Mo FRPFRERTR L]
L~
Graduate Institute of Communication Engineering
College of Electrical Engineering and Computer Science
National Taiwan University
Master’s Thesis

SRR LR E A BEER S L 2
Design and Analysis of MM}:L@HGI Random Access: A

f =2 =45

Stooh%:”{tlc G‘éome‘%ry Aﬁ:p?foach

b

Ching-Yueh Kao

I ERR AR L
Advisor: Kwang-Cheng Chen, Ph.D.

¢ R 101 & 06 2
June, 2012



B 3L 28 KL 23
nRXLEBEeELE

S BEEMBIRZ BT R - B BEMEATZ R
Design and Analysis of Multi-Channel Random Access:
A Stochastic Geometry Approach

RwXthdsh AR (295 R99942079) AR 2B RETE 42
EHRAAAMRZAAELMHX  HEE 101 =6 A 27 B AT 5| #3RX
ZEELTRBROREM > 4FILEH

DXL B

38225 TR

i} . %\)a HHIZ) .
$1 A R

ok AFI % (#2)




Fh o AR R R A R GRS 1 iE
gﬂlg\/&lﬂkm %"F »];kgigﬁoi,g,;kgf&}zggf-?%zﬁﬁf;
SEERP A A BET TR E B M
SRS MBI B A 2 F S AR A CERIH - FEH - F G
o \ﬁi’@“:%?\—‘&#p%\;:_;—*_g;ﬂu g F 8o AR L

o Fok! \rﬁwf\*w awf%ﬁw R RN

I"'r

I\
Q
ra

Ak

/s-j’f\'mﬂ?'ﬂts%,{, ﬁ “Lﬁ,‘ \)‘;‘;} *9,1153’%}

L ] I.
ISR 8 R
{“* Py

.imqmgﬁﬁ” 2
T 100%?41)2‘*,4f\;;:J : @ ﬁ% AR = A
E

w3
x,\_:_r'

5 2
& UIUC 1 ICCF - Vuireyard @humh ’“?IB§ S E NI

v 2

e

B bbbk o Bts > AR R 11—;{ Ty KA s B

IParts of this work was conducted with the help from Mr. Ao. I especially appreciate the useful
discussions with him. A joint paper of ours can be found in [1].

i



Riphwme? O AP RY S B URFAFERET A
fg:f&-ﬁ" vy 0 T3k élj,m“xs‘_%#i&ﬁ"?i“ o BiTHE R
£ el

R A F M Y EA LGS A AP EER

FE &
g :
2

Gl 1B 4 %*ﬁm&{ﬁ%*)Tiﬁﬁ%ﬁﬁﬁ
BB AP Bl i AR X3
TR & K T fiea] ] fzﬁﬁ%éﬁ%ﬁ SEEIHICE S
TR o e ST AT
fritirie v Sy SN0 5112 TG LRI RLBF
@ﬁﬁﬁoﬂﬂ’%ﬁﬁﬁﬁﬁﬁ%ﬁ )T
ERE G Ly ¥ ﬁﬁﬂ;i&ﬂ LS én%*-ﬁl’%
&$’j£@?iﬁﬁ“wl Eﬁﬂh&%" E @ g Tt
,kﬁ{ﬂ;iﬁmﬁ*ﬂm?kmm@ g@a%wﬁﬂ”* Boaw { 3E-
#H Fe = B T FodE F 417 0 @R AP - B
&ﬂ%%uﬁzsﬁﬂﬁ%&%ﬁl%w%cf—%&’iﬁﬁiﬁ
BRI BN X R FRRMPE T E R
R SRR RS Y APE: FTA ST
B4R 5 RIS  RANER SRR CEPAR FAER U

ES L

iii



Abstract

In this thesis, we study the performance of and devise appropriate
random access strategies for users in a decentralized wireless ad hoc
network operating on multiple orthogonal frequency channels. The spa-
tial factor of such problems which is still lack of study is considered
with the help of tools from stoghastie geometry, from which we derived
closed-form expressions for perfbrmaﬁﬁ:.e metrie... The interactions be-
tween selfish users'sharing the radio resources are modeled with a game-

theoretic point of view, and fh_e"-perférrﬁance are -Compared with that
T |

| T | |
in the case when there’s a Qentiﬂﬁfmtylor when the users are coop-

erative, where we also provi'ri exlﬁi{ﬁt ch%mracterizations. The impacts
of utilizing channel 5ido inf_olrrination Whe!!n! making access decisions are
also explored, where with lo.cal ¢hannel state information (CSI) available
at the transmitter, channel diversity can be exploited and user perfor-
mance can be improved; but when channel availability information are
known by users, a Braess-like paradox, where when more information
is provided the performance however degrades, can occur when the user
density of the network is high. Finally, mechanisms that may further im-
prove the network performance are introduced. Taking advantage of the
time domain resource, an access barring method is proposed to alleviate

the interference problem with high user density. On the other hand,

frequency diversity can be exploited at low user density with Maximal

v



Ratio Combining (MRC) to improve the performance when the radio
devices are capable of accessing multiple channels simultaneously.
Keywords: Multiple channels, random access, wireless ad hoc networks,

stochastic geometry, game theory, channel side information.
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Chapter 1

Introduction

1.1 Preface

In broadband wireless networks Iwhere H.Illlllltiple orthogonal frequency channels
are available for operation, it becomes a criticaluissue. that radio devices choose
suitable communication parameters.ténk_)est .U.ltilize the& resources of the network.
This is a specifically important problen’.wﬁﬁl'r Spectrum-aglle radios. Empowered by
software-defined radio technologles Fuchll%,s Cogmtlve Radios (CR) [3], devices are
able to dynamically tune to dlffereht_ frequency ehatinels for channel access in a more
intelligent manner. Since different frequency cham-l.els may provide different channel
qualities, which would lead to different throughput experienced by a user, the choice
of frequency channel for data transmission will highly affect the performance of
communication. Thus, a user in the network should make channel selection decisions
properly based on the knowledge of the spectrum environment.

However, since the wireless channel is a shared medium, the performance of com-
munication a user experience is not only determined by the access decisions of itself,
but the influences caused by of sharing spectrum resources with other users in the
network should also be taken into consideration. In particular, when there are other
users performing data transmission in the same channel, co-channel interference

may lead to a substantial degradation of the spectrum performance. Therefore,

there is an inevitable concern on the impact of the interactions among the users



in the network. Furthermore, in ad hoc networks where centralized coordination
is not possible and each user makes decisions autonomously according to their own
objectives, the medium access strategy taken by a user needs to be carefully devised.

Due to the distributed nature of wireless ad hoc networks, the spatial distribution
of devices/users is an important factor that might affect the network performance.
Many studies on medium access has either ignored or simplified the assumptions for
these aspects in small or local networks. However, for large scale wireless ad hoc
networks, they can no longer be ignored.

In the following we first give a brief review of previous works to demonstrate the

motivation of our work.

1.2 Background study

1.2.1 Traditional random access

Since 1970, when the landmark V\/':(..).I“'l : :Abfa.mson [4] was proposed to enable the

| : |
distributed sharing of a common cd munt!catiop' meédium- by a large amount of users

with a simple protocol - ALOHA ‘T ere h:as beep a tremendous amount of study on
random access, where the performance and propertles of ALOHA and its improved
version — slotted ALOHA [5, 6] were. of speciﬁc interest. It is of special concern on
their performance with some given data traffic of users, and the interactions between
and the dynamics of traffic intensity and the corresponding throughput. Analysis
with simplified assumptions can be found in [7], in which an infinite number of users
without buffering are considered, and the stability of slotted ALOHA were studied
in more realistic assumptions with queueing theoretic analysis in [8-10]. In spite
of the simplicity of the slotted ALOHA protocol, its queueing analysis turns out
to be a extremely difficult task due to the complexity of interactions among the
queues [11,12]. Another line of study is the throughput region of random-access,
defined to be the set of all achievable long-term average rate that can be obtained

by varying access probabilities [13], and was fully characterized in [14].



1.2.2 Random access in wireless ad hoc networks

Spatial reuse is a key feature in spatially distributed network say, wireless ad
hoc networks [15]. System throughput may be enhanced by allowing simultaneous
data transmissions at different locations of the network. By the distributed nature
of wireless ad hoc networks, the probabilistic reception due to wireless channel and
the spatial distribution of users cannot be ignored. However, most of the studies
of random access mentioned in the previous section did not take these aspects into
consideration. Most of the works assumed a simplified collision channel model, in
which any simultaneous transmission leads to a failure of reception. Furthermore,
they mainly considered or implicitly assumed a star topology, where all users want
to access a single base station or access point. These assumptions and scenarios
obviously does not fit into the case for Wirelelé.s ad hoee networks.

The study of slotted ALOHA with multipacket réception (MPR), which includes
capture models, was introdnced in{12, 16] By such a-thodel, the effects of prob-
abilistic receptions in wireless chan,nels.-ar.e chptured However, the models they
considered are still based on a star lt¢ pold‘ky anlfi dormot take the spatial distribution
of users into consideration. The relsults OI:I thrqqghput region by [14] was extended
to a general topology in [13]. Wlth an graph- base:d model of interfering links, the
model in [13] somehow studied the spatlal separatlon of nodes in the sense that only
links with an edge between the corresponding nodes in the interference graph has
the chance to interact. However, such graph based model is still simplistic since
transmission of signals over wireless channels actually make all the transmitting
links interact by the interference they imposed. Thus, there is a need for a more

precise modeling for the spatial distribution of wireless ad hoc networks.



1.2.3 Spatial analysis of random access with stochastic ge-

ometry

Stochastic geometry [17,18] provides a general model for the study of spatial dis-
tribution of nodes in wireless networks. By considering the interference imposed by
the active transmitters in the network, the performance of users (outage/through-
put, etc.) in the network can be characterized and in some cases with a closed
form expression, giving insights to the design and analysis of medium access proto-
cols [19,20] for networks that are spatially distributed.

In [21], a spatial reuse ALOHA (SR-ALOHA) protocol was introduced, and the
study was extended in [20]. The protocol is very simple that a coin is tossed by each
user and it accesses the channel if it gets héads. The bias of the coin is optimized so
that the best performance of the network co.u.ld be obtained. Despite its simplicity,
the protocol captures how the best spatial reuse can*be achieved by considering spa-

tially distributed users and .by introdﬁc_ing wovél closedform expressions for spatial

.-'-,‘:__'_:-..!
— |

averages (e.g. outage, throughput). | T2 |

The studies in [20,21]-are closeiy rela;{t_a_d_ tolthe eoncept of transmission capacity

in [22], which is defined as.the nuniber of sucdfé}ssful transmissions taking place in
the network per unit area subjecting. to a Co_nst.-.r:aint on outage probability. By
studying the transmission capacity, some important performance indicators of a
MAC protocol such as throughput and area spectral efficiency can be captured.
In fact, as pointed out in [22], the transmission capacity is in fact the MAC layer
throughput of a wireless network under ALOHA subject to an outage probability
constraint.

However, it should be noted that most works studied with stochastic geometry
are focused on scenarios with only a single channel [20,23,24]. In [25], multiple
channels are considered with respect to transmission capacity. Nonetheless, the
work of [25] focused on how many sub-bands a certain total system bandwidth
should be partitioned into such that the transmission capacity is maximized, but

not how a given number of channels should be accessed appropriately.



1.2.4 Multi-channel random access in wireless networks

As mentioned earlier, in modern broadband wireless networks where multiple
orthogonal frequency channels are available, it is of utter importance on the proper
access of the channels. As identified in [26], two major challenges of multi-channel
MAC lies in channel selection and collision avoidance/resolution [27] by distributed
users in the network which are discussed in the following.

The problems of channel selection in multi-channel MAC is about choosing suit-
able channel by the transmitter /receiver for data transmission. Practical issues and
algorithms for channel negotiation between transmitters and receivers can be found
in [28-30] and the references therein.

Recently, the study of choosing proper frequency channel for channel access has
been extended and has attracted tremendou!s'. attention in the context of Dynamic
Spectrum Access (DSA) [31-36]..dn [31], a Partially Observable Markov Decision
Process (POMDP) framework/was prop_osedl_ fox the sensing and access strategies of

device in decentralized ad hoc netwoii;éﬂ‘ﬁ.é_POMDP framework exploits the time-
1)

| = |- |
domain knowledge of the spectrum nvisgnment so'that,channel selection decisions

are made to maximize the lofn._g—telim pef}(:)-limaﬁl(:'!e, but.the model did not explicitly
take the multiuser environment fnto Consideralti.dh, which is every important in a
netowrk. In [32], access strategies in the presénce of multiple user competition are
studied along with tools in classical bandit problems. However, the restriction that
users impose equal impact on each other due to a complete contention relationship
ignores the important factor of the spatial distribution of network devices. Partial
interfering relationship between network devices was treated in [33] with a graph
model. But still, the assumption of a simplified collision model of transmission in
the works above makes it unrealistic in wireless environment where interference from
other users goes through path loss and effects of channel fading which jointly affects
the performance of wireless transmissions.

As for collision avoidance /resolution, we should recall that the fundamental prob-

lem of MAC is to reduce the impact of collisions over the shared medium. In [27],



a generalized tree expansion structure was proposed for a centralized network. The
collision resolution tree expansion (CRTE) is for handling collisions, while the colli-
sion anticipation tree expansion (CATE) is for splitting the contending users. Some
solutions such as the RAP family [37,38] had been proposed for centralized networks
with star topologies and the key idea lying behind is how the users are split into

groups to avoid/resolve contention.

1.2.5 User interactions in random access with game theory

In wireless networks, the users may be closely related to each other in the decision
they make and the performance they can achieve. The actions. Game theory has
been applied to study the strategic interaction of users with random access in wireless
networks in [39-41]. Selfish behaviorstand their resulting performance are studied
at the Nash equilibria. Howéver, g4in these works;«the network models considered
are with a single channelionly, and=the spatial distribution of nodes are not well

characterized. In [42]; the authors Conéﬁéred the spatial distribution of nodes with
" 4 '

stochastic geometry and the interhjtion-%etwele.h users_with game theory. Pricing

are used in order to let the sgalﬁsH sers aéhie\:fél the socially optimal performance.

i
I =
However, the issue of how apprepriatéraccess'strategy should be devised when there

are multiple channels was not taken care of.

1.2.6 Channel-aware random access

Another issue in wireless ad hoc network with random access is the impact
of some channel side information in the process of channel access decision-making
[40,41,43,44]. By exploiting local channel state information (CSI), [44] proposed a
decentralized joint physical-MAC layer optimization that exploits multiuser diversity
in multi-channel wireless ad hoc networks. The network model considered in [44]
is however based on a simplified graphical collision model, where some important
factors such as interference in the network are not completely characterized. In

[40,41], the interaction between users with CSI are considered with game theory,



and it was found in [41] that the extra information of CSI may however degrades the
performance. Nonetheless, the network they consider are with a single channel only
and do not take multi-channel into consideration. And still, the aspects of spatial

distribution of nodes are lack of precise characterization.

1.3 Motivation and goal of thesis

As can be seen in the previous section, there has been a lot of works in the liter-
ature on multi-channel random access, interactions between users with game theory
and the spatial aspects of wireless networks with stochastic geometry. However, to
the best of our knowledge, there has not yet been a joint consideration of all the

aspects listed below:

o Multi-channel random aceessqtaking thelehannel qualities/characteristics into

consideration in channel/selection.

™ e o' |
o Game-theoretic modeling of the -ip"'_'fe_fa’.‘ctlidns of users in the network for con-

tention of resources-and the Lc{rresﬁc}nding perforinance analysis.

T

Ty i 1

o Characterization of the spatiallyadistributed. nature of wireless ad hoc net-
work with stochastic geemetry-and the‘interaction of users in the sense of the

interference they cause imposed on each other.

The main focus of this thesis is to take all the aspects listed above into consid-
eration. We analyze the behaviors of and devise proper channel access strategies
for users in multi-channel wireless ad hoc networks. With the help of tools from
stochastic geometry, we incorporate important spatial aspects of wireless networks
such as path loss and channel fading that governs the performance of a wireless
transmission. In addition, a game-theoretic point of view, which provides a good
modeling framework for the study of interactions between decentralized competing
users of network resources, is proposed to suggest the users of suitable channel se-

lection strategies. The case where there is a central entity controlling the users or



when the users are cooperative is also discussed, and the results are compared to
those with the game-theoretic solution.

Then, the impact of some channel side information is examined, and the best
strategy for channel access with such information is devised along with the corre-
sponding performance comparisons. Finally, we identify and examine mechanisms
that may further improve the performance of the network. On one hand, for that
with the growing density of network devices, the interference-limited nature of net-
work will highly degrades the channel; we propose a access barring method that
exploits the time domain resource by which the throughput of the users can be
substantially improved. On the other hand, when the users have the capability of
accessing multiple channels simultaneously, frequency diversity of the channels is

] ST
exploited with Maximal Ratlo @’oiﬁjblgmg (Mtf{ﬁ)rt?' increase the throughput per-

formance. v ,?-;'.’ —
.d-
J
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Chapter 2

Preliminaries

2.1 Poisson Point Process

2.1.1 Stationary PPP.

A stationary Poisson point process (PP%LIQ} with density Xis characterised by the

following properties | | il

« The number of pointsiin a.set A € R?|with aréa |A| is a Poisson random

variable with mean AJAl.. That'is,

Pr((A) =k) = Wkil’)ke—“‘l (2.1)

where (A) denotes the number of points in A.
e The number of points in disjoint sets are independent.

Throughout this work, we use ¥ = {X;} to denote the locations of (possibly a subset
of) nodes in a network and II(\) to denote a stationary PPP with density A\. With

U = II(\), we mean that the nodes specified by ¥ are distributed according to IT(\).



2.1.2 Poisson shot noise process

The Poisson shot noise [19] is defined as

S HPIX | (2.2)

XG€ell(N)
where H; is a random variable and P is a constant. The Poisson shot noise process
can be used to model the interference received at a node in the network, where P
represents the transmission power and H; represents the channel fading coefficient.

The Laplace transform of I, is defined and could be obtained as

L{I} £ Ele = exp (—AnP°E[H.|T(1 — 6)s°) (2.3)
1 -
where § £ 2 and I'(z) = f > =A@ is the Camiina function.

The probability density functlon gp\a"z_and cumulatlve distribution function (cdf)

of I has a closed form expression fr qﬂ'c';"rﬁqcase where oo = 4 (i.e. 6 = %), where

1
2

2
I has a Lévy distribution with pa amete. 7 = I” 2P (E[Hi ]) [22], pdf
| .
|

i) \/25 = 24

Fi(z) = erfe ( 21) (2.5)

™

and cdf

where erfc(s) = \% [ exp(—t?)dt is the standard complementary error function.
When H; is exponentially distributed with mean m which corresponds to the impor-

1
tant case with Rayleigh fading, we have E[H?]| = ‘/;, and [ is then Lévy-distributed

with v = $A?7*mP. Specifically, the cdf of I is given by

10



2.1.3 The thinning of a PPP

Consider a set {¥UP)}E  of K point processes obtained from assigning each
point in II(\) to ™) independently with probability p; such that Zfil pi =1 (ie.
thinning [19]). We will have each of the resulting point processes in {¥®P)}K 5
PPP with density z; £ p; A independent of other point processes in the set. That is,
we have U@) = TI(p; \).

2.2 Performance metrics of MAC with spatial con-
siderations

In this section, we brief some performance ietrics that has been proposed in
the literature concerning the spatially distriboted nature of wireless networks with
stochastic geometry.

In [45], the notion of tmﬁsmz’ssioﬁ cclzpacz'tg).is proposed for analysing the perfor-
mance of MAC protocolssin spatially (i;""';i.:b:nted wireless*ad hoc networks. Funda-
mentally, the transmission capamty rzapt-ﬁres the area spectral efficiency, reliability,
and throughput of a random: acces[s protocol We start-by giving some assumptions

and definitions about transmission capacity, athichCadibe found in detail in [22]:
1. The network is considered with a single snapshot.

2. The network consists of transmitter-receiver pairs. A transmitter and its de-

sired receiver are with a fixed distance r from each other.

3. Each receiver treats interference as noise. The rate of a transmitter-receiver

pair is given by the Shannon capacity.
4. The transmitters form a homogeneous PPP in the R? plane.

5. Every transmitter decides independently whether to transmit with a common

probability piy.

Given the assumptions above, we give the notion of outage probability.

11



Definition 1 (Outage probability, [22]). The outage probability of a transmitter in

the network is defined as
v = Pr(log, (1 + SINR) < R) (2.7)

where R is the information rate of the transmitter-receiver pair and SINR 1is the

signal-to-interference-ratio at the receiver.

It can be easily seen that the outage probability is dependent on the density of
active transmitters in the network due to interference. Thus, we denote the outage
probability with density of active transmitters in the network being A as v(\).

As for the performance of slotted ALOHA in a system perspective, we have the

following definition for MAC layer'throughput.
: s

Definition 2 (MAC layer'throtighput, [22]). The MAC layer throughput of a wireless

network with slotted ALOHA, wher«la..the actz’ue-t_mnsmift_é_r_s form a PPP with density

|'~'

. :-"""'-.--"'f.'
A s i-""f-.ll

ek I
fh .
= () (2.8)

|
N

The MAC layer throughput is Wlth'umts of .successful transmission per unit area,

b

_\._
o

and captures the efficiency of a random aceess protocol in a spatial context as for a
system perspective.

The transmission capacity is then defined in the following.

Definition 3 (Transmission capacity, [22]). The transmission capacity of the net-
work is defined as the maximum spatial density of successful transmissions subject

to an outage probability constraint v*. That is,

TC(v*) £ v {v*)(1 —v*) (2.9)

Note that v~!(v*) is the density of transmitter that can make the outage con-

straint v* satisfied.

12



There is a close relationship between transmission capacity and the MAC layer
throughput. In fact, the transmission capacity is the MAC layer throughput maxi-
mization constrained on the outage probability, as was shown in [22]. Specifically,

we have TC(v*) = \*, where \* solves the following optimization problem:

max A1 —=v(N))

s.t. v(A) <v*

Another line of study of the performance with spatial aspects of wireless network
is the transport capacity as introduced in the seminal work by Gupta and Kumar [46].
Defined as the maximum distance-weighted sum rate of communication over all pairs
of nodes, transport capacity optimizes all scheduling and routing protocols and the
focus is on the how the sum rate scales asymllpltotically in the number of nodes [22].
In spite of its generality, the resultsmprovided__by scaling laws [47] are less specific
about the merit of a MAC protocol. ,St.i;'_l_],_al_ri.ptper line of-’ -study is of an information-
theoretic approach, which is well iu&nrrl;gr:;‘éd Iirlll [48]. However, it is more suitable
for the study of small isolated netY'v rks {2:2] .

2.3 Game theory and decision making

Game theory is a set of tools that can be used to help us understand the phenom-
ena we might observe in the interaction between multiple decision makers. In the
following, we state some simplified concepts and results in traditional game theory
that might be used in this work.

A game is a model that describes the interactions between some decision makers,
called players. Each player in a game make their own decision, called action. We
can represent the set of N players by a set N' = {1,2,--- N}, and the set from
which a player i € N choose its action by A;. A collection of actions of the players
a = (ai,as, - ,ay) is called an action profile, and is also referred to as an outcome.

Associated with each player i € N, a utility function u; : A — R describes the

13



preferential relation of the outcomes of a game, where A = A; X Ay X --- X Ay is
the set of outcomes. A higher utility suggests a higher preference of a user to the
outcome, and here we consider rational players that each of them take actions with

the purpose of maximizing their own utilities. In summary, we have:

Definition 4. A game, denoted by the triple (N, (A;), (u;)), consists of the following

basic elements:
o A finite set N ={1,2,--- | N} of N players (decision makers).
o A nonempty set of actions (possible decisions) A; for each player i € N.
o Associated with each player i € N, a utility function u; : A — R.

Let a_; denote the action_ profile of playess other.than i. The notion of a Nash
1 =
equilibrium describes a steady statesotutcomeyoef a/game in which players make ra-

tional decisions. More specifically, we have the following definitions.
T -l- III.". A

Definition 5. An action.profile at 3 Wﬁ |1 LaN )€ A s a Nash equilibrium if

|
for any player i € N, | .l'h% | |

1 |
"GN | 1
Uu; (a’fs a* ) >, (az, ) fof“ all a; € A; (2.10)

-

We now introduce the notion of mixed strategies, where the players play their

actions in a probabilistic manner.

Definition 6. Consider the game (N, (A;), (u;)). Suppose A; = {55"), sg), e ,sg?}.
Then a mized strategy for a playeri is a probability distribution p» = (pg?,pg?, e ,pgz)
over the action set A;, where 0 < p,(f) <1fork=12,---,K and Z; 1pj =1.
A mized strategy profile p = (pV, -+, p)) is a collection of mived strategies of the

players.

The utility function of player ¢ with players using mixed strategies can then be

14



defined as

U, (p(i)’p(—i)) - Z <H pé?) u; (a) (2.11)

acA \jeEN

where p(=? denotes the mixed strategies adopted by players other than i.

Now, we can define the Nash equilibrium associated with mixed strategies.

Definition 7. A mized strategy profile p* is a mized strategy Nash equilibrium if for

any user i € N,
U, (p*(i),p*(_i)) > U; (p(i),p*(_i)) for all p¥ € A(4A)) (2.12)

0 Lo N
where A(A;) is the set of all p?_"-q)'bdbz'l[ié;/r dz'ét_yj{?jﬁz_’qm,s_ over A;.
7l N

I" . I._.'"r —-i-!' x'\-..“:_
' 2 ; { T
The following lemma, will b’éfﬁ in this ih solving for a Nash equilibrium
.\ Ty = g
of a game. o PR ,\- =N
X Il' vE —_

=] =~
Lemma 1 ( [49], Lemmd 3 e is.a mized strategy Nash

equilibrium of a finite ?am,?;’ ) eé:{'h{tf g’%‘“indiﬁerent between the

Lo s
e support is defined as the set of
actions which are assigned 'ﬁo_ﬂ-_“z’érof-‘ﬁﬁobabil#é‘e_s by :itsﬁ' mized strateqy in the mizred
L wr - = __'.|__. v

actions in the support of'tth(’é“q .

S ;
strategy profile. ATy oy (o LSS

By Lemma 1, we have that p* is a mixed strategy Nash equilibrium if for any

player i € N
U'i (aj7p*(_i)) = UZ (aj’7p*(_i)) ) vaj) Qg € Aiapaj7pa]-/ 7é 0 (213)

where we have defined U; (aj, p(_i)) as the utility obtained by user ¢ when it use the

mixed strategy p,(f]) =1 and p,(l?, =0 for a; # ay € A,.
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Chapter 3

System Model

3.1 Network topology and channel model

We consider a wireless ad hoc network in*which. the transmitters (which we will
also call “users”) are digtributedéwith locations specified. by a homogeneous Poisson
Point Process (PPP) with d.ensity A on.'f_}_l‘e 2_—]5 plane. With & = {X;} denoting the
locations of the transmitters;awe haye \I':'-’-‘!—"H()\) Wejassume that each transmitter
transmits with power P to'the its -!t&i}rget:!r'cgceiv_er of distance r away.

Assume the network operates 'on K frequeney channels with equal bandwidth,
denoted by the set I = {1,;2,...7K }: A chanuel k € K can be either available for

channel access or not, and a user can ufilize a channel for transmission only if the

channel is available. Let A, denote the indicator variable if channel k is available

1, channel k is available

Ay = (3.1)

0, o.w.,

and we assume that Aj ~ Bernoulli(y), where 0 is called the channel available
probability. If we have 6, = 1 Vk € IC, this corresponds to traditional random access.
When the channel availability probabilities of different channels are different, it fits

the scenario of Cognitive Radio Networks (CRN) [50] where secondary users (SUs)
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do spectrum sensing! to identify the state of a licensed channel and access only if the
channel is sensed to be free of primary users where the channel available probability
0r can be considered as the probability of presence of primary users. We assume

that 0 < 6, <1 for that it would be trivial to consider a channel with zero available

probability.
A
N 4
~ 4
S s’
U /. (4
R !
oc>® |/
>
—_>

Transmission
on different - _>

channels ~  ssssss >

Interference
to the typical =—=--->
node

Transmitter .
Receiver .

Figure 3.1: The locations of the transmitters in the network are distributed according
to a Poisson Point Process, and the intended receiver is of distance r away from a
transmitter. The transmitters are represented by the black dots while the receivers
are represented by the gray dots, and a typical receiver is placed at the origin.
Different colors and line-styles of the bold arrows represent transmissions in different
channels. The dashed arrows in black represent interference relationship to the
typical receiver. This is the modified multi-channel version of the network topology
in [2].

We assume the channel undergoes a general fading with fading coefficients { H;; 1 },

where 7 and j denotes different users in the network and k is the index of correspond-

Tn our work, we assume perfect spectrum sensing such that the actual spectrum availabilities
can be obtained. The issue of sensing error is out of the scope of this work.
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Kk |- m N e bk

Slot t t+1 t+2 t+3 t+4

Figure 3.2: The network operates under a synchronized slotted structure with K
frequency channels. In each slot, a channel may be available or not, and the prob-
ability of a channel £ being availablesisyfis Note that the available probabilities of
different channels might be different;

ing channel. We assume the fading coefficients between different users are i.i.d., but
may be non-i.i.d. over different channpﬂ% The fading coefficient H;; is character-
ized by its cumulative distribution furietion (cdf) Fg,, (h) and probability density
function (pdf) fg,,, (h). The channel strefrlgth is|determined jointly by pathloss and
fading, i.e. the received signal pewer atmode |j due to node i at distance d away
in channel k is H;;,d™“, where & >72 is the:pathless exponent. For convenience

of notation, we represent the fading coefficient of the link for the desired signal in

channel k£ as Hgy and that for the interference link in channel & as Hy .
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3.2 MAC mechanism

We assume the network operates under a time-slotted and synchronized struc-
ture. Each user in the network selects one of the K frequency channels in each time
slot for channel access according to some access strategy based on its knowledge
(e.g. channel statistics) of the system . We assume the users in the network are
non-cooperative, and each of them intends to maximize its own performance metric.
In particular, we set the performance metric of a user to be the throughput, which
is defined in terms of the average number of successful channel access in a time slot
given its access strategy. A successful channel access in a time slot can occur when
the channel is both available (i.e. Ay = 1 for channel k) and the transmission in
that channel does not encounter an outages where an outage happens if the channel
cannot support the information rate R.of a t".r.ansmission. That is, an outage occurs

in channel k if

log, (1 +%PTI_L,) ;| (3.2)
| | <= |

| L m |}
where [, is the interference power ii] hantiel & and Np is the power of the background
¥ | 11

ey || i)
noise. Thus, the throughput in & chiannel k& (gi\}en-.:ighe user has chosen channel k for

access) can be written as

Hg Pr—¢
T = 0,Pr | lo 1+——— ) >R 3.3
k k;(g2( N0+Ik>_> (3.3)
When a user adopts a probabilistic channel access strategy, say p = [p1, ..., Pkl

such that channel k is chosen for access with probability p, the throughput of the

user can be written as

Hg i Pr—¢
T = Zpklﬁc = Zpkgkpr (10g2 (1 + ﬁ) > R) (3.4)

kel kel

Finally, the performance in a system perspective which we call the “system

throughput” is defined by multiplying the user throughput by the network density,
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i.e. AT, which has units in successful transmission per unit area [42].

Slot (t — 1) Slot t Slot (t + 1)
i ]

Sensing Packet transmission

»
>

Figure 3.3: A user performs sensing at the beginning of a slot to acquire the avail-
ability of a channel, and it can perform channel access and packet transmission on

a channel only when it is available.
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3.3 General forms of the performance metric with
stochastic geometry

Given the definition in (3.3), we can see that the throughput in channel k is
determined jointly by the channel available probability 6., and the statistics of
the desired signal power, Hg, and the statistics of the interference power I;. By
considering a typical user? where its receiver is centered at the origin of the network,
we can derive the throughput in channel k£ with tools and techniques from stochastic
geometry.

The interference power [ seen by the typical receiver is the sum of the signal
power from the other transmitters in the network attenuated by path loss and chan-
nel fading. By letting W, denotelthe set of nodesin W taking transmission in channel
k, we have I}, = ZXiE‘I’k Hio PYX;| % Wherellj{io’k 1§-the fading coefficient of node 7
to the typical receiver. If the usersin ¥ adopts a Channel access strategy such that
channel £ is chosen for access Wlth pmbablhty P, wWe then have by the thinning

|

property of PPP that ¥, = pk)l T'H&’éenéral expression for the throughput in

channel k£ can the be obtained in ’th follewing! theorem
. | . |I |
Theorem 1. Given the chanmnel access strategy that-a channel k is selected with

probability py by the users in V= T(A),.the throughput in channel k is

Te = Qk/ exp(—¢@Not)

[e.9]

cexp (—pAmr? (27 — 1°E[H2,T(1 — 6)t°) hsy(t)dt  (3.5)

where

o= (2% —1)P e (3.6)

and Eg}k(t) is the inverse Laplace transform of the complementary cumulative dis-

tribution function (ccdf) of the of the fading coefficient Hgy, for the desired signal in

2By Slivnyak’s theorem [17], the performance perceived by the typical pair of transmitter and
receiver represents that of the node-average performance in the network [2].
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channel k.

Proof. With the thinning property of PPP, we have

L= Y HoxP|Xi|™

X;€ll(prA)

By the definition in (3.3), we have

Hg . Pr—
= 0,Pr (1 1+—— ) 2R
IS o)

= QkPr (HS,k; Z (2R — 1)P_1’I“a(N0 + Ik))

—00

@ 9.E { / h exp (— (2% = )P~ 'r*(Ny + I,)t) Es,k(t)dt]

= Oy, /_ N exp (—(27 -1 R-llr Jgofij Egé'%_cﬁ‘ (1- 2R 1) P10 It)] hs(t)dt

22 "|"-"' 3 '=':-.- 1
© Qk/ eXp( (2‘5‘*_ 1 ‘H;’{‘ ok,
& o T,
. eXp_!:(—h]-?':]é 5,](]1_‘(1 ) l;ﬁé)flb_,sjk(t)dt
L L ]
= o
= . l o
g &J
where (a) follows by usmg it G

where TLS,k(t) = LY Fy,,(s)} is the inverse Laplace transform of the ccdf Fy , (s)
of the fading coefficient Hg, for the desired signal in channel k. (b) follows by using

the Laplace transform of the 2D Poisson shot noise process I,
Ele /] = exp (—,U,kﬂ'P&E[H}S’k]P(l —6)s°) (3.7)

where ;. is the density of W, which is pipA here. The results follows by letting

¢ = (2% — 1)P~1r® for convenience of notation. O

In the following and throughout the remainder of the thesis, we consider the
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case when the channels are Rayleigh faded, and in each channel £ € K with average
power E[Hgy] = mgy and E[H ] = myy for the desired signal and interference
respectfully. Thus, we have E[H} ] = m] ,I'(1+ ), and Eg,k(t) =0(t— m;}c), where
d(t) is the Dirac delta function. Without loss of generality, we let m;; = 1 and

ms = my. The results are given in the following corollary.

Corollary 1. Given the assumptions as in Theorem 1, when the channel undergoes

Rayleigh fading such that E[Hg ] = my and E[Hy ] = 1, the throughput in a channel

,.

k s
Tr = Oy exp(—dNom; ') exp(—prpm;°) (3.8)
[ELELE
where I: ‘._ % v Ly
\ " I ¥ :"
= o
08 Ll =) (3.9)
A =
Figure 3.4 gives a p{gt of e us ughput, 7; in'channel £ as given by equation
(3.8). We can see tha"c:'the throug uf@ in a channel will be dependent on

hatighannel p
w1
and 6. With better channq]{(qjl é"f?n,hand 0x), the throughput

ifies (hliher
in channel £k will be hlgher ..fHo ;';'J erc, e chsanr?éf 1s accessed more frequently by

the users in the network (a hlgher .-'Vajiue of jpk') tllhe throughput in that channel will

the density of transmlﬁ-tmg.u aﬁcl’ ﬁhe channel qualities my,

degrade.
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(b) With fixed my, = 1 and different 6y,

Figure 3.4: User throughput 7 in channel k versus py.
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3.4 Remarks

3.4.1 Connections to other models

As mentioned earlier, most works on multi-channel random access ignores physi-
cal channel characteristics or spatial distribution of users and considers either graph-
based collision models that do not take into account the aggregate effect of network
or capture models (SINR capture or power capture) ignoring spatial distribution of
users in the network. Compared to previous works, we employ stochastic geometry
to characterize the aggregate effect (interference) caused by spatially distributed
users such that a more precise modeling is provided.

Some connections can be found between our model with those of previous works.
By considering the limiting casé wheni.a — ec with the interference-limited regime
(No = 0), our model for suceessful recepti(;rll reduees to the protocol model [46],

where transmission by the node X; to node X, overchannel % is successful if

. _IXJ.";I.’[['.}'Q"_. X;| =it (3.10)

for every other node X, transmitting in channel',kf. That'is, transmission by a typical

user in channel k is successful o-nl-y when thene _are- ho other user transmitting in the
same channel within the disc of radius gentered at the desired receiver of the typical
user. This model is often used in graph-based analysis of multi-channel MAC where
corresponding interference graphs are further constructed [33].

Another connection to the traditional non-spatial random access scheme where
N users attempts to access a single receiver (base station or access point) assuming
collision channel model can also be found. In that case, the N users try to make
access through one or multiple, say K, communication channels to the receiver, and
if two or more users transmit in the same channel simultaneously, the transmissions
in that channel fails. In the following, we define the model for non-spatial multi-
channel random access with collision channels. With N users attempting to access

a common receiver through K channels as previously described and with similar
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assumptions as our model but in a non-spatial context, the access by a user in
channel £ is successful if channel k is available and no other users are transmitting
in channel k. If each user chooses channel k£ for access with probability py, the

expected user throughput in channel k is
T = 0,(1 — pp)N ! (3.11)

The model defined above is similar to that in [32] for cognitive medium access, and

will be used later for discussion of our model in the non-spatial context.

3.4.2 On the transmitter-receiver distance

Throughout this thesis, thedistance be’gween a. transmitter and its receiver is
assumed to be a fixed constant# as desc.-ribedlli-n Section 3.1. In this section, we show
that how this assumption ean be dropped SO that the dlstance for each transmitter-
receiver pair is now a random Varlablew, __ﬁ.n@teil by 7, Characterlzed by its pdf fi(r).

Consider the mterference—hmltT re’— e '(NOI = () with Rayleigh fading for sim-
plicity. With the pdf of bemg ;] the elqmatlon for throughput of a user in

|
channel k£ can now be derlved as.. 4 |

Hap Do\
Te = 0,,Pr (10g2 (1 + S’“I—T> —~ R)
k

= QkPr (HS,k Z (2R — 1)P_17A’afk)
—0,E { / exp (—(2% — 1) P77 Iit) Es,k(t)dt}

= 0y, /_OO E [exp (—(2% — 1) P71 It)] g s (t)dt

= O4E [exp(—prpm;,°7?)]

= Qk/ exp(—pkﬁm,:‘;ﬂ)ff(r)dr
0

where p £ A\r(2f — 1)°T(1 + 0)I'(1 — 6).
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Now, consider the scenario where the potential receivers of the network form
a PPP with density A\, denoted by V.., and each transmitter in ¥ chooses the
nearest node in V., as its target receiver. In this case, the cdf of the distance 7 for

a transmitter-receiver pair can be found to be
Fi(r) =1— e (3.12)

by considering the non-void probability of a circle with radius r with respect to a

PPP with density A.. Thus, the pdf of 7 is

fi(r) = 2mr Ae (3.13)
SIS r'-a'f":--;.-
and in fact, 7 is Rayleigh dlsmbutefd _ﬁllth an %& The throughput in channel
\: ,}';f, I : e .--_.
3

k now becomes

N

(3.14)

. 0 —ax? . .
where we have used the integral fo re " dr = i Analysis of access strategies can

thus be made.

3Note that we have implicitly assumed that each receiver is capable of receiving more than
one number of transmissions at the same time for two or more transmitters may choose the same
receiver with this model. More discussions on such assumption can be found in [20] and is not our
focus here.
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Chapter 4

Multi-channel Random Access

Without Channel Side Information

In this chapter, we consider-multi-channel random access without channel side
information (more precisely, channel state information. and channel availability),
which will be treated’in the next chaplfrcgr. We| devise the optimal access strategy
for the uncoordinated users of the netwgrpfusing a game-theoretic point of view. In

P
addition, we characterizes the optiin‘al aGdess strategy and its corresponding perfor-
mance when there’s a central entitfy available. Finally,“we apply our results to some

special cases, and discuss about their; performance which gives some insights to the

designs of different networks.

4.1 Game theoretic design of access strategy

According to the medium access mechanism described in Section 3.2, a user
chooses among the K channels for access with a strategy intended to maximize its
own performance metric. Intuitively, a user can achieve this goal if it chooses the
channel k& with the highest available probability 6, or with the highest mean of
channel gain m;, for channel access. However, we should note that the throughput
in a channel defined in (3.3) is characterized not only by the channel available

probability or channel fading statistics, but also by the received interference power in
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that channel. If all the users naively choose the same channel with the best available
probability or best channel fading statistics for access, the chosen channels might be
crowded with users which lead to high interference and thus high outage probability,
and ultimately results in low throughput in that channel. On the contrary, choosing
a channel with a lower channel available probability or relatively worse channel
fading statistics may however result in a better performance if that channel is not
so crowded.

The main purpose here is to devise appropriate channel access strategies for the
users in the network. From the discussion above, we can see that while the users
makes channel selection decisions independently with a goal of maximizing their own
performance, each of their performance is dependent on the others’ decisions. This
leads to the formulation of a game-theoretie.problem of the multi-channel random
access problem. ~

Specifically, by taking the users i_r_l_the network as the _players in a game, we have

i

the following multi-channel random .a‘aée.ss -&ame The channel selection k of a user
" |

for channel access is the action of jpl&'}ﬁr n 'the game, and the throughput 7 of

utility of tlhe correspondmg action. Without
1 |
loss of generality, we assume that a_useiusc 4 m.lxed strategy where a channel is

choosing channel £k for adcess'is t

chosen with a specific probablhty fortaccess.

Due to the homogeneity of PPP and since each user in the network has the
same objective that its throughput be maximized, we can restrict our attention to
symmetric Nash Equilibria (SNE), in which every user would use the same mixed
strategy p* for channel access at the equilibrium. By considering SNE, the original
game which consists of an infinite number of users can be transformed to a equivalent
two-player game, where one player is a typical user and the other player represents
all other users in the network. We denote the utility of the typical node with mixed
strategy p’ = [p],...,P%] as U(p', p), where p = [p1,...,pk]| is the mixed strategy

of all the other users. When the channels are Rayleigh faded, the utility function
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could be written according to Corollary 1 as

U(p',p) = Y ik exp(—dNom;. ") exp(—prpm;.”) (4.1)
ke

Since each user in the network chooses its access strategy such that its own utility
is maximized, the SNE p* = [pi,..., p}] could be characterized by

U(p*,p’) = max U(p',p’) (4.2)

0<p’<1
ke PR<1

Lemma 2. The symmetric mized strategy Nash equilibrium p* of the multi-channel

random access game satisfies

|IE{;1’7?=‘1{ - (4.3)
F aH k= :k€ * _;*E. ol Y
y I g =g .l q,.-:..:

&7
where 8* is the support of .tﬁef?qn' j
A

S Phy
A= o
Proof. This property Qé_m'"b@ prove

and all the users in the network

ical user plays p*, and the
ped =

typical player adopts é@ﬁt@te for c¢hannel i € S* such that
S | i ¥
HN'Lm.E s .-..-*r D, n,llh.
P = B s B P keK (4.4)

we would have

U(p',p") = Y phbr exp(—¢Nom; ") exp(—pjpm;”)
keS*

< Y pibkexp(—¢Nomy ") exp(—plpm;®)
keS*

=U(p*,p")

which leads to a contradiction to (4.2). Thus, we must have », ¢.p; = 1. O

With the property in Lemma 1, we can characterize the SNE of the game and
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its corresponding performance with the following theorem.

Theorem 2. The symmetric mized strateqy Nash equilibrium p* of the multi-channel

random access game satisfies

m‘s —
“k (Inby, — ¢Nomy' —In E(S7)), ke S

=

ke k\S*

where

E(S) £ exp (Z mk> (p — Z mj, (In 6 — ¢N0m,;1)) (4.6)

keS kesS

M o] LA ey
and 8* is the support of the eqqi{i.b%iu!@.[ T hq__'?_ii#’o_ughput of a user at the equilibrium
-l T e

8

(4.7)
=]
Proof. By Lemma 1, the uger eetrithe actions in the support
gy
of the mixed strategy Nashfeg ilibtium, whic aﬁ-s?"'ftha,t the utility of selecting

the channels in the suppor’tp-S* t)J\;v';z?SuL(;l Be equghze@’to ﬂ.same value say E. We thus
have e ..f;;.‘,l'_.'“j.- l|l 1
T = Op exp(—dNom 1) exp(—pipm;°) = B, Vke S* (4.8)

By taking natural logarithm on both sides and rearranging terms, we have for k € §*,

5
o 7’“ (In6y — pNom;, ' — In E) (4.9)

With Lemma 2, we have ), .. p; = 1. Thus, we can obtain the constant £ as

= exp (Z mk) (p — Z mi (ln Or — QSNOm,;l)) (4.10)

keS* keS*
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The throughput of a user at the equilibrium p* is then obtained as

T=U@p"p")= ) nkE=E, (4.11)
keS*

]

Given Theorem 2, the Nash equilibrium strategy of a user in the network and
the corresponding performance could be evaluated. By the fact that the utility of
selecting each channel k in the support S* (i.e. the set of channels that will be
chosen with positive probability) is equalized to E(S*) at the equilibrium, we have
the following relationship

Ok exp(—pNom ) eéxp(—prpm; V= E(S*), ke S

which can be rearranged to

e
! i
A '

"'H"'."." 'I.". I
—In6 + qSNOm,;l -I—Ip’,;%‘é"gzl—i—lnE(S*), keS”
|
| rtJ- 1

and can be explained by a \ivgter—lhk ing?c:(;ncer:)tll as sho_w.n in Fig. 4.1. Each white
block corresponds to a chan.nel, _an(li the leng_til and height of them are related to
the channel qualities m, and 0. The water lével corresponds to the fact that the
utility for each channel in the support is equalized at the equilibrium, and the area
of the blue region above each white block is the allocation of access probability pj
for channel k at the equilibrium. We can thus see how the access probability of each
channel at the equilibrium is related to its channel qualities. The channels not in
the support §* are those whose corresponding white blocks with heights above the
water level. Note that the width of each block is also related to the density of user
A by the definition of p in (3.9). As A grows, the width of each white block shrinks,
and since the area of the blue regions sums to one (i.e. ), _s.p; = 1), the water

level also rises and more channels might then be included in the support.

The support §* could be obtained as described in Algorithm 1 with E(S) defined
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5. -1
mp

Figure 4.1: The water-filling concept of the game-theoretic solution at the equilib-

rium.

asin (4.6), and is explained in the following. Thealgorithm starts with the candidate
set M for the support which ig/in the beginr.lli.ng thecset K. Finding the support &*
is equivalent to finding which channels would be'floeded-along with the water-filling
concept. In the first iteration of the while loop,at Step 3, the algorithm equivalently
chooses the channel that has.the Ilolwe;f-:;,-llfe"i:.ght of white block in the water-filling
diagram. At Step 4, the chosen chi;,ujnel kI* is added to the support $* and removed
from the candidate set M. 'With:t-he cureent Is.et__ forsupport S*, Step 5 excludes
the channels that will never be chosen'to.be'in the support for that the heights of
their corresponding white blocks are already greater than or equal to the current
water level. The while loop continues until the candidate set M is empty (i.e. when
all the K channels have been checked for eligibility to be in the support), in each
iteration adding a channel to the support and excluding channels that will never be

added.
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Algorithm 1 Computing the su ic mixed strategy Nash equi-
librium e
Input: Set of all channels K

Output: Set of channels 8% i . librium.
ST O MEK !

<
- B
C;-m
Z <
2
2. Q
& o

end while
return &*
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4.2 Centralized optimal channel access strategy

When there’s a central entity or when all the users in the network are cooperative,
the channel selection probabilities of each user can be controlled such that network-
wide performance is optimized. In particular, we assume that the network operator is
aimed at maximizing the system throughput A7 as defined in Section 3.2. Since the
density of users A in the network is not affected by the channel selection probabilities,

the equivalent optimization problem of the central entity becomes

max Y piTi =) pubeexp(—oNomy ') exp(—pipmy”) (4.12)
kel kel

st pr=>0, kel . (4.13)
Y sl ' (4.14)
kel

Note that the inequality in (4.14), mg_ydes the case when a user might not access
any channel with some nonzero pr(ib!abﬂlt Whlch is mot observed in the SNE of the
game in Chapter 4.1. The/optimalls lutiontof the centralized multi-channel random

I
access problem is obtained, ifi the followmg thebre_m.

Theorem 3. The optimal channel access strategy of the centralized multi-channel

random access problem is

1)
9 ZiEIC mi < P

(4.15)
[1 - (79;161+¢N0m;1)] : ek ™ >

N |w<>l N |?§m

where vy is the constant that satisfies ), .- p; = 1, W(z) is the Lambert W function

W(z)

with defining equation z = W (z)e™®  and [z]" £ max{0,z}. The corresponding
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throughput of a user with the optimal access strateqy is

(

1 5p. ,—dNom ! b
e ke MpOpe N D ke My < P

1 é —pNom
T = ;ka‘)ke pRom (4.16)
ke

. |:1 _ W (70 1 1+¢N0mk )]+7 ZZGK fLS Z p

1 +
- [1—W<70;161+¢N0mk )}
e

Proof. The Karush-—Kuhn—Tucker (KKT) conditions for optimality gives

(promi® — 1)0) exp(—pNogm; b) exp(—p}ipm,;é) —&+v=0kek

.ﬁﬂ"}
7 4

A

P
V4
AV

ki,

w

r

o

(4.17)

o]

.
o |

-,

r= 'rf:'h\ Y N
Ly b ]

?"EZ ¥ b= P

5 - '.-!.._ § e
MRS
(=
where & and 7 are the KKT multlpherg et

Consider first the case when ), . pr < 1. By complementary slackness, we

have v = 0. After solving (pfpm;° — 1)0) exp(—dNomy ") exp(—pLpm;°) — & = 0
along with &;p; = 0, we obtain fk =0 and pp = mTQ for all £k € K. The case now

corresponds to Y, pr = Zkelc p

Now consider the other case when ), - pr = 1. Noting that § = 0 acts as an
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slack variable, the conditions can be eliminated to

v = (1= prpmy )0k exp(—pNomy ') exp(—ppom;°), k € K
Dy [’y + (p}’;pm,;‘S —1)6y eXp(—aSNom,:l) exp(—p,:pm,;‘s)] =0, kek

d =1, (4.18)

kek

>0, kek

720

If v > 0 exp(—¢Noym; '), then p; > 0 is impossible since it would imply that

v > 0 exp(—qSNom,; )
SIEAE S
> (1 —pkpmi"’)ékﬁﬁp Wemk*') Jp —piom;”)
A ,}'F:d- - '
which violates the squﬂd*--co

: '“1""_
O exp(—pNom; ). Ity < 6
L]

usp we have pj = 0 if y >

exp( re must have p; > 0 to satisfy the
=]

first condition in (4. 18-) whi

1)0x exp(—¢Nom,* )eXQ(—rpkp
(pipmy” — i% é@ “"ib*NOmk ﬁexlgc%:»}:?k )+ =0

:>(1—p,’;,0m,; )eXp(l ﬁk—}:ﬁﬁg ylisl ’yﬁk exp(1l + ¢Nom,, )

(4.19)

=1 - ]o,tpm,;‘s =W (79,;1 exp(l + qﬁNOm,;l))

=pp = [L=W (46, exp(1+ oNomy. 1))

where in the third line we have used the fact that the equation we¥ = z has the

solution w = W(z) where W (z) is the Lambert W function. Therefore, we have

m‘; — — —
= [1—W (70, exp(1 + ¢Nomi )], v < O exp(—¢Nomy ")
Pp = (4.20)

v > Oy exp(—pNomy ')

=
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for the case, where + is the constant such that ), . p; = 1. By noting that
1—W (70, " exp(1 4+ ¢Nom; ")) > 0 <= v < b exp(—dNom;, ")

we can write

Jr

0
ph=—E (L= W (50" exp(1 + 6Ny )] (421)

where [2]* £ max{0,z}. Note that this case corresponds to

* ml(i -1 mk
Sopi=1=3 TE[1-W (46 exp(1 + ¢Nom; V) <Z

kek kek kek

After combining the results for both cases, we have the theorem. Note that the
unique solution satisfying the KIKT conditions‘is globally optimal for that the opti-

mization problem satisfies linear corlstraint (i_'flaliﬁca_tion. [

Theorem 3 gives the channel acgess strategy forta user with a centralized opti-
mization perspective that max1m1zeﬁf ’Ehﬁy‘sﬁeinl performance. Thus, by noting that
p 2 Arr?(28 — 1T (140)T(1=59) as deﬁmd mlI ?.9), we can see that the centralized
access strategy not only take_s._ the lc anr’fé?quaﬂihes into consideration but also the
density of network. When ;;h.e_'I_Leltévork 1s congested with a high density of users
(i.e. when Y, m! < p), the sum K cest pro.ibability of a user on all channels are
reduced to less than one (as can be seen in the proof) to keep the interference in
the network at the best condition. On the other hand, when the network is not so
congested (i.e. when Y, - mJ > p), the sum access probability of a user is one and

the allocation of access probabilities on channels are optimized according to various

channel characteristics.
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4.3 Special cases

4.3.1 With non-i.i.d. channel fading and i.i.d. channel avail-
ability

Consider the case when the availability statistics of channels are i.i.d. and with-
out loss of generality we assume that 6, = 1 for all k£ € K. Furthermore, assume
that the network operates under the interference-limited regime (Ny = 0). Fig. 4.2
gives the throughput versus A of the game-theoretic and centralized solution. We
can see that as the network density grows, the throughput degrades. At high user
density, the throughput of the game-theoretic solution is lower than the centralized
one because of the selfish behavior of users leading to a social suboptimal result.
However, an interesting finding is that the th}r'(_)ughput of both schemes are identical
for user density below a threshold X' This is nétsa-eoincidence and we found that in
fact, the access strategy ati the equilibrium of the game is ‘actually the same as the

centralized optimal selution. This caﬁﬁ sho'w.n by c¢onsidering the following two
| "

| ) |
corollaries. | M |

.
| |
Corollary 2. When 6, = 1:¥k € /IC, the access',si‘mtegy of the multi-channel random

-

access game in the interferencé—lz’mz’ted regimié-(Ng =0) at the equilibrium is

1)
* mk

==, Vkelk 4.22
Py Zielcmégv S ( )

with support K. The corresponding user throughput at the equilibrium is

T = exp <—ﬁ) (4.23)

Proof. We first show that the support of the equilibrium is the set of all channels
KC by contradiction. Assume that the Nash equilibrium p*, which all the users in

the network other than a typical user play, is with support S* C K. Consider the
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—B— Nash equilibrium
—+— Social optimum

0.3

user throughput

0.2

0.1r-

Figure 4.2: Throughput versus user gle-qsﬂ:y When channel availability statistics are
iid. (0x = 1) of the game—i‘,lhéoreuc?solum@n and é;he centralized solutlon in the
interference-limited reglm.'.e_ltii\[@;f =0 1

A
A %ﬁ 5 ) _ﬁ

p;ifubrk;*

Dy, otherwise

\

The difference of the utility for the typical user between playing p’ and playing the

equilibrium strategy p* is

U(p',p") — U(p*, p*) = [p) exp (—ppm;°) + p}exp (—p;pm;°)]
— [P} exp (—pjpm;°) + pf exp (—=p}pm;°)]
=[p; - 1+ 0] — [0+ p} exp (—p; pm;°)]

=p; (1 —exp (=pjpm;°)) >0
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which contradicts (4.2). Thus, we must have the support §* = K. As a result of

Theorem 2 with 6, = 1 and Ny = 0, we have the theorem. L]

Corollary 3. When 0, = 1,Vk € K, the centralized optimal access strategy of the

multi-channel random access problem in the interference-limited regime (Ny =0) is

5

o e <p

« ’ ek '

pi=1" ) (4.24)

m
k
Siexm)’ ZZEK Z P

The corresponding throughput of a user with the optimal access strateqy is

Skex ™M Zk Kmi <p
T={ " © (4.25)

e 5
exp( Zk'e_;cmi)'.l’_- Dok M =

Proof. According to Theorem 34we have when NOH': 0,0 =1and mg > p

e N >
that | r": A
iy %w{ (4:26)
J'[J. l ¢
since ), o Py = 1 in this case anc! hus we ha{mﬁ m > 0, and

the operator [-]* can be removed: LYOW W ( 'ye =l — and the constant 7y

Zkelc mi
times e can be obtained as

p L P
ve = W (ye)eV 0 = (1 — —) e Tkek ™
D ek M9,

by the definition of the Lambert W function, and the optimal solution is obtained

by plugging in W(vye) = 1 — =—. O

Ykex M
We can see from Corollary 2 that with i.i.d. channel availability statistics in
the interference limited regime, the access probability for a channel given by (4.22)
only depends on the fading statistics of a channel (my), and is proportional to its
oth power. Each of the K channels are in the support of the equilibrium, and thus

every channel will be accessed with a nonzero probability. Corollary 3 tells us that
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under the aforementioned case, the optimal solution of the centralized scheme has
the same form as that for the game-theoretic scheme when p < >7, m?. Recall
that p = Amr2(2F — 1)°T(1 + §)['(1 — §) as defined in (3.9), we can see that this
happens when the user density in the network is less than a threshold, say X. This

result is summarized in Theorem 4.

Theorem 4. The game-theoretic solution of the multi-channel random access prob-
lem with 6, = 1 is socially optimal in the interference-limited regime (No = 0) when
the density of users X\ in the network satisfies

5

Y A Z c my
A R T (1 F 9 (4.27)

Proof. This can be observed from Corollary-2 and Corollary 3 with the constraint
; =

> e ™y > p and the definition-of pdti (3.9): O

As the user density grows highen than X, it izim:)uld be'soeially optimal for users not

M= ')
to access any channel with some noniaer_*z'g;pbalbility, for it, will otherwise deteriorate
|

the performance of channels by en?tll cin&_ibe in’:serferenc_e in the network. However,
with the selfish behavior of users, tlhf pr(;bz;i)ilit:?/!lof net.accessing any channel would
be zero as implied by Lemma 2:since otherwise i would have incentive to put more
access probability on some channéls-and._then gain more throughput by doing so
unilaterally.

Fig. 4.3a and 4.3b depict the channel access probabilities of both the game-
theoretic and centralized scheme with the same network parameters as for Fig. 4.2
at user density A = 1.2 x 1073/m? and A = 3 x 1073/m?, respectively, where the
threshold density is A =27x 1073 /m? as given by (4.27). Tt can be seen in Fig. 4.3a
that below the threshold density X, the game-theoretic access strategy is the same
as that with the centralized scheme, and is thus socially optimal. The probabilities
of not accessing any channel are zero for both schemes. When the user density

is above X, the centralized strategy reduced the access probabilities on channels

and put some probability on not accessing any channel while the game-theoretic
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access strategy stays the same. The reason why the channel access probabilities are
reduced in the centralized scheme is that the network is now so crowded that each
user should somehow lower its access attempt. On the other hand, when the users
behave selfishly in high user densities, each of them spend all their efforts for channel
access which makes the network remains crowded and ends in a socially suboptimal

result.
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Figure 4.3: Channel access probabilities under different user densities, where channel
index 0 is for the probability of not accessing any channel. The threshold density is
X = 2.7x 1073 /m2. The other network parameters are set to the same as in Fig. 4.2,
where m = [0.1,0.3,0.7,0.9, 1.6].

44



4.3.2 With i.i.d. channel fading and non-i.i.d. channel avail-
ability

Now, consider another case when the channel fading coefficients are i.i.d. (with-
out loss of generality with mgj = my; = 1) but the channel availability probabilities
are non-i.i.d.. In this case, it is very similar to the study of Opportunistic Spectrum
Access (OSA) in Cognitive Radio Networks (CRN), where licensed primary users
have the priority to utilize the channels and the secondary users can only access
the vacant spectrum opportunities. Analogously, the users in our model are the
secondary users, and can only utilize the channels when they are sensed to be avail-
able for secondary usage. The game-theoretical and centralized access strategy in
this case follows from Theorem 2 and Theérem 3, respectively and are given in the

following corollaries. : s

Corollary 4. When my = LWVE"€ K, the access strategy of the multi-channel

i

random access game i the interfereﬁ@é;ﬁm'@'teﬂ regime (No = 0) at the equilibrium

I "‘l"-'_FI--'-"r | II

18

(Mies~ ) B (4.28)

with support 8* computed by Algorithm 1. The ‘corresponding throughput of a user

at the equilibrium is

(4.29)

T =exp (_p ~ Lies Iy 9k>

|51

Proof. The results directly follows from Theorem 2 with some algebraic manipula-

tions. ]

Corollary 5. When my = 1,Vk € IC, the centralized optimal access strategy of the
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multi-channel random access problem in the interference-limited regime (No = 0) is

: p>K
P = (4.30)

- o] p< K

D =

where v is the constant that satisfies Y, ., p; = 1, W(z) is the Lambert W function
with defining equation z = W (2)e"®)  and [z]* £ max{0,z}. The corresponding

throughput of a user with the optimal access strateqy is

Ykex Ok
165757 p > K
T = (4.31)
1 - +
=S 0 [1-W (ke 0TIl
P kek

=
Proof. The results directly folows frém Theorem-3-with some algebraic manipula-

tions. 2 s - T O
! % f 1 3

. | P
T Ty

Fig. 4.4 gives the throughput venlsu@f;dl?ﬂsity of the game-theoretic and cen-

o T

tralized solution. The phenomeno;ll ’of idﬁf}pical :'performa_nce with density less than
a threshold is no longer presént: ’!FP@ loss.of tHoughpu‘c due to selfish behavior is
small when the density is low but large when _t_he .':d.ensity is high.

As can be seen in Corollary 5, t}iere is;still 'a threshold behavior of the access
strategy for the centralized scheme by noting that the access probability on a chan-
nel is % for p > K and % [1 - W (’)/(9,;16)]—1— for p < K. With the definition of p as
given in (3.9), this in fact gives the same density threshold X as given in (4.27) but
with my = 1 for all £ € K. When the user density is lower than X, the centralized
optimal access strategy is dependent on the channel available probabilities 6, but
when the user density is higher than X, it is actually oblivious of the channel avail-
able probabilities of the channels. This can be observed in Fig. 4.5, and is explained
in the following. With low user density, it would be beneficial for users to put more

probabilities on accessing channels since the interference problem in the network

is still not so obvious. Thus, a user should take careful considerations to on which
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channels should it put access probabilities, depending on the channel available prob-
abilities 6. However, when the user density are higher than X, it would be better
that each channel be accessed with a optimal probability that maximizes expected
throughput in that channel and users not access any channels with a nonzero prob-
ability. And since each user in the network can only access a channel when it is
available, which will be effective throughout the whole network, the access strategy
can be oblivious of the channel available probabilities in this case.

As for the game-theoretic access strategy, we can see from Fig. 4.5 that it takes
more channels into the support of the equilibrium as the network density grows and
more channels are utilized. However, it does not put any probability on not accessing
any channel because of the selfish behavior of users, leading to a suboptimal result

compared to the centralized scheme.

0.5

—B— Nash equilibrium
0.4 —+— Social optimum

user throughput

Figure 4.4: Throughput versus user density when channel fading statistics are
iid. (mg = 1) of the game-theoretic solution and the centralized solution in the
interference-limited regime (Ny = 0). The other network parameters are set as
a =4, R = 2 bits/s/Hz, r = 13m, and P = 1. There are K = 5 channels with
© =[0.1,0.2,0.5,0.85,0.9].
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Figure 4.5: Channel access probabilities under different user densities, where channel
index 0 is for the probability of not accessing any channel. The threshold density is
X = 3.5x 1073 /m2. The other network parameters are set to the same as in Fig. 4.4,
where © = [0.1,0.2,0.5,0.85,0.9].
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4.3.3 With i.i.d. channel fading and i.i.d. channel availabil-
ity
Now, consider the case with i.i.d. channel fading and i.i.d. channel availability

statistics. We have the following corollaries.

Corollary 6. When 0, = 1,my, = 1,Vk € K, the access strategy of the multi-channel
random access game in the interference-limited regime (No = 0) at the equilibrium
18

1
r=—, Vk 4.32

with support KC. The corresponding throughput at the equilibrium is

T - exp (—f%) (4.33)

Proof. The results directly-followsfrom Corollary 2, .- 0

/ : IL'-I II.I: 2 \ ’ '

Corollary 7. When 6 = 1,m,; = 1;% Iy the centralized optimal access strategy
| - |

of the multi-channel random aceess p‘mblchl m Fi@_e interference-limited regime (Ny =

-

0) is . |i :!
2N | .||“.

%, P> K
Pr= (4.34)
x P<K

The corresponding throughput of a user with the optimal access strateqy is

o p>K
T = (4.35)
exp(=f), p<K
Proof. The results directly follows from Corollary 3. 0

As we can see from Corollary 6 and 7, the access strategies reduce to uniform
random selection among the K channels for the game-theoretic scheme, and also for

the centralized scheme when p < K.
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4.4 Remarks

With stochastic geometry, we are now able to capture the nature of spatial
distribution of users in wireless ad hoc networks with our system model in Chap-
ter 3. Furthermore, we have proposed channel selection strategies for multi-channel
random access for users with a game-theoretic view for the interactions between
users, and a centralized optimization perspective for the system performance. In

the following, we try to show some connection of our work with previous ones.

4.4.1 Connection with the non-spatial model

As mentioned in Section 3.4.1, a connection can be found between our model
and the non-spatial multi-channel random access. with collision channels defined
previously. In this section, we aim to6 show this relationship.

First, we derive similarly the the game—theoretié channel access strategy for the

non-spatial model. The players are the"-N ujs"ers., the action set is the set of channels
T Wy
| L— N

KC, and the utility of a actiomis the expeCied |ullser throughput associated with the

channel selection as defined in (3.11}). T_hegjresﬂ}l"Fs are given in the following.

2N | 1
Theorem 5. The symmetric Nash, equilibrivum }or-non-spatial multi-channel random

access game with collision chanmels 15

p=1- (8] —1)—% (4.36)

Zies* 91N71

where §* is the support of the equilibrium. The expected utility of a user at the
equiltbrium s
N-1
~ S —1
Dies 0

Proof. The proof is similar to that for Theorem 2. By Lemma 1, we have

Ti=0,(1—p)N"'=E, VkeS (4.38)
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After some manipulations, we have for k € §*,

1 =1

pr=1—E~19" (4.39)

By Lemma 2, we have ) . _¢. p; = 1 and thus

N-1
~ S*—1
e % (4.40)
Zies* 9;\771
The Nash equilibrium can readily be solved by plugging back E. [

The game-theoretic solution given above also follows a concept similar to water-

filling, with the relation

— 6y A (NA1)dfT — p e, ~InE, vk € S* (4.41)

—

where the water level is n-ow ln = t,h'e,helgjhtlof each Whlte block being ln and
the height of water above ecach blolci b"e:ﬁlJ-lT-("]\/1 D

The connection of the mon= Spat 1 mbﬂel t(; E)urs can "be found in some limiting
case of both models. Spec1ﬁcally, yvh'en we 1gnor£ the fadmg statistics of the channels
by setting my = 1 for all k € I and cotisider for Np. =0, the game-theoretic solution
of our model would be as given in Corollary 4. When A — oo, the channel access
strategy at the Nash equilibrium becomes p; — % for that we have the support &*

being K in the limiting case. As for the non-spatial model, we consider the limiting

case when N — oo. The Nash equilibrium also becomes pj, — + since

oy 1
- — o
Z‘es* 9@'1\’71 ‘S |

as N — oo and that the support §* also becomes K, which is obvious from the
water-filling concept. This shows that as the number of users becomes large, the

game-theoretic strategies for the spatial and non-spatial models will coincide, both
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being oblivious of the exact value of 6;.

4.4.2 Relationship to previous works with spatial analysis

It should be noted that when there is only one channel for access (i.e. K = 1),
the channel availability issue is not considered (i.e. #; = 1), and the average power
of fading is set to m; = 1, the results in our work reduce to those in [42], where both
game-theoretic and centralized optimization perspectives are considered for medium
access with a single channel and with spatially distributed users. The results are

given below.

Corollary 8. With K =1, 6, =1, my = 1, and Ny = 0, the access strategqy of the

multi-channel random access gqlmqhat fﬁe“é"q’zﬁligr_igm is

=ik

A=
a, " -
A (4.42)
R
) f
The corresponding thﬂéugzzp
'l.._\._l
e
Ly - (4.43)

where p is given by (3.9).

Corollary 9. With K =1, 6, =1, m; = 1, and Ny = 0, the centralized optimal

access strateqy of the multi-channel random access problem is

pi=1" (4.44)

T=4" (4.45)
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It can be easily seen that our game-theoretic solution in Corollary 8 is exactly
the same as the one provided in [42] without pricing, and the centralized solution in
Corollary 9 is also exactly the same as that in [42]. Our work is a non-trivial exten-
sion for that the nonhomogeneous characteristics of multiple channels are further
considered, and the solution follows a water-filling concept.

Another thing to be noted is that the performance metrics used in our work are
closely related to those defined in Section 2.2 for single channel slotted ALOHA.
Despite the fact that we further considered the context with multiple channels,
there is still another difference of our study to those on transmission capacity. The
study of transmission capacity aims at characterizing the maximum spatial density
of transmission subject to an outage probability constraint v*. With the density of
potential transmitters being A;jiif we have A (1 =w#*) exceeding the transmission
capacity TC(v*), then some throttling-of trallnlsmission attempt is needed such that

each transmitter transmitswith probability

g0
S

b i
- |
- 1

P (4.46)

so that the outage Constraint'-wouldi be satisfied|[22]; otherwise, if we have A - (1 —
v*) < TC(v*), no throttling of fransmission atteiﬁpt is needed. On the contrary,
although the system throughput considered in our work has the same unit of suc-
cessful transmission per unit area as the transmission capacity, it has a different
meaning. Without specifying any outage probability constraint, we dealt with a
given density A of users that may decide their access strategies (i.e. channel access
probabilities), and study the performance by measuring the system throughput as
a result of the access strategies of users. Since the goal here is to devise distributed
access strategies from a user perspective, the transmission capacity context is not

directly used in this thesis.
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4.4.3 The local delay

In this section, we give a brief discussion on another basic performance metric,
the local delay, that is related to the quality-of-service provided by a network. The
local delay is generally defined as the mean time until a packet is successfully trans-
mitted over a communication link [20]. In [51], local delay with nearest-neighbor
communications is studied in Poisson networks in both the static and highly mobile
cases. It was found that the local delay is always finite in the high mobility case
while it exhibits phase transition in the static network case where the local delay
grows to infinity depending on the network parameters.

When we assume that the node locations of the whole network is independently

re-sampled in every slot, which is a reasoi;algle assumptlon for highly mobile networks
I (5]
o
[20], the local delay in our scenarior is Jusg‘{he recgpx;ocal of the user throughput

=

defined as in Section 3}%“ Wh’ﬁl ‘afher eases, it serves as a lower

_E,-ﬂ..":'__

bound [20,42]. Ve

.~'-L

L ] i
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el
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Chapter 5

Multi-channel Random Access

With Channel Side Information

In this chapter, we consider.the éase when-some channel side information could
be obtained. By channel side information, we speécifically mean the channel state
information (CSI) and c¢hannel availab.iﬁf_y. Given the'channel side information, the
access strategy would change..In the foli:\?.xf:fng, we devise the optimal access strategy

%

1 | I
and derive the resulting expected user throughput. Finally, we compare the results

with those in the cases without sueh channel side-information.

5.1 With channel state information

We assume that a user can obtain its own CSI hg = [hgy,..., hs k|, which is
the realization of the channel fading gain of the desired signal, and consider the
interference-limited regime (N, = 0) for simplicity. We further assume that the
channel availabilities are i.i.d. and without loss of generality set 6, = 1 for all

channels to focus on the effect of CSI. Now, the throughput of a typical user in a
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channel would become

Tr = Pr <1og2 (1+%> > R)
k

=Pr(Iy < ¢ 'hgy)

= F1, (¢ hsyr) (5.1)

where [, = > Xiew, Hip . P|X;|” is the interference power that would be perceived
by the typical user in channel k, and Fy,_(h) is the cdf of Iy. Note that since the user
knows its own CSI only, the fading coefficient of the interfering links are unknown
and random. Due to the homogeneity of PPP, and since that the uncoordinated users
know only the statistics of the network except for its own CSI, we shall assume that
the users adopt the same channel aceess strf«,mtegy. Although we say that the users
in the network adopts the sante accesé stra‘lcegy (which we refer to as symmetric
strategy), different users in the networxk car} however 'choose different channels for
access in a time slot for that/the CSI -§(;en by ﬁlﬂerent users may vary.
Let g denote the probability t]ll f.tjannellls ghosen for access given the sym-
Not it thhs’, probablhty qr is different from the
concept of a mixed strategy in Sectlion S Where & chanmel is chosen for access ac-

metric access strategy of the usersl

cording to a probabilistic distributiorovet the set#C. 'Here, ¢ results from channels
selected according to the symmetric access strategy where the randomness is due to
different CSI realizations, and it means that an arbitrary user would be transmitting
in a channel k£ with probability ¢.. According to the thinning property of PPP, the
interference I in a channel & can now be written as [, = ZXien(qk/\) Hiox P| X572

With their own CSI at hand, the uncoordinated users in the network now aims
at selecting a proper channel for access that maximizes its own throughput given

the CSI. That is, a channel k is chosen by a user if
Fr (¢ hay) = T?e&}CXFIi(ﬁb_th,i) (5.2)

where hg = [hg 1, ..., hs k] is the CSL
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Lemma 3. In the multi-channel random access game with CSI, where Ny = 0 and

0, = 1, the strategy that channel k is chosen if

Fr (¢ hsy) = IZDEB}CXFQ (¢ " hs,) (5.3)

s a pure strateqy Nash equilibrium.

Proof. Consider a typical user who deviates from the strategy while all other users
in the network follow the strategy. The utility of choosing a channel k for access of
that typical user is Fy (¢ 'hgy). Deviating from the strategy would only leads to a
strict degradation of performance to the user. Thus, the strategy is a pure strategy

Nash equilibrium. O

In the following, we first-€onsider.the caéa,(;, when the channel statistics are i.i.d.
across different channels, and thenfdiscuss the moré. general case when the channels
are non-i.i.d.. ' -

e o' I"I
T ™y |
| <= ||
5.1.1 The special caserunderfi.i.d.. channels

-  }
|

When the fading statisties'of theiK channel#; are iid (without loss of generality
we set my = 1), and due to-t}lle falmet that -the-.ilsers in the network adopt the
symmetric strategy, the statistics of the interference power over different channels
shall be the same, and thus we can drop the subscript k and represent the interference

power by I. The throughput of a user in channel k£ now becomes
Te = Fr (¢ hsy) (5.4)

which depends only on the cdf of I and the CSI of each channel k. By the nonde-

creasing property of the cdf, the following corollary is obvious.

Corollary 10. When the channel fading statistics are i.i.d. over the K channels in
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addition to the assumptions in Lemma 3, the strategy that channel k is chosen if
sk = maxhs, (5.5)

s a pure strateqy Nash equilibrium.

Corollary 10 suggests that a user should choose the channel with the best instan-
taneous channel quality hgj for access when CSI is available. Under such a case,

the following Theorem holds.

Theorem 6. The throughput of a user in multi-channel random access game with

CSI in i.i.d. channels is

(5.6)
at the equilibrium, wheﬁ‘a q‘){:a,,s a ven by (3.9). The probability
that a channel k is cha,sen by a us

{7

:!_-:_J -

=

‘_"'_L_ (5.7)

Proof. The probability that '%,.Ehgnn@"k is cﬁqée
"E I_in'*.-_jjc LG b

user can be obtained as

/ frg,(h HPr (h > Hg;) dh

(5.8)
By the thinning property of PPP, we have the interference

Z Hio 1, P1 X~

X;€(qrN)
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The Laplace transform of the interference I is

Ele*] =exp <—%7TP6F(1 +0)I(1 — 5)55) (5.9)

Let Hg denote the equivalent channel fading gain experienced by a user adopting
this strategy, which is defined as H¢ = mangk The throughput of a user can be

characterized as

(
E h exp(—It)hi(t )dil

{/_oo ’ ,q,_‘.u[-.» '-:'f'f'r‘:'.{w‘f

— /_ E [exp( ?ﬁ't}jfi;; t’%& —él

(5.10)

using (5.9). The cdf of HE #?\
&
@ F , ¥
S T ] ' il
Py () = P MBSy

= Pr (mangk < s)
kek

= Pr(Hg,l S S,HS,Q S S,...,HS’K S S)

=[] Pr(Hs; <)

ke

Hp—— (5.11)
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and the inverse Laplace transform of the ccdf of HY is

— i (f) (—1)*L6(t — i) (5.12)

where 6(t) is the Dirac delta function. The throughput of a user can thus be obtained

as
(K A
= —1)"* Lexp(—&mr? (28= 1)°TE + 6)[(1 — 6)i° 1
=3 (§) st els PR ora - o
With p as defined in (3.9);we/thus haye the theorem 7 O

T Ty

|
Theorem 6 shows that when the cﬁelsl are i.i.d., salthough CSI is provided

Chalq_ﬂgl being selected is the same as the case
el 1

when no CSI is provided as;given by pj .in Cdl)fpllary 6, both being % Since the

to each user, the probability ‘g of,la

statistics of interference in each channel is only. dé:t:ermined by the density of active
transmitters in that channel which isiggA = ppA = % for both cases, the statistics
of interference in each channel is not affected whether CSI is provided or not in this
case. However, the statistics of the desired signal when CSI is provided will be with
a better characteristics than that without CSI since it is with the maximum of the
fading coefficients for each channel. Thus, when each user is provided with its own
CSI, the throughput performance can be better.

Fig. 5.1 gives the throughput versus user density of case with and without CSI
provided to the transmitter. We can see that with CSI provided, there’s a significant
improvement over that without CSI. Fig. 5.2 depicts the probabilities of channels

being selected, which are the same for both cases.
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Figure 5.1: Throughput versus user.density, for the case with and without CSI

when channel fading statistics are 1L,d§r (mkdz ) in the interference-limited regime
L ke =g LA

(No = 0). The other ng.t'vlbfoyk_’_par'“ e s\e‘.;t:gas"?g = 4, R = 2 bits/s/Hz,
r=13m, P =1, and there are’ -
@S AN Ve
0.3 T T T T
-qk (with CSI)
el [ p, (without CSl) |

access probability
o
& N

o
o

0.05

4

3
channel index

Figure 5.2: Probability that a channel is accessed by a user for the case with and
without CSI when channel fading statistics are i.i.d. (my = 1) in the interference-
limited regime (Ny = 0). The other network parameters are set to the same as in
Fig. 5.1.
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5.1.2 The general case with non-i.i.d. channels

Now, we proceed to discuss the case when the channel fading statistics are non-
i.i.d., where E[Hg ] = my. In such a case, each user selects channels according to the
strategy described in Lemma 3, where the cdf Fj, (h) of interference I in channel k
is used. In the following, we assume the path loss exponent is o = 4 (i.e. § = %)
where the cdf of I can be expressed as

erfc(M), 5>0

4/s

Fr.(s) = (5.14)

0, s <0

where erfc(s) = \% [ exp(—t?)dt is the standard complementary error function

and g\ is the density of users transmitting in channel £.
=

Theorem 7. The throughput of @ user in mllischanneliandom access game with

CSI in non-i.i.d. channelsiwith o =24%s 7/
| ! | - 1

=
e |
i - |, a)?
T = Z(—i) TR el !‘(Zle‘“f‘ "fl) (5.15)
i~ [ ojems | | '
"N | 1
at the equilibrium, where LT
W %M%«?(zR:— 1)3 (5.16)

and QM = {wl, e ,w<|M|>} is defined as the set of all subsets with cardinality n of
the set M. The probability that a channel k is chosen by a user is the solution of

the following simultaneous equations:

-1

L+> (-1 ) 1+m—2’“zq—l2 . Vkek (5.17)

- q my
i=1 wy €M) klew;

qk

along with the fact that 3y, - qw = 1.

Proof. First, we derive for the probability that a channel k is chosen by a user,
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which with the strategy given by Lemma 3 can be obtained as

g = Pr (ij(¢_lHS,k) = IggchIi(Wleyi))

= /Oo Pr(Fy (¢~ 'h > Fi, (¢~ " Hg;),Vi € K\ {k}|Hsy = h) fus, (h)dh
0

- /oo H Pr(Fp (¢~ 'h) > Fi(¢~ Hg;)|Hs = h) | fug,(h)dh  (5.18)
0 \iek\{k}

When « = 4, we apply (5.14) and thus

> P> Am2P3
/ I] P erfc gAm*PE > erfe [ <YL N g = ) | fun, (h)dh
0 4/61h 4./6-Hs, :

1€\{k}
o [ 10 e (& < L an
O \dek\{k} S,
eR\{k} g N %
oo ::;:I| ll'-ql_
_ / T (1= ‘B (5.19)
0 iek\{k} I el
s e .'..
where (a) follows by the E;dgér t‘rlcﬂy a"ecreasmg Define QM £

"'\.

{wl, e (|M|)} as the set Qf‘ a{ﬁ si;ﬁset,s erg-h card,mahty n of the set M. For
example, when the set M = {1 2 B}IWEWOJId have ot = {{1,2},{2,3},{1,3}}.
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With this definition, we can continue as

K-1 a2
1 [ , " _1
Qk:_/ 1+Z(_1)1 Z e 2216]7"11 e mkhdh
mg Jo —
=1 w; ek
K—1 2
]- ) * _h(i—i_% Zléw- i)
=14+ — (_1)Z / e mk g im™ ) dh
Mk ; Zx\{k} 0
w; €82}
1 (5.20)
K—1 1 1 a
i 1
=1+—> (1) > |—+5> -
k= E g -my
i=1 w]-EQ)-C\{k} lew
K-1 -1
i mg q
P S 1 S PR
i=1 K\{k} U 1, ™
w-EQi
(5.21)

ﬁ 0 o

FG(%)

where (a) follows by the fact that erfc(s) is strictly decreasing. (b) follows by defining

. N qk . A Ar2P3 _
the random variable G = min { \/m} with pdf fo(g) and constant k = W=
2 (28 — 1)z with ¢ given by (3.6). (c) follows by using the definition erfc(s) =
\% [ exp(—t?)dt and (d) follows by interchanging the order of integration. The

second integral in the last line can be identified as the cdf of G evaluated at é,
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where the cdf of G can be obtained as

(5.22)
Thus, we have
(5.23)
%@,@ it g @lﬂu
where (a) follows by using thé"@ﬁgﬁl o 1*19?
LRI
o b 1
/ exp <—ax2 — —2) dr = —\/Eexp (—2\/%)
0 T 2V a
in which @ > 0, b > 0 [52, eq. (3.325)].
O
As an example, when we have K = 2,
q=1- <1 + @q—"%) _ e
- 2 = 2 2
a7 M miqy + Mmaqy
5.24
maqy ( )

ik 4 mag?
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Substituting g2 = 1 — ¢; into (5.24), we have
(my +ma)g; — 3miq; + 3miq —my =0 (5.25)

and ¢y, g2 can be obtained by solving the cubic equation above. As for the expected

user throughput when K = 2, we have

2 2\ 3
T = exp (—25\/(];1_1) + exp (—2/@\?{%) — exp <—2/@ (% + %) ) (5.26)

which can be evaluated with closed form given g.

When the channels are i.i.d. and without loss of generality assume m; = 1, we

_ 1 _
have from Theorem 7 that ¢, = K‘PX s\ymme}lrir .z.x.nd
ALK, = S w1
T YT ;
. .
o i
£
)
2 = (5.27)
i L]
_b.-.\._'
\a, 21! -
S f;;r’ s ) :\,."ﬁ'
which reduces to the result gwél} by-.T_—fieoreni“-@ :by:.lnéja;ing that when § = 1, we have

D(148) = ¥, (1 - 5) = /7, and p 2B

Again, Fig. 5.3 gives the throughput versus user density of case with and without
CSI provided to the transmitter. We can see that in the case when the channels are
non-i.i.d. and with CSI provided, there is also a significant improvement over that

without CSI. Fig. 5.2 depicts the probabilities of channels being selected.
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Figure 5.3: Throughput versus user djenfity fol,r the case with and without CSI when
there are K = 2 channels apd t e (éhannei*,fadﬁg:,.statlstlcs are non-i.i.d. with
my = 1.0 and my = 2.5 1nfth;§__1nt -'m'te‘ti reg_me (No = 0). The other

network parameters are 'set as z#,‘__z: = 10m, and P = 1.
:I.; -

ek

i
0.7 T T
- a, (with CSI)
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Figure 5.4: Probability that a channel is accessed by a user for the case with and
without CSI when there are K = 2 channels and the channel fading statistics are
non-i.i.d. with m; = 1.0 and my = 2.5 in the interference-limited regime (Ny = 0).

The other network parameters are set to the same as in Fig. 5.3.

67



5.1.3 Remarks on multi-channel random access with CSI

We have seen in the previous sections that by providing CSI to the transmitter,
the throughput performance of a user can be greatly improved. This is made by
utilizing the channel diversity with the help of CSI. The signal distribution seen by
a receiver is improved with CSI for the i.i.d. fading channels, for its statistics will
become HY £ I?ealé(H s,k which has mean Zfil + compared to the unit mean for the
case without CSI, while the statistics of the interference are the same for both cases.

The findings of our work here are different from those in [41], where random
access game of users sharing a common communication channel and willing to access
a single base station was studied. The authors of [41] found that when local CSI
is provided to the selfish users in the interference limited regime, the performance
(throughput) of homogeneous users will be \xfli}rse compared to that when no CSI is
provided. This phenomenon is called a Braess-like péradox, where the performance
degrades when more information is-'prg_)videlﬁ b0 a system ‘of noncooperative users.
The reason is that theusers in the scenz;r'.'ls 0f[4|1] aim to access the same base station

k- .
selfishly, and although the receive(li- .igna:rt'-powcl?f;_ atithe b_ased station from a user is
improved when CSI is provigigd, tli1§ str;u:;;e.gy (:)fjl the users at the Nash equilibrium
also increases the average interfergencle power norlleltheless. In contrast, in our scenario
with ad hoc networks and i.i.d." fading channéls, the average interference power is
remained the same while the average received signal power increases when CSI is
provided, and the performance is therefore improved.

The gain in performance, however, needs the CSI at the transmitter side, and in
turn it means that some feedback information to the transmitter is needed. There-

fore, there might be a tradeoff between the gain that can be achieved by the CSI

and the cost for feedback information.
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5.2 With channel availability information

Now, we consider the case when the availability of each channel can be known
before a user makes the channel selection decision for channel access. This cor-
responds to the case in CRN when user are capable of performing multi-channel
spectrum sensing (e.g. as the wideband sensing technique in [53]). In this case, a
user shall access one among the channels that are available in a slot for that access-
ing a channel that is not available is not allowed or will result in an access failure.
Recall that A is the indicator variable that equals 1 if channel £ is available and
equals 0 otherwise, therefore we can represent the set of channels that are available
in a slot as {k € K : Ay = 1}. Since that with the available probability 6y, Ay is a
Bernoulli random variable with parameter @y we can define the probability of user

seeing a realization C C K of the channel availabilities as

Te SPL/C K poim = 11C) = H-Qi H 0; (5.28)
~ L ! i€C  jek\C
i 'n-:- -I‘.'I. | I

When the channel availability stajpiTtics:@re 1.1.d. wover different channels, or more

forall k € IIQ, we have T = (K)Qlcl(l—Q)K*IC\.

specifically when A; ~ Bernolulli(p) Ic|

Given the set of available charllriels (= ICIiﬁ"'a time slot, a user could naively
choose the channel with the best channel quaiity (my) among the set C. However,
as discussed in Section 4.1, this might not be a good option when the effect of the
other users in the network needs to be taken into consideration. Therefore, we can
again formulate the problem of multi-channel random access with channel availability
information C in each time slot as a game. The players are the users in the network.
Since all the players observe the same set of available channels C, the action of a
player is the channel selection for access which is constrained to be in the set C.
The utility associated with each action is the throughput achieved by accessing that
channel. With similar arguments of homogeneity as in Section 4.1, we shall look for

the symmetric mixed strategy Nash equilibrium p.* = [pc1,. .., pe x| of this game,

where pc i, is the probability of choosing channel k for access given C. The results
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are given in the following theorem.

Theorem 8. For multi-channel random access with channel availability information,

the channel selection probability at the equilibrium given C is

5
i, k€SS
pay = ™ (5.29)

0, kek\S;

where where S; is the support of the equilibrium given C. The throughput of multi-

channel random access with channel availability information is

T=> TcE(S) (5.30)

where ih::: .
: 2 (5.31)
< ; =
Proof. The proof is similar ?_as for Theorem|2, b @%k@ utility to be equalized
I_.l. i l .*-..,‘
in the support is the th@gﬁu in channel & ii e t’ﬁ{i;‘g-ratw@ilabﬂity C
. Sa 4
2. s B 4

e = - - . ..,I.'\-
= exp(—oNomgh) exp(—ph pominl) = Fe, Vk € S}
T = o Rl - e
By taking natural logarithm on both sides and rearranging terms, we have for k €
S,

§
per = —% In E¢ (5.32)

With arguments similar as in Lemma 2, we have Zkesg pey = 1. Thus, we can

obtain the equalizing constant as

p
Ee=exp| ——="t—
¢ ( Zkesg mi)
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Noting that a channel that is not available should not be accessed, we have the
access strategy

m—i ke Sk
* Zies* m‘f ’ ¢

pC,k = C

0, kek\S;

The throughput of a user given channel availability information C at the equilibrium

pc” is then obtained as

76 = Z pz’,kEC = EC7
keS}
Note that the throughput of a user should besaveraged over all possible realizations

of channel availability C, thus we have

O

Theorem 8 shows howa Channe;'l g.hould be agessed given the channel availability
C according to its channel quality (my). The supffort S; of the equilibrium can be
obtained by an algorithm similar to Algerithm 1, and is given in Algorithm 2 with
E(S) defined as in (5.31).

Algorithm 2 Computing the support of the symmetric mixed strategy Nash equi-
librium given C
Input: Set of available channels C.
Output: Set of channels S in the support of the Nash equilibrium given C.
S IM—C
while M # @ do

Pick one channel k* € arg IJ]\nAaX exp (—ngNom; 1)

ic

4 S SEU{K Y, M — M\ {k*}
5 M M\ {ke M exp(—oNom; ") < B(S)}
6: end while
7: return S
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Fig. 5.3 gives the throughput versus user density of case with and without channel
availability information. At low user density, the scheme when the availability of
each channels can be obtained gives a better performance than that without such
information, for this information avoids the occurrence of a channel that is not
available being accessed. However, such information leads to a worse performance
when the user density is high. This is because that when the user density is high
and the users are not provided with the channel availability information, users that
have chosen for access a channel that is not available are somehow “muted” and
thus the active users in the channels that are available will be less dense. But when
channel availability information are provided to each user, they will only choose the
channels that are available for access, and thus the channels that are available will
be more crowded. This gives a Braess-like patadoxi{41] that when more information
is provided to a noncooperative netweork, the;l i)erformance however degrades.

0.7

. —8— with availability

061 ——without availability

o
S

user throughput
o o
w S

o
)

0.1

Figure 5.5: Throughput versus user density for the case with and without channel
availability information. The network parameters are set as « = 4, R = 2 bits/
s/Hz, r = 13m, P = 1, and Ny = 107% There are K = 9 channels with © =
[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9].

72



Chapter 6

Advanced Mechanisms

6.1 Access barring for performance stabilization

As was shown in Chapter 4, it is"socially optimal in a system perspective that
users reduce their access attempts (i.e. not aceessing any channel with a nonzero
probability) when the metwork user de.hl:s_ify A is above % threshold X. However, the
selfish nature of users makes.them élw%fc.'hoosing a channel when they attempt
to access. This causes a Substant!iail delg\:r'f;_mdation of system throughput when the
user density grows due to excessi\'re_. access attempts which leads to a high level of
interference in the network. -

The performance gap between the game-theoretic solution (i.e. Nash equilib-
rium) and the centralized optimal solution can be eliminated by schemes of pricing
as in [42,54] and is treated in the context of multi-channel random access in [1].
Here, on the other hand, we introduce a simple user access baring scheme that elim-
inates the performance gap and keeps the system throughput at an optimal level
even at high user densities.

Consider the scenario when no channel side information is provided to the trans-
mitters, the channel availability statistics are i.i.d. with 8, = 1 for all k£ € K, and
the network is interference-limited (Ny = 0) for simplicity. The performance of the
system can be further improved by performing access barring in the time domain

where in each slot a user are allowed to perform channel access with probability %,
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which reduces the access attempts of users by a factor of % mandatorily.

Equivalently, with access barring with parameter T', each user can only perform
channel access once every 7' time slots'. Although this results in a loss of transmis-
sion opportunity by % for a user, the density of interferers seen by a user for each
access is also reduced by the same factor which leads to a lower level of interference
encountered by each user, indicating a nontrivial tradeoff.

By the thinning property of PPP, the set of transmitting users in a slot becomes
a PPP with density % Since the users still have the freedom in making channel
selections and we assume that the users are only mandated to follow the rule for
reducing access attempts, the users accessing a specific time slot still face a the same
game-theoretic channel selection problem as described in Section 4.1 but now with

the set of active users ¥ = II(2)in a time slot.” Reeall that without access barring

1 =

(i.e. the original case, when T" ="1), thethroughput of auser is 7 = exp (— = L 5)
2 kek M

as given by (4.23) in Corollary 2. lj_pw, we the throughput of a user with access

barring with parameter T' becomes /. = .'_-'_ HI '.

exp{-——w) (6.1)

where the % outside the exponéntlal is due to_the Toss ‘of transmission opportunity

and by noting that p £ Arr?(2F —1)R(148)I(1 — ) defined in (3.9) captures the
effect of user density with A, the % inside the exponential is due to the alleviated
density of simultaneous transmissions.

As mentioned earlier about the tradeoff, we aim to find the optimal number of

time slots 7™ for access barring that will maximize the system throughput, which

solves the following optimization problem.

max AT (T) (6.2)

T>1

The results are given in the following theorem.

INote that the number of slots T here can be any real number with 7" > 1. A fraction T say
1.5 can be thought of that a user transmits in every 3 slots.
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Theorem 9. The optimal number of time slots T* that maximizes the throughput

of a user with access barring is

17 p< Zz K m?
T* = © (6.3)
Zze)c m5 P Z > ZZEIC m6
with p given by (3.9). The throughput of a user is be given by
~ exp (__%) A m]
T(T*) = Piex ™ = (6.4)
Dk mf > Z mé
ep p= e
and the system throughput is given by
P i |.II SOl e ZLF
FP= .
5 P ~<-."'Zz Ile
M (T)= @ (6.5)
*:r ‘éﬁEQE’C i
e ™ ~4i
Proof. 1t can be easilyu seen ] unction )\TJ{:T) is quasiconcave for

L
isithe

2Vl b
derivative of T (T') with respec,t, to Qf':lémd e&iﬂat

G S 5y oy [ L2
ignored the constraint on 7" and have

e

T > 0 with only one crmogi p

f\-ﬁ f_.-

optimization problem is Wﬁﬁ?{

R

Il
—N—

5

bal'maximizer [55]. Since the
‘%tlzer c@n be found by taking the

1nE; “to zero where we temporarily

(6.7)



By noting that the number of time slots 7" should be a greater than one, we would

have the optimal number of time slots as

\ p
1€ [

The user throughput follows directly by plugging 7™ in to ’/7\'(T) and the system
throughput is then obtained as AT (T*). O

Theorem 9 gives the optimal number of time slots 7™ for access barring, and also
the corresponding user throughput and system throughput. By noting the definition
of p as given by (3.9), we can divide the solution into two parts as before with the
same threshold \ as given by (4.27) in Section 4.3.1. For A\ < X, the users can employ
full access attempt, and the game-theoreticzsolution. is already socially optimal in
this case so the barring parameter 27is equlall to.1- But for A > X, access barring
brings down the access attempts of_ USErs sO. that“the interference in the network

.'

will not keep growing with the usery deﬁmty )\| In fact, the density of transmitting

users with access barring is kept TLI 7 3 fon alldd > X where the channels are
Jhput i kepﬂ at/a constant with respect to user

best utilized, and the system throP
density . 1 '

Fig. 6.1 gives the user through.put Versus user density A for cases with and without
access barring. At density A\ < X, the user throughput with and without access
barring are the same. When the user density A\ reaches above X, it is optimal to
lower the access attempts of users so that the interference in the network can be
lowered, and thus with access barring the network can provide a better throughput
performance for each user. Fig. 6.2 gives the system throughput versus user density
for cases with and without access barring. We can see that without access barring,
the system throughput degrades with A after X; with access barring, the system
throughput is actually kept at an optimum even when the density of users is high,

which shows a great benefit of access barring. However, it should be noted that the

throughput of a user will still degrade due to high user density.
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— X —B— with barring
—t—without barring

0.4

0.3

user throughput

0.1

Figure 6.1: User throughput versus user-density with and without access barring.

The network parameters are set as -« = 4, Ba="2 bits/s/Hz, r = 13m, and P = 1.

There are K = 3 channels with-m = [I;4, 4

—B— with barring
—+— without barring

system throughput
S

Figure 6.2: System throughput versus user density with and without access barring.

The network parameters are set to the same as in Fig. 6.1.

It should be noted that the optimal barring parameter T* is proportional to Awr?
for A > X, which is the average number of users in the disc formed by a transmitter-

receiver pair. A connection to the case with traditional collision model analysis can
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be found by considering the limiting case when a@ — oo. Under such a scenario,
transmission by a typical user in channel £ is successful only when there are no
other user transmitting in the same channel within the disc of radius r centered at

the desired receiver of the typical user. The access probability of channel & becomes

Dy — % as given by (4.22) and the access attempt of a user becomes Ti — %
Let N = )‘”—Kr2 denote the expected number of users in the disc that select a specific

channel. Now, we can obtain the mean number of attempted transmission per slot
in a specific channel within any disc of radius r as N - % = 1. This is in fact the
the desired operating point of traditional slotted ALOHA with star topology and
users attempts to access a common receiver [7], and it shows that the access barring

scheme has the same effect as stabilization, which also controls the access attempts
of users. However, as mentionf(‘il_éai"‘liﬁﬁ,rthat 15_11,95{ ‘previous studies considers collision
g 'I.._':'L _‘Ié'-.

. &, N,
models but ours consider the spati w@es's*-networks.
& J 5

L s 1.I=_||I R
b s e
7 I | . v
= =
= =
- - ¢

3 "E"i;'

78



6.2 Devices with multi-channel transmission ca-
pability

When the availability of each channels could be known and a user device has the
capability of taking transmission simultaneously over multiple channels, it is possible
to take the advantage of the frequency diversity over multiple available channels.
We assume that the users know the set of available channels C at the beginning of
each slot, and the transmitter transmit the same information over the channels in C.
The receiver adds up the signals from the channels in C and then performs decoding.
This is similar to performing Maximal Ratio Combining (MRC) with a diversity in
the frequency domain. Assume the fading statistics over different channels are i.i.d.
Rayleigh faded with unit average power (my =.1) for.simplicity. Successful decoding

at the receiver with combiningshappens wlien

' v HfEPr o\ &

log, 1+(§;’i€.c ,_Sz’“) " \SkR (6.9)

| ﬂ'—t]; 1
| = |

Il
where the equivalent fadifg gain IHL é.:&kecl,HS,k of the signal is the sum of |C|

exponential random variablés: and the equivallﬁr!li_:_ fading gain for the interference
remains the same [23]. This is b-ecause that the fading coefficients of the desired
signal are combined coherently over different channels, while those for interference
signal are not . Thus, we have [ = ZXieH()\) H; P|X;|~® where H,, is an exponen-
tial random variable with unit mean. The throughput of a user after coherently

combining signals of the channels in |C| can be computed as

HePr=e
Te = Pr <1og2(1 L2 > R)

6.10
No+1 (6.10)

The results are given in the following theorem.

Theorem 10. When the users in the network with i.i.d. fading (my = 1) transmit in

the set of available channels C and the receivers perform Maximal Ratio Combining
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of the signals in C, the throughput of a user is

T=) TTe (6.11)
cck
where Ye is given in (5.28), and
Icl-1
(=D*e™ (1)

To=Y - (6.12)

k=0

in which o™ (c) is the kth derivative of o(t) evaluated at ¢ where
(6.13)

(t) £ exp(—¢Not) exp(—pt°)

> ol SOt ey,

with p given by (3.9). When t{l{}é net'ﬂ)d%k 5 _f%gfhe ﬁtéq.gference limited regime (No =
J d—"
'Hé fu'p*bfher obtained as

0), the throughput with q*é‘tml gf
(6.14)

—k+1) is the falling

factorial.

Proof. We have

7o = Pr(He > ¢(Ny + 1))
WE [ / h exp(—¢(No + I)t)he(t)dt
_ [ exp(—dNot)Elexp(—pIt)|he(t)dt
U /_ exp(—¢@Not) exp(—Amr?(28 — 1)°E[HT(1 — 6)t°)he(t)d (6.15)
= L7 Fu(s)}

where (a) follows by using Pr(He > s) = [~ e~ he(t)dt and he(t)
(b) follows by using the

is the inverse Laplace transform of the ccdf Fp,(s) He
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Laplace transform of I that
Ele '] = exp(AmP°E[H,o]T(1 — §)s°) (6.16)

Since each link in each channel is Rayleigh faded with unit average power, H;, is
exponentially distributed with unit mean. We have E[H;o] = I'(1 4+ 0). The random

variable H¢ is gamma-distributed with shape |C| and rate 1, and its ccdf is

— 1
FHC(S) =1- WV(M;S)
lcl-1
=e° 8—' (6.17)
k=0

s = _;.r ?.[ -\.lf :.!I; r
where y(k,s) = fo tk_le_td?;1I ‘i_s_fﬂf@_'.'l_gwer {_ngdfr'nprli:’c_e gamma function, and note

Ay g "i!l i
that when k is a positiv_q'_}'htééer, we hia k)\'? @,— 1)! and v(k,s) = (k —
= )

n A -
eS8 &, The in_,\.{:f:'rhs;g;{L transform 5"(-3“) can then be obtained as
’ ) Ll
| f \ T
<) <) =
L 7
'3 5 (6.18)
- - b By
.l- I?r e IH"
TG L B
where §*)(t) is the kth dqﬁv{a'gl e
Vi,

ta, fﬁﬂ&t_?én. Thus, we have

75 ‘%‘9 okr aa o
N Q- l_"?_'.-, 7> (1)
Te = / exp(~Not) exp(~Anr*(PELWL(L + )I(1 - 5)¢) > e
o k=0 )
Icl-1
_ N (D)
-y e (6.19)
k=0

where in the second equation we have used the identity [~ 6®)(¢t — ¢)p(t)dt =

(—1)kp®)(c) with the test function

p(t) £ exp(—¢Not) exp(—pt’) (6.20)

where p is given by (3.9) and ¢*)(c) is the kth derivative of ¢(t) evaluated at c.
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The throughput averaged over all possible realizations of channel availability C is

T=>) T (6.21)

CCK

with Y¢ given by (5.28).
In the interference-limited regime (Ny = 0), the kth derivative of p(t) for £ > 1

can be obtained using similar techniques as identified in [56] as

k
k- b, n
M (t) =t 3 n—‘k(pt‘s) (6.22)
n=1 :
where B, = 30 _ (=1)™()(0m), and (6m)y, = (dm)- -+ (dm — k+1) is the falling

factorial and ¢ = % By plugging back to the‘expression for 7¢, we have (6.14). [J

1 s
Fig. 6.3 gives the throughput. versus usemdensity. of the case with and without

the capability of transmitting over multiple channels- 'denoted by “with multi-ch

\

tx” and “without multi-ch tx”, respﬁ'@tme].j/ IAt low 'density, the throughput per-

A1k
multiple channels are utilized: HP evals Whenlthe user” density is high, the gain

formance with multi-channel transr 1ssf (EI is Be{cter for that frequency diversity of

provided by frequency dlver81ty WOlﬂd be outplalyed by the high interference in ev-
ery available channels. On the other hand, when aser only transmit in one of its
available channels, the interference on each channel is dispersed, thus giving a better
performance at high user density.

We have shown that network of devices with simultaneous multi-channel trans-
mission capability can improve throughput performance by MRC with frequency
diversity. However, it should be noted that the gain is only seen in an environment
with small density of users. Otherwise, when the density is high, this capability will

actually degrade the performance for it cause a higher interference in the network.
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0.7

—B— with multi-ch tx
O-GE —+— without multi—ch tx

user throughput

Figure 6.3: Throughput versus .user. ‘density iwith-and without the capability of
transmitting over multiple channels, ‘denoted by “with multi-ch tx” and “without
multi-ch tx”, respectively. The network parameters are set as « = 4, R = 2 bits/
s/Hz, r = 10m, P = 1, and Ny = 107°. There are K = 5 channels with © =
[0.1,0.3,0.5,0.7,0.9].
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Chapter 7

Conclusion

In this thesis, we studied multi-channel random access in wireless ad hoc net-
works with the help of tools from stochasti_c geometry and game theory. With
stochastic geometry, the spatial aspects of Wi.'iréless ad hoc network considering node
distribution, channel fading, and path loss are taken into account more realistically
than traditional graph models of n.g.:t.zyifprk.s_-;_ ;nd the\ ififteraction between and the

e - |

behavior of users that distributivelyianﬁ-_—g_ﬁll-ﬁ's};,dif malke chiannel access decisions are
captured with a game-theoretic modFl, V\_f'.ﬁé_re s{lji,table aceess strategy at the equilib-
rium and the corresponding p'erfor!niance in tef,‘rﬂs of user throughput are obtained.
The socially optimal solution -W}-len the users ar-e: cooperative in making channel
access decisions is also studied, and the results are compared with that when the
game-theoretic scheme is used. We found that selfishness is actually socially optimal
in some network scenarios, and the conditions for optimality is derived.

We also studied the impact of channel side information to the access strategies
and corresponding performance when they are provided to the users in the network.
Specifically, when CSI is available at the transmitter, channel diversity can be ex-
ploited and the throughput performance of users can be greatly improved. On the
other hand, when channel availability information is provided to users as in the
case of CRN with multi-channel sensing capability, a Braess-like paradox is found

that the performance degrades when more information is provided. Mechanisms

that are able to further improve the performance of the network are also studied.
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By regulating in the time domain the access of users with access barring, the in-
terference problem between users with high user density can be alleviated. When
the transmitters are capable of performing multi-channel transmission, MRC with
frequency diversity can improve throughput performance when the user density is
not high. The proposed framework gives some insights for multi-channel random
access in wireless ad hoc networks, and facilitates the understanding of design and

analysis of such networks.
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Appendix A

Table of important notations
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Table A.1: Important notations used in this thesis

notation description
A Density of users in the network
« Path loss exponent
P Transmission power
Ny Background noise power
r The distance between a transmitter and the desired receiver
K Number of orthogonal frequency channels
K Set of K orthogonal frequency channels
S* The support of a Nash equilibrium
R Information rate of a transmitter and receiver pair
II(\) Poisson point process with density A
U ={X;} Set of locations-of transmitters in the network
Wy Set of locations of transmitters. ttansmitting in channel k
Ayg Indieator for availability,of-channel &
O Available probability of ¢hannel &
C Set, of ichannels ti;&ﬂare available in a time slot
Te Probability ofieccurrenge with setfof available channels C
Mg ey M Average/ power of fadinig oven desired signal in channel k
My Average power of fadingover interference link in channel k
Dk Channel selec¢tion probability forschannel & of a strategy
Qe The probability-that a user will select channel k
Te Throughput of a user in channel k&
T Throughput of a user averaged over its channel selection strategy
5(+) Dirac delta function
I'() Gamma function
(-, ) Lower incomplete gamma function
W) Lambert W function
erfc(+) Complementary error function
R 2
o) (2F —1)P~tpe
p A2 (28 — 1)°T(1 +6)T(1 — 9)
T
K >

%)\7‘(‘27‘2<2R —1)
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