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Abstract

As users tend to judge the performance of a smartphone by interactive

responsiveness, how various factors affect the perceived responsiveness re-

mains unclear. In this thesis, we quantified the screen-switching responsive-

ness on Android smartphones by activity switch time for the first time. We

compared activity switch time on different generations of hardware, differ-

ent major versions of Android, for different implementation of similar func-

tionalities and different previous state of the target activity when resumed.

Our experiment result shows that while the response time to screen-switching

actions is acceptable in average, the perceived performance is rather incon-

sistent. In the end, we suggest to consider activity usage pattern in memory

management.
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中文摘要

雖然使用者傾向於用操作時感受到的即時回應性來評斷一隻智慧型

手機的效能，各種軟硬體因素是如何影響使用者感受到的即時回應性

卻未見明朗。在這篇論文中，我們量測智慧型手機在真實使用狀況下

切換畫面所花的時間來作即時回應性的分析。我們比較切換畫面所花

時間，在不同世代的硬體及不同版本的安卓系統上的差異；同時也比

較不同的應用程式對於類似功能的實做，以及目標畫面所屬程式的原

始狀態，造成切換畫面所花時間的不同。我們的實驗結果顯示，儘管

在當代的智慧型手機上，切換畫面的時間平均來說可以接受，但使用

者卻可以感受到效能上的不穩定。最後，我們認為在記憶體管理的機

制當中，若能參酌使用者對於畫面的使用習慣，可以更進一步改善使

用者在切換畫面時感受到的即時回應性。
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Chapter 1

Introduction

On interactive computer systems, user satisfaction on computing performance is dom-

inated by responsiveness. Previous studies showed users tend to evaluate the computing

performance by comparing the length of response time to specific actions to their expec-

tations [22]. Moreover, the expectation on response time is adaptively shaped by previous

experience in performing the same action [22], depending on individual [11], user inter-

face and task semantics [1]. For example, users are not be annoyed if it takes five seconds

for a PC to wake from sleep, while they expect Microsoft Word to be launched around four

seconds [1]. The variation of the response time also affects the perceived performance.

Occasionally long response timemake users think of whether the system is not functioning

while surprisingly short response time may be considered a sign of wrong input [22]. In

general, consistent, shorter response time leads to higher user satisfaction on the perceived

computation performance despite potentially higher error rate in performing tasks [22].

As the above conclusion are drawn regarding desktop usage, on mobile devices similar

correlation persists and the expectation on responsiveness is more stringent. It is common

when a user wants to know if a smartphone provides good "performance", the user scrolls

up and down through a web page, or taps to open multiple applications and switch among

them, to see if the device can respond to these actions in a timely manner consistently

as expected. In other words, the length and variation of response time to user actions

is similarly indicative of the perceived performance of a smartphone. Additionally, the

1



expectation on the length of response time is arguably shorter than in desktop settings

because the length of individual interactive sessions are short on smartphones [13][10]. A

recent study has already shown that the relatively long application launch time of a couple

seconds can irritate users because users demand agility in mobile usage [?].

However, how the responsiveness of a smartphone is affected by hardware capability

and software stack remains unclear. While various benchmarks are developed to help

quantify the performance of smartphones performing specific type of computation such

as graphic rendering and floating point calculation, it is not trivial how these benchmark

scores translate into different quality of application responsiveness. For example, many

users have reported that their smartphones are not running smoothly as expected while

the benchmark scores are high compared to other devices with lower benchmark scores

[25]. This particular scenario is probably raised by the throughput-oriented and task-based

nature of these benchmarks. First, throughput benchmarks failed to capture the variation of

response time to individual user action, while users feel bad about highly variant response

times [12]. Second, throughput benchmarks typically drive the system by feeding user

input as rapidly as the system can accept it, This behavior is equivalent to modelling an

infinitely fast user with no think time regardless of how users really use their devices, as

users typically wait for screen updates and think before taking their next action [12].

Furthermore, the influence of usage workload on responsiveness has not been explored.

In addition to what we have stated above, task-based benchmarks and microbenchmarks

also do not take into account the workload on a smartphone in real usage. We argue that

usage has a significant influence on the responsiveness for the following reasons. First,

different users have reasonably different set of applications and different usage pattern
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[13], which result in diverse workloads of arguably different weight. Second, contempo-

rary mobile operating systems such as iOS and Android enable multitasking which allows

tasks to be executed in the background as the user performs foreground tasks [16][4].

Thus, to be realistic, the responsiveness of a smartphone cannot be comprehensively anal-

ysed without considering of real usage workload. Nonetheless, since for most real appli-

cations we have no access to their source code, it is difficult to reason about whether it's

the application code or other factors that caused the observed responsiveness problem.

In this thesis we measure the responsiveness of Android smartphones by the response

time to "screen-switching" actions, the activity switch time. We measured and analysed

the activity switch time for a list of candidate activities during real usage, on top of a com-

bination of different generations of hardware and different major versions of Android. We

also compare the measured activity switch time for activities with similar functionalities

from different applications. Among other observations, we found that while the overhead

of activity creation depends mostly on application implementation, it generally dominates

activity switch time once required. This result suggests further improvement in respon-

siveness can be achieved by considering activity usage pattern while reclaiming memory.
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Chapter 2

Background

This chapter provides necessary background for understanding the responsiveness of

screen-switching events onAndroid. We start by giving an overview of theAndroid frame-

work in Section 2.1, then describe the components an Android application is composed of

in Section 2.2. The multitasking of Android is described in Section 2.3.

2.1 Android Framework

The software architecture of Android is illustrated by Figure 2.1. Android framework

lies upon a trimmed Linux kernel customized to support only necessary functionalities

for Android devices. On top of the kernel lies the hardware abstraction layer composed

of hardware-dependent libraries. The core of Android runtime is the Dalvik Virtual Ma-

chine(DVM), which is an independent implementation of the Java language interface, as

some of the code comes from Apache Harmony project [8]. Most of the framework com-

ponents and services are written in Java, compiled into Dalvik bytecode and run in DVMs.

For isolation, by default one application package runs in one instance of DVM in one pro-

cess. Besides, each application package is assigned its own unique UID. As a result, one

application cannot directly communicate with other applications without the help of the

system.
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Figure 2.1: System Architecture

2.2 Application Components

Android applications (apps) are generally programmed in Java language , optionally

with some native components, using the API provided by underlying framework. On

Android, apps are implemented modularly by extending the base classes described below

[3].

Activity An activity is an component which controls a single screen to provide spe-

cific functionality [2]. An app usually consists of multiple activities that are loosely bound

to each other. Typically there is an main activity to be launched when the application is

first launched. Each activity can start other activities in order to perform other actions.

For example, an SMS app might have one activity to show the conversation groups and

another activity to compose an message. The user interface of an activity is typically de-

fined using a hierarchy of views [6], of which the visibility are managed by the window

manager service.

5



Service A service is a long-running component which runs in the background to per-

form work for remote components. Services are typically used to play music or fetch

data from network in the background, without blocking user interaction with a foreground

activity. A service does not have its own user interface but it can be started in other com-

ponents such as activities and broadcast receivers. It is noteworthy that while iOS permits

only predefined categories of background tasks such as music playback, Android allows

arbitrary task to be performed in background services.

Content Provider Acontent providermanages a shared set of application data, which

may be stored in the file system, an SQLite database, or any other persistent storage which

your application has access to.

Broadcast Receiver A broadcast receiver responds to system-wide broadcast an-

nouncements originated by system or other applications. While broadcast receivers do

not have their own user interface neither, they may create status bar notifications to alert

the user when some event occurs.

2.3 Multitasking the Android Way

In this section, the multitasking mechanism of Android is described to illustrate how

user tasks, and the switch between them, are handled on Android. How we define and

measure the screen-switching time accordingly will be covered in detail in Section 3.1.

On Android, a user task is modelled by a sequence of actions, each realized by one

activity component. Following this abstraction, users proceed from an activity to another

to perform their tasks. As illustrated in figure 2.2, launched activities are organized into a

"back stack", by which it means that when user navigates back by pressing the back key,
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Figure 2.2: Task Management

Table 2.1: Activity Lifecycle States
State Receive User Input Visibility
Resumed Yes (focused) Completely visible
Paused No Partially visible
Stopped No Completely hidden

the previous activity will be brought back onto foreground, popping the current activity

out of the stack. The back stack is maintained by the activity manager service, which is a

persistent system service responsible for managing tasks and processes.

As activities are organized into tasks, the lifecycle of a single activity is defined upon

its relation with other activities, with regard to the task it associates with. While only one

activity can acquire user focus in the foreground at the same time, other launched activi-

ties are retained on the back stack, hidden from user. Accord to user focus and visibility,

an activity can exist in three states as listed in Table 2.1. a more concrete definition of

each state is as followed: A resumed activity is completely visible in the foreground and

has user focus. This state is commonly referred to as "running". In this state the activ-

ity is responsible for responding to user actions. A paused activity is also visible in the

foreground but without user focus. In this state the activity is considered alive and all the
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states associated with the activity are still maintained in memory. A stopped activity is

completely obscured by other activities. A stopped activity is also considered alive as the

activity object and its associated assets are still retained in memory.

When the user navigates to another activity, an activity switch is triggered, changing

the visibility of the affected activities. As a consequence, the affected activities transition

into and out of respective states and invoke corresponding callback methods as illustrated

in figure 2.3. Applications can override these callback methods to get notified and do ap-

propriate work when the state of the activity changes. If an activity is destroyed (removed

from memory), when the activity is again launched, it must be created all over.

As activities transition through respective visibility states, the window manager service

is notified to redraw the phone window to reflect the visibility change of affected activi-

ties. Since the target activity is supposed to resumed with its GUI brought to the front to

received user focus, the windowmanager service calculates the expected visibility change

of the GUI elements associated with the respective activities. In addition, Android by de-

sign enables applications to adaptively use different GUI assets when run on devices with

different resolution in order to support various Android phones with different screen size

and display resolution.

A unique aspect of the Android task model is that a task can span across multiple apps.

For example, an app that needs to capture a photo can activate the Camera app, which

will return the photo to the referring app. Nevertheless, since an activity cannot directly

start another activity in other application packages. To enable this, an intent describing the

intended action will be sent to the system whenever a user tries to perform another action.

The package manager, which is responsible for keeping track of all installed application

8



Figure 2.3: Activity Lifecycle
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packages, will resolve the intent and find the most suitable activity to launch for the spec-

ified action. As applications can also explicitly specify the target component and package

name in the intent, an intent resolution is not always needed. In the end, a new process is

created to instantiate the target activity if the process of corresponding application pack-

age is not currently running. In this way, Android handles the creation of processes and

the instantiation of application components transparently.

In order to have shorter launch time, Android tries to keep an process in memory for

as long as possible to minimize the need for process creation. The system kills old pro-

cesses according to the relative priority of the process to reclaim memory for new or more

important processes. The primary priority classes are described below:

Foreground The process holding the resumed activity is in this class. A running

service which is temporarily set to foreground priority is also considered in this class.

Foreground processes are have the highest memory usage priority because they are rele-

vant to what the user is currently doing.

Perceptible A process in this class holds paused activity or perceptible background

services such as music playback. Perceptible processes are also seldom killed because

user may perceive the difference if they are killed.

Service Since Android implements priority inheritance, a service bound to higher

priority components are elevated to the same priority of the binding component. The rest

of the started services are in this class.

Hidden Processes holding stopped activities are in this class. Hidden processes can

be killed without being noticed immediately by users. However, if the activity is needed

10



again, process and activity creation will be required.

Empty Empty processes are not holding any application components and retained

only for caching purpose, reducing the need for process creation.

Android starts killing processes of different priority categories when the amount of avail-

able memory becomes less than respective predefined value. Within each category the

least recent used process is killed first. In this way the system can automatically select

processes that least possibly affect user experience for reclaim.
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Chapter 3

Methodology

3.1 Definition

Activity Switch Time (AST) In this thesis we leverage activity switch time to approx-

imate the perceived responsiveness of a smartphone switching between screens of GUI.

AST starts when the user expresses the intention of proceeding to another activity by

touching screen or pressing keys, ends when the target activity is ready for the user to

interact with.

Reason The reason of choosing AST as our measurement for responsiveness is three-

fold. First, in Android user tasks are modelled as a sequence of actions, each realized

by one screen that is controlled by one activity component [5]. The event of switching

activities naturally fits the screen-switching behavior, which users are used to leverage

in judging the perceived performance of a smartphone. Second, given that a task may

span across multiple applications and in-app activity switching is common, we can catch

the interactive responsiveness of an Android smartphone more comprehensively in this

way, compared to using the time needed to launch or switch between applications. Lastly,

switching activity as a type of user action explicitly exposes the intention of user which

provide clear semantics that enable better correlation with expectations on response time.
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Limitation There are certain limitations with this definition. For one, most games are

build upon proprietary game engines and libraries that simply do not follow the task model

of Android. In this initial work we choose to base our analysis on typical and most general

applications which follow the task model of Android. However, for these applications we

also found that some of the them introduce an extra splash screen while loading the actual

activity screen. In this case our measurement based on activity switch time may under-

estimate the perceived responsiveness because splash screen may give user an impression

that the application already starts responding. On the other hand, some of the applications

finish the switching of activities early, showing stale content, and loading the latest content

asynchronously in the background. In this case our measurement may over-estimate the

perceived responsiveness because even the activity switch is considered done but the latest

content is actually not yet ready for the user to interact with.

3.2 Measuring Activity Switch Time

Following our definition in previous section, AST is measured by the elapsed time be-

tween user expressing the intent of switching to another activity, and the target activity

resumed in foreground with its screen ready for interaction. In this section we describe

the activity switch procedure on Android in more detail, and how we extract the execution

time breakdown. We divide the procedure into two parts, before and after system knowl-

edge of an activity switch should be performed, for individual discussion in the following

sections.
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3.2.1 Triggering Switch

Input Event Dispatching When the user make input actions by touching screen or keys.

the event is firstly captured by the device driver in the kernel. The input manager service

of Android framework then deliver the event to corresponding application event handler

according to focus state.

Input Event Handling The receiving application event handler calls to activity manager

service once it determines that a switch to another activity should be done. Typically, the

call includes an intent providing information about the intended action and a bundle of

arguments for the target activity.

In this part we instrument the system code to keep track of the generation time of last

detected input event. Once there is a call to start activity, the last input event is taken as

the triggering event. In this way we can approximate the time elapsed between when user

input is generated and when the system starts performing the resulted activity switch.

3.2.2 Performing Switch

Intent Resolution Once an activity switch request is sent to the activity manager service,

it determines the corresponding activity component that should be resumed by consulting

the package manager to resolve the intent. We measure the time spent in intent resolution

by tracking the time spent in respective call to the package manager.

Task Management After the target activity component is determined, the system ar-

ranges the back stack, handles process creation and the instantiation of application and

activity component if needed. In this part, we track every call to application and activity

14



lifecycle callbacks and record the time spent. We also record the time spent in process

creation to measure the overhead incurred.

Window Management When the task and process management is done, the window

manager service is notified to redraw the phone window to reflect the visibility change of

affected activities. Here we only record the event when the system finishes redrawing the

phone window, as the end of our AST measurement.

3.3 Analysis Strategy

In this section we define the metrics and factors by which we try to analyse how these

factors affect AST. In addition, we try to identify the most significant parts in the break-

down of AST.

3.3.1 Factors

In this thesis we try to analyse how different the AST of the same target activity will

be on different generations of hardware model and different major versions of Android.

We also compare the AST of activities providing similar functionalities but implemented

by different application. In addition, since an activity can be started from different initial

state and thus incur different amount of work as described in Section 2.3, we also compare

the time needed to resume the same activity from different previous states.

3.3.2 Metric

Since users prefer shorter, consistent response times, following previous works [22][12],

we consider the average length and coefficient of variation of AST to be relevant to user-

perceived performance. The average AST of a specific target activity represents the over-

15



Table 3.1: Reference for user's reception on response time

Duration Range (ms) Description
below 200 Instantaneous
500 to 1000 Immesiate
2000 to 5000 Continuous
above 5000 Captive

all impression on response time switching to the target activity. Seow et al. [20] provided

a reference for how different length of response time may affect user's affluence in per-

forming tasks, as shown in Table 3.1. Although they propose this reference for desktop

use cases, we leverage it as a conservative guideline for mobile application responsiveness

since no such reference for mobile use cases has been proposed. Meanwhile, the coeffi-

cient of variation resembles the consistency of response time whenever the user switches

to the target activity. In this case, Seow [20] also suggests that users can perceive differ-

ences in duration range from 7% to 18% for durations up to 30 seconds.

3.3.3 Breakdown

In this thesis we try to break the AST of a specific activity into the four parts individually

described in Section 3.2: handling input event, intent resolution, task management, and

window management. Furthermore, we look into the execution time of individual activity

lifecycle callbacks. We especially compare the process and activity creation time with

regard to factors listed in Section 3.3.1.
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Chapter 4

Experiment

4.1 Setup

To gain insight across different generations of hardwaremodels andAndroid versions, in

this thesis our experiments are conducted on combination of two generations of hardware

along with two major versions of Android versions listed in Table 4.2. For hardware,

the Google Nexus S (GT-I9020) is equipped with a 1 GHz Samsung Exynos 3110 CPU

(ARM Cortex-A8) and 512 megabytes of RAM, while the Samsung Galaxy Nexus (GT-

I9250) is equipped with a 1.2 GHz dual-core TI OMAP 4460 CPU (ARMCortex-A9) and

1 gigabyte of RAM. The display is also different that the Google Nexus S has a 800×480

resolution while the Samsung Galaxy Nexus has a 1280×720 one.

For platform, Android 2.3.7 is the final version of the GingerBread branch while 4.0.4

is the lastest version of the IceCreamSandwich branch. We take the source code of both

versions fromAndroid Open Source Project [7] and build them using the default tool chain

coming with the respective source tree. We also extract essential proprietary binaries from

factory ROM images to make some of the hardware components work correctly such as

the camera on Samsung Galaxy Nexus. Our candidate applications are either built-in or

installed from Google Play. We assume these applications are optimized for respective

hardware models and platforms since Nexus devices are intended to demonstrate the major

release versions of Android. We list the class names and description of the candidate

17



Table 4.1: Candidate Activities
Tag Activity Class Name Functionality Description
Launcher com.android.launcher2.Launcher Default home launcher activity
Browser com.android.browser.BrowserActivity Default browser app: main activity
Camera com.android.camera.Camera Default camera app: main activity
AlarmClock com.android.deskclock.AlarmClock Default alarm clock app: main activity
Settings com.android.settings.Settings System settings: main activity
Phone com.android.contacts.activities.DialtactsActivity Default phone app: main activitity
Facebook com.facebook.katana.activity.FbFragmentChromeActivity Facebook: social news feed
Google+ com.google.android.apps.plus.phone.HomeActivity Google+: social news feed
LineList jp.naver.line.android.activity.MainActivity Line: conversation list
WhatsappList com.whatsapp.Conversations Whatsapp: conversation list
LineSingle jp.naver.line.android.activity.chathistory.ChatHistoryActivity Line: single conversation
WhatsappSingle com.whatsapp.Conversation Whatsapp: single conversation

Table 4.2: Device Configuration
Tag Hardware Model Android Version Number of Users
NS_2.3 Google Nexus S 2.3.7 1
NS_4.0 Google Nexus S 4.0.4 3
GN_4.0 Samsung Galaxy Nexus 4.0.4 4

activities in Table 4.1.

4.2 Data Collection

For data collection, we instrument theAndroid framework to record the necessary details

in AST described in Section 3.2. We then give the devices to 8 users. These users are

instructed to use the device as their main device for three to four weeks. Data are stored

in the internal storage of the device until manual retrieval. The number of users of each

device configuration is illustrated in Table 4.2.

4.3 Result

In this section we show our experiment results for how AST differs with respect to the

factors described in Section 3.3.1.
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Table 4.3: The average and CV of AST measured on three device configurations

Activity-Device NS_2.3 NS_4.0 GN_4.0
Average CV Average CV Average CV

Launcher 604.4 54.57% 483.1 78.44% 421.4 93.38%
Browser 888.9 64.22% 950.5 84.77% 790.1 95.79%
Camera 1542.9 18.68% 1242.2 34.54%

AlarmClock 475.6 91.37% 757.7 86.13%
Settings 496.3 39.36% 485.5 89.18% 599.1 52.26%
Phone 1305.9 69.63% 1129.0 68.29%

Facebook 2001.7 68.04% 3409.3 72.21% 1318.9 118.10%
Google+ 503.2 44.74% 1077.6 116.20% 917.6 65.60%
LineList 835.8 80.38% 1092.0 102.52% 1279.6 76.19%

WhatsappList 474.2 52.62% 675.4 117.53% 717.5 87.11%
LineSingle 597.8 45.21% 626.6 98.79% 607.9 92.45%

WhatsappSingle 824.0 62.12% 964.2 72.13% 688.2 90.62%

4.3.1 Device Configuration

As we can see in Table 4.3, for Galaxy Nexus and Nexus S both running Android 4.0,

8 of our candidate activities have shorter average AST on Galaxy Nexus, which implies

better overall speed in responding to activity switching actions from the users' point of

view. For Galaxy Nexus, the larger display resolution requires more work to organize the

GUI layout and redraw the phone window, while the far more powerful hardware sped up

this operation. Meanwhile, for Nexus S running Android 4.0 and 2.3, for all our candidate

activities the variation of AST on Android 4.0 is larger, which users may perceive as more

unstable performance.

Overall, in 22 out of 33 cases we measured average ASTs of below 1000 ms, in the

immediate range suggested by Seow [20]. In 8 of the cases the average ASTs lies between

the immediate range and continuous range. Only in 2 of the cases the average ASTs reach

the continuous range. However, as wee can see in table 4.3, for all the cases we measured

a coefficient of variation of more than 20%, by far surpassed the perception threshold

[20][11]. This result suggests that even though the response time of screen-switching
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actions on contemporary smartphones may seem to be acceptable from a lenient aspect,

user can still feel the inconsistency of the perceived performance.

4.3.2 Application Implementation

When we try to compare similar functionalities realized by different apps we find the

following results in Table 4.3. For single conversation screen, Line generally outperforms

Whatsapp on all three device configurations. However, for listing conversations, What-

sapp in turn outperforms Line because the latter incorporates other functionalities in the

activity showing list of conversations which burdens the resuming procedure. For show-

ing social news feed, Google+ responds faster than Facebook. A possible reason is that

Facebook leverages a embedded WebView browser which complicates the resuming pro-

cedure, while Google+ directly leverages platform APIs to realize its functionalities.

4.3.3 Program State

Since resuming an activity from different previous state requires different amount of

work as explained in Section 2.3 and Section 3.2, here we try to explore more about

whether it really makes perceivable difference and what are the most significant parts

of work in terms of execution time. In Figure 4.1, 4.2, 4.2, 4.4, and 4.5 we classify our

collected activity switching events into three classes: The class annotated by "proc" in the

y-axis labels requires process creation (and thus activity creation). The second class anno-

tated by "act" requires only activity creation. And and class annotated by 'none' requires

neither process nor activity creation. Furthermore, we break AST into parts as described

in Section 3.2: event handling, intent resolution, process creation, application/activity

lifecycle callbacks, and phone window update.
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Figure 4.1: Launcher: Program State vs. Device Configuration

Figure 4.2: Settings: Program State vs. Device Configuration

As we can see in Figure 4.1, 4.2, 4.2, 4.4, and 4.5, the measured AST becomes signifi-

cantly longer once process or activity creation is required for resuming the target activity.

This observation agree with our knowledge in system mechanism that process and activ-

ity creation require respective per-package and per-activity instantiation and initialization.

Also in these figures we can see that activity creation time dominates a significant part of

AST once required, by far longer compared to process creation time. We can also see that

the execution time of application/activity-on-create callback depends more on functional-

ity and implementation of the target activity.

4.4 Discussion

In Android applications, activities typically load textures and image assets to set up con-

tent views in the onCreate method, which is called when the activity is created. Actually
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Figure 4.3: Browser: Program State vs. Device Configuration

Figure 4.4: Facebook: Program State vs. Device Configuration

Figure 4.5: Conversation List: Program State vs. Device Configuration

22



in our observation, activity creation time dominates AST if exist. As a result, we suggest

that reducing the need to recreate frequently-used activities may further shorten the aver-

age AST on a device. Furthermore, the benefit may be more significant on those devices

with higher display resolution as the time needed to create activities and redraw phone

window depends on the complexity of GUI layout and the size of image assets.

We also found that those applications without running background services are more

likely to require process creation when switching to their activities. This observation fol-

lows that Android gives processes running services higher priority in memory residence

than those only hold hidden activities. This policy makes sense assuming that services are

running to do something relevant to user experience at the time, while hidden activities can

be killed without being noticed. However, Android services can do literally anything for

arbitrarily long unless getting stopped explicitly. This design effectively suggests applica-

tion developers to implement unnecessary services to avoid the accommodating process

being killed, occupying more memory and eventually result in more activity recreation

while switching between activities. To cope with this problem we suggest to modify the

existing mechanism to adaptively strike a balance in memory usage between background

services and hidden activities with regard to the usage pattern of the user.

Lastly, we found that the event handling time spans across a kind of large range in our

measurement. This result actually follows our measurement methodology that we include

both the time spent in dispatching by the system and the handling by the previous activity.

Since different activity can be launched from by a different set of previous activities, the

time needed for previous activity to decide to switch to another activity is not all the same.

We will try to further distinguish the time spent in future work.
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Chapter 5

Related Work

responsiveness and user-perceived performance

The responsiveness of interactive computer systems has been established as an impor-

tant indicator of user-perceived performance for long. In 1968, Miller first discussed the

expected response time regarding a list of 17 situations, in the sense of conversational

transactions between humans [18]. Miller stated that a computer system should take no

more then 100 to 200 milliseconds to respond to a key-press or other similar action by

the user. However, these requirements are established through his own beliefs and back-

ground on perceptual psychology.

Shneiderman (1984) first proposed defined an interactive model in which the response

time of the computer system is defined as "the number of seconds that it takes from the

moment a user initiates an activity (usually by pressing an ENTER or RETURN key)

until the computer begins to present results on the screen or printer" [22]. In addition,

Shneiderman stated that users evaluate the perceived performance of the computer system

based on users' expectations on the response time of various actions. Schneiderman further

discussed how users' expectation on response time depends on various factors such as task

semantic, interface type, as well as the previous experience and adaptation of the users.
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In 1996, Endo et al. indicated that the user-perceived performance of a interactive com-

puter system is closely related to the response time [12]. Furthmore, he suggested that the

user-perceived performance of an interactive system cannot be efficiently and correctly

measured and analysed by throught-oriented benchmarks, and should be evaluated by the

latency of processing individual user input events. In this sense, he proposed a way to cap-

ture the latency of procedding individual user input events by calculating the time between

two subsequent CPU idle state.

Sebsequently, Seow provided a practical discussion of performance guidelines for soft-

ware developers. In his work he proposed the 4 duration ranges within a typical span of

immediate attention, and suggested that users can perceive the difference in performance

if the difference in response time ranges from 7% to 18% for durations up to 30 seconds

[20]. Based on Seow's recommendations, Anderson studied the relationship between the

level of user satisfaction and different levels of computing performance in terms of the

completion time of specific user task elements [1]. Anderson's result may serve as a veri-

fication that Shneiderman's statements mentioned above are true.

The relationship between responsiveness and user-perceived performance seemed well-

studied in desktop environment. However, no previous work have discussed how user's

expectations on responsiveness will change in a mobile environment. Since mobile in-

tersections are short and users generally expect agility in mobile usage contexts, we be-

lieve that users expect even shorter response time while performing the same task such

as launching applications. In the present study we leverage this belief as our assump-

tion and explored how the responsiveness is affected by hardware, software, and usage

characteristics on smartphone.
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contemporary responsiveness problems and solutions

In desktop environment, solutions have been proposed to identify responsiveness prob-

lems. Basu et al. finds the processes that most probably caused a sudden slow down on a

Windows PC by modelling the "normal state" of every process [9]. They use performance

counter values as features such as I/O bytes read per second, percentage of CPU used, page

faults, and so on. Meanwhile, Wang et al. pointed out a pattern that most responsiveness

bugs, other than correctness bugs such as deadlocks, are triggered by invocation of block-

ing calls from the system UI thread, which should never be blocked [23]. In this sense,

they proposed a static analysis framework that can find and help cure potential respon-

siveness problems in application code. While these approaches are established in desktop

setting, they can also be applied in mobile setting to detect the same problem.

On mobile devices, the responsiveness problem has also been explored from various

aspects. Among all the factors, the performance of wireless network has always been

regarded as the main source of delay in network applications. Huang et al. anatomized

the performance difference of web browsing on 5 different devices, with regard to dif-

ferent 3G network providers [15]. They measured the page downloading time to ap-

proximate the user-perceived response time in loading a web page, and concluded that

network performance dominates the user-perceived performance of network applications

such as browsers. Wang et al. further anatomized the performance of WebKit browser

by measuring the detailed execution time breakdown in loading web pages [24]. Through

dependency timeline characterization and what-if analysis, they concluded that resource

loading is indeed the bottleneck step in loading web pages from wireless networks, which

implicitly confirmed the previous statement made by [15].
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Recently, more solutions have been proposed to help improve the interactive respon-

siveness on the relatively resource-constraint smartphones. Raghaven et al. tried to solve

the problem by revision of hardware architecture [19]. Based on the assumption that most

mobile applications do not demand sustained performance, they allow their chips to tem-

porarily exceed the sustainable thermal power budget to do sub-second burst of intense

parallel computation. Kim et al. studied the influence of different storage hardware on

application performance [17]. They pointed out that the performance of underlying flash

storage can indeed be a serious bottleneck for application performance against general

intuition, due to the prevalent use of synchronized random writes through SQLite. Inter-

estingly, they also identify that the application launch times do not significantly change

even when all data is being read frommemory, and suggests that storage is likely not a sig-

nificant factor in application launch performance. At the same time, Yan et al. stated that

the application launch time is too long for users to enjoy agility in mobile usage context

[?]. They proposed a novel method to predictively prelaunch applications based on the

history of application launch sequence with regard to time and location context. While

they effectively shortened the average launch time of applications, they also admit that

predictive prelaunching can result in variable perceived launch time which may hinder

usability.

Above all, to our knowledge, we are the first to use activity switch time as a metric for

interactive responsivenss on Android smartphones. We are also the first to measure and

analyse data from real usage instead of controlled in-lab experiments. In this way we can

effectively take the workload characteristic into consideration in our analysis.
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smartphone usage trace collection and analysis

Since smartphones have become more and more prevalent, how users are using these

devices in their own context, has become the research interest of vendors and developer

communities.

In 2005 when the concept of smartphone had not emerged, Demumieux et al. designed

and implemented a tool to collect usage data on mobile devices powered by Symbian

and Windows CE. Their tool can be used to gather the relative frequency and time spent

using each functionality. Besides, they also gathered the navigation behaviour, by their

definition, the sequence of UI components the user interacted with. Subsequently in 2007,

Froehlich et al. proposed a framework for capturing both objective and subjective in situ

data on mobile devices [14]. Their tool sampled user experience by triggering surveys by

sensor values.

In 2010, Falaki et al. conducted a comprehensive study of smartphone usage on Android

and Windows phones, and demonstrated a way to accurately predict future energy drain

based on the battery drain in preceeding time windows [13]. They found that despite

quantitative differences, qualitative similarities exist among users. First, the relative usage

frequency of applications for each user follows an exponential distribution. Second, the

time between usage sessions can be captured using the Weibull distribution.

In the mean time, Shepard et al. presented a methodology to collect smartphone usage

with a reprogrammable in-device logger designed for long-term user studies [21]. They

were the first that deployed such a framework on iOS through jailbreaking. They also

discussed the performance impact introduced by their framework in terms of power con-
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sumption. Later in 2011, Bohmer et al. presented a large-scale deployment based resarch

study onWindows phones, which aims to derive more insight on how users are using their

devices, and apps, with regard to location and time context [10].

While all previous studies agreed that smartphone usage behaviour differ among users,

qualitative similarities were also identified such as the relative popularity of applications

follows exponential distribution, and the usage behaviour sticks to diurnal pattern. How-

ever, none of the previous studies described above addressed the implication of usage

pattern characteristics on the perceived performance of smartphones. In the present re-

search we incorporate this aspect to make our analysis more realistic and more indicative

of the performance perceived by individual users.
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Chapter 6

Conclusion

In this thesis, we quantified the screen-switching responsiveness of applications on An-

droid smartphones by measuring activity switch time for the first time. We compared how

activity switch time differs with regard to different generations of hardware, different ma-

jor versions of Android, different implementation of similar functionalities, and different

previous state of the target activity when resumed.

In general, more powerful hardware provides shorter AST. However, a screen with

higher resolution may introduce extra work in creating activity and redrawing phone win-

dow. Meanwhile, AST of the same activity appears to have higher variation on Android

4.0 than on Android 2.3. As our measured AST appears acceptable by users in terms of

average length, the variation is high enough to be noticed by users, affecting the perceived

performance thereafter.

As we found that activity creation time dominates the whole AST once required, we sug-

gest to consider activity usage pattern in memorymanagement. We leave the improvement

of out measurement methodology, further modification of the system, and the respective

evaluation as future work.
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