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中中中文文文摘摘摘要要要

大多數的行為辨識研究應用了機器學習方法。傳統上，機器學習基

於一個假設來建立模型：用來建立模型時的環境與應用此模型的環境

是相同的。此假設並非總是成立。若是可以先於一實驗室環境收集資

料，並利用轉移學習(Transfer learning)來減低收集資料的花費，建立行

為辨識模型於一智慧家庭將更為實用。

轉移學習移除了建立及應用模型時環境必須相同的限制，允許學習

及測試模型的資料庫可以相異，並成功地應用於許多機器學習問題。

此研究介紹一應用於行為辨識的知識轉移架構。具體來說，我們定義

一個以特徵為基礎，可以自動計算新的特徵表述來轉移知識的知識轉

移架構。我們於下面兩種情境下實際建造行為辨識模型來驗證此架

構。情境一假設資料已標記的來源領域資料庫以及關於來源及目標領

域資料庫的背景知識皆可知，但目標資料庫並不可得；情境二假設資

料已標記的來源以及目標領域資料庫皆可得。實驗證明此知識轉移架

構可在兩相異環境中成功地萃取並轉移知識。

關關關鍵鍵鍵詞詞詞：傑森-向農偏差，轉移學習，行為辨識，機器學習，智慧

家庭
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Abstract

Most activity recognition research makes use of machine learning meth-
ods. Traditional machine methods build a model under the assumption that
this model will be applied to the same environment where the training dataset
is collected, which is sometimes unrealistic in real world.In addition, col-
lecting data sets in every environment where the model is going to be applied
is not feasible. Building activity recognition models in a smart home is more
practical if we can collect the dataset in a laboratory environment, and use
transfer learning to reduce the effort of data collection.

Transfer learning relaxes this constraint, so that the training and the test-
ing dataset can be different. It has considerable success inmany machine
learning problems. In this work, we propose a knowledge transfer framework
for activity recognition. Specifically, we propose a feature-based knowledge
transfer framework which can automatically find the new formulation of fea-
tures to transfer knowledge between two domains. We apply this framework
under two different scenarios to train activity recognition models: In the first
scenario, a labelled source dataset is available, and we have the background
knowledge about the source and target domain, but we do not have any tar-
get domain data samples. In the second scenario, we have bothlabelled the
source and target domain dataset. The experimental resultsshow that this
framework can successfully extract and transfer knowledgebetween two dif-
ferent domains.

Keyword: Jenson-Shannon divergence, transfer learning, activityrecog-
nition, machine learning, smart home
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Chapter 1

Introduction

Population ageing is a challenge occurring all over the world, thus it is becoming more and

more important to tend to the needs of the increasing elderlypopulation. A smart home

system which can provide various services is very valuable for elders who live alone. The

smart home system would be able to provide daily services, recognize abnormalities, and

trigger alarm if necessary. In order to offer appropriate services, activities that residents

are performing is a key context. Therefore, activity recognition is vital to many context-

aware applications in an intelligent environment.

Most activity recognition research makes use of machine learning methods. In su-

pervised learning, the model is trained from the dataset consisted of features and labels.

The scenario in activity recognition making use of supervised learning algorithm is that a

model is trained using the dataset collected from the environment, and is applied to rec-

ognize what activity is performed. Features are usually extracted from the raw data of the

sensors that are deployed in the environment, and the labelsare the activities performed.

Conventionally, the model is used in the environment which isthe same with where it is

trained. Therefore, in order to learn a model which will be used in the environment, the

dataset collected from this environment is necessary.

However, collecting and labelling data in houses can disturb the daily life of the users,

or even change their behaviour. Therefore it is also necessary to take the effect of the

sensors on users in the environment into consideration, as discussed in [44]. In addition,

data collection and labelling each sample can be very costly. Therefore, it would be more

practical if we can reduce the effort of collecting data in another environment before

deploying the smart home system for practical use. For example, collecting most of the

data in a laboratory environment and only a few necessary data in the house where the

users live. However, the layout of the laboratory environment and the deployed sensors

may be different from the real environment. In this case, traditional machine learning

methods are not applicable.
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Even if the layout of the environment and the sensors used to collect data are the

same, there may still be problems in applying traditional machine learning methods, be-

cause the behaviour of different individuals may differ. Even when performing the same

activity, people can display a diverse range of behaviour patterns. The divergence here

is on people, not on sensors. Besides, for a smart home environment, people can always

add or remove furniture or appliances as they wish. It is impossible to guarantee that the

environment is invariant, so it is inevitable for any intelligent system in a smart home to

deal with the problem of the difference between the trainingand the testing datasets.

In transfer learning, the environment of the training and testing datasets can be differ-

ent. Knowledge is transferred from a source domain to a target domain. Only reusable

knowledge is extracted from the source domain to facilitatethe task in the target domain.

Transfer learning deals with the problem of not only knowledge extraction but also knowl-

edge evaluation to facilitate the learning process. Building the activity recognition model

for a smart home environment will benefit from a kind of knowledge transfer mechanism

which can extract and transfer knowledge correctly. On the other hand, if we inappropri-

ately transfer knowledge between two domains, the transferred knowledge will not only

fail to facilitate the learning process, but also hurt the model performance. This phe-

nomenon is called negative transfer, which should be prevented when applying transfer

learning method in any learning tasks.

In this work, we proposed a feature-based knowledge transfer framework to help to

build the activity recognition model under a smart home environment. We empirically

show that this framework can appropriately reuse the extracted knowledge under different

scenarios when we deploy a smart home system into an environment.

1.1 Problem Definition

It is necessary to bring in transfer learning when there are differences between the source

and the target domain. In the aspect of smart home environments, the difference between

two environments is mainly on

1. Collection of sensors: the number of sensors, the specification of sensors, sensor

types, and the layout of the environment.

2. Activity: the set of activities performed in the environment.

3. Resident: the habits and the patterns of behaviour of the residents

Formally, letXs andXt be the source and the target domain feature sets, andYs and

Yt be the corresponding label sets. The three cases can be represented as

2



1. Collection of sensors:Xs 6= Xt.

2. Activity: Ys 6= Yt.

3. Resident:P (Xs) 6= P (Xt), P (Ys) 6= P (Yt), andP (Ys|Xs) 6= P (Yt|Xt).

In this work, we focus on the first case, that is, the difference of the two domains is

on the collection of sensors. Therefore,Xs 6= Xt. We assume that residents perform

the same set of activities in the environment. In addition, it is assumed that there is only

one resident in the environment, and we do not take into consideration the divergence of

behaviour between the resident in both environments. We only deal with the difference of

the set of sensors between two domains.

1.1.1 Scenario Settings

There are two scenarios which we will be concerning:

1. The dataset collected in a laboratory environment is available, and we are preparing

to deploy sensors to the target domain environment.

2. The dataset collected in a laboratory environment is available, and we have col-

lected some samples in the target environment.

In the first scenario, we have not started to collect data in the target domain, but we assume

that the background knowledge about the sensors in the two environments is available.

Namely, we know what kind of sensors will be there in the two environments. We also

know the information about the layouts of the environments and where these sensors are

going to be deployed. The input under this scenario is a labelled dataset in the source

domain, and the background knowledge about both the source and the target domain. In

the second scenario, the inputs are two labelled datasets.

The output of our work is a description about how to reformulate the source and

the target domain datasets to transfer learnt knowledge. This description can be used to

create a new source domain dataset to train activity recognition models, and to convert

the samples collected in the target domain.

Using ambient sensors instead of cameras or microphones is generally preferred in a

smart home environment due to privacy issues. Moreover, using wearable sensors may

affect the applicability of the smart home system. Therefore, the experiments in this work

are carried out using the datasets that only contain data samples from ambient sensors.

3
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Figure 1.1: The feature-based knowledge framework implemented in this work.

1.2 Proposed Solution

An overview of our proposed framework is shown in figure 1.1 totransfer knowledge

to solve the activity recognition problem. The framework isa feature-based framework

which is based on the assumption that the feature similaritybetween the two domains is

given (as the domain knowledge) or computable (from the datasets). The feature similarity

in figure 1.1 essentially gives the degree of similarity between features, which is vital to

all other procedures in the framework.

We use two procedures to compute the description of how to reformulate feature sets.

First, in the same dataset, we first combine similar featurestogether and dissimilate these

features, which are done by feature reformulation. Second,between two datasets, we

compute a mapping of features according to feature similarity in the feature alignment

procedure. With these two procedures, we get a new feature set. All the datasets will be

represented using the new feature set to transfer knowledge. The detailed description of

the framework is given in chapter 3.

The reason for naming this framework asfeature-basedframework is that knowledge

evaluation is executed on each features, not on the full feature set. The information ex-

tracted from one feature is evaluated and compared with the information extracted from

another feature.

We say two features are similar if the provide highly correlated information to infer

the label.

1.3 Contribution

The proposed feature-based knowledge transfer framework can effectively extract knowl-

edge from one domain and make use of it in another. This feature-based framework

provides a new method which can transfer learnt knowledge aswell as give a possible

4



direction to evaluate the quality of the transferred knowledge. We will show that this

framework can be used under two different scenarios—when only the dataset collected

in the laboratory environment is available, and when the sensors deployed in the target

environment have started to collected some data samples. Itis possible to choose how

to transfer knowledge according to the situation at hand. Moreover, the feature-based

knowledge transfer framework may also be used to give a quantification of the divergence

between two datasets. If there are more than one candidate source domain datasets, it is

possible to give a measure to select a better one to transfer knowledge.

1.4 Overview

In this work, we will review related studies in activity recognition using transfer learning

in chapter 2. Since feature similarity is one of the main component in this framework,

we will also review some methods which measure similarity ofdifferent kinds of objects.

After that, we describe the proposed feature-based knowledge transfer framework in chap-

ter 3. The detailed procedures of this framework are given insection 3.2 and 3.3. The

experiments we performed, including the description of datasets, detailed data prepro-

cessing methods, parameter settings, and the experimentalresults are given in chapter 4.

Finally, the advantages and the disadvantages of our proposed framework is discussed,

and possible extensions are given in chapter 5.
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Chapter 2

Related Work

2.1 Transfer Learning

Traditional machine learning focuses on learning from datasets that are assumed to have

the same distribution as the prediction target, namely, thetwo task are the same. Recently,

there has been research on generalizing and utilizing learned knowledge to not only iden-

tical tasks but also related ones in machine learning, whichhas become an important

research area which makes machine learning more applicableto applications in the real

world.

Multi-task learning, for example, aims to learn several tasks at the same time [7].

Transfer learning focuses on learning information from oneenvironment to facilitate the

learning process on another task [46]. Among these studies,most of them are applied

to the scenario that the feature sets or the label sets of the datasets are different, but the

problem domain or the task is related. For example, datasetsof the white wine and red

wine are respectively used as the source and target domain dataset to predict the quality

of the wine in [6]. A method that can be used to extract knowledge from one handwriting-

digit dataset to an English handwriting dataset is proposedin [40]. Research under this

kind of scenario can also be found in [36, 53, 54, 55, 29, 38]. On the other hand, there are

also some researchers proposed methods to utilize knowledge between different problem

domains. In cognitive science, this kind of learning has been studied that knowledge

is transferred through domain analogy [19, 16, 27]. In machine learning, researchers

have also proposed some methods dealing with this kind of learning in [51, 35, 32, 34].

The theoretical analyses on the probability and limitationof learning between different

tasks have been studied in [1, 2, 3, 13, 4]. The categorization of transfer learning can be

found in [37]. A survey about transfer learning in differentlearning models, especially in

reinforcement learning, is available in [47].
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2.2 Transfer Learning in Activity Recognition

Recently, there are a number of studies applying transfer learning to activity recognition

that uses ambient sensors in smart home environment, and a large proportion of which is

on the divergence of the source and target domain between what and how sensors are used

to collect the datasets. Most of them make the same assumption that similar sensors or

features play similar roles in the tasks. Therefore, they find the pairs of sensors or features

which are similar to transfer knowledge.

In [49] and [50], knowledge is transferred by identifying the properties of sensors.

In [49], function groups of sensors are defined and used to manually map the sensor data.

After that, a semi-supervised learning method is used to update parameters in hidden

Markov model (HMM) [39]. The semi-supervised learning method used in this research

is Expectation Maximization (EM) algorithm which make use of both labelled and unla-

belled data samples. In [50], they defined meta features for sensors in datasets. The meta

features of sensors are used to decide the mapping of sensorsbetween two datasets. Hy-

per parameters of HMM parameters are defined, and labelled source domain data samples

are used to estimate these hyper parameters. After that, EM algorithm is used to learn the

parameters and hyper parameters by using unlabelled and labelled (if available) target do-

main data samples. The function groups and meta features in these two papers are defined

according to prior knowledge of sensors in the environment.

Instead of mapping and merging sensor data according to prior knowledge about the

environment, an iterative parameter updating algorithm, HHTL (Home to Home Transfer

Learning), is proposed to find the mapping between not only sensors but also activities

of different houses in [41]. In that paper, they define mapping matrices for both sensors

and activities. These mapping matrices are computed iteratively from source and target

domain datasets, not from background knowledge of sensors.

Another scenario of transfer learning in activity recognition is under the assumption

that the set of sensors in source and target domains are the same, but activities performed

are different. In [22], sensor data in source and the target domains share the same feature

space. The difference in the two domains is on their label spaces which are the set of the

performed activities. Therefore, it is necessary to find outthe relationship between two

activities in different domains. In their paper, web miningtechnique is used to compute

the similarity of activities. These estimated similarity and source domain datasets are then

used to create a pseudo training dataset. A target domain dataset is not necessary.

In addition to the smart home environment, activity recognition can be applied to other

kind of environments, and transfer learning can also be usedif necessary. For example,

restricted Boltzmann machines (RBMs) is used in [52] to transfer knowledge between

8



two domains with the same labels but different features. Feature sets of source and target

domains are both mapped to a common feature set, which is a hidden layer in RBMs.

As a result, similar features are automatically grouped together by the RBMs. Unlike the

work we mentioned above, datasets used in this work are not collected from a smart home

environment. Information about activities is extracted from some on-line dictionaries to

help recognize both known and unknown activities in video clips, which are the target

domain dataset. Their method is applied not only to activityrecognition but also to a

cross-lingual sentiment analysis problem. A survey about transfer learning in activity

recognition is available in [11].

2.3 Similarity Measures

In one of our scenarios, it is assumed that we the have background knowledge of sensors

in both source and target domains. If similarity of featuresis explicitly given, transferring

knowledge from one domain to another would be easier. But in most cases, information

about feature similarity is not available. We introduce some similarity and divergence

measures of different kinds of objects in the following section.

2.3.1 For i.i.d. Random Variables

Given two random variablesX andY . If all the samples inX andY are independent

and identically distributed (i.i.d.), a commonly used measures for the relatedness of the

two random variables is correlation coefficient. Correlation coefficient evaluates degree

of linear dependency ofX andY . Assume we have pairs of data{(x1, y1), . . . , (xn, yn)}
sampled independently from a functionp(X, Y ). Correlation coefficient ofX andY is

ρXY =
Cov(X, Y )

√

Var(X)
√

Var(Y )
(2.1)

=

∑

k(xk − x̄)(yk − ȳ)
√
∑

k(xk − x̄)2
√
∑

k(yk − ȳ)2
(2.2)

whereVar(X) andVar(Y ) are the sample variances, andx̄ = 1
n

∑

i xi andȳ = 1
n

∑

i yi

are sample means ofX andY respectively.Cov(X, Y ) is covariance ofX andY .

In information theory, we can estimate the amount of information of random variables

from their distribution. Mutual information of two random variablesX, Y is used to

evaluate the amount of common information in them, which is defined as

I(X;Y ) =
∑

X,Y

p(X, Y ) log
p(X, Y )

p(X)p(Y )
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If X andY contain no common information,I(X;Y ) = 0. In this case, we would

say thatX andY are not similar.

On the other hand, if we want to evaluate the divergence of tworandom variables by

their probability functionP andQ, we can use KL (Kullback-Leibler) divergence [28].

KL divergence, or relative entropy, of distributionsP andQ is defined as

D(P ||Q) =
∑

x

P (x) log
P (x)

Q(x)
(2.3)

It can be shown thatD(P ||Q) ≥ 0 with equality if and only ifP = Q.

Although KL divergence is a commonly used method in many research areas, it has

some disadvantages. First, as we can observe from equation 2.3, KL divergence is not

symmetric, which means thatD(P ||Q) 6= D(Q||P ). Moreover, the value of KL diver-

gence is not bounded above. Some new divergence measures have been proposed based

on KL divergence. One of these measures is Jenson-Shannon divergence [15],JSD(P,Q),

which is defined as

JSD(P ||Q) =
1

2
(KL(P ||R) + KL(Q||R)), (2.4)

whereR = P+Q

2
.

It is easy to see that Jenson-Shannon divergence is symmetric, and its value is bounded

in [0, 1] when we use base 2 logarithm.

2.3.2 For Non-i.i.d. Random Variables

Random samples in some research topics are not independent and identically distributed.

For this kind of data samples, we may want to find meaningful patterns or predict values

from them. For example, in time series analysis, we may be interested in finding the

property that changes constantly over time, or becomes invariant in the long run from the

data samples. In the former aspect, we may want to find the trend or the seasonality of the

sequence; in the latter one, we aim to decide whether the sequence is stationary or not.

All these properties are dependent on the order of data samples in the sequence. These

properties change if we permute these samples in the sequence. Because data samples are

not i.i.d. and the order of samples is important, methods used to analyse i.i.d. samples

are no longer appropriate to analyse sequence data. For example, sample variance does

not capture the relationship between two adjacent samples in an ordered sequence, so the

similarity in the sense of “order” will not be found by using this statistic. In addition, after

randomly permuting samples in two sequences using the same permutation function, the

covariance and the KL divergence will be the same, but the trend of these two sequences

10



may change. Therefore, it is necessary to use other similarity measures if we are dealing

with sequence data.

Two kinds of similarity measures used to analyse time seriesdata are given in [25].

The first kind of similarity measures consider the similarity of the shape, and another kind

of similarity measures evaluate the similarity at the structural level. They are respectively

called the shaped-based similarity and structure-based similarity measures [31].

Let Sx = {Xi}ni=1 andSy = {Yi}mi=1 be two time series. Assumem andn are

equal. Euclidean distance, also known as the L2 distance, can be used as a kind of shape-

based similarity measure that estimates the distance ofSx andSy by using the following

equation:

D(Sx, Sy) =

√

√

√

√

n
∑

i=1

(Xi − Yi)2

This method estimates the distance between two time series by considering the dis-

tance at the same time stamps. However, for two time series data that one of which is

just a shifted sequence of other, Euclidean distance may fail to find that they are similar.

Dynamic time warping (DTW) [5] is a method using dynamic programming approach to

align two time seriesSx andSy. The time axis may be stretched or compressed to fit the

two time series, and their lengthm andn can be different. For two time series which are

only differ in their time stamps, it is possible to use DTW to find their relatedness.

Instead of comparing the shape, structure-based similarity measures extract global

features from time series data, and use these features to measure the similarity of two

time series data. We can compute statistics such as mean value, variance, skewness, and

kurtosis from the data. One of the commonly used statistic isauto-correlation.

Let σx be the variances of time seriesSx, auto-correlation function evaluates the de-

pendency of ther-th and thes-th element in this sequence:

E[(Xr − X̄r)(Xs − X̄s)]

σ2
x

Another statistic that evaluates two elements in differentsequence data iscross-correlation.

Cross-correlation function can be used to estimate the dependency of ther-th elements in

Sx and thes-th element inSy:

E[(Xr − X̄r)(Ys − Ȳs)]

σxσy

Auto-correlation function and cross-correlation function measure the similarity of ran-

dom variables in the sequences with time delayt = |s− r|. They measure the divergence

of a sequence or two sequences at only two time points, ratherthan in a total view. These

11



two measures are the extension of correlation coefficient, and can be applied to sequence

data.

One divergence measure based on KL divergence for two Markovsequences is Kullback-

Leibler divergence rate, which is:

lim
n→∞

1

n
D(P n

x ||P n
y )

whereP n
x andP n

y are the probability functions of a length-n sequence. This measure,

however, can not be applied to any sequence data. It is shown that there exist two se-

quences such thatlim
n−>∞

sup
1

n
D(P n

x ||P n
y ) 6= lim

n−>∞
inf

1

n
D(P n

x ||P n
y ), which means that

Kullback-Leibler divergence rate does not exist in [43].

2.3.3 Similarity Measures for Strings

String is a special type of sequence data that elements in it may not be numerical. There-

fore, these elements may not be comparable. As a result, somemeasures in section 2.3.2

are not applicable. Before introducing functions to measurestring similarity, we give

some notations and terminologies of strings.

Let Σ be the set of alphabets. Astring s is a sequence of alphabetss1s2 . . . that

s ∈ Σ∗. If a string is with length-n, thens = s1s2 . . . sn. For such a strings ∈ Σn, we

have|s| = n. A null string s is with |s| = 0. Theconcatenationof two stringsu, v isuv,

and their length|uv| is |u|+ |v|. Letx, u, v, andw be strings. Ifx = uvw, we say thatu,

v, andw are respectively theprefix, substring, andsuffix of x. A stringt = t1t2 . . . tm is

asubsequenceof s if there is astrictly increasing functionf : {1, . . . ,m} → {1, . . . , n}
that ti = sf(i). For example, “ca”, “ct”, and “at” are length-2 subsequences of string

“cat”, but “ac” is not. If t is a subsequence ofs, we define the length oft in s to be

ℓs(t) = f(m)− f(1) + 1. For example, ifs=“cat”, t1=“at”, andt2=“ct”, then ℓs(t1) = 2

andℓs(t2) = 3.

If two strings are similar, it should be easy to transfer fromone to the other. Under this

idea, we can measure the divergence of two strings by considering thecostof transferring

from one string to another, which is the edit distance of two strings. Besides the cost, we

can also estimatethe amount of informationwe need to transfer one string to the other as

the distance. This kind of method is based on Kolmogorov complexity.

Kolmogorov complexity of strings, K(s), is the length of the shortest binary program

which computess. K(s, t) is the length of the shortest program that computes boths and

t, as well as having a way to tells, t apart. Conditional Kolmogorov complexityK(s|t)
is the length of the shortest binary program which computess given t. By Kolmogorov

complexity, information distance of two stringss and t, E(s, t), can be defined as the

length of the shortest binary program to transfers to t andt to s. i.e.,

12



E(s, t) = max{K(s|t), K(t|s)}

By normalizing the information distance, we have the normalized information dis-

tance (NID) [30]:

NID(s, t) =
E(s, t)

max{K(s), K(t)}
Note that Kolmogorov complexity is a theoretical lower bound, and it is generally not

computable. Therefore, the compression length of a string is used instead as an approxi-

mation. LetC be a compressor, andC(s) denotes the length of compressings usingC.

The compression distance ofs andt usingC is

Ec(s, t) = C(st)−min{C(s), C(t)}

and the normalized compression distance (NCD) ofs andt cab be defined usingEc and

C [30]:

NCD(s, t) =
Ec(s, t)

max{C(s), C(t)}

Another analogous similarity measure which is also based ondata compression is pro-

posed in [26]. This measure is called compression-based dissimilarity measure (CDM).

The equation of CDM is

CDM(s, t) =
C(st)

C(s) + C(t)

CDM is close to 1 ifs andt are not related, and is close to1
2

if s andt are similar.

CDM will never be zero even whens = t.

2.3.4 Similarity Measures Using Kernel Method

Kernel methods have been successfully used in pattern analysis and machine learning.

Given a domainD, we can use a mapφ that maps any elementd ∈ D to a feature

spaceF and perform inner product of two elements inF by defining a kernel function

k : D×D → R. Note that the inputs ofk are elements inD, so it is usually not necessary

to explicitly define the mappingφ.

For example, if the objects we deal with are vectors, we can compute their similarity

in their vector space. For two vectorsX = {x1, . . . , xn} andY = {y1, . . . , yn}, we can

use linear kernel function to estimate the similarity ofX andY , which is the inner product

of X andY , 〈X, Y 〉 = ∑n

i=1 xi ∗ yi. For two non-zero vectorsX andY , 〈X, Y 〉 = 0 if

and only ifX andY are orthogonal.
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A normalized version of linear kernel is the well-known cosine similarity, which is

cosine of the included angle ofX andY . Cosine similarity is defined as:

〈X, Y 〉
||X||||Y || =

∑

i xiyi
√

∑

i x
2
i

√
∑

i y
2
i

(2.5)

In cosine similarity, two vectors are similar if they are similar in direction. The length

of vectors is not taken into consideration. It can be seem that the function of correlation

coefficient and cosine similarity are the same ifx̄ = 0 and ȳ = 0 from equation 2.2

and 2.5.

Another well-known kernel function is radical basis function (RBF) kernel which is

defined as:

k(x, y) = exp{−||x− y||2
2σ2

}

wherex andy are two objects that||x − y||, mostly is Euclidean distance, is defined. It

is easy to see that RBF kernel is maximized whenx = y, and decreases when||x − y||
increases.

Given two sets of samplesX andY , let their feature maps beφx: X → F andφy:

Y → G whereF andG are Reproducing Kernel Hilbert Spaces (RKHS) with kernel

functionskx andky respectively. Givenpxy, the joint probability measure ofX andY ,

the Hilbert-Schmidt Independence Criterion (HSIC) [20], which is the square of Hilbert-

Schmidt norm of the cross-covariance operator fromG to F , is defined as:

HSIC(pxy,F ,G)
= Ex,x′,y,y′ [kx(x, x

′)ky(y, y
′)] + Ex,x′ [kx(x, x

′)]Ey,y′ [ky(y, y
′)]

−2Ex,y[Ex′ [kx(x, x
′)]Ey′ [ky(y, y

′)]]

where(x, y) ∼ pX,Y and(x′, y′) ∼ pX,Y are two independent pairs of random variables.

HSIC(pxy,F ,G) = 0 if and only ifX andY are independent.

It is also possible to define kernel functions for strings. By string kernels, we can

evaluate the similarity of strings using kernel methods. Many string kernels for similarity

measures can be found in [33]. We select some of kernel functions from this literature

and introduce them below.

In p-spectrum kernel, we first define a feature map

φp
u(s) = |{(v1, v2) : s = v1uv2)}|, |u| = p,

which is the number of times the length-p stringu occurs ins. Thep-spectrum kernel is

defined as:

kp(s, t) =
∑

u∈Σp

φp
u(s)φ

p
u(t)
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If we give different weights
√
wu for eachu above, and check all possible sub-strings,

we will get another kernel function:

k(s, t) =
∑

u∈Σ∗

φu(s)φu(t)

whereφu(s) =
√
wu|{(v1, v2) : s = v1uv2)}|.

If instead of sub-strings, we use sub-sequences to define thestring kernel function,

we can compare strings by inexact matching. Letu be a subsequence ofs, we define a

feature mapping:

φu(s) =
∑

v∈s,v=u

λℓs(v),

whereλ ∈ [0, 1] is a parameter. The length-p string subsequence kernel is

kp(s, t) =
∑

u∈Σp

φu(s)φu(t) =
∑

u∈Σp

∑

v∈s,v=u

∑

v∈t,v=u

λℓs(v)+ℓt(v)

For example, lets=“cat” and t=“cart”, thenφ“ct′′(t) = λ4. Common subsequences

which can be used to compute the kernel function is “c”, “a”, “t”, “ca”, “ct”, “at”, and

“cat”. In our example, ifp = 1, kp(s, t) = 3λ2; if p = 2, kp(s, t) = λ4 + λ5 + λ7.
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Chapter 3

Feature-based Knowledge Transfer

Framework

The feature-based knowledge transfer framework is appliedto find the mapping of fea-

tures between two domains to transfer knowledge. We first define what is mapping be-

tween two sets:

Definition 1. A mappingM : F → G is a binary relation between two feature setsF
andG. In addition, if(fi, gj) ∈ M(F ,G), we say featurefi ∈ F andgj ∈ G are mapped

together.

In our framework, setsF andG are feature sets in two domains. We compute the

mappingM betweenF andG. Knowledge is transferred based on this mapping. Let

F = {f1, f2, . . . , fS} andG = {g1, g2, . . . , gT} be two sets of features in source and the

target domains respectively. AssumeT ≤ S. A mappingM : G → F can be defined (If

T ≥ S, we defineM : F → G), and a matrixC can be computed givenM:

Ci,j =

{

1 M(gi) = fj,

0 otherwise

We compute the new feature sets from original feature sets ofthe two domains and

the matrixC, and instead of using the original feature setsF andG to learn and test the

model, we use new feature sets̃F and G̃. The elements̃fi’s and g̃j ’s in the two new

feature sets have the following property:f̃k = fj and g̃k = gi if and only if Ci,j = 1.

That is, only those features inG that map to any non-empty element inF , and only those

features inF that are mapped by any non-empty element inG, are used in training and

testing procedures. The correspondence of these features can be found from matrixC.

Therefore, givenC orM, we can compute and usẽF as the new feature set of the source

domain dataset and̃G as the new feature set of the target domain dataset.
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We computeM and the corresponding matrixC according to the divergence/similarity

between any two features in different domains. What is thedivergence/similarity of fea-

tures? Generally speaking, measuring similarity is a process of estimating thedistance

between two objects in a problem domain. The data type of objects can be random vari-

ables, structured data, images, strings, etc. Distance between objects reflects their degree

of similarity. In this work, objects are features, and features are extracted from sensors.

Therefore, similarity of a feature is affected by the similarity of sensors that it is extracted

from. Generally speaking, if the information two features provides is highly correlated in

the sense of predicting the label, we can say that the two features are similar. Therefore,

in activity recognition datasets, when two features are extracted from the same set of sen-

sors or different sensors that can provide analogous events, for example microwave and

toaster for the event of preparing the meal, we say they are similar.

As a result, we say that featurefi andgj are similar in the task of inferring the label

ℓ in the label setL if the two features provide highly correlated information to ℓ. We can

decide the mapping only if we can measure the relatedness of the information. Here is a

definition for similarity:

Definition 2. Let hL : R × S → R be a function that can measure the relatedness of

the information two elements inR andS provide toL. For three elementsri ∈ R and

sj, sk ∈ S, if hL(ri, sj) < hL(ri, sk), we sayri is more similar tosj than tosk, or the

divergence betweenri andsj is less than the divergence ofri andsk.

By the definition above, we define the feature similarity:

Definition 3. Let fi ∈ F andgj ∈ G be two features in two datasets, andL is the set of

labels. If there is a functionhL : F ×G → R as we define in definition 2 thathL(fi, gj) ≃
mink hL(fk, gj), we say thatfi is similar to gj in the feature setF under the task of

inferringL, or brieflyfi andgj are similar without ambiguity. Iffi = argmink hL(fk, gj),

thenfi is the most similar element togj.

In our framework, iffi andgj are highly similar, we want to map these two features

together. Note that if there is more than one possible choiceof functionh, it is possible

that the result of these functions is not consistent. The choice of the similarity measure

functionhL may affect the result of deciding which two features are similar, and therefore

make the computed mapping different. It would be necessary to identify some properties

or criteria to choosehL instead of considering all possible choices.

In the following sections, we explain the details of the proposed framework. An

overview of this framework is given in figure 1.1. The featurereformulation procedure

is used to make each feature provide different information,and the feature alignment

procedure is used to automatically compute the feature mapping. These two procedures

18



depend on feature similarity which is assumed to be available or computable. The feature

similarity procedure can provide necessary information tothe two procedures: In feature

reformulation procedure, it may need to provide the information about whether two fea-

tures in the same datasets are identical or not; in feature alignment procedure, it needs to

give the estimation of divergence of features in two datasets.

The purpose of this feature-based knowledge transfer framework is to align similar

features in different domains before a learning algorithm starts to train a model. Since

this framework is run when preprocessing datasets, it can beapplied to any existing learn-

ing algorithms after extracting features. Although the application we aim at is building

activity recognition models in an intelligent environment, this knowledge transfer frame-

work should be available for more general usage. Knowledge can be transferred between

two domains by applying this framework as long as we have similarity of features.

3.1 Feature Similarity

In definition 3, we defined the meaning of similar features. Inour framework, it is neces-

sary to estimate the similarity between any two pairs of features between the source and

target domain if it is not given. The problem of definition 3 isthat the functionhL is not

easy to define. Different functions are only suited to various scenarios.

In this section, we only discuss some general issues of measuring similarity of features

from different datasets. The specific methods that we have applied to estimate feature

similarity will be discussed in chapter 4.

3.1.1 Issues on Measuring Feature Similarity

The adopted similarity measure in this framework should be able to measure the related-

ness of the information a feature can provide to infer the label. Therefore, it is necessary

to take this requirement into consideration. Moreover, it would be better if the similar-

ity measure can be related to the learning model. For example, a similarity measure for

sequence data should be used with a learning model for time series data, and when a

learning model based on the distribution of the data is used,similarity measures based on

their probability distributions would be more suitable.

Measuring similarity of features in different datasets is challenging. A reason is that

we usually do not have a dataset that contains both these features at the same time.

Namely, it would be very difficult to estimate the joint probability of them from datasets

directly without any assumption. As an example, recall the mutual information of random
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variablesX, Y :

I(X;Y ) =
∑

X,Y

p(X, Y ) log
p(X, Y )

p(X)p(Y )

We can see from this equation that if we can not computep(X, Y ), estimatingI(X;Y )

is not possible.

Defining an appropriate similarity measure case by case may be necessary. According

to whether the labelled target domain data is available or not, we proposed different meth-

ods to estimate the feature similarity in this work. If the target domain data are available,

we can estimate feature similarity from data. In this case, the functionhL in definition 3

and 2 we chose in our experiment is expected Jenson-Shannon divergence. Otherwise,

we defined sensor profiles from background knowledge, and usethem to estimate the

distance of features. These methods will be described in chapter 4.

3.2 Feature Reformulation

The first procedure in this framework is feature reformulation. This procedure should be

executed before the feature alignment procedure because the feature divergence used in

the feature alignment procedure will be estimated again after reformulating the features.

This procedure is necessary when we have one of the followingsituations:

1. One featurefi contains various information about more than one features in G

2. More than one features inF provide similar information to a feature inG

In figure 3.1, we show two examples that feature reformulation is needed. In the situ-

ation of figure 3.1(a), if we only mapf2 andg2 together, we lose some useful information.

It would be better to separate featuref2. Similarly, in the situation of figure 3.1(b), we

do not want to just mapf3 andg1 together and lose the information thatf2 can provide.

Ideally, we want to separate the information thatf2 can provide in to two parts, and merge

one of them tof3 to make all features provide highly divergent features as well as do not

lose any information, as shown in figure 3.2. Therefore, the ideal feature reformulation

procedure implementation should have the following two properties:

1. Make features provide highly divergent information to infer the label.

2. Information loss caused by the feature reformulation procedure should be mini-

mized.

We will introduce our feature reformulation implementation for the two scenarios

mentioned in section 1.1.1. Our implementation, however, does not satisfy all the two

properties.
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Figure 3.1: Two situations that feature reformulation is necessary.

����������

���
���
���
���

������
���
���
���
���

���
���
���
���

���
���
���
���

�����
�����
�����
�����

F G

g1

g2

g3
f ′
3

f ′
2

f ′
1

f ′
4

Figure 3.2: An ideal situation after reformulating features.
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3.2.1 Feature Reformulation by Using Data Samples

In information theory, entropy is used to describe the amount of information in random

variables. Let{Xi}ni=i be the random variables of features, andZ be the random vari-

able of labels. The amount of information these features contain can be expressed by

Shannon entropyH(X1, . . . , Xn) if Xi’s are discrete [42]. For continuous random vari-

ables,h(x1, . . . , hn), the differential entropy, can be used. Note thatH(X1, . . . , Xn) ≤
∑n

i=1 H(Xi) andh(X1, . . . , Xn) ≤
∑n

i=1 h(Xi) with equality if and only ifXi’s are

independent, no matter they are discrete or continuous random variables [12].

If a labelled dataset is available, we compute the transformationLA with transforma-

tion matrixA from data. LA can be linear or non-linear transformation. In this work,

we focus on the linear case. LetI denote the mutual information function in information

theory, andX = [X1, . . . , Xn]
T . The two properties we given above can be expressed by

the following two equations:

1. H(X) = H(AX), and

2. ∀i, j, I(LA(Xi);LA(Xj)|Z) = 0,

whereXi andXj are respectively random variables of featuresfi and fj in the same

dataset.

The two equations above means the Shannon entropy of these features before and after

applying the linear transformation is the same. Also, giventhe label, any two features in

the same dataset provide independent information to the label. Note that it does not seem

to be possible to find a unique transformation which can make the mutual information of

two features given the label to be zero, since the joint distributions of the random variables

may change given different labels. An alternative is to minimize the value of the metric

that we choose to evaluate the dependency of these random variables.

A possible solution to implement the transformation is Principal component analysis

(PCA) [24]. PCA is a well-known method which transforms the original dataset by find-

ing a new basis to express the original data samples. In the linear case, PCA can find

an orthogonal basis in the original vector space. Because of this property, the random

variables are uncorrelated after applying PCA. PCA can guarantee that elements in the

converted feature set areuncorrelatedbut not necessaryindependent, since independent

random variables are uncorrelated, but uncorrelated random variables may not be inde-

pendent in general cases.

Another candidate is Independent component analysis (ICA) [10], which is often used

in signal processing. ICA aims at finding statistically independent components from mix-

tures of signals. Independent components in ICA methods can be found by the following

three strategies [23]:
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• Maximize nongaussianity of components

• Maximize likelihood function

• Minimize mutual information

Unlike PCA which minimizes the correlation between each components, ICA mini-

mizes the mutual information. PCA and ICA are the solutions to make the features contain

uncorrelated or independent information. However, they are not applicable to the feature

reformulation procedure in our framework. The reason is that both PCA and ICA are

unsupervised methods. That is, they do not take the label into consideration. Therefore,

we can not use these two methods directly in the feature reformulation procedure in our

framework.

If we relax the constraints and finduncorrelatedcomponents instead of independent

ones, we can make use of the theory in PCA to define a linear transformation. Letdet(A)

denote the determinant of a square matrixA, and | det(A)| the absolute value of this

determinant. Before we show our implementation when labelled datasets are available,

we first show that regardless of what the linear transformation function is, we can eas-

ily verify whether the first property of the ideal transformation is satisfied or not from

its transformation matrix. Specifically, given a linear transformationLA, we show that

H(X) = H(AX) if A is invertible. For continuous random variables,h(X) = h(AX) if

| det(A)| = 1.

Lemma 3.1. Let {Xi}ni=i be the random variables of features,(X1, . . . , Xn) be a ran-

dom vector in vector spaceU , and(X1, . . . ,Xn) be a random vector in vector spaceV .

If a linear transformationLA : U → V whose transformation matrixA is invertible,

H(AX) = H(X) for discrete random variablesXi’s. If Xi’s are continuous random

variables,h(AX) = h(X) when| det(A)| = 1.

Proof. First we show the case of discrete random variables. By the definition of Shan-

non entropy,H(X1, . . . , Xn) = −
∑

Xi
P (X1, . . . , Xn) logP (X1, . . . , Xn). BecauseA

is invertible,LA is one-to-one and onto. For anys ∈ V thatLA(r) = s, we have

P (s) =
∑

r:L−1

A
(s)=r

P (r) (3.1)

whereL−1
A is the inverse function ofLA. BecauseA is invertible, for anys there is one

and only oner ∈ U thatL−1
A (s) = r, and thusP (s) = P (r). Therefore,

H(X1, . . . , Xn) = −
∑

r

P (r) logP (r) (3.2)
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= −
∑

s=LA(r)

P (s) logP (s) (3.3)

= −
∑

s∈X

P (s) logP (s) (3.4)

= H(X1, . . . ,Xn) (3.5)

On the other hand, ifXi’s are continuous random variables, we have

h(AX) = h(X) + log | det(A)| (3.6)

= h(X) (3.7)

Equation 3.6 is given in [12].

Now we show how to modify the method in PCA and give a linear transformation

method. In PCA, the covariance matrix of features is used to find the a new basis to

represent the dataset. The new basis consists of the eigenvectors of the covariance matrix.

Take into consideration the labels, letΣ = Cov(X|Z), LA be the linear transformation

with transformation matrixA, andAX = [X1, . . . ,Xn]
T . We have

Cov(AX|Z) = AΣAT = Λ, (3.8)

whereΛ is a diagonal matrix. Similar to PCA, we have∀ i, j, Xi ⊥ Xj|Z.

From equation 3.8, we know that if we can computeCov(X|Z), we can use the same

method as what is used in PCA. However,Cov(X|Z) is a function ofZ, not a constant.

Therefore, we computeE[Cov(X|Z)] instead. LetΣx denoteE[Cov(X|Z)] andΛ be a

diagonal matrix. We have

E[Cov(AX|Z)] = E[ACov(X|Z)AT ] = AΣxA
T = Λ (3.9)

From equation 3.9, we know thatA is the matrix of the linear transformation we want

to find. If Σx is not a diagonal matrix, we compute the eigenvectors ofΣx and normalize

them such that the Euclidean norms of these vectors are all 1.In this case, the row vectors

of A are these normalized eigenvectors. On the other hand, ifΣx is a diagonal matrix,

then letA=I, the identity matrix. From this procedure, we have the following property:

Lemma 3.2.A is invertible, and| det(A)| = 1.

Proof. If A = I, we have done. In the case ofA 6= I, becauseΣx is a real symmetric

matrix, its eigenvectors are orthogonal. Since the Euclidean norm of these eigenvectors

are 1, the determinant ofA is ±1. SoA is invertible, and| det(A)| = 1.

Now the reason why Shannon entropy of{Xi}ni=i before and after applying this linear

transformationLA is unchanged is obvious. In addition, the expected covariance of any

two features after applyingLA is 0. We have the following theorem:
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Theorem 3.1.There is no information loss after transferring the data by applying a linear

transformation with a transformation matrix whose determinant is 1. In addition, the

expected covariance of any two transferred features given the label is 0.

Proof. BecauseA is invertible and| det(A)| = 1, from lemma 3.1 there is no infor-

mation loss. Moreover, the expected covariance of any two features is 0 becauseΛ =

E[Cov(AX|Z)] is a diagonal matrix.

As the conclusion,XTAT is the vector of random variables of the new feature set

whose Shannon entropy is the same withXT . Given a labelled dataset, we can use matrix

A to linearly transfer it without losing any information as well as minimizing the expected

covariance of any two features.

Two transformation functions for the source and target domain are respectively com-

puted from their datasets before executing the next procedure of our framework. We run

a simple experiment to show the effect of applying this linear transformation on the well-

known iris dataset comes from UCI Machine Learning Repository[17]. We compare the

distribution before and after applying this linear transformation procedure and PCA using

scatter plots in figure 3.3. We can find from figure 3.3(c) that after applying PCA, data

samples are evenly distributed in global view, while in mostcases our linear transforma-

tion method makes data samples evenly distributed in the same class.

3.2.2 Feature Reformulation by Profiles

Recall the scenario we give in section 1.1.1 that we have no target domain dataset. In this

case, it is impossible to estimate the similarity of features in the same dataset from labelled

data. In order to merge analogous information, we use the background knowledge about

the features.

Specifically, we encode background knowledge of sensors as sensor profiles, which

is a length-N binary string that describes sensors.N is the number of properties. The

binary string is used to represent the properties of a sensor, and can reflect the information

provided by different sensors. If the profiles of two sensorsare similar, these sensors

should provide analogous information to infer the activity, and features extracted from

these sensors should also be similar. We define four types of properties to be included in

the sensor profile as follows:

• Object: On which object the sensor is set up.

• Location: The location of the object.

• Sensor type: What kind of sensor it is.
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• Event: What event the sensor detects.

If a sensor is related with thei-th property, thei-th binary value in the profile will be 1.

For example, a sensor deployed on the microwave in the kitchen is related with properties

“kitchen” and “microwave”, so there will be respectively a value 1 assigned for these two

properties in the profile. This method is inspired by [49] and[50] that these properties is

similar to the meta features in these two papers.

Besides the properties, we also assigned a non-negative importance value for these

properties. The importance value indicates the degree of assurance about whether an

activity is performed or not given the state of a sensor whichhas this property. These

properties and their importance values are all defined by hand in our work. A detailed list

of these properties along with their importance values we used will be given in chapter 4.

We compute feature profiles from sensor profiles. LetPsi = {pi1, . . . , piN} be the

profile of sensori, andPfj = {qj1, . . . , qjN} be the profile of featurej. If featurej is

extracted from a set of sensorsAs, we have

q
j
k =

∨

Si∈As

pik, k = 1, 2, . . . , N (3.10)

∨

is logical operator OR. For example, if featurei is extracted from sensorsSi andSj

with profiles{1, 1, 0, 0} and{1, 0, 1, 0} respectively,Pfi = {1, 1, 1, 0}.

Using feature profiles, we can run the feature reformulationprocedure even when the

labelled dataset is not given. We combine the data of features whose profiles are identical.

Recall that we define the profile to reflect the information thata sensor can provide to infer

activities. Sensors with different profiles should providedifferent information, so the fea-

ture extracted from these sensors will also provide different information. Features provide

identical information to infer activities if and only if they have identical profiles. There-

fore, we combine features with identical profiles in order tomerge the same information

together.

Note that in this case, we can not guarantee that different features in the new feature

set provide unrelated information. We may also loss information because we apply logical

operator OR to combine features with identical profiles. Under the scenario that labelled

dataset is not available, these two properties of the ideal transformation function may not

be satisfied. Nevertheless, it is still effective to used this method in our framework. We

verify it by showing the experimental results under this scenario in chapter 4.

3.3 Feature Alignment

After the feature reformulation procedure, we compute the feature mapping by feature

alignment procedure. This procedure finds similar feature pairs(fi, gl) thatfi andgl are
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in different datasets. The purpose of this procedure is not only to make the size of the

two feature sets in source and target domain datasets be the same but also to find the

correspondence between any two features in two domains to transfer knowledge in the

best way.

3.3.1 Graph Matching Algorithms

Given a similarity measure, we formulate the problem by defining a weighted graph, and

apply graph matching algorithms to compute the mapping. Specifically, we reduce our

problem to minimum cost perfect matching problem or stable marriage problem in graph

theory. In the following sections, we will introduce the twomatching problems. After

that, we show how to reduce our mapping problem to graph matching problems.

Matching

In graph theory, a matching is a set of edges that any two edgescan not share one vertex.

Given a graphG(V,E), a matching of G is a subset ofE that if two edges(vi, vj) and

(vr, vs) are in the subset,i 6= r, s andj 6= r, s. A perfect matchingEp is a matching that

no vertex is left behind in the matching. That is, for eachvi ∈ V , we have one and only

one edgee ∈ Ep thate = (vi, vj) or (vj, vi).

Minimum Cost Perfect Matching

A minimum cost perfect matching[14] is a perfect matching with minimum cost. That

is, given a weighted graphG, it finds a matching in the graphG such that the summation

of the weights of these edges in the matching is minimized. Formally, letwi be the weight

of edgeei, the perfect matchingEp is a set of edges in a perfect matchingEk with the

property:

Ep = argmin
Ek

∑

ei∈Ek

wi (3.11)

Stable Marriage

The stable marriage problem [18] in graph theory is a problemof finding a stable matching

between two sets of vertices,Va andVb. A matching isstable if when an edge(ai, bi) is

in the matching, there is no edge(aj, bj) in the matching such thatai prefersbj to bi and

bj also prefersai to aj. Note that a stable matching may not have minimum total cost,as

the example we show in figure 3.4.
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Figure 3.4: A stable marriage matching(A,D), (B,C) is with cost 105, which is not a

minimum cost matching.

3.3.2 Feature Mapping by Graph Matching

We can reduce our feature mapping problem to the graph matching problem. Assume we

have two sets of featuresA andB. There arem features inA andn features inB. We

define a complete bipartite graphKm,n = (U, V,E) that |U | = m and|V | = n. Vertex

ui ∈ U andvj ∈ V represent a featureai ∈ A andbj ∈ B respectively. We also assign

weight values to all edges inE. The weight value of edge(ui, vj) is the divergence of

featureai and featurebj. If ur andvs are matched in the graphKm,n according to the

algorithm, featurear and featurebs are mapped together, as we defined in definition 1. By

this reduction, we can solve our feature mapping problem by solving the graph matching

problem.

Choosing different graph matching algorithms has differentmeanings for knowledge

transfer. Observing figure 3.4, we can see the difference. Ifthe algorithm for minimum

cost perfect match problem is applied, we are going to find a mapping in global view,

namely, the total divergence between two feature sets aftermapping is minimized. On the

other hand, the stable marriage algorithm aligns the most similar features in two datasets

first. In this case, total divergence may not be optimal, but the most preferred pairs be-

tween two features will not be sacrificed.

Note that in our method, some features in the datasets may be ignored because of the

following two reasons. First, ifm 6= n, the matching computed by the graph matching

algorithm is not perfect. Ifui is not covered in the matching, its corresponding feature

ai will be ignored when we transfer knowledge. Besides, some of these edges in the

matching may be with high weight values, which means the corresponding features are

in fact not similar. In this case, it would be better to ignorethese edges with high weight

values in the matching.
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3.3.3 Measuring Divergence of Datasets

If there is more than one source domain available, intuitively we should transfer knowl-

edge between two “similar” domains instead of two highly divergent domains. The rela-

tionship between divergence of two datasets and performance of models has been studied

in [2], [48], and [9], which show that divergence of two datasets and model performance

of knowledge transfer are related. However, currently there is no standard method to eval-

uate the divergence between two different domains to decidehow to transfer knowledge.

There is also no known criteria on how to choose a method to estimate the divergence of

two datasets in transfer learning.

It may be possible to extend the feature similarity measure to estimate divergence

between datasets in two domains according to our feature-based knowledge framework,

as proposed in [9]. LetF andG be two feature sets in two domains, from definition 1, we

can use the following equation to estimate the divergence oftwo datasets:

DF ,G(F ;T ) ≈
∑

(fi,gj)∈M(F ,G)

D{fi},{gi}(fi;T )

whereT is the task of domains, andDF ,G(F ;T ) is the estimated distance betweenF and

G underT . That is, the total distance of two domains is the summation of the distance of

each features which are mapped together under the task.

Therefore, assume the divergence between features in two datasets are given or com-

putable. We can compute an one-to-one correspondence of these features between the

source and target domain dataset by applying the graph matching algorithms. The sum-

mation of feature divergence in the mapping may be used to estimate the distance of

source and target datasets. We may use minimum cost perfect match algorithm to com-

pute the best matching between nodes in a bipartite graph. The result of this matching can

give a lower bound of divergence of two datasets.
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Chapter 4

Experiments

In this chapter, we describe the knowledge transfer experiment conducted according to our

framework under two scenarios. The details of activity recognition datasets, including the

datasets we used, the algorithms of data preprocessing and feature mapping, parameters,

and the results are given. The feature reformulation procedures for the two scenarios are

that we described in section 3.2. We measure our knowledge transfer framework by the

accuracy of models.

Recall the two scenarios we gave in section 1.1.1.

1. A dataset collected in a laboratory environment is available, and we are preparing

to deploy sensors to the target domain environment.

2. A dataset collected in a laboratory environment is available, and we have also col-

lected and labelled some samples in the target environment.

In these two scenarios, data samples collected in the laboratory environment is our

source domain data. We proposed the following solutions forthese two scenarios, and

apply our framework to run the experiments:

1. We transfer knowledge by sensor profiles.

2. We use labelled source and target domain data samples to transfer knowledge.

In our experiments, each feature is extracted from only one sensor, so feature profiles

and sensor profiles are identical. We will usesensor profileand feature profileinter-

changeably in the following sections without confusion.
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Table 4.1: The number of features and activities in the datasets

Dataset MAS S1 MAS S2

♯ of sensors 76 70

♯ of activities 23 25

4.1 Datasets and Data Preprocessing

The datasets we used come from the course of MAS622J, PatternRecognition and Anal-

ysis, at MIT1. There are two datasets in the MIT MAS622J dataset (we call them MAS

S1 and MAS S2), which are collected from two different single-person apartments. Only

ambient sensors are installed in the two apartments, so there is no sensor on human body,

and no video, image, and voice data in the two datasets. More information about these

datasets can be found in [44] and [45].

For state change sensors in these datasets, we find the start and end time sensors being

triggered. By doing this, we have the state of all sensors in each time stamps. Each data

sample is a list of all sensors with binary values indicatingwhich sensors are triggered

at that time. We then convert the sensor data using a fixed-length time interval. The

length of the time interval in our experiment is 30 seconds without overlapping. If a

sensor is triggered at any time stamp in a time interval, its value in that time interval will

be set to 1. In addition, if there are multiple activities performed in a time interval, we

extract only the latest one. For example, if in the raw data, there is an activity sequence

{i, i, (ij), (ij), j}, the extracted sequence will be{i, i, j, j, j}. The number of features

and activities extracted from the raw data of these datasetsare shown in table 4.1. Note

that the number of features and activities in table 4.1 may not be the same with what is

described in the papers we listed above because some sensorsare ignored if they are not

triggered at all time stamps. In addition, there are some samples with no activity annotated

in the raw data. We set a new NoAct label for these samples.

4.2 The Feature Reformulation Procedure

We use the method described in section 3.2.1 and 3.2.2 to reformulate the feature sets first

in our experiments. In the first scenario, we use sensor profiles to reformulate features.

Sensor profiles are encoded according to background knowledge to give the information

of how similar two sensors in the same dataset are. Features with identical profiles in

the same dataset are merged. Properties of the sensor profile, including the type and

1available: http://courses.media.mit.edu/2004fall/mas622j/04.projects
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Table 4.2: Sensor properties and their importance values

Type Property
Importance

Value

location

bathroom 4

bedroom, kitchen, living room, toilet 2

study room, balcony, outside, gateway, Other private

space, Other public space

1

object

shower faucet, flush, stove/oven/burner, dishwasher,

washing machine/clothes dryer, telephone, tea/coffee

machine, Audio/Video Equipment

4

washbasin/sink faucet, garbage disposal 3

cupboard, microwave, toaster, food grain, light 2

closet/cabinet, cutlery, drawer, window, door,

chair/sofa, bed, refrigerator/freezer, fan, box, con-

tainer

1

sensor
switch 2

motion/PIR 1

event entering/leaving/moving, operate appliances,

get/put/find something, something is on the ob-

ject, light on/off

1
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importance values defined in our experiments, are given in table 4.2.

In the second scenario, we compute two expected matrices from labelled data samples

in the two datasets respectively, and use these two matricesto decide the linear transfor-

mation of the two datasets. Specifically, let{Xi}ni=i be random variables of features,Z

be the random variable of labels, and defineX = [X1, X2, . . . , Xn]. We first compute

Λ = E[Cov(X|Z)], and then compute the eigenvectors ofΛ. These eigenvectors are

normalized such that their Euclidean distance are all 1. Thematrix used to run the linear

transformation is consist of these normalized eigenvectors as the row vectors. In this case,

E[Cov(Xi, Xj|Z)] which is computed from labelled data samples is the “divergence” of

Xi andXj in the same dataset.

4.3 Estimate Feature Similarity

The difference between using background knowledge and datasamples to transfer knowl-

edge is mainly on how we estimate the feature similarity after the feature reformulation

procedure: When some data samples are available, we use them to estimate feature sim-

ilarity. Otherwise, feature similarity is estimated from background knowledge. The fea-

tures similarity measure is used to measure the divergence of information that features

can provide to infer the label. Two features are similar if they provide similar information

about the label.

4.3.1 Feature Similarity Estimation by Using Data Samples

In this work, when some labelled target domain data samples are given, the method we

used to estimate the divergence between two features is based on Jenson-Shannon di-

vergence which is introduced in equation 2.4 in chapter 2. Inorder to take labels into

consideration, we separately compute the Jenson-Shannon divergence between features

for data samples with different labels, and summarise theseresults to estimate these fea-

tures’ overall Jenson-Shannon divergence. Specifically, letPi andQj be the distribution

of fi ∈ F andgj ∈ G respectively, we compute theexpectedJenson-Shannon divergence

of two distributionsPi andQj given labelZ, which is:

E[JSD(Pi(fi|Z)||Qj(gj|Z))] =
∑

k

ft(zk) JSD(Pi(fi|Z = zk)||Qj(gj|Z = zk)), (4.1)

whereft is the probability distribution function of the labelZ in the dataset.

Therefore,JSD(Pi(fi|Z = zk)||Qj(gj|Z = zk)), Jenson-Shannon divergence offi

andgj with differentzk is separately computed. ThenE[JSD(Pi(fi|Z)||Qj(gj|Z))], the
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overall Jenson-Shannon divergence, can be estimated. We useE[JSD(Pi(fi|Z)||Qj(gj|Z))]
as the divergence of featuresfi ∈ F andgj ∈ G. That is,

D(i, j) = E[JSD(Pi(fi|Z)||Qj(gj|Z))] (4.2)

The advantage of using Jenson-Shannon divergence is that itis symmetric, its value

is bounded, and it is not necessary to estimate the joint probability of two features to

estimate their divergence.

4.3.2 Feature Similarity Estimation by Profiles

If the data sample in target domain dataset is not available,we still need to estimateD(i, j)

between featuresfi andgj in our framework. We estimate it using the profiles defined in

section 3.2.2. If two sensors or features have almost identical profiles, they are similar in

our method. Measuring feature similarity by their profiles is to draw an analogy between

two features.

The similarity measure in this scenario is a two-step procedure. For each pair of fea-

tures in two datasets, we first compute the divergence for each type of profile property.

Afterwards, we compute the summation of the divergence of these types of profile prop-

erty. Specifically, letT be the set of profile property types, andwt
k be importance value

of the k-th property which belongs to the type-t property in the profile. We compute

the divergence of the type-t property between two features using their profiles with the

following equation:

Dt(i, j) =

∑

pk∈T,p
i
k
6=p

j
k
wt

k −
∑

pk∈T,p
i
k
=p

j
k
=1 w

t
k

∑

pk∈T,p
i
k
6=p

j
k
1 +

∑

pk∈T,p
i
k
=p

j
k
=1 1

(4.3)

And estimate the total divergence as:

D(i, j) =
∑

t

Dt(i, j) (4.4)

It is easy to see that for any two features with identical profiles, the positive term
∑

pi
k
6=p

j
k
wk will be 0. Besides, if two features have many different properties, they will

have a large feature divergence.

4.4 The Feature Alignment Procedure

After reformulating feature sets and computing the featuredivergence between any two

features in the source and target domain, we can compute the mapping of features by

graph matching algorithms. A complete bipartite graphKm,n(U, V,E) is defined, and
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D(i, j) is used as the weight of the edge(ui, vj). The problem of computing feature

mapping is reduced and solved by a graph matching problem. Details of the problem

reduction is described in section 3.3.2.

Feature alignment procedure is simple. Regardless of what method is used to estimate

divergence between features, as long asD(i, j) is available, we can just apply a graph

matching algorithm to compute the feature mapping. The graph matching algorithm we

used in all our experiments is the stable marriage algorithm. We adopt this algorithm

because of the following two reasons. First, the matching computed in our experiments is

actually not “perfect”2. In addition, according to the Hall’s theorem [21], perfectmatching

may not exist in some cases. By adding some pseudo-nodes and pseudo-edges to the

bipartite graph, we can solve these two problems. However, since the feature mapping

computed by minimum cost perfect matching algorithm and stable marriage algorithm

in the experiment of the first scenario happens to be identical under our profile setting,

we just reduce our feature mapping problem to stable marriage problem instead of the

minimum cost perfect matching problem in the second scenario either. The experimental

result of mapping features in the first scenario is given in table 4.3. Sensors in the same

row of table 4.3 will be aligned with in the experiment of the first scenario.

Note that some rows in the table are combinations of several “identical” sensors,

which means their profiles are the same. We only show one of these combined features

here in the table to make this table readable. We can see that most of these rows are

reasonable. TV(141) in MAS S2 is aligned with DVD(56) in MAS S1 because they are

all related to the event “operate appliances”. On the other hand, some rows in table 4.3

seem to be illegitimate. For example, aligning TV(101) withJewelry box(139) does not

make sense. However, we can see that these two features are with a larger divergence

value, which means that they are actually not very similar. Therefore, we know that it is

necessary to decide a threshold value in the feature alignment procedure to eliminate bad

matches in the matching computed by the graph matching algorithm.

Before we show and discuss our experimental results, we want to argue that defining

sensor profiles is a feasible solution to transfer knowledge. Recall that we focus on build-

ing a activity recognition model in the smart home environment that only has ambient

sensors in it. Since deploying sensors in an environment requires knowledge about the

environment and these sensors, background knowledge is notdifficult to obtain. Observe

the properties we list in table 4.2, which is the profile we usein our experiments. Object,

location, and sensor types are all easy to known. In addition, since sensors are deployed

according to the task, we usually have expectation of what kind of event a sensor can de-

tect. Dataset preprocessing procedures in activity recognition, including feature extraction

2A trivial explanation: In a bipartite graphG(U, V,E), if |U | 6= |V |, we can not find a perfect matching.
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Table 4.3: The mapping of features computed by stable marriage algorithm using

MAS662J dataset. In the parentheses are sensor IDs in the original dataset. The weight

values are the weight of the edges in the matching.

MAS S2 MAS S1 Weight

Light switch (109) Light switch (101) -9

Shower faucet (130) Shower faucet (93) -8

Sink faucet - hot (100) Sink faucet - hot (68) -7

Light switch (102) Light switch (107) -7

Light switch (106) Light switch (108) -7

Toilet Flush (112) Toilet Flush (100) -7

Light switch (119) Light switch (105) -7

TV (141) DVD (56) -7

Light switch (103) Light switch (104) -6

Light switch (107) Light switch (92) -6

Burner (117) Burner (94) -6

Toaster (108) Toaster (131) -5

Microwave (115) Microwave (143) -5

Medicine cabinet (127) Medicine cabinet (57) -5

Garbage disposal (84) Garbage disposal (98)-5

Cabinet (104) Cabinet (132) -4

Drawer (114) Drawer (125) -4

Containers (124) Containers (60) -4

Refrigerator (66) Refrigerator (126) -4

Hamper (78) Cabinet (67) -4

Drawer (126) Drawer (82) -3

Door (85) Door (140) -3

Door (137) Door (130) -2.286

Door (134) Door (141) -2

Door (51) Door (54) -2

TV (101) Jewelry box (139) 0

Sink faucet - cold (91) Window (136) 0

Door (133) Closet (81) 2

Telephone (69) Cabinet(133) 2.5

Stereo (122) Cabinet (85) 4
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and feature selection, require background knowledge aboutsensors in the environment.

We have to know the specification of sensors attached on an object to interpret the raw

data and find the state of this object. Therefore, backgroundknowledge we required to

define the sensor profiles is necessary not only in our framework but also in conventional

activity recognition problems.

4.5 Experiments and Results

We apply our feature-based knowledge framework to the two scenarios given in sec-

tion 1.1.1. Since the assumption of the first scenario is thatwe do not have any target

domain data sample, we do not generate any variation on the dataset by applying cross-

validation to train the model. On the other hand, we run a 10-fold cross-validation exper-

iment for the second scenario. In the experiment of this scenario, target domain dataset

is randomly separated into 10 parts, and nine of them are combined to estimate the fea-

ture similarity with the source domain data. The remaining one part is used to test the

accuracy of the model. We trained activity recognition models using only the source do-

main dataset to find out if the knowledge transfer framework can successfully extract and

transfer useful knowledge. We also trained activity recognition models using both the

source domain dataset and nine of the 10 parts of the labelledtarget domain data samples

to simulate the situation of when we apply this framework under the second scenario in

a smart home system. The non-transfer learning experiment using the same feature set is

also performed as the baseline experiment to verify the effectiveness of our framework.

After finishing the feature alignment procedure, feature sets in two datasets have the

same cardinality, and an one-to-one mapping relationship between features in different

datasets is also available, which is the key point in our knowledge transfer framework.

Since we have an one-to-one mapping relationship of features in two domains, we can

apply ordinary activity recognition algorithms to build models. In all our experiments, we

use libsvm [8] with RBF kernel to train and test models. We only use default values for

all libsvm parameters in our experiment.

4.5.1 Knowledge Transfer by Using Data Samples

The result of knowledge transfer given some target domain samples is shown in fig-

ure 4.1(a) and 4.1(b). The x-axis gives the number of features used to transfer knowl-

edge, and the y-axis in the left side shows the accuracy. Feature pairs with divergence

larger than the threshold value will not be used to train and test the model, even though

they are mapped together in the feature alignment procedure. The black lines in the two
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figures give the relation between the threshold value and thenumber of selected features,

which can be used to find the accuracy of models under different threshold values. Setting

a higher threshold value results in having more features in our experiments, which also

means being more tolerant to use feature pairs which may be highly divergent.

The two yellow lines in figures are the result of using expected JSD as the divergence

measure, and training the model only using the labelled source domain data samples; the

orange lines give the result of using expected JSD as the divergence measure, and using

both the labelled source and target domain data samples to train the model. The blue

lines are the baseline experiments which are non-transfer learning. We run 10-fold cross-

validation experiments in this scenario. Therefore, we give the error bar of experimental

results in figure 4.2, 4.3, and 4.4.

These experiments show that with labels, we can estimate thefeature similarity. Ex-

pected Jenson-Shannon divergence can be a valid divergencemeasure of features in our

framework. There is a catch, however, that we need to choose agood threshold value. By

observing these figures, it can be found that with different threshold values, the experi-

mental results vary wildly. We can see that the model performs bad at some points in the

yellow lines, while some other points on the yellow are very closed to the non-transfer

learning results. Therefore, threshold value plays an important role when we train a model

in our framework. On the other hand, using labelled target domain data samples on hand,

the model can perform better than non-transfer learning. Therefore, we can say that our

knowledge transfer framework can help to extract and appropriately transfer knowledge

between different domains.

4.5.2 Knowledge Transfer by Profiles

We show the experimental results of transferring knowledgeby profiles between MAS

S1 and MAS S2 in figure 4.5(a) and 4.5(b). In figure 4.5(a), we use MAS S1 as the

source domain, and MAS S2 is the target domain. In figure 4.5(b), we exchange the role

of the two datasets. As the experimental results in previoussection, the x-axis of these

figures gives the number of selected features in our experiments, and the y-axis is the

accuracy of the model. The number of features in this experiment is smaller than that in

previous experiments because some features in the same dataset are merged in the feature

reformulation procedure in this scenario.

On the orange line, we show the result of transfer learning that uses sensor profiles

with importance values; on the green line, we show the resultof transfer learning that

uses sensor profiles whose importance values are all set to 1.These two lines show the

accuracy of models trained according to our framework. The blue line, indicating super-

vise learning with importance values, and the yellow line, indicating supervise learning
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(a) Knowledge transfer from MAS S1 to MAS S2 by using data samples

(b) Knowledge transfer from MAS S2 to MAS S1 by using data samples

Figure 4.1: Knowledge transfer between MAS S1 to MAS S2 givena labelled source

domain dataset and some labelled target domain data samples. The x-axis is the number

of features. The y-axis in the left side is the accuracy in %, and the y-axis in the right side

is the threshold values. This y-axis with the black line shows the relationship of threshold

values and the number of selected features.
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(a) Knowledge transfer from MAS S1 to MAS S2

(b) Knowledge transfer from MAS S2 to MAS S1

Figure 4.2: Knowledge transfer between MAS S1 to MAS S2 givena labelled source do-

main dataset and some labelled target domain data samples. The error bar in these figures

gives the standard deviation of the accuracy on the experiment of using all available data

samples to train the model.
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(a) Knowledge transfer from MAS S1 to MAS S2

(b) Knowledge transfer from MAS S2 to MAS S1

Figure 4.3: Knowledge transfer between MAS S1 to MAS S2 givena labelled source

domain dataset and some labelled target domain data samples. The error bar in these

figures gives the standard deviation of the accuracy on the experiment of the non-transfer

experiment.

42



(a) Knowledge transfer from MAS S1 to MAS S2

(b) Knowledge transfer from MAS S2 to MAS S1

Figure 4.4: Knowledge transfer between MAS S1 to MAS S2 givena labelled source

domain dataset and some labelled target domain data samples. The error bar in these

figures gives the standard deviation of the accuracy on the experiment of using only source

data samples to train the model.

43



without importance values, are the results that run five-fold cross validation on only the

target domain data. Therefore, they are non-transfer learning experiments. The mean-

ing of the “with importance values” and “no importance values” descriptions is that their

feature sets are respectively the same with those in the orange line and the green line.

Finally, the brown line, indicating randomly align features, is the result of running the

same training and testing procedures by using feature sets which are randomly chosen

and mapped together. The blue, yellow, and brown lines are used as the baseline to verify

whether sensor profiles can help to extract and transfer knowledge or not. Note that it is

assumed that there is no target domain data samples in this scenario, so in the orange and

green line, models are only trained using source domain datasamples.

From these figures, we can say that this knowledge transfer framework is valid. Com-

paring to the result of randomly mapping features, encodingthe background knowledge

about the sensors and environment by sensor profiles definitely transfers useful knowl-

edge. Similar to the previous experiments, threshold values play an important role on

the performance of models. In figure 4.5(a), the models trained by randomly mapping

features outperform the models trained by applying our knowledge transfer framework at

some points. However, this phenomenon does not disprove thevalidity of our framework.

On the contrary, it is an evidence showing that the feature divergence estimated from

sensor profiles is valid. Observing figure 4.5(a), we can find that the result of random

mapping performs better only when almost all feature pairs in the feature mapping are

used to train the model. Therefore, we know that using highlydivergent feature pairs to

transfer knowledge can cause negative transfer, while using only feature pairs which are

similar can successfully transfer useful knowledge in our framework. Feature divergence

estimated from the sensor profiles is meaningful.

From the experiment in this scenario, we can say that it is possible to train a pre-

liminary model whose performance is close to the best one by applying our framework.

Therefore, when we want to install a smart home system to an environment, this pre-

liminary model can be embedded into the system before this system starts to run. The

difficulty of doing this is that we have to appropriately choose a threshold value. A small

number of features may not contain sufficient information totrain a good model, while

selecting all feature pairs in the feature mapping may causenegative transfer. Our exper-

iments, however, can not give an answer to this problem. We can only say that it may be

better to select a smaller number of features as the initial parameter to train a preliminary

activity recognition model.
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(a) Knowledge transfer from MAS S1 to MAS S2 by sensor profiles

(b) Knowledge transfer from MAS S2 to MAS S1 by sensor profiles

Figure 4.5: Transfer knowledge between MAS S1 and MAS S2 given the source domain

dataset and background knowledge. The x-axis is the number of selected features and y-

axis is the accuracy in %. The results of applying our framework (orange and green lines)

are shown along with that of using the same feature set but trained and tested the model on

only the target domain dataset (blue and yellow lines), and the result of randomly choose

and align features (brown lines).
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4.5.3 Further Analysis

Finally, to further investigate the experimental results,we compare all knowledge transfer

results by showing the averaged accuracy values of them in figure 4.6(a). Because of the

dilemma of preserving knowledge as much as possible to transfer and preventing negative

transfer, we also show the result of an intuitive solution toset the threshold value–selecting

only half of the feature pairs whose feature divergence are smaller in figure 4.6(b).

In figure 4.6(a) and 4.6(b), S1 to S2 on the left side is the experiment of using MAS S2

as the target domain dataset, and S2 to S1 is that of using MAS S1 as the target domain

dataset. Figure 4.6(a) gives the averaged accuracy of all the experimental results we

shown in previous sections, with standard deviation shown as the error bar. Figure 4.6(b)

is the result of using only half of feature pairs. Specifically, in figure 4.6(b), we select 35

features in the result of “EJSD” and “EJSD+Labelled samples”, and only 15 features are

selected in the others to train and test the model.

We can again verify the effectiveness of our feature-based knowledge transfer frame-

work by the averaged accuracy values given in figure 4.6(a). Models that transfer knowl-

edge by using sensor profiles and labelled target domain datasamples outperforms the

model trained from random mapped feature sets. Generally speaking, our framework

leads to better performance when some labelled target domain data samples are given,

and setting importance values on the property of sensor profiles can make the model per-

formance better than not setting them.
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(a) Averaged accuracy of all results

(b) The accuracy of choosing only half of features to transfer knowledge

Figure 4.6: Comparing the results under different scenarios. In figure 4.6(a), all accuracy

values are used to compute the averaged value. In figure 4.6(b), only half of the features

in the mapping are used.
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Chapter 5

Conclusion

In this work, we proposed a feature-based knowledge transfer framework. Given before-

hand or by estimating the similarity or divergence between features in source and target

domain datasets, this framework can be used to automatically compute a new feature set

of two domains to transfer knowledge from the source domain to the target domain. This

knowledge transfer framework can be applied to create a preliminary activity recognition

model in an intelligent environment under different scenarios.

We discussed two scenarios in this work. In one scenario, only the labelled source

domain dataset is available. In the other scenario, labelled datasets from both source and

target domains are both given. We gave possible solutions toboth scenarios, and con-

ducted our experiments on a public dataset to show the effectiveness of this framework.

In the first scenario, background knowledge of two domains isencoded as sensor pro-

files to reformulate and estimate the divergence of any two features in two domains. The

mapping relationship between features in different datasets is computed. In the second

scenario, we estimated the divergence of any two features from labelled data samples,

reformulated the feature sets by a PCA-like method, and computed feature mapping by

adopting a graph matching algorithm. The same graph matching algorithm is used to

compute a new feature set to transfer knowledge. The experimental results indicate that

this feature-based knowledge transfer framework is valid.

5.1 Discussion

Now we discuss our work and the experiments. We also give the advantages and limita-

tions of our method, and list possible future work.
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5.1.1 About the Experiments

In our experiment of the first scenario, knowledge is transferred by sensor profiles since

there is no target domain data samples. We defined propertiesof sensors, and assigned

importance values to these properties. We used these properties to describe sensors as

their profiles. The divergence of two features can be estimated from sensors that they are

extracted from using these sensors’ profiles. In the second scenario, since there are some

labelled target domain data samples, we use expected Jenson-Shannon divergence as the

divergence measure of features. Stable marriage algorithmis used in our experiments of

both scenarios to compute the feature mapping to transfer knowledge.

Note that we are not arguing that sensor profiles and the importance values we defined

for these datasets are the best settings. In additional, expected Jenson-Shannon divergence

is just one of the possible divergence measures. It is possible to define different sensor

profile settings or another divergence measures in our framework to train a model that

outperforms ours. It is also possible to find different methods instead of feature profiles

to encode background knowledge of sensors to evaluate similarity between features. All

what we need is a measure to estimate the relatedness of information two features can

provide to infer the performed activity. The implementation of these procedures in our

framework can be various. The purpose of conducting these experiments is to show that

knowledge transfer by our feature-based knowledge transfer framework is possible.

5.1.2 Limitations

One of the limitations in our framework is that we still have to set some parameters by

hand. For example, we have to define sensor profiles from background knowledge when

target domain data samples are not available. As mentioned in [22], defining sensor pro-

files manually is the limitation of this kind of methods. In addition, finding an appropriate

threshold value to avoid negative transfer is also necessary. In our experiments, we only

found that a smaller threshold value may prevent divergent information from being trans-

ferred, but it may also block off useful knowledge to be transferred. We only gave a trivial

setting of selecting the best half of feature pairs in our experiments, but we can not say

that this is the best choice in all cases. How to decide the best threshold value remains an

open problem.

In addition, the proposed framework in this work does not deal with the difference

between two label sets. Therefore, if the sets of activitiesperformed in the source and

target domains are highly different, this framework can notdiscovery new activities which

are not in the source domain. Moreover, properties of sensors and sensor profiles we

defined in this work are not universal. It is applicable only for activity recognition datasets
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using only ambient sensors. For other activity recognitiondatasets using wearable sensors

or cameras in the environment, it is necessary to define more properties in the profiles.

In other problems such as transferring knowledge between different corpora in natural

language processing, one has to define new profiles with totally different properties and

importance values to apply this framework.

Finally, our framework can not evaluate whether transferring knowledge between the

two given domains is appropriate or not. As mentioned in section 3.3.3, divergence be-

tween two domains can affect model performance. Our framework can not raise an alarm

to an inappropriate knowledge transfer task.

5.1.3 Advantages

The advantage of this work is that the feature-based knowledge transfer framework is

a general solution that it can be applied as long as similarity of features between two

datasets is given or computable. Feature mapping can alwaysbe automatically computed.

Based on our framework, one can train an activity recognitionmodel by collecting a

dataset in a laboratory environment which has sufficient number of sensors and various

activities. After that, apply our framework according to the scenario: If there is no target

domain data sample, define sensor profiles to transfer knowledge. If some labelled target

domain samples are available, estimate similarity of features from data samples to train

the model.

Another advantage of our work is that we have shown that we canuse only source

domain data samples to train the model in our experiments. Inthis case, knowledge is

transferred by domain knowledge of sensors, which is encoded in sensor profiles. Most

previous work that use transfer learning in activity recognition problem requires at least

some unlabelled target domain data samples. Only some of theresearchers proposed

methods which do not need any data in the target domain. An example for this kind of

knowledge transfer can be found in [22]. Comparing to the costof data collection and

data annotation, defining sensor profiles by hand should be relatively affordable. As we

argued in section 4.3.2, the knowledge we need to create sensor profiles is not difficult to

obtain.

5.2 Future Work

As the future work, we want to focus on extending the limitations we listed above. First,

it is necessary to find a method to automatically compute the parameters such as threshold

values and settings of sensor profiles. We may compute the threshold value from datasets
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by cross-validation if both labelled source and target domain datasets are available. In

the scenario that labelled target domain data samples are not available, however, learning

all these parameters from only source domain datasets may suffer from the divergence

of the two domains and cause negative transfer. A method to utilize both the source do-

main dataset and background knowledge to learn these parameters is necessary to further

improve the availability of our framework.

Moreover, similarity functions can affect the result of feature mapping. Therefore, the

choice of divergence measures can be critical to model performance in our framework.

For example, in one of the scenarios, we compute expected Jenson-Shannon divergence

between two features as the feature divergence used in our experiment. However, it does

not seem likely that expected Jenson-Shannon divergence anappropriate divergence mea-

sure for all transfer learning tasks. It would be useful if wecan define the properties or

criteria which are critical in selecting the divergence measure.

People may want to transfer knowledge between not only the same but also different

problem domains. For example, transfer the knowledge of rating of users between not

only DVDs but also from DVDs to books. It will be very interesting to improve the

framework such that it can transfer knowledge between different problem domains, or at

least give a caution to a knowledge transfer task which may cause negative transfer. A

difficulty for this is that in transfer learning, negative transfer is a concept of inappropriate

knowledge transfer. To the best of our knowledge, however, there is no specific definition

of negative transfer. Except for the result we showed in our experiment that the model

performed worse than randomly mapping features, we do not know how to exactly decide

whether a knowledge transfer task causes “negative transfer” or not. Therefore, giving a

concrete definition to negative transfer and extend our framework to warn of inappropriate

knowledge transfer will be very useful.

Finally, it does not seem to be feasible to define a universal profile of features for

different learning tasks. However, automatically deciding the properties in profiles for

different learning tasks may be possible. When the learning task is given, mining relative

information to decide these properties from other knowledge sources such as the web may

be a possible extension for this work.
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