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Abstract

In this dissertation, we motivate a mathematical concept, called information preser-

vation, in the context of probabilistic modeling. Our approach provides a common

ground for relating various optimization principles, such as maximum and minimum

entropy methods. In this framework, we make explicit an assumption that the model

induction is a directed process toward some reference hypothesis. To verify this the-

ory, we conducted extensive empirical studies to unsupervised word segmentation

and static index pruning. In unsupervised word segmentation, our approach has

significantly boosted the segmentation accuracy of an ordinary compression-based

method and achieved comparable performance to several state-of-the-art methods

in terms of efficiency and effectiveness. For static index pruning, the proposed

information-based measure has achieved state-of-the-art performance, and it has

done so more efficiently than the other methods. Our approach to model induction

has also led to new discovery, such as a new regularization method for cluster analy-

sis. We expect that this deepened understanding about the induction principles may

produce new methodologies towards probabilistic modeling, and eventually lead to

breakthrough in natural language processing.

Keywords: information theory; information preservation; induction principle; un-

supervised word segmentation; static index pruning; entropy optimization.
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摘摘摘要要要

在這篇論文中，我們從機率模型的範疇內推導一個稱作「資訊保存」的數學

概念。 我們的方法提供了連接數個最佳化原則，例如最大蹢及最小蹢方法

（maximum and minimum entropy methods）的基礎。在這個框架中，我們明確

地假設模型推衍是 一個目標針對某個參考假說的有向過程。為了檢驗這個理

論，我們對無監督式斷詞 （unsupervised word segmentation）以及靜態索引刪減

（static index pruning） 進行了詳盡的實證研究。在無監督式斷詞中，我們的方

法顯著地提昇了以壓縮為基礎的方法斷詞精確度，並且在效能與效率表現上達到

與目前最佳方法接近的程度。在靜態索引刪減上，我們提出的以資訊為基礎的量

度（information-based measure）以比 其他方法效率更好的方式達到目前最好的

結果。我們的模型推衍方法也取得了新發現，像是分群分析（cluster analysis）

中的新校正方法。我們期望這個對推衍原則的深度理解能產生機率模型的新方法

論，並且最終邁向自然語言處理上的突破。

關關關鍵鍵鍵詞詞詞： 資訊理論；資訊保存；推衍原則；無監督式斷詞；靜態索引刪減；蹢最

佳化。
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Chapter 1

Introduction

1.1 Goals and Methodology

The main theme of this thesis work is a mathematical concept called information

preservation. This concept is introduced in the context of probabilistic modeling,

as an optimization principle in fitting probabilistic models. It has a very broad

application domain and has been shown to be useful in practical settings. Our

primary goal here, if not the only, is to convince the readers that this particular

theory is interesting and useful so as to maximize the impact.

This is never an easy task, and sitting in a crowded ground along with renowned

mathematical ideas, such as maximum entropy and maximum likelihood, has made

it even more challenging. Specifically, the intricacy embodied in information preser-

vation adds much complexity to this writing. As its name suggests, the principle

is about preserving information carried by fitted probabilistic models, measured by

absolute change in entropy. This concept, although being straightforward, is not

easy to introduce without careful postulation.

To make it easy to comprehend the underlying concept, we seek to incorporate many

practical examples as we give out formal arguments. This application-oriented strat-

egy is applied throughout the work. First, three classic problems in probabilistic
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modeling is treated in the first part of the thesis, showing that information preserva-

tion leads to a unified, simple way of looking at model fitting problems. Then, two

natural language processing applications are introduced as proof of concepts. We

show that information preservation can be used to solve complicated cases where

other mathematical principles do not seem to fit, such as inducing a vocabulary

model in unsupervised word segmentation, or reducing a predictive model in static

index pruning. Finally, we conclude this work by discussing some possible extensions

of information preservation.

1.2 Contribution

The concept of information preservation provides a common ground for maximum

and minimum entropy methods. In this unified framework, we highlight that the

usual principles applied in model fitting, such as maximization and minimization

of entropy, are not arbitrary decisions. An implicit reference hypothesis is there to

guide the optimization process, and model fitting seeks to approach that hypothesis

in terms of model complexity in a constrained space. Existence of such a reference

model is a strong indication on how the search for fitted model shall be conducted.

In this respect, our account partly justifies the incompatibility between entropy

maximization and minimization. From the view of information preservation, these

principles no longer contradict each other; they are just different use cases that find

application in different scenarios.

Our study also covers two natural language processing applications, which are un-

supervised word segmentation and static index pruning. Our unique view to un-

supervised word segmentation is a renovation of conventional compression-based

methodology. We introduce the idea of preservation of vocabulary complexity into

an ordinary compression-based framework. The renovated approach, regularized

compression, has significantly boosted the segmentation accuracy, and has achieved

comparable performance as several state-of-the-art methods. Our approach can be

2



easily retargeted to larger text corpora since it is more efficient and less resource-

demanding. Our experimental study also reveals one interesting application of this

method as to applying parallel segmentation to one large text collection. This ap-

plication is not addressed in this thesis work, but will be a primary focus in our

further exploration.

We have also obtained fruitful results in our experiments in static index pruning.

Conventional methods usually solve this problem using impact-based decision crite-

ria based on the idea that impact is directly related to retrieval performance. Our

approach provides an alternative view to this problem. We show that information-

based measures can achieve competitive performance in a more efficient way. From

the experiments, we uncover the possibility of combining multiple decision criteria

to prioritize the index entries, which is backed by low correlation found between

the proposed approach and the other state-of-the-art methods. Although further

exploration for this interesting idea is beyond the scope of this thesis, our result

has led to deeper insights in this research problem and has thus paved the way for

exciting future efforts.

1.3 Outline

Chapter 2 covers the definition and implications of information preservation. We first

motivate this concept from a theoretical aspect, showing that it generalizes the ideas

advocated by well-known mathematical principles such as maximum entropy and

minimum-entropy methods. Then, we apply information preservation to some well-

studied fundamental problems in probabilistic modeling, including feature selection,

regression, and cluster analysis. Through these working examples, we show that

our approach leads to simple, intuitive solutions in accordance with the known

results.

In Chapter 3, we give an overview on the development of unsupervised word seg-
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mentation. This is the first application example of information preservation studied

in this thesis work. Our approach to unsupervised word segmentation is motivated

from a different angle, based on the idea of text compression. We first assume that

a solution to unsupervised word segmentation is equivalent to a series of choices

made in text compression. These choices can be determined by solving a general

optimization problem that corresponds to information preservation. This problem

is intractable due to various combinatorial choices involved, so we present a simpli-

fied iterative solution as an approximation. Later, we describe a full experimental

setup that covers experiments on two standard benchmarks. The experimental result

shows that the performance of the our approach is comparable to that of state-of-

the-art unsupervised word segmentation methods in terms of F-measure.

We introduce the problem of static index pruning in Chapter 4 as the second ap-

plication of information preservation. We first briefly go over the past effort in this

area. Then we proceed to formulate this problem in the information preservation

framework, in which static index pruning is seen as a process of degenerating a

predictive model. Under this rationale, the primary goal in static index pruning

is to preserve the predictive power of the pruned index. This idea is written out

as an information preservation problem, and is solved by using an approximation

algorithm. This construction leads to an efficient formula that we can use to rank

postings. We test our approach in three standard collections of different size, and

compare its performance with two other state-of-the-art methods. The result shows

that our approach is competitive to the best performance across all experimental

settings.

Some incomplete results are loosely discussed in Chapter 5. We briefly review the

problem types that are solvable by information preservation and discuss the advan-

tages of our approach. Finally, in Section 3.8, we summarize the contributions and

possible implications of this work to conclude this thesis.

4



Chapter 2

Information Preservation

2.1 Overview

Much of the recent development in natural language processing is devoted to prob-

abilistic modeling. Nowadays, probabilistic methods have prevailed in almost every

subfield in natural language processing. Some notable examples include probabilis-

tic context-free grammar (PCFG) in parsing, max-margin methods in classification,

mixture models in clustering, to name a few.

What lies in the core of a probabilistic method is often an assumption, written in

probabilistic statements, about certain aspect of language that one tries to model.

The probabilistic statements discussed here can be generative, describing a gen-

erative process that produces the language we have observed, or discriminative,

describing a decision model that helps differentiate one type of observation from the

other.

Probabilistic methods are not merely about assumptions. One needs to find the

right model, e.g., parameters, to fit these assumptions, and this is when optimiza-

tion techniques come into play. Behind any optimization problem, there is always

some optimization principle, based on which one specifies the objective in mathe-

matical terms. Such a principle usually has a deep root in statistics and physics,
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and sometimes it can be very philosophical.

Most of the well-known principles carry very simple messages that generalize es-

sential aspects in scientific modeling, which in turns lead to successful applications.

Maximum likelihood (ML), for one, is used in almost every scientific area. There are

many others, including maximum a posteriori (MAP), a Bayesian-remake of max-

imum likelihood; maximum entropy (ME), asserting that one shall seek the most

general model; and minimum description length (MDL), advocating the famous

philosophical concept of Occam’s razor.

In this chapter, we present the concept of information preservation that we believe

encapsulates some of the common wisdom in probabilistic modeling. As we will

show later, information preservation covers two well-known principles, maximum

entropy and minimum entropy, as its special cases. It also provides a ground for dis-

cussions about how information-based optimization can be designed in probabilistic

modeling.

2.2 Formal Definition

We define an information preservation problem as follows. Let Θ be the hypothesis

space, and ΘC ⊂ Θ be a subset of hypotheses that satisfy some constraint C. Let X

be some random variable and H be some entropy-like information quantity which is

well-defined defined for every θ ∈ Θ.

Given that θ0 ∈ Θ, the following minimization problem is said to be an information

preservation problem:

minimize |Hθ(X)−Hθ0(X)|

subject to θ ∈ ΘC .
(2.1)

The general idea is very simple. Given the search space ΘC and a reference hy-

pothesis θ0, the best hypothesis is the one that minimizes the absolute change in

6



information, measured by some quantity H . In other words, we want to find an ap-

proximation of the reference hypothesis θ0 in the constrained search space ΘC ; the

closeness (or distance) between two hypotheses is measured in terms of the change

in entropy.

Information preservation comprises three key aspects, information, hypothesis, and

approximation, which are detailed in the following paragraphs.

Information The information of a probabilistic model is measured by the quantity

H . The definition of H can be further generalized as long as the extension is

measurable for every hypothesis θ ∈ Θ. This function can be entropy H(X), joint

entropy H(X, Y, Z), or even conditional entropy H(X|Y ). To write a problem in

the form of information preservation, we need to think about by which quantity the

information is best represented.

Hypothesis In an information preservation problem, we search for a hypothesis

that is closest to the reference hypothesis θ0 in terms of the information estimate

H . Since this is a strong assumption that biases the search process, the choice of

reference hypothesis needs to be justified. A good starting point is to consider some

trivial hypothesis, as we will shortly visit in the later examples, that can be easily

formed based on the observations.

Approximation The optimization problem may not be analytically feasible to

solve. As we will see later, information preservation can sometimes fall back to en-

tropy maximization or minimization, none of which is easy to solve when combinato-

rial choices are involved. Therefore, it is essential to know whether the formulation

can be solved approximately using efficient numerical methods.

In the next section, we discuss the relation of information preservation to the other

principles.

7



2.3 Relation to Other Approaches

2.3.1 Principle of Maximum Entropy

Jaynes (1957a; 1957b) proposed the principle of maximum entropy, stating that a

distribution that maximizes entropy is the one making the minimal claim beyond

the knowledge embedded in the prior data. Therefore, the maximum-entropy choice

in model fitting is equivalent to choosing the least informative distribution from an

entire family of distributions.

This principle is usually cast as a constrained entropy maximization problem, which

in simple continuous cases is solved by convex programming. Consider that ΘC ⊂ Θ

is the set of feasible parameter combinations. The entropy maximization problem

is written as follows.

maximize Hθ(X)

subject to θ ∈ ΘC .
(2.2)

It is clear that, when we take θ0 as the most uninformative model in Θ, the infor-

mation preservation problem reduces to the maximum entropy problem.

2.3.2 Principle of Minimum Cross-Entropy

Kullback (1959), who also developed the Kullback-Leibler divergence, proposed the

principle of minimum cross-entropy, which is sometimes called the principle of min-

imum discrimination information. It asserts that, as more data is observed, a new

distribution shall be fitted and this choice needs to be made as close to the original

distribution as possible, measured in terms of Kullback-Leibler divergence.

Let the original distribution be denoted as p and the new one as q. The Kullback-

Leibler divergence between p and q (in that order) can be expressed in terms of

the entropy of p and the cross entropy of p and q. In the following derivation, we

consider only the discrete case. Note that we use D(p||q) to denote the Kullback-
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Leibler divergence and CE(p; q) to denote the cross entropy.

D(p||q) =
∑

x

p(x) log
p(x)

q(x)

=
∑

x

p(x) log p(x)−
∑

x

p(x) log q(x)

= −H(p) + CE(p; q).

(2.3)

Since p is a known distribution, minimizing D(p||q) is equivalent to minimizing the

cross entropy CE(p; q). This objective is convex since it is a linear combination (or

more precisely, convex combination) of the − log(x) function, which is also convex.

Again, this is a convex programming problem. The principle can be written as the

following optimization problem in our notation:

minimize CE(θ0; θ)

subject to θ ∈ ΘC .
(2.4)

There is no direct connection between information preservation and the principle

of minimum cross-entropy. Nevertheless, they agree on one essential point that

closeness between the old and the new distributions shall be highly valued in search

for a better fit for the new facts.

2.3.3 Minimum-Entropy Methods

Minimum entropy is not formally recognized as a mathematical principle, but it

has already found many applications in combinatorics and machine learning. The

general philosophy is to find the most informative model that satisfies the constraint,

and is sometimes seen as incompatible with the principle of maximum entropy, which

states exactly the opposite.

While the compatibility issue between two theories is beyond our work, we do find

a few examples that shows how minimum entropy leads to other principles, such as
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error minimization.

When setting the reference hypothesis θ0 at some extreme points, e.g., Hθ = 0,

information preservation reduces to minimum entropy. Nevertheless, optimizing

toward such extremes may not always be a good justification by itself. In the next

section, we will review some typical assumptions regarding setting such reference

hypotheses.

2.4 Examples

2.4.1 Feature Selection

Feature selection is a technique commonly used in supervised learning tasks, such

as text classification, where the feature dimension is usually very high. In this case,

feature selection determines a subset of feature dimensions so that the learning task

can be carried out more efficiently.

Let O be an set of labeled instances 〈(x1, c1), (x2, c2), . . . , (xn, cn)〉 where each xi ∈ 2d

is a d-dimensional feature vector and each ci ∈ 1, . . . , K is a class label. Here, for

simplicity, we assume binary features and finite class labels.

Every subset of these features forms a unique partition over the instances. A subset

of c binary features generates 2c different possible combinations, and according to

which one can sort the instances uniquely into different groups. That is to say, any

two instances with the same combination of these features are assigned to the same

group.

Assume that we attach a new variable ai ∈ N (can sometimes be greater than K)

to every instance (xi, ci). The variables {a1, a2, . . . , an} collectively represent some

partition over the instances, determined by some selected set of features.

Consider the entropy of class labels, H(C), and the conditional entropy of class

labels given the partition assignment, H(C|A). Here, C and A are random variables

10



for class label and partition assignment, respectively. These two quantities have the

following relation:

H(C) = H(C|A) + I(C;A), (2.5)

where I(C;A) is the mutual information between class labels and the partition

assignment.

Now, let θ0 denote an ideal partition over the instances, with which we assign ai = ci

for each instance. This partition always exists because we have knowledge about

the true class labels. Given this ideal partition, the conditional entropy H(C|A)

becomes 0, and therefore, for any partition θ over the instances, we know that

Hθ0(C|A) is always less than or equal to Hθ(C|A).

We use θ0 as the reference partition and write down the information preservation

problem. Let θ∗ be the optimal partition. We have the following equations:

θ∗ = argmin
θ
|Hθ(C|A)−Hθ0(C|A)|

= argmin
θ

Hθ(C|A)

= argmin
θ

Hθ(C)− Iθ(C;A)

= argmax
θ

Iθ(C;A).

(2.6)

The results accords with a commonly-used feature selection method that chooses

the optimal feature set by maximizing the mutual information.

2.4.2 Regression

Consider a series of data points O = 〈(x1, y1), (x2, y2), . . . , (xn, yn)〉 where each

(xi, yi) ∈ R
2. We assume a functional relation y = f(x), between the two com-

ponents and want to find the best fit f in a family of functions F . This is a classic

problem that regression analysis seeks to solve.
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Figure 2.1: A practical example of linear regression.

Let us first write this problem in the typical way. We use random variables X and

Y to denote some random data point that we observe. The structural dependence

between X and Y is defined as follows. Note that, in this definition, ǫ is a random

variable that denotes the error:

Y = f(X) + ǫ,

ǫ ∼ N (0, σ2).

In regression analysis, the goodness of fit is assessed in some way according to the

error made by the structural assumption. For this reason, we need to specify an

error distribution. Here, we take an usual assumption that ǫ follows a Gaussian

distribution with zero mean and σ2 variance.

We estimate the entropy of ǫ empirically using the data points that we have observed,

O, as samples. Specifically, this sample-based estimate is defined as:

H̃(ǫ) = −
1

n

n
∑

i=1

log p(ǫi), (2.7)

where ǫi = yi− f(xi) denotes the error term for the i-th data point. Plugging in the
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Gaussian density into Equation (2.7), we arrive at the following equation:

H̃(ǫ) =
1

n

n
∑

i=1

(

ǫ2i
2σ2

+
1

2
log 2σ2π

)

. (2.8)

It can be easily shown that H̃(ǫ) is uniquely minimized when ǫi = 0 for all i =

1, . . . , n. In other words, when the search space F is unrestricted, any function

that trivially maps the observed values {xi} to their counterparts {yi} minimizes

the error entropy. To see why this is the case, we check the first and the second

derivatives of H̃(ǫ) with respect to f(xi):

∂

∂f(xi)
H̃(ǫ) = −

1

nσ2
ǫi, (2.9)

∂2

∂f(xi)2
H̃(ǫ) =

1

nσ2
. (2.10)

The first derivative vanishes when ǫi = 0 for all i = 1, . . . , n. Since the second

derivative is always positive, the stationary point is a global minimum.

Now we are ready to apply information preservation to this problem. We chose

some trivial function f0 as the reference model, i.e., for all i = 1, . . . , n, f0(xi) = yi.

Applying the concept of information preservation, the best model f ∗ ∈ F is the one

that minimizes the absolute difference in entropy against the reference model, as

in:

f ∗ = argmin
f∈F

|H̃f(ǫ)− H̃f0(ǫ)|

= argmin
f∈F

H̃f(ǫ)− H̃f0(ǫ)

= argmin
f∈F

H̃f(ǫ)

= argmin
f∈F

1

n

n
∑

i=1

(

ǫ2i
2σ2

+
1

2
log 2σ2π

)

= argmin
f∈F

n
∑

i=1

ǫ2i .

(2.11)

13



This result is in line with the least squares method that minimizes the sum of squared

errors of a fit.

2.4.3 Cluster Analysis

Consider that we have observed n data points 〈x1, x2, . . . , xn〉 in some d-dimensional

space. We have a structural assumption that these data points belongs to some

number of clusters. Our job in cluster analysis is to find these clusters and assign

each data point to one.

For simplicity, we assume that the number of clusters, K, is known a priori. Our

goal here is to test a number of hypotheses about the underlying structure, and each

hypothesis is expressed as a set of assumed cluster centers, denoted as θ.

We use the notation X and µ(X) to denote a random data point and its cluster

center, respectively. We assign to each X the closest cluster center in θ. In other

words, we write µ(X) as:

µ(X) = argmin
µ∈θ

‖X − µ‖2,

Therefore, we have the following definition for the error distribution:

X = µ(X) + ǫ,

ǫ ∼ N (0,Σ).

(2.12)

Here, ǫ is the displacement between a data point and its cluster center, and it follows

a multivariate Gaussian distribution centered at the origin 0, i.e., a zero vector, with

covariance Σ, a d by d symmetric and positive-definite matrix.

The probability of observing some data point is written out somewhat differently

because the support sets of density functions overlap with each other. In this defi-
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Figure 2.2: Cluster analysis is a way to generalize data into groups.

nition, we introduce a normalization factor Z(θ):

p(x|θ) =
1

Z(θ)
N (x;µ(x),Σ),

Z(θ) =

∫

x′

N (x′;µ(x′),Σ) dx′.

(2.13)

Following the idea in the previous section, we estimate the entropy of p(x|θ) empir-

ically using the sample-based method. The entropy is written as:

H(X|θ) = −
1

n

n
∑

i=1

log p(x|θ)

=
1

2n

n
∑

i=1

(xi − µ(xi))
TΣ−1(xi − µ(xi)) +

1

2
log |2πΣ|+ logZ(θ).

(2.14)

This definition of error entropy has two implications. First, the sum of square

errors, a penalty function commonly used in cluster analysis, is actually a special

case of information preservation. This happens when the likelihood p(x|θ) is left

unnormalized, i.e., setting Z(θ) to some constant. Second, solving the information

preservation problem generally with respect to this equation leads to a regularized

version of sum of squared errors.
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Let us discuss the first case. When Z(θ) does not depend on θ, it can be shown that

a trivial hypothesis θ0 that assigns each data point to itself as the cluster center,

i.e., µ(xi) = xi for all i = 1, . . . , n, is the global minimizer of this entropy. To see

how, let us suppose Z(θ) = c for some constant c and take the derivative tests with

respect to µ:

H(X|θ) =
1

2n

n
∑

i=1

(xi − µ(xi))
TΣ−1(xi − µ(xi)) +

1

2
log |2πΣ|+ log c, (2.15)

∂

∂µ
H(X|θ) =

1

n

∑

i:µ(xi)=µ

Σ−1(xi − µ), (2.16)

∂2

∂µ∂µT
H(X|θ) =

1

n
Σ−1. (2.17)

We first establish the convexity of H(X|θ) by writing out its Hessian, which is

positive definite. Since the first derivative vanishes at θ = θ0, we confirm that θ0 is

a global minimum.

Applying the concept of information preservation, the best hypothesis θ∗ is actually

a minimizer of weighted sum of squared errors. This result accords with usual

assumption in cluster analysis, and suggests that information preservation is a more

general method in this aspect.

θ∗ = argmin
θ
|H(X|θ)−H(X|θ0)|,

= argmin
θ

H(X|θ)−H(X|θ0),

= argmin
θ

H(X|θ),

= argmin
θ

n
∑

i=1

(xi − µ(xi))
TΣ−1(xi − µ(xi)).

(2.18)

Solving the information preservation problem analytically is difficult. This is a

difficult problem because Z(θ) depends on the positions of all the cluster centers, and

this entanglement cannot be easily analyzed. Therefore, as a necessary compromise,

we suggest solving this problem in the context of medoid-based clustering, meaning
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that cluster centers have to sit on some data points rather than arbitrary choices.

This leads to our second result in this example.

Generally, the exact value of Z(θ) can be written out as a summation of integrals.

For any cluster center µ, let N(µ) denote the neighborhood of µ, which is a set of

points that have µ as the cluster center, i.e., µ = argminµ′‖x−µ′‖2 for all x ∈ N(µ).

With knowledge about N(µ), we can write Z(θ) as a summation of the densities

contributed by individual cluster centers:

Z(θ) =
∑

µ∈θ

∫

x∈N(µ)

N (x;µ,Σ) dx. (2.19)

Solving this equation is still very challenging, since each integral has to be solved

numerically with respect to N(µ), which is not easy to compute in high dimension.

To approximate N(µ), we replace the domain of the innermost integral with a con-

fidence region Cr(µ,Σ) of the Gaussian distribution N (µ,Σ), i.e., the set of points

that lies within some radius r to the mean µ:

Z(θ) =
∑

µ∈θ

∫

x∈Cr(µ,Σ)

N (x;µ,Σ) dx

=
∑

µ∈θ

∫

x∈Cr(0,Σ)

N (x; 0,Σ) dx.

(2.20)

We use the following equation to determine r for each µ. The idea is to take half of

the distance from µ to its nearest neighboring cluster center.

r =
1

2
min
µ′∈θ
‖µ− µ′‖2. (2.21)

It is now feasible to solve the innermost integral in Equation (2.20) numerically.

Considering only medoids as cluster centers, we can compute this approximation to

Z(θ) much more efficiently for any given hypothesis. Nevertheless, further simplifi-

cation is needed to efficiently explore the search space. Here, we propose using an

iterative algorithm to find the solution. This algorithm starts from the trivial hy-
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pothesis that has n cluster centers and iteratively removes one cluster center away.

That is to say, it iteratively solve the following information preservation problem for

i = 1, . . . , n−K.

θ(0) = θ0, (2.22)

θ(i) = argmin
θ
|H(X|θ)−H(X|θ(i−1))| (2.23)

= argmin
θ

∣

∣

∣

∣

1

2n
∆WSSE(θ, θ

(i−1)) + log
Z(θ)

Z(θ(i−1)

∣

∣

∣

∣

, (2.24)

where ∆WSSE(θ, θ
(i−1)) is the change in sum of squared errors,

∑

x:µ(i−1)(x)6=µ(x)

(

(x− µ(x))TΣ−1(x− µ(x))− (x− µ(i−1)(x))TΣ−1(x− µ(i−1)(x))
)

.

The decision criteria in Equation (2.24) is actually a regularized version of weighted

sum of squared errors. The term δWSSE(θ, θ
(i−1)) is always positive because removing

cluster centers increases errors. The regularization term, logZ(θ)− logZ(θ(i−1)), is

negative due to the reduced total densities. Practically, we often want to drop the

absolute value, because the regularization term is lower bounded by − log 2.

This regularization method penalizes cases where the removed cluster center is closed

to the others. In other words, it favors more spread-out clusters. This property

also aligns with a conventional heuristic that suggests maximizing inter-cluster dis-

tances.

2.5 Concluding Remarks

In the previous sections, we have briefly reviewed several classic problems in prob-

abilistic modeling. Conventional approaches to these problems, such as error mini-

mization and maximization of mutual information, are shown to be equal to informa-

tion preservation. Moreover, information preservation leads to a new regularization
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method to data clustering. This discussion, though not being thorough and rig-

orous, has suggested that information preservation is a more general and unified

optimization strategy in probabilistic modeling.

So far, our exploration is limited to general modeling tasks. In the following chap-

ters, we go on and uncover the potential of information preservation in a broader

application domain, namely, natural language processing.
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Chapter 3

Unsupervised Word

Segmentation

3.1 Overview

Word segmentation is the computational task that aims at identifying word bound-

aries in a continuous text stream (Goldwater et al., 2009)., and it is essential to

natural language processing because many NLP applications are designed to work

on this level of abstraction. In language, words are the smallest lexical units that

carry coherent semantics or meaning, That is to say, the meaning of individual

words can be postulated or interpreted on their own. Therefore, for NLP appli-

cations that focus mostly on semantics, words are just the ideal representation to

operate on.

In this chapter, we focus on unsupervised word segmentation, which aims to mitigate

the word segmentation problem without using any training data. This technique has

been vigorously studied by cognitive scientists and regional linguists, and has thus

become an intersection of theory and application.

In cognitive science, unsupervised word segmentation is often related to lexical ac-

quisition, a study regarding how infants acquire language in their early ages. It is
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generally believed that infants learn word boundaries largely without supervision,

even though a number of visual or gestural cues have been shown useful in this

process, so knowledge about practical methods is of great value to cognitivists in

developing their theories.

Regional language groups also express high interest in unsupervised word segmen-

tation, since in certain Asian languages, such as Japanese and Chinese, recognition

of words is a non-trivial task. These notable exceptions do not practice the “whites-

pace separation” convention, which is a norm to many other languages such as

English, and therefore words of an utterance in these languages are usually written

out without separation, making further application even more difficult. Advanced

supervised approaches using conditional random-fields have achieved promising re-

sult in many related regional task, but their adoption is generally limited by the

costly and labor-intensive process of preparing training data. Unsupervised meth-

ods, on the contrary, do not have this burden and remain an economical alternative

for most of the NLP projects.

In the following sections, we introduce a compression-based framework for unsuper-

vised word segmentation, assuming that true words in a text can be uncovered via

text compression. Here, we point out that efficiency, as usually assumed in data

compression, is not the only factor to consider. Vocabulary complexity, which is the

entropy rate of the resulting lexicon, needs to be controlled to some extent. As its

complexity increases, more effort is required to harness the vocabulary. To lever-

age this issue, we suggest applying the principle of information preservation. We

create a new formulation to word segmentation and write it out as an optimization

problem, which is called regularized compression.

The rest of this chapter is structured as follows. We briefly summarize related work

on unsupervised word segmentation in Section 3.2. In Sections 3.3 and 3.4, we

introduce the proposed formulation. The iterative algorithm and other technical

details for solving the optimization problem are covered in Sections 3.5 and 3.6.
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In Section 3.7, we describe the evaluation procedure and discuss the experimental

results. Finally, we present concluding remarks in Section 3.8.

3.2 Related Work

There is a rich body of literature in unsupervised word segmentation. Many early

work focused on boundary detection, using cohesion measures to assess the associa-

tion strength between tokens. Further development stressed on language generation,

casting word segmentation as a model inference problem; recently, this approach has

gained success when more sophisticated nonparametric Bayesian methods were in-

troduced to model the intricate language generation process. The latest research

trend is to use minimum description length principle to optimize the performance

of existing methods. In the following subsections, we review a number of popular

methods in this area and briefly discuss their strengths and weaknesses.

3.2.1 Transitional Probability

In linguistics, one of the earliest and the most influential idea for boundary detection

is the transitional probability. This idea is uncovered in 1955 by Harris (Harris,

1955), who exploited the connection between token uncertainty and the presence of a

boundary. In his seminal work, he stated that the uncertainty of tokens coming after

a sequence helps determine whether a given position is at a boundary. Since then,

many researchers has taken this idea and given their own formulations regarding the

token uncertainly at a boundary.

One reasonable way to to model the token uncertainty is through entropy. Start-

ing from late 1990s, many research efforts in Chinese text analysis have begun to

follow this trail (Chang and Su, 1997; Huang and Powers, 2003). The definition

of branching entropy that we know of today is given in 2006 by Jin and Tanaka-

Ishii (Tanaka-Ishii, 2005; Jin and Ishii, 2006). Formally, the branching entropy of a
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word w is defined as:

H(X|Xn = w) = −
∑

x∈χ

P (x|w) logP (x|w),

where χ is the set of all the possible characters. Note that this formulation is

different from the conditional entropy of X given Xn.

There are other ways to model token uncertainty. In 2004, Feng et al. proposed

the accessor variety that estimates the uncertainty based on the frequency rather

than the probability (Feng et al., 2004). In his definition, we write accessor variety

as:

min{AVL(w),AVR(w)},

where the left/right accessor variety AVL and AVR is defined as the number of

distinct tokens that precede/follow w, respectively.

3.2.2 Mutual Information

In 1990, Sproat and Shih discovered the use of mutual information in detecting two-

character groups (i.e., bigrams) in the Chinese text (Sproat and Shih, 1990). Their

work amplified the idea of using an association measure to assess how likely a string is

indeed a word. This idea is straightforward enough: The segmentor first determines

the most probable bigram in an input phrase by using mutual information, places

two boundaries around the discovered bigram, and recursively process the remaining

sub-phrases.

To date, there have been many association measures based on mutual informa-

tion (Chien, 1997; Sun et al., 1998) introduced to the word segmentation prob-

lem.

24



3.2.3 Hierarchical Bayesian Methods

The past few years have seen many nonparametric Bayesian methods developed to

model natural languages. Many such applications were applied to word segmenta-

tion and have collectively reshaped the entire research field. In cognitive science,

unsupervised word segmentation is often related to language acquisition, an active

area in which researchers explore how infants acquire spoken languages in an un-

supervised fashion in their very early years. This connection had been brought to

earth in 1950s in behavioral study.

The perspective that cognitivists take toward unsupervised word segmentation is

usually a generative one, in which an underlying probabilistic structure is assumed

for governing the generation of word sequences. To uncover the boundaries, one

learns the latent model parameters from the text stream by applying inference

techniques based on maximum-likelihood (ML) or maximum a-posteriori (MAP)

principle, and then the most likely segmentation boundaries is discovered by using

Viterbi-like algorithms.

Hierarchical Bayesian methods were first introduced to complement conventional

probabilistic methods to facilitate context-aware word generation. Goldwater et

al. (2006) used hierarchical Dirichlet processes (HDP) to induce contextual word

models. Specifically, they expressed the contextual dependencies as:

Pr(w1 . . . wn$) = P (w1|$)

[

n
∏

i=2

P (wi|wi−1)

]

P ($|wn).

The underlying generative process assumed by HDP is as follows. Note that P0 is

uniform across different word lengths.

G ∼ DP(α0, P0)

Wi|Wi−1 = l ∼ DP(α1, G) ∀l
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This approach was a significant improvement over conventional probabilistic meth-

ods, and has inspired further explorations into more advanced hierarchical model-

ing techniques. Such examples include the nested Pitman-Yor process (Mochihashi

et al., 2009), a sophisticated installment for hierarchical modeling at both word and

character levels, and adaptor grammars (Johnson and Goldwater, 2009), a frame-

work that generalize the idea behind HDP to probabilistic context-free grammars.

The generative description of the nested Pitman-Yor Process (NPYP) is summarized

as follows. Note that P0 is generated from yet another character-level HPYP.

G ∼ PY(d, θ, P0)

Gl ∼ PY(d, θ, G) ∀l

Gl,k ∼ PY(d, θ, Gl) ∀l, k

Wi|Wi−1 = l ∼ Gl

Wi|Wi−1 = l,Wi−2 = k ∼ Gl,k

Detailed descriptions regarding adaptor grammars is referred to Johnson et al. (2009)

3.2.4 Minimum Description Length Principle

The minimum description length (MDL) principle, originally developed in the con-

text of information theory, was adopted in Bayesian statistics as a principled model

selection method (Rissanen, 1978). Its connection to lexical acquisition was first

uncovered in behavioral studies, and early applications focused mostly on applying

MDL to induce word segmentation that results in compact lexicons (Kit and Wilks,

1999; Yu, 2000; Argamon et al., 2004).

Kit and Wilks proposed a compression-based approach, called description length

gain, in 1999. In their formulation (Zhao and Kit, 2008), the description length gain

is defined as:

L(C)− L(C[r → w]⊕ r),
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C = 〈c1, . . . , cN〉 Character sequence
W = 〈w1, . . . , wM〉 Word sequence, M < N
U = {u0 = 0, u1, . . . , uK} Positions of utterance boundaries
AC Character alphabet
AW Word alphabet (i.e., lexicon)
f〈ci,...,cj〉 n-gram frequency

Table 3.1: The notation used in the development of regularized compression.

where C[r → w] is the resulting string after replacing all occurrence of w in C with

r. Note that ⊕ denotes the concatenation operator, and the description length L(C)

is obtained from the Shannon-Fano code of C. Specifically, L(C) = |C| ×H(V (C)),

where V (C) denotes the character vocabulary of C.

More recent approaches (Zhikov et al., 2010; Hewlett and Cohen, 2011) used MDL

in combination with existing algorithms, such as branching entropy (Tanaka-Ishii,

2005; Jin and Ishii, 2006) and bootstrap voting experts (Hewlett and Cohen, 2009),

to determine the best segmentation parameters. On various benchmarks, MDL-

powered algorithms have achieved state-of-the-art performance, sometimes even sur-

passing that of the most sophisticated hierarchical modeling methods.

3.3 Preliminaries

In this section, we describe the notation and the basic assumptions in our work. In

developing the notation, we try to be consistent with the mathematical convention,

but we find that, in the procedure that we are about to motivate, certain mathe-

matical aspects (e.g., sequence and set) regarding one underlying object cannot be

easily expressed without clutter. For clarity, we intentionally abuse the notation

in some cases, using the same expression to represent different mathematical view-

points when the meaning is clear. A short summary about the notation is given in

Table 3.1.

The input to our word segmentation algorithm is a set of unsegmented texts, each

of which represents an utterance. Consider that this set is of K elements, and all
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the utterances consist totally of N characters. For brevity, we denote the input as

a sequence of characters C = 〈c1, . . . , cN〉, as if conceptually concatenating all the

utterances into one string. Analogously, a segmented output is defined as a sequence

of words W = 〈w1, . . . , wM〉, for some M ≤ N .

We represent the positions of all the utterance boundaries in C as a sequence of

integers U = 〈u0 = 0, u1, . . . , uK = N〉, where u0 < u1 < . . . < uK . Therefore, to

find the k-th utterance in C, we look at the characters between positions uk−1+1 and

uk. In other words, the k-th utterance is the subsequence 〈cuk−1+1, . . . , cuk
〉.

A valid word segmentation W of C has to satisfy two properties. First, W represents

the same piece of text as C does. Second, W respects the utterance boundaries U ,

meaning that any word wi ∈ W does not span over two utterances. In mathematical

terms, there exists a sequence of boundaries B = 〈b0 = 0, b1, . . . , bM = N〉 such that:

(i) b0 < b1 < . . . < bM , (ii) cbi−1+1 . . . cbi = wi for 1 ≤ i ≤M , and (iii) U ⊂ B.

The unique elements in a sequence implicitly define an alphabet set, or lexicon. This

property is not limited to character or word sequences. Hereafter, for any sequence

S, we denote its alphabet as AS. As we shall find out later, sometimes we need

to refer to a sequence that is either a mix of characters or words, or of the same

type that we do not care. We use a generic term token sequence to this type of

sequence.

3.4 Regularized Compression

Word segmentation results from compressing a sequence of characters. By com-

pression, we refer to a series of steps that we can iteratively apply to the character

sequence C C to produce the final result W . In each of these steps, called com-

pression steps, we replace some subsequence 〈ci, ci+1, . . . , cj〉 in C with a string

w = cici+1 . . . cj (word). It is clear that, for every possible W , such compression

steps always exist.
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Since the subsequence 〈ci, ci+1, . . . , cj〉 may occur multiple times in C, for sim-

plicity, we further assume that, in each step, all the occurrences of subsequence

〈ci, ci+1, . . . , cj〉 are compressed at once. That is to say, we replace every subse-

quence in the set

{〈ck, . . . , cl〉|ck = ci, ck+1 = ci+1, . . . , cl = cj}

with the string w. Therefore, the compression step can be denoted as a rewrite rule,

as in:

w → 〈ci, ci+1, . . . cj〉.

This assumption greatly simplifies the modeling, since we do not need to worry about

the compression order of these occurrences, while it is no longer clear whether going

from any C to any W using compression is feasible. In the following discussion, we

stick with this approximation and show that it does not lead to disastrous results.

Relaxing this constraint is beyond the scope of this work and remains an open

issue.

Here, we first review some basic properties of a compression step. Generally, apply-

ing a compression step to C has the following effects:

1. The total number of tokens in C decreases, and its alphabet set AC is expanded

to include a new token w = ci . . . cj. Specifically, the size of C, denoted as |C|,

is reduced by f〈ci,...,cj〉(j − i). When a compression step reduces more tokens,

this step is said to be more coherent. It means that the subsequence to be

replaced appears more frequently in the text, and thus is more likely to be a

collocation;

2. Asymptotically, the vocabulary complexity, measured in terms of entropy rate,

always increases. We can estimate the entropy rate empirically by seeing a

token sequence as a series of outcomes drawn from some underlying stochastic

process. The absolute change in entropy rate is called deviation.
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The first property seems like a natural consequence. It says that the effort to describe

the same piece of information, in terms of the number of tokens, get reduced at

the expense of expanding the vocabulary. The second property is less obvious: It

means that compression has a side effect of redistributing probability masses among

observations, thereby causing deviation to entropy rate. Here, we describe a stronger

result that the deviation is always positive, i.e., entropy always increases. A formal

argument to this is given in Appendix A.1.

Since every compression step involves a choice of subsequence to be replaced, we

can say that word segmentation is basically a combinatorial optimization problem.

Understanding the effects gains us some insight to develop reasonable choices. In

the following definitions, we seek to quantify the effects of cohesion and deviation.

Specifically, they are defined with respect to two token sequences S1 and S2, such

that S2 is the result of applying some series of compression steps to S1:

cohesion ≡ −|S2|/|S1|, (3.1)

deviation ≡ |H̃(S2)− H̃(S1)|. (3.2)

Note that, for some token sequence S, H̃(S) denote the empirical entropy rates for

the random variable S ∈ AS, in which the probability p(S) is estimated using the

relative frequencies in sequence S.

We suggest that each choice shall be optimized toward high cohesion and low devia-

tion. This is easily justified, because high cohesion leads to choices that cover more

collocations, and low deviation translates to less effort for language users to harness

the new vocabulary. Conceptually, to go from sequence S to some new sequence S ′

using only k compression steps, we consider the following procedure:

minimize (−cohesion(S, S ′), deviation(S, S ′))

subject to S ′ respects U

r1, . . . , rk are valid steps to go from S to S ′

(3.3)
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Note that the objective is in vector form, and therefore it has to be scalarized by

using a convex combination of its components. Specifically, by valid compression

steps, we means that r1, . . . , rk satisfy:

S(0) = S,

S(k) = S ′,

S(i−1) ri−→ S(i) for i = 1, . . . , k.

Using this procedure, we are able to find the best sequence, in terms of the aforemen-

tioned criteria, that is reachable in k compression steps from S. Nevertheless, this

formulation is not very useful in practice, because in word segmentation, we want

to find the best sequence within some predefined compression rate ρ. Compression

rate is actually the average word length of the sequence, and we expect that matches

the average word length of the language.

Rewriting the procedure to reflect this need can nevertheless trivialize our first de-

cision criteria. When we impose a constraint on the compression rate, the cohesion

will always be the same. Despite this issue, search in the entire space remains chal-

lenging because there are exponentially-many valid choices to consider. These issues

are addressed in the next section using an iterative approximation method.

3.5 Iterative Approximation

Acknowledging that exponentially many feasible sequences need to be checked, we

propose an alternative formulation in a restricted solution space. The idea is, instead

of optimizing for segmentations, we search for segmentation generators, i.e., a set of

functions that generate segmentations from the input. The generators we consider

here is the ordered rulesets.

An ordered ruleset R = 〈r1, r2, . . . , rk〉 is a sequence of translation rules, i.e., com-
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pression steps. Each of these rules takes the following form:

w → 〈c1, c2, . . . , cn, 〉

where the right-hand side denotes some n-token subsequence to be replaced, and

the left-hand side denotes the new token to be introduced. Applying an ordered

ruleset R to a token sequence is equivalent to iteratively applying the translation

rules r1, r2, . . . , rk in strict order.

This notion of ordered rulesets allows one to explore the search space efficiently using

a greedy inclusion algorithm. The idea is to maintain a globally best ruleset B that

covers the best translation rules we have discovered so far, and then iteratively

expand B by discovering new best rule and adding it to ruleset.

The following procedure repeats several times until the compression rate reaches

some predefined value ρ. In each iteration, the best translation rule is determined

by solving a modified version of Equation (3.3), which is written as follows:

(In iteration i)

minimize −α× cohesion(S(i−1), S(i)) + deviation(S(i−1), S(i)))

subject to S(i) respects U

r is a valid compression step

(3.4)

Note that the alternative formulation is largely a greedy version of Equation (3.3).

The vector-form objective is scalarized by using a trade-off parameter α. A brief

sketch of the algorithm is given in Algorithm 1.

3.6 Implementation

Additional care needs to be taken in implementation. The simplest way to collect

n-gram counts for computing the objective in Equation (3.4) is to run multiple scans
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Algorithm 1 The proposed word segmentation algorithm

Require: ρ
S ← C
for all t = 1, 2, . . . do
if compression rate is less than or equal to ρ then
Leave the loop

end if
Solve Equation (3.4) to find the step r
Rewrite S in-place using r

end for
return S

over the entire sequence. Our experience suggests that using an indexing structure

that keeps track of token positions can be more efficient. This is especially impor-

tant when updating the affected n-gram counts in each iteration. Since replacing

one occurrence for any subsequence affects only its surrounding n-grams, the total

number of such affected n-gram occurrences in one iteration is linear in the number

of occurrences for the replaced subsequence. Using an indexing structure in this

case has the advantage to reduce seek time.

A detailed description about the implementation is discussed in Appendix A.2. Note

that, however, the overall running time remains in the same complexity class re-

gardless of the deployment of an indexing structure. The time complexity for this

algorithm is O(TN), where T is the number of iterations and N is the length of the

input sequence.

Although it is theoretically appealing to create an n-gram search algorithm, in this

preliminary study we used a simple bigram-based implementation for efficiency. We

considered only bigrams in creating translation rules, expecting that the discovered

bigrams can grow into trigrams or higher-order n-grams in the subsequent iterations.

To allow unmerged tokens (i.e., characters that was supposed to be in one n-gram but

eventually left out due to bigram implementation) being merged into the discovered

bigram, we also required that that one of the two participating tokens at the right-

hand side of any translation rule has to be an unmerged token. This has a side
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effect to exclude generation of collocation-based words1. It can be an issue in certain

standards; on the test corpora we used, this kind of problems is not obvious.

Another constraint that we added to the implementation is to limit the choice of

bigrams to those having more frequency counts. Generally, the number of occurrence

for any candidate bigram being considered in the search space has to be greater

or equal to some predefined threshold. In practice, we found little difference in

performance for specifying any integer between 3 and 7 as the threshold; in this

paper, we stick to 3.

3.7 Evaluation

3.7.1 Setup

We conducted a series of experiments to investigate the effectiveness of the proposed

segmentation method under different language settings and segmentation standards.

In the first and the second experiments, we focus on drawing comparison between

our method and state-of-the-art approaches. The third experiment focuses on the

influence of data size to segmentation accuracy.

Segmentation performance is assessed using standard metrics, such as precision,

recall, and F-measure. Generally, these measures are reported only at word level; in

some cases where further analysis is called for, we report boundary-level and type-

level measures as well. We used the evaluation script in the official HDP package to

calculate these numbers.

The reference methods considered in the comparative study and their abbreviations

are listed as follows:

• HDP: Hierarchical Dirichlet process (Goldwater et al., 2009);

• NPY: Nested Pitman-Yor process (Mochihashi et al., 2009);

1Fictional examples include “homework” or “cellphone”.
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• AG: Adaptor grammars (Johnson and Goldwater, 2009);

• Ent-MDL: Branching entropy + MDL (Zhikov et al., 2010);

• BVE-MDL: Bootstrap voting experts + MDL (Hewlett and Cohen, 2011);

• DLG: Description length gain (Zhao and Kit, 2008).

The proposed method is denoted as RC; it is also denoted as RC-MDL in a few

cases where MDL is used for parameter estimation.

3.7.2 Parameter Estimation

There are two free parameters α and ρ in our model. The parameter α specifies the

degree to which we favors high-frequency collocations when solving Equation (3.4).

Experimentation suggests that α can be sensitive when set too low2. Practically,

we recommend optimizing α based on grid search on development data, or the

MDL principle. The formula for calculating description length is not shown here;

see Zhikov et al. (2010), Hewlett and Cohen (2011), and Rissanen (1978) for de-

tails.

The expected compression rate ρ determines when to stop the segmentor. It is re-

lated to the expected word length: When the compression rate |C|/|W | reaches ρ

and the segmentor is about to stop, 1/ρ is the average word length in the segmen-

tation. In this sense, it seems ρ is somehow connected to the language of concern.

We expect that optimal values learned on one data set may thus generalize on the

other sets of the same language. Throughout the experiments, we estimated this

value based on development data.

2Informally speaking, when α < H̃(C). The analysis is not covered in this preliminary study.

35



(a) Bernstein-Ratner
P R F BP BR BF TP TR TF

HDP .75 .70 .72 .90 .81 .85 .64 .55 .59
RC-MDL .77 .82 .79 .85 .92 .89 .57 .48 .50

(b) Bakeoff 2005
P R F BP BR BF TP TR TF

RC, CityU training .75 .79 .77 .89 .93 .91 .63 .35 .45
RC, MSR training .73 .82 .77 .86 .96 .91 .70 .26 .38

Table 3.2: Performance evaluation for the proposed method across different test
corpora. The first row indicates a reference HDP run (Goldwater et al., 2009); the
other rows represent the proposed method tested on different test corpora. Columns
indicates performance metrics, which correspond to precision, recall, and F-measure
at word (P/R/F), boundary (BP/BR/BF), and type (TP/TR/TF) levels.

3.7.3 Evaluation on Bernstein-Ratner Corpus

We conducted the first experiment on the Bernstein-Ratner corpus (Bernstein-

Ratner, 1987), a standard benchmark for English phonetic segmentation. We used

the version derived by Michael Brent, which is made available in the CHILDES

database (Brent and Cartwright, 1996; MacWhinney and Snow, 1990). The corpus

comprises 9,790 utterances, which amount to 95,809 words in total. Its relatively

small size allows experimentation with the most computational-intensive Bayesian

models.

Parameter estimation for the proposed method has been a challenge due to the

lack of appropriate development data. We first obtained a rough estimate for the

compression rate ρ via human inspection into the first 10 lines of the corpus (these

10 lines were later excluded in evaluation) and used that estimate to set up the

termination condition. Since the first 10 lines are too small to reveal any useful

segmentation cues other than the word/token ration of interest, we considered this

setting (“almost unsupervised”) a reasonable compromise. In this experiment, ρ is

set to 0.37; the trade-off parameter α is set to 8.3, optimized using MDL principle

in a two-pass grid search (the first pass over {1, 2, . . . , 20} and the second over

{8.0, 8.1, . . . , 10.0}).
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P R F Time
HDP .752 .696 .723 –
NPY, bigram .748 .767 .757 17 min.
AG – – .890 –
Ent-MDL .763 .745 .754 2.6 sec.
BVE-MDL .793 .734 .762 2.6 sec.
RC-MDL .771 .819 .794 .9 sec.

Table 3.3: Performance evaluation on the Bernstein-Ratner corpus. The reported
values for each method indicate word precision, recall, F-measure and running time,
respectively. The underlined value in each column indicates the top performer under
the corresponding metric.

A detailed performance result for the proposed method is described in Table 3.2. A

reference run for HDP is included for comparison. The proposed method achieved

satisfactory result at word and boundary levels. Nevertheless, low type-level num-

bers (in contrast to those for HDP) together with high boundary recall suggested

that we might have experienced over-segmentation.

Table 3.3 covers the same result with less details in order to compare with other

reference methods. All the reported measures for reference methods are directly

taken from the literature. The result shows that AG achieved the best performance

in F-measure (other metrics are not reported), surpassing all the other methods by a

large margin (10 percent). Among the other methods, our method paired with MDL

achieved comparable performance as the others in precision; it does slightly better

than the others in recall (5 percent) and F-measure (2.5 percent). Furthermore, our

algorithm also seems to be competitive in terms of computational efficiency. On

this benchmark it demanded only minimal memory low as 4MB and finished the

segmentation run in 0.9 second, even less than the reported running time for both

MDL-based algorithms.

3.7.4 Evaluation on Bakeoff-2005 Corpus

The second benchmark that we adopted is the SIGHAN Bakeoff-2005 dataset (Emer-

son, 2005) for Chinese word segmentation. The corpus has four separates subsets
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Corpus Training (W/T) Test (W/T)
AS 5.45M / 141K 122K / 19K
PKU 1.1M / 55K 104K / 13K
CityU 1.46M / 69K 41K / 9K
MSR 2.37M / 88K 107K / 13K

Table 3.4: A short summary about the subsets in the Bakeoff-2005 dataset. The
size of each subset is given in number of words (W) and number of unique word
types (T).

prepared by different research groups; it is among the largest word segmentation

benchmarks available. Table 3.4 briefly summarizes the statistics regarding this

dataset.

We decided to compare our algorithm with description length gain (DLG), for that it

seems to deliver best segmentation accuracy among other unsupervised approaches

ever reported on this benchmark (Zhao and Kit, 2008). Since the reported values

for DLG were obtained on another closed dataset Bakeoff-2006 (Levow, 2006), we

followed a similar experimental setup as suggested in the literature (Mochihashi

et al., 2009): We compared both methods only on the training sets for the common

subsets CityU and MSR. Note that this experimental setup departed slightly from

that of Mochihashi et al. in that all the comparisons were strictly made on the

training sets. The approach is more straightforward than the suggested sampling-

based method.

Other baseline methods that we considered include HDP, Ent-MDL, and BVE-MDL,

for their representativeness in segmentation performance and ease of implementa-

tion. The HDP implementation we used is a modified version of the official HDP

package3; we patched the package to make it work with Unicode-encoded Chinese

characters. For Ent-MDL and BVE-MDL, we used the software package4 distributed

by Hewlett and Cohen (2011). We estimated the parameters using the AS training

set as the development data. We set α to 6 based on a grid search. The expected

compression rate ρ that we learned from the development data is 0.65.

3http://homepages.inf.ed.ac.uk/sgwater/
4http://code.google.com/p/voting-experts
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CityU MSR
DLG, ensemble .684 .665
Ent-MDL, nmax = 3 .798 .795
RC, r = .65 .770 .774

Table 3.5: Performance evaluation on the common training subsets in the Bakeoff-
2005 and Bakeoff-2006 datasets. The reported values are token F-measure. The
boldface value in each column indicates the top performer for the corresponding set.

In Table 3.2, we give a detailed listing of various performance measures for the

proposed method. Segmentation performance seems moderate at both word and

boundary levels. Nevertheless, high type precision and low type recall on both CityU

and MSR training corpora signaled that our algorithm failed to discover most word

types. This issue, we suspect, was caused by exclusion of low-frequency candidate

bigrams, as discussed in Section 3.6.

Table 3.5 summarizes the result for word segmentation conducted on the CityU and

MSR subsets of Bakeoff-2005. Due to practical computational limits, we were not

able to run HDP and BVE-MDL on any complete subset. The result shows that our

algorithm outperforms DLG by 8 to 10 percents in F-measure, while Ent-MDL still

performs slightly better, achieving the top performance among all the experimental

runs on both subsets.

To compare with HDP, we conducted another test run on top of a random sample of

1,000 lines from each subset. We chose 1,000 lines because HDP can easily consume

more than 4GB of main memory on any larger sample. We adopted standard settings

for HDP: α0 = 3, 000, α1 = 300, and pb = 0.2. In each trial run, we ran the Gibbs

sampler for 20,000 iterations using simulated annealing (Goldwater et al., 2009).

We obtained 10 samples from the Gibbs sampler and used the average performance

in comparison. It took slightly more than 50 hours to collect one trial run on one

subset.

The evaluation result is summarized in Table 3.6. We ran our algorithm to the

desired compression ratio r = 0.65 on this small sample. The result shows that the

performance of regularized compression is inferior to that of HDP by 9 to 13 percents
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CityU-1k MSR-1k
HDP, 10 sample average .591 .623
RC, r = .65 .505 .492
RC, r = .65/punc. .599 .591

Table 3.6: Performance evaluation on two random samples from the common sets
(CityU and MSR subsets) in the Bakeoff-2005 and Bakeoff-2006 datasets. Note that
the third run is an outside test.

in F-measure for both sets. To investigate why, we looked into the segmentation

output. We observed that, in the regularized compression output, most of the

punctuation marks were incorrectly aligned to their neighboring words, owing to

the short of frequency counts in this small sample. The HDP, however, does not

seem to suffer from this issue.

We devised a simple post-processing step, in which each punctuation mark was

forced segmented from the surrounding text. Another outside test was conducted

to see how well the algorithm works using heuristics derived from minimal domain

knowledge. The additional run is denoted as RC/punc. The result is shown in

Table 3.6. From the result, we found that the combined approach works slightly

better than HDP in one corpus, but not in the other.

3.7.5 Effects of Data Size

We employed the third experiment to study the influence of corpora size to seg-

mentation accuracy. Since the proposed method relies on empirical estimates for

entropy rate to decide the word boundaries, we were interested in learning about

how it responds to relatively low and high volume input.

This experiment was conducted on CityU and MSR training sets. On each cor-

pus, we took the first k% of data (in terms of utterances) and tested the pro-

posed method against that subset; this test was repeated several times with dif-

ferent values for k. In this experiment, we chose the value for k from the set

{2, 4, 6, 8, 10, 20, 30, . . . , 90, 100}. The performance is evaluated using word, bound-

ary, and type F-measures.
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Figure 3.1: Performance evaluation for the proposed method on the CityU training
set.

Figures 3.1 and 3.2 show the experiment results. Both figures revealed similar

patterns for segmentation performance at different volume levels. Word F-measures

for both corpora begin at roughly 0.52, climb up rapidly to 0.73 as the volume grows

from 2% to 20%, and finally settle on some value around 0.77. Boundary F-measures

for both corpora show a similar trend—a less steep increase before 20% from 0.80

to 0.89 followed by a plateau at around 0.93. Here, the result seems to suggest that

estimating token entropy rate using less than 20% of data might be insufficient for

this type of text corpora. Furthermore, since performance is saturated at such an

early stage, it seems feasible to split the entire dataset into a number of folds (e.g., 5,

in this case) and solve each fold individually in parallel. This technique may greatly

enhance the run-time efficiency of the segmentor.

The patterns we observed for type F-measure tells another story. On both corpora,

type F-measures do not seem to improve as data volume increases. On CityU cor-

pora, type F-measure gradually increased from 0.42 to 0.48 and then slowly falling

back to 0.45. On MSR corpora, type F-measure peaked at 0.45 when receiving
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Figure 3.2: Performance evaluation for the proposed method on the MSR training
set.

10% of data; after that it started decreasing, going all the way down to 0.37, even

lower than the number 0.43 it received at the beginning. Our guess is that, at

some early point (20%), the proposed method started to under-segment the text.

We suspect that there is some deep connection between performance saturation

and under-segmentation, since from the result they both begin at roughly the same

level. Further investigation in this respect is needed to give out definitive explana-

tions.

3.8 Concluding Remarks

Preliminary experimental results suggest that the regularized compression method,

even only with partial evidence, seems as effective as the state-of-the-art methods in

different language settings. When paired with MDL criteria, regularized compres-

sion is comparable to hierarchical Bayesian methods and MDL-based algorithms in

terms of segmentation accuracy and computational efficiency. Furthermore, regu-
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larized compression is less memory-demanding than the other approaches; thus, it

scales more easily to large corpora for carrying out certain tasks such as segmenting

historical texts written in ancient languages, or preprocessing a large dataset for

subsequent manual annotation.

We have identified a number of limitations of regular compression. First, the choice

of candidate n-grams does not cover hapax legomena, i.e., words that occur only once

in the corpus. At present, precluding these low-frequency n-grams seems to be a

necessary compromise due to our limited understanding about the dynamics behind

regular compression. Second, regularized compression does not work well with low

volume data, since on smaller dataset the distribution of frequency counts is less

precise. Third, the algorithm may stop identifying new word types at some point.

We suspect that this is related to the choice of n-gram, since in our implementation

no two existing “words” can be aggregated into one. These issues shall be addressed

in our future work.
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Chapter 4

Static Index Pruning

4.1 Overview

In information retrieval, static index pruning refers to a task that reduces the index

size during or immediately after index construction. Doing so better utilizes the

disk space required to store the index and improves the overall query throughput

(Altingovde et al., 2009). This concept was brought to earth in the groundbreaking

work of Carmel et al. (2001). Static index pruning was motivated in the context of

Web search, by the growing need to efficiently operate retrieval on top of tremendous

amount of information. To date, it has gathered much attention for its implication

on the Web-scale text collections (Blanco and Barreiro, 2010; Büttcher and Clarke,

2006).

In a typical retrieval system, we use an inverted index to keep track of the term-

to-document mapping in the underlying text collection, and an index entry, or a

posting, records one such term-document association. Keeping the complete term-to-

document mapping in the index is usually suggested since it preserves the document

coverage for any query term, but it also poses a serious data management problem

as the underlying collection grows.

Static index pruning seeks a balance between efficiency and effectiveness in such a
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situation. By permanently removing some subset of index entries from a production

index, efficiency, in terms of disk usage and query throughput, comes at the sacrifice

of retrieval accuracy. This leads to an interesting research question: When we reduce

the index size down to some fixed ratio, how do we minimize the loss in retrieval

effectiveness?

Many previous efforts consider the impact of individual entries. Impact is the indi-

vidual contribution of a term-document pair to the final retrieval score. The idea is

to order index entries according to impact, and then remove low-impact entries from

the index, since they are less as influential in retrieval as high-impact ones.

This approach has been shown successful in practice. Carmel et al. (2001) used

retrieval scores, such as tf-idf or BM25, to assess the impact of individual postings.

Büttcher and Clarke (2006) measured the impact of one posting (t, d) based on the

contribution of term t to the Kullback-Leibler divergence score between document d

and the entire collection. Blanco and Barreiro (2010) developed a decision criterion

based on odd-ratio of relevance in probability ranking principle (PRP) (Robertson,

1997).

Alternative decision criteria other than impact have also been investigated. Exam-

ples include entropy, informativeness, and discriminative value (Blanco and Barreiro,

2007; Zheng and Cox, 2009); some of them have been shown useful in specific query

scenarios.

In this chapter, we revisit this problem in the view of information preservation. The

insight is that an inverted index is essentially a nonparametric predictive model

p(d|t), with which one estimates the likelihood of some document d being relevant

to some query term t, and pruning this model permanently removes the connec-

tions between some terms and some documents, thereby causing a loss in predictive

power. We propose using the conditional entropy H(D|T ) to quantify the predictive

power and suggest minimizing the loss in static index pruning by considering the

contribution of individual index entries to the conditional entropy as the decision
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criteria.

4.2 Related Work

The research on static index pruning is advocated by the two most popular work,

term-centric approach and document-centric pruning, which differ slightly in the

pruning strategy they take. Both methods have shown promising results in efficiency

and effectiveness on standard benchmarks. In the following paragraphs, we brief

describe these methods and discuss their strengths and weaknesses.

4.2.1 Term-Centric and Document-Centric Methods

The approach is proposed by Carmel et al. (Carmel et al., 2001), and is so named

because it focuses on reducing the posting list for each term in the index. The idea

is to keep only a subset of the postings, called the top answers, for each term t.

Generally, this is done by first sorting all the postings for term t according to some

score function A(t, d), and then permanently removing away those entries not in the

top set. Carmel et al. gave two interpretation about the top answers, one defined by

a fixed number k, indicating the top-k entries, and the other by a ratio 0 ≤ δ ≤ 1,

indicating the proportion the top set takes in the corresponding posting list.

In contrast to the term-centric approach, the document-centric pruning seeks to

reduce the posting list for each document. Büttcher and Clarke (Büttcher and

Clarke, 2006) motivated the idea by removing away less-important entries for each

document. They approached this idea from the language modeling point of view by

considering the contribution for each term t to the Kullback-Leibler divergence score

KLD(d, C) between the document d and the collection model C. By sorting all the

postings for document d according to this quantity, the document-centric pruning

method keeps only the top λ|d| entries in the index and discards everything else.

Note that 0 ≤ λ ≤ 1 is some given pruning ratio.
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4.2.2 Recent Development

Blanco and Barreiro (2010) developed a decision criterion based on the probability

ranking principle (PRP) (Robertson, 1997). The idea is to take every term in the

index as a single-word query and calculate the odd-ratio of relevance:

p(r|t, d)/p(r|t, d).

For any term-document pair, the lower this quantity, the more likely the term is

irrelevant to the document. Therefore, to prune the index, one shall sort all the

entries according to this score and remove the low-scoring ends. A parameter, ǫ, is

used to serve as the cutting threshold.

Recently, Altingovde et al. (Altingovde et al., 2012) proposed an interesting query-

view-based technique for static pruning. This technique works orthogonally with

other methods. It can be used to pre-screens the index entries identifying impor-

tant entries. These entries are marked as “do-not-prune”. The subsequent (true)

pruning method that takes over respects these marks when doing its job. Generally,

query-view method relies on external resources, i.e., query logs, to help uncovering

important index entries. By definition, the query view of a query is the the top

document returned to the user. For an l-term query, every document in its query

view is said to be associated with any of these constituent l terms. By repeatedly

running the queries collected from external sources, one can easily obtain a huge set

of associated term-document pairs.

4.3 Information Preservation

Information retrieval is a practice about ranking documents in response to infor-

mation needs. To achieve optimal performance, documents shall be retrieved in

order of the decreasing probability of relevance (Robertson, 1997). This notion of
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relevance forms the foundation of modern information retrieval. Modeling relevance

has become the most essential aspect in development of retrieval methods.

One of the major functions that retrieval models provide is to assess the probability

of some document d being relevant to some given query q, written as p(d|q). This is

conceptually true for every retrieval model, but does not necessitate explicit model-

ing of p(d|q). In some retrieval model, the probability never appear but the output,

i.e., retrieval scores, are nevertheless rank-equivalent to p(d|q).

Since a query consists of a number of query terms, in practice, this probability is

postulated as some combination, e.g., a product, of individual probabilities p(d|t)

that assess term relevance. These probabilities are evaluated according to the infor-

mation we store in the index.

The model p(d|t) is actually a nonparametric predictive model, in a sense that pre-

diction is made over the choice of documents with respect to the textual input from

users. Nonparametric models do have parameters, while the number of parameters

is not fixed. In our case of p(d|t), the parameter set is a set of tuples O stored in

the index, in the following form. Here, ft,d denotes the frequency of term t inside

document d:

O = {(t, d, ft,d)|t ∈ T, d ∈ D, ft,d > 0}. (4.1)

To model the choice in static index pruning, we introduce a conceptual construct

into the parameter space. We add a binary indicator a to the end of each term-

document tuple. When a = 1, we say that the tuple is active, meaning that it stays

in the index. When a = 0, the tuple is removed away. In an unpruned index, all the

entries are active. The resulting parameter set is now written as:

θ = {(t, d, ft,d, a)|(t, d, ft,d) ∈ O}. (4.2)
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Accordingly, the unpruned model θ0 is defined as:

θ0 = {(t, d, ft,d, 1)|(t, d, ft,d) ∈ O}. (4.3)

In static index pruning, we concern about how to preserve as much predictive power

of p(d|t) when a considerable amount of information is discarded. Generally, pre-

dictive power is measured in terms of entropy, and it is natural to consider the

conditional entropy H(D|T ) alone. Nevertheless, since predictive power also de-

pends on activeness of index entries, we suggest using another conditional entropy

H(D|T,A) to assess the predictive power of a pruned model. This conditional en-

tropy is a summary statistic regarding how difficult it is to predict the right outcome

D (document) given the predictor T (term) and A (activeness).

We first establish that the following relation holds for every choice of parameter θ

with respect to O:

Hθ0(D|T ) = Hθ(D|T ). (4.4)

The subscripts denotes the parameter set in use when estimating the conditional

entropy. Since activeness is the only difference between different settings of pa-

rameters and it is not involved in the evaluation of H(D|T ), this equation trivially

holds.

Next, we show that Hθ(D|T,A) ≤ Hθ0(D|T,A) for every θ:

Hθ(D|T,A) ≤ Hθ(D|T )

= Hθ0(D|T )

= Hθ0(D|T,A) + Iθ0(D|T ;A)

= Hθ0(D|T,A).

(4.5)

It is clear that Iθ0(D|T ;A) = 0 because every index entry in θ0 is by default active.

This equation suggest that splitting the index into subsets, i.e., the active and
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inactive sets, only reduces the overall predictive power.

In fact, a pruned index operates at a even lower level because the submodel for

the inactive set provides no information at all. Let Ĥθ(D|T,A) denote the true

predictive power exhibited by a pruned index. In the following equation, we show

that Ĥθ(D|T,A) ≤ Hθ(D|T,A):

Ĥθ(D|T,A) = pθ(A = 1)Ĥθ(D|T,A = 1) + pθ(A = 0)Ĥθ(D|T,A = 0)

= pθ(A = 1)Hθ(D|T,A = 1)

≤ pθ(A = 1)Hθ(D|T,A = 1) + pθ(A = 0)Hθ(D|T,A = 0)

= Hθ(D|T,A).

(4.6)

By writing it as an information preservation problem, we minimize the absolute

change in entropy. In this derivation, we use the true entropy Ĥθ(D|T,A) rather

than Hθ(D|T,A). Let θ∗ denote the best model and ρ denote a predefined prune

ratio. We have the following equations:

θ∗ = argmin
θ:pθ(A=0)≥ρ

|Ĥθ(D|T,A)−Hθ0(D|T,A)|

= argmin
θ:pθ(A=0)≥ρ

Hθ0(D|T,A)− Ĥθ(D|T,A)

= argmax
θ:pθ(A=0)≥ρ

Ĥθ(D|T,A)

= argmax
θ:pθ(A=0)≥ρ

Hθ(D|T,A = 1),

(4.7)

and an equivalent optimization problem is written as follows:

maximize Hθ(D|T,A = 1)

subject to pθ(A = 0) ≥ ρ
(4.8)
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4.4 Compositional Approximation

The information preservation formulation is actually a combinatorial optimization

problem. Solving this problem exact needs to consider exponentially-many possible

choices, which is infeasible in practice.

In this section, we show that an approximate solution can be found by decomposition.

The key assumption is that (i) the objective is decomposable and (ii) it can be

written as the summation of individual contributions, hd|t, of a subset of term-

document pair Oθ ⊂ O. The mathematical definition of this assumption is written

as the following two equations:

Hθ0(D|T,A = 1) =
∑

O

hd|t, (4.9)

Hθ(D|T,A = 1) =
∑

Oθ⊂O

hd|t. (4.10)

Since our goal is to find a subset that maximizes the objective, it suffices to rewrite

the optimization problem as follows:

maximize
∑

OA⊂O hd|t

subject to (1− |OA|)/|O| ≥ ρ
(4.11)

We first show that it is possible to write the conditional entropy Hθ0(D|T,A = 1)

as a summation over all the term-document pairs in the index. For brevity, in the

following derivation, we drop the subscript θ0 and the activeness condition and use

the notationH(D|T ) to denote the conditional entropy of the unpruned model.

Generally, it is written as:

H(D|T ) =
∑

t∈T

p(t)

(

−
∑

d∈D

p(d|t) log p(d|t)

)

, (4.12)

where p(t) denotes the probability of term t being used in queries, and p(d|t) is the
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predictive model that assesses the relevance between document d and term t.

The distribution p(t) is independent of the retrieval model in use. To estimate p(t),

we simply assume that it is uniformly distributed. Note that this estimate can be

further improved by using session logs. Now, we go ahead and rewrite H(D|T ) as a

summation of uncertainties hd|t contributed by individual term-document pairs to

the model:

H(D|T ) =
1

|T |

∑

t∈T

∑

d∈D

hd|t, (4.13)

where hd|t is defined as follows:

hd|t = −
p(t|d)p(d)

∑

d′ p(t|d
′)p(d′)

log
p(t|d)p(d)

∑

d′ p(t|d
′)p(d′)

. (4.14)

Consider any two term-document pairs (t, d) and (t′, d′) such that hd|t < hd′|t′ . The

formulation implies that predicting d from t requires less information than predicting

d′ from t′. That is to say, we are more certain about the connection from t to d,

and, in this case, we argue that removing (t, d) from the index has less effect on the

overall predictive power than removing (t′, d′). By setting a cutting threshold ǫ, it

is now straightforward to scan over the entire index and discard any entry whose

uncertainty hd|t is strictly lower than ǫ. In other words, discarding these entries,

i.e., hd|t < ǫ, guarantees to minimize overall information loss and to retain the most

predictive power with respect to a specific choice of ǫ.

Based on this idea, we propose a simple index pruning algorithm. It takes a threshold

value ǫ as input, then it scans over the entire index and discard any index entry

whose uncertainty hd|t is strictly less than ǫ. Algorithm 2 summarizes the proposed

procedures.
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Algorithm 2 The proposed index pruning algorithm based on information preser-
vation.
Require: ǫ
for all t ∈ T do
for all d ∈ postings(t) do
Compute hd|t using Equation (4.14)
if hd|t < ǫ then
Remove d from postings(t)

end if
end for

end for

4.5 Experiments

4.5.1 Setup

We chose two baseline approaches to compare our methods with: top-k term-centric

pruning (denoted as TCP) and probability ranking principle (denoted as PRP). We

implemented both methods using the Indri API1. Our implementation does not up-

date the document length values after pruning. For TCP, we set k = 10 to maximize

the precision for the top 10 documents (Carmel et al., 2001) and used BM25 as the

score function. For PRP, we set λ = 0.6 for query likelihood estimation, and applied

the suggested approximations to estimate the rest of the probabilities (Blanco and

Barreiro, 2010). These probability estimates are summarized as follows.

p(t|D) = (1− λ)pML(t|D) + λp(t|C), (4.15)

p(r|D) =
1

2
+

1

10
tanh

dl −Xd

Sd

, (4.16)

p(t|r) = p(t|C). (4.17)

For the proposed method, a similar setting as in the baselines was adopted to mini-

mize the effect of retrieval method. We used Equation (4.15) to estimate the query

likelihood p(t|d) (setting λ = 0.6). For estimating document prior p(d), we experi-

mented with two approaches, which are tangent approximation as in Equation (4.16)

1http://www.lemurproject.org/indri.php
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Figure 4.1: Performance results for all the methods on WT2G. Rows indicate dif-
ferent performance measures (MAP/P@10). Columns indicate different query types
(short/long).

(denoted as IP-t) and uniform prior, i.e., p(d) = 1/|D| (denoted as IP-u).

We managed to control the prune ratio at different levels (e.g., 10%, 20%, . . . , 90%.)

For PRP and IP-based methods, the prune ratio depends on a global threshold ǫ. To

prune the index to the right size, we sample the decision scores from the entire index

to estimate the percentiles, and then use the estimates to find the right threshold

value. For TCP, we manually adjust the parameter ǫ to approach the designated

prune ratio. In our experiments, the error is controlled to roughly ±0.2% in prune

ratio.

4.5.2 Retrieval Performance

We conducted a series of experiments on the LATimes, TREC-8, and WT2G cor-

pora, using TREC topics 401-450 as queries. We tested two different query types,
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Short Query (MAP/P@10 at 0%: 210/250)
MAP 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 209 206 201 193 177 168 143 124 073
PRP 211 209 207 201N 190 158 141 113 098
IP-t 210 210 207 203N 188 161 148 109 097
IP-u 210 210 207 203N 191N 164 151 104 090

P@10 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 252 244 246 238 228 218 204 194 128
PRP 254 256 254 248 234 212 172 124H 130
IP-t 250 256N 258 254 234 218 168 110H 130
IP-u 250 256N 258 250 236 224 184 116H 138

Long Query (MAP/P@10 at 0%: 235/260)
MAP 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 232 230 217 206 174 171 153 116 075
PRP 228 221 206 202 193 160 141 119 106
IP-t 232 221 215♯ 207 187 160 144 116 103
IP-u 234 221 216 204 188 168 149 113 098

P@10 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 262 264 256 242 238 234 212 188 142
PRP 264 256 242 252 248 228 174 132H 132
IP-t 258 254 254 244 244 222 164 122H 130
IP-u 256 256 258 244 242 232 182 118H 136

Table 4.1: The overall performance results on LATimes. We round down all the
reported measures to the 3rd digit under the decimal point, and ignore preceding
zeroes and decimal points for brevity. Underlined entries indicate the best perfor-
mance in the corresponding group. Entries that are significantly superior or inferior
(p < 0.05) to TCP are denoted by superscripts N or H, respectively. Analogously,
entries that are significantly superior or inferior to PRP are denoted by subscripts
♯ or ♭, respectively.

short (using title) and long (using title and description). We used BM25 to re-

trieve documents in all the experimental runs. Performance is evaluated using mean

average-precision (MAP) and precision-at-10 (P@10).

Performance result is given in both figural and tabular formats. Figure 4.1 shows the

evaluation result on WT2G2. The result is summarized in four plots, each indicating

different combination of query types and performance measures. Each method is

plotted as a curve or a series of points according to the measured performance

(y-axis) at some prune ratio (x-axis). Tables 4.1, 4.2, and 4.3 covers the detailed

2Results on the other two corpora show similar trends and are therefore omitted here.
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Short Query (MAP/P@10 at 0%: 228/436)
MAP 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 223 213 204 191 176 154 126 094 055
PRP 226 221 215 201 181 157 143 147N 103N

IP-t 227N♯ 223N 215N 202 186♯ 160 147 147N 106N

IP-u 227N 223N 216N 203 187♯ 163 143 145N 106N

P@10 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 436 434 428 430 432 388 338 288 188
PRP 438 442 456N 432 414 378 296 276 202
IP-t 436 440 444♭ 442 422 388 298 288 210
IP-u 440 442 442♭ 444♯ 424 388 302 288 202

Long Query (MAP/P@10 at 0%: 256/478)
MAP 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 249 239 230 209 188 166 136 103 064
PRP 251 239 221 204 179 161 143 147N 120N

IP-t 251 238 222 207 185 161 143 144N 123N

IP-u 250 238 223 208 185 164 142 141N 124N

P@10 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 476 478 480 456 464 436 376 322 188
PRP 490 486 472 440 408H 376 324 294 232
IP-t 478 488 460 454 410H 388 344 300 238
IP-u 482 484 462 452 410H 388 342 286 228

Table 4.2: The overall performance results on TREC-8. See Table 4.1 for the de-
scription of notation.

results on all the corpora and stresses more on performance differences. Statistical

significance in this respect is assessed using two-tailed paired t-test for p < 0.05. We

use superscripts (N and H) and subscripts (♯ and ♭) to highlight these entries.

The result shows that the performance for IP-based methods is generally comparable

to that for PRP. No consistent pattern is observed across all settings to assess one

method is better than the others. Significant difference in either MAP or P@10

between IP-based methods and PRP is detected for 10 out of 54 experimental runs,

among which IP-based methods are shown superior to PRP in 8 runs (denoted as

♯). PRP significantly outperforms only for short queries on TREC-8 at 30% and

long queries on WT2G at 80% (denoted as ♭), but the latter result is inconsistent

across performance measures.
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Short Query (MAP/P@10 at 0%: 249/414)
MAP 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 243 230 216 197 174 142 107 080 041
PRP 254N 242N 232 218 183 152 109 094 076N

IP-t 253N 246N 230 223N 194 158 116♯ 083 075N

IP-u 251N 246N 231 223N 197 151 119♯ 083 076N

P@10 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 408 404 402 384 364 342 302 252 174
PRP 418 404 402 380 366 302 232H 138H 138
IP-t 416 408 392 394 360 330♯ 256 140H 124H

IP-u 414 408 390 386 362 326 260♯ 144H 128H

Long Query (MAP/P@10 at 0%: 293/460)
MAP 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 281 252 237 206 182 147 110 085 044
PRP 275 247 222 202 173 153 115 096 082N

IP-t 283♯ 256♯ 224 211 181 158 119 089 079N

IP-u 281 257♯ 226 207 184 152 119 088♭ 079N

P@10 10% 20% 30% 40% 50% 60% 70% 80% 90%
TCP 444 420 404 394 354 332 304 240 176
PRP 436 408 404 368 334 314 240H 154H 168
IP-t 450 424 386 372 336 312 248H 158H 168
IP-u 450 420 380 376 340 302 256H 158H 174

Table 4.3: The overall performance results on WT2G. See Table 4.1 for the descrip-
tion of notation.

It is interesting to note that TCP is generally doing slightly worse than the rest

of methods in MAP but slightly better in P@10, which suggests that IP-based

method favors more on recall. This trend is observed across different corpora and

experimental settings, and is more amplified in the short query cases. Comparing

the performance for IP-based methods with that for TCP in all 54 runs, we find

that IP-based methods significantly outperform TCP in 14 (denoted as N), and

TCP significantly outperforms IP-based methods in 6 (denoted as H). The case we

have observed for long queries on WT2G at 90% prune ratio is difficult to interpret:

TCP performs significantly worse in MAP but does better in P@10.
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TCP PRP IP-t IP-u
TCP – 0.332 0.665 0.661
PRP 0.332 – 0.282 0.281
IP-t 0.665 0.282 – 0.998
IP-u 0.661 0.281 0.998 –

Table 4.4: Correlation analysis for the decision measures on the LATimes corpus.
The correlation is estimated using Pearson’s product-moment correlation coefficient,
weighted using term frequencies of index entries.

4.5.3 Correlation Analysis

Our experimental result gives rise to an interesting question that whether different

pruning methods lead to different prioritization over index entries. To investigate

the effect of pruning methods in this respect, we conducted a simple correlation

analysis on the LATimes corpus. For each index entry, we retrieved the decision

scores produced by all four algorithms and compiled them into a tuple. We collected

totally 36,497,224 such tuples. For each pair of methods, we computed Pearson’s

product-moment correlation coefficient, weighted using term frequencies of index

entries.

The result, which is summarized in Table 4.4, shows that the decision scores pro-

duced by two IP-based methods are strongly correlated (0.998). In this case, we

conclude that uniform prior is more favorable than tangent approximation in real-

world settings, since the former is easier to compute. IP-based methods also show

medium correlation (0.661 and 0.665) with TCP, which is slightly stronger than that

(0.332) with PRP. We want to point out here that, since the decision score used in

TCP corresponds to BM25, IP-based scores leans more toward BM25 in terms of the

effect on index entry prioritization. This can be useful in some other information

retrieval applications.
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4.6 Concluding Remarks

In this paper, we develop the notion of information preservation in the context

of information retrieval, and use this idea to motivate a new decision criteria for

static index pruning. In the experiments conducted on three different test corpora,

the proposed method shows consistent, competitive performance to state-of-the-

art methods. So far, there is only minor evidence to interpret the performance

differences between the proposed approach and the reference methods for specific

cases. We expect this to be made clear with further experimentation.

Our approach has a few advantages in terms of efficiency. First, term-centric pruning

has an overhead in computing the cutting threshold for each term, since a sorting

algorithm is involved to order the postings in terms of their impact values. Second,

computation for the PRP measure depends on three different probability estimates,

while the proposed IP-u measure (uniform prior) relies on only the query likelihood.

This difference can be far more amplified in Web-scale settings.

There are many ways to extend this work. One possible direction that we have in

mind is to combine weakly-correlated measures in static index pruning. Given the

correlation analysis result, we believe that doing so is feasible and can be beneficial.

Moreover, this study also provides an alternative viewpoint toward prioritization

of index entries. Impact and uncertainty are intrinsically two different concepts,

while in this very application our result somehow closes the gap in between. This

connection may lead to a new postulation toward retrieval theory. We hope that

our efforts will invite further investigation into these interesting issues.
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Chapter 5

Discussion and Conclusion

5.1 Overview

Before concluding this work, we will loosely go over some technical issues regarding

information preservation. Detailed treatment for these topics is beyond the scope

of this study, while it points to a promising direction that further enhances our

knowledge about this optimization strategy.

So far, we have studied several successful applications in probabilistic modeling and

natural language processing empowered by information preservation. In the further

analysis, we revisit these problems and focus more on the core attributes. In the

following paragraph, we briefly summarize these problems.

Partition We want to find one partitioner in a restricted hypothesis space such

that, when applied to data points, it produces the best approximation to some

known, ideal partition. Feature selection is one such example. This type of learning

is related to entropy minimization. Since the exact solution involves combinato-

rial choices, we usually solve this type of problem using iterative approximation

methods.
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Regression We search for one function in a constrained space that fits the ob-

served data best. Usually the aim in this type of optimization is to minimize the

sum of squared errors or to maximize predictive likelihood. This has been shown to

be equal to minimum entropy, and efficient algorithms are already known in some

typical examples such as linear regression, where the search space is restricted to

linear functions.

Clustering This type of problem is related to unsupervised learning. It seeks to

induce a partition over data points such that the intra-cluster cohesion is maximized,

meaning that errors are minimized inside a cluster. In Chapter 2, we have shown

that one special case of clustering, i.e., spectral clustering, is related to minimum

entropy optimization.

Segmentation In a segmentation problem, we want to build a high-level repre-

sentation over a sequence of tokens. One typical example is unsupervised word

segmentation, in which we seek to learn a lexicon of words from text corpora. In

Chapter 3, we have placed a constraint on the complexity of induced lexicon, and

solved the problem by using a regularization method. This problem is only loosely

related to minimum entropy optimization with our regularization assumption.

Degradation We seek to induced a degraded nonparametric predictive model,

by reducing the amount of stored information. In Chapter 4, we have studied one

special case of this type of problem, showing that it is related to entropy maximiza-

tion. When combinatorial choices are involved, as in static index pruning, entropy

maximization is usually solved using heuristic-based iterative methods.
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Problem Reference (θ0) Hθ0(·) Related Principles
Partition Perfect partition Low MinEnt
Regression Pointwise function Low MinEnt, MinErr, MaxLL
Clustering Pointwise partition Low MinEnt, MinErr, MaxLL
Segmentation Token representation – –
Degradation Full model High MaxEnt
Histogram Full model High MaxEnt

Table 5.1: A brief summary of problems that are solvable by using information
preservation. Each row indicates one research problem. The second column indi-
cates the reference hypothesis used in the corresponding information preservation
framework. The third column shows relative degree of entropy (low/high) for each
problem. Related principles are listed at the last column; abbreviations are used
instead of full names. The principles include minimum entropy (MinEnt), maximum
entropy (MaxEnt), minimum error (MinErr), and maximum likelihood (MaxLL).

5.2 General Discussion

5.2.1 Problem-Oriented Analysis

Table 5.1 briefly summarizes the solutions for these methods in the proposed frame-

work. For each problem, we list the reference hypothesis, the relative degree of

entropy of the reference hypothesis (with respect to that of the rest of hypotheses),

and the related principles.

There are quite a few points that we are trying to make. The first one is that

finding a usable reference hypothesis is easy. In the examples that we have shown,

these hypotheses are either (i) ideal models, as in the partition problem, or (ii) data

models, which can be trivially formed using the observed data. Case (i) aligns with

our goal in learning the ideal models. Case (ii) is a lot more interesting because

it covers many different purposes, including error minimization (as in regression

and clustering), complexity regularization (as in segmentation), and uncertainty

maximization (as in degradation and histogram.) For each of these problem, we

can easily come up with a hypothesis that we need the subsequent optimization to

approach. Since these criteria are designed to avoid information change in model

fitting, it is straightforward to translate them to information preservation.
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The second point is that information preservation is a more general concept than

entropy maximization or minimization. This is exemplified by our approach to un-

supervised word segmentation. In solving this problem, we make an assumption

in the definition of compression steps that greatly simplifies the computation, i.e.,

replacing the occurrences of some subsequence all at once. This assumption leads

to an asymptotic argument, stating that compression process increases vocabulary

entropy, so as to justify our approximation method. Nevertheless, it does not mean

information preservation problem can only be solved by reduction to entropy min-

imization. It is still possible to solve information preservation problem generally,

though it can be far less efficient to do so, according to our limited understanding

about the underlying numerical work.

These argument bring us to our last point that modeling the problem from an

alternative angle sometimes reveals new insights. In clustering, we use a probability

distribution that is not commonly seen in the literature. This choice is made not

because it makes the problem easier but it simplifies the derivation. In fact, we have

made this problem more difficult to solve than with usual approaches; as a result,

we have uncovered a new regularization approach in our hunt for the evidence of

preserved information. This may not be the case if we attempted only to reduce the

problem to some form solvable by entropy minimization.

5.2.2 Relation to Principle of Maximum Cross-Entropy

Both information preservation and maximum cross-entropy stress on finding the

probabilistic model that is closest to some reference distribution. They only differ

in the definition of closeness. Thus, it is interesting to apply information preservation

to the problems solvable by maximum cross-entropy, and vice versa. In doing so,

we may gain deeper understanding in the true merits of both postulations.

One advantage of information preservation is that absolute change in entropy is

straightforward to compute. In maximum cross-entropy, the equivalent “distance”
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term is expressed using Kullback-Leibler divergence, which imposes a stronger as-

sumption over the two distributions to be compared. Let p and q denote two such

distributions and let X ∈ X be the random variable of interest. The Kullback-

Leibler divergence between p and q, denoted as D(p||q), is not defined when there

exists some x ∈ X such that q(x) = 0 but p(x) > 0. Entropy-based distance

measures, such as ours, do not suffer from this issue.

5.2.3 Implication to Latent Variable Modeling

Part of our effort is devoted to extending the idea of information preservation to

latent variable modeling. In one of the special cases, where the dependence re-

lation between observed and latent variables appears to be deterministic, we find

that conventional inference algorithms, such as expectation-maximization (EM) or

Markov Chain Monte Carlo (MCMC), may fail to work. These methods rely on ex-

ploitation of the correlation between observed and latent variables to find the best

latent model, while in the dependence case the correlation may no longer be useful

in guiding the search.

To deal with this problem, we develop an inference method, called utility-bias trade-

off, based on the iterative approximation techniques that we have used in various

information preservation problems. The proposed framework complements the con-

ventional approaches. Specifically, it relies on two quantities, utility and bias, to

guide the search for the best latent model. Since this result is incomplete and does

not entirely fit into the big picture of this thesis work, we move the details out of

the main text. Interested readers are referred to Appendix A.3.

5.3 Concluding Remarks

The foremost contribution of this thesis is the development of information preser-

vation. This concept provides an unified way for modeling different optimization
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strategies. The proposed principle can be applied to some classic learning problems

in probabilistic modeling, such as regression and cluster analysis, and two other

natural language applications, such as unsupervised word segmentation and static

index pruning. The latter case demonstrates that our method is suitable for solving

complicated cases where other mathematical principles do not fit.

Our approach provides a common ground for relating various optimization prin-

ciples, such as maximum and minimum entropy methods. In our framework, the

optimization process is directed toward approximation for a reference hypothesis,

an essential concept that may have been implicitly implied in conventional methods.

Making this concept explicit improves our understanding about how the entropy-

based optimization criteria work. It also resolves the incompatibility issue between

entropy maximization and minimization, since in the view of information preserva-

tion, the two principles differ only in the target to approximate.

Our experimental study in unsupervised word segmentation and static index pruning

has created new methodologies toward these problems. For unsupervised word seg-

mentation, our regularization approach has significantly boosted the segmentation

accuracy of an ordinary compression method, and achieved comparable performance

to several state-of-the-art methods in terms of efficiency and effectiveness. For static

index pruning, our approach suggests a new way of prioritizing index entries. The

proposed information-based measure has achieved state-of-the-art performance in

this task, and it has done so more efficiently than the other methods.

Many interesting issues have been uncovered and remained open in this thesis work.

In the cluster analysis problem, our approach leads to a new regularization method

that has not been discussed before; estimation of the normalization factor of the

error distribution is also of theoretical value. Similarly, a numerical approximation

specifically-tailored for information preservation will have huge impact to most of

the problems that we have discussed in the thesis work. We also expect seeing more

applications of information preservation to maximum cross-entropy problems, since
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the former may serve as an economical approximation to the latter. We believe that

these directions will lead to fruitful results.

There are some related natural language problems that we look forward to applying

information preservation to, such as text summarization (as a sentence pruning prob-

lem) and named-entity recognition (as a specialized segmentation problem). Success

in these essential tasks will broaden the impact of this approach. Moreover, we ex-

pect this thesis work to create new conversations and studies as to the mathematical

principles that underpin probabilistic methods. Deeper understanding about these

principles may produce new applications or new methodologies towards probabilistic

modeling, and eventually lead to breakthrough in natural language processing.
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Appendix A

Supplementary Details

A.1 Representation System and Entropy

We define a representation system for a set of concepts. A representation system is

defined as a 3-tuple R = (C,A, g), where C denotes the set of concepts, A denotes

the alphabet, and g denotes the ruleset. The definitions for the three components

are given below.

• Concepts: Let C be the set of concepts, in which each concept refers to a

semantic units that we use to describe concrete ideas. There is no direct

connection between a concept and any language construct in written or spoken

form. We further assume that any form of higher-level knowledge can be

expressed as a sequence of concepts.

• Alphabet: We also need to define a symbol system to carry information, for

that exchange of knowledge takes place in a concrete form, e.g., as a piece of

text or speech. This set of symbols is called the alphabet, which is denoted

as A. The alphabet has to be finite but not necessarily closed. Any concept,

in order to be understood, has to be represented as a non-empty sequence of

symbols in A. Usually we call such a sequence a word.
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• Ruleset: We assume that an set of rules g exists so as to maps a concept to

a word. In fact, g acts as an injective function from C to A+; we choose the

ruleset definition just to keep this notion flexible. The definition about g is

shared among all the language users. To communicate ideas, therefore, one

employs g to express concepts in her mind as a passage (i.e., a sequence of

words) and passes it out; the recipient then recovers the sequence of concepts

by consulting the g to interpret the passage. Note that the interpretation to

a passage may not be unique when more than one concepts can map to the

same word.

For any set of concepts C, one forms a trivial representation system R0 by letting

the alphabet be of the as same size as that of C and the ruleset as an identity

mapping. In mathematical terms, R0 = (C,C, g0) where g0(c) = c for all c ∈ C. In

other words, this representation system corresponds to a language system, in which

the number of symbols is as many as that of concepts.

On one hand, this representation system is efficient, because it takes only one symbol

to represent any concept. On the other hand, this system is also very verbose,

because its alphabet is unbearably large.

Recall that the empirical entropy for X with respect to a sequence of N observations

is defined as:

H̃(X) = −
∑

x∈χ

p̃(x) log p̃(x)

= −
∑

x∈χ

nx

N
log

nx

N

= logN −
1

N

∑

x∈χ

nx log nx.

(A.1)

Lemma 1. Let X be a random variable over a set of tokens χ. Suppose that we

observe a sequence of tokens drawn from this distribution and nx be the number

of occurrences for any x ∈ χ in the sequence. For any z ∈ χ in a sequence of

N observations that is sufficiently long such that nz/N approaches 0, the empirical
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entropy for X decreases if we replace each occurrence of z in x with two tokens a

and b where a, b ∈ χ.

Proof. Let x denote the original sequence and x′ the new sequence after the replace-

ment. We write the difference between the empirical entropy for x′ and that for x

as follows.

H̃(X)x′ − H̃(X)x =

log(1 +
nz

N
)

+
nz

N(N + nz)

∑

x∈χ

nx log nx

+
1

N + nz

[

nz log nz + na log na + nb log nb

]

−
1

N + nz

[

(nz + na) log(nz + na)− (nz + nb) log(nz + nb)

]

.

(A.2)

We show that the last two terms converge to 0 less rapidly than the first two by

multiplying both sides by N + f(z) and pass nz/N to 0. As a result, the right hand

side diminishes except the last two terms; now the equation reads:

lim
nz/N→0

(N + nz)(H̃(X)x′ − H̃(X)x) =

[

nz log nz + na log na − (nz + na) log(nz + na)

]

+

[

nb log nb − (nz + nb) log(nz + nb)

]

.

(A.3)

The difference is obviously less than 0.

A.2 Rewrite-Update Procedure

The proposed algorithm relies on an efficient implementation in Steps 2a and 2b

to achieve satisfactory performance. To explore this issue, we make a simplifying
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assumption here that all the translation rule considered is of the form:

w → xy,

where w ∈ W and x, y ∈ C. Note that this assumption is made for ease of discussion;

it is possible to tailor the aforementioned algorithm in a more general respect.

In the following paragraphs, we motivate the need for developing a rewrite-update

procedure to further enhance the performance:

• In order to solve the optimization problem in Step 2b, we need to iterate

through all the possible bigram sequences, gather required statistical quan-

tities, and compute the objective value for each sequence. Specifically, to

compute entropy we need access to unigram and bigram frequencies; these

quantities, however, do not stay constant throughout iterations.

• To alter the sequence in Step 2b, we need faster access to reach the desired

positions in which the proposal xy occur. An usual solution is to employ an

indexing structure to book-keep the set of positions that a specific bigram

occurs in the text stream. In this case, we need something more than a static

indexing structure for doing this job, since in each iteration new tokens (and

new bigrams, accordingly) are introduced into the sequence.

It is immediately clear that the major challenge resides in data management. Static

data store does not fit into this scenario since tiny changes are introduced and

applied to the sequence in every iteration, and to reflect that change back to the

data becomes the key to computational efficiency. In the first place, it may seem that

a two-pass scan through the sequence is inevitable. We notice that, however, the

number of changes to the statistical quantities is linear in the number of occurrences

of the subsequence xy. In other words, only a limited number of tokens and bigrams

are affected by the change we introduce in Step 2b.

Consider the following snippets of the sequence. Let a denote the token that precedes
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x and b the token that follows y. The original sequence is as:

. . . a x y b . . .

In Step 2b, we introduce a new token z to replace this occurrence of bigram xy. The

resulting sequence becomes:

. . . a z b . . .

We can then divide the changes needed to reflect this change into the following four

classes.

1. Decrease the unigram frequencies for x and y by 1, respectively. Remove the

corresponding positions in the posting lists for x and y.

2. Decrease the bigram frequencies for ax, xy, and yb by 1, respectively. Revise

the corresponding posting lists for these bigrams as well.

3. Increase the unigram frequency for z by 1 and add add this position to the

posting list for z.

4. Increase the bigram frequency for az and zb by 1 and revise the corresponding

posting lists for those bigrams.

Based on this observation, we can update the affected statistical quantities effi-

ciently in each iteration. To facilitate this idea, we need to set up additional data

structure when the algorithm starts. These extra initialization steps are detailed as

follows:

• We store the input sequence c in an array of fixed-size integers; this array is

used in forthcoming iterations to keep track of the latest token sequence.

• We create posting lists for all the unigrams in the first place. The posting lists

also hold the unigram frequencies.
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• We keep track of bigram counts with a hashtable.

The last item seems a bit unusual because we do not use posting lists to keep track

of the bigram positions. Note that the bigram positions can be recovered by using

the unigram posting lists and the sequence array alone. We reveal more details in

the following paragraphs.

In the first half of each iteration, we iterate through bigram set and solve the op-

timization problem, as depicted in Step 2a. This is as simple as to look in the

hashtable and iterate through each entry. For each bigram xy, the objective de-

pends only on its bigram frequency and the unigram frequencies for x and for y; it

takes O(1) time to look up these quantities from the hashtable and from the unigram

posting lists. The total amount of time to determine the proposal is thus linear in

the number of possible bigrams in the current sequence.

In the second half, we replace every occurrence for the chosen bigram xy with

a new token z and update the statistical quantities accordingly. In the original

algorithm, this task is described as Step 2b. Since this procedure is slightly more

complicated, we split the replacement-update job into three sub-steps for ease of

discussion: decrement, update, and increment. The sole purpose for designing the

algorithm this way is to simplify the logic. Without this arrangement, certain bigram

combinations, such as the first and the second token being the same (e.g., xx), can

be tricky to deal with.

We use an additional array of booleans to keep track of the change we make to the

sequence. Conceptually, one can think of it as the change flags associated to all the

tokens the input sequence.

The first thing we do is to gain access to the posting list for xy. Since we do

not keep track of bigram postings, we recover this list, denoted as PLxy, from the

posting lists for x and for y, denoted as PLx and PLy, respectively. Using a merge-

like algorithm, the time complexity is linear to the size of PLx and PLy. Once this

is done, we proceed to the following sub-steps, which are detailed in the following
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paragraphs.

• Decrement: We iterate through PLxy and visit each occurrence of bigram xy

sequentially. Initially, all the change flags are set to 0. Let the position for

each occurrence of bigram xy be px and py, we scan backward and forward

in the text sequence to find the preceding and the following token position pa

and pb. Let the token at position pa be a and that at position pb be b.

For each of the three bigrams ax, xy, and yb, we check the change flags in

their corresponding positions to see if we have already decreased the count.

For any bigram, if both of its two positions have the change flags flipped, we

proceed to the next; otherwise, we decrease its bigram counts by 1 and flip

the change flags to 1 for both tokens.

• Update: We iterate through PLxy and visit each occurrence accordingly. For

each occurrence of bigram xy, we check and see if the tokens at the corre-

sponding positions has been replaced. If not, we go ahead and replace the

two tokens xy with z0. Note that 0 is the special padding symbol that we use

to keep the array organized without insertion/deletion. This is illustrated as

follows:

· · · α x y β · · ·

· · · α z 0 β · · ·

Once the tokens are successfully replaced, we remove the position for token x

from PLx and the position for token y from PLy. We create a new posting list

for z if necessary, and then add the new position for token z into its posting

list. The unigram frequencies for x, y, and z are updated accordingly.

• Increment: We iterate through PLz and visit each occurrence of unigram z

sequentially. Again, all the change flags are set to 0 initially. We follow an

analogous approach as in the decrement step. For each occurrence of unigram

z, we find the preceding and the following token positions pa and pb by scanning

backward and forward in the text sequence. Let the token at position pa be a
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and that at position pb be b.

For each of the two bigrams az and zb, we check if it has been processed

by looking at the corresponding change flags. If both flags for a bigram are

flipped, we proceed to the next; otherwise, we increase its bigram count by 1

and flip both change flags.

The overall time complexity for this algorithm is O(TN), where T is the number of

iterations and N is the length of the input sequence.

A.3 Utility-Bias Tradeoff

A.3.1 Motivation

Latent variable modeling is a statistical technique that we use to model the latent

information behind the data we observe. Such an application for modeling latent

data is central to various natural language tasks, such as topic modeling (Blei et al.,

2003) or data clustering (Macqueen, 1967; Lloyd, 1982), in which the information

about the subject of interest is not directly observable at the surface level.

To introduce this concept, consider that we have a series of observationsX1, X2, . . . , XN

drawn from a stochastic process X ∈ X , and, with good reasons, we decide to model

another related but unobserved stochastic process Z ∈ Z. Since we do not have ac-

cess to the latent data, it is not possible to directly specify a model for Z.

The idea of latent variable modeling is to specify an underlying generative structure

for X and for Z, and then establish an inference scheme for Z based on exploitation

of the structure. Formally speaking, the generative structure includes (i) the defini-

tions for X and Z, and (ii) the families of density functions for Z and for X|Z (or

the other way around, depending on how the two are related).

Let O = (X1, X2, . . . , XN) denote the observed data and L = (Z1, Z2, . . .) denote

the latent information. To infer L, we usually apply an iterative algorithm, such as
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expectation-maximization (EM) (Dempster et al., 1977) or Gibbs sampling (Geman

and Geman, 1984), to induce the latent model based on maximum likelihood princi-

ple. This is to say, inference is done through search for a model θ that maximizes the

joint likelihood Pr(O,L). We summarize this concept in the following optimization

problem.

maximize p(O,L|θ)

subject to L ∈ Z∗, θ ∈ Θ
(A.4)

For ease of computation, dependence between Z and X is usually assumed in order

to dissect the joint likelihood, but sometimes we may fail to establish the generative

argument, because it is not always so obvious to relate both variables probabilisti-

cally.

Here, we want to discuss an interesting case that the dependence between Z and X

is in fact deterministic. By deterministic dependence, we mean that the observed

and the latent variables are related in one of the following two ways:

1. Observations for X is functionally dependent on that of Z, i.e., O = f(L) for

some deterministic function f : Z∗ → X ∗; or

2. Observations for Z is functionally dependent on that of X , i.e., L = g(O) for

some deterministic function g : X ∗ → Z∗.

We argue that, in this case, the latent model derived by maximizing the joint like-

lihood is suboptimal, since, in either formulation, one set of variables fully depend

on the other and the joint likelihood Pr(O,L) thus falls back to a more primitive

form Pr(O) or Pr(L). This is usually not what we want from latent modeling, and

the inference algorithms, which rely on exploitation of the underlying correlation to

induce the right model, do not seem to work well in this case. As a consequence,

inference needs to be approached using other strategies.

This is the scenario that we use to motivate the utility-bias tradeoff framework. In
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the following development, we demonstrate how to transform the inference problem

shown in Equation (A.4) for the deterministic dependence case into another one

that does not involve joint data likelihood maximization.

A.3.2 Perturbation and Utility-Bias Tradeoff

The inference strategy that we propose to solve the deterministic dependence cases is

called utility-bias tradeoff. The idea is to associate two quantities, utility and bias, to

every possible combination (O,L), and form a multi-criterion problem with respect

to all the possible L, in which (i) utility is maximized, and (ii) bias is minimized.

This approach is formalized in the following equation:

maximize (utility(O,L),−bias(O,L))

subject to L ∈ Z∗
(A.5)

The descriptions about utility and bias are given in the following paragraphs:

• Utility indicates the value that we gain by constructing L with respect to the

observations O. It is designed in nature to be maximized, and it is suggested

to define this quantity at the application level, based on our preference over

all the possible outcomes for the latent variables1.

• Bias indicates the degree to which the constructed latent model for Z deviates

from the true model for X . Intuitively speaking, it reflects the information

gained or lost in construction of the latent model. Generally, we define this

quantity as |H(Z)−H(X)|, where H(Z) and H(X) indicate the entropy rates

for the stochastic processes Z and X , respectively. Note that the entropy rates

for Z and for X are estimated on top of L and O, respectively.

We notice that, when the two stochastic processes Z ans X are related to each other

1From the description, it may seem that utility is somehow related to the prior for Z. We argue
that utility shall be defined in a less restrictive sense, since the knowledge required for defining
utility does not necessarily lead to a full construction of a probability distribution.
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via a deterministic function, it suffices to optimize over a hypothesis space H, each

element of which is defined as a function h : X ∗ → Z∗. This technique is called

perturbation, by which we mean that we perturb the observations O with a function

h to derive the latent information L.

Note that there is an additional requirement for applying perturbation to the case

where X is functionally dependent on Z: every function h in the hypothesis space

H has to be a bijective function, for which an inverse h−1 is defined. With this

amendment, optimizing with respect to H is equivalent to that with respect to H−1,

thereby satisfying the aforementioned dependence assumption. This is a necessary

adjustment for theoretical soundness, while implementing this amendment also has

made inference in this case more difficult than in the other.

A general utility-bias recipe for the deterministic dependence case is written as:

maximize (utility(O, h),−bias(O, h))

subject to h ∈ H
(A.6)

We apply scalarization to solve this optimization problem. Scalarization transforms

a k-dimensional objective g = (g1, g2, . . . , gk)
T defined in a multi-criterion problem

into a scalar form. To do that, we specify a tradeoff parameter λ = (λ1, λ2, . . . , λk)
T

such that
∑

λi = 1 and define the new objective g′ as the dot product of λ and

g, i.e., g′ = λTg. Since in our case the objective is 2-dimensional, it suffices to

parametrize the tradeoff using only one scalar 0 ≤ λ ≤ 1.

Putting it all together, we write out the scalarized version of the utility-bias tradeoff

problem as follows:

maximize λ · utility(O, h)− (1− λ) · bias(O, h))

subject to h ∈ H
(A.7)

Finally, we solve the original problem by search for the corresponding Pareto-optimal
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solution with respect to λ in the scalarized formulation.

A.3.3 Applications

In this subsection, we briefly sketch two general applications of utility-bias trade-

off. These examples are tailored to cover both deterministic dependence cases as

discussed in the previous subsections.

Decoding Problem Consider that we communicate messages on a public channel.

In a decoding problem, we receive an encoded message r ∈ X ∗, which we believe

is a transcribed version from a non-encoded, latent message s ∈ Z∗; we want to

to induce s and the corresponding translation lexicon l : Z∗ → X ∗ that satisfies

l(s) = r based on the observed message r.

Based on the description, there is a straightforward utility-bias construction. The

key to successfully develop a solution is, however, a clever design of the utility. In

fact, there are more than one way to do it, and we generally rely on application-

specific heuristics to develop this quantity.

This problem is closely related to natural language processing tasks, such as unsu-

pervised word segmentation or topic modeling. Note that the latent message s in

this example is also referred to as concepts or latent semantics in the literature.

Model Degeneration Problem Consider that we have a nonparametric model

for X built upon a series of observations X1, X2, . . . , XN , which takes a consider-

able amount of disk space to store. In a model degeneration problem, we seek to

selectively discard observations, in light of reducing the model size while retaining

model predictability as much as possible. Obviously, there is a tradeoff between the

amount of information preserved and the amount of disk space spent, and we seek

to balance the both.
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Let r denotes the observations X1, X2, . . . , XN . We want to induce s, which is a

subsequence of r, and a corresponding degeneration function d : X ∗ → X ∗ such that

d(r) = s. To mathematically motivate “degeneration”, we requires that, for any

sequence a ∈ X ∗, |d(a)| ≤ |a|. Since one of our goals is to reduce the model size, it

seems reasonable to relate the utility to the number of observations discarded with

respect to r and d, as in:

utility(r, d) = |r| − |d(r)|. (A.8)

A.3.4 Example: Unsupervised Word Segmentation

For any language of concern, let C denote the set of tokens or characters, i.e., the

alphabet, and W denote the set of words. Generally, every w ∈ W is a string over

C. Consider that we have observed a set of utterances {O1, O2, . . . , OM} in this

language, in which each utterance Ok is a string over C. For simplicity, we write

O = O1O2 . . . OM as a concatenation of all the utterances by assuming that each

utterance is separated from each other using some delimiting token.

Suppose that O as a sequence of observations (C1, C2, . . . , CN) drawn from a stochas-

tic process C ∈ C. In unsupervised word segmentation, we seek to induce a sequence

of words (W1,W2, . . . ,WL), in which each Wj is a draw from a latent stochastic pro-

cess W ∈ W. In this respect, unsupervised word segmentation is connected to

the decoding problem discussed in Section A.3.3 and therefore has a corresponding

utility-bias solution. In the following paragraphs, we motivates the definitions for a

utility-bias construction to unsupervised word segmentation.

Hypothesis An ideal construction of the hypothesis space should cover all the

possible ways to segment the observations O, but practically it is infeasible to im-

plement this strategy. Instead, we propose defining the hypothesis space H as a set
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of ordered rulesets :

H = {hR | R is an ordered ruleset}, (A.9)

in which each hypothesis hR : C∗ → W∗ with respect to some ordered ruleset R is

a function that reduces a sequence of words from a sequence of tokens by applying

each translation rule in R in order.

An ordered ruleset R is a sequence of translation rules. Generally, every translation

rule in R takes the form

w → c1c2c3 . . . cn

for some n, where w ∈ W represents a word and each ci ∈ C represents a token.

Applying this translation rule to a string over C∗ is equivalent to replacing all the

occurrences of c1c2 . . . cn in the string to a corresponding word w.

In this light, a hypothesis hR is well-defined since we requires that the translation

rules in R be applied in order. For completeness, any token c in the string that is

not covered by any rule during the reduction is automatically reduced afterward by

using an implicit rule c→ c, since c can also be a member of W.

Utility We define the utility in terms of an estimate g for the lexical cohesion that

we gain by generalizing O into h(O). In linguistics, cohesion is the connection that

puts a piece of text together, one broader sense of which is the meaning carried by

the text. When this connection is made in the lexical context, it refers to repetitive

uses or collocation of a text. It seems reasonable here, in this light, to assume

highly-cohesive subsequences are more likely to be true words.

The lexical cohesion is usually defined with respect to an entire word type w ∈

W instead of individual occurrences of the word type. In the word segmentation

problem, we consider the following three kinds of estimates for lexical cohesion for

any word type w:

1. Frequency, by which we define g(w) = nw × (|w| − 1) where nw denotes the
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number of occurrences for w and |w| denotes the number of tokens in w.

2. Pointwise mutual information, by which we define g(w) as the pointwise mu-

tual information for w.

3. Branching entropy, by which we define g(w) as the branching entropy for w.

To motivate the definition for the utility using some lexical cohesion g, it suffices to

consider only on the unique word types in the translated sequence. In this respect,

we define the utility with respect to some hypothesis h and O as:

utility(h,O) =
∑

w∈WT(h(O))

g(w), (A.10)

where WT(h(O)) denotes the unique words in h(O).

Bias The bias is defined as the absolute value of the difference between the entropy

rates for C and for W , as in:

bias(h,O) = |H̃h(O)(W )− H̃O(C)|, (A.11)

where H̃h(O)(W ) and H̃O(C) denote the empirical entropy rate for W , estimated on

h(O), and the empirical entropy rate for C, estimated on O, respectively.

This definition attempts to quantify the change on the model predictability after

the perturbation, since it affects not only the observations but the support and

density of the underlying probabilistic process. It can be shown that this definition

has a connection to the difference between the perplexity estimates for the language

models constructed based on the word representation (i.e., h(O)) and the token

representation (i.e., O), respectively.

Combining Equations (A.10) and (A.11), we write out the scalarized utility-bias
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solution based on Equation (A.7) as follows:

maximize λ
∑

w∈WT(h(O))

g(w) + (1− λ)|H̃h(O)(W )− H̃O(C)|

subject to h ⊆ H (A.12)

Iterative Approximation Globally optimizing Equation (A.12) is infeasible since

we need to consider all the possible translation rulesets. To alleviate this problem,

we develop an iterative algorithm that allows us to explore the search space more

efficiently.

The search strategy we take is called greedy inclusion. Since each hypothesis in H is

defined with respect to some ordered ruleset R, we maintain the best ruleset B that

we have obtained so far and greedily expand B by adding new rules at the end of

the set. Formally, in each iteration, we seek to maximize the objective with respect

to all the possible rules r by forming the corresponding solution B ∪ {r}; once the

best rule is found, we add it to the end of B. This procedure is repeated many times

until the terminal condition is satisfied.

This algorithm can be made more efficient if we make two changes: (1) at the end

of each iteration, we rewrite the sequence O by applying the rule r, right before

updating the ruleset B, and (2) in each iteration, we consider optimizing over only

all the possible new rule r. This is legit in a greedy inclusion algorithm, since, in

each iteration, we effectively form a partial solution based on all the existing rules

in B and then optimize over all the possible new rules r with respect to this partial

solution.

A brief sketch of the algorithm is given as follows:

1. Let B be an empty ordered ruleset, and let O(0) be the original sequence of

tokens.

2. Repeat the following steps for each i ∈ N , starting from i = 1, until the

terminal condition is satisfied.
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(a) Find a rule r in the form of w → c1c2 . . . cn for some n, where w ∈ W

and each ci ∈ C, such that Equation (A.12) is maximized with respect to

h = h{r} and O = O(i−1).

(b) Form a new token sequence O(i) by applying the rule r to O(i−1).

(c) Add r to the end of B.

3. Output B.

In later subsections, we show that there exists an efficient implementation for this

algorithm in a simplified case when we consider only bigram translation rules.

A.3.5 Example: Static Index Pruning

Let T denote the set of terms and D denote the set of documents in a retrieval

system. Consider that we have established a retrieval model based on a series of

observations O = {O1, O2, . . . , ON}, in which each Ok = (Tk, Dk) ∈ T ×D represents

a posting for term Tk and document Dk, i.e., term Tk appears in document Dk. In

static index pruning, we seek to reduce the model size for space efficiency by keeping

only a subset of the observations in the index, denoted as L ⊆ O, and discarding all

the other less important entries. It is clear that, in this respect, static index pruning

is related to a model degeneration problem as discussed in Section A.3.3.

We complete the utility-bias definition in Equation (A.7) by specifying the hypoth-

esis space, the utility, and the bias as follows.

Hypothesis We define a hypothesis space H that covers all the possible ways for

selecting a subset of observations to keep, i.e., H = {hS | S ⊆ T × D}, in which

each hypothesis function hS : P(T × D)→ P(T × D) is defined as:

hS(O) = O ∩ S. (A.13)
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Utility The utility with respect to some hypothesis h and observations O is given

as the number of postings discarded by the selection, as in:

utility(O, h) = |O − h(O)|. (A.14)

Bias The ideal way to define the bias with respect to some hypothesis h and

observations O is to quantify how the change introduced to the model affects the

predictability. We propose developing this quantity based on the conditional entropy

H(D|T ). Formally speaking, we define

bias(O, h) = |H̃O(D|T )− H̃h(O)(D|T )|, (A.15)

where H̃O(D|T ) and H̃h(O)(D|T ) denote the conditional entropy H(D|T ) estimated

based on the original observations O and on the reduced set h(O), respectively.

This definition can be further simplified by considering the pruned observations

r(O, h) = O−h(O) with respect to some h and O. First of all, the utility is the size

of the pruned set as:

utility(O, h) = r(O, h). (A.16)

Next, we derive a simplified equation for the bias. Assume that p(d) is uniform for

all d, i.e., p(d) = 1/|D| for all d ∈ D. The bias with respect to some h and O is

written as:

bias(O, h) = |H̃O(D|T )− H̃h(O)(D|T )|

≈ −
∑

(t,d)∈r(O,h)

p(t, d) log p(d|t)

= −
∑

(t,d)∈r(O,h)

p(d)p(t|d) log
p(d)p(t|d)

∑

d′∈D p(d′)p(t|d′)

= −
1

|D|

∑

(t,d)∈r(O,h)

p(t|d) log
p(t|d)

∑

d′∈D p(t|d′)
(A.17)
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In the second line, we assume that H̃h(O)(D|T ) can be estimated based on the

current probabilistic model p and the set h(O) that we choose to keep. We also

remove the absolute value since each component in the summation is positive, i.e.,

− log p(d|t) ≥ 0. The third line follows by decomposing the joint probability p(t, d)

and applying Bayes’ Theorem to p(d|t). The last line follows the uniformity assump-

tion for p(d).

The probability p(t|d) has an interpretation in language modeling. It denotes the

likelihood of drawing a term t from the language model Md created for document

d. For brevity, we denote the probability p(t|d) as a score St,d for term t and

document d, since p(t|d) is usually estimated via various smoothing methods that

heavily depend on the implementation. We also write the summation
∑

d′∈D p(t|d′)

as a sum of scores St for term t over all the documents, i.e., St =
∑

d∈D St,d.

In a retrieval system based on language modeling, these two scores St,d and St

are generally accessible. Now, rewrite the previous equation for the bias accord-

ingly:

bias(O, h) = −
1

|D|

∑

(t,d)∈r(O,h)

St,d(log St,d − log St) (A.18)

Combining Equations (A.16) and (A.18), we write out a corresponding utility-bias

solution as in Equation (A.7):

maximize λ · |R|+ (1− λ)
1

|D|

∑

(t,d)∈R

St,d(logSt,d − logSt)

subject to R ⊆ O (A.19)

Iterative Approximation Optimization over all the possible R ⊆ O as described

in Equation A.19 is generally intractable since the number of such sets are exponen-

tially many. To deal with this issue, we propose using a greedy inclusion algorithm

to approximate the search.

The idea is maintain the best solution B that we have obtain so far, and iteratively
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expand this set. In each iteration, we seek to maximize the objective value with

respect to all the unselected postings Ok ∈ O−B by forming a new solution B∪{Ok};

the best such posting is later added into B. This procedure is repeated until the

pruning ratio reaches a predefined threshold.

This algorithm is summarized in the following paragraph:

1. Let B = ∅.

2. Repeat the following steps until the pruning ratio |B|/|O| reaches a predefined

threshold.

(a) Find a posting (t, d) ∈ O − B such that Equation (A.19) is maximized

with respect to R = B ∪ {(t, d)}.

(b) Add (t, d) into B.

3. Output B.
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