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中文摘要  

基因的表達中牽涉了許多隨機的化學分子碰撞與交互作用。而這些隨機的特

性反映在蛋白質上，造成量的不確定性且上下波動，類似雜訊。這些雜訊在近年

的研究被證實對生物系統有絕對的重要性，舉凡幹細胞分化、或者噬菌體在裂解

(lytic)與溶源(lysogenic)間的決策行為，都與是生物體利用雜訊的現象。而這些基

因雜訊的研究皆可以透過數學模型，或是利用電腦模擬隨機過程來獲得可靠的結

論。在本論文中，我們利用 Gillespie 演算法來模擬最近提出的蛋白質瞬間增量(burst 

production)的現象，然後我們利用統計理論推導出朗之萬方程式(Langevin equation)

逼近 Gillespie 演算法所需要的正確雜訊強度。我們發現在蛋白質瞬間增量的情況

下，朗之萬方程式的雜訊強度是沒有瞬間增量的 2 倍。這個結果讓我們在研究基

因調控網路中的雜訊行為時，可以用朗之萬方程式來取代原本的Gillespie演算法，

並利用朗之萬方程式可以分離雜訊的特點，去追縱調控網路中各個基因對雜訊的

貢獻。 

 

 

關鍵字：基因雜訊、Gillespie 演算法、朗之萬方程式、burst production、基因調控

網路 
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ABSTRACT 

 

The gene expression is inherently stochastic, and can be characterized by the 

distribution of protein levels in individual cells. This stochasticity has been discussed 

analytically and modeled in stochastic process. In this thesis, we model the recently 

observed burst effect in protein production and use the Gillespie algorithm for 

simulation. Later, we derive the corresponding Langevin equation mathematically, and 

we found that the noise size in burst case is 2  times of non-burst case. Hence we 

propose a numerical Langevin approach based on stochastic process for gene regulatory 

network modeling. This approach is capable of describing the burst effect, and it 

produces the same noise as the traditional Gillespie algorithm, which is an exact 

realization of the master equation. Furthermore, since it is possible to partition the noise 

in Langevin equation, this approach has an advantage of studying the noise behavior in 

specific gene regulatory network.  
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Chapter 1 Introduction 

 Gene expression is a series of biochemical reactions, each involves a different 

degree of randomness. The stochastic fluctuation in gene expression can result in 

uncertainties of protein concentration, and leads to cell-to-cell variations, or 

heterogeneities [1]. Moreover, this phenomenon is ubiquitous and has been 

demonstrated through dual-fluorescence experiments in different biological systems 

such as E. coli [2], C. elegans [3], and mouse [4]. The gene expression noise can arise 

from multiple sources [5]. For gene expression level, it could be the different particle 

numbers of mRNA/protein degradation machinery, or different nucleosome occupancy, 

or even the different nuclear architecture. For other extrinsic factors, it could be the 

fluctuation in microenvironment, or different partitioning after cell division, or it could 

be some pathway-specific propagation, where the intrinsic noise from upstream 

regulatory gene becomes the extrinsic noise of the downstream gene through regulation 

[5]-[8]. The noise in gene expression is not just an unwanted effect; instead, it has 

important functional role in biological system. Since many biochemical processes 

involves low copy number, this makes cell more susceptible to noise, and it leads to a 

possibility that heterogeneity in phenotype could be the consequence of different level 

of fluctuation in genetic network [9].  

One of the key functional advantages of noise is the ability to enable probabilistic 

differentiation of otherwise identical cells. For example, the stochastic mating-type 

switch in Saccharomyces cerevisiae; the stochastic choice of cell type in asymmetric 

cell division processes of Drosophila melanogaster [10]; or the fluctuation in Nanog 

expression of mouse embryonic stem cells, which leads to stochastic cell fate decision 

[4], [9]. Another noise-driven cellular phenomenon is the stochastic state-switching in 
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the context of physiology, development, stress response, cancer and pathogenicity [11]. 

For example, the switch between lysogenic and lytic state in bacteriophage λ is 

mediated through the molecular fluctuation of the repressor CI [12]. 

Cells may determine their fates by playing dice with controlled odds [13]. For 

example, increasing evidences have shown that cells evolved strategies to control, or to 

exploit this inherent stochasticity, through the specific architecture of gene regulatory 

networks (GRN) [1], [5], [9]. Such interactions could include transcriptional regulation 

and post-translational modifications. For example, the stochastic-state switching 

systems are often based on positive feedback loops, which amplify the noise and leads 

to a bimodal distribution in extreme cases; conversely, and negative feedback loops 

tends to attenuate the noise and narrow the distribution to uniform the cells [14]. Hence 

cells in differential process tend to maintain the variability and hence prefer the 

noise-amplifying circuits, while cells in mature state might choose noise-filtering 

circuits to maintain the stability [9].  

As the rapid development of biological technology has provided evidence for 

stochasticity in gene expression, computer simulation and mathematical analysis on the 

dynamics can further help to confirm these architecture-dependent noise, or predict the 

noise of members in the interested gene circuits. To describe the stochasticity in gene 

expression properly, we need to model the gene networks in the stochastic way. Reliable 

numerical approaches are needed for generating proper size of noise. Two typical 

approaches are used in most of gene expression noise related articles: the Gillespie 

algorithm, and the Langevin equation. Although the Gillespie algorithm provides a more 

accurate realization of stochastic process, it is not capable of simulating a large network 

because of the computational cost is high. Conversely, the Langevin equation seems to 

be a better choice, since much fewer computational steps are needed and one can afford 
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a larger-scale simulation. Moreover, the most important advantage of Langevin equation 

is the ability the partition the noise (as will be discussed in Section 3.2) 

In this thesis, we propose a new formula for describing gene expression noise in 

the form of Langevin equation, which approximates the Gillespie algorithm in 

simulating a given single gene expression model that has the translational “bursting” 

properties (discussed in chapter 5), and we found the Langevin equation with this new 

burst production noise is more robust for simulating a single gene expression. Our result 

provides a better approximation to Gillespie algorithm, compared to the traditional 

approach discussed in Ref. [19].  
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Chapter 2 The Stochastic Process and the Master 

Equation 

A stochastic process, which is a collection of random variables, can often be 

modeled as a random walk. When applied in the dynamic description, it becomes a 

sequence of random variables of time. The concept of random walk comes from the 

famous Brownian motion, which is so unpredictable and full of randomness. To 

understand the stochastic process, it’s convenient to start from a simple example of 

one-dimensional random walk [15], [16]. Consider a “drunken” pedestrian that is 

restricted in one-dimension, and we can discretize the line so that each position equals 

to a unique state. The set of all possible state is then a state space. In order to make sure 

it is purely random, suppose the probability of moving forward and backward depends 

only on the “current state” of the pedestrian; in other words, for current state, the 

historical behavior has nothing to do with the decision of next move. This memoryless 

property also called the Markov property, which has been assumed very often in 

stochastic modeling, and this memoryless random walk also termed a Markov process. 

The probability that our drunken pedestrian is in a particular state at some time, 

can be described as  

 

 ).,(),|,(),( tSPtStSWtSP i
i

iNN  +=+ ττ  (2.1) 

  

Here, ),( τ+tSP N  means the probability that the pedestrian is in state NS  at 

time τ+t , and it depends on where it was previously, or ),( tSP i , multiplied by the 

transition probability W of walking to state NS  from state iS  during the period 
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lasting from t  to τ+t . According to the assumption of Markov property, these 

transition probabilities W  are constant functions of time. Taking the continuous time 

limit, the differential form of Eq. (2.1) becomes  

 

 
).()]|(')|('[      

)()|(')()|('

11

1111

NNNNN

NNNNNN

SPSSWSSW

SPSSWSPSSW
dt

dP

+−

++−−

+−

+=
 (2.2) 

 

The Eq. (2.2) is the master equation of this one-dimensional stochastic process, 

which describe the dynamics of the probability. The transition probabilities W  have 

been replaced by transition probabilities per unit time 'W , a more general form of 

higher dimension will be discussed in the next chapter. The transition rate of forward 

walking )|(' 1−NN SSW  equals to )|(' 1 NN SSW + in a typical Markov process, and it will 

be a constant value independent of the state. Same argument can be made in backward 

walking, hence )|(' 1+NN SSW  equals to )|(' 1 NN SSW − in Eq. (2.2). 

 

 

 

 

 

Si-1 Si Si+1 … … 

)|(' 1+ii SSW)|(' 1+ii SSW

)|(' 1−ii SSW)|(' 1−ii SSW

Figure 2-1 One-dimensional random walk with discretized state. 
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In Figure 2-1, Si denotes different state, and i is the index of state. This random 

walk is fully stochastic and can be used to construct a random birth-and-death model to 

describe the fluctuation in a reactant species. For example, we can substitute our 

drunken pedestrian with an interested particle, say, mRNA. A step moving forward 

means one more particle is produced; conversely, a step moving backward means one 

particle is degraded. We can also introduce more than one species to construct a higher 

dimensional random walk, and it will be just like a Brownian motion in state space! In 

other words, in simulating for a biochemical system, the reactions take place according 

to their reaction probabilities (determined by the corresponding reaction rates), and the 

“state” of a system is the particle numbers of all relevant molecules.  

In general, it is difficult to solve the master equation analytically in order to realize 

a stochastic process. Instead, it is usually “solved” in a numerical way by simulating the 

process with Monte Carlo approach, which collects a large amount of stochastic 

trajectories and computes the statistics. There are two frequently used numerical 

approach for describing a stochastic process: the Gillespie stochastic simulation 

algorithm (Gillespie SSA, or simply Gillespie algorithm) [17]-[19], and the Langevin 

equation. The Gillespie algorithm is a discrete, and particle number-based stochastic 

simulation, which can be used to simulate the stochasticity of chemical kinetics in 

molecular level. Besides, the simulation result of Gillespie algorithm is an exact 

realization of the master equation, which means there is no any approximation in the 

result. The Langevin equation is another way to describe stochastic process. It is a 

differential equation with additional random variables. More details on the Gillespie 

algorithm and Langevin equation are given in the next chapter. 
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Chapter 3 Numerical Approaches for Simulating 

Stochastic Process 

 

3.1 The Gillespie algorithm  

Consider a system of fixed volume Ω contains N different species of reactants, 

with M different reactions among those reactants, or reaction channels, denotes 

),...,1( NjRj =  . And assume particle number of each reactant can be expressed as a 

continuous function of time ),...,1()( NitX i = . For deterministic process, the 

dynamics of the system can be described by the following ordinary differential equation 

(O.D.E.) form: 

 

),...,(

......

),...,(

),...,(

1

122

111

NNN

N

N

XXfX

XXfX

XXfX

=

=

=







 (3.1)   

 

For simplification, we use the state vector ))(),...,(),(()( 21 tXtXtXt N≡X  to 

describe the system state at time t. In stochastic process, )(tX i  is actually a random 

variable. To analyze it, define propensity function aj for reaction channel Rj , which is 

that 

 

).,...,1(   ),[ interval      time          

 malinfinitesinext  in the  inside somewhere                

occur illreaction w channel  one      that           

 ,(t)given  y,probabilit the)(

Mjdttt

R

dta

j

j

=+
Ω

=≡ xXx

 (3.2) 
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Eq. (3.2) is the fundamental premise for numerically solving the master equation. 

Previously it was thought to be an ad hoc assumption for stochastization of the 

deterministic chemical kinetics [20]. Later it has been proved that the Eq. (3.2) has a 

rigorous microphysical basis [21]. 

For each reaction channel Rj, we also need to define the state-change vector jv , 

whose ith component is given by 

 

 
channel.  one         

by  produced  ofnumber  in the change  the

j

iji

R

Xv ≡
 (3.3) 

  

Together, Eq. (3.2) and Eq. (3.3) specify the behavior of each reaction channel, the 

state-change vector jv  is a fixed vector with integer value, and it’s component is 

usually +1 for production channel, and -1 for degradation channel, while the propensity 

function aj changes value from time to time accords to the system state x . From 

previous argument [17], the function aj has mathematical form  

 

 

 

).()( xx jjj hca =  (3.4) 

 Here, cj is the specific probability rate constant for channel Rj, and cj dt gives the 

probability that “one” random chosen pair of reactant molecules in Rj will react 

accordingly in the next infinitesimal time. The unit of cj is the inverse of time, and the 

value can be determined from traditional reaction constant kj. If the system’s volume Ω 

is given, cj can be derived from kj by transforming the unit of kj into the same unit of cj. 

For example, consider two reactant molecular species 1S  and 2S , and a reaction 
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channel μR  of which 1S  reacts with 2S  to give the product 3S  

 

 .2  : 321 SSSR c⎯→⎯+ μ
μ  (3.5) 

  

The reaction channel μR  was conventionally described by reaction rate constant

μk   in chemical kinetics, more precisely, it’s the average reaction rate per unit volume 

divided by the product of the average densities of the reactants [17]. Put the definition 

of cj together, we have 

 

 ./ 2121 xxcxxk μμ Ω=  (3.6) 

 

Where 1x  and 2x  represents the molecular concentration of reactant species 1S  

and 2S . However, in deterministic formulation we do not consider statistical variance, 

therefore 2121 xxxx = , hence it gives the relation  

 

 .μμ ck Ω=  (3.7) 

For other types of reaction channel, this relationship can vary, and we summarize it 

as following 

 

 2/   ;    productsreaction       2       

)(            ;    productsreaction         

   ;    productsreaction                

/   ;    productsreaction                 

μμ

μμ

μμ

μμφ

ckS

kickSS

ckS

ck

i

ki

i

Ω≅→

≠Ω=→+

=→

Ω=→

 (3.8) 

 

For convenience, we often use unit volume in simulation. By doing so, it won’t 
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change the value of μk  of the first three types of reaction after we transfer it to μc  in 

stochastic simulation. 

 The function )(xjh in Eq. (3.4) is defined to be the number of distinct 

combinations of Rj reactant molecules available in the state x  [19]. For example, the 

jh  for the following types of reaction can be 

 

 

2/)1(   ;    productsreaction       2       

   ;    productsreaction         

   ;    productsreaction                

1   ;    productsreaction                 

−=→

=→+

=→

=→

iiji

kijki

iji

j

xxhS

xxhSS

xhS

hφ

 (3.9) 

  

The time-dependent stochastic trajectory can thus be simulated once cj and jv are 

given. Here, the evolution of Eq. (3.2) implies that the state vector )(tX is a jump-type 

Markov process non-negative N-dimensional integer lattice [19], and a traditional way 

to analyze it is to write it in the form of conditional probability function 

 

 }.)(iven that   ,)({Prob ),|,( 0000 xXxXxx ==≡ tgtttP  (3.10) 

  

The time-dependent evolution of this conditional probability function can be 

derived by advance the system with a small time step dt  one at a time, so that we can 

exclude the probability for two or more reactions to occur in dt . Using Eq. (3.2), 

together with the previous argument [21], the probability of the system being in state x  

at time dtt +  can thus be described  
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[ ].)(),|,(                                

)(1),|,( ),|,(

1
00

1
0000





=

=

−−+









−×≡+

M

j
jjj

M

j
j

dtattP

dtattPtdttP

vxxvx

xxxxx

 (3.11) 

 If we take the limit, the differential form of Eq. (3.11) becomes the chemical 

master equation  

 

 [ ].),|,()(),|,()( ),|,(
1

000000 
=

−−−≡
∂
∂ M

j
jjjj ttPattPattP

t
xxxxvxvxxx  (3.12) 

  

Eq. (3.12) is an exact consequence of Eq. (3.2), if we can solve for P, then we can 

fully understand the behavior of this stochastic process. As we have mentioned above, it 

is rare that an exact analytical solution to Eq. (3.12) can be found; but at least, we could 

generate many trajectories enough to describe the probability density of P. 

To numerically simulate Eq. (3.12), an intuitive way is to give a very small time 

interval step dt , and iterate the following steps 

 

Table 3-1  An intuitive SSA 

Step 0 
Start with system state 0x , calculate the probability dta j )( 0x  for each 

reaction channel 

Step 1 

Generate uniform random variables, update the system state according to 

the probability dta j )( 0x  and state change vector jv of each reaction 

channel Rj 

Step 2 Advance the system time with dt , back to Step 0 
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The stochastic simulation result is an exact realization for Eq. (3.12), but the defect 

is that, since dt  is required to be small enough, the probability dta j )( 0x  that a 

reaction happens in reaction channel Rj will also be small, it means the computer repeat 

those three steps frequently, but most of time there’s no reaction happened, this leads to 

inefficiency of this naive stochastic simulation algorithm, and makes it even unusable if 

0→dt . 

 Another way to solve this problem of inefficiency is the Gillespie stochastic 

simulation algorithm, which defines another exact consequence of Eq. (3.2), the 

next-reaction density function ),|,( tjp xτ  [17], [21], where 

 

 

reaction.                             

an be  willand ,),[                            

interval  timemalinfinitesi in the                            

occur   willin reaction next          the                    

 ,given  y that,probabilit   ),|,(

jR

dtt

(t)dtjp

τττ

ττ

+++

Ω
=≡ xXx

 (3.13) 

 

The τ  in Eq. (3.13) stands for the time that elapses without any reaction occurs in the 

system, and ττ dtjp ),|,( x  can also be expressed as the product 

 

 .)(),|,( 0 ττττ dapdtjp j⋅=x  (3.14) 

 

Here, )(0 τp  stands for the probability density of this τ  , and it can be calculated 

by elementary probability argument. Since 
=

M

j
j dta

1

)(x  gives the probability that some 

reaction will take place in the next dt  according to the definition of Eq. (3.2), we can 
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divide τ  , say, into K  equal length subintervals. Let ε  denotes the subinterval 

where K/τε = , K is a positive integer, the probability none of the reactions 

MRR ,...,1 occurs in the first ε  subinterval )  ,( ε+tt is 

 

 [ ] .)()(1)()(1 
11
∏
==

+−=+−
M

j
j

M

j
j oaoa εεεε xx  (3.15) 

  

Where )(εo describes the probability that more than one reaction occurs in

)  ,( ε+tt , and we don’t really need to worry about it since this term can be very small 

for small ε . The right side of Eq. (3.15) is also the probability that no reaction occurs 

in the subsequent intervals )2  ,( ε+tt , )3  ,( ε+tt and so on, since the system state x  

remains if no reaction occurs, hence the term 
=

M

j
ja

1

)( εx  remains the same. For the rest 

of subintervals, using the same argument, we have 

 

 .)()(1)(
1

0

K
M

j
j oap 








+−= 

=

εετ x  (3.16) 

  

For ∞→K , together with K/τε = , Eq. (3.16) is equal to 

 

 .)(exp)(
1

0 







−= 

=

M

j
jap ττ x  (3.17) 

  

Hence, after plugging Eq. (3.17) into Eq. (3.14), it becomes 
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).,...,1;0(                   

)(exp)(),|,(
1

Mj

aatjp
M

k
kj

=∞<≤








−= 
=

τ

ττ xxx
 (3.18) 

  

The Eq. (3.18) provides the fundamental basis for Gillespie stochastic simulation 

algorithm [17], in which a random pair of ),( jτ is generated by Monte Carlo procedure 

according the joint probability density function. The following procedure briefly 

describes the Gillespie algorithm [17], [18].  

 

Table 3-2  Standard procedures for Gillespie SSA 

Step G0 

(initialization) 

1. Set the reaction channels:  

•  Input jc  values according to Eq. (3.8) ),...,1( Mj = . 

 •  Input jv  the state-change vector according to Eq. (3.3). 

2. Set the reactant species:  

•  Input initial values for ),...,1( NiX i = . 

3. Set initial time 0=t , and simulation time stopt . 

Step G1 

1. Calculate )()( xx jjj hca =  according to Eq. (3.4), where x denotes 

the system state vector. 

2. Calculate .)(
1

0 
=

=
M

j
jaa τx  

Step G2 

1. Generate two independent uniform distributed random number 1r

and 2r , where ].1,0[  ]1,0[ 21 ∈∈ rr  

2. Determine τ :  

According Eq. (3.17), τ can be calculated as  
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).
1

ln(
1

10 ra
=τ  

3. Determine the reaction channel μR  in which the reaction happens: 

Take μ  so that .
1

02

1

1

=

−

=

≤<
μμ

j
j

j
j aara  

Step G3 

1. Update the simulation time  

.τ+= tt  

2. Update the system state according to μR   

.μvxx +=   

3. If stoptt > , or if no more reactants left (all 0=μh ), terminate the 

simulation; otherwise, return to Step G1.  

 

Here, we use a simple example to demonstrate the Gillespie algorithm. Consider a 

simple birth-and-death model for a species S , where 

 

 
.  :

  :

2

1

2

1

φ

φ

⎯→⎯

⎯→⎯
c

c

SR

SR
 (3.19) 

  

Reaction channel 1R  describes a zero order constant production of species S , 

and 2R  describes a first order degradation of S ; 21   , cc  is dimensionless probability 

rate constant, as defined in Eq. (3.8). 

For conventional understanding in kinetic description, the ordinary differential 

equation form of this model will be 
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 .21 xkk
dt

dx
−=  (3.20) 

  

Where x  denotes the concentration of S  in system’s volume Ω , ik  is the 

conventional reaction rate constant; the unit of 1k  is concentration over time, and the 

unit of 2k  is the inverse of time. The relationship between ik  in kinetic description 

and ic  in Gillespie algorithm has been discussed in Eq. (3.8). The following figure 

demonstrates the simulation result of the model, with the parameter sec/ 02.01 Mk =  

and sec/ 001.02 =k , and system’s volume L1=Ω (Hence, the corresponding 

sec/02.01 =c  and sec/001.02 =c ) 

 

Figure 3-1 Three stochastic trajectories generated by Gillespie SSA. 
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Three trajectories are shown in the Figure 3-1, which are generated by repeating 

Gillespie algorithm three times, using the birth-and-death model in Eq. (3.19), with 

parameters described in text. The dashed line represent the analytical solution of Eq. 

(3.20), which is a continuous function with mathematical form 

)1()()( 2

2

1 tke
k

k
txtX −−Ω=Ω= . The capital X  denotes the particle number of species 

S , and the vertical axis shows the discrete particle number of  species S . The 

Gillespie algorithm is programmed by MATLAB®. 

In order to reconstruct the probability space of )(tX , a large quantities of 

trajectories should be made. Here, since we are interested in the steady state *X , we 

take value of each trajectory at the end of simulation time (10,000 sec in this case) and 

analyze statistics of the distribution.  

 

Figure 3-2 The steady state distribution of reactant species S in Eq.(3.19). 
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The histogram shown in Figure 3-2 is generated by steady state values(value at 

10,000 sec. in this case) of 10,000 trajectories simulated with Gillespie algorithm, using 

the birth-and-death model described in Eq. (3.19). The statistics is made by collecting 

the steady state value for each trajectory. The distribution of *X  has mean = 20.08, 

variance = 19.98 and the Fano factor(defined as variance/mean) ≅  1, which represents 

a Poisson distribution. 

 

 

3.2 The Langevin equation 

The Langevin equation is a stochastic differential equation (S.D.E.), which is an 

ordinary differential equation with noise terms. Originally, the Langevin equation was 

used to describe Brownian motion, the random movement of a particle resulting from 

random collision in the solution. The general mathematical form of Langevin equation 

can be described by  

 

 ).,)( txxfx (+= η (3.21) 

 

Where x  is a random variable which varies with time, and )(xf  is conventional 

ordinary differential equation, describing the deterministic time-dependent behavior of  

x . In mechanical approach of, )(xf  is the sum of "regular forces" acting on the 

particle while x  is velocity of the particle. 

The noise term η  is added to make the deterministic equation become stochastic, 

and η  satisfies the following conditions:  

 



 

 19

 .0), =( txη  (3.22) 

 .()(),), )=+(( τδτηη xqtxtx  (3.23) 

 

Here, )τδ (  denotes the Dirac delta function and )(xq is an unknown 

noise-generating function dependent on x, the autocorrelation function of noise equals 

)τδ ()(xq  according to Eq. (3.23) . The first condition is that ensemble average of the 

noise term equals to zero, hence if we take ensemble average of Eq. (3.21), it equals to 

the ensemble average of the one with only deterministic part. The second condition 

describes Markov property, in other words, the noise density of different step is 

independent of time.  

For numerically simulation of Langevin equation, according to [22], the 

Euler–Maruyama method can be applied. Consider a standard Brownian motion (or 

standard Wiener process), where a random variable )(tW  defined over time interval 

],0[ T  and depends continuously on time, satisfies the following conditions: 

 

1. 0)0( =W  (with probability equals 1) 

2. For ]0[ Tts <<≤ , )1,0(~)()( NstsWtW −−  which means the increment of 

this stochastic process comes from a normal distribution with mean zero and 

variance st − , )1,0(N  denotes the unit normal distribution. 

3. For ]0[ Tvuts <<<<≤ , the increments )()( sWtW −  and )()( vWuW −  

are independent. 

 

The stochastic integral of Eq. (3.21) will be the solution to the stochastic trajectory 

of x  and it can be written as  
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 ].,0[      )())(())(()(
0 0

0 TtsdWsxdssxfxtx
t t

∈++=  η  (3.24) 

  

Here, )0(0 xx =  is the initial condition, the first integral on the right side describes 

the historical trajectory of the deterministic part, and the second one describes the 

historical trajectory of the stochastic part. The differential equation form of Eq. (3.24) 

equals 

 

 ].,0[  ,  )0(      )())(())(()( 0 TtxxtdWtxdttxftdx ∈=+= η  (3.25) 

 

To numerically simulate Eq. (3.24), we discretize the interval into L  parts. Let

LTt /=Δ  for some positive integer L , and let tii Δ=τ  . The Euler–Maruyama 

method takes the form 

 
).,...,1(           

))()())((())(()()( 1111

Li

WWxtxfxx iiiiii

=
−+Δ+= −−−− τττητττ

 (3.26)

 

If we take 0≡η , Eq. (3.26) simply reduced to txfxx iii Δ+= −− ))(()()( 11 τττ , and 

it’s the form of Euler’s method. In other words, the fundamental concept of 

Euler–Maruyama method is from Euler’s method, where we use the present step to 

calculate the increment, and then proceed to the next step according to the increment. 

The following figure (Figure 3-3) shows numerical result of the Langevin equation 

(red), using the same model described in Eq. (3.19) and the same parameter set, 

compared to the result of the Gillespie algorithm (blue). We note that the Langevin 

equation takes continuous value, while the Gillespie algorithm displays the discrete 
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number of molecular particle. This problem can be bypassed if we further divided 

particle number with system’s volume, and use the “concentration” to show the result; 

or if the system contains large quantity of particle number, the difference between 

discreteness and continuity could be sew up.  

If we take away the noise term in Langevin equation, the Langevin trajectory (red 

line) in Figure 3-3 will exactly be the same as the trajectory of deterministic O.D.E. 

solution (dashed line). 

 

Figure 3-3 Comparison of the Gillespie algorithm and the Langevin equation. 

A comparison for the trajectories derived from the Gillespie algorithm (blue line), the 

Langevin equation (red line), and the corresponding trajectory from the deterministic 

kinetics (dashed line in cyan). 
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3.3 Approximation of Gillespie algorithm with the 

Langevin equation 

At first glance, the Langevin equation seems to be artificial, since one can simply 

manipulate the noise term to generate different noise strength. Despite the fact that one 

can arbitrarily tune the noise, the best thing of Langevin is the ability to separate the 

deterministic and the stochastic part, and it will become very useful for tracking noise 

source. Since the Gillespie algorithm is an exact realization of chemical master equation 

[17], [18], we might ask what is the proper noise size for the corresponding Langevin 

equation, under the same stochastic model? Before answering this question, we must 

first realize that these two stochastic approaches are different in nature. First, for 

simulation aspect, the way of describing the history axis is different. In Gillespie, the 

history axis of a species in the system is described in different size of waiting time (Eq. 

(3.13)). In Langevin, the history axis of every species is segmented into a uniform 

infinitesimal time interval dt  (Eq. (3.25) and Eq. (3.26)), and the evolution of system 

is described by repeating this dt  snapshot. Second, the Gillespie algorithm describe 

the discrete nature in molecular level, the reactants change numbers according to the 

reaction channels and the corresponding state change vectors (Eq. (3.3)), while the 

Langevin equation is a continuous function. Hence, if we want to make the Langevin 

equation “looks like” the Gillespie algorithm, the difference mentioned above must be 

overcome. According to the argument of Daniel T. Gillespie in [19], the Gillespie 

algorithm can be approximated by the Langevin equation, if dt  in the Langevin 

equation satisfies the following two conditions. 
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3.3.1 Condition 1: The tau-leaping condition in Gillespie algorithm 

For a typical realization of Gillespie algorithm, if we could divide the system’s 

history axis into a set of contiguous subintervals in such a way that we could forego 

determine how many times each reaction channel fires in each subinterval, then it’s 

conceivable to “leap” the history axis with these subintervals. This strategy is originally 

an acceleration approach for Gillespie algorithm, which is called the τ-leap method [23]. 

 By notations of previous section, suppose the system’s state )(tX  at the current 

time t  is denoted as tx . Let 0)(   ),( >ττtjK x  defined as following 

 

).,...,1(     ),[ interval me        ti          

in the fire  will channelreaction  e        th          

 ,)(given    times,ofnumber  the),(

Mjtt

R

tK

j

tj

=+

=≡

τ

τ xXx

 (3.27) 

 

 The number of reactant species iS  at time τ+t  can then be expressed as 

 ).,...,1(       ),()()(
1

NivKtXtX
M

j
jitjii =+=+ 

=

ττ x  (3.28) 

The second term on the right side of Eq. (3.28) means the summation of changes 

from each reaction channel, and jiv  denotes the ith component in state change vector 

jv  (Eq. (3.3)). Under this construction, ),( τtjK x  is a random variable, and it’s 

difficult to compute ),( τtjK x  just like it’s hard to solve the master equation, since 

every reaction that takes place within τ  can change the system state, and hence the 

propensity functions )(xja , since it depends on the current system state (Eq. (3.2) and 

Eq. (3.4)). In other words, every reaction that happens in τ  is not independent of each 

other, the first reaction in τ  will leave some “memory” on the history axis and affect 

the next one, unless we consider the following condition: 
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Table 3-3  The τ-leap condition 

The τ-leap  condition:  

Require τ   “small enough” that the change in the state during  ),[ τ+tt will be so 

slight and none of the propensity functions change its value “appreciably.”  

 

Assume the above condition is satisfied, then during the entire interval  ),[ τ+tt , 

the propensity function for each reaction channel jR  will remain “essentially constant” 

at the value )(xja  [23]. Apparently, if we make 0→τ , this condition can be easily 

satisfied, since most reaction channels won’t fire in such small time interval, this 

concept is very similar to the “intuitive SSA” which is mentioned in Table 3-1; but it 

will make no use for such τ  leap, and we rather choose the original Gillespie 

algorithm . Hence, this τ  should be small, but not too small.  

 Fortunately, if our system contains large number of population for each reactant 

species, the changes made by each reaction channel will be relatively small since most 

of state change vectors jv  changes the particle number of reactants for 1± . We then 

further make τ  small enough and ensure that the system state change little (and hence 

the propensity function) in every moment of this τ , where 

 

 ].,1[ ,  ],['    )()( ' Mjtttaa tjtj ∈∀+∈∀≅ τxx  (3.29) 

 

 In this case, all reactions that happened in τ  will be essentially independent, and 

the random variable ),( τtjK x  becomes the Poisson random variable [19], [23]:  
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 ).,...,1(     )),((),( MjaPoissonK tjtj == ττ xx  (3.30) 

 

 The term Poisson  denotes a Poisson random variable, and the mean of 

)),(( τtjaPoisson x  equals to τ)( tja x . The net effect of the τ-leaping condition 

allows Eq. (3.28) to be approximated by 

 

 ).,...,1(     )),(()()(
1

NivaPoissontXtX
M

j
jitjii =+=+ 

=

ττ x  (3.31) 

  

Eq. (3.31) is the τ -leaping method, and it provides a fundamental argument of the 

existence of such τ . Remember it’s just an approximation; it means that the error could 

become large if the τ  is too big, and the result will be close to the exact realization of 

Gillespie algorithm, if the τ  is small enough.  

 

 

3.3.2 Condition 2: Approximation with a normal random variable 

Suppose we could find a set of τ  which satisfies the tau-leaping condition, the Eq. 

(3.31) can be used to substitute the original Gillespie algorithm. If, for this set of τ , 

there exist a subset which further satisfies the condition where 

 

 ].,1[   ,1)()),(( MjaaPoisson tjtj ∈∀>>= ττ xx  (3.32) 

 

 In other words, for every reaction channel, the average firing times within τ  

should be as much as possible. Since the Poisson distribution is a description of rare 
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events, and the random variables of Poisson distribution are integers by definition; the 

condition in Eq. (3.32) provides a bridge for connecting the discrete Gillespie algorithm 

to continuous Langevin equation, because when mean is large, a discrete Poisson 

random variable can be approximated by a normal random variable, with same mean 

and variance [19], [23]. Where 

 

    ,1)(for        ))(,)(()),(( >>≈ ττττ tjtjtjtj aaaNormalaPoisson xxxx  (3.33) 

 

Here, we use the term Normal  to denote a normal distributed random variable. 

Under the condition of Eq. (3.32), the τ -leaping form of Eq. (3.31) becomes 

 

 ).,...,1(      ))(,)(()()(
1

NivaaNormaltXtX
M

j
jitjtjii =+=+ 

=

τττ xx  (3.34) 

 

 Notice that the increment of )(tX i  is now taking continuous random variable 

from normal distribution. By linear combination theorem for normal random variables 

 

 ).1,0(),( 2 NormalmmNormal σσ +=  (3.35) 

 

Eq. (3.34) now becomes: 

 

 ).,...,1(      )1,0()()()()(
11

NiNavavtXtX
M

j
jtjji

M

j
tjjiii =++=+ 

==

τττ xx  (3.36) 
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 Where  )1,0(jN denotes the independent unit normal random variable for each 

reaction channel jR . Consider a time step τ  which can satisfy both conditions, and 

substitute this τ  with the notation dt , we then rewrite the Eq. (3.36) into 

 

 ).,...,1(      )1,0()()()()(
11

NiNdtavdtavtXdttX
M

j
jtjji

M

j
tjjiii =++=+ 

==

xx  (3.37) 

 

  

Eq. (3.37) is the working form for numerical simulation of Langevin equation, 

which approximates the corresponding Gillespie algorithm. The differential form of Eq. 

(3.37) equals to  

 

 ),())(())((
)(

11

ttavtav
dt

tdX
j

M

j
jji

M

j
jji

i Γ+= 
==

XX  (3.38) 

 

where )(tjΓ  are temporally uncorrelated, statistical independent Gaussian white noise. 

Eq. (3.38) is exactly a Langevin equation, and the noise term is consistent with the 

properties described in Eq. (3.22) and Eq. (3.23). Up to this step, we have already 

transform the original Gillespie algorithm (which stands for the exact simulation of 

master equation) into the corresponding Langevin equation. The second term of Eq. 

(3.38) can be regarded as the noise extracted from the master equation, if we eliminate 

this term, Eq. (3.38) simply go back to deterministic ordinary differential equation. 

 The second condition requires τ  in Langevin equation being “large enough” to 

ensure that 1)( >>τxja , so normal distribution can approximate well to Poisson 
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distribution. It is interesting that the first condition requires τ  to be small enough, 

while the second one does conversely. Even though there are analytical approaches for 

determining an acceptable upper bound of this τ  to fulfill the condition one [23], it is 

still hard to propose one for analytically determining proper dt  that satisfies both 

conditions [24]. It is clear that if τ  is too large, the τ -leaping in Eq. (3.31) cannot 

well approximate to Gillespie algorithm; and if τ  is too small, the normal random 

variable cannot well approximate to Poisson. The question is, we do not know which 

approximation is more important than the other one, or which condition we must take 

care first. Nevertheless, if the system contains large number of population for each 

reactant species, it is easier to find a proper τ  which satisfies both conditions well [19]. 

Suppose each reactant species has large quantity in number, the system state then 

change little after τ -leaping. Furthermore, τ)(xja  can be large under this situation, 

since )()( xx jjj hca =  according to Eq. (3.4). It means that the larger population, the 

larger )(xja , and hence the restriction of τ  can be reduce to make 1)( >>τxja .  

According to this argument, we may at least conclude that it will be easier to use 

Langevin to approximate Gillespie algorithm if the system contains large number of 

population for each reactant species. In other words, this approximation method could 

be invalid if the system contains low copy number of reactants [24].  
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Chapter 4 The Two-step of Single Gene Expression  

In cells or organisms, there is often several layers of gene regulation, forming a 

cascade or even a gene regulatory network. While our ultimate goal is to describe both 

inherent and propagated noise in a genetic network of interest, the description of noise 

from a single gene expression is of great fundamental importance since it offers a 

ground for both theoretical and computational studies. Stochastic fluctuation of 

biochemical processes in the central dogma can lead to expression noise of a single gene. 

According to [25], [26], the single gene expression can be modeled by the following 

linear kinetic scheme 

 

 

 Here, mk  represents the rate of transcription of a gene into mRNA, pk  is the rate 

of translation of mRNA into protein, and pm,γ  are the rates of degradation of mRNA 

and protein respectively. For deterministic ordinary differential equation, this model can 

be described as the following kinetic equations 

 

DNA mRNA protein 
mk pk

pγmγ

ϕ ϕ 

Figure 4-1 Two-step model for central dogma. 
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 The steady state values of [mRNA] and [protein] can be derived from Eq. (4.1) by 

making ,0
][][ ==
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 If we consider the particle numbers, rather than concentration for a given volume 

Ω , the particle numbers of mRNA and protein at steady state can be described by 
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where *
, pmn  denotes the number of mRNA and protein at steady state, respectively.  

 

 

 

 

 



 

 31

4.1 Numerical simulation result: Gillespie algorithm 

Since both the transcription of mRNAs from genes and their subsequent translation 

into proteins are stochastic biochemical events, the corresponding stochastic model of 

Eq. (4.1) can be described as the following random birth-and-death Markov process 

 

 

 1},{                             

                                    

},1{},{},1{

                                    

     1},{                             

)(4

)()(

)(3

12

+
↓

+⎯⎯ →⎯⎯⎯ ⎯←−

↑

+

pm

a

pm
a

pm
a

pm

a

pm

nn

nnnnnn

nn

x

xx

x

 (4.4) 

 

Here, )4,...,1(   )( =iai x  represents the propensity function of the reaction channel

jR  and x  denotes the current state or 
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n
, where pmn ,  denotes the number of 

mRNA and protein, respectively. To simulate this stochastic process in Gillespie 

algorithm, the reaction channels can be described as following 
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 Here, the reaction channel 1R  describes the event that “one” mRNA is produced 

(from DNA transcription) with the state change vector 






+
=

0

1
1v , where 11v  

represents the change in mRNA, and 12v  represents the change in protein. The reaction 
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channel 2R  describes the event that “one” mRNA molecule is degraded, with the state 

change vector 






−
=

0

1
2v . Same descriptions can be made for 3R , 4R . Each jc  

represents the specific probability rate constant of reaction channel jR , as discussed in 

chapter 3.1. Suppose the system’s volume Ω  is given, the value of jc  can be derived 

from the corresponding rate constant in Eq. (4.1) according to Eq. (3.8) 
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For simulation, we refer to [25], [26] and choose biologically relevant parameter 

set for bacteria, where 

 

Table 4-1  Reaction rate constants for single gene expression 

Parameter value unit 

Ω  1.7 L)(10 fl -15  

mk  0.002 1−Ms  

mγ  0.01 1−s  

pk  0.2 1−s  

pγ  0.0004 1−s  
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We have assumed that pm γγ >> , since mRNA typically degrades faster and its 

lifetime is much shorter than that of a protein. The system’s volume Ω  represents 

cell’s volume. According to Eq. (4.2), the concentration of mRNA at steady state is 

0.2nM. In other words, the particle number of mRNA at steady state is 0.2 for each cell. 

It means on average, one mRNA of this gene can be found for every five cells. Besides, 

the concentration of protein at steady state is 100nM. If we consider Ω  equals 1.7fL, 

the particle number of protein at steady state is 100 for each cell. For stochastic 

modeling, we use probability rate constant instead of reaction rate constant. According 

to Eq. (3.8), the corresponding probability rate constants can be calculated as shown in 

the next table  

 

Table 4-2  Probability rate constants for single gene expression 

Parameter value unit 

1c  0.002 1−s  

2c  0.01 1−s  

3c  0.2 1−s  

4c  0.0004 1−s  

  

 

Using parameters mentioned above, the simulation results of Gillespie algorithm 

are demonstrated as following figures. Dashed line represents the analytical solution of 

protein in deterministic kinetic O.D.E. (Eq. (4.2)). 
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Figure 4-2 A sample stochastic trajectory of mRNA (top) and protein (bottom). 

Shown are stochastic trajectories simulated by Gillespie algorithm with parameters 

listed in Table 4-1. 

 

 

0 0.5 1 1.5 2
x 104

0

1

2

3
sample trajectories

time(sec)

pa
rti

cl
e 

nu
m

be
rs

 

 

mRNA
deterministic (mRNA)

0 0.5 1 1.5 2
x 104

0

20

40

60

80

100

120

140

160

180

200
sample trajectories

time(sec)

pa
rti

cl
e 

nu
m

be
rs

 

 

protein
deterministic (protein)



 

 35

 

Figure 4-3 Steady state distribution of mRNA in single expression model. 

Shown are the mRNA particle distribution in 10,000 samples obtained by the Gillespie 

algorithm. 

 

Figure 4-4 Steady state distribution of protein in single expression model. 

Shown are the protein particle distribution in 10,000 samples obtained by the Gillespie 

algorithm. 
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To analyze the steady state distribution, we use Fano factor which is defined as 

variance/mean to measure the noise. 

In this model, the analytical Fano factor for mRNA is 1.00 [25], means a Poisson 

distribution, and the simulation result of mRNA Fano factor in Figure 4-3 is about 0.91. 

According to Ref. [27], the analytical Fano factor for protein can be derived by linear 

noise approximation, and the analytical Fano factor of steady state protein distribution 

will be: 

 .1
)(

*

*

*

2*

)(
pm

p

m

p

p

p
protein

n

n

n
Fano

γγ
γσ
+

+≈=  (4.7) 

 

Since mRNA’s life time is much shorter than protein’s in real biological system, 

the value of degradation rate mγ  is actually much larger than pγ (see Table 4-1). 

Together with the fact that 
m

m
mm

k
nn

γ
Ω== **  and

pm

pm
pp

kk
nn

γγ
Ω== ** , the Eq. (4.7) 

becomes 

 .1)(
m

p
protein

k
Fano

γ
+≈  (4.8) 

 

 Where 
m

pk

γ
 represents the average number of protein produced per mRNA, and 

can be regarded as translation efficiency. This analytical result also shows that most of 

noise in central dogma comes from translational level, which has been discussed in Ref. 

[25] and demonstrated with experiments [28]. The analytical Fano factor of protein is 

about 21.00 in this case, and is 20.51 for simulation result in Figure 4-4, consistent with 

the analytical result. 
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4.2 Failure in Langevin approximation to Gillespie 

algorithm in single gene expression model 

In order to dissect the noise out of this stochastic process in single gene expression, 

we rewrite the scheme in Eq. (4.4) into Langevin form. According to Eq. (3.37), the 

corresponding Langevin form is 
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 (4.9) 

 For particle number of mRNA mn , the second term inside the bracket describe the 

average increment dtc1  and the corresponding fluctuation )1,0(11 Ndtc  for reaction 

channel 1R , which is the constant production from DNA to mRNA (Eq. (4.5)). 

Similarly, the third term inside the bracket describes the mRNA degradation channel 

2R . )1,0(1N and )1,0(2N  are mutually independent unit normal random variable. 

Similarly, for particle number of protein pn , the second term describe the translation of 

mRNA into protein, and the third term describe protein degradation. Since dt  must 

satisfies the two conditions discussed in section 3.3.2 to make Eq. (4.9) a good 

approximation, and it will be valid especially for the system with large number of 

molecules. Unfortunately, in real biological system, the copy number of mRNA is 

usually too low to make a good approximation. In the following figures, we simulate the 

two-step gene expression model with three different sizes of dt , using the same 

parameters in Table 4-1, and compare to the result of Gillespie algorithm: 
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Figure 4-5 Approximating Gillespie algorithm with different size of dt in Langevin. 

(M denotes “mean” and F denotes “Fano factor,” respectively). Parameters used in 

simulation are listed in Table 4-1 of section 4.1. 
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Figure 4-6 Langevin trajectory for mRNA (green) with different size of dt, 

compared to the stochastic trajectory of Gillespie (red) and deterministic ODE solution 

(dashed line). Parameters used in simulation are listed in Table 4-1 of section 4.1. 
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Figure 4-7 Langevin trajectories for protein with different size of dt, compared to 

the trajectory of Gillespie algorithm and deterministic ODE solution. Parameters used in 

simulation are listed in Table 4-1 of section 4.1. 
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The error in mRNA level will pass to downstream protein level, which leads to an 

invalid approximation of protein distribution while the discreteness in protein level 

seems to be fine when approximated with continuous normal random variables (Figure 

4-7). This is due to higher quantity in protein molecules (100 at steady state of 

deterministic ODE as shown in Eq. (4.3)). As we have discussed in section 3.3.2, higher 

particle number can lead to higher propensity function, which makes it easier to find a 

proper dt  that is large enough for a Poisson random variable to be approximated by a 

normal random variable (Eq. (3.33)).  

Although the approximation could be better if we raise the steady state level of 

mRNA, but it will be kind of contradictory to the simulation of noise behavior in 

biology since the noise is less important in a higher copy number system, not to mention 

mRNA copy number is actually very low in nature. Another way to solve the problem of 

discreteness in a rare event case is using a larger dt  to compensate a small propensity 

function, but a large dt  will be susceptible to the change of system state, and it will be 

against the leaping condition (Table 3-3), which requires dt  to be small enough to 

make every reaction occurs within dt  not to change the propensity function 

significantly. In order to inspect the combinational effect of higher copy number and 

larger dt , we scan for the parameters set with different sizes of mk  and different sizes 

of dt  in corresponding Langevin equation while fixing the other parameters. For each 

combination )  , ( dtkm , the steady state values of 10,000 Langevin trajectories are 

collected and the statistics are computed to give the mean and Fano factors. Error rate is 

defined as 1%100
result analytical

result simulated −×







. The result is demonstrated in the following 

figures:  
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 The scanning result of Figure 4-8 shows different error levels under different 

)  , ( dtkm . We found that although there exists some “safe region” (yellow strip) in 

which the error of Fano factor is around 0%, this Langevin form is still inapplicable if 

we consider a model of gene regulation where the mk  of a downstream gene is 

regulated and the value changes as time progresses. This means if we want to simulate a 

model of gene regulation with Langevin equation, the time step dt  needs to be “reset” 

each time the system proceed a unit time of dt  in order to keep a well approximation 

to Gillespie algorithm. Furthermore, even if the Fano factor is right, it might be the 

consequence of wrong mean and average. For instance, if we take a look at

)250  ,M/s 106( -3 sdtkm =×=  in yellow region, the actual Langevin simulation result 

is the following 

 

Figure 4-9 Approximating Gillespie algorithm with (km = 0.006, dt = 250) in 

Langevin equation. (M denotes “mean” and F denotes “Fano factor,” respectively) 
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rare event case. Nevertheless, it is still possible to apply this Langevin approximation on 

different parameter set. According to single molecular level counting of mRNA in living 

cell [29], the number of mRNA molecular of MS2 coat protein in E. coli can be 5~10 

which is 25~50 times of original parameters in Table 4-1 at steady state . In this case, a 

proper dt  can be found for Langevin simulation. The next figure shows a valid 

approximation with parameters (km = 0.08, dt = 50), which is the case for high 

expression rate. 

 

Figure 4-10 Particle number distribution in mRNA (left) and Protein (right) at a 

higher expression rate with parameters (km = 0.08, dt = 50), the figure shows that 

Langevin approximation can be valid in a higher expression case. 
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Chapter 5 The Burst Production Model of Single 

Gene Expression 

Recent studies have shown the burst-like phenomenon in protein production for a 

given gene [25], [26], [29], and it is demonstrated by real-time measurements on 

individual E. coli cell in single molecule level [30], [31]. This bursting is a suddenly rise 

of protein particle number, which can be regarded as many single translational event 

happens within the observed time scale. Each single production event must be really 

fast, and fast enough to accumulate before the particle number drops down by 

degradation or cell division. When a burst production occurs with a different burst size, 

it generates strong fluctuation and results in steady state noise. According to Ref. [30], 

the experimentally observed translational burst size distribution can be well fitted by an 

exponential distribution.  

For translational bursting, the expression of proteins from a given gene can be 

characterized by two parameters: the average frequency of burst events per cell cycle 

α , and the average number of protein molecules produced per burst β  [26][30], both 

parameters can be measured experimentally [30].  

The analytical distribution of burst events can be derived from simple two-step 

model of gene expression (Figure 4-1) [26]. Since the life time of mRNA is much 

shorter than the life time of protein (which means pm γγ >> , similar to the example 

parameters in Table 4-1), as in the case of bacteria or yeast, the fluctuation in mRNA 

level can be neglected and proteins can be considered to be produced in uncorrelated 

random events, with the frequency equal to mRNA production rate (or mk  in Figure 

4-1). Besides, although pγ  describes the rate of decrease in protein molecules, it is 
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actually composed of protein degradation and protein dilution after cell division. For 

long half-life time case such as fluorescent reporters, pγ  is mostly due to protein 

dilution rate. Hence the experimental observed average frequency of burst events per 

cell cycle can thus be described by 

 

 ,
p

mk

γ
α Ω=  (5.1) 

 

where Ω  represents system’s volume. Besides, the average number of protein 

molecules produced per burst β  can be regarded as the average number of protein 

translated from an mRNA molecule before it is degraded, and it can be written as 

 

 .
m

pk

γ
β =  (5.2) 

 

 The result of βα ∗  equals 
pm

pmkk

γγ
Ω  , which is consistent with Eq. (4.3) and 

will be the average protein molecules of each cell. Owing to the stochastic nature, each 

mRNA can produce different copy numbers of protein, which is the consequence of 

different mRNA lifetime. In two-step model gene expression model, the degradation of 

mRNA is an exponential decay with the average lifetime 
mγ

1
, and the lifetime 

distribution of mRNA molecule is exponentially distributed with the probability density 

function: 
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 The notation 1R  to 4R  on the left hand side in Figure 5-1 represents the reaction 

channels described in Eq. (4.5), which are mRNA production, mRNA degradation, 

protein production and protein degradation, respectively. An mRNA molecule can be 

translated into some protein molecules before its degradation, and the amount of protein 

that translated by one mRNA molecule (burst size) is a random variable, denoted as x  

on right hand side of Figure 5-1, and it is experimentally observed (see Ref. [30]) to be 

exponentially distributed, with the probability density function described in Eq. (5.4). 

The notation 1r  on the right hand side represents the translational burst channel, and it 

can be regarded as a simplified expression of 1R  to 3R . Notation 2r  represents first 

order degradation channel of protein, same as 4R  in two-step model.  

For translational burst model, the corresponding master equation at steady state can 

be solved analytically [26], and the protein distribution at steady state will be a Gamma 

distribution, with shape parameter ,
p

mk

γ
α Ω= scale parameter 

m

pk

γ
β = , and the 

corresponding probability density function )(xg :  

 

 .),  and  0,(       )exp(
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α
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The mathematical form of Eq. (5.5) is exactly the probability density function of a 

Gamma distribution, with Γ denoting the standard Gamma function, or  
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Both α  and β  are positive real numbers. If we consider the parameter set in 

Table 4-1, the value of α  equals 5, and the value of β  equals 20. The next table 

shows the Gillespie simulation result (which has been demonstrated in Figure 4-4) and 

the corresponding Gamma distribution with the same parameters. 

 

Table 5-1  Statistical quantities derived from Gillespie simulation and analytical 

Gamma distribution. 

Statistics 
Statistics of 

Gamma(α,β) 

Statistics of 

Gamma(5,20) 

Gillespie algorithm 

in two-step model 

simulation 

Mean αβ 100.00 98.99 

Variance 2αβ  2000.00 2030.10 

Fano factor β 20.00 20.51 

 

 The Fano factor of ),( βαGamma  equals to β , which is close to β+1  derived 

from linear noise approximation in (see Eq. (4.8)). The result of Gamma distribution 

captures the asymmetry of experimentally observed distributions in Refs. [28], [32], 

[33]. We notice that while the derivation of Gamma distribution does include an 

additional explicit description of exponential distribution in burst size, but the result is 

consistent with Gillespie simulation on two-step model of single gene expression (see 

Figure 4-1). It is because the exponential burst distribution is inherently described in 

original two-step model through exponential decay of mRNA molecules [34].  
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5.1 Modified Gillespie algorithm in burst production model 

Since the two-step model and burst model give the same result, we can now restate 

the two-step model in Figure 4-1 into translational burst model: 

 

 

 

 

This translational burst production model is the consequence of two-step model in 

Figure 4-1, and the only difference is that the “burst” requires the rate of translation to 

be fast enough to make burst occur. In other words, each mRNA molecule is able to be 

translated into few proteins before its degradation. In Figure 5-2, pγ  denotes the rate 

of protein degradation, and mk  denotes the rate of mRNA production. Both mk  and 

pγ  are the same as the symbols used in Figure 4-1. Since the exponential distribution 

of burst size comes from the exponential distribution of mRNA life time, it is 

automatically assumed that each mRNA molecule only produces “one burst.” Hence, the 

rate of mRNA production can also be regarded as the burst rate. Besides, we do not 

worry about the possibility that an mRNA molecule is degraded without being 

translated, since it is already included in exponential distribution and this probability is 

equal to the probability when burst size is zero. 
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Figure 5-2 Translational burst production model for central dogma. 
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 The burst production model in Figure 5-2 can be simulated with modified Gillespie 

algorithm, and the reaction channels will be: 

 

 
φ

φ
⎯→⎯

⎯→⎯
2

1

c
2

1

protein:

protein of  molecules  :

r

xr c

 (5.7) 

 

Here, x  is an exponential random variable with mean β , which has the 

probability density function described in Eq. (5.4). The reaction channel 1r  describes 

the burst production of protein with state change vector [ ]x+=1v , and 2r  describes 

protein degradation with state change vector [ ]12 −=v . In conventional Gillespie 

algorithm, each component jiv (see Eq. (3.3)) in jv  is a fixed integer, usually +1 for 

production and -1 for degradation. For burst model, the state change vector of burst 

production channel (reaction channel 1R  in this case) contains a random variable to 

describe a random burst, and it is an exponential random number with mean equals to 

β  as discussed in Eq. (5.4).  

Since Gillespie algorithm is a discrete number based simulation, we can take an 

exponential random number and round it off each time when burst channel is chosen. 

The following figures demonstrate the simulation result of modified Gillespie algorithm 

in burst production model. 
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Figure 5-3 Sample trajectories of Gillespie in two-step model and burst model. The 

parameters used in simulation are listed in Table 4-1 of section4.1. 

 

 The next figure shows the steady state distribution for 10,000 trajectories. The 

results are quite similar for two-step model and burst model with the same parameter set 

in Table 4-1. The mRNA is not shown in burst model, since the mRNA production rate 

is now burst rate, and the mRNA degradation rate is involved in burst size description. 

 

Figure 5-4 Steady state distributions of protein in two-step model and in burst model. 

Shown are distributions from 10,000 trajectories simulated with the parameters listed in 

Table 4-1 of section 4.1. The simulation results of both models in Gillespie algorithm 

are quite the same. 
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5.2 The Langevin form of burst production  

In this section, we use the same argument which has been discussed in section 

3.3.1 and section 3.3.2 to derive the Langevin form of burst production model. This 

argument requires two specific conditions to be satisfied so that the Gillespie algorithm 

can be approximated by Langevin equation. In general, if we can find a proper Langevin 

dt  that satisfies the two conditions, then it will be valid to use Langevin to approximate 

Gillespie algorithm as discussed in section 3.3, and same argument can be made for the 

Gillespie algorithm in burst model. We found that for simulating a single gene 

expression model, the simplified burst production model can “bypass” the rare event 

problem of mRNA by directly describing the stochasticity in protein level. For 

simulation aspect, if we consider merely the protein noise, this “burst-Langevin” will be 

a better choice than the original Langevin in Ref. [19] to approximate the stochastic 

process of two-step single gene expression model. 

 Before we begin to derive this “burst-Langevin” equation, we first introduce a 

distribution called Erlang distribution. 

 

5.2.1 The Erlang distribution 

Suppose at the ticket office of a theater, there are k  people waiting in front of 

someone (see Figure 5-5), k  is of course a positive integer. If we assume that the 

amount of time each people spend at the ticket office is a random variable exponentially 

distributed with mean β , which has the probability density function 
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5.2.2 Derivation of the Langevin form of burst production 

Since the random process can be exactly simulated by Gillespie algorithm, either 

for two-step model or burst model, and we have shown that for single gene expression, 

the two-step model can be simplified into burst model in section 5.1. The advantage of 

burst model is that: the description of mRNA is implicit. It helps to bypass the problem 

of invalid Langevin approximation to two-step model in low gene expression case. In 

this section, we use the Langevin equation to approximate the burst model, instead of 

the two-step model, to describe the stochastic process of a single gene expression. 

The concept of approximating Gillespie algorithm with a Langevin equation is 

very similar to what has been discussed in section 3.3. Here, we use the same notations 

as in Chapter 3 that describe the Gillespie algorithm. Consider a system with size Ω 

contains  N different reactant species ),...,1(  MiSi = and M different reaction 

channels ),...,1(  MjRj = . Suppose the system’s state )(tX  at the current time t  is 

denoted as tx . Let 0)(   ),( >ττtjK x  be the firing times of reaction channel 

),...,1(  MjRj =  within time step τ , as previously defined in Eq. (3.27). Given that 

the reactant species ) ],1[ ( NpS p ∈  is produced in a burst-like production with 

average burst size β  through a burst production channel ) ],1[ (  MbRb ∈  with the 

state change vector bv , which has an exponential random variable )(βlExponentia  as 

the pth component, or simply )(βlExponentiavbp = . The term lExponentia denotes an 

exponentially distributed random variable, and )(βlExponentia  is an exponentially 

distributed random variable with mean equals to β , and the probability density 

function is just the same as that in Eq. (5.4). For the reactant species which are not 

produced in burst, the particle numbers at time τ+t can be described as: 
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 ), ; ,...,1(       ),()()(
1

piNivKtXtX
M

j
jitjii ≠=+=+ 

=

ττ x  (5.11) 

where iX  denotes the particle number of species  iS . The description of Eq. (5.11) is 

just as same as that has been discussed in section 3.3.1. 

For the reactant species pS  that is produced in burst, the increment of particle 

number within time step τ  from burst production channel, can be described by two 

random variables: the random number of burst events within τ , denoted as ),( τtbK x , 

and the random burst size of each burst event. Suppose the burst is “independent” of 

each other, we can simply sum up all these independent burst to get the net production 

of burst channel within time step τ . Since we consider the burst size distributed 

exponentially with mean β , the net production of burst channel is to add up these 

independent exponentially distributed random variables )(βlExponentia , and this is 

just like the case of Erlang distribution that we have discussed in section 5.2.2. The only 

difference is that: the number of random variables )(βlExponentia  is another random 

variable ),( τtbK x . In other words, for the example of buying ticket in the movie theater, 

as we just discussed in section 5.2.2, this time we don’t know how many people there 

are in front of us.  

Here, we use the notation bK  to replace ),( τtbK x  for simplification. The net 

production of burst channel within time step τ  can be described by an Erlang random 

variable with a random shape parameter bK , and a scale parameter β . The result can 

be denoted as ),( βbKErlang . The term Erlang  denotes an Erlang random variable, 

which has the probability density function:  
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Since the random variable bK  describes the number of burst events, it is a 

positive integer, the random variable ),( βbKErlang  still lies in the domain of Erlang 

distribution. 

 Hence, for the reactant species pS  that is produced in burst, the particle number 

of pS  at time τ+t  is the net effect of non-burst channels, plus the net production of 

burst channel within τ , and it can be described as:  

 

      .),(),()()(
;1

βττ b

M

bjj
jptjpp KErlangvKtXtX ++=+ 

≠=

x  (5.13) 

 

Here, the notation bK  denotes ),( τtbK x , which represents total number of burst 

events occur within τ , and the notation β  is a real number, representing the mean of 

exponentially distributed burst size.  

 Suppose τ  satisfies the leaping condition in Table 3-3, which requires τ  to be 

small enough so that the propensity for each reaction channel only change a little as 

discussed in Eq. (3.29), then we can use a Poisson random variable to “approximate” 

firing times ),( τtjK x  for every reaction channel (including burst production channel 

in our case). For the same reason, the number of burst events bK  can be approximated 

by a Poisson random variable, and the Eq. (5.13) becomes:  

 



 

 58

 

    ,)),),(((                              

)),(()()(
;1

βτ

ττ

tb

M

bjj
jptjpp

aPoissonErlang

vaPoissontXtX

x

x

+

+=+ 
≠=  (5.14) 

  

where ja );,...,1( bjMj ≠=  is the propensity function for non-burst channel, and ba  

) ],1[ ( Mb∈  is the propensity function for burst channel. The term Poisson  denotes a 

Poisson random variable. Since a Poisson random variable )),(( τtbaPoisson x  is an 

integer, the third term )),),((( βτtbaPoissonErlang x on the right side in Eq. (5.14) still 

lies in the domain of Erlang distribution.  

Suppose we can further find a subset of these τ  that can satisfy another condition: 

require τ  to be large enough so that the Poisson random variables can be 

approximated by normal random variables with same mean and variance, as we have 

discussed in section 3.3.2. Under this condition, the Eq. (5.14) becomes 
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Since the shape parameter bK  which has been approximated by 

)),(( τtbaPoisson x  is now a real number  ))(,)(( ττ tbtb aaNormal xx rather than an 

integer, the Erlang random variable in Eq. (5.14) is changed to the Gamma random 

variable in Eq. (5.15). For simplification, we denote the normal random variable 

))(,)(( ττ tbtb aaNormal xx  as 'bK  and rewrite the Eq. (5.15) into 
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(5.16) 

The third term on the right side of Eq. (5.16) forms a new probability space, it 

becomes an Gamma variate with random shape parameter 'bK  and a fixed scale 

parameter β . Our next move is to analyze ),'( βbKGamma . The following derivation 

is inspired by Ref.[35]. Let δ  denotes a standard Gamma random variable 

),( βkGamma , where 

 

 ).,(~ βδ kGamma (5.17) 

 

The Laplace transform of δ  will be 
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Replacing ),;( βkxGamma with its explicit form of probability density function in 

Eq. (5.5), we obtain:  
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After integration by parts, we have 

 

 .)1(][)( ks seEsL −− +== βδ
δ  (5.20) 

 

Now, let bδ  to be an Gamma variate with random shape parameter 'bK  and a 

fixed scale parameter β , where 

 

 ).,'(~ βδ bb KGamma  (5.21) 

  

The Laplace transform of bδ  will be  
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 Plugging the result of Eq. (5.20), we have 

 

 ].)1[()( 'b
b

KsEsL −+= βδ  (5.23) 

 

 The expected value of bδ  will be the negative first derivative of )(sL
b
δ  

evaluated at 0=s , where 
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 Besides, the expected value of 2
bδ  will be 
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 Next, we can calculate the variance of bδ  will the aids of Eq. (5.24) and Eq. 

(5.25):  
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So far, we already know that the random variable ),'( βbKGamma  has the mean 

equal to ]'[ bKEβ , and the variance ])'[)'((2
bb KEKVar +β . In our case, 'bK  is a 

normally distributed random variable ))(  , )(( ττ tbtb aaNormal xx , which has the mean 

and variance equal to τ)( tba x . Hence, we derive the mean and variance of the random 

variable ) , '( βbKGamma , where  
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 .)()] , '([ τββ tbb aKGammaE x=  (5.27) 

 .)(2)] , '([ 2 τββ tbb aKGammaVar x=  (5.28) 

 

 Since a Gamma random variable can be approximated by a normal random 

variable with same mean and variance, if the shape parameter is large enough. Because 

in condition two, we already require τ  to large enough to make the mean of 'bK  

large enough (see Eq. (3.32)). Hence, under the condition two, the random variable 

),'( βbKGamma  can also be approximated by the normal random variable with same 

mean and variance. According to Eq. (5.27) and Eq. (5.28), it means: 

 

 ),)(2 , )((),'( 2 τβτββ tbtbb aaNormalKGamma xx≈  (5.29) 

 

if τ  is large enough to satisfy the condition two. Plugging Eq. (5.29) into Eq. (5.16), 

we obtain:  
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By linear combination theorem for normal random variables (see Eq. (3.35)), we 

can rewrite Eq. (5.30) into: 
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 Simply substitute the notation τ  with dt , and suppose that each dt  has same 

size and satisfies both conditions, we finally arrive at the Langevin equation that 

describes burst, which has the form: 
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(5.32) 

 

 This equation describe the approximated stochastic increment for the reactant 

species pS  which is involved in a burst production channel. On the right side of Eq. 

(5.31), the terms inside first bracket describe the original Langevin approximation by 

Ref.[19], which is the same as that discussed in section 3.3. The terms inside second 

bracket describe the Langevin approximation for burst production channel bR , with the 

exponentially distributed burst size which has mean β . We found that the difference 

between burst channel and non-burst channel is that, the burst channel has larger noise 

term )1,0()(2 btb Ndta xβ  than a non-burst one )1,0()( jtjjp Ndtav x . In other words, 

if β  describes a deterministic uniform size of state change rather than an average of 

exponential distribution, it will simply go back to the non-burst Langevin form. The 

contribution of the factor 2  originates from Eq. (5.26), which takes 

]'[)'( bb KEKVar =  because of bK  is a Poisson random variable in our case. The 

factor 2  also characterize the higher noise contribution of a burst channel, compared 

to the other non-burst channels. 
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5.3 Numerical Validation of the Langevin form in burst 

production model 

We notice that since the Langevin form in Eq. (5.32) “directly” describe the protein 

level in single gene expression model, and the description of mRNA level is effectively 

included in the mean burst size β . It means that Eq. (5.32) bypass the direct 

description of mRNA and avoid the problems in rare event case. Owing to this reason, 

Eq. (5.32) has a more robust simulating ability in rare event cases, and it successfully 

describes the original two-step model in single gene expression. The following figures 

show the simulation result of the single gene expression model using parameter set in 

Table 4-1. 

 

Figure 5-7 A sample trajectory for Langevin simulation in burst model. The 

parameters used in simulation are listed in Table 4-1 of section4.1. The time step used in 

simulation is 150 sec. 
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Figure 5-8 Steady state distribution of protein in different simulation approaches. 

Shown are distributions from 10,000 trajectories simulated with the parameters listed in 

Table 4-1 of section 4.1. The time step used in both Langevin forms is 150 sec. 

 

The distributions in Figure 5-8 compare different simulating approaches and it 

shows a better approximation of Langevin in burst model, compared to the Langevin in 

two step which suffers from rare events problem in mRNA discussed in Chapter 4.  

The scanning of the accuracy of approximation for different transcription rate and 

different dt  is shown in the next figure (Figure 5-9). It shows different error levels of 

approximation under two different Langevin form. Left column: Langevin form in 

two-step model. Right column: Langevin form in burst model. The figure is generated 

by scanning the combination of (km , dt) and compare the result to analytical solution of 

the master equation. The rest of parameters are the same as Table 4-1. It shows that 

burst-Langevin not only provides a better approximation, but also stay more stable 

when transcription rate km is changing. It means that for simulating gene regulation, the 

burst-Langevin works better than original Langevin in two-step model. 
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