4.4,
where Θ = [0.1, 0.2, 0.5, 0.85, 0.9].
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4.3.3 With i.i.d. channel fading and i.i.d. channel availabil-

ity

Now, consider the case with i.i.d. channel fading and i.i.d. channel availability

statistics. We have the following corollaries.

Corollary 6. When θk = 1,mk = 1,∀k ∈ K, the access strategy of the multi-channel

random access game in the interference-limited regime (N0 = 0) at the equilibrium

is

p∗k =
1

K
, ∀k ∈ K (4.32)

with support K. The corresponding throughput at the equilibrium is

T = exp
(
− ρ

K

)
(4.33)

Proof. The results directly follows from Corollary 2.

Corollary 7. When θk = 1,mk = 1,∀k ∈ K, the centralized optimal access strategy

of the multi-channel random access problem in the interference-limited regime (N0 =

0) is

p∗k =


1
ρ
, ρ > K

1
K
, ρ ≤ K

(4.34)

The corresponding throughput of a user with the optimal access strategy is

T =


K
ρe
, ρ > K

exp
(
− ρ

K

)
, ρ ≤ K

(4.35)

Proof. The results directly follows from Corollary 3.

As we can see from Corollary 6 and 7, the access strategies reduce to uniform

random selection among the K channels for the game-theoretic scheme, and also for

the centralized scheme when ρ ≤ K.
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4.4 Remarks

With stochastic geometry, we are now able to capture the nature of spatial

distribution of users in wireless ad hoc networks with our system model in Chap-

ter 3. Furthermore, we have proposed channel selection strategies for multi-channel

random access for users with a game-theoretic view for the interactions between

users, and a centralized optimization perspective for the system performance. In

the following, we try to show some connection of our work with previous ones.

4.4.1 Connection with the non-spatial model

As mentioned in Section 3.4.1, a connection can be found between our model

and the non-spatial multi-channel random access with collision channels defined

previously. In this section, we aim to show this relationship.

First, we derive similarly the the game-theoretic channel access strategy for the

non-spatial model. The players are the N users, the action set is the set of channels

K, and the utility of a action is the expected user throughput associated with the

channel selection as defined in (3.11). The results are given in the following.

Theorem 5. The symmetric Nash equilibrium for non-spatial multi-channel random

access game with collision channels is

p∗k = 1− (|S∗| − 1)
θ

−1
N−1

k∑
i∈S∗ θ

−1
N−1

i

(4.36)

where S∗ is the support of the equilibrium. The expected utility of a user at the

equilibrium is

Ẽ =

 |S∗| − 1∑
i∈S∗ θ

−1
N−1

i

N−1

(4.37)

Proof. The proof is similar to that for Theorem 2. By Lemma 1, we have

T̃k = θk(1− p∗k)
N−1 = Ẽ, ∀k ∈ S∗ (4.38)
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After some manipulations, we have for k ∈ S∗,

p∗k = 1− Ẽ
1

N−1 θ
−1

N−1

k (4.39)

By Lemma 2, we have
∑

i∈S∗ p∗k = 1 and thus

Ẽ =

 |S∗| − 1∑
i∈S∗ θ

−1
N−1

i

N−1

(4.40)

The Nash equilibrium can readily be solved by plugging back Ẽ.

The game-theoretic solution given above also follows a concept similar to water-

filling, with the relation

− ln θk − (N − 1) ln(1− p∗k) = − ln Ẽ, ∀k ∈ S∗ (4.41)

where the water level is now ln 1

Ẽ
, the height of each white block being ln 1

θk
, and

the height of water above each block being (N − 1) · ln 1
(1−p∗k)

.

The connection of the non-spatial model to ours can be found in some limiting

case of both models. Specifically, when we ignore the fading statistics of the channels

by setting mk = 1 for all k ∈ K and consider for N0 = 0, the game-theoretic solution

of our model would be as given in Corollary 4. When λ → ∞, the channel access

strategy at the Nash equilibrium becomes p∗k → 1
K

for that we have the support S∗

being K in the limiting case. As for the non-spatial model, we consider the limiting

case when N →∞. The Nash equilibrium also becomes p∗k → 1
K

since

θ
−1

N−1

k∑
i∈S∗ θ

−1
N−1

i

→ 1

|S∗|

as N → ∞ and that the support S∗ also becomes K, which is obvious from the

water-filling concept. This shows that as the number of users becomes large, the

game-theoretic strategies for the spatial and non-spatial models will coincide, both
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being oblivious of the exact value of θi.

4.4.2 Relationship to previous works with spatial analysis

It should be noted that when there is only one channel for access (i.e. K = 1),

the channel availability issue is not considered (i.e. θ1 = 1), and the average power

of fading is set to m1 = 1, the results in our work reduce to those in [42], where both

game-theoretic and centralized optimization perspectives are considered for medium

access with a single channel and with spatially distributed users. The results are

given below.

Corollary 8. With K = 1, θ1 = 1, m1 = 1, and N0 = 0, the access strategy of the

multi-channel random access game at the equilibrium is

p∗1 = 1 (4.42)

The corresponding throughput at the equilibrium is

T = exp (−ρ) (4.43)

where ρ is given by (3.9).

Corollary 9. With K = 1, θ1 = 1, m1 = 1, and N0 = 0, the centralized optimal

access strategy of the multi-channel random access problem is

p∗1 =


1
ρ
, ρ > 1

1, ρ ≤ 1

(4.44)

where ρ is given by (3.9). The corresponding throughput is

T =


1
eρ
, ρ > 1

e−ρ, ρ ≤ 1

(4.45)
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It can be easily seen that our game-theoretic solution in Corollary 8 is exactly

the same as the one provided in [42] without pricing, and the centralized solution in

Corollary 9 is also exactly the same as that in [42]. Our work is a non-trivial exten-

sion for that the nonhomogeneous characteristics of multiple channels are further

considered, and the solution follows a water-filling concept.

Another thing to be noted is that the performance metrics used in our work are

closely related to those defined in Section 2.2 for single channel slotted ALOHA.

Despite the fact that we further considered the context with multiple channels,

there is still another difference of our study to those on transmission capacity. The

study of transmission capacity aims at characterizing the maximum spatial density

of transmission subject to an outage probability constraint ν∗. With the density of

potential transmitters being λ, if we have λ · (1 − ν∗) exceeding the transmission

capacity TC(ν∗), then some throttling of transmission attempt is needed such that

each transmitter transmits with probability

ptx =
TC(ν∗)

λ · (1− ν∗)
(4.46)

so that the outage constraint would be satisfied [22]; otherwise, if we have λ · (1 −

ν∗) ≤ TC(ν∗), no throttling of transmission attempt is needed. On the contrary,

although the system throughput considered in our work has the same unit of suc-

cessful transmission per unit area as the transmission capacity, it has a different

meaning. Without specifying any outage probability constraint, we dealt with a

given density λ of users that may decide their access strategies (i.e. channel access

probabilities), and study the performance by measuring the system throughput as

a result of the access strategies of users. Since the goal here is to devise distributed

access strategies from a user perspective, the transmission capacity context is not

directly used in this thesis.
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4.4.3 The local delay

In this section, we give a brief discussion on another basic performance metric,

the local delay, that is related to the quality-of-service provided by a network. The

local delay is generally defined as the mean time until a packet is successfully trans-

mitted over a communication link [20]. In [51], local delay with nearest-neighbor

communications is studied in Poisson networks in both the static and highly mobile

cases. It was found that the local delay is always finite in the high mobility case

while it exhibits phase transition in the static network case where the local delay

grows to infinity depending on the network parameters.

When we assume that the node locations of the whole network is independently

re-sampled in every slot, which is a reasonable assumption for highly mobile networks

[20], the local delay in our scenario is just the reciprocal of the user throughput

defined as in Section 3.2, which gives 1
T . In all other cases, it serves as a lower

bound [20, 42].
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Chapter 5

Multi-channel Random Access

With Channel Side Information

In this chapter, we consider the case when some channel side information could

be obtained. By channel side information, we specifically mean the channel state

information (CSI) and channel availability. Given the channel side information, the

access strategy would change. In the following, we devise the optimal access strategy

and derive the resulting expected user throughput. Finally, we compare the results

with those in the cases without such channel side information.

5.1 With channel state information

We assume that a user can obtain its own CSI hS = [hS,1, . . . , hS,K ], which is

the realization of the channel fading gain of the desired signal, and consider the

interference-limited regime (N0 = 0) for simplicity. We further assume that the

channel availabilities are i.i.d. and without loss of generality set θk = 1 for all

channels to focus on the effect of CSI. Now, the throughput of a typical user in a
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channel would become

Tk = Pr
(

log2

(
1 +

hS,kPr−α

Ik

)
≥ R

)
= Pr

(
Ik ≤ ϕ−1hS,k

)
= FIk(ϕ

−1hS,k) (5.1)

where Ik =
∑

Xi∈Ψk
Hi0,kP |Xi|−α is the interference power that would be perceived

by the typical user in channel k, and FIk(h) is the cdf of Ik. Note that since the user

knows its own CSI only, the fading coefficient of the interfering links are unknown

and random. Due to the homogeneity of PPP, and since that the uncoordinated users

know only the statistics of the network except for its own CSI, we shall assume that

the users adopt the same channel access strategy. Although we say that the users

in the network adopts the same access strategy (which we refer to as symmetric

strategy), different users in the network can however choose different channels for

access in a time slot for that the CSI seen by different users may vary.

Let qk denote the probability that a channel is chosen for access given the sym-

metric access strategy of the users. Not that this probability qk is different from the

concept of a mixed strategy in Section 4.1, where a channel is chosen for access ac-

cording to a probabilistic distribution over the set K. Here, qk results from channels

selected according to the symmetric access strategy where the randomness is due to

different CSI realizations, and it means that an arbitrary user would be transmitting

in a channel k with probability qk. According to the thinning property of PPP, the

interference Ik in a channel k can now be written as Ik =
∑

Xi∈Π(qkλ)
Hi0,kP |Xi|−α.

With their own CSI at hand, the uncoordinated users in the network now aims

at selecting a proper channel for access that maximizes its own throughput given

the CSI. That is, a channel k is chosen by a user if

FIk(ϕ
−1hS,k) = max

i∈K
FIi(ϕ

−1hS,i) (5.2)

where hS = [hS,1, . . . , hS,K ] is the CSI.
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Lemma 3. In the multi-channel random access game with CSI, where N0 = 0 and

θk = 1, the strategy that channel k is chosen if

FIk(ϕ
−1hS,k) = max

i∈K
FIi(ϕ

−1hS,i) (5.3)

is a pure strategy Nash equilibrium.

Proof. Consider a typical user who deviates from the strategy while all other users

in the network follow the strategy. The utility of choosing a channel k for access of

that typical user is FIk(ϕ
−1hS,k). Deviating from the strategy would only leads to a

strict degradation of performance to the user. Thus, the strategy is a pure strategy

Nash equilibrium.

In the following, we first consider the case when the channel statistics are i.i.d.

across different channels, and then discuss the more general case when the channels

are non-i.i.d..

5.1.1 The special case under i.i.d. channels

When the fading statistics of the K channels are i.i.d. (without loss of generality

we set mk = 1), and due to the fact that the users in the network adopt the

symmetric strategy, the statistics of the interference power over different channels

shall be the same, and thus we can drop the subscript k and represent the interference

power by I. The throughput of a user in channel k now becomes

Tk = FI

(
ϕ−1hS,k

)
(5.4)

which depends only on the cdf of I and the CSI of each channel k. By the nonde-

creasing property of the cdf, the following corollary is obvious.

Corollary 10. When the channel fading statistics are i.i.d. over the K channels in
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addition to the assumptions in Lemma 3, the strategy that channel k is chosen if

hS,k = max
i∈K

hS,i (5.5)

is a pure strategy Nash equilibrium.

Corollary 10 suggests that a user should choose the channel with the best instan-

taneous channel quality hS,k for access when CSI is available. Under such a case,

the following Theorem holds.

Theorem 6. The throughput of a user in multi-channel random access game with

CSI in i.i.d. channels is

T =
K∑
i=1

(
K

i

)
(−1)i+1 exp(− ρ

K
iδ) (5.6)

at the equilibrium, where ϕ is given by (3.6) and ρ is given by (3.9). The probability

that a channel k is chosen by a user is

qk =
1

K
(5.7)

Proof. The probability that a channel k is chosen by a user can be obtained as

qk = Pr
(
HS,k = max

i∈K
HS,i

)
=

∫ ∞

0

fHS,k
(h)
∏
i̸=k
i∈K

Pr (h ≥ HS,i) dh

=

∫ ∞

0

e−h
(
1− e−h

)K−1
dh

=
1

K
(5.8)

By the thinning property of PPP, we have the interference

I =
∑

Xi∈Π(qkλ)

Hi0,kP |Xi|−α

58



The Laplace transform of the interference I is

E
[
e−sI

]
= exp

(
− λ

K
πP δΓ(1 + δ)Γ(1− δ)sδ

)
(5.9)

Let H∗
S denote the equivalent channel fading gain experienced by a user adopting

this strategy, which is defined as H∗
S , max

k∈K
HS,k. The throughput of a user can be

characterized as

T = Pr
(

log2

(
1 +

H∗
SPr−α

I

)
≥ R

)
= Pr (H∗

S ≥ ϕI)

(a)
= E

[∫ ∞

−∞
exp(−ϕIt)h̃∗

S(t)dt

]
=

∫ ∞

−∞
E [exp(−ϕIt)] h̃∗

S(t)dt

(b)
=

∫ ∞

−∞
exp

(
− λ

K
πr2(2R − 1)δΓ(1 + δ)Γ(1− δ)tδ

)
h̃∗
S(t)dt (5.10)

where (a) follows by using Pr (H∗
S ≥ s) =

∫∞
−∞ e−sth̃∗

S(t)dt in which h̃∗
S(t) is the

inverse Laplace transform of the ccdf of H∗
S, ϕ is given by (3.6), and (b) follows by

using (5.9). The cdf of H∗
S is

FH∗
S
(s) = Pr (H∗

S ≤ s)

= Pr
(

max
k∈K

HS,k ≤ s

)
= Pr (HS,1 ≤ s,HS,2 ≤ s, . . . , HS,K ≤ s)

=
∏
k∈K

Pr (HS,i ≤ s)

=
(
1− e−s

)K (5.11)
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and the inverse Laplace transform of the ccdf of H∗
S is

h̃∗
S(t) = L−1

{
1−

(
1− e−s

)K}
= L−1

{
1−

K∑
i=0

(
K

i

)
(−1)ie−si

}

= L−1

{
K∑
i=1

(
K

i

)
(−1)i+1e−si

}

=
K∑
i=1

(
K

i

)
(−1)i+1δ(t− i) (5.12)

where δ(t) is the Dirac delta function. The throughput of a user can thus be obtained

as

T =
K∑
i=1

(
K

i

)
(−1)i+1 exp(− λ

K
πr2(2R − 1)δΓ(1 + δ)Γ(1− δ)iδ) (5.13)

With ρ as defined in (3.9), we thus have the theorem.

Theorem 6 shows that when the channels are i.i.d., although CSI is provided

to each user, the probability qk of a channel being selected is the same as the case

when no CSI is provided as given by p∗k in Corollary 6, both being 1
K

. Since the

statistics of interference in each channel is only determined by the density of active

transmitters in that channel which is qkλ = p∗kλ = λ
K

for both cases, the statistics

of interference in each channel is not affected whether CSI is provided or not in this

case. However, the statistics of the desired signal when CSI is provided will be with

a better characteristics than that without CSI since it is with the maximum of the

fading coefficients for each channel. Thus, when each user is provided with its own

CSI, the throughput performance can be better.

Fig. 5.1 gives the throughput versus user density of case with and without CSI

provided to the transmitter. We can see that with CSI provided, there’s a significant

improvement over that without CSI. Fig. 5.2 depicts the probabilities of channels

being selected, which are the same for both cases.
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Figure 5.1: Throughput versus user density for the case with and without CSI
when channel fading statistics are i.i.d. (mk = 1) in the interference-limited regime
(N0 = 0). The other network parameters are set as α = 4, R = 2 bits/s/Hz,
r = 13m, P = 1, and there are K = 5 channels.
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Figure 5.2: Probability that a channel is accessed by a user for the case with and
without CSI when channel fading statistics are i.i.d. (mk = 1) in the interference-
limited regime (N0 = 0). The other network parameters are set to the same as in
Fig. 5.1.
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5.1.2 The general case with non-i.i.d. channels

Now, we proceed to discuss the case when the channel fading statistics are non-

i.i.d., where E[HS,k] = mk. In such a case, each user selects channels according to the

strategy described in Lemma 3, where the cdf FIk(h) of interference Ik in channel k

is used. In the following, we assume the path loss exponent is α = 4 (i.e. δ = 1
2
)

where the cdf of Ik can be expressed as

FIk(s) =


erfc( qkλπ2P

1
2

4
√
s

), s ≥ 0

0, s < 0

(5.14)

where erfc(s) = 2√
π

∫∞
s

exp(−t2)dt is the standard complementary error function

and qkλ is the density of users transmitting in channel k.

Theorem 7. The throughput of a user in multi-channel random access game with

CSI in non-i.i.d. channels with α = 4 is

T =
K∑
i=1

(−1)i+1
∑

ωj∈ΩK
i

e
−2κ

(∑
l∈ωj

q2l
ml

) 1
2

(5.15)

at the equilibrium, where

κ , 1

4
λπ2r2(2R − 1)

1
2 (5.16)

and ΩM
n ,

{
ω1, . . . , ω(|M|

n )

}
is defined as the set of all subsets with cardinality n of

the set M. The probability that a channel k is chosen by a user is the solution of

the following simultaneous equations:

qk = 1 +
K−1∑
i=1

(−1)i
∑

ωj∈Ω
K\{k}
i

1 +
mk

q2k

∑
l∈ωj

q2l
ml

−1

, ∀k ∈ K (5.17)

along with the fact that
∑

k∈K qk = 1.

Proof. First, we derive for the probability that a channel k is chosen by a user,
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which with the strategy given by Lemma 3 can be obtained as

qk = Pr
(
FIk(ϕ

−1HS,k) = max
i∈K

FIi(ϕ
−1HS,i)

)
=

∫ ∞

0

Pr
(
FIk(ϕ

−1h ≥ FIi(ϕ
−1HS,i),∀i ∈ K \ {k}|HS,k = h

)
fHS,k

(h)dh

=

∫ ∞

0

 ∏
i∈K\{k}

Pr
(
FIk(ϕ

−1h) ≥ FIi(ϕ
−1HS,i)|HS,k = h

) fHS,k
(h)dh (5.18)

When α = 4, we apply (5.14) and thus

qk =

∫ ∞

0

 ∏
i∈K\{k}

Pr
(

erfc
(
qkλπ

2P
1
2

4
√
ϕ−1h

)
≥ erfc

(
qiλπ

2P
1
2

4
√

ϕ−1HS,i

)
|HS,k = h

) fHS,k
(h)dh

(a)
=

∫ ∞

0

 ∏
i∈K\{k}

Pr
(
p2k
h
≤ p2i

HS,i

|HS,k = h

) fHS,k
(h)dh

=

∫ ∞

0

 ∏
i∈K\{k}

Pr
(
HS,i ≤

p2i
p2k

h|HS,k = h

) fHS,k
(h)dh

=

∫ ∞

0

 ∏
i∈K\{k}

(
1− e

− 1
mi

p2i
p2
k

h

) 1

mk

e
− 1

mk dh (5.19)

where (a) follows by the property that erfc(s) is strictly decreasing. Define ΩM
n ,{

ω1, . . . , ω(|M|
n )

}
as the set of all subsets with cardinality n of the set M. For

example, when the set M = {1, 2, 3}, we would have ΩM
2 = {{1, 2}, {2, 3}, {1, 3}}.
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With this definition, we can continue as

qk =
1

mk

∫ ∞

0

1 + K−1∑
i=1

(−1)i
∑

ωj∈Ω
K\{k}
i

e
− h

q2
k

∑
l∈ωj

q2l
ml

 e
− 1

mk
h
dh

= 1 +
1

mk

K−1∑
i=1

(−1)i
∑

ωj∈Ω
K\{k}
i

∫ ∞

0

e
−h

(
1

mk
+ 1

q2
k

∑
l∈ωj

q2l
ml

)
dh

= 1 +
1

mk

K−1∑
i=1

(−1)i
∑

ωj∈Ω
K\{k}
i

 1

mk

+
1

q2k

∑
l∈ωj

q2l
ml

−1

= 1 +
K−1∑
i=1

(−1)i
∑

ωj∈Ω
K\{k}
i

1 +
mk

q2k

∑
l∈ωj

q2l
ml

−1

(5.20)

As for the throughput T of a user, we have

T = E
[
max
k∈K

FIk

(
ϕ−1HS,k

)]
= E

[
max
k∈K

{
erfc

(
qkλπ

2P
1
2

4
√

ϕ−1HS,k

)}]
(a)
= E

[
erfc

(
λπ2P

1
2

4
√
ϕ−1

min
k∈K

{
qk√
HS,k

})]
(b)
=

∫ ∞

0

erfc (κg) fG(g)dg

(c)
=

∫ ∞

0

(
2√
π

∫ ∞

κg

e−t2dt

)
fG(g)dg

(d)
=

2√
π

∫ ∞

0

e−t2
∫ t

κ

0

fG(g)dg︸ ︷︷ ︸
FG( t

κ
)

dt

(5.21)

where (a) follows by the fact that erfc(s) is strictly decreasing. (b) follows by defining

the random variable G , min
k∈K

{
qk√
HS,k

}
with pdf fG(g) and constant κ , λπ2P

1
2

4
√

ϕ−1
=

1
4
λπ2r2(2R − 1)

1
2 with ϕ given by (3.6). (c) follows by using the definition erfc(s) =

2√
π

∫∞
s

exp(−t2)dt and (d) follows by interchanging the order of integration. The

second integral in the last line can be identified as the cdf of G evaluated at t
κ
,

64



where the cdf of G can be obtained as

FG(g) = 1− Pr
(

min
k∈K

{
qk√
HS,k

}
≥ g

)

= 1−
∏
k∈K

Pr
(

qk√
HS,k

≥ g

)

= 1−
∏
k∈K

Pr
(
HS,k ≤

q2k
g2

)
= 1−

∏
k∈K

(
1− e

− 1
mk

q2k
g2

)

=
K∑
i=1

(−1)i+1
∑

ωj∈ΩK
i

e
− 1

g2

∑
l∈ωj

q2l
ml

(5.22)

Thus, we have

T =
2√
π

∫ ∞

0

e−t2

 K∑
i=1

(−1)i+1
∑

ωj∈ΩK
i

e
−κ2

t2

∑
l∈ωj

q2l
ml

 dt

=
2√
π

K∑
i=1

(−1)i+1
∑

ωj∈ΩK
i

(∫ ∞

0

e
−t2− 1

t2
κ2

∑
l∈ωj

q2l
ml dt

)

(a)
=

K∑
i=1

(−1)i+1
∑

ωj∈ΩK
i

e
−2κ

(∑
l∈ωj

q2l
ml

) 1
2

(5.23)

where (a) follows by using the integral

∫ ∞

0

exp
(
−ax2 − b

x2

)
dx =

1

2

√
π

a
exp

(
−2
√
ab
)

in which a > 0, b > 0 [52, eq. (3.325)].

As an example, when we have K = 2,

q1 = 1−
(
1 +

m1

q21

q22
m2

)
=

m1q
2
2

m1q22 +m2q21

q2 =
m2q

2
1

m1q22 +m2q21

(5.24)
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Substituting q2 = 1− q1 into (5.24), we have

(m1 +m2)q
3
1 − 3m1q

2
1 + 3m1q1 −m1 = 0 (5.25)

and q1, q2 can be obtained by solving the cubic equation above. As for the expected

user throughput when K = 2, we have

T = exp
(
−2κ q1√

m1

)
+ exp

(
−2κ q2√

m2

)
− exp

(
−2κ

(
q21
m1

+
q22
m2

) 1
2

)
(5.26)

which can be evaluated with closed form given qk.

When the channels are i.i.d. and without loss of generality assume mk = 1, we

have from Theorem 7 that qk =
1
K

by symmetry and

T =
K∑
i=1

(−1)i+1
∑

ωj∈ΩK
i

e
−2κ

(∑
l∈ωj

1
K2

) 1
2

=
K∑
i=1

(−1)i+1
∑

ωj∈ΩK
i

e−2κ( i
K2 )

1
2

=
K∑
i=1

(−1)i+1

(
K

i

)
e−

2κ
K

i
1
2

(5.27)

which reduces to the result given by Theorem 6 by noting that when δ = 1
2
, we have

Γ(1 + δ) =
√
π
2

, Γ(1− δ) =
√
π, and ρ = 2κ.

Again, Fig. 5.3 gives the throughput versus user density of case with and without

CSI provided to the transmitter. We can see that in the case when the channels are

non-i.i.d. and with CSI provided, there is also a significant improvement over that

without CSI. Fig. 5.2 depicts the probabilities of channels being selected.
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Figure 5.3: Throughput versus user density for the case with and without CSI when
there are K = 2 channels and the channel fading statistics are non-i.i.d. with
m1 = 1.0 and m2 = 2.5 in the interference-limited regime (N0 = 0). The other
network parameters are set as α = 4, R = 2 bits/s/Hz, r = 10m, and P = 1.
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Figure 5.4: Probability that a channel is accessed by a user for the case with and
without CSI when there are K = 2 channels and the channel fading statistics are
non-i.i.d. with m1 = 1.0 and m2 = 2.5 in the interference-limited regime (N0 = 0).
The other network parameters are set to the same as in Fig. 5.3.

67



5.1.3 Remarks on multi-channel random access with CSI

We have seen in the previous sections that by providing CSI to the transmitter,

the throughput performance of a user can be greatly improved. This is made by

utilizing the channel diversity with the help of CSI. The signal distribution seen by

a receiver is improved with CSI for the i.i.d. fading channels, for its statistics will

become H∗
S , max

k∈K
HS,k which has mean

∑K
i=1

1
i

compared to the unit mean for the

case without CSI, while the statistics of the interference are the same for both cases.

The findings of our work here are different from those in [41], where random

access game of users sharing a common communication channel and willing to access

a single base station was studied. The authors of [41] found that when local CSI

is provided to the selfish users in the interference limited regime, the performance

(throughput) of homogeneous users will be worse compared to that when no CSI is

provided. This phenomenon is called a Braess-like paradox, where the performance

degrades when more information is provided to a system of noncooperative users.

The reason is that the users in the scenario of [41] aim to access the same base station

selfishly, and although the received signal power at the based station from a user is

improved when CSI is provided, the strategy of the users at the Nash equilibrium

also increases the average interference power nonetheless. In contrast, in our scenario

with ad hoc networks and i.i.d. fading channels, the average interference power is

remained the same while the average received signal power increases when CSI is

provided, and the performance is therefore improved.

The gain in performance, however, needs the CSI at the transmitter side, and in

turn it means that some feedback information to the transmitter is needed. There-

fore, there might be a tradeoff between the gain that can be achieved by the CSI

and the cost for feedback information.
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5.2 With channel availability information

Now, we consider the case when the availability of each channel can be known

before a user makes the channel selection decision for channel access. This cor-

responds to the case in CRN when user are capable of performing multi-channel

spectrum sensing (e.g. as the wideband sensing technique in [53]). In this case, a

user shall access one among the channels that are available in a slot for that access-

ing a channel that is not available is not allowed or will result in an access failure.

Recall that Ak is the indicator variable that equals 1 if channel k is available and

equals 0 otherwise, therefore we can represent the set of channels that are available

in a slot as {k ∈ K : Ak = 1}. Since that with the available probability θk, Ak is a

Bernoulli random variable with parameter θk, we can define the probability of user

seeing a realization C ⊆ K of the channel availabilities as

ΥC , Pr ({k ∈ K : Ak = 1} = C) =
∏
i∈C

θi
∏

j∈K\C

θj (5.28)

When the channel availability statistics are i.i.d. over different channels, or more

specifically when Ak ∼ Bernoulli(θ) for all k ∈ K, we have ΥC =
(
K
|C|

)
θ|C|(1−θ)K−|C|.

Given the set of available channels C ⊆ K in a time slot, a user could naively

choose the channel with the best channel quality (mk) among the set C. However,

as discussed in Section 4.1, this might not be a good option when the effect of the

other users in the network needs to be taken into consideration. Therefore, we can

again formulate the problem of multi-channel random access with channel availability

information C in each time slot as a game. The players are the users in the network.

Since all the players observe the same set of available channels C, the action of a

player is the channel selection for access which is constrained to be in the set C.

The utility associated with each action is the throughput achieved by accessing that

channel. With similar arguments of homogeneity as in Section 4.1, we shall look for

the symmetric mixed strategy Nash equilibrium pC
∗ = [pC,1, . . . , pC,K ] of this game,

where pC,k is the probability of choosing channel k for access given C. The results
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are given in the following theorem.

Theorem 8. For multi-channel random access with channel availability information,

the channel selection probability at the equilibrium given C is

p∗C,k =


mδ

k∑
i∈S∗

C
mδ

i
, k ∈ S∗

C

0, k ∈ K \ S∗
C

(5.29)

where where S∗
C is the support of the equilibrium given C. The throughput of multi-

channel random access with channel availability information is

T =
∑
C⊆K

ΥCẼ(S∗
C) (5.30)

where

Ẽ(S) , exp
(
− ρ∑

k∈S m
δ
k

)
(5.31)

Proof. The proof is similar as that for Theorem 2, but now the utility to be equalized

in the support is the throughput in channel k given the availability C

TC,k = exp(−ϕN0m
−1
k ) exp(−p∗C,kρm−δ

k ) = EC, ∀k ∈ S∗
C

By taking natural logarithm on both sides and rearranging terms, we have for k ∈

S∗
C ,

p∗C,k = −
mδ

k

ρ
lnEC (5.32)

With arguments similar as in Lemma 2, we have
∑

k∈S∗
C
p∗C,k = 1. Thus, we can

obtain the equalizing constant as

EC = exp
(
− ρ∑

k∈S∗
C
mδ

k

)
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Noting that a channel that is not available should not be accessed, we have the

access strategy

p∗C,k =


mδ

k∑
i∈S∗

C
mδ

i
, k ∈ S∗

C

0, k ∈ K \ S∗
C

The throughput of a user given channel availability information C at the equilibrium

pC
∗ is then obtained as

TC =
∑
k∈S∗

C

p∗C,kEC = EC,

Note that the throughput of a user should be averaged over all possible realizations

of channel availability C, thus we have

T =
∑
C⊆K

ΥCEC

Theorem 8 shows how a channel should be accessed given the channel availability

C according to its channel quality (mk). The support S∗
C of the equilibrium can be

obtained by an algorithm similar to Algorithm 1, and is given in Algorithm 2 with

Ẽ(S) defined as in (5.31).

Algorithm 2 Computing the support of the symmetric mixed strategy Nash equi-
librium given C
Input: Set of available channels C.
Output: Set of channels S∗

C in the support of the Nash equilibrium given C.
1: S∗

C ← ∅,M← C
2: while M ̸= ∅ do
3: Pick one channel k∗ ∈ arg max

i∈M
exp

(
−ϕN0m

−1
i

)
4: S∗

C ← S∗
C ∪ {k∗}, M←M\ {k∗}

5: M←M\
{
k ∈M : exp(−ϕN0m

−1
k ) ≤ Ẽ(S∗)

}
6: end while
7: return S∗

C
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Fig. 5.3 gives the throughput versus user density of case with and without channel

availability information. At low user density, the scheme when the availability of

each channels can be obtained gives a better performance than that without such

information, for this information avoids the occurrence of a channel that is not

available being accessed. However, such information leads to a worse performance

when the user density is high. This is because that when the user density is high

and the users are not provided with the channel availability information, users that

have chosen for access a channel that is not available are somehow “muted” and

thus the active users in the channels that are available will be less dense. But when

channel availability information are provided to each user, they will only choose the

channels that are available for access, and thus the channels that are available will

be more crowded. This gives a Braess-like paradox [41] that when more information

is provided to a noncooperative network, the performance however degrades.
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Figure 5.5: Throughput versus user density for the case with and without channel
availability information. The network parameters are set as α = 4, R = 2 bits/
s/Hz, r = 13m, P = 1, and N0 = 10−6. There are K = 9 channels with Θ =

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].
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Chapter 6

Advanced Mechanisms

6.1 Access barring for performance stabilization

As was shown in Chapter 4, it is socially optimal in a system perspective that

users reduce their access attempts (i.e. not accessing any channel with a nonzero

probability) when the network user density λ is above a threshold λ̃. However, the

selfish nature of users makes them always choosing a channel when they attempt

to access. This causes a substantial degradation of system throughput when the

user density grows due to excessive access attempts which leads to a high level of

interference in the network.

The performance gap between the game-theoretic solution (i.e. Nash equilib-

rium) and the centralized optimal solution can be eliminated by schemes of pricing

as in [42, 54] and is treated in the context of multi-channel random access in [1].

Here, on the other hand, we introduce a simple user access baring scheme that elim-

inates the performance gap and keeps the system throughput at an optimal level

even at high user densities.

Consider the scenario when no channel side information is provided to the trans-

mitters, the channel availability statistics are i.i.d. with θk = 1 for all k ∈ K, and

the network is interference-limited (N0 = 0) for simplicity. The performance of the

system can be further improved by performing access barring in the time domain

where in each slot a user are allowed to perform channel access with probability 1
T

,
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which reduces the access attempts of users by a factor of 1
T

mandatorily.

Equivalently, with access barring with parameter T , each user can only perform

channel access once every T time slots1. Although this results in a loss of transmis-

sion opportunity by 1
T

for a user, the density of interferers seen by a user for each

access is also reduced by the same factor which leads to a lower level of interference

encountered by each user, indicating a nontrivial tradeoff.

By the thinning property of PPP, the set of transmitting users in a slot becomes

a PPP with density λ
T

. Since the users still have the freedom in making channel

selections and we assume that the users are only mandated to follow the rule for

reducing access attempts, the users accessing a specific time slot still face a the same

game-theoretic channel selection problem as described in Section 4.1 but now with

the set of active users Ψ = Π( λ
T
) in a time slot. Recall that without access barring

(i.e. the original case, when T = 1), the throughput of a user is T = exp
(
− ρ∑

k∈K mδ
k

)
as given by (4.23) in Corollary 2. Now, we the throughput of a user with access

barring with parameter T becomes

T̂ (T ) , 1

T
exp

(
− 1

T

ρ∑
k∈K mδ

k

)
(6.1)

where the 1
T

outside the exponential is due to the loss of transmission opportunity

and by noting that ρ , λπr2(2R − 1)δΓ(1 + δ)Γ(1− δ) defined in (3.9) captures the

effect of user density with λ, the 1
T

inside the exponential is due to the alleviated

density of simultaneous transmissions.

As mentioned earlier about the tradeoff, we aim to find the optimal number of

time slots T ∗ for access barring that will maximize the system throughput, which

solves the following optimization problem.

max
T≥1

λT̂ (T ) (6.2)

The results are given in the following theorem.
1Note that the number of slots T here can be any real number with T ≥ 1. A fraction T say

1.5 can be thought of that a user transmits in every 3 slots.
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Theorem 9. The optimal number of time slots T ∗ that maximizes the throughput

of a user with access barring is

T ∗ =


1, ρ <

∑
i∈K mδ

i

ρ∑
i∈K mδ

i
, ρ ≥

∑
i∈K mδ

i

(6.3)

with ρ given by (3.9). The throughput of a user is be given by

T̂ (T ∗) =


exp

(
− ρ∑

i∈K mδ
i

)
, ρ <

∑
i∈K mδ

i∑
i∈K mδ

i

eρ
, ρ ≥

∑
i∈K mδ

i

(6.4)

and the system throughput is given by

λT̂ (T ∗) =


λ exp

(
− ρ∑

i∈K mδ
i

)
, ρ <

∑
i∈K mδ

i∑
i∈K mδ

i

eπr2(2R−1)δΓ(1+δ)Γ(1−δ)
, ρ ≥

∑
i∈K mδ

i

(6.5)

Proof. It can be easily seen that the objective function λT̂ (T ) is quasiconcave for

T > 0 with only one critical point T̃ ∗, which is the global maximizer [55]. Since the

optimization problem is with variable T , the optimizer can be found by taking the

derivative of T̂ (T ) with respect to T and equating to zero, where we temporarily

ignored the constraint on T and have

∂T̂ (T )
∂T

∣∣∣∣∣
T=T̃ ∗

=

{[
− 1

T 2
+

1

T

(
− 1

T 2

)(
− ρ∑

i∈K mδ
i

)]
exp(− 1

T

ρ∑
i∈K mδ

i

)

}∣∣∣∣
T=T̃ ∗

= 0

(6.6)

Thus, the global maximizer is

T̃ ∗ =
ρ∑

i∈K mδ
i

(6.7)
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By noting that the number of time slots T should be a greater than one, we would

have the optimal number of time slots as

T ∗ = max
{
1,

ρ∑
i∈K mδ

i

}
(6.8)

The user throughput follows directly by plugging T ∗ in to T̂ (T ) and the system

throughput is then obtained as λT̂ (T ∗).

Theorem 9 gives the optimal number of time slots T ∗ for access barring, and also

the corresponding user throughput and system throughput. By noting the definition

of ρ as given by (3.9), we can divide the solution into two parts as before with the

same threshold λ̃ as given by (4.27) in Section 4.3.1. For λ < λ̃, the users can employ

full access attempt, and the game-theoretic solution is already socially optimal in

this case so the barring parameter T ∗ is equal to 1. But for λ ≥ λ̃, access barring

brings down the access attempts of users so that the interference in the network

will not keep growing with the user density λ. In fact, the density of transmitting

users with access barring is kept at λ
T ∗ = λ̃ for all λ ≥ λ̃ where the channels are

best utilized, and the system throughput is kept at a constant with respect to user

density λ.

Fig. 6.1 gives the user throughput versus user density λ for cases with and without

access barring. At density λ < λ̃, the user throughput with and without access

barring are the same. When the user density λ reaches above λ̃, it is optimal to

lower the access attempts of users so that the interference in the network can be

lowered, and thus with access barring the network can provide a better throughput

performance for each user. Fig. 6.2 gives the system throughput versus user density

for cases with and without access barring. We can see that without access barring,

the system throughput degrades with λ after λ̃; with access barring, the system

throughput is actually kept at an optimum even when the density of users is high,

which shows a great benefit of access barring. However, it should be noted that the

throughput of a user will still degrade due to high user density.
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Figure 6.1: User throughput versus user density with and without access barring.
The network parameters are set as α = 4, R = 2 bits/s/Hz, r = 13m, and P = 1.
There are K = 3 channels with m = [1, 1, 1].
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Figure 6.2: System throughput versus user density with and without access barring.
The network parameters are set to the same as in Fig. 6.1.

It should be noted that the optimal barring parameter T ∗ is proportional to λπr2

for λ ≥ λ̃, which is the average number of users in the disc formed by a transmitter-

receiver pair. A connection to the case with traditional collision model analysis can
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be found by considering the limiting case when α → ∞. Under such a scenario,

transmission by a typical user in channel k is successful only when there are no

other user transmitting in the same channel within the disc of radius r centered at

the desired receiver of the typical user. The access probability of channel k becomes

p∗k → 1
K

as given by (4.22) and the access attempt of a user becomes 1
T ∗ → K

λπr2
.

Let N = λπr2

K
denote the expected number of users in the disc that select a specific

channel. Now, we can obtain the mean number of attempted transmission per slot

in a specific channel within any disc of radius r as N · 1
T ∗ = 1. This is in fact the

the desired operating point of traditional slotted ALOHA with star topology and

users attempts to access a common receiver [7], and it shows that the access barring

scheme has the same effect as stabilization, which also controls the access attempts

of users. However, as mentioned earlier that most previous studies considers collision

models but ours consider the spatial context of wireless networks.
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6.2 Devices with multi-channel transmission ca-

pability

When the availability of each channels could be known and a user device has the

capability of taking transmission simultaneously over multiple channels, it is possible

to take the advantage of the frequency diversity over multiple available channels.

We assume that the users know the set of available channels C at the beginning of

each slot, and the transmitter transmit the same information over the channels in C.

The receiver adds up the signals from the channels in C and then performs decoding.

This is similar to performing Maximal Ratio Combining (MRC) with a diversity in

the frequency domain. Assume the fading statistics over different channels are i.i.d.

Rayleigh faded with unit average power (mk = 1) for simplicity. Successful decoding

at the receiver with combining happens when

log2

(
1 +

(∑
k∈C HS,k

)
Pr−α

N0 + I

)
≥ R (6.9)

where the equivalent fading gain HC ,
∑

k∈C HS,k of the signal is the sum of |C|

exponential random variables and the equivalent fading gain for the interference

remains the same [23]. This is because that the fading coefficients of the desired

signal are combined coherently over different channels, while those for interference

signal are not . Thus, we have I =
∑

Xi∈Π(λ) Hi0P |Xi|−α where Hi0 is an exponen-

tial random variable with unit mean. The throughput of a user after coherently

combining signals of the channels in |C| can be computed as

TC = Pr
(

log2(1 +
HCPr−α

N0 + I
) ≥ R

)
(6.10)

The results are given in the following theorem.

Theorem 10. When the users in the network with i.i.d. fading (mk = 1) transmit in

the set of available channels C and the receivers perform Maximal Ratio Combining
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of the signals in C, the throughput of a user is

T =
∑
C⊆K

ΥCTC (6.11)

where ΥC is given in (5.28), and

TC =

|C|−1∑
k=0

(−1)kφ(k)(1)

k!
(6.12)

in which φ(k)(c) is the kth derivative of φ(t) evaluated at c where

φ(t) , exp(−ϕN0t) exp(−ρtδ) (6.13)

with ρ given by (3.9). When the network is in the interference-limited regime (N0 =

0), the throughput with available channel set C can be further obtained as

TC = e−ρ

1 +

|C|−1∑
k=1

(−1)k

k!

k∑
n=1

βn,k

n!
ρn

 (6.14)

where βn,k ,
∑n

m=1(−1)m
(
n
m

)
(δm)k and (δm)k , (δm) · · · (δm− k+1) is the falling

factorial.

Proof. We have

TC = Pr (HC ≥ ϕ(N0 + I))

(a)
= E

[∫ ∞

−∞
exp(−ϕ(N0 + I)t)h̃C(t)dt

]
=

∫ ∞

−∞
exp(−ϕN0t)E[exp(−ϕIt)]h̃C(t)dt

(b)
=

∫ ∞

−∞
exp(−ϕN0t) exp(−λπr2(2R − 1)δE[Hδ

i0]Γ(1− δ)tδ)h̃C(t)dt (6.15)

where (a) follows by using Pr (HC ≥ s) =
∫∞
−∞ e−sth̃C(t)dt and h̃C(t) = L−1{FHC(s)}

is the inverse Laplace transform of the ccdf FHC(s) HC. (b) follows by using the
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Laplace transform of I that

E[e−sI ] = exp(λπP δE[Hi0]Γ(1− δ)sδ) (6.16)

Since each link in each channel is Rayleigh faded with unit average power, Hi0 is

exponentially distributed with unit mean. We have E[Hi0] = Γ(1 + δ). The random

variable HC is gamma-distributed with shape |C| and rate 1, and its ccdf is

FHC(s) = 1− 1

Γ(|C|)
γ(|C|, s)

= e−s

|C|−1∑
k=0

sk

k!
(6.17)

where γ(k, s) =
∫ s

0
tk−1e−tdt is the lower incomplete gamma function, and note

that when k is a positive integer, we have Γ(k) = (k − 1)! and γ(k, s) = (k −

1)!e−s
∑k−1

n=0
sn

n!
. The inverse Laplace transform of FHC(s) can then be obtained as

h̃C(t) =

|C|−1∑
k=0

δ(k)(t− 1)

k!
(6.18)

where δ(k)(t) is the kth derivative of the Dirac delta function. Thus, we have

TC =

∫ ∞

−∞
exp(−ϕN0t) exp(−λπr2(2R − 1)δΓ(1 + δ)Γ(1− δ)tδ)

|C|−1∑
k=0

δ(k)(t− 1)

k!
dt

=

|C|−1∑
k=0

(−1)kφ(k)(1)

k!
(6.19)

where in the second equation we have used the identity
∫∞
−∞ δ(k)(t − c)φ(t)dt =

(−1)kφ(k)(c) with the test function

φ(t) , exp(−ϕN0t) exp(−ρtδ) (6.20)

where ρ is given by (3.9) and φ(k)(c) is the kth derivative of φ(t) evaluated at c.
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The throughput averaged over all possible realizations of channel availability C is

T =
∑
C⊆K

ΥCTC (6.21)

with ΥC given by (5.28).

In the interference-limited regime (N0 = 0), the kth derivative of φ(t) for k ≥ 1

can be obtained using similar techniques as identified in [56] as

φ(k)(t) = t−ke−ρtδ
k∑

n=1

βn,k

n!
(ρtδ)n (6.22)

where βn,k ,
∑n

m=1(−1)m
(
n
m

)
(δm)k and (δm)k , (δm) · · · (δm− k+1) is the falling

factorial and δ = 2
α
. By plugging back to the expression for TC, we have (6.14).

Fig. 6.3 gives the throughput versus user density of the case with and without

the capability of transmitting over multiple channels, denoted by “with multi-ch

tx” and “without multi-ch tx”, respectively. At low density, the throughput per-

formance with multi-channel transmission is better for that frequency diversity of

multiple channels are utilized. However, when the user density is high, the gain

provided by frequency diversity would be outplayed by the high interference in ev-

ery available channels. On the other hand, when a user only transmit in one of its

available channels, the interference on each channel is dispersed, thus giving a better

performance at high user density.

We have shown that network of devices with simultaneous multi-channel trans-

mission capability can improve throughput performance by MRC with frequency

diversity. However, it should be noted that the gain is only seen in an environment

with small density of users. Otherwise, when the density is high, this capability will

actually degrade the performance for it cause a higher interference in the network.
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Figure 6.3: Throughput versus user density with and without the capability of
transmitting over multiple channels, denoted by “with multi-ch tx” and “without
multi-ch tx”, respectively. The network parameters are set as α = 4, R = 2 bits/
s/Hz, r = 10m, P = 1, and N0 = 10−5. There are K = 5 channels with Θ =

[0.1, 0.3, 0.5, 0.7, 0.9].
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Chapter 7

Conclusion

In this thesis, we studied multi-channel random access in wireless ad hoc net-

works with the help of tools from stochastic geometry and game theory. With

stochastic geometry, the spatial aspects of wireless ad hoc network considering node

distribution, channel fading, and path loss are taken into account more realistically

than traditional graph models of networks, and the interaction between and the

behavior of users that distributively and selfishly make channel access decisions are

captured with a game-theoretic model, where suitable access strategy at the equilib-

rium and the corresponding performance in terms of user throughput are obtained.

The socially optimal solution when the users are cooperative in making channel

access decisions is also studied, and the results are compared with that when the

game-theoretic scheme is used. We found that selfishness is actually socially optimal

in some network scenarios, and the conditions for optimality is derived.

We also studied the impact of channel side information to the access strategies

and corresponding performance when they are provided to the users in the network.

Specifically, when CSI is available at the transmitter, channel diversity can be ex-

ploited and the throughput performance of users can be greatly improved. On the

other hand, when channel availability information is provided to users as in the

case of CRN with multi-channel sensing capability, a Braess-like paradox is found

that the performance degrades when more information is provided. Mechanisms

that are able to further improve the performance of the network are also studied.
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By regulating in the time domain the access of users with access barring, the in-

terference problem between users with high user density can be alleviated. When

the transmitters are capable of performing multi-channel transmission, MRC with

frequency diversity can improve throughput performance when the user density is

not high. The proposed framework gives some insights for multi-channel random

access in wireless ad hoc networks, and facilitates the understanding of design and

analysis of such networks.
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Appendix A

Table of important notations

86



Table A.1: Important notations used in this thesis

notation description
λ Density of users in the network
α Path loss exponent
P Transmission power
N0 Background noise power
r The distance between a transmitter and the desired receiver
K Number of orthogonal frequency channels
K Set of K orthogonal frequency channels
S∗ The support of a Nash equilibrium
R Information rate of a transmitter and receiver pair

Π(λ) Poisson point process with density λ

Ψ = {Xi} Set of locations of transmitters in the network
Ψk Set of locations of transmitters transmitting in channel k
Ak Indicator for availability of channel k
θk Available probability of channel k
C Set of channels that are available in a time slot
ΥC Probability of occurrence with set of available channels C

mS,k, mk Average power of fading over desired signal in channel k
mI,k Average power of fading over interference link in channel k
pk Channel selection probability for channel k of a strategy
qk The probability that a user will select channel k
Tk Throughput of a user in channel k
T Throughput of a user averaged over its channel selection strategy
δ(·) Dirac delta function
Γ(·) Gamma function
γ(·, ·) Lower incomplete gamma function
W (·) Lambert W function
erfc(·) Complementary error function

δ 2
α

ϕ (2R − 1)P−1rα

ρ λπr2(2R − 1)δΓ(1 + δ)Γ(1− δ)

κ 1
4
λπ2r2(2R − 1)

1
2
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