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Abstract

Phase-change memory (PCM) is an emerging and appealing technology
nowadays. PCM is byte-addressable, high-density, and non-volatile, so-called
“universal” memory, which could revolute the memory hierarchy design. The
high density and byte-addressability of PCM enable architects to build large-
scale memory systems; many works have demonstrated the benefits of sup-
plementing DRAM with PCM in the main memory. To take advantage of
its non-volatility, instantly turning on/off computers or maintaining data and

files persistent in main memory without accessing disks are also proposed.

The byte addressability and non-volatility of PCM blur the line between
memory and storage, and call for a rethinking on architectural design. When
PCM is used as part of the main memory, non-volatility is unnecessary. Re-
laxing non-volatility could significantly reduce the write latency of multi level
cell(MLC) PCM. Therefore, in this paper, we advocate a new design concept
for PCM-based memory system. That is, PCM cells can be written in two
different modes, fast-yet-volatile writes for main-memory usage and conven-
tional non-volatile writes for persistency purpose. Volatile memory cells re-
quire refreshing to ensure data are valid over time. Conventional wisdom of
PCM-based design thinks PCM is power-hungry and refreshing incurs con-
siderable power overhead. On the contrary, we demonstrate that a refresh
interval of 1000 seconds leads to insignificant power overhead. Simulation
results show that the proposed techniques can improve overall system perfor-

mance by 21.5% on average.

Keywords - MLC PCM, non-volatility, data retention time
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Chapter 1

Introduction

Recently, several non-volatile memories (NVMs) are emerging in memory hierarchy de-
sign, including phase-change memory (PCM), spin-transfer torque RAM (STT-RAM),
memristor, and racetrack memory. Among them, PCM is one of the most mature and
promising technologies. PCM exploits the property of chalcogenide alloy of germa-
nium, antimony and tellurium (GeSbTe), a kind of phase-change material, to store data
in the form of different crystallization states and resistances. Vendors such as IBM, Intel,

Macronix, Numonyx, and Samsung have all announced their PCM prototypes or samples.

The byte-addressability and non-volatility of PCM blur the line between memory and
storage. Recently, many researches propose to adopt PCM to supplement DRAM in the
main-memory hierarchy [1-3]. PCM has an advantage in density due to its excellent scal-
ability and the multi-level cell (MLC) technology. Therefore, it enables architecting a
large main memory system for future CMPs’ needs. Currently, 20-nm PCM devices have
been fabricated and tested [4,5]. Devices down to 8 nm are also projected [6]. Another
strength of PCM is it can store multiple bits in a cell using multiple resistance levels.
Previous works have shown PCM prototypes with two bits to four bits per cell [7]. Up
to 10-year retention is also demonstrated available even if 2-bit MLC is adopted [8—10].
To take advantage of the non-volatility feature, several researchers propose to store files
and persistent objects in the PCM memory and access them directly using load/store in-
structions [11-13]. Another interesting application of non-volatility of PCM is instant

on-off. With PCM, since most program context can be preserved in the non-volatile main

1
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Figure 1.1: PCM in the future computer architecture

memory, a system can be powered on/off with minimum overheads. This enables turning
on/off machines on demand in a fine-grained time scale and improve the energy propor-

tionality.

Therefore, we can envision that future PCM is connected to the memory bus, and
parts of the memory cells are used as the main memory, and the other parts are used to
store persistent objects or files, as illustrated in Figure 1.1. Current studies treat PCM as
non-volatile oblivious to its roles in the system (i.e., main memory or storage). However,
maintaining non-volatility does not come for free. To achieve a longer retention guarantee,
one requires PCM cells to meet a stricter constraint on the resistance distribution, which

lengthens the write procedure.

In this thesis, we propose a new design concept for PCM-based memory system. PCM
cells can be written in two different modes, fast-yet-volatile writes for main-memory us-
age or conventional non-volatile writes for persistency purpose. To realize the proposed
dual write-mode system, an interface is required to convey memory access types to the
memory chips, and volatile memory cells require refreshing to ensure data are valid over
time. Conventional PCM-based design takes advantage of PCM’s non-volatility to avoid
the need of refreshing which incurs both performance and energy overheads. We model

MLC PCM and quantitatively analyze the relation between write latency and retention.
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We show that volatile writes can achieve up to 1.46 x latency speedup if the designed re-
tention is 1000 seconds. Through full-system simulation, we show that refreshing PCM at
a 1000-second period incurs insignificant degradation on energy, performance, and life-
time. Experimental results show that a system with 1000-second retention can achieve
22% of IPC improvement.

The rest of this paper begins with some background of PCM. Chapter 3 describes the
MLC PCM model. Chapter 4 describes our proposed morphable PCM-based memory
system. Chapter 5 evaluates our proposed design. Chapter 6 describes related works and

Chapter 7 concludes.






Chapter 2

Background
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Phase-change memory (PCM) is a type of non-volatile memory which exploits the
property of chalcogenide alloy of germanium, antimony and tellurium (GeSbTe). PCM
can store data by different crystallization states.

The amorphous state has high electrical resistance which represents data 0. And the
crystalline state has relative low resistance which represents data 1. Two states can be
switched by applying different programming electrical pulses and heating time. For ex-
ample, the set operation uses small electrical pulse but long time to program cells such
that the PCM material changes to crystalline state and has low resistance. On the other
hand, if a large electrical pulse but short time programming is applied, the cells would be
programmed into amorphous state and have high resistance.

Since the programming pulse hurts the PCM material, the PCM cells have limited

write endurance. Typical PCM has 10° to 10® write cycles before the cell has failed, and
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it is worse than DRAM cell write endurance (10 write cycle ). PCM’s failure issue have
been studied in several works. Zhou et al. [2] proposed the differential write mechanism.
When the data are programmed into the PCM array, only the cells with different value
are updated such that the programming pulse and the hurt can be reduced. Figure 2.1
shows the write circuit which implements the differential write. Before the write starts,
the circuit reads the data from PCM array and compares them with the written data. By
doing so, only the updated cells would be programmed by the write circuit.

The PCM resistance range can be 3 to 5 order of magnitude [7, 14]. Therefore, the
large resistance range can be used to represent multiple resistance states and realize the
multi-level cell (MLC) PCM. For example, the 2 bits per cell MLC PCM has been pro-
posed in [9], and some researches [7] have shown the possibility of four bits pre cell PCM.
By storing multiple bit in a single cells, PCM has ability to provide the high density and
to satisfy the high memory capacity demand of applications.

In MLC PCM, due to the tight resistance range of each level, process variation be-
tween cells and the target retention requirement, it is hard to use only one programming
pulse to program the cells into the target bandwidth. Hence, The studies in [7, 9], have
proposed the iterative write-and-verify (WAV) mechanism. Figure 2.2 shows the flow of
the WAV programming mechanism. Given. the target resistance level, the write circuit
decides and initiates the programming parameters first. After each write pulse finishes,
the WAV circuit reads the cell resistance and performs verification to check if the cell
resistance is located in the target bandwidth. If the target resistance is not achieved, write
circuit re-calculates the programming parameters and repeats the WAV iteration. The

WAV programming ends when the target resistance is reached.



Chapter 3

Trading Non-Volatility for Improving
Write Speed

PCM, like flash, FeRAM, and STT-RAM, is a kind of non-volatile memory (NVM). The
non-volatility is an advantage though, it does not come for free: to achieve long data re-
tention, the resistance of PCM cells have to be confined to a tight distribution so that large
enough margins are created to tolerate resistance changes over time. This requirement
poses difficulty to writes and lengthens write operations. In this section, we model 2-bit
MLC PCM to investigate the opportunity of trading non-volatility for write speed. We
show that up to 1.46x write speedup is achievable if we set the designed data retention of

PCM to 1000 seconds.

3.1 Data Retention vs. Resistance Distribution

Resistance distributions play an important role in determining the data retention of MLC
PCM. Due to the property of phase-change material, the resistance of PCM cells tends
to increase over time (referred to as resistance drift). To guarantee non-volatility, a tight
resistance distribution is required because with tighter distribution, it takes longer time
for resistance drift to alter the data stored in PCM. For example, Figure 3.1 compares two
resistance distributions of 2-bit MLC PCM. Figure 3.1(a) shows a tighter distribution than
Figure 3.1(b) does. Consequently, PCM with the former distribution can guarantee longer

data retention than the later.
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Figure 3.1: Illustration of the resistance distribution

To quantitatively estimate the data retention of PCM, previous works [14—17] suggest

using the following resistance-drift model:

Ly

R(t) = Ro( - 3.1

Here R, is the initial resistance, R(t) is the resistance at time ¢, t, is the time constant, and
v is the drift factor. With this equation, data retention can be found through calculating
the time until the resistance of a cell in one state drifts all over the margin to the adjacent
state. One thing worth noting here is, for 2-bit MLC PCM, data retention only involves
the second and the third states. The reason why the first and the forth states are not af-
fected by resistance drift is because the drift speed factor (v) of the first state is negligibly

small, and the resistance drift is uni-directional (i.e., only toward the high-resistance side),
respectively.

Figure 3.2(a) shows the target bandwidth of baseline 2-bit MLC PCM. The resistance
window is 3 to 6 in a logarithm scale (i.e., 10° to 10°Q). The target bandwidth of each
intermediate data level is 0.458 in width [17]. Table 3.1 shows the draft speed factors
we used. Note here that because the drift speed is different for different states, the re-

sistance window is made non-uniform accordingly for maximal retention. According to
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Equation 3.1, the baseline MLLC PCM has 107 seconds (116 days) of data retention if we

take the 40 values into consideration.

Table 3.1: Drift factors for 2-bit MLLC PCM when tq = 1s

Y
Log(R) R
og(R) Range mean SDMR | 40 value
<3.5 0.001 0.0026
3.5-4.5 0.02 0.052
40%
45-5.5 0.06 0.156
>5.5 0.10 0.26

When PCM is used as part of the main memory, its non-volatility (i.e., the 116-day
retention) is unnecessary. Therefore, we see opportunities to trade away the excess non-
volatility for improving write performance. In particular, we propose a new design con-
cept named morphable PCM which employs tunable resistance distributions. For exam-
ple, Figure 3.2 shows another distribution whose data retention is 1000 seconds. Below
we referred to this mode as MP1000 where MP stands for morphable PCM. We can see
that with relaxed non-volatility, MP1000 has wide resistance distributions (as well as

small margins). More specifically, compared to the baseline, MP1000 allows 150% to
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240% wider distributions.

3.2 How Widening Distribution Improves Write Speed

Once the resistance distributions are allowed to be wider, PCM writes can be speeded
up because of reducing non-determinism. Writing MLC PCM is non-deterministic due
to the variation and randomness of the phase-change material. Even the same cell can
respond differently at different time. Previous works show that every time a MLC PCM
cell is written, the cell has only 38% and 63% of chance to obtain the resistance con-
formed to the desired distribution: 38% for the first two trial and 63% for the following
trial. Consequently, 8.5 trial-and-error iterations are required on average to complete a
write [18,19]. With wider resistance distributions, such non-determinism is mitigated and
writing MLC PCM cells becomes easier to success. Therefore, a write can be finished

with less trial-and-error iterations.
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Figure 3.3: Illustration of the probability of successfully programming a cell vs. target
bandwidth

Below we quantitatively analyze the opportunity of improving write performance.
We refer to the resistance range of the desired distribution as target bandwidth and the
probability of success per trial as convergence probability. As illustrated in Figure 3.3,
the resulting resistance of PCM write is typically a normal distribution, therefore, larger
target bandwidth means higher convergence probability. The convergence probability can

be calculated as follows:
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Here by, is the baseline target bandwidth, Fj.. is the baseline convergence probability,
NormCdf (z) stands for the difference of standard normal cumulative distribution func-

tion between 3 and —Z, i.e.:

z
2 1 142

NormCdf (z) = / e 2

dt (3-3)

[SIEN

and NormlInuv is the inverse of NormCdf.
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Figure 3.4: Convergence probability given various required data retention

Figure 3.4 sweeps the data retention from 107 to 103 seconds and plots the convergence
probability. We can see that the MP1000 mode significantly increases the convergence
probabilities from 38% to 76% and from 63% to 96%, respectively.

The increased convergence probability reduces the average number of write iterations

required to write PCM cells. The average number of write iterations can be estimated
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Figure 3.5: Average write iterations given various required data retention

using a Bernoulli process as in [18, 19]. Figure 3.5 shows the average write iteration
iteration given various data retention. We can see that MP1000 reduces the average write

iteration from 8.5 to 3.7.
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Chapter 4

Designing a Morphable PCM-Based
Memory System

The fundamental building block of the proposed morphable PCM-based system is PCM
chips with dual operating modes. The morphable PCM chip uses the similar command
interface as DDR3 DRAM. These PCM chips support commands including Activation,
Write and Refresh which directly access the PCM array. Among these commands, the
write command can occur in either the volatile mode or the non-volatile mode. The dual-
mode PCM chips enables us to design a morphable PCM-based system. We aim at design-
ing a memory management policy for the memory controller with following requirements.
First, existing applications can leverage the benefits without code/OS modification. Next,

future applications which utilize the persistency of PCM are supported.

4.1 Morphable PCM Commands

Following, we describe how to design the morphable PCM commands. The activation
command reads data stored in the PCM cells and move them to the row buffer. The PCM
read circuit senses the resistance of PCM cell and compares it with the boundary resis-
tance to identify the resistance level and retrieve the data value. The activation command
is used in the general PCM chip and do not require modification in the morphable PCM.
The write command stores the data to the row buffer and also programs the data into

the PCM cells simultaneously. The MLC PCM write circuit usually uses the differential-
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Figure 4.1: Dual-mode write command

write and iterative-write procedures to program PCM cells. In morpahble PCM, differ-
ent modes of write commands use different reference resistances bandwidth during the
differential-write and the iterative-write procedures. As shown in Figure 4.1, the non-
volatile write command uses the target bandwidth denoted as ‘A1’ during differential
write and iterative write. By doing this, sufficient drift margins are created and data are
guaranteed non-volatile. In contrast, the volatile write command uses the target band-
width denoted as ‘A2’ so that the iterative write procedure can be speeded up. To support
the dual-mode write command, PCM write circuit maintains two forms of reference resis-
tance. And the memory controller can use the RFU (reserve future used) bits which is the
reserved bits of current DDR DRAM commands interface to assign the write mode with

little modification of current command interface.

The refresh command is to ensure the volatile data are valid over time. Refresh is
combination of an array read followed by array write commands. As chapter 3 model, a
short retention capability has better write speedup. However, it requires frequenter refresh

operation to maintain the data correctness. Due to the expensive write operation of PCM,
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frequent refresh incurs performance, lifetime and power overhead. Below we use analytic
equations to estimate the lifetime and refreshing power given various refresh interval. The
power overhead due to refresh PCM cells, P, fresh, can be calculated as follows:

F. Ncell . WAVa'ug . Ewrite

4.1
Trefresh

Prefresh =

here N,..; stands for total number of PCM cells in the system, F is the refresh factor which
represents the rate of cells requiring refresh, £, stands for energy consumption per
cell per write iteration, W AV,,, stands for the number of iterations required on average
to write a cell, and T}.f.s, stands for the time duration to refresh the entire memory

space.The resulting lifetime after adopting refresh can be calculated as follows:

Nen urance
- 4.2)

(Neridb'z::‘:nce ) + ( Fft‘:ﬁi/::g )

Lrefresh =

where Ne,gurance 18 the cycle endurance of PCM cell, Ly, is the baseline PCM lifetime.
We assume there are 16GB MLC PCM, W AV, for baseline system is 2.25 iterations,
Eoyprite is 16.82 plJ, the PCM cycle endurance is 2 x 10° write cycle! and the Ly, is 5

years. F is 0.5%. This setting is conservative regarding evaluating the impact of refresh.
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Figure 4.2: Lifetime and refreshing power vs. various refresh interval

Figure 4.2 shows the analyzing results. We can observe that when the refresh interval

!Previous wear-leveling studies consider the endurance of PCM to be 107 or above
2MLC PCM has 4 resistance level, and only two intermediate levels are volatile and should be refreshed

15



is larger than 1000 seconds, the PCM lifetime is 4.6 years (8% degradation). For refresh
power, 1.5mW overhead is slight compared to about SW of the current DRAM power.
On the other hand, if the refresh interval is set to 100 seconds, the lifetime becomes half
of baseline lifetime. And by retention mode of chapter 3, the write speedup difference
between 1000 seconds and 100 seconds is small. Hence, we decide to set the retention

and refresh interval to 1000 seconds based on this analysis.

A naive refresh policy is the DRAM-style refresh which is resemble the auto-refresh
command of DRAM. DRAM-style refresh reads a 8KB memory row and writes them into
memory array. For DRAM-style refresh, the written back data are volatile and should be
refreshed again at next time point. Due to the MLC PCM characteristics like power
limitation (e.g. only 512 cells can be programmed concurrently [20]), iterative write
operation, refreshing a 8KB row which contains 32768 cells takes long time to complete

and blocks other memory requests for a long time.

To mitigate the refresh impact, we propose other mechanisms to optimize the refresh.
First, since PCM is non-destructive read which means the data are still stored in the mem-
ory array after the target row are activated, the refresh can be issued in a smaller granular-
ity like 64B line instead of needing to program 8KB data back into memory array. Second,
morphable PCM supports dual write modes for write operations. Therefore, PCM refresh

can choose not only volatile write but also non-volatile write.

Compared to the row refresh, the line refresh mechanism refreshes 64B line at one
time. Hence each line refresh refreshes less cell and has short cell programming latency.
It can reduce the possibility of normal requests are blocked by refresh operation. How-
ever, it incurs additional read operation for refresh. Refresh command can choose either
the volatile write or the non-volatile write for programming PCM cells. Volatile refresh
allows cells locating in a wide target bandwidth, and therefore it requires less WAV itera-
tions than non-volatile refresh when refreshing same number of cells. However, since the
cells are volatile after refresh, those refreshed cells require refreshing again in the next
time point. Non-volatile refresh can program cells into non-volatile mode such that those

cells do not require refresh again. Non-volatile refresh can reduce the number refreshed

16



cell and benefit from shorter programming latency.

4.2 Morphable PCM-Based Memory System

To allow existing applications to leverage the benefits of volatile PCM without any code or
OS modification, the proposed scheme utilizes the volatile mode of commands by default.
Refresh commands are issued in a staggered way by the memory controller. Therefore,
data do not lose until system powers off. Since existing applications do not store files or
persistent objects in the PCM main memory, such design does not lead to any reliabil-
ity or correctness issues during power-off or a system failure. Future applications may
store persistent objects or files in the PCM main memory. These applications inherently
require the supporting from language, compiler, libraries, and the OS. That is, program-
mers have to explicitly declare an object persistent so that the OS knows that the object
requires guarantees such as atomicity and consistency and should be allocated to a spe-
cific address space for future retrieval. To support these applications, we require the OS
also to specify the non-volatile address space through notifying the memory controller the
starting and ending addresses of the persistent address space. Through doing so, accesses

to the persistent address space always occurs in the non-volatile mode.
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Chapter 5

Evaluation

5.1 Experimental Setup

We conduct simulations based on MARSS [21] and DRAMSim2 [22]. MARSS is a cycle-
accurate full-system simulator which uses PTLSim [23] for CPU simulation on top of the
QEMU emulator [24]. DRAMSim?2 is a cycle-accurate DDRx memory system simulator.
Table 5.1 lists the configuration of the target system. We simulate a four-core CMP system
and each core is modeled as an our-of-order pipeline. The MLC PCM main memory is
16 GB in total which consists of two ranks, and each rank contains eight banks. The

system also contains DRAM caches organized as 32 MB pre-core private caches.

We extend MARSS and DRAMSim?2 to capture the properties of a system with MLC
PCM main memory. First, the latency of write command which programs data to PCM ar-
ray is calculated according to the data pattern. Each write command take dynamic number
of write-and-verify iteration to complete. Power constraints for PCM writes and power
budgeting mechanism similar to [20] are implemented in the model. We also prioritize
reads over writes by default to improve read responsiveness. For the proposed morphable

memory system, a staggered refresh is employed.

We choose five memory-intensive workloads from SPEC CPU2006 [25], including
bwave, zeusmp, cactusADM, leslie3d, and Ibm. Workloads are executed in both a rate
mode (each core executes the same workload) and a mixed mode (four cores execute

four different workloads). Table 5.2 lists the 10 combinations of workload we use and
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their RPKI and WPKI (i.e., main-memory reads/writes per kilo instructions). For each
combination, simulation starts from a check point which is 30 seconds after starting the
workload. We perform detailed simulation for 2.5 billion of instructions. The first half

billion serves as warm-up and the following two billions are for performance evaluation.

Table 5.1: System configuration

System 4-core CMP, 4GHz
4-issue, out-of-order,
32KBil1, 32KB dL1

Processor Core

L2 (private) 2MB, 4-way, 64B line size, LRU, write back
DRAM cache 32MB, 8-way, 64B line size,
(private) 50ns access latency, write back

16GB PCM, 2 ranks of 8-bank each,

Main M . . .
ain Viemory 8KB row buffer, differential-write support

Read: 250ns
Write: 250ns/iteration
Each write operation (to array) takes a variable number of iterations|
according to the data pattern

PCM Latency

Power limitation: 512 cells
PCM Power Read energy: 2.47 pl/cell
Write energy: 16.82 pJ/cell/iteration

Table 5.2: Simulated applications

Benchmark Description RPKI WPKI
bwaves 4 copies of bwaves 5.45 5.12
zeusmp 4 copies of zeusmp 10.75 4.47
cactus 4 copies of cactusADM 10.47 6.20

leslie 4 copies of leslie3d 7.49 3.71

Ibm 4 copies of Ibm 15.15 4.99
mix_1 bwaves-zeusmp-cactusADM-leslie3d 7.83 4.61
mix_2 bwaves-zeusmp-cactusADM-lbm 9.64 5.86
mix_3 bwaves-zeusmp-leslie3d-lbm 9.05 4.20
mix_4 bwaves-cactusADM-leslie3d-Ibm 8.77 5.07
mix_5 zeusmp-cactusADM-leslie3d-lbm 11.28 5.37

The scenarios we evaluate are as follows:

e Baseline: This stands for the baseline systems. Data stored into PCM are non-volatile,

so no refresh is required.
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Refresh policy Volatile Non-volatile
Row MP (DRAM-style) MP-R1
Line MP-R2 MP-R3

e MP: These stand for morphable MLC PCM systems whose designed data retention is
equal to 1000 seconds. A staggered refresh is required in this scheme as PCM is now
volatile. In this case, DRAM-style refresh is used to ensure the data correctness.

e MP-R1, MP-R2, MP-R3: There are similar to MP except the refresh is issued by
different policies. Table 5.3 lists the different refresh policies. MP-R1 means the row

and non-volatile refresh. MP-R2 is the line and volatile refresh. MP-R3 uses the line

and non-volatile refresh.

e MP-ideal: This is similar to MP except the refresh is issued with zero penalty. We use

these hypothetical scenarios to present the refresh impact on performance and PCM

lifetime.

To compare the performance of the above scenarios, we evaluate several metrics in-

cluding average write latency, memory utilization, read latency, IPC speedup.

Table 5.3: Refresh Policy

5.2 Experimental Results

5.2.1 Performance

Figure 5.1 compares the write latency of PCM, i.e., brining data from the row buffer to
the array of PCM. We normalize the results to the baseline. We observe that for ideal
case, MP-ideal can reduce the average write latency to 77% of the baseline. Due to the
refresh operation, the write requests may be blocked. For example, cactus has longer write
latency than baseline from refresh operation. Therefore, MP case reduce the average write

latency to 87% of the baseline.
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Figure 5.2: Read latency improvement

Reducing write latency helps improving the responsiveness of read. Figure 5.2 com-

pares the average read latency. The results are normalized to the baseline. Generally, we

see that the read latency reduction is less than the write latency reduction. On average, MP

can reduce read latency to 92% of the baseline. We can see that the difference between

MP and MP-ideal is about 12%. Such results mean that dram-style refresh is unsuitable.
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Figure 5.3: Performance (IPC) improvement of DRAM-style refresh

The reduced read latency translates into performance improvement. Figure 5.6 plots
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the IPC improvement over the baseline. On average, MP can achieve 10% IPC speedup.
For Ibm, the improvement is as high as 18%. We can see that refresh incurs 14% per-
formance gap between MP and MP-ideal. It means that for the traditional DRAM-style

refresh, there are large performance gap between the normal case and ideal case.

Read E Write M Refresh O Idel

| |
|
| |

| ! ! ! !
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Percentage Time of Memory Utilization

MP-ideal

baseline

Figure 5.4: Bank utilization

Figure 5.4 shows the results of bank utilization. Results is normalized to the baseline.
We can observe that the baseline system spends 10% of the time in read operations. For
the MP system, it can reduce the average write utilization from 23% to 16%. We also
can see that the refresh only occupies the memory utilization by less than 1%. Hence,
performance gap between MP and MP-ideal should comes from the long latency of each

refresh operation which blocks normal requests for long time.
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Figure 5.5: Refresh latency under different refresh policies

Below we show the results of different refresh policies. Figure 5.5 shows the averger
refresh latency for different refresh policies, and the results are normalized to MP. We
can observe that MP has longest latency because each refresh requires refreshing most

cells. For MP-R1, it uses the non-volatile write such that it can reduce the refresh cells
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number significantly. Therefore its latency can be reduced. For line style refresh, its

refresh latency is much shorter since the average refresh cell number at one time is less.
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Figure 5.6: IPC speedup of different refresh policies

Figure 5.6 shows the IPC speedup between different refresh policies. Results are
normalized to baseline. We can see that MP-R1 provides 17% speedup over baseline
mitigate the performance gap between it and ideal case to 7%. MP-R2 and MP-R3 provide
19% and 21.5% speedup over baseline respectively. The performance gap between MP-

R3 and ideal case can be reduced to 2.5%.

5.2.2 Lifetime

For each workload we assume perfect wear-leveling and use the following equation to

estimate the memory lifetime:

N, e X N,
Lifetime _ endurance cell % Tbase (51)
Nstress

Here N.,gurance Stands for the endurance of a PCM cell, N, is total number of PCM
cells, N ess 18 the total number of write stress events applied to the PCM, and T, is the
execution time of the baseline!.

Figure 5.7 shows the estimated memory lifetime. We compared the baseline with MP-
R2 and MP-R3 since they perform best performance speedup in pervious experiments. On

average, the baseline lifetime is about 12 years. Because bwave incurs less PCM stress,

IWe use T}, instead of the execution of individual design for fair comparison. Otherwise, a machine
with higher IPC could present worse lifetime than a lower-IPC one.
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Figure 5.7: Lifetime under different refresh policies

it results in the highest 23 years of lifetime. Since morphable PCM can reduce the write
iteration number and the write stress, the ideal case can provide about 3 years lifetime
improvement. MP-R2 incurs more write stress from the volatile refresh which requires
refreshing more cells. Hence, its lifetime is worse than the baseline. MP-R3 uses the
non-volatile refresh to reduce the number of refreshed cells, so it incurs less write stress
on PCM array. On average, MP-R3 can improve the lifetime by 2 years compared to the

baseline system.

5.3 Sensitivity Study

Speedup over the Baseline (times)
#o SRR MP1000 MP100
Retention
2nd state 3rd state 2nd state 3rd state
3 6.1 years 1.51 2.52 1.60 2.81
4 3.8 months 1.46 2.37 1.57 2.71
2 weeks 1.40 2.21 1.53 2.60

Table 5.4: Speedup sensitivity to the worst variation of the resistance drift speed, v

The drift velocity coefficient of PCM, v, follows a normal distribution. Therefore,
when estimating the data retention time of PCM memory, one should consider a v larger
than the mean. The criterion of how larger the v should be considered depends on the
strength of ECC — stronger ECC can tolerate higher bit error rate and allow one to only

consider a smaller v. Our baseline design considers a v which is 40 larger than the mean.
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We vary this criteria from 30 to 5o for sensitivity analysis. Table 5.4 shows the retention
of the baseline and the write latency speedup of MP1000 and MP100. We consider the
case that the number of updated cells is 64 (all to the intermediate states). First, we can
see that for the 30 case (i.e., strong ECC is adopted), the retention of the baseline is 2236
days (about 6.1 years). Under this case, MP1000 and MP100 achieve 1.51x and 1.60x
speedup which is slightly higher than the original 40 case. For the 50 case (i.e., very
weak ECC is adopted), the retention of the baseline becomes 2 weeks. Even so, we can

see that MP1000 and MP100 can achieve 1.40x and 1.53 % speedup.

5.4 Comparison of Techniques

MP is orthogonal to other write optimizing techniques for MLC PCM such as write can-
cellation [18], write pausing [18], and write truncation [19]. Write cancellation and write
pausing make write operations preemptable. Write truncation exploits the opportunity
to omit difficult-to-write cells. In contrast, MP focuses on improving the chance of suc-
cessfully programming a cell per iteration, the underlying cause which increase the write
iterations of MLC PCM. Therefore, combining MP with the above mentioned techniques

can further improve system performance.
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5 i
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8 6.4
<>t @ MP1000
S 50 T 4341 3.8
o : @ MP1000-WT
©
E B MP100
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0.0 .

write 512 cells write 64 cells
Figure 5.8: Comparing and combining MP with Write Truncation (WT)
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Figure 5.8 compares MP with write truncation as well as shows the effect of com-
bining the two. We conduct Monte Carlo simulation of 1 million writes and derive the
average write latency. We consider two cases, writing 512 and writing 64 cells (all to the
intermediate states). We consider that write truncation can omit writing 4 most difficult-
to-write cells as suggested in [19]. Space overhead of ECC parities are omitted for write
truncation assuming data compression is applicable. We can see that using write trunca-
tion alone can reduce write iterations from 8.5 to 5.9, and 6.4 to 3.8 for the two cases,
respectively. In comparison, utilizing MP alone can give more write improvement than
write truncation — only 4.1 and 3.3 iterations on average are required for 100-second reten-
tion. Equipping MP with write truncation leverages the benefits of the two — the average
write iterations can be reduced to as low as 2.9 and 2.0.

Besides being orthogonal, MP incurs low overhead compared to the others. Since
write cancellation and write pausing allow preempting writing a row, an additional row
buffer (per bank) is required to hold the data of the preempted write, not to mention the
buffers to keep those write parameters learned during the learning phase. As previous
study [3] implies, additional row buffers are valuable resources and can be otherwise
used for improving the performance of PCM main memory. On the other hand, write
truncation requires stronger ECC encoding/decoding engines than the baseline does. It
also needs compressing and decompressing engines if one wants to avoid space overhead

to store ECC parities.
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Chapter 6

Related Work

PCM memory is considered a promising technology in computer memory hierarchy due
to its non-volatility, high density, byte addressability, and excellent scalability. Zhou et
al. [2], Lee et al. [3], and Qureshi et al. [1] propose to architect PCM-based main memory.
Coburn et al. [12] and Volos et al. [13] propose methods to utilize the non-volatility of
PCM to manage persistent objects in main memory. Condit et al. [11], Sun et al. [26],
Akel et al. [27] and Caulfield et al. [28,29] research PCM-based storage and related OS

and architectural optimization.

The limited endurance of PCM is one of the most widely mentioned issues of PCM.
When serving as main memory, PCM could present worn-out cell in few minutes if lack
of proper protection [30]. Fortunately, low-overhead and effective solutions have already
been proposed. Differential write [3] schemes are proposed to eliminate unnecessary
writes to PCM. It happens in different granularity including bit-level one [2] and cache
line-level one [1]. Wear-leveling techniques such as address rotation [31] and segment
swapping [2] are proposed to spread writes across the entire memory space to avoid con-
centrated wear-out and prolong overall lifetime. To combat malicious attack, Seong et
al. [30] propose a randomized address mapping scheme, and Qureshi et al. [32] pro-
pose online detecting algorithm. To handle worn-out cells gracefully, Seong et al. [33],
Schechter et al. [34], Yoon et al. [35], and Qureshi [36] propose specialized error correct-

ing schemes.

In addition to the limited endurance, the relatively poor write performance of PCM
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also receives a lot of attention. Qureshi et al. [18] propose schemes named write can-
cellation and write pausing to allow read operations to abort or pause on-going write
operations. Jiang et al. [19] propose a scheme called write truncation which exploits ECC
capability to curtail a write operation before all the data are written correctly. Joshi et
al. [37] improve write speed and energy through selectively using two write schemes,
set-to-reset and reset-to-set, according to data value. Cho and Lee [38], Xu et al. [39],
and Wang et al. [40] propose data encoding schemes to improve the write bandwidth and
reduce the write energy of PCM. Hay et al. [20] propose a power budgeting approach to
improve the write bandwidth of PCM under constrained power.

Relaxing non-volatility is also a strategy to optimize write performance of non-volatile
memory. Smullen et al. [41], Sun et al. [42], and Jog et al. [43] analyze the benefit of
relaxing the non-volatility of STT-RAM cache on write latency and write energy and
proposed corresponding cache management policies. Liu et al. [44] and Pan et al. [45]
advocate relaxing the retention of NAND Flash to optimize write performance, ECC cost,
and lifetime of SSDs.

Compared to prior work, this paper is the first one on architecting volatile MLC PCM
main memory. We analyze the benefit on improving write speed via relaxing the retention
capability of MLC PCM. We analyze real applications to reveal the excess non-volatility
of PCM when it serves as main memory. We propose design with volatile MLC PCM and

conduct full-system simulations to quantitatively demonstrate the performance gain.
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Chapter 7

Conclusions

In this thesis, we propose a new design concept for PCM-based memory system. PCM
chips can support two write operation modes: non-volatile mode and fast-yet-volatile
mode. The fast-yet-volatile mode can be used in the PCM main memory system to
speedup the write operation and improve the system performance. And the non-volatile
mode can be used to provide the opportunity to store persist object or the file in PCM
system to avoid accessing disk. To analyze the benefit of the fast-yet-volatile write mode,
we model the MLC PCM and quantify the relation between write latency and data reten-
tion. we show the fast-yet-volatile write can speedup the write latency by 1.46X if the
data retention is 1000 seconds.

For the PCM reliability, the volatile data should be refreshed to ensure the data are
valid over time. Due to the programming current limitation, the refresh operation which
programmed a 8KB row size would block a memory bank for long time. Hence, we
proposed a fine-grained and non-volatile way to issue refresh commands such that we
can mitigate the refresh overhead. By the full-system simulation, we show that refresh
PCM with 1000-second interval incurs insignificant degradation on energy, performance,
and lifetime. Results show that system with 1000-second retention capability can achieve

21.5% IPC improvement.
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