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中中中文文文摘摘摘要要要

近年來智慧型手機普遍流行於大眾,手機的處理效能和電池壽命是開發

者目前遇到的巨大瓶頸。如果能將這些工作傳送到雲端伺服器進行處理,我

們將能改善目前所遇到的困境。對一個行動應用程式來說,為了克服自身裝

置運算的限制,就需要更多的雲端資源。流水型編譯模式的應用程式打破了

這些限制,並利用程式的可攜性在不同的行動雲端運算環境下得到分佈式的

效能。因此我們提出一個架構,稱作行動雲端效能監控排程機制系統,此系

統可流水型編譯模式下的應用程式中的元件能充分利用雲端的資源。

我們將介紹所提出的系統如何整合之前實驗室開發的虛擬效能分析工具

來找出熱點,以及整合支持向量機到我們的決策管理者來做動態卸載決定。

最後我們將討論我們架構的設計方式以及探討在不同的環境情況下我們得

到的實驗數據。

關關關鍵鍵鍵詞詞詞：：：動態決策、行動雲端運算、效能分析、智慧型手機,安卓,流水型

編譯模式
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Abstract

In light of the growing popularity of smartphones, the processor speed and

battery life on such device have been the major bottlenecks for advance mobile

computing. If the compute-intensive tasks can be preformed by the cloud server

efficiently, we could solve the bottlenecks. For a mobile application, to overcome

the resource limitation on its own device, we propose to adopt the Flow-Based Pro-

gramming (FBP) model to enable the development of portable mobile applications

that run across different mobile-cloud computing environments with scalable per-

formance. In this thesis, we integrate the efficiency of offloading task to the cloud

and propose a mechanism, called Offload Advisory System (OAS), to guide the

offload of components for good performance and proper resource utilization.

OAS leverages our previous work, Virtual Performance Analysis (VPA), help

locate the hotspots in Android applications, and uses support vector machine (SVM)

into for making dynamic offloading decisions based on application profile and cur-

rent input data. The thesis discusses the design of the proposed framework and

presents several usage scenarios in our experimental studies.

Index Terms- Dynamic offloading, Mobile Cloud Computing, Performance Anal-

ysis, Smartphone, Android, flow-based programming
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Chapter 1

Introduction

Mobile cloud computing have rapidly changed human lives, and the convenience of network ac-

cess have changed the way people utilize computers and networks. However, mobile cloud sys-

tems and applications are more complex than those in a traditional client-server environment.

The challenges include that selecting a resourceful server among available service providers in

cloud, coping with unstable mobile networks, prolonging the battery life time, synchronizing

data size for an application developer, and proving a secure system infrastructure. The chal-

lenge for execution on a distributed system is that partitioning an application executed locally

or remotely is an NP-complete problem [1].

In this thesis, we enhance our previous work to provide an automatic, dynamic applica-

tion offloading scheme. By extending the programming model on the Android phone with the

flow-based programming (FBP) [2] paradigm, our framework can partition an application into

processes and provision the requirements of each process. In FBP, an application is defined as

a network of black box processes that exchange data across predefined connections via mes-

sage passing, where the connections are specified externally to the processes. Thus, with this

component-oriented feature of FBP, our framework can figure out the control flow and the data

flow of an application before executing the application.

In dynamic situations where workloads and environments change over time, a comprehen-

sive performance monitoring and modeling scheme is needed to make the decision of offloading
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during the runtime. Thus, we add a profile-based policy manager and profiling service into our

framework to make smart decisions based on the available computing and network resources

during the runtime and the estimated performance gain from offloading certain processes. Our

framework would run an application in advance with our tracing and profiling tools [3] to locate

the hotspots in the application and estimate the performance gain with available servers in the

cloud.

To minimize the efforts of using our framework, developers would use our tools to find

the hotspots in their applications, and convert the hotspots into FBP components. The runtime

libraries in our framework will monitor the available resources and decide how to offload the

hotspot components. On most systems, our framework aims to reduce the execution time of the

application, but either the developer and the user may override the default goal by setting their

preferences to reduce the power consumption of the system, or to offload the application to a

server which is more cost-effective.

The rest of this thesis discusses the related issues and explains our approach. Section II

surveys the related research works. Section III presents the proposed architecture for profile-

based dynamic offloading of mobile applications. In Section IV, we describe the experimental

evaluation of the prototype. Finally, we conclude the paper in Section V.
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Chapter 2

Background and Related Work

2.1 Introduction to Android

Android is a popular operating system based upon the Linux for smart phone and tablets. An-

droid is a software bunch comprising not only operating system but also middleware and key

applications. It is an open source operating system, created by Google, and available to be

useful for other platforms and applications.

Android provides software development kit(SDK) for all developers. You can download,

build and work on Android in a number of different ways. Developers have full access to the

same framework APIs used by the core applications. We integrate our framework on Android

and then focus on improving the performance and finding the more better migration strategy

for Android applications.

2.2 Virtual Performance Analyzer

The virtual performance analyzer (VPA)[3] is a framework which provides software and hard-

ware developers with the needed facilities, besides timing models, to make a virtual machine

useful to performance evaluation with unprecedented profiling/tracing capabilities and effec-

tive tools to analyze important hardware and software interactions in the system. The key
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features that VPA framework provided are performance monitoring, power model, speed of

data collection,non-intrusive profiling, and tracing. We use VPA to predict the performance

gain and the power saving by using our framework. In order to minimize the efforts of using

our framework, the application developers can use VPA to find the hotspots in their applica-

tions, and convert the hotspots into FBP components. Furthermore, we improve our VPA tool

into an online version(as shown in Figure 2.1), developers can profile their application without

any complicated installation.

Figure 2.1 CloudVPA

2.3 MobileFBP

MobileFBP [4]’s goal is to enable the programmers to develop dataflow applications that can

be executed in mobile-cloud environments. In this section, we present a high-level architecture

of MobileFBP’s framework and the implementation of the MobileFBP runtime system. As

illustrated in Figure 2.2, MobileFBP provides a programming environment where developers

can easily describe the task components of an application which can be offloaded for remote

4



execution. A typical Android application written in Java with function calls to C libraries can

be easily converted to FBP as one large task component initially and further broken down into

multiple components by declaring the components and expressing the data flow between the

components with the assistance from performance profiling tools.

During the runtime, MobileFBP’s runtime system optimizes the application execution by

offloading selected components to available high-performance processors when the network

condition permits. To support performance optimization, profiling information is collected

during the development time or the execution time to refine the optimization for future invo-

cations of the task components. The task offloading process is dynamically handled by the

runtime system. In case the network slows down or disconnects, or certain remote processors

are not responsive, MobileFBP resumes the task components on the local processor. There is

a performance penalty associated with the aforementioned situations, and that is a typical risk

for any remote task execution.

The dataflow programming paradigm share a similar philosophy and may co-exist with

the data parallel or streams paradigms that are widely used today for parallel and distributed

processing, e.g. OpenCL , and MapReduce . Thus, it would be straightforward to convert

existing data parallel applications into FBP or to utilize programs written in another language

within a task component.

2.4 Support Vector Machine

Classify data is a common task in machine earning, support vector machines(SVM) are su-

pervised learning models with associated learning algorithms that analyze data and recognize

patterns, used for classification and regression analysis. Suppose some given data points each

belong to one of two classes, and the goal is to decide which class a new data point will be

in. In the case of support vector machines, a data point is viewed as a p-dimensional vector

(a list of p numbers), and we want to know whether we can separate such points with a (p

1)-dimensional hyperplane. This is called a linear classifier. There are many hyperplanes that

5
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Figure 2.2 An overview of the architecture of the MobileFBP framework

might classify the data. One reasonable choice as the best hyperplane is the one that represents

the largest separation, or margin, between the two classes. So we choose the hyperplane so

that the distance from it to the nearest data point on each side is maximized. If such a hyper-

plane exists, it is known as the maximum-margin hyperplane and the linear classifier it defines

is known as a maximum margin classifier; or equivalently, the perception of optimal stability.

LIBSVM [5] is a popular library for SVMs and one of the most widely used SVM software.

We integrate LIBSVM into our framework.

2.5 Related Work

The term mobile-cloud computing has been used recently to refer to (1) the collaboration be-

tween mobile devices and cloud services for accomplishing specific applications, and (2) a

cloud computing environment composed by mobile devices [6, 7]. Our approach aims to ad-
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dress the application development issues for both of the above aspects. So far, no simple

solutions have been proposed to enable quick deployment of cloud services and dynamic task

offloading. For a mobile application to benefit from a mobile-cloud environment by offloading

tasks to a nearby server or a server in the cloud, the application needs to have its workload par-

titioned into tasks and properly select the tasks that to be offloaded, since task offloading does

not guarantee any performance improvement. The communication overhead and the saving of

execution time depend on the network condition and the configuration of the server, which may

not be evaluated until the runtime.

Many previous works researched on the methods of re-designing or partitioning existing

applications for task offloading. Some approaches rely on application developers to change

the application code so that specific tasks in the application can be offloaded. For example,

in Spectra [8], application developers provide execution plans and fidelity metrics to guide

the runtime system on how to schedule the tasks in an application to achieve the quality of

service specified by the fidelity metrics. During the runtime, Spectra monitors the available

resources in the remote servers and eventually selects the execution plan which maximizes

a user-provided utility function. In addition to the execution plans and fidelity metrics, the

application developers need to manually identify offloadable tasks in the application and create

remote services with API provided by Spectra. Chroma [9] tries to reduce the programming

efforts of Spectra by allowing programmers to specify tactics with a declarative language.

To further reduce the programmer’s burden in partitioning existing applications for task

offloading, various automatic program partitioning schemes have been proposed to identify

offloadable tasks with source code analysis and perform source-code modifications [10, 11,

12, 13]. While the static analysis perform well for certain high-level application development

environment, the approach is language-dependent and has limited success in practice. Some

schemes utilize the runtime system to perform coarse-grain task partitioning for applications

which are written with high-level program constructs. For example, Coign [10] can automat-

ically partition DCOM applications into coarse-grain client and server components without

source-code modification. MAUI[13] proposed a scheme to offload the methods in a .NET

7



application with code instrumentation by the compiler and .NET’s built-in runtime support for

code serialization, reflection, and type safety.

Some recent approaches create new languages to aid the compiler and/or the runtime system

in partitioning applications for special-purpose systems [14, 15] For computers with heteroge-

neous processors, in Hydra [14], developers use a set of special components called Offcodes to

express offloadable tasks which can be scheduled to run on the specialized processors such as

GPUs and I/O processors. Developers are also responsible for creating communication chan-

nels to handle communications between Offcodes, which would be fine for special-purpose

systems, but not for our mobile-cloud scenarios. For sensor networks, Wishbone [15] requires

that the developer writes a program in WaveScript. The compiler uses a profile-based approach

to evaluate the program and create the dataflow graph for the stream operators, and the runtime

system performs graph optimizations, generate executable codes for the stream operators, and

schedule the stream operators to run on sensor nodes. Our approach with FBP is similar to

these approaches, but instead of creating new special-purpose languages, we choose to use a

well-established programming paradigm and intend to support general-purpose applications.

Our application framework adopts many of the aforementioned ideas for today’s mobile-

cloud applications, where various types of computing resoruces in mobile devices and servers

may need to collaborate on a single application in a highly dynamic network environment. The

use of FBP allows the developer to express offloadable tasks and data flow explicitly at a coarse-

grain or fine-grain level, depending on the target applications and systems. For offloading tasks

to a remote server over a wide-area network, coarse-grain tasks with low data transmission

overheads are better suited, and such candidates can be identified easily by our FBP runtime

system. For offloading tasks to a local processor, the developer may create fine-grain tasks

and let the runtime system make scheduling decisions. The FBP paradigm provides a good

foundation for application partitioning, which is key to the success of parallel and distributed

task processing in our opinion. Section III will further discuss the use of FBP to build mobile-

cloud applications.

Finally, for applications to execute remotely, one may replicate or virtualize the application

8



execution environment so that a mobile application can access to the same files and even the

peripheral devices. Cyber foraging [16] and data staging [17] use nearby untrusted public ma-

chines, i.e. surrogates, to improve the performance of interactive applications and distributed

file systems on mobile clients. Based on a simiar concept, Slingshot [39] further enables appli-

cations to deploy stateful services dynamically in wireless hotspots. extends this earlier work by

adding the capability of dynamically instantiating replicas of “stateful” applications. ThinkAir

[18] enables the migration of a smartphone application to the cloud for parallel execution of

compute-intensive tasks on multiple virtual machines. Virtual Phone as a Service (VPaaS) [19]

is a framework for the end user to create a virtualized execution environment in the cloud which

replicates the environment of user’s Android phone. In this paper, we use VPaaS to deploy the

remote execution environment in the case studies.

9



Chapter 3

Framework and Implementation

To make a dynamic migration for a given MobileFBP application, the MobileFBP runtime sys-

tem requires the information of application profile data, server status, user preference, network

condition, and available computing resources. To reduce the burden on the mobile devices,

we implement the collector and provider of the needed information as a remote service, called

Offload Advisory Service (OAS), which may be running on a nearby computer or the network

router to reduce the communication latency. In addition, the OAS may also make the task

offload decision for the client since the OAS server should outperform the mobile devices in

solving performance optimization problems, especially for applications with many task com-

ponents. Nevertheless, the MobileFBP runtime on the mobile client has its own task offload

decision mechanism which can be used when the client is capable of making quick decisions

on its own.

Then, we introduce our proposed framework in detail. In Section 3.1, demo how to use our

MobileFBP API. In Section 3.2 describes that we integrate Cloud VPA into our framework to

minimize the efforts for rewrite the Android application to FBP. Section 3.3 introduction the

functionalities of the key components of OAS system. Section 3.4, we illustrates the workflow

of OAS system.

10



3.1 FBP Programming model

Flow-Based Programming is a new/old approach to application development, based on a com-

pletely different way of thinking about building applications. Some of its roots can be traced all

the way back to the early days of computing, yet it offers solutions to many of the most press-

ing problems facing application development today. In "Flow-Based Programmng" (FBP),

applications are defined as networks of "black box" processes, which exchange data across pre-

defined one-way connections. These black box processes can be reconnected endlessly to form

different applications without having to be changed internally. It is thus naturally component-

oriented, and this component-oriented feature is suitably for migration. The main declarations

of FBP are network declaration and component declaration. Network declaration specifies the

connectivities between boxes, and component declaration specifies the input/output of each

box. In our work, we extand the programming model on Android smartphones with JavaFBP

[2], a Java implementation of Flow-Based Programming.

To declare a FBP network, JavaFBP provides the following methods:

• component : define an instance (an FBP "process") of a component.

• connect : define a connection between components.

• initialize : define a connection including an initial data.

• port : define a port on a process (component).

For example, assume we define two components, Hello and World, which is defined in

class a and class b respectively. In the initial, Component Hello receives the message from the

port SOURCE. Then component Hello sends a message to component World through the port

OUT to the port IN. Note that the work starts by using the method go(). The JavaFBP network

declaration can be defined as Figure 3.1 :

Fortunately, there is also a diagramming tool (DrawFBP [20]), which can be used to de-

fine the network graphically, and which can actually generate the network definitions. Next,
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public class xxx extends Network {

protected void define() {

component("Hello", a.class);

component("World", b.class);

connect(" Hello.OUT", " World.IN");

initialize("ok", component("Hello"), port(“SOURCE")); 

}

public static void main(String[] argv) throws Exception {

new xxx().go();

}

}

Figure 3.1 The network declaration of FBP.

we introduce that how to define a component, a JavaFBP component basically consists of 5

sections:

• import statements : Import the API package, the statement is :

– import com.jpmorrsn.fbp.engine.*;

• metadata : The FBP components are described by declaring the metadata. Input and

output port names will be coded on components using Java 5.0 "attribute" notation. This

metadata can be used to do analysis of networks without having to actually execute the

components involved. Here is an example of the attributes which describe one output

port "OUT", and one input port "IN":

– @OutPort(value = "OUT", description = "Generated stream", type = String.class)

– @InPort(value = "IN", description = "Count the packets", type = Integer.class)

• declares for ports : Define the ports, e.g. the input port named "inport", and the output

port named "outport", the ports should be declared as :

– OutputPort outport;

– InputPort inport;
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• openPorts() method : Override the openPorts() method to connect the ports and metadata

attributes.

– outport = openOutput("OUT");

– inport = openInput("IN");

• execute() method : Code the component by overriding the execute() method. Note that

the exchange data between the components are packaged into the Packet data structure.

Figure 3.2 is the integral declaration of the component, here we define the component

"Hello" as the example.

import com.jpmorrsn.fbp.engine.*;

@OutPort(value = "OUT", description = "Generated stream", type = String.class)

@InPort(value = "IN", description = "Count the packets", type = Integer.class)

public class Hello extends Component {

OutputPort outport;

InputPort count;

@Override

protected void openPorts() {

outport = openOutput("OUT");

inport = openInput(“IN");

}

@Override

protected void execute() {

Packet ctp = inport.receive();

…

Packet p = create(s);

outport.send(p);

}

}

Figure 3.2 The component declaration of FBP.

The application developer converts the java class into FBP components for offloading, and
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remains the parts which cannot be offload, like the device specific functions or the user inter-

face, e.g., GPS, GUI, etc.

1. As the instance SF starts, it creates three processes, one for each task component.

2. SF sends a special INIT message to trigger the execution of the ReadFile component,

which reads data from foo.txt.

3. The ReadFile component reads data and sends the data out via its output port,

4. The QSort receives data from its input port, sort the data, and sends the sorted data out

via its output port.

5. The WriteFile receives sorted data from its input port and write the data into a file.

The FBP application can be implemented with JavaFBP as Figure 3.3, where the component

method generates an instance (an FBP process) of a component and the connect method de-

fines a connection between two ports. The initialize method sends the data in the argument,

i.e. "data.txt" in this example, to an input port of a component to trigger the execution of the

component. The Network class define a JavaFBP program, which is called from the main

program with the method go().

3.2 Perform Analysis

To help the runtime system make informed decisions, the developer may run the application

with several con

gurations to generate application profiles. The application profiles are automatically col-

lected by the runtime system and will be used to guide the scheduling decisions later. Initially,

developer design the android application as usual. The MobileFBP runtime system requires the

application profile from the developer via the web-based performance profiler or the user via

the MobileFBP runtime. At first, in order to locate the hotspots with the minimal efforts, the
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Public class SortFile1 extends Network {!
  @Override protected void define() {!
    // Define the task components:!
    component(“ReadFile”, “ReadFromConsole.class”);!
    component(“QSort”, “QSort.class”);!
    component(“WriteFile”, “WriteToConsole.class”);!
    // Define the initial condition:!
    initialize(“foo.txt”, “ReadFile.INIT”);!
    // Define the connections:!
    connect(“ReadFile.OUT”, “QSort.IN”));!
    connect(“Sort.OUT”, “WriteFile.IN”));!
  }!
}!
!
Public class MainActivity extends Activity {!
 @Override protected void onCreate(!
        Bundle savedInstanceState){!
    super.onCreate(saveInstanceState);!
    setContentView(R.layout.activity_main);!
    // Create an instance to sort the file:!
    SortFile1 SF = new SortFile1();!
    // Start the sort:!
    SF.go();!
  }!
}!
!
Figure 3.3 The JavaFBP code for a file data sorting application

developer use Cloud VPA to profile their applications with specific HW/SW configuration. Af-

ter profiling, Cloud VPA return the analysis results and a suggestion to help developer rewrite

the the heavy part of android application with FBP.

For exmple, we use Cloud VPA profile the Median Filter application, and then we can get

emulated execution time, power consumption, function call graph, percentage relative to par-

ent, the Hotspots, as shown in Figure 3.4. Then, we use MobileFBP API to wrap the heavy part

as the unit for workload migration. It is an easy way to complete the job with a dozen lines of

code. It is shown in Figure 3.1.
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Figure 3.4 The profile data from Cloud VPA

After converting the hotspots into FBP components and declare the network data flow chart,

we profile the FBP version of the application to get the performance analysis. During the run

time, our proposed framework will issue the application and collect run time information on

the Cloud for each FBP component.
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3.3 Offload Advisory System

In this chapter, we describe the design and implementation about our framework in detail. The

Offloading Advisory System (OAS), as depicted in figure 3.5, consists following parts: Physical

Phone, Virtual Phone, Virtual server, Assistant Server, and Central Control server.

Figure 3.5 The overview of the Offloading Advisory System

• Physical Phone: User’s mobile phone, there is a User Agent take charge of coordinate

with policy manager for migration.

• Virtual Phone: it is user’s virtual environment on the cloud for backup private data, only

user can control their virtual phone.

• Virtual Server: the virtual phone’s host. There is a JVM to process non-private data.

• Assistant Server: It’s a general server for running JVM , it has powerful GPU or FPGA.

• Central Control Server:
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Figure 3.6 Reosurce Monitor: ganglia

3.3.1 Resource Monitor

The OAS maintains a list of available servers for each client. The resource monitor dynamically

updates the status of the servers on the list. We use open-source software, Ganglia[21] and

iperf [22], to report the needed information from the servers on the list. Ganglia is a scalable

distributed monitoring system used by many cloud service providers. The iperf utility is a

network testing tool which is popularly used to measure communication latency and network

bandwidth. The resource monitor also measure the latency and bandwidth from the OAS to the

user’s mobile device. However, since the network test consumes extra energy on the mobile

device, the network test should not be performed while the mobile device is in a power-saving

mode, and it is best be performed while the device was awake. We demonstrate our topology

network condition on website ,as shown in Figure 3.6, Figure 3.7.
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Figure 3.7 Reosurce Monitor: iperf

3.3.2 Policy Manager

The Policy Manager (PM), just like a black box, can generate a migration plan according the

server status, hardware configuration, user preference, and run-time input data for a specific

application. We can get a Estimation Model, which consist of execution time, power consump-

tion, and transferred data size between components. For instance, supposed that we have a

FBP application which can refactor into such topology graph , and then we can evaluate the

Estimation Model: execution time , power consumption, and transferred data size between

components. Which can be measured by MobileFBP framework, as shown in Figure 3.8.

Our policy manager is aim to find a optimal partition which can accelerate the applica-

tion. Now we have the Estimation Model, network condition measure in the run-time, so we
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Figure 3.8 The Estimation Model: transfer data matrix and the table of the execution time

calculate the execution time by Activity on Edge Network (AOE Network) algorithm for each

partition. Using these values, AOE calculates the longest path of planned activities to logical

end points or to the end of the project, and the earliest and latest that each activity can start

and finish without making the project longer. To get the best partition, we find the minimum

execution time heuristically from all partitions, and then we can record the partition method

corresponding to the Parameters to the profile database. Next when PM is given a set of Pa-

rameters, it checks the PD. If PD have a preciously record which matches the same as the

Parameters, it will send the migration plan to each server agent, as depicted in Figure 3.9.

In the development phase, we need developer define the parameters of their application to

help our framework train and collect the profile data. Developer have to describe the type, the
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Figure 3.9 The record in our profile database

range of the parameters, and define a range of a segment, as shown in figure 3.10. And then

our framework have a input generator to help train the profile database.

Figure 3.10 Define the input parameters

However, we encounter some difficulties: First, heuristic search is not a feasible solution

for dynamic offloading, because heuristic method is time-consuming and the topology may be

a huge graph. (Ex: if the component has 10 component and 10 severs, there are 1010 partitions.)

Another is that Parameters may be a infinite set. The value of the parameters is continuous, so

we can not always match the corresponding Parameters in our profile database.

Fortunately, the number of partition is a finite number. Supposed that there are many com-

puting resource on the cloud, then we could only allocate 3 powerful servers on the cloud, if
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Cloud service provider only offers 3 available servers for each user. If there exists a simple

application which can be refactor into 4 components, then it has only 81 possible partitions

with 3 available servers, as depicted in Figure 3.11.

Figure 3.11 The number of Partition is finite

PM is just like a function f that takes input Parameters and returns an output Partition. The

set of all combinations of Parameters is called the domain, while the set of Partition is called

the codomain. f is a function from ∞ to Z. The cartesian product of two sets Parameters and

Partition is the set of all ordered pairs, written (x,y), where x is an element of Parameters and

y is an element of Partition. The x and the y are called the components of the ordered pair. The

cartesian product of Parameters and Partition is denoted by Parameters × Partition. need a

efficient way to train our PM, if we find a new ordered pair (x,y).

SVMs are supervised learning models with associated learning algorithms that analyse data

and recognize patterns, used for classification and regression analysis. SVMs can efficiently

implicitly mapping their inputs into high-dimensional feature spaces. Even the input is out of

the domain, SVM would return the approximate output.

In the beginning, if developer only profile the application for a few times, Offload Advisory

System will train a SVM which contains only some ordered pair (x,y) for the specific appli-

caiton, shown in Figure . Given a input parameter which is the domain Parameters, SVM return
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Figure 3.12 Function f that takes input Parameters and returns an output Partition

the corresponding partition that is in the codomain Partition. If the input is out of the domain,

SVM will return a approximate point y in the codomain quickly by precomputed calculated.

Offload Advisory system will use Cloud VPA and AOE algorithm to find the best migration on

the backend server and then trains the new training set to the SVM, so SVM can recognize the

new input parameter to return right partition next time. With this mechanism, SVM has both

learning and evolution ability to adapt the dynamic environments. The Figure 3.13 illustrate

the flowchart of mechanism for making the migration plan

3.3.3 Central Control Server Agent

Central Control Server Agent (CCSA) is responsible for interacting with the User Agent. Mo-

bile user is continuous moving and on a private network, but the cloud server is in the global

address realm. It make difficult for two nodes to contact each other directly. Mobile user can

send data to cloud server with a global IP, but cloud server cannot send data to the user phone

behind a NAT. We reference [23] Hole punching technique, Return server agent works just like

Rendezvous server to solve this problem. So even mobile phone is unstable, cloud server still

can send data to mobile phone on private network. Besides, CCSA also charge of sending

migration plan to mobile phone.
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Figure 3.13 The flowchart of mechanism for making the migration plan

3.3.4 Relaying Component

Relaying Component (RC) works for a computing result collector on the cloud. Since every

component cannot connect user phone and seding the final result directly, Relaying Component

will gather all the final computing result and forward it to Central Control Server Agent.

3.4 The procedure of Offload Advisory System

The procedure of our framework in Figure 3.14 are described as the following:

1. Notify Policy Manager that the user want to migrate and bind the socket to Central Con-

trol server.

2. Create a CCSA and RC for the user and send CCSA port to the user.

3. Collect resource information and generate migration plan. Mobile user uses the port to

connect CCSA.
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4. Send migration plan to each Server Agent (including virtual phone). Each server agent

will create the component in the local network and block on Read Socket.

5. After step 4 each server agent (on the cloud) ACK ready flag to CCSA.

6. CCSA inform Mobile device that all components are ready.

7. Mobile device starts computation and offloading.

8. RC return the result to redirect server.

9. CCSA returns the result to mobile device.

10. After all work is done, all agents feedback the component run time information to train

the profile database.

Figure 3.14 The flowchart of architecture of Offload Advisory Sysyem
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Chapter 4

Experimental Results

In this chapter, we describe our experiments in some case studies, and the experiment demon-

strate how Offload Advisory interact with MobileFBP system. The experiment illustrate how to

set up the environment, a tutorial to use our tool, and rewrite the application with MobileFBP

API. At last, the experiment data demonstrate the benefit from our Offload Advisory System.

In Section 4.1 introduce the scenario, median filtering which is a proper instance to reveal

the performance with our proposed framework. And then illustrate how to profile the appli-

cation and rewrite with MobileFBP API. In Section 4.2 we evaluate the application ,and we

compare the application on different platform or on different environmental condition to demo

our SVM can make a better migration plan.

4.1 Case Study: Median Filter

The median filter is often used in signal processing, it is often desirable to be able to reduce

noise in an image. The median filter is a non-linear digital filtering technique. The median filter

considers each pixel in the image in turn and looks at its nearby neighbours to decide whether

or not it is representative of its surroundings. The main idea is to run through the signal entry

by entry, replacing the pixel value with the median of those values. The median is calculated

by first sorting all the pixel values from the surrounding neighbourhood into numerical order

26



and then replacing the pixel being considered with the middle pixel value.

Figure 4.1 The topology of the median filter program

Figure 4.2 The migrating version of Median Filter

Our median filter application is based on BoofCV [24] and we rewrite the application to

demonstrate the migration with FBP. BoofCV is a pure JAVA computer vision library which is

suitable for android application development. The median filter’s complexity is O(w ×h× r2),

w and h are the image’s width and height and r is median radius. The network schematic

diagram is shown in Figure 4.1 and the migrating version generated automatically by our agents

is shown in Figure 4.2. The environment setup is shown in TABLE 4.1
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4.1.1 Profiling the Median Filtering Program with Cloud VPA

Initially, Cloud VPA helps us find the heavy part of the android application, and the call graph

is shown in Figure 4.3. By consulting the data, we can dissect the application easily.

Figure 4.3 The call graph of the Median Filter program

Then, we rewrite the application with FBP API, such as figure 4.5

In addition to Android code, Cloud VPA can get execution time and power consumption of

each component in detail, as shown in Figure 4.4.

4.1.2 Evaluation

In our experiment, the mobile phone, a HTC Desire HD, contains a 1 GHz Qualcomm 8255

single-core processor with 768MB of memory, running Android version 2.3.5. The assistant

server contains a 3.4 GHz Intel quad-core Core i7-2600 processor with 12GB memory, running

Ubuntu 12.04.2 operating system. The Center Control Server shares the same configuration as

the assistant server. A 802.11g network router is used to connect the mobile phone wirelessly
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Figure 4.4 The call graph of the Median Filter with MobileFBP API

to the servers. The servers are connected to the router over wired 1Gbps Ethernet. The size of

the image is 640 by 480 for both the input and output of the application for the test case.

TABLE 4.1 The experimental environment of case study I

Physical Phone: HTC Desire HD
CPU 1 GHz Qualcomm 8255 single-core
Memory 768MB
OS Android 2.3.5
Wi-Fi 802.11g
Assistant Server 1
CPU 3.4GHz Intel quad-core Core i7-2600
Memory 12GB
OS Ubuntu 12.04

Figure4.6 compares the execution time of Media Filter under static task assignments for

various median radiuses. When the task is executed locally on the mobile phone, the execution

time increases with r, and the user has to wait for 2 minutes when the median radius is set to

10. On the other hand, when the task is migrated to the server, it can be completed within 14
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@InPort(value = "IN", !
  description = "BoofCV's MS<ImageFloat32>", !
  type = Object.class)!
@OutPort(value = "OUT", !
  description = "BoofCV's MS<ImageFloat32>", !
  type = Object.class)!
public class MedianFilter extends Component{!
  OutputPort opt;!
  InputPort ipt;!
  protected void execute() throws Exception{!
    Packet p = ipt.receive(); ! !!
    MS<ImageFloat32> image = !
      (MS<ImageFloat32>)p.getContent();!
    int height = image.getHeight(),!
       width = image.getWidth();!
    MS<ImageFloat32> output = !

! new MultiSpectral<ImageFloat32>(!
! ImageFloat32.class, width, height, !

       image.getNumBands());!
    for(int i=0;i<image.getNumBands();i++){!

! BlurImageOps.median(image.getBand(i),!
           output.getBand(i), 10);!
    }! !!
    p = create(output);!
    opt.send(p);!
  }!
}�

Figure 4.5 Wrapping the MediaFilter function call as a FBP task component
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seconds even when the median radius is set to 10. Given this application profile, the MobileFBP

runtime system will decides to offload Media Filter from this mobile phone to this assistant

server under a perfect network condition when the media radius is larger than 2. If the media

radius is smaller than 2, or the network condition is poor, MediaFilter is performed locally

on the mobile phone.

Figure 4.6 Execution time of MediaFilter with static task assignments

In fact, MobileFBP framework profiles the application execution in a greater details. As

shown in Figure 4.7, the network overheads are significantly higher than the execution time of

MediaFilter on the server. It takes the mobile phone roughly 6 seconds to transfer the image

to the assistant server over the 802.11g WiFi network. The computation time for MediaFilter

increases with the median radius, but is less than 2 seconds. The overhead for the Center

Control Server to relay the results for the assistant server is insignificant since the two servers

are connected with high-speed Ethernet. The overhead for the mobile phone to receive the data

back is somewhat lower than 6 seconds since the size of the filtered image is smaller.

Obviously, the size of the image affects the task offloading decision. Once the OAS obtains
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Figure 4.7 Analysis of network overheads for task offloading

the application profiles for different image sizes, it can make a decision on both image size and

the media radius. As we mentioned in Section III, instead of asking the application developers

to conduct the sort of performance analysis in this example to detail an execution plan, it is

better that the analysis is automated by the runtime system and the OAS on the Center Control

Server. The application developer or the user can generate a range of test cases for the OAS to

produce a more representative application profile.

Note that the task components which perform peripheral I/O operations, i.e. ReadImage

and OutputImage, need to be done locally on the mobile phone; otherwise, they will fail to

execute. When the MobileFBP runtime system fail to execute a task component, it records the

cause. If causes such as I/O failure are recorded for a task component, the MobileFBP runtime

system will not consider to execute the task component remotely.
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4.2 Case Study: 4-way parallel Median Filtering

We modify the program into a parallel 4-way median filtering to demonstrate our FBP frame-

work is conducive to fully utilize cloud system’s hardware. The application take the input

image into four equal portions then pass them to a filter component separately. The schematic

diagram is shown in Figure 4.8.

Figure 4.8 The topology of the 4-way parallel Median Filtering

Figure 4.9 The migrating version of Median Filter

Our agent will migrate all the four filtering component to cloud as Figure4.9 and as long

as the cloud server has enough cores, the migration can also benefit from parallelism. The

environment setup is shown in TABLE 4.2
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TABLE 4.2 The experimental environment of case study II

Physical Phone: HTC one X
CPU 1.5 GHz quad-core ARM Cortex-A9
Memory 1GB
OS Android 4.1.1
Wi-Fi 802.11g
Assistant Server 1
CPU 3.4GHz Intel quad-core Core i7-2600
Memory 12GB
OS Ubuntu 12.04
Assistant Server 2
CPU 2.40GHz Intel i3 330M processor
Memory 4GB
OS Ubuntu 12.04

4.2.1 Evaluation

In this section, we measure the smart decision of our policy manager based on different en-

viromental parameters. The input is a 640 × 480 image, the excuted platform is HTC one

X(4-cores) which contains a 1.5 GHz quad-core ARM Cortex-A9 processor with 1GB of mem-

ory, running Android version 4.1.1. The assistant server 1 contains a 3.4 GHz Intel quad-core

Core i7-2600 processor with 12GB memory, running Ubuntu 12.04.2 operating system. The

assistant server 2 contains a 2.40 GHz Intel i3 330M processor with 4GB memory, running

Ubuntu 12.04.2 operating system. The Center Control Server shares the same configuration as

the assistant server. A 802.11g network router is used to connect the mobile phone wirelessly

to the servers. The servers are connected to the router over wired 1Gbps Ethernet.

In order to compare the performance on different cores and discuss the factors(e.g, network,

median radius) which may affect the policy manager to migrate the workload to cloud dynam-

ically, we continue use our case study II program, parallel 4-way filtering, to demostrate the

flexibility of our frameork.

The first experiment, the input parameters is consist of Data size, Radius, Server1. Figure
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4.10 illustrates the segment of the input parameter. The Offload Advisory System will generate

the input parameter according the definition made by the developer, and the recod the run-time

information in the profile database. If the prediction time is equal the optimal time, it get 100

points. If the prediction time is equal the local execution, it get 0 points. If the prediction time

is bigger than local execution, it will get negative score.

Figure 4.10 The input parameters of case study II

Before we validate the accuracy of the trained-svm, we introduce our formula to calculate the

SVM accuracy.

Tlocal: The local execution time on physical phone

Tpredict : The execution time predicted with SVM

Toptimal: Optimal execution time

scores =
Tlocal −Tpredict

Tlocal −Toptimal

If Tpredict=Toptimal,scores = 100

If Tpredict=Tlocal,scores = 0

If Tpredict>Tlocal,scores < 0

Figure 4.11 illustrates the the evaluation of the SVM prediction. The parameter are follow-

ing: image (4MB 5MB), wifi (4Mb/s 5Mb/s ), radius (10 50), Server1 (Available or not). In
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Figure 4.11 The evaluation of the SVM prediction

the beginning, the SVM trained only 2 record, so it got only 30 points. If SVN trained more 48

training sets, it got lower scores. The SVM got lower accuracy, because the prediction time is

longer than local execution time. After that, we trained more training sets to SVM, the accuracy

was getting better. When the training sets is more than 300, it converges at a smooth line, it

show that we can utilize the SVM as our policy manager.

Figure 4.12 is the evaluation result, we are able to find that when increasing the radius of

filter, the excution time of different cores grows up exponentially and then converge at a ris-

ing slowly line. When the excution time of local site is longer than remote excution time, our

policy manger will maigrate the components to cloud. For 1-core, limited by single core, it

processes each filter component sequentially, all components are excuted in remote site when

the radius > 2. For 2-core, it offloaded all components to cloud when the radius is bigger than

3. For 4-core, all componets can be processed on physical phone parallelly, it can afford all

components when radius is smaller than 7. After increasing the radius, policy manager will

migrate all workloads to cloud.
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Figure 4.12 The execution time of different filter radius

Figure 4.13 depicts the execution time on each network condition when the filter radius is

fixed at 6 px . We slow down the bandwidth to simulate different network condition. It shows

that, for 1-core, is spends 97s on physical phone, even bandwidth is very low (2Mb), the policy

manager will migrate all components to cloud, because of its weak processing capability. For

2-core it migrates all components to cloud when the bandwidth (4Mb ∼ 10Mb). For 4-core, it

utilizes 4 cores to running the program within 18 seconds. It runs the application on local site,

because the 4 cores can process the 4 components parallelly. However, it also can be benefit

from offloading when bandwidth raise up to 8Mb.
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Figure 4.13 The execution time of different quality of network
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Chapter 5

Conclusion and Future work

5.1 Conclusion

In this thesis, we build the Offload Advisory System by improving our previeous work on

Virtual Performance Analyzer to minimize the efforts for profiling applications and locating

the hotspots and helps developers rewrite Android apps with FBP for remote execution. Our

resource monitor collects environmental information during runtime and enables the OAS to

make dynamic offloading decisions. A well-trained SVM is capable of giving user quick,

near optimal migration plan in our case studies by considering the server status, environmental

parameters, hardware configuration, user preference, and run-time input data.

5.2 Future Work

Performance profiling is very time-consuming. For the Cloud VPA to profile a application

which spends about 1 minute, it takes about 1 hour as the emulator needs to estimate execution

time with timing models, which can be speeded up if the profiling can be done. Based on AOE

network algorithm, our framework can estimate the execution time for the components which

are single-threaded. However, if a component is multi-threaded or there are multi-components

which run on a single core, then our current profiling mechanism may not report the execution
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time actually. To fix this issue, the instrumentation for FBP component needs to be enhanced.
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