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Abstract

Most activity recognition research makes use of machineieg meth-
ods. Traditional machine methods build a model under themagson that
this model will be applied to the same environment whereréiaing dataset
is collected, which is sometimes unrealistic in real world.addition, col-
lecting data sets in every environment where the model isggi be applied
Is not feasible. Building activity recognition models in aatrhome is more
practical if we can collect the dataset in a laboratory emment, and use
transfer learning to reduce the effort of data collection.

Transfer learning relaxes this constraint, so that thaitmgiand the test-
ing dataset can be different. It has considerable succeswity machine
learning problems. In this work, we propose a knowledgestierframework
for activity recognition. Specifically, we propose a featlnased knowledge
transfer framework which can automatically find the new folation of fea-
tures to transfer knowledge between two domains. We apdyfrdimework
under two different scenarios to train activity recogmitimodels: In the first
scenario, a labelled source dataset is available, and wethawackground
knowledge about the source and target domain, but we do netdray tar-
get domain data samples. In the second scenario, we havéabetlled the
source and target domain dataset. The experimental reshdtg that this
framework can successfully extract-and transfer knowldmgyeeen two dif-
ferent domains.

Keyword: Jenson-Shannon divergence, transfer learning, actedgg-
nition, machine learning, smart home
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Chapter 1
Introduction

Population ageing is a challenge occurring all over theayahnlus it is becoming more and
more important to tend to the needs of the increasing elgerhulation. A smart home
system which can provide various services is very valuableltiers who live alone. The
smart home system would be able to provide daily servicesgrze abnormalities, and
trigger alarm if necessary. In order to offer appropriatevises, activities that residents
are performing is a key context. Therefore, activity reabgn is vital to many context-
aware applications in an intelligent environment.

Most activity recognition research makes use of machinmieg methods. In su-
pervised learning, the model.is trained from the datasesisted of features and labels.
The scenario in activity recognition making use of sup@&dikarning algorithm is that a
model is trained using the dataset collected from the enment, and is applied to rec-
ognize what activity is performed. Features are usuallsaextd from the raw data of the
sensors that are deployed in the environment, and the labekhe activities performed.
Conventionally, the model is used in the environment whidinéssame with where it is
trained. Therefore, in order to learn a model which will bedign the environment, the
dataset collected from this environment is necessary.

However, collecting and labelling data in houses can disttue daily life of the users,
or even change their behaviour. Therefore it is also necgs$saake the effect of the
sensors on users in the environment into considerationisasssed in [44]. In addition,
data collection and labelling each sample can be very coltigrefore, it would be more
practical if we can reduce the effort of collecting data irother environment before
deploying the smart home system for practical use. For el@gmpllecting most of the
data in a laboratory environment and only a few necessagy idahe house where the
users live. However, the layout of the laboratory environtrand the deployed sensors
may be different from the real environment. In this casejitienal machine learning
methods are not applicable.



Even if the layout of the environment and the sensors usealtect data are the
same, there may still be problems in applying traditionatihi@e learning methods, be-
cause the behaviour of different individuals may differeBwhen performing the same
activity, people can display a diverse range of behaviottepas. The divergence here
is on people, not on sensors. Besides, for a smart home emertnpeople can always
add or remove furniture or appliances as they wish. It is issgae to guarantee that the
environment is invariant, so it is inevitable for any inigént system in a smart home to
deal with the problem of the difference between the trairming the testing datasets.

In transfer learning, the environment of the training arsditg datasets can be differ-
ent. Knowledge is transferred from a source domain to a talgmain. Only reusable
knowledge is extracted from the source domain to facilitaéetask in the target domain.
Transfer learning deals with the problem of not only knowleéxtraction but also knowl-
edge evaluation to facilitate the learning process. Bugdire activity recognition model
for a smart home environment will benefit from a kind of knodge transfer mechanism
which can extract and transfer knowledge correctly. On therchand, if we inappropri-
ately transfer knowledge between two domains, the traresfdmowledge will not only
fail to facilitate the learning process, but also hurt thedeigperformance. This phe-
nomenon is called negative transfer, which should be ptedewhen applying transfer
learning method in any learning tasks.

In this work, we proposed a feature-based knowledge trafrsimework to help to
build the activity recognition model under a smart home emmnent. We empirically
show that this framework can appropriately reuse the etdddanowledge under different
scenarios when we deploy a smart home system into an envéronm

1.1 Problem Definition

It is necessary to bring in transfer learning when there dferences between the source
and the target domain. In the aspect of smart home envirotsinéie difference between
two environments is mainly on

1. Collection of sensors: the number of sensors, the spdwmicaf sensors, sensor
types, and the layout of the environment.

2. Activity: the set of activities performed in the enviroan.
3. Resident: the habits and the patterns of behaviour of Sideets

Formally, letX, and X; be the source and the target domain feature setsyaadd
Y; be the corresponding label sets. The three cases can beariae as
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1. Collection of sensorsX; # X;.
2. Activity: Y; # Y.

3. ResidentP(X,) # P(X,), P(Y.) # P(Y;), andP(Y,|X,) # P(Y| X,).

In this work, we focus on the first case, that is, the diffeeeatthe two domains is
on the collection of sensors. Therefor®, # X,;. We assume that residents perform
the same set of activities in the environment. In additibis assumed that there is only
one resident in the environment, and we do not take into denaiion the divergence of
behaviour between the resident in both environments. Wedwdl with the difference of
the set of sensors between two domains.

1.1.1 Scenario Settings

There are two scenarios which we will be concerning:

1. The dataset collected in a laboratory environment idaiai, and we are preparing
to deploy sensors to the target domain environment.

2. The dataset collected in a laboratory environment islabia, and we have col-
lected some samples in the target environment.

In the first scenario, we have not started to collect datagndiget domain, but we assume
that the background knowledge about the sensors in the twicoements is available.
Namely, we know what kind of sensors will be there in the tweiemments. We also
know the information about the layouts of the environment$ where these sensors are
going to be deployed. The input under this scenario is a lethelataset in the source
domain, and the background knowledge about both the soutéha target domain. In
the second scenario, the inputs are two labelled datasets.

The output of our work is a description about how to reforrteiléne source and
the target domain datasets to transfer learnt knowledges ddscription can be used to
create a new source domain dataset to train activity retogninodels, and to convert
the samples collected in the target domain.

Using ambient sensors instead of cameras or microphonenegly preferred in a
smart home environment due to privacy issues. Moreovengusearable sensors may
affect the applicability of the smart home system. Thereftre experiments in this work
are carried out using the datasets that only contain datplsaftom ambient sensors.
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1.2 Proposed Solution

An overview of our proposed framework is shown in figure 1.Xremsfer knowledge

to solve the activity recognition problem. The frameworlaifeature-based framework
which is based on the assumption that the feature similbatween the two domains is
given (as the domain knowledge) or computable (from thesgésq. The feature similarity
in figure 1.1 essentially gives the degree of similarity bedw features, which is vital to
all other procedures in the framework.

We use two procedures to compute the description of how trmeflate feature sets.
First, in the same dataset, we first combine similar feattogsther and dissimilate these
features, which are done by feature reformulation. Secbetlyeen two datasets, we
compute a mapping of features according to feature siryilawmithe feature alignment
procedure. With these two procedures, we get a new featturdiehe datasets will be
represented using the new feature set to transfer knowledue detailed description of
the framework is given in chapter 3.

The reason for naming this frameworkfasture-basedramework is that knowledge
evaluation is executed on each features, not on the fullifeaget. The information ex-
tracted from one feature is evaluated and compared withnfleennation extracted from
another feature.

We say two features are similar if the provide highly cortetiinformation to infer
the label.

1.3 Contribution

The proposed feature-based knowledge transfer frameveorkitectively extract knowl-
edge from one domain and make use of it in another. This fedtased framework
provides a new method which can transfer learnt knowledgeedisas give a possible

4



direction to evaluate the quality of the transferred knalgl= We will show that this

framework can be used under two different scenarios—whéntbe dataset collected
in the laboratory environment is available, and when thessendeployed in the target
environment have started to collected some data samplés.pdissible to choose how
to transfer knowledge according to the situation at hand.reideer, the feature-based
knowledge transfer framework may also be used to give a dication of the divergence

between two datasets. If there are more than one candidateesdomain datasets, it is
possible to give a measure to select a better one to transber&dge.

1.4 Overview

In this work, we will review related studies in activity regration using transfer learning
in chapter 2. Since feature similarity is one of the main congmt in this framework,
we will also review some methods which measure similaritgiferent kinds of objects.
After that, we describe the proposed feature-based kng@lgdnsfer framework in chap-
ter 3. The detailed procedures of this framework are givesertion 3.2 and 3.3. The
experiments we performed, including the description ohsdets, detailed data prepro-
cessing methods, parameter settings, and the experinmestdis are given in chapter 4.
Finally, the advantages and the disadvantages of our pedpmamework is discussed,
and possible extensions are given in chapter 5.






Chapter 2

Related Work

2.1 Transfer Learning

Traditional machine learning focuses on learning from sletathat are assumed to have
the same distribution as the prediction target, namelytvtiodask are the same. Recently,
there has been research on generalizing and utilizingéeddtnowledge to not only iden-
tical tasks but also related ones in machine learning, whih become an important
research area which makes machine learning more applitableplications in the real
world.

Multi-task learning, for example, aims to learn severaksaat the same time [7].
Transfer learning focuses on learning information from eneéronment to facilitate the
learning process on another task [46]. Among these studiest of them are applied
to the scenario that the feature sets or the label sets ofatasets are different, but the
problem domain or the task is related. For example, datase¢bte white wine and red
wine are respectively used as the source and target domi@isedao predict the quality
of the wine in [6]. A method that can be used to extract knoggeflom one handwriting-
digit dataset to an English handwriting dataset is propasef@dO]. Research under this
kind of scenario can also be found in [36, 53, 54, 55, 29, 38|tl@ other hand, there are
also some researchers proposed methods to utilize knoavleetgveen different problem
domains. In cognitive science, this kind of learning hasnbsteidied that knowledge
Is transferred through domain analogy [19, 16, 27]. In maeHearning, researchers
have also proposed some methods dealing with this kind ofilegin [51, 35, 32, 34].
The theoretical analyses on the probability and limitatddhearning between different
tasks have been studied in [1, 2, 3, 13, 4]. The categorizatidransfer learning can be
found in [37]. A survey about transfer learning in differéedrning models, especially in
reinforcement learning, is available in [47].
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2.2 Transfer Learning in Activity Recognition

Recently, there are a number of studies applying transfemilggato activity recognition
that uses ambient sensors in smart home environment, angegoisoportion of which is
on the divergence of the source and target domain betweerantddow sensors are used
to collect the datasets. Most of them make the same assumtptad similar sensors or
features play similar roles in the tasks. Therefore, theythe pairs of sensors or features
which are similar to transfer knowledge.

In [49] and [50], knowledge is transferred by identifyingetproperties of sensors.
In [49], function groups of sensors are defined and used taalgmmap the sensor data.
After that, a semi-supervised learning method is used taigpgarameters in hidden
Markov model (HMM) [39]. The semi-supervised learning nuethused in this research
is Expectation Maximization (EM) algorithm which make ugdoth labelled and unla-
belled data samples. In [50], they defined meta featuresfts®'s in datasets. The meta
features of sensors are used to decide the mapping of sévetarsen two datasets. Hy-
per parameters of HMM parameters are defined, and labelledesdomain data samples
are used to estimate these hyper parameters. After that)dgvitam is used to learn the
parameters and hyper parameters by using unlabelled agltEldiiif available) target do-
main data samples. The function groups and meta featurbese two papers are defined
according to prior knowledge of sensors in the environment.

Instead of mapping and merging sensor data according to prmwledge about the
environment, an iterative parameter updating algorithidTH (Home to Home Transfer
Learning), is proposed to find the mapping between not ongaes but also activities
of different houses in [41]. In that paper, they define magpimatrices for both sensors
and activities. These mapping matrices are computed iitehafrom source and target
domain datasets, not from background knowledge of sensors.

Another scenario of transfer learning in activity recommitis under the assumption
that the set of sensors in source and target domains arerttes bat activities performed
are different. In [22], sensor data in source and the targetains share the same feature
space. The difference in the two domains is on their labatepahich are the set of the
performed activities. Therefore, it is necessary to findtbatrelationship between two
activities in different domains. In their paper, web minteghnique is used to compute
the similarity of activities. These estimated similaritydssource domain datasets are then
used to create a pseudo training dataset. A target domaisetas not necessary.

In addition to the smart home environment, activity rectignican be applied to other
kind of environments, and transfer learning can also be itisegtessary. For example,
restricted Boltzmann machines (RBMS) is used in [52] to trankf®wledge between

8



two domains with the same labels but different featurestufreaets of source and target
domains are both mapped to a common feature set, which isderhildyer in RBMs.
As a result, similar features are automatically groupeettogy by the RBMs. Unlike the
work we mentioned above, datasets used in this work are Hletted from a smart home
environment. Information about activities is extracteshirsome on-line dictionaries to
help recognize both known and unknown activities in vidaps;lwhich are the target
domain dataset. Their method is applied not only to actikgyognition but also to a
cross-lingual sentiment analysis problem. A survey abrarsfer learning in activity
recognition is available in [11].

2.3 Similarity Measures

In one of our scenarios, it is assumed that we the have baskdrknowledge of sensors
in both source and target domains. If similarity of featusesxplicitly given, transferring

knowledge from one domain to another would be easier. But istim@ses, information
about feature similarity is not available. We introduce sasimilarity and divergence
measures of different kinds of objects in the following g&tt

2.3.1 Fori.i.d. Random Variables

Given two random variableX andY. If all the samples inX andY are independent
and identically distributed (i.i.d.), a commonly used meas for the relatedness of the
two random variables is correlation coefficient. Correlatboefficient evaluates degree
of linear dependency oX andY. Assume we have pairs of dafér1, 1), ..., (Tn, Yn)}
sampled independently from a functipaX, Y'). Correlation coefficient oK andY” is

Cov(X,Y)

Py = v/ Var(X)y/Var(Y) 1)
> i(@e —2)(yr — 9) 2.2)
V2ie =232 (s — )

whereVar(X) andVar(Y) are the sample variances, and= £ >, z; andy = + >~ y;

are sample means of andY respectivelyCov (X, Y) is covariance ofX andY'.

In information theory, we can estimate the amount of infarareof random variables
from their distribution. Mutual information of two randonmawablesX, Y is used to
evaluate the amount of common information in them, whicheifsretd as

p(X,Y)

I(X;Y) =) p(X,Y)log S0P

9



If X andY contain no common informatiord(.X;Y) = 0. In this case, we would
say thatX andY are not similar.

On the other hand, if we want to evaluate the divergence ofrmdom variables by
their probability function” and (), we can use KL (Kullback-Leibler) divergence [28].
KL divergence, or relative entropy, of distributiofsand( is defined as

P(x)

Q(x)

It can be shown thab(P||Q) > 0 with equality if and only ifP = Q.
Although KL divergence is a commonly used method in manyaedeareas, it has

D(P||Q) = ZP log

(2.3)

some disadvantages. First, as we can observe from equalpKI2 divergence is not
symmetric, which means thd?(P||Q) # D(Q||P). Moreover, the value of KL diver-
gence is not bounded above. Some new divergence measurebd®v proposed based
on KL divergence. One of these measures is Jenson-Shanesgetice [15]JSD (P, @),
which is defined as

ISD(P(Q) = £ (KL(P|IR) + KL(QI|R), (2.9)

whereR = ££€.
Itis easy to see that Jenson-Shannon divergence is syranaetd its value is bounded

in [0, 1] when we use base 2 logarithm.

2.3.2 For Non-i.i.d. Random Variables

Random samples in some research topics are not independeidieatically distributed.
For this kind of data samples, we may want to find meaningftiepas or predict values
from them. For example, in time series analysis, we may kerasted in finding the
property that changes constantly over time, or becomesiamtan the long run from the
data samples. In the former aspect, we may want to find thd trethe seasonality of the
sequence; in the latter one, we aim to decide whether theesegus stationary or not.
All these properties are dependent on the order of data ssmpkthe sequence. These
properties change if we permute these samples in the segugecause data samples are
not i.i.d. and the order of samples is important, methodsl tiseanalyse i.i.d. samples
are no longer appropriate to analyse sequence data. Foipexasample variance does
not capture the relationship between two adjacent samplas ordered sequence, so the
similarity in the sense of “order” will not be found by usirtgg statistic. In addition, after
randomly permuting samples in two sequences using the samaugation function, the
covariance and the KL divergence will be the same, but thedtod these two sequences

10



may change. Therefore, it is necessary to use other sitgilagasures if we are dealing
with sequence data.

Two kinds of similarity measures used to analyse time sela&a are given in [25].
The first kind of similarity measures consider the similadt the shape, and another kind
of similarity measures evaluate the similarity at the dtrted level. They are respectively
called the shaped-based similarity and structure-basaithsity measures [31].

Let S, = {X;}I, andS, = {Y;}!", be two time series. Assume andn are
equal. Euclidean distance, also known as the L2 distanoheased as a kind of shape-
based similarity measure that estimates the distanég ahd.S, by using the following
equation:

n

D(S.,5,) = ([ D_(Xi = Yi)?
=1,

This method estimates the distance between two time seyiesrsidering the dis-
tance at the same time stamps. However, for two time seri@stdat one of which is
just a shifted sequence of other, Euclidean distance mbioféind that they are similar.
Dynamic time warping (DTW) [5] is a method using dynamic peogming approach to
align two time seriess, and.S,. The time axis may be stretched or compressed to fit the
two time series, and their length andn can be different. For two time series which are
only differ in their time stamps, it is possible to use DTW tadfitheir relatedness.

Instead of comparing the shape, structure-based singilargasures extract global
features from time series data, and use these features tsuraeihe similarity of two
time series data. We can compute statistics such as meas valiance, skewness, and
kurtosis from the data. One of the commonly used statisttiie-correlation

Let o, be the variances of time seri€s, auto-correlation function evaluates the de-
pendency of the-th and thes-th element in this sequence:

Another statistic that evaluates two elements in diffeseiguence data soss-correlation
Cross-correlation function can be used to estimate the digpey of the--th elements in
S, and thes-th element inS,:

E[(X, — X,) (Y, — Y))]

040y

Auto-correlation function and cross-correlation funotineasure the similarity of ran-
dom variables in the sequences with time delay|s — r|. They measure the divergence
of a sequence or two sequences at only two time points, rttherin a total view. These
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two measures are the extension of correlation coefficient,can be applied to sequence
data.

One divergence measure based on KL divergence for two Madguences is Kullback-
Leibler divergence rate, which is:

1
lim —D(P,'[|P))

n—oo N,

where P and P are the probability functions of a lengthsequence. This measure,
however, can not be applied to any sequence data. It is shoatriltere exist two se-
quences such th%t_ir>noo sup %D(PQ?HP;) # nl_ir>noo inf ED(P;,”‘HP;), which means that
Kullback-Leibler divergence rate does not exist in [43].

2.3.3 Similarity Measures for Strings

String is a special type of sequence data that elements iayitmat be numerical. There-
fore, these elements may not be comparable. As a result, s@asures in section 2.3.2
are not applicable. Before introducing functions to meastii@g similarity, we give
some notations and terminologies of strings.

Let X be the set of alphabets. #tring s is a sequence of alphabeiss; ... that
s € ¥*. If a string is with lengths, thens = s, ... s,. For such a string € X", we
have|s| = n. A null string s.is with |s| = 0. Theconcatenationof two stringsu, v is uv,
and their lengthuv| is |u| + |v|. Letz, u, v, andw be strings. Ifr = wvw, we say that,
v, andw are respectively thprefix, substring, andsuffix of x. A stringt = ¢ty ...t,, IS
asubsequencef s if there is astrictly increasing functiory : {1,...,m} — {1,...,n}

thatt; = ss;). For example, “ca”, “ct”, and “at” are length-2 subsequenoé string
“cat”, but “ac” is not. Ift¢ is a subsequence af we define the length of in s to be
ls(t) = f(m) — f(1) + 1. For example, ils="cat”, t;="at”, andt,="ct”, then (,(t,) = 2
and/,(ty) = 3.

If two strings are similar, it should be easy to transfer frame to the other. Under this
idea, we can measure the divergence of two strings by cansidiecostof transferring
from one string to another, which is the edit distance of timmgs. Besides the cost, we
can also estimatihe amount of informatiowe need to transfer one string to the other as
the distance. This kind of method is based on Kolmogorov dexity.

Kolmogorov complexity of string, K (s), is the length of the shortest binary program
which computes. K (s, t) is the length of the shortest program that computes baifd
t, as well as having a way to tel| ¢t apart. Conditional Kolmogorov complexitl (s|t)
is the length of the shortest binary program which computgsent. By Kolmogorov
complexity, information distance of two stringsandt¢, E(s,t), can be defined as the

length of the shortest binary program to transféo ¢ andt to s. i.e.,

12



E(s,t) = max{K(s|t), K(t|s)}

By normalizing the information distance, we have the noreaaliinformation dis-

tance (NID) [30]:
E(s,t)
max{K(s), K(t)}

Note that Kolmogorov complexity is a theoretical lower bduand it is generally not

NID(s, t) =

computable. Therefore, the compression length of a stsnged instead as an approxi-
mation. LetC' be a compressor, and(s) denotes the length of compressingsingC.
The compression distance o&ndt usingC' is

E.(s,t) = C(st) —min{C(s),C(t)}
and the normalized compression distance (NCDy ahdt¢ cab be defined using. and
C [30]:

E.(s,t)

QDG D = Baditih), C )

Another analogous similarity measure which is also basethtencompression is pro-
posed in [26]. This measure is called compression-basethdiarity measure (CDM).

The equation of CDM is
C'(st)
C(s)+ C(t)

CDM is close to 1 ifs andt are not related, and is close %df s andt are similar.

CDM(s,t) =

CDM will never be zero even when= t.

2.3.4 Similarity Measures Using Kernel Method

Kernel methods have been successfully used in patternsasapd machine learning.
Given a domainD, we can use a map that maps any elememnt € D to a feature
spacefF and perform inner product of two elementsinby defining a kernel function
k : D x D — R. Note that the inputs of are elements i®, so it is usually not necessary
to explicitly define the mapping.

For example, if the objects we deal with are vectors, we campee their similarity
in their vector space. For two vectaks = {z1,...,x,} andY = {y1,...,y,}, we can
use linear kernel function to estimate the similarityofindY’, which is the inner product
of X andY, (X,Y) = >"" | z; * y;. For two non-zero vector¥ andY’, (X,Y) = 0 if
and only if X andY are orthogonal.
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A normalized version of linear kernel is the well-known aesisimilarity, which is
cosine of the included angle &f andY. Cosine similarity is defined as:

(X,Y) _ > i TiYi (2.5)
XV > a2/> w2
In cosine similarity, two vectors are similar if they are ganin direction. The length
of vectors is not taken into consideration. It can be seemthigafunction of correlation
coefficient and cosine similarity are the samexit= 0 andy = 0 from equation 2.2
and 2.5.
Another well-known kernel function is radical basis functiRBF) kernel which is

defined as: ,
[z —yll )
202
wherez andy are two objects thdtz — y||, mostly is Euclidean distance, is defined. It

is easy to see that RBF kernel is maximized whes y, and decreases whejp — y/|

k(I,y)IZZGXp{——

increases.

Given two sets of sampleX¥ andY’, let their feature maps bg,: X — F andg,:
Y — G whereF andg are Reproducing Kernel Hilbert Spaces (RKHS) with kernel
functionsk, andk, respectively. Givemn,,, the joint probability measure of andY,
the Hilbert-Schmidt Independence Criterion (HSIC) [20], e¥his the square of Hilbert-
Schmidt norm of the cross-covariance operator fioto 7, is defined as:

HSIC(p,y, F,G)
= Lzl yy ke (, :U/)k‘y(y, y/)] + Bz o (K (, zl)]Ey,y’ [ky(?/a y/)]
—2E, y[Eulk.(z, x,)]Ey’ Ky (y, y)]]

where(z,y) ~ pxy and(z’,y’) ~ pxy are two independent pairs of random variables.
HSIC(p.y, F.G) = 0 if and only if X andY” are independent.

It is also possible to define kernel functions for strings. Byng kernels, we can
evaluate the similarity of strings using kernel methodsnivistring kernels for similarity
measures can be found in [33]. We select some of kernel fumetirom this literature
and introduce them below.

In p-spectrum kernel, we first define a feature map

Pu(s) = [{(vi,v2) 1 s = viuve) |, [u| = p,

which is the number of times the lengphstringu occurs ins. Thep-spectrum kernel is
defined as:

kp(s t) = > @h(s)dh ()

ueXP
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If we give different weights /w, for eachu above, and check all possible sub-strings,
we will get another kernel function:

k(s 1) = > duls)ou(t)

uer*

whereg, (s) = Jwy|{(vi,v2) : s = viuve)}|.
If instead of sub-strings, we use sub-sequences to defingtring kernel function,
we can compare strings by inexact matching. &.dte a subsequence ef we define a

feature mapping:
¢u(5) — Z )\fs(v)’
VES,V=U
where\ € [0, 1] is a parameter. The lengghstring subsequence kernel is
k(s,) = D gul&)ou(t)= D50 D A0
ueXP UEXP vES,v=uvEt,v=u

For example, les="cat” and¢=“cart”, then ¢« (t) = A\*. Common subsequences
which can be used to compute the kernel function is “c”, “d”, “ca”, “ct”, “at”, and
“cat”. In our example, ifp = 1, k,(s,t) = 3X%;if p = 2, kp(s,t) = M+ X5+ N7,
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Chapter 3

Feature-based Knowledge Transfer
Framework

The feature-based knowledge transfer framework is applidohd the mapping of fea-
tures between two domains to transfer knowledge. We firshéeafihat is mapping be-
tween two sets:

Definition 1. A mappingM : F — G is a binary relation between two feature séfs
andg. In addition, if(f;, g;) € M(F,G), we say featur¢, ¢ F andg; € G are mapped
together.

In our framework, sets- and¢g are feature sets in two domains. We compute the
mappingM betweenF andg. Knowledge is transferred based on this mapping. Let
F=Af,fo, .., fs} andG = {g1, 92, ..., gz} be two sets of features in source and the
target domains respectively. Assuffie< S. A mappingM : G — F can be defined (If
T > S, we defineM : F — G), and a matrixC' can be computed givei:

Cij:{ 1 M(gz):fja

0 otherwise

We compute the new feature sets from original feature setiseofwo domains and
the matrixC, and instead of using the original feature sétandg to learn and test the
model, we use new feature sefsandG. The elements’;’s and g;'s in the two new
feature sets have the following propertf; = fjandg, = g; ifand only if C; ; = 1.
That is, only those features (# that map to any non-empty elementfi and only those
features inF' that are mapped by any non-empty elementzinare used in training and
testing procedures. The correspondence of these featamelsecfound from matrixC.
Therefore, giverC’ or M, we can compute and ugéas the new feature set of the source
domain dataset an@ as the new feature set of the target domain dataset.
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We computeM and the corresponding matiixaccording to the divergence/similarity
between any two features in different domains. What idiliergencésimilarity of fea-
tures? Generally speaking, measuring similarity is a e estimating theistance
between two objects in a problem domain. The data type otttban be random vari-
ables, structured data, images, strings, etc. Distan@esketobjects reflects their degree
of similarity. In this work, objects are features, and featuare extracted from sensors.
Therefore, similarity of a feature is affected by the simiileof sensors that it is extracted
from. Generally speaking, if the information two featuresvyides is highly correlated in
the sense of predicting the label, we can say that the twaresare similar. Therefore,
in activity recognition datasets, when two features areaextd from the same set of sen-
sors or different sensors that can provide analogous evi@ntexample microwave and
toaster for the event of preparing the meal, we say they aréasi

As a result, we say that featufeandg; are similar in the task of inferring the label
¢ in the label set. if the two features provide highly correlated informatiar’t We can
decide the mapping only if we can measure the relatedne$e affformation. Here is a
definition for similarity:

Definition 2. Leth; : R x S — R be a function that can measure the relatedness of
the information two elements iR and S provide toL. For three elements; € R and
sj, sk € S, it hp(ri, ;) < hr(rs, Si), We sayr; is more similar tos; than tos, or the
divergence between ands; is less than the divergence ofand ;.

By the definition above, we define the feature similarity:

Definition 3. Let f; € 7 andg; € G be two features in two datasets, ahds the set of
labels. If there is a functioh, : 7 x G — R as we define in definition 2 thai, (f;, g;) ~
miny by (fx, g;), we say thatf; is similar to g; in the feature sefF under the task of
inferring L, or briefly f; andg; are similar without ambiguity. If; = argmin, hy(fx, g;),
then f; is the most similar element tg.

In our framework, iff; andg; are highly similar, we want to map these two features
together. Note that if there is more than one possible chafi¢enction i, it is possible
that the result of these functions is not consistent. Thecehaof the similarity measure
functionh; may affect the result of deciding which two features are lsimand therefore
make the computed mapping different. It would be necessadentify some properties
or criteria to choosé, instead of considering all possible choices.

In the following sections, we explain the details of the megd framework. An
overview of this framework is given in figure 1.1. The featoeéormulation procedure
Is used to make each feature provide different informatamng the feature alignment
procedure is used to automatically compute the feature mgpphese two procedures
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depend on feature similarity which is assumed to be avalabtomputable. The feature
similarity procedure can provide necessary informatioth&two procedures: In feature
reformulation procedure, it may need to provide the infaramaabout whether two fea-

tures in the same datasets are identical or not; in featigeraént procedure, it needs to
give the estimation of divergence of features in two dataset

The purpose of this feature-based knowledge transfer framieis to align similar
features in different domains before a learning algorithants to train a model. Since
this framework is run when preprocessing datasets, it cappked to any existing learn-
ing algorithms after extracting features. Although theliagion we aim at is building
activity recognition models in an intelligent environmgthis knowledge transfer frame-
work should be available for more general usage. Knowledgebe transferred between
two domains by applying this framework as long as we havelaiityi of features.

3.1 Feature Similarity

In definition 3, we defined the meaning of similar featuresoun framework, it is neces-
sary to estimate the similarity between any two pairs ofuirsgt between the source and
target domain if it is not given. The problem of definition 3hsit the functior;, is not
easy to define. Different functions are only suited to vasiscenarios.

In this section, we only discuss some general issues of magsimilarity of features
from different datasets. The specific methods that we hapéeapto estimate feature
similarity will be discussed in chapter 4.

3.1.1 Issues on Measuring Feature Similarity

The adopted similarity measure in this framework shouldide &b measure the related-
ness of the information a feature can provide to infer thellabherefore, it is necessary
to take this requirement into consideration. Moreover,ould be better if the similar-
ity measure can be related to the learning model. For exaraanilarity measure for
sequence data should be used with a learning model for timess#ata, and when a
learning model based on the distribution of the data is usiedlarity measures based on
their probability distributions would be more suitable.

Measuring similarity of features in different datasetshsalenging. A reason is that
we usually do not have a dataset that contains both theserdsaat the same time.
Namely, it would be very difficult to estimate the joint prdiilgy of them from datasets
directly without any assumption. As an example, recall thetual information of random
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variablesX, Y:
p(X.Y)

p(X)p(Y)

We can see from this equation that if we can not comp(ié Y'), estimating/ (X; Y)

I(X:Y)=> p(X,Y)log

IS not possible.

Defining an appropriate similarity measure case by case magbessary. According
to whether the labelled target domain data is available i proposed different meth-
ods to estimate the feature similarity in this work. If thegiet domain data are available,
we can estimate feature similarity from data. In this cdse fanction/;, in definition 3
and 2 we chose in our experiment is expected Jenson-Shatvergahce. Otherwise,
we defined sensor profiles from background knowledge, andhese to estimate the
distance of features. These methods will be described iptehd.

3.2 Feature Reformulation

The first procedure in this framework is feature reformolatiThis procedure should be
executed before the feature alignment procedure becaededture divergence used in
the feature alignment procedure will be estimated agaer affformulating the features.
This procedure is necessary when we have one of the follogitngtions:

1. One featurd; contains various information about more than one featuré€s i

2. More than one features A provide similar information to a feature i

In figure 3.1, we show two examples that feature reformutaiBaneeded. In the situ-
ation of figure 3.1(a), if we only majp, andg, together, we lose some useful information.
It would be better to separate featufie Similarly, in the situation of figure 3.1(b), we
do not want to just mapgs andg; together and lose the information thatcan provide.
Ideally, we want to separate the information tliatan provide in to two parts, and merge
one of them tof; to make all features provide highly divergent features asagedo not
lose any information, as shown in figure 3.2. Therefore, tleali feature reformulation
procedure implementation should have the following twqoerties:

1. Make features provide highly divergent information tteirthe label.

2. Information loss caused by the feature reformulatiorcedore should be mini-
mized.

We will introduce our feature reformulation implementatifor the two scenarios
mentioned in section 1.1.1. Our implementation, howeveesdnot satisfy all the two
properties.
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3.2.1 Feature Reformulation by Using Data Samples

In information theory, entropy is used to describe the amof@imformation in random
variables. Let{ X;}" . be the random variables of features, ande the random vari-
able of labels. The amount of information these featuredatorcan be expressed by
Shannon entropyd (X1, ..., X,,) if X;’s are discrete [42]. For continuous random vari-
ables,h(z1, ..., h,), the differential entropy, can be used. Note thdtX,,..., X,) <
Yoo H(X;) andh(Xy, ..., X,) < Y7 h(X;) with equality if and only if X;'s are
independent, no matter they are discrete or continuouranariables [12].

If a labelled dataset is available, we compute the transdtion L. , with transforma-
tion matrix A from data. L4 can be linear or non-linear transformation. In this work,
we focus on the linear case. LEtlenote the mutual information function in information
theory, andX = [ X1, ..., X,,]T. The two properties we given above can be expressed by
the following two equations:

1. H(X) = H(AX), and
2. Vi, j, I(La(X;); La(X;)|Z) =0,

where X; and X; are respectively random variables of featufesind f; in the same
dataset.

The two equations above means the Shannon entropy of tredsed® before and after
applying the linear transformation is the same. Also, gitrenlabel, any two features in
the same dataset provide independent information to tled. Ialote that it does not seem
to be possible to find a unique transformation which can ma&ertutual information of
two features given the label to be zero, since the jointidistions of the random variables
may change given different labels. An alternative is to miae the value of the metric
that we choose to evaluate the dependency of these randaablear

A possible solution to implement the transformation is Eipal component analysis
(PCA) [24]. PCA is a well-known method which transforms thegoral dataset by find-
Ing a new basis to express the original data samples. Innearlicase, PCA can find
an orthogonal basis in the original vector space. Becauski®ptoperty, the random
variables are uncorrelated after applying PCA. PCA can gteeahat elements in the
converted feature set aumcorrelatedbut not necessanmpndependentsince independent
random variables are uncorrelated, but uncorrelated randoiables may not be inde-
pendent in general cases.

Another candidate is Independent component analysis (I0@]) fvhich is often used
in signal processing. ICA aims at finding statistically indegent components from mix-
tures of signals. Independent components in ICA methods edound by the following
three strategies [23]:
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e Maximize nongaussianity of components
e Maximize likelihood function

e Minimize mutual information

Unlike PCA which minimizes the correlation between each conemts, ICA mini-
mizes the mutual information. PCA and ICA are the solutionsa&@rthe features contain
uncorrelated or independent information. However, theyrat applicable to the feature
reformulation procedure in our framework. The reason i$ bwdh PCA and ICA are
unsupervised methods. That is, they do not take the lakeimtsideration. Therefore,
we can not use these two methods directly in the featurenefiation procedure in our
framework.

If we relax the constraints and finehcorrelatedcomponents instead of independent
ones, we can make use of the theory in PCA to define a lineaftoramstion. Letdet(A)
denote the determinant of a square mattixand | det(A)| the absolute value of this
determinant. Before we show our implementation when labali#tasets are available,
we first show that regardless of what the linear transfonatiinction is, we can eas-
ily verify whether the first property of the ideal transforioa is satisfied or not from
its transformation matrix. Specifically, given a lineamtséormationL 4, we show that
H(X) = H(AX) if Ais invertible. For continuous random variablé$X) = h(AX) if
|det(A)| = 1.

Lemma 3.1. Let { X}, be the random variables of featurgsy;, ..., X,) be a ran-
dom vector in vector spadg, and (X1, ..., &,) be a random vector in vector spaté
If a linear transformationL, : U — V whose transformation matrid is invertible,
H(AX) = H(X) for discrete random variables;’s. If X;'s are continuous random
variables,h(AX) = h(X) when|det(A)| = 1.

Proof. First we show the case of discrete random variables. By theitlefi of Shan-
non entropy,H (Xy,..., X)) = = > P(Xi,...,X,)log P(Xy,..., X,,). Becaused
is invertible, L 4 is one-to-one and onto. For arye V thatL4(r) = s, we have

P(s)= > P(r) (3.1)

r:L;l(s):r

whereLA?1 is the inverse function of 4. Becaused is invertible, for anys there is one
and only one" € U thatL,'(s) = r, and thusP(s) = P(r). Therefore,

H(Xy,...,X,) = =Y _ P(r)logP(r) (3.2)
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= — ) P(s)log P(s) (3.3)

s=La(r)
= =) P(s)log P(s) (3.4)
= HzXl,...,Xn) (3.5)

On the other hand, iX;’s are continuous random variables, we have

h(AX) = h(X)+log|det(A) (3.6)
= h(X) (3.7)
Equation 3.6 is given in [12]. n

Now we show how to modify the method in PCA and give a lineargfamation
method. In PCA, the covariance matrix of features is used tb tfhe a new basis to
represent the dataset. The new basis consists of the e@jers/ef the covariance matrix.
Take into consideration the labels, Bt= Cov(X|Z), L4 be the linear transformation
with transformation matri, andAX = [, ..., &,]T. We have

Cov(AX|Z) = AT AT = A, (3.8)

whereA is a diagonal matrix. Similar to PCA, we have, j, X; L X;|Z.

From equation 3.8, we know that if we can compUter(X|Z), we can use the same
method as what is used in PCA. Howev€nv(X|Z) is a function ofZ, not a constant.
Therefore, we comput&[Cov(X|Z)] instead. Let, denoteE£[Cov(X|Z)] andA be a
diagonal matrix. We have

E[Cov(AX|Z)] = E[ACov(X|Z)AT] = AL, AT = A (3.9)

From equation 3.9, we know thadtis the matrix of the linear transformation we want
to find. If 3, is not a diagonal matrix, we compute the eigenvectors,cind normalize
them such that the Euclidean norms of these vectors arelalthis case, the row vectors
of A are these normalized eigenvectors. On the other hand, i a diagonal matrix,
then letA=1, the identity matrix. From this procedure, we have the foifgy property:

Lemma 3.2. A is invertible, and det(A)| = 1.

Proof. If A = I, we have done. In the case df+# I, because, is a real symmetric
matrix, its eigenvectors are orthogonal. Since the Euahdaorm of these eigenvectors
are 1, the determinant of is £1. So A is invertible, and det(A)| = 1. O

Now the reason why Shannon entropy{df; }!- . before and after applying this linear
transformationZ. 4 is unchanged is obvious. In addition, the expected covegiah any
two features after applying 4 is 0. We have the following theorem:
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Theorem 3.1.There is no information loss after transferring the data pyplying a linear
transformation with a transformation matrix whose determines 1. In addition, the
expected covariance of any two transferred features giveretel is 0.

Proof. BecauseA is invertible and|det(A)| = 1, from lemma 3.1 there is no infor-
mation loss. Moreover, the expected covariance of any tatufes is 0 becausk =
E[Cov(AX|Z)] is a diagonal matrix. N

As the conclusionX” AT is the vector of random variables of the new feature set
whose Shannon entropy is the same with Given a labelled dataset, we can use matrix
Ato linearly transfer it without losing any information asiges minimizing the expected
covariance of any two features.

Two transformation functions for the source and target doraee respectively com-
puted from their datasets before executing the next praeesfour framework. We run
a simple experiment to show the effect of applying this lmeansformation on the well-
known iris dataset comes from UCI Machine Learning Repoditaily We compare the
distribution before and after applying this linear tramsfation procedure and PCA using
scatter plots in figure 3.3. We can find from figure 3.3(c) thtdraapplying PCA, data
samples are evenly distributed in global view, while in mzestes our linear transforma-
tion method makes data samples evenly distributed in the s#ass.

3.2.2 Feature Reformulation by Profiles

Recall the scenario we give in section 1.1.1 that we have gettdiomain dataset. In this
case, itisimpossible to estimate the similarity of feasunghe same dataset from labelled
data. In order to merge analogous information, we use thkgoaond knowledge about
the features.

Specifically, we encode background knowledge of sensorsrasos profiles, which
Is a lengthAV binary string that describes sensors.is the number of properties. The
binary string is used to represent the properties of a seasdican reflect the information
provided by different sensors. If the profiles of two senses similar, these sensors
should provide analogous information to infer the activéapd features extracted from
these sensors should also be similar. We define four typepégies to be included in
the sensor profile as follows:

e Object: On which object the sensor is set up.
e Location: The location of the object.
e Sensor type: What kind of sensor it is.
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Scattor Plot: iris data+PCA
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(a) Original Iris dataset (b) Distribution of iris samples after applying PCA

Scattor Plot: iris data+STF
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(c) Distribution of iris samples after applying our linear
transformation

Figure 3.3: Comparing the distribution of data samples leeéord after applying PCA
and our linear transformation method. STF in figure 3.3@pd$ for “Supervised Trans-
Formation”.
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e Event: What event the sensor detects.

If a sensor is related with theth property, thé-th binary value in the profile will be 1.
For example, a sensor deployed on the microwave in the kitsheelated with properties
“kitchen” and “microwave”, so there will be respectively alwe 1 assigned for these two
properties in the profile. This method is inspired by [49] &i@] that these properties is
similar to the meta features in these two papers.

Besides the properties, we also assigned a non-negativatanpe value for these
properties. The importance value indicates the degree safrasce about whether an
activity is performed or not given the state of a sensor wliiak this property. These
properties and their importance values are all defined by raaur work. A detailed list
of these properties along with their importance values veel wdgll be given in chapter 4.

We compute feature profiles from sensor profiles. Bet= {p!,...,p%} be the

profile of sensor, and Py, = {q{, g ,q{v} be the profile of featurg. If featurej is
extracted from a set of sensofs, we have
g, = Al v, = TN, N (3.10)
SzeA.s

\/ is logical operator OR. For example, if featurés extracted from sensors and S;
with profiles{1,1,0,0} and{1,0, 1,0} respectivelyP;, = {1,1,1,0}.

Using feature profiles, we can run the feature reformulgti@cedure even when the
labelled dataset is not given. We combine the data of feawih®se profiles are identical.
Recall that we define the profile to reflect the information ghsgnsor can provide to infer
activities. Sensors with different profiles should prowiiléerent information, so the fea-
ture extracted from these sensors will also provide differgormation. Features provide
identical information to infer activities if and only if tgdhave identical profiles. There-
fore, we combine features with identical profiles in ordemterge the same information
together.

Note that in this case, we can not guarantee that differetifes in the new feature
set provide unrelated information. We may also loss infdiomebecause we apply logical
operator OR to combine features with identical profiles. &irtie scenario that labelled
dataset is not available, these two properties of the idaasformation function may not
be satisfied. Nevertheless, it is still effective to used thethod in our framework. We
verify it by showing the experimental results under thissg® in chapter 4.

3.3 Feature Alignment

After the feature reformulation procedure, we compute daure mapping by feature
alignment procedure. This procedure finds similar feataiespf;, ¢;) that f; andg, are
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in different datasets. The purpose of this procedure is niyt m make the size of the
two feature sets in source and target domain datasets barhe Isut also to find the
correspondence between any two features in two domainansfar knowledge in the
best way.

3.3.1 Graph Matching Algorithms

Given a similarity measure, we formulate the problem by dedim weighted graph, and
apply graph matching algorithms to compute the mapping.ciBpally, we reduce our
problem to minimum cost perfect matching problem or statderiage problem in graph
theory. In the following sections, we will introduce the twmatching problems. After
that, we show how to reduce our mapping problem to graph rimeggiroblems.

Matching

In graph theory, a matching is a set of edges that any two exigesot share one vertex.
Given a graph/(V, E), amatching of G is a subset of' that if two edgesv;, v;) and
(v, vs) are in the subset,# r, s andj # r, s. A perfect matching £, is a matching that
no vertex is left behind in the matching. That is, for eaclke V, we have one and only
one edge: € E, thate = (v;, v;) Or (v}, v;).

Minimum Cost Perfect Matching

A minimum cost perfect matching[14] is a perfect matching with minimum cost. That
IS, given a weighted grap@i, it finds a matching in the graph such that the summation
of the weights of these edges in the matching is minimizednidy, letw; be the weight
of edgee;, the perfect matching, is a set of edges in a perfect matchifg with the

property:
E, = argmin Z w; (3.11)

Stable Marriage

The stable marriage problem [18] in graph theory is a proldéfimding a stable matching
between two sets of verticek, andV},. A matching isstableif when an edgéa;, b;) is
in the matching, there is no edge;, b;) in the matching such that prefersb; to b; and
b; also prefers:; to a;. Note that a stable matching may not have minimum total esst,
the example we show in figure 3.4.
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100 /
5 >< \
Figure 3.4: A stable marriage matchiqg, D), (B, C) is with cost 105, which is not a
minimum cost matching.

3.3.2 Feature Mapping by Graph Matching

We can reduce our feature mapping problem to the graph nmatg@noblem. Assume we
have two sets of feature$ and B. There aren features inA andn features inB. We
define a complete bipartite graghy,,,, = (U, V, F) that|U| = m and|V| = n. Vertex

u; € U andv; € V represent a featurg € A andb; € B respectively. We also assign
weight values to all edges i. The weight value of edge.;, v,) is the divergence of
featureq; and feature;. If u, andv, are matched in the graph,, ,, according to the
algorithm, feature, and featuré, are mapped together, as we defined in definition 1. By
this reduction, we can solve our feature mapping problemobyireg the graph matching
problem.

Choosing different graph matching algorithms has differaatinings for knowledge
transfer. Observing figure 3.4, we can see the differencthelalgorithm for minimum
cost perfect match problem is applied, we are going to find ppimg in global view,
namely, the total divergence between two feature setsratipping is minimized. On the
other hand, the stable marriage algorithm aligns the mostasifeatures in two datasets
first. In this case, total divergence may not be optimal, batrhost preferred pairs be-
tween two features will not be sacrificed.

Note that in our method, some features in the datasets magnbesid because of the
following two reasons. First, ifn # n, the matching computed by the graph matching
algorithm is not perfect. lf; is not covered in the matching, its corresponding feature
a; Will be ignored when we transfer knowledge. Besides, soméne$d edges in the
matching may be with high weight values, which means theesponding features are
in fact not similar. In this case, it would be better to ignttese edges with high weight
values in the matching.
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3.3.3 Measuring Divergence of Datasets

If there is more than one source domain available, intuitivee should transfer knowl-
edge between two “similar” domains instead of two highlyedgent domains. The rela-
tionship between divergence of two datasets and perforenainmodels has been studied
in [2], [48], and [9], which show that divergence of two datssand model performance
of knowledge transfer are related. However, currentlyali®no standard method to eval-
uate the divergence between two different domains to ddwdeto transfer knowledge.
There is also no known criteria on how to choose a method tmats the divergence of
two datasets in transfer learning.

It may be possible to extend the feature similarity measarestimate divergence
between datasets in two domains according to our featwseeblanowledge framework,
as proposed in [9]. LeF andg be two feature sets in two domains, from definition 1, we
can use the following equation to estimate the divergenteoilatasets:

Drg(F Ty~ > Do (f T)
(fi.g5)EM(F,G)
whereT’ is the task of domains, arddl- ¢(F; 7)) is the estimated distance betwegrand
G under?'. That s, the total distance of two domains is the summatighedistance of
each features which are mapped together under the task.

Therefore, assume the divergence between features in tasals are given or com-
putable. We can compute an one-to-one correspondence s& thatures between the
source and target domain dataset by applying the graph mgtalgorithms. The sum-
mation of feature divergence in the mapping may be used tmats the distance of
source and target datasets. We may use minimum cost per&tch ralgorithm to com-
pute the best matching between nodes in a bipartite grapghréBult of this matching can
give a lower bound of divergence of two datasets.
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Chapter 4
Experiments

In this chapter, we describe the knowledge transfer exgaricronducted according to our
framework under two scenarios. The details of activity geation datasets, including the
datasets we used, the algorithms of data preprocessingahdd mapping, parameters,
and the results are given. The feature reformulation prna@=dfor the two scenarios are
that we described in section 3.2. We measure our knowledgsfer framework by the
accuracy of models.

Recall the two scenarios we gave in section 1.1.1.

1. A dataset collected in a labaratory environment is alsélaand we are preparing
to deploy sensors to the target domain environment.

2. A dataset collected in a laboratory environment is aliéglaand we have also col-
lected and labelled some samples in the target environment.

In these two scenarios, data samples collected in the ledsgranvironment is our
source domain data. We proposed the following solutiongHese two scenarios, and
apply our framework to run the experiments:

1. We transfer knowledge by sensor profiles.
2. We use labelled source and target domain data samples&idr knowledge.

In our experiments, each feature is extracted from only ensar, so feature profiles
and sensor profiles are identical. We will usensor profileand feature profileinter-
changeably in the following sections without confusion.
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Table 4.1: The number of features and activities in the @é#tas

Dataset MAS S1 | MAS S2
£ of sensors 76 70
# of activities 23 25

4.1 Datasets and Data Preprocessing

The datasets we used come from the course of MAS622J, PRiéegnition and Anal-
ysis, at MIT. There are two datasets in the MIT MAS622J dataset (we cathtMAS
S1 and MAS S2), which are collected from two different singé¥son apartments. Only
ambient sensors are installed in the two apartments, se thao sensor on human body,
and no video, image, and voice data in the two datasets. Méoemation about these
datasets can be found in [44] and [45].

For state change sensors in these datasets, we find thenst@rétime sensors being
triggered. By doing this, we have the state of all sensors¢h éane stamps. Each data
sample is a list of all sensors with binary values indicatvigch sensors are triggered
at that time. We then convert the sensor data using a fixegtHeime interval. The
length of the time interval in our experiment is 30 secondheit overlapping. If a
sensor is triggered at any time stamp in a time interval, atae/in that time interval will
be set to 1. In addition, if there are multiple activitiesfpemed in a time interval, we
extract only the latest one. For example, if in the raw ddterd is an activity sequence
{i,1,(ij), (ij), j}, the extracted sequence will & i, j,j,7}. The number of features
and activities extracted from the raw data of these datasetshown in table 4.1. Note
that the number of features and activities in table 4.1 mayperdahe same with what is
described in the papers we listed above because some sansagsored if they are not
triggered at all time stamps. In addition, there are somepasnvith no activity annotated
in the raw data. We set a new NoAct label for these samples.

4.2 The Feature Reformulation Procedure

We use the method described in section 3.2.1 and 3.2.2 towafate the feature sets first
in our experiments. In the first scenario, we use sensor esadid reformulate features.
Sensor profiles are encoded according to background kngeltedgive the information
of how similar two sensors in the same dataset are. Featutiesdentical profiles in
the same dataset are merged. Properties of the sensor pidileding the type and

Lavailable: http://courses.media.mit.edu/2004fall/622/04.projects
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Table 4.2: Sensor properties and their importance values
Importance
Type Property
Value
bathroom 4
location | bedroom, kitchen, living room, toilet 2
study room, balcony, outside, gateway, Other private 1
space, Other public space
shower faucet, flush, stove/oven/burner, dishwasher, 4
object washing machine/clothes dryer, telephone, tea/caffee
machine, Audio/Video Equipment
washbasin/sink faucet, garbage disposal 3
cupboard, microwave, toaster, food grain, light 2
closet/cabinet, cutlery, drawer, window, door, 1
chair/sofa, bed, refrigerator/freezer, fan, box, con-
tainer
switch
Sensor motion/PIR 1
event | entering/leaving/moving, operate  appliances, 1
get/put/find something, something is on the ob-

ject, light on/off
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importance values defined in our experiments, are giverbie 2.

In the second scenario, we compute two expected matriceslftoelled data samples
in the two datasets respectively, and use these two matoadscide the linear transfor-
mation of the two datasets. Specifically, {eX;}?_; be random variables of features,
be the random variable of labels, and deflie= [X, X5, ..., X,]. We first compute
A = FE[Cov(X]|Z)], and then compute the eigenvectors/of These eigenvectors are
normalized such that their Euclidean distance are all 1.iagix used to run the linear
transformation is consist of these normalized eigenve@stthe row vectors. In this case,
E[Cov(X;, X;|Z)] which is computed from labelled data samples is the “divecgé of
X; and.X; in the same dataset.

4.3 Estimate Feature Similarity

The difference between using background knowledge andsdatales to transfer knowl-
edge is mainly on how we estimate the feature similarityrafie feature reformulation
procedure: When some data samples are available, we usedhestinhate feature sim-
ilarity. Otherwise, feature similarity is estimated frormdkground knowledge. The fea-
tures similarity measure is used to measure the divergeihtgoomation that features
can provide to infer the label. Two features are similar étiprovide similar information
about the label.

4.3.1 Feature Similarity Estimation by Using Data Samples

In this work, when some labelled target domain data sampegigen, the method we
used to estimate the divergence between two features isl lmesdenson-Shannon di-
vergence which is introduced in equation 2.4 in chapter 2ortier to take labels into
consideration, we separately compute the Jenson-Sharvengehce between features
for data samples with different labels, and summarise theesdts to estimate these fea-
tures’ overall Jenson-Shannon divergence. Specifically?;land(); be the distribution
of f; € F andg; € G respectively, we compute tlexpectedlenson-Shannon divergence
of two distributionsP; and(@), given labelZ, which is:

EPSD(P(FI12)1Qs(g512)] = D filzn) ISD(R(fil Z = 20)[|Q;(9;1Z = z)), (4.1)

wheref; is the probability distribution function of the labglin the dataset.
Therefore, JSD(P;(filZ = z)||Qj(9;1Z = z)), Jenson-Shannon divergence fof
andg; with different z;, is separately computed. Théf{JSD(P;(f;|2)||Q,(g;1Z))], the
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overall Jenson-Shannon divergence, can be estimated. &¥ .UsD (P;(f;| 2)||1Q,(g12))]
as the divergence of featurgsc F andg; € G. That s,

D(i, j) = E[JSD(F(fi|2)1Q;(9512))] (4.2)

The advantage of using Jenson-Shannon divergence is ikayitnmetric, its value
Is bounded, and it is not necessary to estimate the jointgtmbty of two features to
estimate their divergence.

4.3.2 Feature Similarity Estimation by Profiles

If the data sample in target domain dataset is not availadetill need to estimat@(:, ;)
between featureg andg; in our framework. We estimate it using the profiles defined in
section 3.2.2. If two sensors or features have almost icntrofiles, they are similar in
our method. Measuring feature similarity by their profilesa draw an analogy between
two features.

The similarity measure in this scenario is a two-step prapedFor each pair of fea-
tures in two datasets, we first compute the divergence fdr gge of profile property.
Afterwards, we compute the summation of the divergence edehypes of profile prop-
erty. Specifically, lefl' be the set of profile property types, amgl be importance value
of the k-th property which belongs to the typeproperty in the profile. We compute
the divergence of the typeproperty between two features using their profiles with the
following equation:

. o t
Zpke?lpz?épi e ZPkGTvpL:pizl W

Zpke?llp};#pi 1+ ZpkeT,p};:pizl 1
And estimate the total divergence as:
D(i, 5) = > Di(i, ) (4.4)
t

It is easy to see that for any two features with identical pgsfithe positive term
Zp};#p?; wy, wWill be 0. Besides, if two features have many different praipsr they will
have a large feature divergence.

4.4 The Feature Alignment Procedure

After reformulating feature sets and computing the featlivergence between any two
features in the source and target domain, we can compute dpping of features by
graph matching algorithms. A complete bipartite graph (U, V, E) is defined, and

35



D(i, j) is used as the weight of the edge;, v;). The problem of computing feature
mapping is reduced and solved by a graph matching problentailDef the problem
reduction is described in section 3.3.2.

Feature alignment procedure is simple. Regardless of whisiotiés used to estimate
divergence between features, as londDés ;) is available, we can just apply a graph
matching algorithm to compute the feature mapping. Thelgraptching algorithm we
used in all our experiments is the stable marriage algorithe adopt this algorithm
because of the following two reasons. First, the matchimgputed in our experiments is
actually not “perfect?. In addition, according to the Hall's theorem [21], perfetching
may not exist in some cases. By adding some pseudo-nodes andopsdges to the
bipartite graph, we can solve these two problems. Howeugreghe feature mapping
computed by minimum cost perfect matching algorithm an@lstanarriage algorithm
in the experiment of the first scenario happens to be iddniivder our profile setting,
we just reduce our feature mapping problem to stable manmgblem instead of the
minimum cost perfect matching problem in the second scermsttier. The experimental
result of mapping features in the first scenario is given lodet@.3. Sensors in the same
row of table 4.3 will be aligned with in the experiment of thesfiscenario.

Note that some rows in the table are combinations of sevedahtical’ sensors,
which means their profiles are the same. We only show one sétbembined features
here in the table to make this table readable. We can see tsit of these rows are
reasonable. TV(141) in MAS S2 is aligned with DVD(56) in MA3 Because they are
all related to the event “operate appliances”. On the otbedhsome rows in table 4.3
seem to be illegitimate. For example, aligning TV(101) wldwelry box(139) does not
make sense. However, we can see that these two featuresthra larger divergence
value, which means that they are actually not very simildérer&fore, we know that it is
necessary to decide a threshold value in the feature alighpnecedure to eliminate bad
matches in the matching computed by the graph matchingitigar

Before we show and discuss our experimental results, we wargue that defining
sensor profiles is a feasible solution to transfer knowle&geall that we focus on build-
ing a activity recognition model in the smart home environtridat only has ambient
sensors in it. Since deploying sensors in an environmeniinesiknowledge about the
environment and these sensors, background knowledge diffictlt to obtain. Observe
the properties we list in table 4.2, which is the profile we useur experiments. Object,
location, and sensor types are all easy to known. In addisimce sensors are deployed
according to the task, we usually have expectation of what &f event a sensor can de-
tect. Dataset preprocessing procedures in activity ratognincluding feature extraction

2A trivial explanation: In a bipartite grapf®(U, V, E), if |[U| # |V|, we can not find a perfect matching.
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Table 4.3: The mapping of features computed by stable ngarrelgorithm using
MAS662J dataset. In the parentheses are sensor IDs in tieardataset. The weight

values are the weight of the edges in the matching.
MAS S2 MAS S1 Weight

Light switch (109) Light switch (101) -9
Shower faucet (130) | Shower faucet (93) | -8
Sink faucet - hot (100)| Sink faucet - hot (68)| -7
Light switch (102) Light switch (107) -7
Light switch (106) Light switch (108) -7

Toilet Flush (112) Toilet Flush (100) -7
Light switch (119) Light switch (105) -7
TV (141) DVD (56) -7
Light switch (103) Light switch (104) -6
Light switch (107) Light switch (92) -6
Burner (117) Burner (94) -6
Toaster (108) Toaster (131) -5
Microwave (115) Microwave (143) -5

Medicine cabinet (127) Medicine cabinet (57) -5
Garbage disposal (84) Garbage disposal (98)-5

Cabinet (104) Cabinet (132) -4
Drawer (114) Drawer (125) -4
Containers (124) Containers (60) -4
Refrigerator (66) Refrigerator (126) -4
Hamper (78) Cabinet (67) -4
Drawer (126) Drawer (82) -3
Door (85) Door (140) -3
Door (137) Door (130) -2.286
Door (134) Door (141) -2
Door (51) Door (54) -2
TV (101) Jewelry box (139) 0
Sink faucet - cold (91) | Window (136)

Door (133) Closet (81) 2
Telephone (69) Cabinet(133) 2.5
Stereo (122) Cabinet (85)
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and feature selection, require background knowledge atmmgors in the environment.
We have to know the specification of sensors attached on &ctdlg interpret the raw
data and find the state of this object. Therefore, backgrdumogvledge we required to
define the sensor profiles is necessary not only in our frameld also in conventional
activity recognition problems.

4.5 Experiments and Results

We apply our feature-based knowledge framework to the tvemagos given in sec-
tion 1.1.1. Since the assumption of the first scenario isweato not have any target
domain data sample, we do not generate any variation on taseatéy applying cross-
validation to train the model. On the other hand, we run adl@-¢ross-validation exper-
iment for the second scenario. In the experiment of thisatentarget domain dataset
Is randomly separated into 10 parts, and nine of them are ic@tilto estimate the fea-
ture similarity with the source domain data. The remaining part is used to test the
accuracy of the model. We trained activity recognition nisdesing only the source do-
main dataset to find out if the knowledge transfer framewark successfully extract and
transfer useful knowledge. We also trained activity rectigm models using both the
source domain dataset and nine of the 10 parts of the lalieliget domain data samples
to simulate the situation of when we apply this frameworkemitie second scenario in
a smart home system. The non-transfer learning experinggmg the same feature set is
also performed as the baseline experiment to verify the®ffness of our framework.

After finishing the feature alignment procedure, featuts setwo datasets have the
same cardinality, and an one-to-one mapping relationséigvden features in different
datasets is also available, which is the key point in our kedge transfer framework.
Since we have an one-to-one mapping relationship of featarévo domains, we can
apply ordinary activity recognition algorithms to build dels. In all our experiments, we
use libsvm [8] with RBF kernel to train and test models. We ordg default values for
all libsvm parameters in our experiment.

4.5.1 Knowledge Transfer by Using Data Samples

The result of knowledge transfer given some target domampsss is shown in fig-
ure 4.1(a) and 4.1(b). The x-axis gives the number of featused to transfer knowl-
edge, and the y-axis in the left side shows the accuracy.ufephirs with divergence
larger than the threshold value will not be used to train @&stl the model, even though
they are mapped together in the feature alignment procedine black lines in the two
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figures give the relation between the threshold value anduh&ber of selected features,
which can be used to find the accuracy of models under difféneeshold values. Setting
a higher threshold value results in having more featuresimegperiments, which also
means being more tolerant to use feature pairs which maygdyidivergent.

The two yellow lines in figures are the result of using expe@di®D as the divergence
measure, and training the model only using the labelledcgodiomain data samples; the
orange lines give the result of using expected JSD as theg#imee measure, and using
both the labelled source and target domain data samplesaitottre model. The blue
lines are the baseline experiments which are non-traredening. We run 10-fold cross-
validation experiments in this scenario. Therefore, we gine error bar of experimental
results in figure 4.2, 4.3, and 4.4.

These experiments show that with labels, we can estimatie#tere similarity. Ex-
pected Jenson-Shannon divergence can be a valid divergezesure of features in our
framework. There is a catch, however, that we need to chogeed@threshold value. By
observing these figures, it can be found that with differentghold values, the experi-
mental results vary wildly. We can see that the model perédoad at some points in the
yellow lines, while some other points on the yellow are vepsed to the non-transfer
learning results. Therefore, threshold value plays an maporole when we train a model
in our framework. On the other hand, using labelled targetaia data samples on hand,
the model can perform better than non-transfer learningrdfore, we can say that our
knowledge transfer framework can help to extract and apptgby transfer knowledge
between different domains.

4.5.2 Knowledge Transfer by Profiles

We show the experimental results of transferring knowlelog@rofiles between MAS
S1 and MAS S2 in figure 4.5(a) and 4.5(b). In figure 4.5(a), we M&S S1 as the
source domain, and MAS S2 is the target domain. In figure %.8(® exchange the role
of the two datasets. As the experimental results in prevsaasion, the x-axis of these
figures gives the number of selected features in our expatsnand the y-axis is the
accuracy of the model. The number of features in this expErins smaller than that in
previous experiments because some features in the sansetdata merged in the feature
reformulation procedure in this scenario.

On the orange line, we show the result of transfer learniag tises sensor profiles
with importance values; on the green line, we show the resuitansfer learning that
uses sensor profiles whose importance values are all setTheke two lines show the
accuracy of models trained according to our framework. The bne, indicating super-
vise learning with importance values, and the yellow limglicating supervise learning
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Figure 4.1: Knowledge transfer between MAS S1 to MAS S2 giadabelled source
domain dataset and some labelled target domain data saniplesc-axis is the number
of features. The y-axis in the left side is the accuracy in 84, the y-axis in the right side
Is the threshold values. This y-axis with the black line skthe relationship of threshold
values and the number of selected features.
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41



—p— 0 Transfer

Knowledge transfer in the second scenario EJSD* Labelled Samples

Target domain: S2 EJSD
semennesaresnees Newy-added feature
.77 -1
F09
0.72 L0s8
Lo7
-~ 067 06 @
g 3
[of 05 2
@ °
E 0.62 /’/ : 04 =
¥ £
F0.3
0.57 - 0.2
0.1
0.52 - : : - = : ; 0
10 20 30 40 50 80 70
the number of selected features
(a) Knowledge transfer from MAS S1 to MAS S2
Knowledge transfer in the second scenario ——+—— NoTransfer
——fi— EJSD+ Labelled Samples
Target domain: S1 EJSD
s New-added feature
0.77
0.9
0.8 ; : 0.8
’ I
0.75 " - , 0.7
- ¢ il y o
£ . . 4 - ‘ ’ g ‘ 08 e
T 1] 1.4 . it
g o 'LJ . \ 1 05 <
g . 3 04 5
s 073 z
03 =
o 0.2
0.1
0.71 0
10 20 30 40 50 60 70

the number of selected features

(b) Knowledge transfer from MAS S2 to MAS S1

Figure 4.3: Knowledge transfer between MAS S1 to MAS S2 giadabelled source
domain dataset and some labelled target domain data samphteserror bar in these
figures gives the standard deviation of the accuracy on thergrent of the non-transfer
experiment.

42



. O TrANS fEX

Knowledge transfer in the second scenario EJSD* Labelled Samples

Target domain: S2 EJSD
e New-added feature :
-0.9
-0.8
0.7
z ~0.6 ;_5:
2 Los 3
E 0.4 E
U S
0.57 ] 0.2
04
0.52 : . . . : : 0
10 20 30 40 50 60 70
the number of selected features
(&) Knowledge transfer from MAS S1 to MAS S2
Knowledge transfer in the second scenario #=— No Transfer
——@—— EJSD+ Labelled Samples
Target domain: S1 EJSD
wreerreensersens New-added feature
0.77 1
0.9
0.76 /.—’—“" . s
075 e r,oll 0.7
g I!!!Hnr-l!l'f'll,lél“fl‘“lﬂﬂ ﬂg é._—q N 0.6 %
g o7 ,-*” 0.5 3
g ’ 04 5
5 om --'“"f' 0.3 £
072 0.2
0.1
0.71 0
10 20 30 40 50 60 70

(b) Knowledge transfer from MAS S2 to MAS S1

Figure 4.4: Knowledge transfer between MAS S1 to MAS S2 giadabelled source
domain dataset and some labelled target domain data sampteserror bar in these
figures gives the standard deviation of the accuracy on therarent of using only source
data samples to train the model.
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without importance values, are the results that run fivd-twbss validation on only the
target domain data. Therefore, they are non-transfer ile@experiments. The mean-
ing of the “with importance values” and “no importance valtdescriptions is that their

feature sets are respectively the same with those in thegertime and the green line.
Finally, the brown line, indicating randomly align featsres the result of running the
same training and testing procedures by using feature dathware randomly chosen
and mapped together. The blue, yellow, and brown lines aé as the baseline to verify
whether sensor profiles can help to extract and transfer leige or not. Note that it is

assumed that there is no target domain data samples in @marsg, so in the orange and
green line, models are only trained using source domainsdatgles.

From these figures, we can say that this knowledge transferework is valid. Com-
paring to the result of randomly mapping features, encotheghackground knowledge
about the sensors and environment by sensor profiles défitidéasfers useful knowl-
edge. Similar to the previous experiments, threshold waplay an important role on
the performance of models. In figure 4.5(a), the models édhiny randomly mapping
features outperform the models trained by applying our kedge transfer framework at
some points. However, this phenomenon does not disprowatiakty of our framework.
On the contrary, it is an evidence showing that the featuvergence estimated from
sensor profiles is valid. Observing figure 4.5(a), we can firad the result of random
mapping performs better only when almost all feature pairthe feature mapping are
used to train the model. Therefore, we know that using higlhtgrgent feature pairs to
transfer knowledge can cause negative transfer, whileggusity feature pairs which are
similar can successfully transfer useful knowledge in camfework. Feature divergence
estimated from the sensor profiles is meaningful.

From the experiment in this scenario, we can say that it isiptesto train a pre-
liminary model whose performance is close to the best ongiplyag our framework.
Therefore, when we want to install a smart home system to aimoemment, this pre-
liminary model can be embedded into the system before thitesy starts to run. The
difficulty of doing this is that we have to appropriately ceea threshold value. A small
number of features may not contain sufficient informationré&n a good model, while
selecting all feature pairs in the feature mapping may caagative transfer. Our exper-
iments, however, can not give an answer to this problem. Weondy say that it may be
better to select a smaller number of features as the iniicmpeter to train a preliminary
activity recognition model.
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Figure 4.5: Transfer knowledge between MAS S1 and MAS S2xike source domain

dataset and background knowledge. The x-axis is the nunilsedected features and y-
axis is the accuracy in %. The results of applying our frant&forange and green lines)
are shown along with that of using the same feature set bnettand tested the model on
only the target domain dataset (blue and yellow lines), aedésult of randomly choose
and align features (brown lines).
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4.5.3 Further Analysis

Finally, to further investigate the experimental resuits,compare all knowledge transfer
results by showing the averaged accuracy values of themurefif)6(a). Because of the
dilemma of preserving knowledge as much as possible tofemasd preventing negative

transfer, we also show the result of an intuitive solutiosgtthe threshold value—selecting
only half of the feature pairs whose feature divergence @alsr in figure 4.6(b).

In figure 4.6(a) and 4.6(b), S1 to S2 on the left side is the eyt of using MAS S2
as the target domain dataset, and S2 to S1 is that of using MA& $he target domain
dataset. Figure 4.6(a) gives the averaged accuracy of alexperimental results we
shown in previous sections, with standard deviation shaswhe error bar. Figure 4.6(b)
Is the result of using only half of feature pairs. Specifigah figure 4.6(b), we select 35
features in the result of “EJSD” and “EJSD+Labelled sanipkasd only 15 features are
selected in the others to train and test the model.

We can again verify the effectiveness of our feature-basesvledge transfer frame-
work by the averaged accuracy values given in figure 4.6(@deNt that transfer knowl-
edge by using sensor profiles and labelled target domainsdagles outperforms the
model trained from random mapped feature sets. Generadlgkspg, our framework
leads to better performance when some labelled target dodzda samples are given,
and setting importance values on the property of sensolgsaan make the model per-
formance better than not setting them.
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Chapter 5
Conclusion

In this work, we proposed a feature-based knowledge trafrsimework. Given before-
hand or by estimating the similarity or divergence betwesatures in source and target
domain datasets, this framework can be used to automgtoaihpute a new feature set
of two domains to transfer knowledge from the source donmthe target domain. This
knowledge transfer framework can be applied to create aprelry activity recognition
model in an intelligent environment under different scevsar

We discussed two scenarios in this work. In one scenarig;, the labelled source
domain dataset is available. In the other scenario, lathelgasets from both source and
target domains are both given. We gave possible solutiom®tio scenarios, and con-
ducted our experiments on a public dataset to show the p#eetss of this framework.
In the first scenario, background knowledge of two domainsnisoded as sensor pro-
files to reformulate and estimate the divergence of any tatufes in two domains. The
mapping relationship between features in different dasasecomputed. In the second
scenario, we estimated the divergence of any two featuoes fabelled data samples,
reformulated the feature sets by a PCA-like method, and ctedpieature mapping by
adopting a graph matching algorithm. The same graph majdigorithm is used to
compute a new feature set to transfer knowledge. The expatahresults indicate that
this feature-based knowledge transfer framework is valid.

5.1 Discussion

Now we discuss our work and the experiments. We also givedhardages and limita-
tions of our method, and list possible future work.
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5.1.1 About the Experiments

In our experiment of the first scenario, knowledge is tramsteby sensor profiles since
there is no target domain data samples. We defined propeftesnsors, and assigned
importance values to these properties. We used these pesptr describe sensors as
their profiles. The divergence of two features can be estidhiom sensors that they are
extracted from using these sensors’ profiles. In the secoerbsio, since there are some
labelled target domain data samples, we use expected J&hsommon divergence as the
divergence measure of features. Stable marriage algorghused in our experiments of
both scenarios to compute the feature mapping to transtevlkeadge.

Note that we are not arguing that sensor profiles and the tapoe values we defined
for these datasets are the best settings. In additionacéaqh Jenson-Shannon divergence
Is just one of the possible divergence measures. It is pessldefine different sensor
profile settings or another divergence measures in our frameto train a model that
outperforms ours. It is also possible to find different methmstead of feature profiles
to encode background knowledge of sensors to evaluatessityibetween features. All
what we need is a measure to estimate the relatedness amhetion two features can
provide to infer the performed activity. The implementatiaf these procedures in our
framework can be various. The purpose of conducting thegergwents is to show that
knowledge transfer by our feature-based knowledge trafrsi@mework is possible.

5.1.2 Limitations

One of the limitations in our framewaork is that we still hageset some parameters by
hand. For example, we have to define sensor profiles from bawgkd knowledge when
target domain data samples are not available. As mentiong@2], defining sensor pro-
files manually is the limitation of this kind of methods. Indatibn, finding an appropriate
threshold value to avoid negative transfer is also necgsbaobur experiments, we only
found that a smaller threshold value may prevent divergdaotination from being trans-
ferred, but it may also block off useful knowledge to be tfangd. We only gave a trivial
setting of selecting the best half of feature pairs in ouregexpents, but we can not say
that this is the best choice in all cases. How to decide thethesshold value remains an
open problem.

In addition, the proposed framework in this work does notl @eth the difference
between two label sets. Therefore, if the sets of activipegormed in the source and
target domains are highly different, this framework candistovery new activities which
are not in the source domain. Moreover, properties of senaod sensor profiles we
defined in this work are not universal. It is applicable omlydctivity recognition datasets
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using only ambient sensors. For other activity recognitiatasets using wearable sensors
or cameras in the environment, it is necessary to define moygepies in the profiles.
In other problems such as transferring knowledge betwetereint corpora in natural
language processing, one has to define new profiles withytatidfflerent properties and
importance values to apply this framework.

Finally, our framework can not evaluate whether transfigriknowledge between the
two given domains is appropriate or not. As mentioned inise@.3.3, divergence be-
tween two domains can affect model performance. Our framegan not raise an alarm
to an inappropriate knowledge transfer task.

5.1.3 Advantages

The advantage of this work is that the feature-based knmeléchnsfer framework is
a general solution that it can be applied as long as sinylafitteatures between two
datasets is given or computable. Feature mapping can alveagstomatically computed.
Based on our framework, one can train an activity recognitrmdel by collecting a
dataset in a laboratory environment which has sufficientbemof sensors and various
activities. After that, apply our framework according t@ tbcenario: If there is no target
domain data sample, define sensor profiles to transfer kadgeldf some labelled target
domain samples are available, estimate similarity of festdrom data samples to train
the model.

Another advantage of our work is that we have shown that weusanonly source
domain data samples to train the model in our experimentshigncase, knowledge is
transferred by domain knowledge of sensors, which is erttousensor profiles. Most
previous work that use transfer learning in activity reddgn problem requires at least
some unlabelled target domain data samples. Only some ak#®archers proposed
methods which do not need any data in the target domain. Amgbeafor this kind of
knowledge transfer can be found in [22]. Comparing to the obslata collection and
data annotation, defining sensor profiles by hand shouldlagvedy affordable. As we
argued in section 4.3.2, the knowledge we need to createrspridfiles is not difficult to
obtain.

5.2 Future Work

As the future work, we want to focus on extending the limitasi we listed above. First,
itis necessary to find a method to automatically compute éinarpeters such as threshold
values and settings of sensor profiles. We may compute thshbld value from datasets
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by cross-validation if both labelled source and target dandatasets are available. In
the scenario that labelled target domain data samples asvaitable, however, learning
all these parameters from only source domain datasets nifgy flom the divergence

of the two domains and cause negative transfer. A methodlipeuboth the source do-

main dataset and background knowledge to learn these pamangenecessary to further
improve the availability of our framework.

Moreover, similarity functions can affect the result ofti@@ mapping. Therefore, the
choice of divergence measures can be critical to model padioce in our framework.
For example, in one of the scenarios, we compute expectetdeshannon divergence
between two features as the feature divergence used in pariment. However, it does
not seem likely that expected Jenson-Shannon divergereemapriate divergence mea-
sure for all transfer learning tasks. It would be useful if @z define the properties or
criteria which are critical in selecting the divergence mea.

People may want to transfer knowledge between not only time daut also different
problem domains. For example, transfer the knowledge oigaif users between not
only DVDs but also from DVDs to books. It will be very intergsj to improve the
framework such that it can transfer knowledge betweenreiffeproblem domains, or at
least give a caution to a knowledge transfer task which mageaegative transfer. A
difficulty for this is that in transfer learning, negativaiisfer is a concept of inappropriate
knowledge transfer. To the best of our knowledge, howeliergtis no specific definition
of negative transfer. Except for the result we showed in cpegment that the model
performed worse than randomly mapping features, we do raw krow to exactly decide
whether a knowledge transfer task causes “negative tndrasfaot. Therefore, giving a
concrete definition to negative transfer and extend ourdraonk to warn of inappropriate
knowledge transfer will be very useful.

Finally, it does not seem to be feasible to define a univers#ilg of features for
different learning tasks. However, automatically deaydthe properties in profiles for
different learning tasks may be possible. When the learrisk is given, mining relative
information to decide these properties from other knowdestgurces such as the web may
be a possible extension for this work.
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