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Abstract

With cloud business gowning, many companies are joining the market

to be a cloud service provider. Most providers offer similar services with

slightly different charging models, and very little known performance com-

parison between them is published. This leaves cloud service users with the

puzzle of guessing what cost they will need to pay to run their legacy appli-

cation in a cloud environment. CloudGuide is a tool suite that provides user

an estimated cost of running a legacy application with QoS guarantee on dif-

ferent cloud providers. CloudGuide predicts the cloud computing resources

required by a targeted application based on queuing model, meanwhile esti-

mates monetary deployment cost for the application. CloudGuide also allows

the user to explore cloud configuration can guarantee different levels of QoS.

In our evaluation, we conducted experiments of a multi-tiered network appli-

cation, RUBiS, and showed that CloudGuide can choose cloud configuration

that guarantee QoS and provide cost estimation.

KEYWORDS

Cloud Computing, Capacity Planning, Public-Cloud Providers, Web Application,

Pricing, Performance, Comparison.
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中文摘要

隨著硬體及網路的進步，1966年提出的運算資源即是公用資源的
概念（Computing as a Utility），終於得以實現，並在近年內取得了商業
上的矚目，它即是現今的雲端運算。雲端運算提供了一個嶄新的 IT服
務模型――應用程式及服務供應商不需要自行購置數據中心，轉而向

雲端供應商依需求租賃運算資源。然而，現今雲端供應商眾多，各家

的硬體資源及計價方式都不盡相同，在缺乏標準化及資訊不公開的情

況下，雲端使用者難以比較不同的雲端服務的效能及價格，並確保雲

端的移植確實帶來成本的節約。在此等前提下，對一個欲將自身Web
應用程式移植至雲端平台的使用者來說，如何依程式的特性，來選擇

適當的雲端平台，是一件困難的事。本研究致力於提供一套成本及效

能導向的工具組，依程式的特性及使用者的效能品質需求，來選擇適

當的雲端平台及預測所需要的部署成本。

關鍵字

雲端運算，容量規劃，公共雲端供應商，Web應用程式，計價模式，效能評

量及比較。
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Chapter 1

Introduction

Cloud computing has been predicted to be a disruptive technology that impacts how

IT services are delivered. Application and service providers no longer need up-front com-

mitment on building their own IT infrastructure; the elasticity of cloud resource pool and

pay-as-you-go pricing model promises capital cost reduction and faster time to market [5].

As public cloud computing services gain popularity, many companies are joining this

increasingly competitive and profitable market to become cloud providers. There are well-

known international providers whose datacenters spread across multiple countries, for ex-

ample AmazonWeb Service [1] and RackSpace [4], as well as domestic providers targeted

at local business, for example Hicloud [2] and NTU Cloud [3].

While many startups have already chosen cloud platforms to deliver their new services,

well-established enterprises also consider migrating their legacy applications to the cloud.

Users are often interested in the common capacity planning questions: "How many cloud

resources from which provider should be provisioned? How cost effective they are? What

are the estimated deployment cost?

While answering such questions, users might encounter several challenges:

• Diverse cloud provider, service and pricing modelDue to lack of standardization,

every provider presents different pricing models and shows diverse cloud perfor-

mances, therefore, users find it difficult to establish a baseline to compare providers.

The diversity of cloud offerings is increasing as new providers continue to emerge
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and old providers introduce new services.

• Mispredictions Users are interested in capacity planning solution for a particular

application. To yield correct configurations for hosting such application, users need

to predict the performance characteristic on different cloud platforms. This can

be challenging due to several reasons. First, different types of application utilize

resources (i.e. memory, CPU, disk etc.) differently. Users need to find an ad-

equate prediction methodology for that application. Second, the available infor-

mation about these characteristic can deviate from actual cloud performance [31].

Also, the underlying virtualization technique introduces interference between ten-

ants, which further leads to performance over- or under-estimated.

• Limited time and monetary budget Under the circumstances that users have lim-

ited time and monetary budget, they can only explore a subset of cloud configu-

rations from today's market. The speed and the monetary cost of finding a valid

configuration effect the number of possible configurations that users can explore.

Some pragmatic solutions have been proposed and used in practice. Cloud providers

offer a price calculator [1, 2] that users input the number and type of resources, and the

calculator outputs an estimated cost. This approach requires users to guess the amount

of cloud resources they need to sustain their application performance requirements and

does not offer cross cloud provider comparison. Cloud benchmark tools [18] provide

performance and cost benchmarks which can be informative but the users still need to

translate the benchmark results into their own application-specific requirements. Finally,

work on capacity planning in the cloud [22] offers solution in selecting cloud instances

but with limited policy options and omitting I/O cost.

In this paper, we provide CloudGuide, a tool suite that helps users on capacity plan-
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ning and deployment cost estimation for legacy, replicable Internet application with QoS

guarantee. We help users to answer the questions:(1) among multiple resource configu-

rations available for a targeted application, which one to choose, (2) what is the expected

monetary cloud deployment cost for hosting such application. CloudGuide can also be

leveraged to explore "what-if" scenario, such as capacity planning for reduced response

time or increased throughput.

In particular, we make the following contributions:

Comparison across diverse cloud providers Current cloud providers offer virtual IT re-

sources with slightly different semantics, hardware specifications, and pricing mod-

els. No standard is established among cloud resources meaning that users need to

deploy their application on each one to understand the delivered performance and

incurred cost of each provider. CloudGuide provides users with insight of what the

predicted performance and estimated cost if the application were to migrate to a spe-

cific provider. CloudGuide achieves this by using generic benchmark results and

CPU events combined with queuing model to predict application performance.

Providing insight for what-ifs exploration One advantage cloud computing provides is

an easy way to cheaply test their application under different hardware models. How-

ever, since users only have machines in their own local cluster as references, it is

not easy to know what the performance would be without deployment. CloudGuide

is designed so that a user can run the application resource profiler once and explore

the what-if scenarios where their application run on a different hardware model.

CloudGuide provides a cost-calculation engine that allows users to see predicted

performance and cost in a cloud environment compared to their local cluster. This

flexibility allows the users to explore their options before start running their appli-
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cations.

Dynamic provisioning when workload changes Since cloud computing promises the flex-

ibility to scale-up dynamically, one important mechanism is to identify when and

how to provision so that service level objective (SLO) is maintained when workload

increases. In this work, we define application SLO as response time or throughput.

CloudGuide models Web applications using queuing model to predict the number

of instances required to meet SLO when workload increases and updates the cost so

that the user can know in advance given a workload forecast which kind of operation

cost is expected.

We beginwith a problem statement in Chapter 2 and describe howCloudGuide predicts

the performance of a migrated application in Chapter 3. Chapter 4 presents CloudGuide

implementation, followed by Chapter 5 showing the effectiveness of CloudGuide. Chap-

ter 6 discusses related work, and finally, Chapter 7 concludes the paper.
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Chapter 2

Problem Statement

Consider a user with a legacy application that she would like to know the estimated

cost and performance were the application migrated to the cloud. The user is faced with N

providers with various computing instance types and storage options; each provider has a

pricing scheme that differs slightly from each other. The specification for each computing

instance may be arbitrary, with each provider naming their instance in different terms. For

example, Amazon uses the term EC2 computing unit [1] while HiCloud uses HiCloud

computing unit [2] to specify the computing power their instance. It is not clear given a

legacy application, what the expected performance on an instance type would be.

On top of different instance type, the pricing of instances may not be linear within

a cloud provider. Sharma et al. [22] pointed out that pricing for both EC2 cloud and

NewServer (NS) cloud platform is convex, meaning the cost per-core increases sub-linearly

as the number of cores increases.

The goal of CloudGuide is to provide a user with suggestion based on predicted price

and performance according to her desired policy, such as minimized cost or maximized

performance. CloudGuide can be invoked in initial planning or be executed whenever

observed performance deviates from a priori goal.
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Table 2.1: Classification of cost to host an application in the cloud

Cost type Resource type Calculation
Computing resources Compute instance Number of instances * Unit price * time

Network Data rate * time * Unit price
Storage -- storage Total data size * Unit price
Storage -- transaction Transaction rate * time * Per transaction cost

Services Content distribution network Commit rate + overage charge
Load balancer Fixed rate + usage-based for data access
Resource monitoring Fixed rate + usage-based data access

Total Cost for computing resources + services

2.1 Cost calculation

The cost of running an application at a stable state in the cloud can be roughly divided

into two parts: (1) computing resources cost includes cost paid to finish the actual applica-

tion work. This cost depends on the performance requirements for the application and (2)

service cost, additional service to improve the application execution and is often optional.

Table 2.1 shows an example of the different cost type we include when estimating deploy-

ment cost for applications in the cloud. We focus on computing resource cost because

service cost is optional and often is incurred to improve managing the application.

Computing resource cost is expressed as: Costrunning = CostCompute instances+CostNetwork+

CostDisk. When calculating CostComputing instances, the number and type of instances re-

quired to host an application is subject to performance requirements based on the SLO

from users. Similarly, the type of storage option also affects application performance and

storage cost. Both network and storage cost can be calculated using a linear formula. Note

that each provider charge in slightly different scheme, but we find this formula sufficient

to capture across different providers.
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2.2 Performance requirements

CloudGuide needs to predict application performance in the cloud to ensure perfor-

mance requirements are met. Since we focus on web applications, we define performance

as both response time within a time threshold, say two second, while supporting a given

throughput. This prediction problem can be rephrased as ``How many resources should a

user request from a provider so that the performance requirements can be met?''

Since cloud resources are often provided into three categories: computing resources

(including memory), network, and storage. Estimating the amount of resources required is

reduced three subproblems: determining the number of instances of a specific type, which

type of storage and which type of network. In this work, we focus on the first subproblem.

Determine the suitable type of storage is non-trivial and often requires application modifi-

cation as demonstrated in work by Kossmann et. al [15], where they compare performance

of running database under different architecture in cloud. In this work, we assume themost

basic local storage option that usually comes default with a computing instance, such as

elastic block storage (EBS) in Amazon and default local storage for HiCloud computing

instances. Network cost can be considered as a linear term in current practice.

Consider a user plans to migrate a three-tier application, with each tier denoted Ti, 1 ≤

i ≤ 3, to the cloud. We do not consider replication on database tier since it is beyond the

scope of this work. Consider across all cloud providers we observed, they in total offer

K different types of instances, for example, Amazon EC2 small, medium, large, Hicloud

small, medium, large. The application-specific cloud configuration can be denoted as a

set

C = {
k∑

j=1

n1j,
k∑

j=1

n2j,
k∑

j=1

n3j}, (2.1)
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where nij , nij ≥ 0 denotes the number of instance type j hosting tier i. nij being zero

means instance type j is not chosen to host tier i. Note that there can be a mix of instance

types chosen, for example, three medium instance and one large instance from Amazon

EC2.

2.3 Satisfying requirements based on policy

Given an SLO requirement of peak throughput λi for tier Ti, let pj and µj denote that

the price and the server capacity of instance type j. Here we define server capacity as

to the application-level throughput a server can sustain. The problem can be formulated

according to their policy.

2.3.1 Policy I:Minimize deployment cost while satisfying peak through-

put

min
k∑

j=1

pjnij + Costnetwork + Coststorage (2.2)

such that
k∑

j=1

µjnij ≥ λi (2.3)

where nij denotes the number of instance type j hosting tier i. We formulate this optimiza-

tion as an integer linear programming (ILP) to solve the nij . The solution yields a set of

values (n11, n12, ..., n1K) for tier 1 and (n21, n22, ...,n2K) for tier 2. Recall that K repre-

sents the total number of available instance types from all cloud providers we observed.

To disable a configuration composing of instance type across different cloud providers in

a configuration (i.e. hybrid cloud deployment), we can limit K to instance types from a
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particular cloud provider one at a time (e.g., set k to be from instance types 0 to 3) , and

run ILP iteratively until all cloud providers have been taken into consideration.

Note that meeting performance requirements usually can be met with two ways: scale-

out, meaning deploying more servers to handle the workload, and scale-up, meaning using

more powerful server to handle workloads. In CloudGuide, we combine both approaches

by finding nij for scale-out and finding server with different capacity µj for scale-up.

2.3.2 Policy II: Maximize throughput given monetary budgetM

max
k∑

j=1

µjnij (2.4)

such that
k∑

j=1

pjnij + Costnetwork + Coststorage ≤ M (2.5)

where M is the monetary budget for Ti. The total cost of the cloud configuration

should not exceed this budget, while maximizing throughput.

Users can also explore what-if scenario by manipulating parameters such as SLO 1 or

workload λi, as the example shown below

2.3.3 Policy Example: Improve throughput by half and keep mini-

mum cost

min
k∑

j=1

pjnij + Costnetwork + Coststorage (2.6)

1Changing SLO requires server capacity estimation from Chapter 3 to be re-run. For example, if user
wants to reduce average response time by 20%, the user needs to specify the new average response time to
d′ = d ∗ 80%, and re-calculate the server capacity.
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such that
k∑

j=1

µjnij ≥ λi ∗ 150% (2.7)

To solve the above ILP problem for a policy, a perfect solution can be obtained using

a solver, such as CPLEX and lpsolve solver. However, as the problem sizes grows, it

takes quite long time to obtain a perfect solution. For policy I and II, we map the problem

into a min or max knapsack problem and implement an approximate greedy algorithm

which is worst-case bound of 2 [22]. Wewill describe howwe find the parameters required

to solve this problem in Chapter 4.

2.4 Design goals

We design CloudGuide following principles below:

Application-specific suggestion Our primary goal is to assist a customer to choose a

cloud provider for its application by estimating the application performance and

monetary deployment cost on various providers. Recent research shows that there

is no clear winner from all aspect in the current market [17], therefore different

types of applications do not always best-suited to be deployed on one single cloud

provider. We believe incorporating applications characteristics into the suggestion

procedure is more likely to yield meaningful results as it is more relevant to the

targeted applications.

Unobtrusive and transparent We aim to provide a light-weight tool which can be trans-

parently used in common production environment. In order to make application-

specific suggestion, CloudGuide requires application log files and resource usage

profile as input. We believe that application log files are easily obtainable by sys-
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tem administrator, and we adopt popular profiling tools, sysstat [26] and Opro-

file [20], which are commonly accepted to be unobtrusive to collect resource us-

age and CPU event profile. Once fed with required input files, CloudGuide should

provide suggestion results in a reasonable short period of time (e.g. within seconds

or minutes). We adopt G/G/1 and G/G/m queuing models in our work to speed

up the suggestion process, eliminating the needs of migrating applications to every

candidate cloud providers.

Modularized design Modularity in design enables every component of CloudGuide sub-

stitutable. For example, a new technique that more precisely predicts application

performance can transparently replace currentmethod adopted byCloudGuide. Mod-

ifications can be easily done on CloudGuide to quickly adapt to cloud services

changes.
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Chapter 3

Meeting Performance Requirement

Meeting user performance requirements is essential for CloudGuide. As SLO is spec-

ified in terms of response time and throughput, CloudGuide needs to estimate the capacity

each instance type can sustain for the targeted application. Estimating capacity accurately

is crucial for CloudGuide to propose a cloud configuration that can provision sufficiently

without wasting resources to the targeted application. Note that CloudGuide makes con-

servative estimation to ensure SLO are satisfied.

To capture the application performance on a unseen platform, one approach is to run the

application in that platform, drive with test workload, and measure the maximum through-

put. Previous work [22] took this empirical approach to determine server capacities. We

argue that in cloud environment where providers offer multiple instance types, this ap-

proach can incur high cost because without knowledge on which size suits the applica-

tion, one needs to try all. Moreover, this approach requires the extra porting effort to

every candidate cloud provider.

We adopt the approach of estimating maximum throughput of each cloud instance

type by modeling the server as queuing system. Previous work has shown that network

applications can be modeled well as queuing systems [10, 25, 24, 29]. The results from

queuing theory can be used to derive maximum throughput from request rate, service

times, and the response time specified in user SLO. We took this approach because it

requires parameters that can easily captured locally so it saves users the porting efforts

12



and monetary cost.

Our idea is to start by using G/G/1 queuing system to model the server capacity on

a known platform (i.e., local machine hosting the target application), then estimate the

relationship between server capacity between local machine and each cloud instance from

benchmark results. Even though both follow queueing model, there is a speedup factor

between local server capacity and cloud server capacity. CloudGuide applies techniques

to cross-platform performance estimation to derive such factor. The three steps taken in

our approach to estimate server capacity can be summarized as followed:

1. Establish server capacity from local server using G/G/1 queuing model.

2. Calculate speedup factor for each cloud instance type.

3. Derive estimated server capacity for each cloud instance type by combing local

server capacity and speedup factor using G/G/m queuing model.

3.1 Establishing base capacity

We applied the following formula from G/G/1 queuing system [14] to calculate the

baseline server capacity:

λi ≥ [si +
σ2
a + σ2

b

2 ∗ (di − si)
]−1 (3.1)

where di is the mean response time for tier Ti, si is the mean service time of requests

at tier Ti, σ2
a and σ2

b are the variance of inter-arrival time and variance of service time,

respectively. Note that di is the response time requirement defined in SLO and rest of

the parameters can be obtained from application logs. Here, di can be specified either as

average response time or high percentile of response time distribution, for example, the
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end-to-end response time of 95% of the requests below 2 seconds. Finally, we derive λi

as the lower bound of input request rate that can be served by a single server of tier Ti.

3.2 Determining capacity for different instance type

After establishing the server capacity baseline, we approximate server capacities of

different instance types by modeling them as G/G/m queuing system. Our idea to model

cloud server as G/G/m is because we assume that the application can be modeled as queu-

ing system and the main difference between servers is their service time. First, we replace

the service time to be m times speedup in equation 3.1 to derive capacity [14] as followed:

λi ≥ [
si
m

+
σ2
a +

σ2
b

m
+ (m−1

m2 )s2i
2 ∗ (di − si)

]−1 (3.2)

where we reuse all parameters di, si, σ2
a, σ

2
b from equation 3.1, except we need to find

the speedup factor m. This is because we assume the request arrival rate follows similar

distribution. Anyworkload predictionmethod can be applied here to improve the accuracy

of request rate. To find m we need to estimate how the application service time might

change on a unseen platform.

3.3 Finding speedup factor

We focus on finding speedup factor m for business logic tier because it is generally

computing intensive that can benefit from instance type changes and it takes largest portion

of overall response time. On the other hand, front-end web tier that serves small static files

is very lightweight comparing to business logic.

Note that we are finding speedup factor compared to local machine instead of ab-
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solute average service time. This is a simplified version of cross-platform application

performance prediction, and any technique for solving this problem can be applied here.

One simple way to find speedup factor is to use the ratio of benchmark scores, e.g., us-

ing SPECjvm score. However, this approach requires finding a benchmark that behaves

similarly to that of the targeted application.

Previouswork on cross-platform application prediction adoptedmachine learning tech-

nique [16], modeling technique [13, 23, 24], or trace-and-replay [18]. However, not

all approaches are applicable to cloud environment because of limited access to hard-

ware level performance metrics. For instance, work that relies the program similarity on

micro-architecture characteristics [13] is hard to apply in cloud environment becausemany

characteristics are virtualized in cloud environment. CloudGuide adopts the performance

model from [24] which predicts application-level performance for Internet services using

platform parameters, including processor speed, cache and memory latencies. They note

that instruction and memory-access latencies are key components of the processing time

of individual requests for Internet service [24].

The average service time of tier Ti is expressed as:

s =
I ∗ (C +H1C1 +H2C2 +M2Cmem)

number of requests
(3.3)

where I denotes the aggregate number of instructions observed in Ti, C is the average

service time per instruction (not including memory access delays), Hk is the percentage

of hits in the Lk cache per instruction,Mk is the percentage of misses in the Lk cache per

instruction, Ck is the typical time access to the Lk cache, and Cmem is the time access to

main memory. We derive I,Hk,Mk from CPU events profile, and capture C,Ck, Cmem

from memory benchmark results. Note that CPU events profiling only needs to be run
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Figure 3.1: Speedup factor predicted by our method and by benchmark scores scaling for
RUBiS. Workload includes read-only requests.

locally and memory benchmarks need to be executed once on each cloud instance type.

Speedup factor for a instance type j compared to local can be derived using the fol-

lowing formula, where both service times are derived from equation( 3.3).

mij =
sij
slocal

(3.4)

Figure 3.1 and figure 3.2 show the accuracy of predicting speedup factor for RUBiS us-

ing our method, compared to measured speedup factor from real deployment and speedup

factor predicted by SPECjvm2008 benchmark scores. The speedup factor is the ratio of

performance enhancement or degradation in terms of service time after an application is

migrated from on-premise to corresponding cloud instance. Even though SPECjvm2008,

a benchmark suite for measuring the performance of a Java Runtime Environment (JRE)

has high similarity to application tier, prediction results of our method are better than

benchmark scores scaling.
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Figure 3.2: Speedup factor predicted by our method and by benchmark scores scaling for
RUBiS. Workload is a bidding-mix including 80% read requests and 20% write requests.
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Chapter 4

Implementation

4.1 Overview

We describe the implementation of each step CloudGuide follows as shown in Fig-

ure 4.1 in this chapter:

1. Conduct up-to-date cloud services and pricing schemes survey by usingweb crawler.

Meanwhile, establish performance comparison baseline among cloud providers by

benchmarking.

2. Establish local server capacity from application queuing behavior, profile applica-

tion I/O usage, and conduct benchmark for comparison with cloud instances.

3. Model server capacity of different types of cloud instance for the targeted application

by using queuing model and benchmark results.

4. Estimate monetary cloud deployment cost for that application, in accordance with

the cloud configuration.

5. Determine optimal cloud configuration for that application, according to user-specified

SLO and policy.

Note that output from the first two steps server as input to suggestion engine, which

completes steps three through five. Users also need to specify two parameters for sug-

gestion engine: SLO (i.e. application response time) and policy. If SLO is not explicitly
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Figure 4.1: CloudGuide overview

specified, the default behavior of suggestion engine is to use the hardware specification

of the local cluster as a reference and search across virtual hardware options from all

cloud providers for configurations that offer similar performance to host the targeted ap-

plication. Policy is what impacts suggestion engine directly on making choice among

configurations. CloudGuide currently supports two polices: minimize deployment cost,

and maximize throughput under given monetary budget. We plan to extend CloudGuide

by adding more supported policies, for example minimum average response time. If users

are interested in exploring what-if scenario, they can leverage suggestion engine by spec-

ifying different SLO for potential development preferences, such as reduce response time

by 20% or increase throughput by half while keeping minimal cost.
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Table 4.1: Cloud providers chosen

Provider Type Geo-location Time-based pricing Usage-based Pricing
HiCloud IaaS Taiwan CPU (Daily) Network
NTU Cloud IaaS Taiwan Whole machine (Yearly)
Amazon AWS IaaS US, Ireland, Tokyo, Singapore Instance (Hourly) Network and disk

4.2 Cloud Providers Pricing Schemes and Performance

First of all, we start with survey cloud providers' pricing scheme and establish perfor-

mance comparison baseline among cloud providers. This process can be configured to

either re-run periodically, such as after weeks or months, or triggered manually by users,

such as, upon new service update or price change. The results obtained from this step

are reusable for any CloudGuide user. Users do not need to participate in this step to use

CloudGuide, but users can also conduct their own survey and benchmarks if necessary.

In the subsequent subsection, we explain the cloud providers we choose to observe,

and how CloudGuide establish performance comparison baseline among them.

4.2.1 Chosen cloud providers

When choosing which cloud platform to move one's application to, we first need to de-

cide which type of cloud service based on the common characterization of infrastructure-,

platform- and software-as-a-service (i.e. IaaS, PaaS, and SaaS). For users developing new

applications, they have the freedom to choose the appropriate level since they are starting

from a clean-state design; however, others may not be so lucky. In our case, we target

on migrating legacy network application to the cloud, so we choose cloud providers who

provide IaaS service, which provide virtual machine abstraction that imposes least limita-

tions.
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We list four chosen cloud providers in Table 4.1 alongwith their information, including

service types, geo-locations, and resource charging schemes. We choose cloud providers

with the following principles: (1) providers that provide IaaS, (2) covering both domestic

(e.g. HiCloud) and international cloud providers, (3) popular and representative cloud

providers. From the table note that two common pricing schemes are used: (1) time-based,

where user pays the provider with the amount of time elapsed to use the resource, and (2)

usage-based, where user pays the provider based on the actual resource used. The time-

based pricing scheme, which its time unit is usually in terms of hours or days, is similar

to parking-fee payment, where usage-based pricing scheme is closer to how utilities, such

as power and water, are charged.

4.2.2 Performance Comparison Baseline

The performance of different resources (e.g. CPU, memory latencies, disk, network

bandwidth etc.) of a cloud instance impact how an application hosted on that instance

will perform. To find a desirable configuration, we need to compare the cost and perfor-

mance among cloud providers. While some of the cloud providers disclose performance

information of their cloud services (e.g. Amazon Web Service Elastic Cloud Compute

disclose computing power for each type of instance in terms of ECUs, where ECU is

a custom-defined computing unit), those information might only cover partial of all re-

sources. Moreover, lacking standardization made performance comparison among dif-

ferent cloud providers non-intuitive. Prior work [17, 15, 21, 30] provide solution to this

problem by benchmarking cloud providers.

In CloudGuide, we use lmbenchmicrobenchmark to establish performance compar-

ison baseline between different cloud instance type. Wemeasure the hardware capabilities
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Performance Counter Event (mask) Description
INST_RETIRED (0x1) number of instructions retired
L1I (0x02) number of instructions fetches that miss the L1 cache
L1I (0x03) number of all instructions fetches at L1 cache
L2_RQSTS (0x20) number of instructions fetches that miss the L2 cache
L2_RQSTS (0x30) number of all instructions fetches at L2 cache

Table 4.2: Events used in CPU events profiling

(e.g. time to finish a certain amount of floating point operations, cache and memory ac-

cess latency) of different instance types from all cloud providers we observed. Other cloud

benchmark service [17, 7] can be used to substitute current benchmark method as well.

4.3 Estimating local and cloud server capacity

We aim to estimate server capacity of each instance type when it is used to host a tar-

geted application. We implemented the cross-platform performance prediction technique

to approximate the server capacity for each instance type as described in Chapter 3.

We first determine local server capacity using G/G/1 model, which states that server

capacity can be derived using equation 3.1. We instrument application tier and analyze

application logs to find the variance of inter-arrival time and variance of service time.

Using the cross-platform performance comparison method describe in Chapter 3, we

can derive speedup factor between a cloud instance type and local. To derive speedup

factor for each cloud instance type, we first measure the number of CPU instructions and

hit/miss ratio usingoprofile on localmachine. Table 4.2 shows the correspondingCPU

events we profiled. Then, we use lmbench benchmark to establish cache and memory

access time on both local and cloud instances.

After finding local server capacity and speedup factor, we finally can find cloud server

capacity using equation 3.2. We implement this calculation using python script.
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4.4 Finding configuration and cost that satisfy policy

To solve the ILP problem for each policy described in Section 2.3, we map this prob-

lem into min- or max-knapsack problem and implement the approximation algorithm de-

scribed in [8]. For more complex policies, we plan to adopt open-source solver, such as

lpsolve.

We describe briefly how we map the problem into knapsack problem for a policy.

Using policy I in Section 2.3 as an example, since the cost is a linear summation of com-

puting, network and storage cost. We remove network and storage cost in the optimization

process. Then, the problem fits into the min-knapsack problem. The approximation al-

gorithm we implemented in python is a greedy-algorithm. The idea of the algorithm is

to first sort nij in increasing order of pj
µj

then find the smallest list of nij that satisfy the

capacity constraint.
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Chapter 5

Evaluation

In the evaluation, we present experimental results on howwell CloudGuide helps users

choosing suitable cloud configuration. We conduct our experiments on two public clouds,

Amazon EC2 and Hicloud.

5.1 Testbed application

We use RUBiS in our evaluation. RUBiS is a benchmark Internet service that imple-

ments core functionalities of an online auction site: selling, browsing and bidding [6].

RUBiS are implemented into three version: PHP, Java Servlets and Enterprise Java Bean

(EJB). We choose RUBiS EJB version, which follows a three-tier model software archi-

tecture, containing a front-end web server, middle-tier business logic, and a back-end

database. We host the application on three Dell R310 servers in local environment, with

each tier deployed on a machine. The web server tier run on Apache 2.2, the business

logic run on the JOnAS 5.3.0 application server, and the back-end database is MySQL

5.1.58. All tiers run on the Linux kernerl 2.6.18.

In all our experiments, we use the client workload generator that bundled with the

application. Client workload generator allows us to decide the mix of operations and

active sessions we use to exercise the web application. We use two typical workload in

our experiments: 1.) Bidding-mix with 80% read requests and 20% write requests, 2.)

Browse-only with 100% read requests. For simplicity we show results for experiments
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Figure 5.1: Estimated and measured server capacity for hosting RUBiS on local, Hicloud,
and Amazon

conducted under bidding-mix workload by default. For simplicity we show results for

experiments conducted under bidding-mix workload by default (CloudGuide performs

better in browse-only mix due to simpler workload pattern).

5.2 Determining initial cloud configuration

We first evaluate the quality of the configurations suggested by CloudGuide for finding

an initial cloud configuration when migrating legacy network application to the cloud. We

show the predicted price and performance by CloudGuide before we migrate RUBiS from

local environment to the cloud. The SLO of the average response time of the application

is set to 2 seconds, peak request rate is set to 1000 active sessions, and the chosen policy

is to minimize hosting cost. For cost constraints, we choose five types of instance from

two cloud providers (identical to instances listed in figure 3.1) as candidates.

Figure 5.1 shows the estimated server capacity and cost of hosting RUBiS on local,

Amazon and Hicloud by CloudGuide compared to the measured results. We show only the
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Figure 5.2: Estimated and measured cost for hosting RUBiS on Hicloud and Amazon

chosen instance type for each provider out of five total. For both providers, CloudGuide

under-estimates the capacity by around 27% and 12% respectively. To satisfy performance

requirements of peak request rate, CloudGuide generates a configuration of either three

AWS medium instances or two Hicloud instances.

Figure 5.2 shows the accuracy of the estimated total computing cost for hosting RUBis

on Hicloud and Amazon. We collected the application's resource usage on local cluster

for one full day, calculated the estimated cost according to the cost calculation formula

mentioned in Section 2.1. To compare the accuracy, we deployed the application on both

Hicloud and Amazon EC2, and replayed workload mix similar to that observed on local

cluster.

Here the results are in day granularity because day is the smallest granularity both

provider display the cost before the final monthly bill. For both providers, storage cost

is so small that it is hard to see in the figure. For both providers, the difference between
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Figure 5.3: Invoke CloudGuide for dynamic provisioning when workload changes

estimated and measured cost is within 5%, which we think is accurate enough for users to

make an informed decision. After considering both cost and performance requirements,

CloudGuide suggests Amazon to best meet the policy. We observe during the experiment

that the chosen configuration sustains the peak request rate requirement.

5.3 Dynamic provisioning when workload changes

Next, we study the case that leveraging CloudGuide to do capacity planning for dy-

namic provisioning. Users are able to leverage G/G/1 queuing model for scaling out (i.e.,

provide same type of new instance), and leverage G/G/m queuing modeling for scaling

up (i.e., provide different type of new instance). Figure 5.3 depicts the result that we use

CloudGuide to determine when and how many instances to scale out the application tier

of RUBiS. As shown in the figure, as the active sessions increases over time, CloudGuide

is triggered (assuming a monitoring module notices the resource shortage) at 400 active

sessions. If the number of active sessions continue to raise and the tier is not scaled out as

suggested by CloudGuide, SLO is violated.
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Chapter 6

Related Work

Our work focuses on finding most suitable cloud provider meeting user-specified re-

quirements to migrate legacy web applications with minimal effort from the user. Based

on our best knowledge, we are the first to combine modeling techniques from queuing

theory and cross-platform prediction on cloud provider selection problem with real de-

ployment.

Previous work on calculating the cost of hosting an application in the cloud compared

to locally provides partial solution to the same problem. Li et al. [19] outline the total-

cost-of-ownership (TCO) and utilization cost to spend and build an in-house infrastructure

compared to a cloud. They include the amortized cost of eight factors in their calculation

and provide a web interface for user to query. Their system require users to input their

estimated numbers for the data center size, which can be cumbersome. Our work dif-

fer from their work in that we also consider more fine-grained application resource need

when determining how to migrate and where to migrate. Tak et al [27] apply Net Present

Value (NPV) method to estimate and compare the cost of owning a local data center v.s.

renting cloud resources. They take Amazon AWS as an example of cloud provider and

include detailed cost calculation for deploying locally. Their work is complementary to

ours as we compare among multiple cloud providers. Chen et al. determine which kind

of company would benefit most from renting from cloud. Neither work addresses finding

the most suitable cloud configuration that we address in this paper but their techniques are
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complementary to our work.

Work on benchmarking cloud performance also inspires our work. CloudCmp [18]

developed benchmark tools to compare cost to performance ratio across four difference

provider. Other works document their studies on migrating application with other charac-

teristics [11, 30, 28]. All these work combined with ours can shed some light on helping

users deciding whether and how to migrate their applications to the cloud.

Haijjat et al. [12] examine the problem of migrating client applications which are com-

posed of several components into the cloud. They formulated their problem into an opti-

mization problem bymaximizing migration benefit while satisfying client-imposed policy

constraints.

Conductor [31] considers the computationmodel based onMapReduce [9] and address

resource management issues, such as dynamic pricing and resource diversity. Our work

takes application resource requirement as an black-box and finds the best cloud provider

based on the policy and requirements from users.

KingFisher [22] proposes cost-aware provisioning in the cloud; both formulate their

problem as optimization problem. We use similar techniques but address the problem of

provisioning for legacy web applications and include I/O cost.

Finally, Teregowda et al. [28] closely documented their migration process for a mature

large-scale CiteSeer into the cloud and provided many insights on how application can

be migrate in a hybrid cloud mode. Their work takes application-level knowledge into

consideration for migration decision and we believe they can benefit from CloudGuide to

explore what-if scenarios.
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Chapter 7

Conclusion

We have taken the first step in estimating cost when hosting a web application in dif-

ferent cloud providers. Our work include: First, an initial survey of cloud providers and

their respective offerings and pricing schemes. This survey helps us derive the suitable

cost calculation function for user applications. Second, CloudGuide provides a system-

atic methodology to help user estimate cost of hosting their application in the cloud given

different application QoS requirement. Specifically, we apply queueing model to help

user predict suitable computing instance size that can sustain different capacity. Finally,

CloudGuide helps users to provision dynamically when theworkload shifts. We conducted

experiments to show that even though fundamental unpredictability exist in cloud environ-

ment, applying queueing model is suitable to provision dynamic workload to accurately

predict performance and estimate cost.
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