M2 F BT W FNERTALIREFT T T
TERCS

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

FHBEEIATHZVUERRI| 2 EFE 2

Scalable Assembly of
High-Throughput De Novo Sequencing Data

MUE A
Chien-Chih Chen

Advisor: Feipei Lai, Chuen-Liang Chen, Jan-Ming Ho,
Ph.D.

PERRE 102 & 17

Jan, 2013

ii

EI

ThEmTARIBERMF S A hi A FARR ML LT
TR L o BARLFIRE LS Ak G HR AR N2
Bt LR - ERAEY hp o L kBRI Frahimadp XEF > k¢ PRk
R AR I M T R PR A R ERN A AR ERE L
£ 5 j&= % 1 (1) Innovation ~ (2) Impact 32 (3) Importance 2 & # 3 hifi & > 48
AL P P nE BB o BE R BN B R EF R EA L SR S
-/3,1: o

BLOP R T RA R ALK Bk~ B A LR BB R B LR RERI R
BRERNERILD 0 2 2 HFEPRT AL LR ESD LIRS 0 R 0%
TRR L AREE o

BEGEHHANH 2 FAHNDLFR F o Wphm A ht 2 TR

Jo2b it TP 3d o

ii

&

DNA %A i@ g A+ 2 b £ & ey B2 - > % R AL DNA 5 B9
REeB 7T o EFN RIS FEMOFE > AFIMEPRESHE gT) i
NPT - BRAR o FRA P DT R ETEERA TS ST E - TR
Ao FRFA ARG BAOTE L BERE R EFE 2 R TS S
ERoo TR R EFEE- E AT PSR o B & PR
B (DAFP s~ QAP FEH PR QAP & & BB AR TA TS
Bed T30 (P AR TR LR SR B R R BT
FRPEEH L PTHEE RAAIELEMA LA T HEBTE N4 Akm A

FIFH G B hg £ o Bfeng RUF P L ZHFTL @ (TR - A2 Y

¢ '%%—%{'—’H'Z%]‘\é:@“ﬁ‘—ﬁ%?’f'—f@;r@i;{ 5"7‘ i g hﬁ/},%?j\pk" &’E‘;fi'—

I FRIL e S BT GAT SRR O F LR & MapReduce
SEAT -

BAhRwe Y 0 AP - B2 MapReduce % EHhF UL T A B L FE
/% » # 1% CloudBrush - CloudBrush &#_m g+ ¢ [](bidirected string graph) & A # > 3
& 2 Py 2242 B9 (graph construction){r f§f i+ 817 (graph simplification) °
BiE A B e 3 A - B3 A (read)§ Bl - B & Bh(node) 0 & BEET &
L Bl B (edge) T & 5 3 BB B B end 4F (overlap) o AV dR A - B B W
(prefix-and-extend) i & 2 k2] 23 & 3F B B ehE 47 « LB H 1 0 3 AP g
¥ L BE 2 e 35 @R 9 (transitive reduction) ~ B T R %7 (path
compression) ~ #% “,ﬁ% % < 55 Hie(tips removal) fr#% ",% # i€ %% 1 (bubble removal) - g
A A - BRrene B2V BlE A K (edge adjustment) k £ “,f B BIPN FIE 7
ST S AF R o S AR AN B AR R Rk R
B B E T A RAEFaE OB

Bt gy FFL 384 > 24 41 * Genome Assembly Gold-Standard Evaluation & &

il

% #78 CloudBrush e\ 7| B L H s B7lle &1 Bt o F B S M7
APayFs v ed? 2L BRSNS 2 534 5 7| iFE4(mis-assembly) 3 o

PR E A TR AP Y bR N - B T-CloudBrush it 42 o
T-CloudBrush i & £ 4] * % & % #ic(multiple-k) % & JR# &4 5 5| F AL F &
(coverage)Z B enff 4 5 € FHceE A L B & R p W@ EZ: AT B A A 2D
SEERT O RAIFTHGERFRA S L F B2 & * ohd 4F % & (overlap size) % ¥k

R IR AP BE OB ko F B 5% % B v T-CloudBrush # 1 ;2 & B 7 e & g T o

3
(i}
o
¥
—}?&
o
-
S5
Tl
pihd
A=
)
irs
jw
e
_.r
=1
&
3

v

Abstract

DNA sequencing is one of the most important procedures in molecular biology
research for determining the sequences of bases in specific DNA segments. With the
development of next-generation sequencing technologies, studies on genomics and
transcriptomics are moving into a new era. However, the current DNA sequencing
technologies cannot be used to read entire genomes or a transcript in 1 step; instead,
small sequences of 20—1000 bases are read. Thus, sequence assembly continues to be
one of the central problems in bioinformatics. The challenges facing sequence assembly
include the following: (1) sequencing error, (2) repeat sequences, (3) nonuniform
coverage, and (4) computational complexity of processing large volumes of data. From
these challenges, considering the rapid growth of data throughput delivered by
next-generation sequencing technologies, there is a pressing need for sequence
assembly software that can efficiently handle massive sequencing data by using scalable
and on-demand computing resources. These requirements fit in with the model of cloud
computing. In cloud computing, computing resources can be allocated on demand over
the Internet from several thousand computers offered by vendors for analyzing data in
parallel. Such cloud-computing applications are constantly being developed for large
datasets and are run under the framework of MapReduce.

In this dissertation, we have proposed CloudBrush, a parallel pipeline that runs on the

A\

MapReduce framework for de novo assembly of high-throughput sequencing data.

CloudBrush is based on bidirected string graphs and its analysis consists of 2 main

stages: graph construction and graph simplification. During graph construction, a node

is defined for each nonredundant sequence read, and the edge is defined for overlap

between reads. We have developed a prefix-and-extend algorithm for identifying

overlaps between a pair of reads. The graph is further simplified by using conventional

operations such as transitive reduction, path compression, tip removal, and bubble

removal. We have also introduced a new operation, edge adjustment, for removing error

topology structures in string graphs. This operation uses the sequence information of all

graph neighbors for each read and eliminates the edges connecting to reads containing

rare bases.

CloudBrush was evaluated against Genome Assembly Gold-Standard Evaluation

(GAGE) benchmarks to compare its assembly quality with that of other assemblers. The

results showed that our assemblies have a moderate N50, a low misassembly rate of

misjoins, and indels. In addition, we have introduced 2 measures, precision and recall,

to address the issues of faithfully aligned contigs in order to target genomes. Compared

with the assembly tools used in the GAGE benchmarks, CloudBrush was found to

produce contigs with high precision and recall.

We have also introduced a T-CloudBrush pipeline for transcriptome data.

vi

T-CloudBrush uses the multiple-k concept to overcome the problem of nonuniform

coverage of transcriptome data. This concept is based on observation of the correlation

between sequencing data coverage and the overlap size used during assembly. The

experiment results showed that T-CloudBrush improves the accuracy of de novo

transcriptome assembly.

In summary, this dissertation explores the challenges facing sequence assembly under

the scalable computing framework and provides possible solutions for the problems of

sequencing errors, nonuniform coverage, and processing of large volumes of data.

Keywords: sequence assembly, parallel computing, genomics, transcriptomics,

bioinformatics.

vii

Table of Contents

L. INEPOAUCTION ..ttt ettt et e st e et e at e et e e saeeenbeeeeee 1
1.1 Shotgun Sequencing and ASSEMDIY........cccvevevreriieriiiiiieeieeie e 2

1.2 Review of Sequencing Technologyccccecieriiiiiiiniiiniiiiiiiecieecveeeee 4

1.3 Review of Assembly AIZOTithms........ccceevuieiiieiiiiiiieiecieeeeee e 7

1.3.1 Evolution of Assembly Algorithmsccooooiiiiiiiiiniiiiiiieeeeee, 7

1.3.2 Comparison of String Graphs and de Bruijn Graphs............cccecvvennennee. 10

1.3.3 Common Stages of Genome Assemblycc.ceceviiniiiiniinennienienenn 12

1.4 Overview of this DiSSertationccccevuerierieiiieieneeeeeeseee e 14

2. Genome Assembly with MapReduceccccoceeviiviiniiniiiiniiiccceecee 16
2.1 INtrOQUCHIONcovveuneesubivee £ Rt toneebeoe T st e e e dothe e eereesnsssesonnesaassessnsssnnasessnassees 16

2.2 Methodscoeeeeveeeediiferenelleen Do B B XD Sk e 17
2.2.1 Distributed Graph Processing in MapReducecccceeeveevieeirennennne. 17

2.2.2 CloudBrush: String Graph Assembly Using MapReduce...................... 19

2.3 Results and DiSCUSSIONevuiiriieriirieniieieeiie ettt 30
2.3.1 Comparison with Other Tools Using GAGE Benchmarks.................... 30

2.3.2 RUNEME ANALYSIS..c.uiiiiiiieiieiieeiieeiiesiie et erieeeveeieesveeseesereeseeeaaeenseeens 32

3. EITOT COTTECHION. ...ttt ettt ettt ettt ettt e st e eabeeseee e teesaeeenseesaeesnseesaneens 34
3.1 INEOAUCLION ..ottt ettt 34

3.2 MEtROMS ... et 35
3.2.1 Correct Sequencing Error by String Graphcccooevievciienieeciiennennne, 35

3.2.2 Correct Sequencing Error by Read Stackoceviiiiniiniininncnnene. 43

3.3 Results and DiSCUSSIONcueeviriieiieiesiiesieeie ettt 46
3.3.1 Analysis of Edge Adjustmentcoooeeeiieiiiiiienieeieceee e 46

3.3.2 Evaluation of Assembly ACCUIACY.......cccvieruieriieriieriieiieeie e e 51

viii

4. De Novo Assembly of Transcriptome Datacooceeviiiiiiniiiiiienieeeeeeeee e, 57

4.1 INEFOAUCTION ..ttt ettt ettt sttt ettt 57

4.2 RESULLS ..ttt ettt ettt ettt et et neas 58
4.2.1 On the Relationship Between Coverage and Optimum £....................... 58

4.2.2 The Effect of Sequencing Error Rate..........cccoceviiiiniiniininiinicens 62

4.2.3 T-CloudBrush: Multiple Overlap Size of CloudBrushc.ccccueeeee. 63

4.2.4 Comparing T-CloudBrush with Existing ToolSc.ccccceevueniinennennens 65

4.3 DISCUSSION...cutteiiteiieeiieette ettt et e e ettt et e bt e et e bt e sabeesbee e bt esbeesaaeesbeeeabeesaeesanees 67

5. Conclusion and Future Researchcoccooiiieiiiiiiiiiiiiieeeee e 69
Appendix A: List of PUDIICAtIONScc.eeevieiiiiiiieiieeiieiie e 71
Appendix B: CloudBrush Manualcccccoiiiiiiiiiiniiiiccecececeeeee 72
Appendix C: CloudBrush Web Demo User Guide..........ccceevevieiiienieeiienieeieeiieeeeenenn 75
AppendixX D: Source Code.........ooiiiuiriiniiiiiiiiiieieeicneeeeeee e 81
Bibliographyccoceeeeeeneee st oBind Mool JB A0 o, 82

X

List of Figures

Figure 1. Generic pipeline of de novo sequencing projects.........ccoceevvereereeruereeneenennens 2
Figure 2. Illustration of de n0vo assemDbIY..........ccccoeviieiiiiiiiiieieceeee e 3
Figure 3. The difference between an overlap graph and a de Bruijn graph..................... 11
Figure 4. Common stages of genome assembly.ccceevvieriieciienieeciienieeieeeie e 14
Figure 5. The data format of a bidirected string graph in MapReduceccc........ 18
Figure 6. Workflow of CloudBrush assembler.cccceeevveviinciienieniicieeieeee e, 21
Figure 7. Illustration of the prefix-and-extend strategy...........cceceeveeriiienieiiienieeieenen. 23
Figure 8. Illustration of transitive reduCtion.ccvevieriierieeiiienie e 25
Figure 9. Illustration of path COMPIeSSION.c.eeeiieiiiiiiieiiieiieee e 26
Figure 10. Illustration of tips r€MOVaLccceeiiiiiiiiiiieiece e 27
Figure 11. The illustration of bubble removal.ccccocoviiniiiinii 29
Figure 12. Runtime analysis of Dataset D3 (C. elegans) by CloudBrush...................... 33
Figure 13. Chimerical link structure problem solved by edge adjustment...................... 36
Figure 14. Branch structure problem solved by edge adjustment.c..ccceeevvvennnnne. 37
Figure 15. Braid structure problem solved by edge adjustment.cccceceevieneennen. 38
Figure 16. The pseudocode of the EA algorithm in sequential versions.c........... 39
Figure 17. The pseudocode of the EA algorithm in the MapReduce version................. 40
Figure 18. Illustration of the position weight matriX.........ccccccveevvierieiciienieeieeie e, 42
Figure 19. Illustration of read stack consStruction.cccceeeeeeiienieeiienieeieeie e, 46

Figure 20. The variation of precision and recall with different lower bounds of length on
simulated data and datasets D1 and D2...........ccociiiiiiiiiiiiiietee e 54
Figure 21. Histogram of the coverage (expression levels) of the 26,332 transcripts of

1001 (61T USSP SRR 60

Figure 22. The relationship between optimum k and coverage. Green cells represent

high ratios indicating high completeness of transcripts. Red cells represent low ratios
indicating low completeness Of tranSCIIPLS.eevveerreeriierieeiierieeree e ere e 61
Figure 23. The relationship between optimum ks and coverage for one transcriptome
sequence for different eIror TALES.ccvieriiiiiieiieeiiecee e 63
Figure 24. Overview of T-CloudBrush procedure.coceveeviniininninineencnicnene 64

Figure 25. The variation of precision and recall with different lower bounds of length on

simulated mouse data using T-CloudBrush and Trinity.........ccccoceeveriiiniininicneencnnns 67
Figure A1l. The main interface.ccoveeiieiiieeiieiiecie ettt et 75
Figure A2. The upload interface.coceeiiiiiiiiiiiieeeeee e 76
Figure A3. The job selection INterface.........ccccveeriieiiierieeiieieeie et 77
Figure A4. The interface of ReadStackCorrector.cccevvevieviniiinieneninicneeicnnne 78
Figure AS. The result of ReadStackCorrector.........covieiiiiiiiiiiiiieieecieeieeee e 78
Figure A6. The interface of CloudBrush.c..ccccooiiiiiiiiiiiniiceccce 79
Figure A7. The results page of CloudBrush.cccociiviiiniiiiiiniieiieceee e, 79

X1

List of Tables

Table 1. Comparison of sequencing technology...........ccceeerviiriineriiinienenicnececenenee 7
Table 2. Evaluation of S. aureus (genome size 2,872,915 bp). ccceeevvveevienieeciieieeieenee, 31
Table 3. Evaluation of R. sphaeroides (genome size 4,603,060 bp)cceevvveieeneennnen. 31
Table 4. Edge analysis of the overlap graph before and after edge adjustment 49
Table 5. Analysis of simplified string graphs with and without edge adjustment.......... 51

Table 6. Evaluation of assemblies of the simulated dataset (100%, 36 bp, 1% error) and
dataset D1 with CloudBrush, Contrail, Velvet, and Edena...............cccccooooiiiiiiiiinnnen. 55
Table 7. Evaluation of assemblies of the simulated dataset (200% 150 bp, 1% error) and
datasets D2 and D3 with CloudBrush, Contrail, and Velvetcccccooeiiiiiiiiinnn. 56
Table 8. Evaluation for assemblies of simulated mouse data with T-CloudBrush as

compared to CloudBrush using different A=mercccccooeviiiiniinniniicee, 67

Xii

Chapter 1

1. Introduction

With the rapid development of next-generation sequencing (NGS) technologies, the
cost of DNA sequencing continues to fall rapidly, faster than the rate according to
Moore’s law for computing costs [50]. To keep pace with the increasing availability of
sequencing data, ever more efficient or scalable fundamental sequence tools are needed.

A fundamental step in analyzing de novo sequencing data, in the absence of a
reference genome, is genome assembly—the problem of determining the sequence of an
unknown genome—with the most well-known assembly problem being the Human
Genome Project. In general, the genome of an organism offers great insight into its
phylogenetic history, interaction with the environment, and internal function [31]. Thus,
de novo assembly continues to play a central role in biology for the sequencing of novel
species. Figure 1 shows a generic pipeline of de novo sequencing projects. This
dissertation focuses on the subject of de novo assembly.

With the evolution of genome sequencing technology, methods for assembling
genomes have changed. Therefore, it is an interesting aspect to study the evolution in
graph structure with the growth in read length and coverage, and thus develop

algorithms that efficiently assemble next generation genomic sequence data.

Outaroup:

Laminaria

(hrown algae)
— Grape !

Papaya H
_m W atermelon

Figure 1. Generic pipeline of de novo sequencing proj ects.

1.1 Shotgun Sequencing and Assembly

The process through which scientists decode the DNA sequence of an organism is
called sequencing. In 1977, Frederick Sanger developed the basic sequencing
technology that is still widely used today [22]. Although genomes vary in size from
millions of base pairs (bp) in bacteria to billions of base pairs in humans, the chemical
reactions researchers use to decode the DNA base pairs are accurate for only about

600—700 bp at a time. To overcome this limitation, a technique called shotgun

sequencing has been developed. The shotgun process involves shearing the genome of
an organism into multiple small fragments. Following this, the ends of the fragments
(called reads) are decoded via sequencing. In most sequencing projects, the fragment
sizes are carefully controlled. This provides a link between the reads generated from the
ends of the same fragment, which are called paired ends or mate pairs. Figure 2 shows
an illustration of the shotgun sequencing process. Reconstructing a complete genome

from a set of reads requires an assembly program.

Original
DNA
fragment{ —_—
—_— T 7 -
~
~ reads —
Contigl Contig2 Contig3
consensus :
—fK — _— —_

Coverage = 2 at
this location
ATGCTGACTTAACGTA

. .GCTGACTTAACGTAGCTA
ATGCTGACTTAACGTAG. .

Figure 2. lllustration of de novo assembly.

The assembly program relies on the basic assumption that 2 reads that share the same
string of letters originate from the same place in the genome (Figure 2). Using such
overlaps between the reads, the assembly program can join the reads together and
produce contiguous pieces of DNA (contigs). Note that shotgun sequencing can be

viewed as a random sampling process, with each DNA fragment originating from a
3

random location within the genome [30]. Thus, in the same way raindrops will
eventually cover a whole sidewalk, it is possible to sequence an entire genome by
oversampling the genome to ensure each position is seen. Eric Lander and Michael
Waterman provide a statistical model [33] to examine the correlation between the
oversampling of the genome (also called coverage) and the number of contigs that can
be reconstructed by an idealized assembly program.

The high cost of Sanger’s sequencing technology has long been a limiting factor for
genome projects [12]. Current NGS technologies have far greater speed and much lower
costs than Sanger sequencing. However, this reduction in cost comes at the expense of
read lengths, with new sequencing having much shorter reads (30—400 bp). Therefore,
their application has mainly been restricted to resequencing projects [13, 51], where a
good reference sequence exists. For the de novo sequence assembly, assembling a large
genome (>100 Mbp) using NGS data is a challenge. Thus, while sequencing cost is no
longer a limiting factor for most de novo large genome projects, sequence assembly

remains a major challenge.

1.2 Review of Sequencing Technology

There are many factors to consider in DNA sequencing, such as read length, bases per
second, and raw accuracy. Extensive research and development has led to an

exponential reduction in cost per base. Automated sequencing based on the Sanger
4

method was developed in 1980 [49, 53]. It dominated the industry for almost 2 decades,

and led to a number of monumental accomplishments, including the only finished-grade

human genome sequence. Subsequent improvements in the Sanger method have

increased the efficiency and accuracy by more than 3 orders of magnitude. At each step,

more sophisticated DNA sequencing instruments, programs, and bioinformatics have

provided more automation and higher throughput. A further revolution in sequencing

began around 2005, when several massively parallel sequencing methods became

available and began to produce massive throughput at far lower costs than Sanger

sequencing. This allowed larger-scale production of genomic sequences.

The automated Sanger method is considered a “first-generation” technology, while

newer methods are NGS technology. NGS platforms include the Genome Sequencer

from Roche 454 Life Sciences (www.454.com), the Solexa Genome Analyzer from

[llumina (www.illumina.com), and the SOLiD System from Applied Biosystems

(www.appliedbiosystems.com). Common to all these technologies is the high degree of

parallelism in the sequencing process. Millions of DNA fragments are immobilized to a

surface and then sequenced simultaneously, leading to a throughput order of a

magnitude higher than that achievable through Sanger sequencing. This performance

comes at a price: read lengths are considerably shorter, ranging from 25-50 bp (SOLiD)

to 400 bp (454 Titanium instrument). Table 1 shows a partial comparison of sequencing

technology [25].

Refinements and automation have greatly improved cost effectiveness. In 1985, the

cost of reading 1 single base was $10, while the same amount of money rendered

10,000 bases 20 years later [29]. This cost reduction mainly came about with the

development of the 454 Sequencer, quickly followed by the Solexa/Illumina and ABI

SOLiD technologies. Since then, the cost of sequencing a base has halved every 5

months, whereas, in accordance with Kryder’s law, the cost of storing a byte of data has

halved every 14 months [37]. As this gap widens, the question of how to design higher

throughput analysis pipelines becomes crucial [50].

Table 1. Comparison of sequencing technology

First Generation Next Generation
Company ABI Roche lllumina ABI
Platform 3730x 454 FLX Titanium GAllx SOLiD-4
Sequencing Synthesis
Sanger Synthesis Ligation
Method (pyrosequencing)
Run time 2h 10 h 14 d 12d
Millions of reads/run 0.000096 1 320 > 840
Base/read 650 400 150 50
Reagent cost/Mb $1,500 $12.40 $0.12 < $0.11
Machine cost $550,000 $500,000.00 $540,000.00 $595,000
Error rate 0.1-1 1 20.1 >0.06
Error type Substitution Indel Substitution A-T bias

1.3 Review of Assembly Algorithms
1.3.1 Evolution of Assembly Algorithms

Early genome assemblers followed a simple but effective strategy in which the
assembler greedily joins together the reads that are most similar to each other. This
simple merging process will accurately reconstruct the simplest genomes, but it fails to
do so for repetitive sequences that are longer than the read length. The problem is that
the greedy algorithm cannot tell how to connect the unique sequences on either end of a
repeat, and it can easily assemble together distant portions of the genome into

misassembled contigs. Considering these repetitive sections in the genome, the

sequence assembly problem may be modeled as a graph traversal problem. This

formulation allows researchers to use techniques developed in the field of graph theory

to solve the assembly problem. However, optimal path discovery is impractical because

there can be an exponential number of paths between any source and sink node.

Therefore, assemblers rely on heuristics and approximation algorithms to reduce the

computational complexity.

The evolution of assembly algorithms has accompanied the development of

sequencing technologies. Currently, there are 2 widely used classes of algorithms: string

graph algorithms and de Bruijn graph algorithms. The string graph approach follows the

overlap graph model by treating reads as nodes and assigning a edge between 2 nodes

when the overlap (or intersection) between these 2 reads is larger than a cutoff length. A

string graph is obtained by removing the transitive edges of the overlap graph [52]. In

the overlap graph model, sequence assembly becomes the problem of identifying a path

through the graph that contains all the nodes, i.e., a Hamiltonian path. This model

became successful with the widespread use of the Sanger sequencing technology. Many

widely used assembly programs adopted overlap graphs, such as Arachne [6], Celera

Assembler [3], Phrap [7], Phusion [54], and Newbler [32]. However, with the far shorter

reads and far higher coverage generated by these NGS technologies, computation of

overlap became a bottleneck for the overlap graph model assembly. This is due to the

considerable increase in the number of reads generated in a short-read NGS project as

compared to the number generated using Sanger sequencing. For these reasons, the de

Bruijn graph approach has been developed specifically to address the challenges of

assembling very short reads.

Approaches using de Bruijn graphs approaches are based on early attempts to

sequence genomes through a technique called sequencing by hybridization [2]. In de

Bruijn graphs, instead of treating reads as nodes, each read is broken up into a collection

of overlapping strings of length & (k-mers). For applications in DNA sequence assembly,

de Bruijn graphs have a node for every k-mer observed in the sequence set and an edge

between nodes if these 2 k-mers are observed adjacently in a read. It is easy to see that

in a graph containing the information obtained from all the reads, a solution to the

assembly problem corresponds to a path in the graph that uses all the edges, i.e., an

Eulerian path. In late 2007 and early 2008, several next-generation de Bruijn graph

assemblers were released for very short reads compatible with the Solexa technology,

including VELVET [55], EULER-USR [20], ABySS [4], ALLPATHS-LG [35], and

SOAPdenovo [18].

The development of assembly algorithms is tied closely to the development of

sequencing technologies. Thus, research and practice have moved from the string graph

approach for Sanger sequencing to the de Bruijn graph approach for NGS [12]. As

short-read sequencing progressively shifts towards longer reads (>100 bp), the
landscape of assembly software has had to adapt to high-coverage, longer reads. In the
future, de novo assembly algorithms are likely to return to the string graph approach for

long-read sequencing.

1.3.2 Comparison of String Graphs and de Bruijn Graphs

The main difference between string graph and de Bruijn graph algorithms is the
method used to exploit the overlap information [12]. In the string graph algorithm, the
identification of overlap between each pair of reads is explicit, typically by aligning
all-against-all pairwise reads. In the de Bruijn algorithm, overlaps between reads are
implicitly captured by decomposing all the reads into k-mers and simultaneously
recording their neighboring relations. Figure 3 shows the differences between a string

graph and a de Bruijn graph for assembly.

10

(a) Reads (b) Overlap Graph
(String Graph)

GACCTACAAGTTAG
: GACCTACA
ACCTACAA
CCTACAAG
CTACAAGT
TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC
CAAGTCCG

i

sw N

R C))

i

[ea i e R e 2 B u B-v B~ v By v By v 2o
N 5

w

(c) de Bruijn Graph (of 3-mer)

Figure 3. The difference between an overlap graph and a de Bruijn graph.

Paul Medvedev showed that both the de Bruijn graph and string graph models for
genome assembly are NP-hard [14]. However, the success of both the de Bruijn and
string graph models in practice indicates that by defining a more restricted graph model
and suboptimal heuristics, it is possible to develop more efficient algorithms for genome
assembly.

The question of whether the string graph or the de Bruijn graph approach is superior
remains an open question, and the answer most likely depends on the sequencing
technology and the specific genome characteristics. Only de Bruijn graph assemblers
have demonstrated the ability to successfully assemble very short reads (<50 bp). For
longer reads (>100 bp), string graph assemblers have been quite successful and have a

much better track record overall [9]. The main drawback to the de Bruijn approach is
11

the loss of information caused by decomposing a read into a path of k-mers. Typically,
de Bruijn graph assemblers attempt to recover the information lost from breaking up the
reads, and attempt to resolve small repeats using complicated read threading algorithms
[23]. Using the string graph model of assembly can avoid this problem. Therefore, the
quality of de Bruijn graph implementations in assembling long reads is lower than the
quality of string graph implementations. Furthermore, when read lengths increase, it is
relatively easy to increase minimum overlap size in string graph implementations;
however, it is hard to increase k-mer size in de Bruijn graphs for several reasons,
including computational limitations. Most of the current de Bruijn graph assemblers can
only accept a k-mer size of up to 31 bp, with some of the latest versions going up to 127
bp [18, 35, 55]. The limited k-mer size in the de Bruijn graph approach has therefore

limited its potential to use long reads to overcome repeats.

1.3.3 Common Stages of Genome Assembly

For the assembly of whole genomes, the graph construction and graph traversal is
followed by sophisticated steps aimed at reconstructing larger contiguous segments of
the genome being assembled. In most assemblers, there are a core set of steps needed
[8]. In Figure 4, the common stages of genome assembly are introduced. The 4 major
stages are (1) error correction, (2) graph construction, (3) graph traversal, and (4)

scaffolding.

12

Due to high coverage, many error correction techniques in NGS data have been

developed in recent years. As errors occur infrequently, the majority of reads in a

specific position can be used to correct errors. This general idea has been implemented

in most error-correction algorithms. Currently, error correction can be built in as a

module in assemblers, such as is found with Velvet [55] and ALLPATHS-LG [35], or be

i1solated as stand-alone software, such as Quake [46] and HiTEC [36].

The scaffolding phase of assembly focuses on resolving repeats by linking the initial

contigs to scaffolds. A scaffold is a collection of contigs linked by mate pairs. Mate

pairs constrain the separation distance and the orientation of contigs containing mated

reads. If the mate pair distances are long enough, they permit the assembler to link

contigs across almost all repeats. Like error correction, stand-alone scaffolders are also

available, such as Bambus [10], Opera [42], and SSPACE [48], allowing mate-pair

information to be added to virtually any assembler.

13

(‘ Error Error detection and correction based

. on sequence composition of the reads
Correction

Graph construction to represent reads
Graph and their shared sequence.
Construction
Reduction of simple non-intersecting
paths to single nodes in the graph.
Removal of error-induced paths. These

Graph are recognized as tips or bubbles.
Traversal Collapse of polymorphism-induced
complexity. This is recognized as
De novo bubbles.

Assembly

Simplification of tangles using

information outsicle the graph.
Scaffolding Individual reads or pairect-end reads

act as constraints on path distance and

\ outcome.

Figure 4. Common stages of genome assembly.

1.4 Overview of this Dissertation

De novo assembly is much like a large jigsaw puzzle in that the DNA reads that
shotgun sequencing produces must be assembled into a complete picture of the genome.
Unlike a simple jigsaw puzzle, several factors make de novo assembly challenging. First,
the data contain errors, some from limitations in sequencing technology and others from
human mistakes during laboratory work. Second, there are repetitive sections in the
genome. Similar to pieces of sky in jigsaw puzzles, reads belonging to repeats are
difficult to position correctly. The magnitude of the challenge depends on the
sequencing technology, because the fraction of repetitive reads depends on the read
lengths themselves. In addition, with the rapid growth of sequence data, de novo

assembly is complicated by the computational complexity of processing larger volumes
14

of data; furthermore, non-uniform coverage of sequence data also becomes an issue for

sequence assembly.

The unifying theme of this dissertation is to develop an efficient de novo sequence

assembler. The following chapters describe possible solutions to the above challenges.

As for the rapid growth of sequence data, chapter 2 proposes a MapReduce framework

assembler to accommodate large datasets. Chapter 3 explores the error-correction issue

of sequence assembly. Chapter 4 studies the issue of non-uniform coverage of

transcriptome sequence data, and provides a feasible procedure. Finally, chapter 5

discusses the dissertation’s findings, and explains the wider implications of these

findings, as well as suggesting topics for future research.

15

Chapter 2
2. Genome Assembly with MapReduce

2.1 Introduction

The current sequencer of the [llumina GAIIx produces reads longer than 150 bp and
up to 320 Gbp data output per run. To assemble genomic data generated by such
high-throughput sequencers is a big challenge even for multi-core processors with
memory constraints. Most of the recent assemblers use de Bruijn graphs [4, 15, 18, 20,
35, 55] to model and manipulate the sequence reads. These assemblers have
successfully assembled small genomes from short reads but have had limited success
scaling to larger mammalian-sized genomes, mainly because they require memory and
other computational resources that are unobtainable for most users. For larger genomes,
the choice of assemblers is often limited to those that will run without crashing.

Addressing this limitation, a string graph-based de novo assembler, namely
CloudBrush, is presented. CloudBrush uses the Hadoop/MapReduce distributed
computing framework to enable de novo assembly of large genomes. MapReduce [38]
is a distributed data processing model and execution environment that runs on large
clusters of commodity machines. Hadoop is an open-source project for distributed
computing. It consists of subprojects, including MapReduce, distributed file systems,

and several others [34]. Hadoop is known for its scalability to handle petabyte-scale
16

data and tolerance of hardware failures. It is becoming the de facto standard for
large-scale data analysis, especially in “cloud computing” environments where
computing resources are rented on demand, thus allowing data to be analyzed in

parallel.

2.2 Methods
2.2.1 Distributed Graph Processing in MapReduce

Genome assembly has been modeled as a graph-theoretic problem. Graph models of
particular interests include de Bruijn and string graphs in either directed or bidirected
forms. Here, a bidirected string graph was used to model the genome assembly problem.

In a bidirected string graph, nodes represent reads, and edges represent the overlaps
between reads. To model the double-stranded nature of DNA, a read can be interpreted
in either forward or reverse-complement directions. For each edge that represents an
ordered pair of nodes with overlapping reads, 4 possible types exist according to the
directions of the 2 reads: forward-forward, reverse-reverse, forward-reverse, and
reverse-forward. The type attribute is incorporated into each edge of the bidirected
string graph. It is noteworthy that traversing the bidirected string graph should follow a
consistent rule, i.e., the directions of in-links and out-links of the same node should be
consistent. In other words, the read of a specific node can only be interpreted in a

unique direction in one path of traversal.

17

(a)

Key Value Separated by Tab Separated by ‘!’

ReadID msgTypel *fieldType fieldvalue(s)]

(J
Y

= msgType
o “N” (NODEMSG)
o “T” (TRIMMSG) Multiple fields
a ...
= fieldType
o “s” (sequence)

o “v" (coverage)
a M7, “re”, “fr”, “rf” (edge type)
a e

(b)

Reads: MapReduce data format:

1 ATCGTGCA 1 N *ff 214 *s ATCGTGCA *v 1
(TGCACGAT) 2N *rr 114 *ff 313 *s TGCAGACA *v 1

2 TGCAGACA 3 N *rr 213 *s ACATTAAA *v 1
(TGTCTGCA)

3 ACATTAAA

(TTTAATGT) H—>.

1 ATCGTGCA 3 TTTAATGT
2 TGCAGACA 2 TGTCTGCA
3 ACATTAAA 1 TGCACGAT

Figure 5. Thedata format of a bidirected string graph in MapReduce

The MapReduce framework [16] uses key-value pairs as the only data type to
distribute the computations. To manipulate a bidirected string graph in MapReduce, a
node adjacency list was used to represent the graph (which stores node id — the
identifier of a node — as the key), and node data structure was used to represent the
value. Node data structure contains features of the node and is represented by several

types of defined messages. Each type of message may contain multiple fields, and each

18

field has its type and value as shown in Figure 5(a). For example, the message of a node
consists of fields, including sequence, coverage, and 1 of the 4 edge types. Using the
Contrail assembler [15] and its data structure, the overlap and string graphs were
modeled with an extension to record nodal overlap lengths. Figure 5(b) shows an
example of a bidirected string graph in MapReduce. Note that each node can be
represented not only its forward sequence but also its reverse-complement sequence as
shown in the red sequence in Figure 5(b).

In MapReduce, a basic unit of computations is usually localized to a node’s internal
state and its neighbors in the graph. The results of computations on a node are output as
values, each keyed with the identification of a neighbor node. Conceptually, this process
can be thought of as “passing” the results of computation along out-links. In the reducer,
the algorithm receives all partial results having the same destination node id and
performs the computation. Subsequently, the data structure corresponding to each node

is updated and written back to distributed file systems.

2.2.2 CloudBrush: String Graph Assembly Using MapReduce

The core of the string graph assembly algorithm can be divided into 2 parts: graph
construction and graph traversal. The most critical step to construct a string graph is
computing the overlap between all pairs of reads. For high-throughput sequence data,

this step requires redesigning to make it computationally feasible. To find all pairs of

19

read-read overlaps, a prefix-and-extend strategy is presented that speeds up construction

of the string graph in the MapReduce framework.

As for graph traversal, it is inherently a sequential operation. However, traversing a

chain of one-in one-out nodes can be formulated as a list rank problem, a well-studied

parallel problem. A graph traversal problem can be formulated as a graph simplification

problem, which manipulates graph structure transforming each node into the one-in

one-out format without any loss of information. By incorporating the solution of list

rank problems in parallel [47], it is possible to efficiently implement a parallel graph

traversal algorithm in the MapReduce framework.

The pipeline of CloudBrush is summarized as follows. First, a string graph is

constructed in 4 steps: retaining non-redundant reads as nodes, finding overlaps

between reads, edge adjustment, and removing redundant transitive edges. Second,

several techniques are used to simplify the graph, including path compression, tip

removal, bubble removal, and edge adjustment. Figure 6 shows the workflow of

CloudBrush.

20

Graph Construction

Generate Non-Contained Reads
v
Match Prefix
2

{ |
{ |
{ Verify Overlap }
E |
{ |

v
Edge Adjustment
¥
Transitive Reduction

<
Graph Simplification

Tip Removal

[Bubble Removal

Low coverage
node removal

Edge Adjustment

Path Compression

Figure 6. Wor kflow of CloudBrush assembler.

2.2.2.1 Graph Construction in MapReduce

Retaining non-redundant reads as nodes

Since a sequence read may have several redundant copies in the dataset due to

oversampling in machine sequencing, the first step in graph construction is to merge

redundant copies of the same read into a single node. This can be accomplished by

constructing a prefix tree as Edena does. A distributed prefix tree for MapReduce based

on Edena’s prefix-tree approach was implemented [19]. In the mappers, each read of

each strand was divided into a w-mer prefix u with the remaining suffix v, and prefix u

was used as the key to distribute its ID with suffix v and orientation to reducers, where w

is a parameter specified by users and each read is associated with a unique ID. A reducer,

21

which receives information of reads with the same key, then builds a prefix tree of the

reads’ suffixes. After traversing the prefix trees, the reducer then merges identical reads

and keeps a record of the number of identical copies for further processing. Examples of

such processing include computing the coverage of a node at a later stage.
Finding pairwise overlaps between reads

Read-read overlaps are basic clues to connect reads to contigs. However, finding

overlaps is often the most computationally intensive step in string graph-based

assemblies. An algorithm was developed to run the prefix-and-extend strategy for

MapReduce. The prefix-and-extend strategy is similar to the seed-and-extend strategy

[28]. However, the seed, i.e., a common substring of 2 reads, must start at position 1 of

1 of the reads. The seed is denoted by brush in this dissertation. The strategy consists of

2 phases, i.e., the prefix and the extend phases. In the prefix phase, a pair of reads is

reported if the prefix of one of the reads exactly matches a substring of the other at the

given seed length. The pair is then said to have a brush. In the extend phase, pairs of

reads with a brush are further examined starting from the brush. If the match extends to

one end of the second read, then an edge containing the 2 nodes of the 2 reads is created

as shown in Figure 7.

22

brush W

M brush

k-mer

A 4

edge candidate

* extend phase
edge confirmation

Figure 7. lllustration of the prefix-and-extend strategy.

The prefix and extend phases are implemented as 2 MapReduce procedures. In the

prefix procedure, for each read R, a tuple is output for every k-mer subsequence of each

strand of R, such that the key of the tuple is set as the k-mer subsequence, and the value

of the tuple contains the node ID of R, as well as the orientation and the position of the

k-mer subsequence, where £ is a user-defined parameter. Then, each reducer receives all

reads with the same k-mer subsequence. Following this, reads at position 1 are labeled

as brush reads, and the other reads are labeled as suffix reads. For each brush read R;, a

tuple is output for each node containing R; with the node ID as key and its candidate

edges. In the extend procedure, each candidate edge is tested by extending the brush

match into full alignment as shown in Figure 7. If the match extends to 1 end of the

23

second read, then an edge containing the 2 nodes of the 2 reads is created.
Edge adjustment algorithm

After finding overlaps as edges, the edge adjustment (EA) algorithm is used on the

graph structure. To perform the EA algorithm in MapReduce framework, a pass of the

neighbors’ edges for each node R; is performed, such that R; knows all the neighboring

nodes in the reducer. Once a node has all its neighbors’ information, the EA algorithm

can easily compute the consensus sequence from the neighbors’ content and thus

execute the algorithm. Note that in the MapReduce framework, each node can compute

its own consensus sequence in parallel. More detail regarding the EA algorithm is given

in chapter 3.
Reducing transitive edges

After the EA algorithm, the graph still has unnecessary edges caused by oversampling

in the sequencing. Consider 2 paths of consecutively overlapping nodes R, R,—>R; and

R;2>R;. The path R, R; is transitive because it spells the same sequence as

R/~ R>2>R; but ignoring the middle node R,.

To perform the transitive reduction in MapReduce framework, a pass of the

neighbors’ edges for each node R; is performed such that R; knows all the neighboring

nodes in the reducer. In contrast to a de Bruijn graph, the overlap size information is

attached in the edge of the bidirected string graph. Thus, it is possible to sort neighbors

by overlap size and remove transitive edges in order. Using Figure 8 as an example, R,

24

and R; are R;’s neighbor. From the viewpoint of R;, the nodes R, and R; are checked for
any overlaps between each other. Once R; overlaps with R,, R; is treated as a transitive
edge of R;, and will be removed from R;’s adjacency list. Note that once a transitive
edge is removed, its symmetric edge is also removed to maintain the structure of the

bidirected string graph.

R,: ACGGCAGTCTGACTT
R,: GCAGTCTGACTTATG
R;: GTCTGACTTATGGCG

Figure 8. lllustration of transitive reduction.
2.2.2.2 Graph Simplification in MapReduce

Once the graph is constructed, several techniques can be used to simplify the graph,
including path compression, tip removal, bubble removal, and low coverage node
removal. This MapReduce implementation of path compression, tip removal, bubble
removal, and low coverage node removal are similar to Contrail’s implementation [15].
However, the novel implementation described by this dissertation differs in that it has an
additional field of overlap size for the data structure of message passing between nodes

tailed for the string graphs.

Path compression
25

Path compression is used to merge a chain of nodes (each having a single in-link and
a single out-link along a specific strand direction) into a single node. Figure 9 shows an

illustration of path compression.

Jod o e

Figure9. Illustration of path compression.

Contrail uses a randomized parallel list ranking algorithm [47] to efficiently compress
simple chains of length S in O(log(S)) rounds. The algorithm randomly assigns a head
or tail tag to each compressible node, which means that each node so assigned has only
a single out-link for a single direction. The path compression is an iterative algorithm.
For each iteration, the algorithm merges each pair of nodes so that 1 has a head tag and
the other has a tail tag, and they are linked together. Until the number of compressible
nodes decreases below a defined threshold (the default being 1024), MapReduce

procedures assign them all to the same reducer, and merge them in 1 round.
Tip removal and bubble removal

Read errors distort the graph structure by creating tips and bubbles. Tips are generally
due to errors at the end of reads. Bubbles are created by errors within reads or by nearby

tips presenting spurious overlaps [55]. After path compression, tips and bubbles are

26

easily recognized with local graph structures. Figure 10 and Figure 11 illustrate how tips
and bubbles are removed. Nodes with only one out edge and lengths less than a defined
threshold are treated as tips. To remove tips in the MapReduce framework, node id is
output as the key and node data structure as value to pass graph structure to reducer and
output as a key-value pair for each tip. The key contains the node ID of a tip’s neighbor,
and value 1s a tip’s node ID. After shuffle and sort, reducers will receive keys
corresponding to the node ID and its neighbors, which are treated as tips. This node can

then remove tips in reduce stage.

R; I
R, s
R; I
R,

path
compression
path tips

compression removal @

OEECIC = IR

Figure 10. lllustration of tipsremoval.

In contrast, bubbles are shaped from a set of nodes that has only a single in-link and a

single out-link, such as nodes R, and R; in Figure 11. These nodes are adjacent to the

same neighbor for both the in-link and the out-link. Thus, nodes that have one in-link

and one out-link are treated as potential bubbles. To ensure the consistency of a

potential bubble’s neighbor, one side neighbor with a large node ID is defined as major
27

neighbor and the other side’s neighbor with a small node ID as minor neighbor. To

remove bubbles in the MapReduce framework, two MapReduce procedures are used. In

the first procedure, the graph structure is passed to the reducer, and a key-value pair for

each potential bubble is output. The key is the node ID of its major neighbor, and value

is a potential bubble’s information, which includes node feature and its minor

neighbor’s node ID. After shuffle and sort, reducers will receive keys corresponding to

node ID and its neighbors, which are potential bubbles. Using Figure 11 as an example,

R, and R; are potential bubbles, and Ry is their major neighbor. Thus, the information

from R; and R; will be output to the same machine with R, in the reducer. Since R, and

R; have the same minor neighbor R;. R, and R; are merged into a single node in the

reducer when their sequences are similar. Once bubbles have been merged, the link

between the major neighbor (R,) and the merged node (R;) is removed. Note that a

second procedure is used to maintain the bidirected string graph structure’s consistency.

To do this, a bubble message is stored, which includes information about the minor

neighbor and the node removed to the node data structure of the major neighbor. In the

second procedure, the bubble message from the node is popped, and a key-value pair for

each bubble message is output. The key is the minor neighbor’s node ID, and the value

is the removed node’s ID. Thus, it is possible to remove the link between the minor

neighbor and the removed node in the reducer of the second procedure. Note that tip

28

removal and bubble removal lead to additional simple chains of nodes that can be

further merged by path compression.

R, I
R, I —
R, I
R, :: I

bubble

removal
path

compression

fo) (o R@)

Figure 11. Theillustration of bubble removal.

Edge adjustment in graph simplification

To further simplify the graph, the EA algorithm is reused in graph simplification.
However, this time, it is only performed on unique nodes. A unique node is a node
whose sequence is present exactly once in the genome. In general, a unique node should
have a single in-link and a single out-link; however, sequencing error may cause
branching on the unique node. Using the EA algorithm on the unique node can fix this
problem.

The A-statistic [52] is then applied to detect the unigue node. The formula of the
A-statistic is as follows:

AN,) =AX(n/G)—rxIn2,

(2.1)

where A is contig length, is the number of reads that comprise this contig, n is the
29

number of total reads, and G is the genome size. Although the size of the genome G is
unknown, the expected k-mer frequency can be computed in all reads in the MapReduce
framework. The expected k-mer frequency is equal to(read length—k+1)xn/G , thus the
information of n/G can be obtained via the expected k-mer frequency. The A-statistic
can then be rewritten as follows:
A(A,c, f)=AX [/(read length—k+1)—(AXc/read length)XIn2,
(2.2)
where ¢ is the coverage of contig and f'is the expected k-mer frequency. According to
the formula, the A-statistic is computed for each node in the string graphs. The EA
algorithm is performed on the nodes with A-statistics >10. Note that A-statistics >10
mean that the nodes are likely located in unique regions [52]. The EA algorithm can be
performed iteratively until there are no further neighbors of the unique node to be

removed.

2.3 Results and Discussion
2.3.1 Comparison with Other Tools Using GAGE Benchmarks

To give a comprehensive comparison, GAGE [27] can be used as a benchmark to
evaluate CloudBrush and compare with 8 assemblers evaluated in GAGE. Table 2 and
Table 3 summarize the validation results for the 2 genomes: Staphylococcus aureus and

Rhodobacter sphaeroides.

30

Table 2. Evaluation of S. aureus (genome size 2,872,915 bp).

N50 Indel

Assembler Num N50 (kb) cor. (kb) 25 bp Misjoins
ABySS 302 29.2 24.8 9 5
ALLPATHS-LG 60 96.7 66.2 12 4
Bambus2 109 50.2 16.7 164 13
MSR-CA 94 59.2 48.2 10 12
SGA 1252 4 4 2 4
SOAPdenovo 107 288.2 62.7 31 17
Velvet 162 48.4 41.5 14 14
CloudBrush 527 9.7 9.5 2 10

Table 3. Evaluation of R. sphaeroides (genome size 4,603,060 bp)

Assembler Num N50 (kb) r2e indel Misjoins
corr. (kb) >5 bp

ABySS 1915 5.9 4.2 34 21
ALLPATHS-LG 204 425 344 37 6
Bambus2 177 93.2 12.8 363 5
CABOG 322 20.2 17.9 24 10
MSR-CA 395 22.1 19.1 32 10
SGA 3066 4.5 29 4 4
SOAPdenovo 204 131.7 14.3 406 8
Velvet 583 15.7 14.5 27 8
CloudBrush 661 12.8 12.7 10 2

31

As described elsewhere [27], a more aggressive assembler is prone to creating more
segmental indels, as it strives to maximize the length of its contigs, while a conservative
assembler minimizes errors at the expense of contig size. From Table 2 and Table 3, it
can be seen that SGA’s assemblies have the fewest errors of misjoints and indels >5 bp
but have the shortest N50. CloudBrush produced the second fewest errors and led to
longer N50. This shows that CloudBrush is a conservative assembler but is capable of

assembling longer contigs.

2.3.2 Runtime Analysis

To evaluate the performance of CloudBrush’s approach, CloudBrush analysis was
performed on 3 different sizes of Hadoop clusters using machines leased from Hicloud

(http://hicloud.hinet.net/). The 3 clusters consisted of 20, 50, and 80 nodes, respectively.

Each node had 2 core CPU (roughly 2 GHz) and 4 GB of RAM. A 6 GB dataset

consisting of 33.8 million read pairs was used as the benchmark to analyze the

CloudBrush’s runtime. CloudBrush is counted separately in 2 phases: Graph

Construction and Graph Simplification. In Figure 12, it is observed that Graph

Construction is CloudBrush’s main bottleneck, with 20, 50, or 80 nodes. However, with

the increase in the number of nodes, the computation time of Graph Construction

decreases considerably, while the runtime of Graph Construction decreases slightly.

These experiments show that Graph Construction tends to scale well in MapReduce.

32

Computation of Graph Simplification does not do so well.

180000

160000

140000 \

120000 —Graph
0 Construction
g 100000 —8— Graph
£ 80000 \ S|mplrf|(?at|on
2 50000 3 Total Time

40000 | \

20000

0 : a
20 nodes 50 nodes 80 nodes

Figure 12. Runtime analysis of Dataset D3 (C. elegans) by CloudBrush.

33

Chapter 3
3. Error Correction

3.1 Introduction

Error correction is one of the most important steps in genome assembly, often taking
much longer than the assembly itself. High-quality data can produce dramatic
differences in the results. For example, the evaluation results of GAGE [27] show the
contig sizes after error correction often increased dramatically, as much as 30-fold. This
highlights the critical importance of data quality to a good assembly. There are generally
2 ways to correct for errors in genome assembly.

The first method is based on read alignment. Initially, this finds all the overlapped
reads by doing multiple alignments. Reads that contain an error in a specific position
can be corrected by using the majority of the reads that have this base correctly. This
idea has been implemented in most error-correction algorithms [57] and can be
extended to the concept of the k-mer frequency spectrum. The method of A-mer
frequency spectrum counts the frequencies of all k-mers in the reads dataset, and then
divides them into 2 types: trusted k-mers and untrusted k-mers. The process of error
correction is to modify reads with minimal change that will transform all the untrusted
k-mers into trusted k-mers.

The second method is based on the topological features of the graph. In using the
34

graph-based assembly approach, sequencing errors may generate complex structures in
the graph. For example, sequencing errors at the end of reads may create tips in the
graph, and sequencing errors within long reads may create bubbles in the graph. By
simplifying the graph (removing tips and smoothing bubbles), the number of errors can
be reduced, allowing the assembly of longer contigs.

In this chapter, structural defects in a string graph as caused by sequencing error are

addressed, and an EA algorithm is proposed to resolve the problem.

3.2 Methods

3.2.1 Correct Sequencing Error by String Graph

3.2.1.1 Sructural Defectsin a Sring Graph

Tips and bubbles are well-defined problems with a solution making use of the
topological features of the graph as described elsewhere [15, 55]. Some errors, however,
create more complex structures that cannot be readily identified from the topology of
the graph. In this dissertation, these structures are referred to as “structural defects.” A
well-known structural defect is the chimerical link problem. Figure 13(a) displays an

example of chimerical links caused by sequencing error in string graphs.

35

(@) (b)

A A
B B
c ——— c *—
D D
C —¥—
E ¥ —— E
F ¥ —— F ¥——
e
G¥———
H—%— H ———

& —6—6—0 ®&—0—0—®

Figure 13. Chimerical link structure problem solved by edge adjustment.

In this instance, the chimerical link is caused by false overlap between node C and
node G. In addition to sequencing errors, repeat regions also cause structural defects in a
string graph, as seen, for example, in the well-known “frayed rope” pattern [8].
Furthermore, repeats shorter than the read lengths may also complicate processing in
string graphs, for example, if a short repeat exists in reads D, E, F, I, J, L, and M, where
C, D, E, and F are reads from a specific region in the genome, while I, J, L, and M are
reads from another region in the same genome (Figure 14(a)). It is noteworthy that in
the string graph, the edge between nodes D and L is labeled a “branch structure,” which

may lead an assembly algorithm to report an erroneous contig.

36

(@) (b)

C
D D
E E
F F
D
| |
J J
L
L v M

© & —© © e—@®
D) D)
00 0090

Figure 14. Branch structure problem solved by edge adjustment.

In addition to false overlaps, missing overlaps also introduce structural defects into

the string graph, for example, the formation of a braid structure caused by sequencing

errors appearing in continuous reads (Figure 15(a)). In this instance, 2 missing overlaps

forbid the adjacent reads from being merged together; node B lost an overlap link to

node C, and node D lost an overlap link to node E (Figure 15(a)). Similar to the

chimerical link problem, it is challenging to use topological features of the graph to deal

with braid structures.

37

(a) (b)

Figure 15. Braid structure problem solved by edge adjustment.

3.2.1.2 Edge Adjustment Algorithm

The EA algorithm presented in this dissertation fixes structural defects in string

graphs. For a node n in the string graph G, the EA algorithm adjusts edges of n by

examining neighbors of # to decide whether each neighbor has sequencing errors or not.

Figure 16 shows the pseudocode of the EA algorithm in sequential versions. Figure 17

shows the pseudocode of the EA algorithm in the MapReduce version.

38

Require: overlap graph G = (N, E)

1: for all nodes n € N do

2: construct Position Weight Matrix (PWM) of the forward neighbors
3: ConsensusSequence € ComputeConsensusSequence (PWM)

4: if ConsensusSequence != & then

5: for all forward neighbors u € n.AdjacencyList do

6: if !consistent (u.sequence, ConsensusSequence) then
7: remove the edge between u and n

8: end if

9: end for

10: end if

11: construct Position Weight Matrix (PWM) of the reverse neighbors
12: ConsensusSequence € ComputeConsensusSequence (PWM)

13: if ConsensusSequence != @ then

14: for all reverse neighbors w € n.AdjacencyList do

15: if !consistent (w.sequence, ConsensusSequence) then
16: remove the edge between w and n

17: end if

18: end for

19: end if

20: end for

1: function ComputeConsensusSequenc (parameters: matrix)

2: ConsensusSequence € %)

3: for each column ci of matrix do // from i = 1 to matrix.length
4: if the ratio of letter ‘A’ in ci > 0.6 then

5: ConsensusSequence € ConsensusSequence + “A”

6: else if the ratio of letter ‘T’ in ci > 0.6 then

7: ConsensusSequence € ConsensusSequence + “T”

8: else if the ratio of letter 'C’ in ci > 0.6 then

9: ConsensusSequence € ConsensusSequence + “C”

10: else if the ratio of letter ‘G’ in ci > 0.6 then

11: ConsensusSequence € ConsensusSequence + “G”

12: else

13: ConsensusSequence € ConsensusSequence + “N”

14: end if

15: end for

16: if (N’s ratio in ConsensusSequence > 10%) then

17: return &

18: else

19: return ConsensusSequence

20: end function

Figure 16. The pseudocode of the EA algorithm in sequential versions.

39

o Uk W NN

o o Ul W N

\\¢]

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24 :
25:

class Mapper
method Map (nid n, node N)
Emit (nid n, NODE_MSG N) // Pass along graph structure
for all nodeid m € N.AdjacencylList do
Emit (nid m, NBR _MSG N) //Emit information to neighbor

end for

class Reducer
method Reduce (nid m, [MSG1l N1, MSG2 N2, ..])
M« D
for all MSGi Ni € [MSGl N1, MSG2 N2, ..] do
if IsNode (MSGi) then
M & Ni // Recover graph structure
else if IsForwardNeighbor (MSGi)
add Ni to Forward Position Weight Matrix (FPWM)
else if IsReverseNeighbor (MSGi)
add Ni to Reverse Position Weight Matrix (RPWM)
end if
end for
FCS €& ComputeConsensusSequence (FPWM)
for all forward neighbors u € M.AdjacencyList do
if u.sequence is not consistent with FCS then
remove u from M.AdjacencyList
end if
end for
RCS & ComputeConsensusSequence (RPWM)
for all reverse neighbors w € M.AdjacencyList do
if w.sequence is not consistent with RCS then
remove w from M.AdjacencyList
end if
end for

Emit (nid m; node M)

Figure 17. The pseudocode of the EA algorithm in the MapReduce version.

into 2 groups, i.e., forward neighbors and reverse neighbors. A forward neighbor of n

overlaps with the suffix n, while a reverse neighbor of n overlaps with the prefix n. To

construct node n’s position weight matrix (PWM) of its neighbors in 1 of the 2

Note that the NGS reads are of the same length. Thus, neighbors of » may be divided

40

directions, the reads of the neighbors to #n are aligned. Then, the subsequences of each
read ranging from the end of node 7 to the end of the second-last neighbor are used to
define PWM of n. A consensus sequence of neighbors can be obtained by computing the
PWM of the neighbors. PWM has 4 rows corresponding to A, T, C, and G, respectively.
An element of PWM in column i is the number of occurrences of f at position i, where
p € {A,T,C,G}. The consensus sequence of these subsequences may then be defined as

follows:

{ BIB.IS,>06 }
Consensus; = ,

'N'|VS3 /S, <0.6

(3.1)

where i represents the position in the consensus sequence corresponding to the column
position in PWM; g € {A,T,C,G}; f;is the number of occurrences of £ at position 7; and
S; 1s the sum of the occurrences of letters at position i. The letter “N” at position i of the
consensus sequence is used if for every letter in {A,T,C,G}, [,/S,<0.6. Note that, if
the percentage of “N” in the consensus sequence is greater than 10%, this consensus
sequence is rejected by the EA algorithm, and all neighbors in the specific direction are
retained. Otherwise, the consensus sequence is used to detect sequencing errors in each
neighbors n' of n by comparing the subsequence of n’ with the consensus sequence. The
edge (n, n') is removed if the subsequence of n' is found to be inconsistent with the

consensus sequence. Our approach defined that the subsequence of n'is consistent with

41

the consensus sequence if every character of the subsequence is equal to the character,

except character “N” on the consensus sequence at the same position. Note that for each

node of the string graph, the EA algorithm generates a consensus sequence for each

direction to perform the consistency check and to remove edges that are inconsistent

with the consensus sequence. In an illustration of an EA algorithm, read 1 has 3

neighboring reads: 2, 3, and 4 (Figure 18). The range of the PWM exists from the end of

read 1 to the end of read 3. Since read 2 has a character “A,” which is different from the

first character “T” of the consensus sequence (Figure 18), the edge between read 1 and

read 2 will be removed. Next, the following examples were used to illustrate the

reduction of structural defects in a string graph by using the EA algorithm.

Read 1 TCGGAATAGC
Read 2 GAATAGCAGAGTAGC

Read 3 AATAGCTGAATAGCTAG -~ weight
Read 4 ATAGCTGACTAGCTAGCC | Matrix
TGANTAGCTAG
N J
hd
Consensus
Sequence

Figure 18. lllustration of the position weight matrix.

One example each of a chimerical link problem, a branch structure problem, and a

braid problem, which were solved with the EA algorithm are displayed (Figures

13(b)-15(b)). To solve the chimerical link problem, the EA algorithm generates a

consensus sequence for read A (shown in red) from the neighboring reads B, C, and D

42

(Figure 13(b)). Since read C has 1 character that is different from the consensus
sequence, the overlap link between reads A and C will be removed. By contrast, the EA
algorithm generates a consensus sequence for read G (shown in green) from the
neighboring reads C, E, and F (Figure 13(b)). Thus, the overlap link between reads C
and G will be removed in a similar manner.

To solve the branch structure problem, the EA algorithm generates a consensus
sequence for read L from the neighboring reads D, I, and J (Figure 14(b)). Therefore,
read D differs from the consensus sequence, which is primarily represented by reads I
and J. The overlap link between reads D and L are removed.

To solve the braid structure problem, in which the errors in reads C and D complicate
the graph structure, the EA algorithm removes the overlap link between reads C and E,
and between reads B and D (Figure 15(b)). Thus, reads C and D are isolated from the

main graph, and no braid structure exists.

3.2.2 Correct Sequencing Error by Read Stack

Although the EA algorithm can reduce the effect of sequencing errors in string graph
assembly, there are some limitations of graph-based error correction. Some error
patterns and datasets may cause string graph construction to lack sufficient information
to create edges, such as low coverage region of data, or the error occurs in the prefix or

suffix region of reads. In these cases, using the error correction before creating the

43

graph is a better choice.

In the review of GAGE, the error-correction model of ALLPATHS-LG—-called a read

stack (RS) algorithm—showed a substantial improvement in sequencing assembly. To

explore the reason for its effectiveness, an overview of the RS algorithm is given in this

section.

The RS algorithm can be divided into 3 phases: (1) the recommendation phase, (2)

the correction phase, and (3) the screening phase. In the recommendation phase, a stack

of reads is built by aligning the same k-mer contained by those reads. Once the reads

stack is built, the column of reads stack is computed to give correction

recommendations. In the correction phase, it collects the information of correction

recommendation and makes decisions about which base should be corrected. In the

screening phase, reads that contain unique A-mers (after error correction) are discarded.

Two modules are used to build read stacks: PreCorrect and FindError. The

FindErrors module uses a contiguous k-mer, whereas PreCorrect uses a split k~-mer (a (k

+ 1)-mer with an unspecified central base). PreCorrect corrects only the central column

in the stack. It is run before FindErrors and can correct some errors not found by

FindErrors. Figure 19 illustrates the construction of FindError and PreCorrect. The

correction recommendation was created on the basis of frequencies and quality scores of

base calls in columns of the stack, such as the central column in PreCorrect and left and

44

right columns in FindError (Figure 19). For each column, the quality scores are summed

separately for each of the 4 potential calls. The base call with the highest quality score

sum is declared the winner. Any other base call with no more than 1 call of quality 20 or

more and quality score sum less than one-quarter that of the winner is declared a loser

call. If there is a winner call, a correction recommendation is issued for each of the loser

calls. The corrections are made only if all of the various correction recommendations for

the same base agree with each other. Note that there is one heuristic used in the RS

algorithm that makes it more accurate than other error-correction algorithms. Some base

locations are marked as “confirmation” if they belong to winner calls and other bases in

this column are loser calls. A confirmed base location will not be error-corrected even if

it is marked in another stack as in need of correction. This conservative mechanism is

designed to prevent false positives in the error correction that occur in repeat regions.

45

(a) PreCorrect (b) FindError

k+1 mer k mer
Ry [A R, _\
Ry ——— R, S ———
R Ry
R, R,
Rs Rs
Ry R,
R, R,
Rs = R, : !
R4 .:— R, E ' H E
Rs :'— Rs E _.
" _ S —
i1 central column -)
left columns right columns

Figure 19. lllustration of read stack construction.

The RS algorithm is useful for error correction. Unfortunately, the construction of
read stacks makes it very costly to apply to NGS data, and the execution time is usually
longer than whole assembly time. However, the construction of read stack is easy to be
paralleled. A MapReduce version of the RS algorithm as a preprocessor is provided in

Appendix D.

3.3 Results and Discussion
3.3.1 Analysis of Edge Adjustment

Simulated datasets generated from the E. coli genome were prepared to evaluate the
effectiveness of the EA algorithm. In other words, the position of each read on the target

genome and thus the positions of sequencing errors on the read are also present in the

46

dataset. The overlap graph of the dataset was subsequently constructed by creating a

node to present each read and an edge between each pair of reads if a node had a

sequence overlap with a size no smaller than an integer k. Two attributes are associated

with each edge of the overlap graph from the simulated data. In the first attribute, if the

positions of the 2 reads overlap with each other on the genome, then the overlapping

region is designated as a frue edge; otherwise, it is designated as a false edge. The

second attribute is used to denote whether any sequencing error exists on the 2 reads of

the edge. Therefore, it is now possible to classify edges of the overlap graph into 4

classes according to these 2 attributes. Class I denotes the subset of frue edges without

sequencing errors; class II denotes the subset of #rue edges with sequencing errors; class

IIT denotes the subset of false edges with sequencing errors; and class IV denotes the

subset of false edges without sequencing errors. It is noteworthy that class I edges are

most desired to improve the quality of data for subsequent stages of sequence assembly.

By contrast, class III edges are chimerical edges; class Il edges contain sequencing

errors; and class IV edges contain reads that intersect repeats. Edges of classes I, III,

and IV may introduce errors or structural defects into the latter stages of sequence

assembly. Therefore, it is the design goal of the EA algorithm to minimize the number

of class II, III, and IV edges and to maximize the number of class I edges.

To test the effectiveness of the EA algorithm, 4 sets of simulated data were generated.

47

In the first and second sets, 36-bp reads were generated at a constant coverage of 100x,

and single base errors were inserted at rates of 0.5% and 1%, respectively. In the third

and fourth sets, 150-bp reads were generated at a constant coverage of 200%, and single

base errors were inserted at rates of 0.5% and 1%, respectively. Table 4 shows the

number of edges of the overlap graphs before and after performing the EA algorithm.

Most of the edges removed by the EA algorithm were class II edges (i.e., possessing

sequencing errors). It was also observed that the EA algorithm was quite effective in

removing class III (chimerical) edges for the 2 150-bp datasets and satisfactory in

removing the class III edges for the 2 36-bp datasets. By contrast, only about 20% of the

class IV edges (i.e., those containing reads that intersect repeats) are removed by the EA

algorithm.

48

Table 4. Edge analysis of the overlap graph before and after edge adjustment

Simulated # of edges before # of edges after
Edge Type
E. coli Dataset Edge Adjustment Edge Adjustment
Class | 92829732 92754696 [99.92%]
100 x 36 bp
Class Il 14519426 322510 [2.22%]
0.5% error
Class llI 252762 118542 [46.90%]
dataset
Class IV 377856 294110 [77.84%]
Class | 76439532 76364264 [99.90%]
100 x 36 bp
Class Il 24836446 749900 [3.02%]
1% error
Class lll 358432 76162 [21.25%]
dataset
Class IV 132412 92834 [70.11%)]
Class | 115230002 115163888 [99.94%]
200 x 150 bp
Class Il 74214420 438274 [0.59%]
0.5% error
Class llI 1347100 51988 [3.86%]
dataset
Class IV 403836 322746 [79.92%]
Class | 32604042 32580388 [99.93%]
200 x 150 bp
Class Il 53758272 554020 [1.03%]
1% error
Class llI 1422472 57494 [4.04%]
dataset
Class IV 256952 225124 [87.61%]

A braid index was used to provide an approximate measure of the number of braid
structures in a set S of reads. To acquire the braid index, the overlap graph G°(S) of S
was constructed. Following this, a simplified string graph G*(S) of S was constructed.

This string graph was derived from G°(S) by removing contained reads, transitive edges,
49

and concatenating “one-in one-out” nodes. For each node v of G°(S), its neighborhood

was examined for a pair of vertices, u; and u,, and an additional vertex v’, such that the

following properties exist: (1) (u;, uy) is not an edge of G°(S); (2) u; and u, form a

consensus when both are aligned to v; (3) (v, v’) is not an edge of G°(S); and (4) v and v’

form a consensus when aligned to u; and u,. The braid index is then defined as the

number of tuples (v, v’, u;, u,) satisfying the aforementioned 4 properties. Table 5 shows

the braid indices of the simplified string graphs of the 4 datasets with and without the

application of the EA algorithm. It was observed that datasets with a larger sequencing

error have a larger braid index and may therefore possess more complicated braid

structures. By contrast, the EA algorithm has also been shown to be effective in

removing braid structures.

50

Table 5. Analysis of simplified string graphswith and without edge adjustment

Without With
Simulated data Graph feature
edge adjustment edge adjustment
100 x 36 bp # of node 2502312 1572470
0.5% error # of edge 2220162 26079
dataset braid index 342736 750
100 x 36 bp # of node 4418943 2964253
1% error # of edge 4051264 46649
dataset braid index 873835 802
200 x 150 bp # of node 3839687 2680727
0.5% error # of edge 6618017 7739
dataset braid index 1750824 242
200 x 150 bp # of node 5085964 4245557
1% error # of edge 8501560 16767
dataset braid index 2350695 413

3.3.2 Evaluation of Assembly Accuracy

Hypothetically, a perfect assembly result produces nothing but subsquences of the
reference sequences. In particular, rearrangements do not exist in any contig. To
distinguish superior assembly results from those containing collapsed repetitive regions
or rearrangements, a strict measurement scheme known as precision and recall was
designed. The precision and recall scheme focuses on the quality of the contigs. A

contig must be aligned along its whole length with a base similarity of at least 95% in

51

order to be considered valid. The union of all the valid contig areas in the references

was treated as a true positive, and the recall was defined using the following formula:

number of true positive bases in reference
Recall =

total length of reference sequence

(3.2)

Similarly, the union of all the valid contigs areas on the side of contigs was treated as

a true positive in contigs, and precision was defined using the following formula:

number of true positive bases in contigs

Precision = :
total length of contigs

(3.3)

Importantly, only contigs with length > 200 bp were evaluated.

Three real and 2 simulated datasets were used to test CloudBrush and the other

assemblers. The first real dataset was a set of short-read data from an E. coli library

(NCBI Short Read Archive, accession no. SRX000429) consisting of 20.8 million 36-bp

reads. The second real dataset was released by Illumina, which included 12 million

paired-end 150-bp reads. This dataset contains sequences from a well-characterized E.

coli strain, the K-12 MG1655 library, sequenced on an Illumina MiSeq platform. For the

2 real datasets, the first half of reads were used to evaluate assemblers, and their

coverage was 81x and 197x, respectively. The 36-bp and 150-bp datasets were denoted

by DI and D2, respectively. Furthermore, Caenorhabditis elegans sequence reads

(strain N2) were downloaded from the NCBI SRA (accession no. SRX026594). This

52

comprised the D3 dataset and consisted of 33.8 M read pairs sequenced using the

[llumina Genome Analyzer II and a constant coverage of 67x. The 2 simulated datasets

were generated at random from the E. coli K-12 genome using 36-bp reads with 100x

coverage and 1% mismatch errors, and 100-bp reads with 200x coverage and 1%

mismatch errors.

Assembly was performed on these datasets using Edena [12], Velvet [4], Contrail [10],

and CloudBrush assemblers. Edena was the first string graph-based assembler for data

of short reads. Velvet was one of the first de Bruijn graph-based assemblers for short

reads, and it is often used as a standard tool for assembling small- to medium-sized

genomes. Contrail is the first de Bruijn graph-based assembler to use the MapReduce

framework. Each assembler is required to set the parameter £, i.e., the minimum length

of overlap for 2 contigs to form a longer contig. Considering the relationship between

parameter £ and coverage [20], the following were used: £ =21 on dataset D1 and 100x

simulated data, k= 75 on dataset D2 and 200x simulated data, and k= 51 on dataset D3.

Importantly, pair-end information was not used in this experiment.

Figure 20 shows the precision and recall of contigs with different length thresholds

on the 2 simulated datasets of E. coli genome with a 1% error rate and datasets D1 and

D2. CloudBrush was observed to outperform the other assemblers for the 2 simulated

datasets; the other assemblers generated more mis-assembly contigs when reads become

53

longer from 36 bp to 150 bp (Figures 20(a) and 20(b)). For the D1 and D2 datasets,

CloudBrush had a similar performance for precision and recall, leading the other

assemblers (Figures 20(c) and 20(d)). Longer reads and a larger error rate may generate

more complex structure defects. CloudBrush may have a greater ability to handle

complicated graph structures by using the EA algorithm.

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

120.00%

100.00%

80.00%

60.00%

40.00%

20.00%

0.00%

(a) 100x36bp 1% error simulated data

>200

(=] (=1 [=] (=1 (=1 f=]
(=] (=1 (=] (=1 (=1 (=
(= (=1 (= (=1 (=1 o
wn (=3 (=] (=] o -
~ = %] & - A
A A A A A

(c) D1 dataset (E. coli)

o o0 2 0 2o 9o 9 9
S O 0 8 6 ¢ 8 6 8 © 6 o
Q9 Q@ O @ O @ @ Q QO O v N
S O W 8 W O bW o W — A A
W oT MM NN~ = A A

AN A AN A A A A

—#— CloudBrush
Precision
—&— CloudBrush
Recall
Contrail
Precision
Contrail
Recall
—¥— Velvet
Precision
—e— \elevt
Recall
—+— Edena
Precision
Edena
Recall

—— CloudBrush
Precision
—=— CloudBrush
Recall
Contrail
Precision
Contrail
Recall
—¥— Velvet
Precision
—o—Velvet
Recall
—+— Edena
Precision
Edena
Recall

Figure 20. The variation of precison and
length on smulated data and datasets D1 and D2.

120.00%
100.00%
80.00%
60.00%
40.00%
20.00%

0.00%

120.00%
100.00%
80.00%
60.00%
40.00%
20.00%

0.00%

recall

(b) 200x150bp 1% error simulated data

*

>250000
>150000 ¥
>100000 ¥
>50000 7
>35000
>25000 |
15000 |

(d) D2 dataset (E

=>5000

. coli)

>500

¥

>150000 1

>100000
>50000
>35000
>25000
>15000

>5000

>500

—&— CloudBrush
Precision
—#— CloudBrush
Recall
Contrail
Precision
—>— Contrail
Recall
—¥— Velvet
Precision
—e— \elvet
Recall

—=#— CloudBrush
Precision
—=— CloudBrush
Recall
Contrail
Precision
—»— Contrall
Recall
—¥— Velvet
Precision
—8— Velvet
Recall

with different lower bounds of

A number of different evaluation criteria (summarized in Tables 6 and 7) were

considered. It is noteworthy that CloudBrush and Contrail ran on a cluster with 150

nodes each having 2 core CPU and 4 GB of RAM; while Edena and Velvet ran on a

single machine with 16 core CPU and 128 GB of RAM. Besides, Edena failed to work

54

on datasets D2 and D3 in longer read data; therefore, no results were generated.

Furthermore, precision and recall had to be computed by parsing the result of

MegaBLAST [21].

Table 6. Evaluation of assemblies of the simulated dataset (100x%, 36 bp, 1% error)
and dataset D1 with CloudBrush, Contrail, Velvet, and Edena

Largest
of # of valid # of invalid Runtime
Dataset = Assembler . N50 contig Precision Recall . .
contigs contigs contigs (s)
size
CloudBrush 447 17907 95387 99.79% 97.51% 420 27 6218
100x%, 36
Contrail 906 8982 40066 99.72% 96.76% 858 48 5499
bp,
Velvet 507 15632 100501 99.68% 96.95% 498 9 590
1% error
Edena 4012 1436 11264 98.84% 91.85% 3868 144 2524
CloudBrush 521 15149 66832 99.26% 97.10% 481 40 5555
Contrail 930 8605 40066 99.73% 96.81% 886 44 4789
D1 dataset
Velvet 505 15862 73042 99.62% 96.90% 494 11 452
Edena 889 9045 44942 99.18% 96.34% 823 66 1401

! Contigs with lengths >200 bp are counted.

55

Table 7. Evaluation of assemblies of the simulated dataset (200x 150 bp, 1% error)
and datasets D2 and D3 with CloudBrush, Contrail, and Velvet

Largest # of valid
of Prec] # of invalid Runtime
Dataset Assembler . N50 contig Recall contigs .
contigs -ision contigs (s)
size
CloudBrush 229 112531 327245 99.20% 96.00% 152 77 10616
200x%, 150
Contrail 2540 7554 36335 90.12% 95.92% 957 1583 15823
bp, 1% error
Velvet 209 78642 327101 99.63% 98.10% 168 41 1317
CloudBrush 361 52961 156592 98.10% 98.15% 230 131 8622
D2
Contrail 300 43609 124089 98.47% 96.98% 250 50 7200
dataset
Velvet 189 71764 174184 93.60% 92.20% 164 25 927
CloudBrush 37064 8880 114585 93.65% 92.41% 24603 10387 48603
D3
Contrail 31870 8274 105244 96.99% 90.89% 25236 6116 44619
dataset

Velvet 23565 10847 106863 95.55% 89.01% 20187 2838 13963

! Contigs with lengths > 200 bp are counted.

56

Chapter 4
4. De Novo Assembly of Transcriptome Data

4.1 Introduction

Recently, research on de novo assembly has focused on both error removal and repeat
resolution for genomic sequences, whereas only a few studies shed light on de novo
transcriptome assembly [21, 26, 43]. However, de novo transcriptome assembly offers a
unique opportunity to study the metabolic states of organisms [21] and provides an
alternative path to study non-model organisms [5], and thus, it is a desirable and
challenging approach. The main difference between genome assembly and
transcriptome assembly is the variation in coverage. For example, in a genome
assembly project, short reads are randomly sampled from a genome, and thus, the
coverage is anticipated to be uniformly distributed on the genome. On the other hand,
the distribution of short reads in a transcriptome analysis project is highly dependent on
gene expression levels, and the abundance of expressed genes exhibit a power-law
distribution [56]. While the coverage is related to the key parameter & (or k-mer size) for
de Bruijn graph approaches [55] or minimum overlap size for string graph approaches,
it seems that a single run of an assembly program would not be sufficient for de novo
transcriptome sequencing data. In this chapter, the relationships between sequencing

error rate, coverage, and parameter & (minimal overlap size) have been studied using
57

simulated data. Accordingly, a transcriptome assembly procedure for de novo assembly
of whole-transcriptome sequencing data is proposed. The primary innovation outlined in
this chapter is to utilize the relationship between minimal overlap size and the coverage
of sequence data. The performance and practicability of the proposed procedure is

demonstrated by using a simulated transcriptome dataset of mice.

4.2 Results
4.2.1 On the Relationship Between Coverage and Optimum k

For genome assembly projects, it has been shown that the parameter k& of de Bruijn
graph approaches affects assembly results and is related to coverage [55]. Because the
coverage of transcripts is correlated with expression levels and is thus varied, it is
necessary to study the relationship between coverage and ks that optimize assembly. To
do this, an experiment on 2 synthetic transcriptome datasets of mice was conducted, one
of which was error-free and the other, with a sequencing error rate ~0.3%. The synthetic
dataset of 80 million pair-ended 36-bp reads was randomly sampled from 26,332
transcripts of mice collected from the NCBI RefSeq database [39]. To mimic the varied
coverage of transcriptome shotgun sequencing data, the number of reads of each
transcript was proportional to the number of expressed sequence tags (ESTs) multiplied
by the length of the transcript, where the EST numbers were computed according to the

NCBI dbEST database. Most transcripts have low coverage, and the variation of

58

coverage is large, extending from 1 to 4,266 (see Figure 21). Moreover, the distribution

of the coverage is a power-law distribution and is similar to the experimental data of the

whole transcriptome shotgun sequencing for HelLa [45]. Each transcript was separately

assembled by Velvet with different parameter ks, and a k value was classified as

optimum for a transcript if the transcript could be consistently aligned with 95% or

more of the contig length [23]. Figures 22a and 22b show the relationship between the

optimum k& and coverage for the error-free dataset and the dataset with an error-rate of

~0.3%, respectively. Here, a red-green heat map is used to indicate the degree of

optimization: a green cell represents a higher ratio of transcripts that are assembled well

(achieving 95% consistent alignment with contig lengths), and a red cell represents a

lower ratio of these transcripts. From these figures, 2 phenomena were observed. First,

the upper left corners of Figures 22a and 22b are red, which means that optimum ks of

transcripts with lower coverage are distributed on smaller values. In contrast, the lower

right corner of Figure 22b is red, which implies that the optimum s of transcripts with

higher coverage are distributed on larger values when there is a sequencing error rate.

59

2000-5000
1000-2000
501-1000
201-500
101-200
51-100
31-50
21-30
11-20
6-10

1-5

coverage dept

[=)

2000 4000 6000 8000 10000 12000
number of transcripts

Figure 21. Histogram of the coverage (expression levels) of the 26,332 transcripts
of mice.

Since the meaning of & can be treated as the minimum length of overlap for 2 short
reads to form a longer contig, the lower coverage implies less chance to have an overlap
longer than or equal to &. This, in turn, implies shorter contigs, and furthermore explains
why a smaller k£ is more suitable for transcripts with lower coverage. The
Lander-Waterman model [33] explains this first phenomenon. In this model, the
expected number of contigs in a genome assembly project is (c*G/L)e “KLk \where G
is the genome length; L is the read length; C is the coverage; and K is the minimum
length required for the detection of an overlap. Taking every transcript to be the genome
in the Lander-Waterman model, this formula was then used to estimate the relationship
between optimum ks and coverage, where a k value was classified as optimum for a
transcript if the expected number of contigs is less than or equal to 1. Figure 22c¢
summarizes the relationship between optimum ks and coverage. As can be seen, the

results shown in Figure 22¢ are similar to the results shown in Figures 22a and 22c.

60

error rate 0% Il- error rate ~0.3%

k-mer

d 33 3 ¥ 3 8B 5 8 8 g g ¢ 3 2 5 ¥ 3 BB G OE G g 3
= 2 8 b 5 2 = & 8 5 ?
coverage dap’i‘h ﬁ g g E coverage da|;h ﬁ E g E

c, Lander-Watermen Model

- 4
0

o8
o
a

h
2

65-128

&
&

257-512
513-1024

1025-2048

2048-4096
4097-8192

=

coverage deplr

Figure 22. The relationship between optimum k and coverage. Green cells
represent high ratios indicating high completeness of transcripts. Red cells
represent low ratiosindicating low completeness of transcripts.

For the second phenomena, it was thought that sequencing errors would result in
structural defects in the underlying de Bruijn graphs. Although de Bruijn graph
approaches have been designed to handle most of such undesirable cases, the
sequencing error rate times and higher coverage mean more error-called bases, which

implies more chances to produce structural defects that would not be resolved. In

61

addition, a smaller k£ would give more chances to produce structural defects than would
a larger k. Thus, using a larger k£ to assemble very high coverage data is a practical

approach when there is a sequencing error rate.

4.2.2 The Effect of Sequencing Error Rate

Because a sequencing error rate of 0.3% is commonly seen in the control lane of the
[llumina Solexa sequencer [20], it is possible that the sequencing error rate might
increase for non-control lanes. To see the crosstalks among coverage, sequencing error
rate, and optimum k, mouse transcripts were arbitrarily picked to generate simulated
datasets with coverage 2x, 4%, 8x, 16x%, ... till 16384x. In addition, errors were
simulated with average rates of 0%, 0.3%, 0.6%, 0.9%, ... till 2.4% for every coverage.
Error rates that were slightly increased from start to end in reads were applied. For the
average error rate of 0.3%, the error rate at the first nucleotide is 0.2%. This increases
0.005% for every subsequent nucleotide. Similarly, for average error rates 0.6%,
0.9%, ... till 2.4%, the error rates start with 0.5%, 0.8%, ..., and 2.3%, respectively.
Figure 23 shows results of 1 simulated transcript, which demonstrate a consistent trend
with Figure 22b. With the increased error rate, the range of optimum ks of each
coverage narrows, and a positive correlation between coverage and optimum ks
becomes noticeable. It should be noticed that for all datasets with sequencing errors, no

k remains optimal for most tested coverage.

62

eror rate 0% error rate ~0.3% emor rate ~0.6%

40 40 40
35 35 8 ‘ 35 t‘ +*
: - 3 - i
. 25 . 25 z % . 26 ‘
£ E 20 E 20 i
= 15 g ““ 15 z il] ,
10 10 10
[5 5
0 0 0
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
coverage depth coverage depth coverage depth
emor rate ~0.9% error rate ~1.2% emor rate ~1.5%
40 40 40
s * 35 e a5 e
: l;;" : D : i
. 25 25 . 25
o o L g
E 20 ; E 20 g ; E 20 ;
“ s = 15 & 3 15 *
10 10 10
[5 5
o 0 0
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
cowerage depth cowerage depth coverage depth
error rate ~1.8% error rate ~2.1% ermor rate ~2.4%
4 40 40

35

: L e || = T
i iii‘ . 2 Jdi : 1

B
= E 20 * !
15 = 15 15
10 10 10
5 5 5
[0 [
1 10 100 1000 10000 100000 1 10 100 1000 10000 100000 1 10 100 1000 10000 100000
coverage depth coverage depth coverage depth

Figure 23. The relationship between optimum ks and coverage for one
transcriptome sequence for different error rates.

4.2.3 T-CloudBrush: Multiple Overlap Size of CloudBrush
Choosing an appropriate parameter k for de Bruijn graph approaches is a practical
issue for short-read sequence data. From the above experiments, it can be seen that
coverage affects the distribution of optimum ks, and that no & is optimal for all coverage
if there are sequencing errors. Thus, the issue of choosing k& becomes tricky, especially
for de novo transcriptome assembly, where data of different coverage are mixed in 1
sample. However, utilizing the correlation between coverage and optimum ks, it is
possible to merge the results of different parameter ks together and produce a more

accurate assembly of transcriptome sequencing data. Similarly, the same benefit also

63

appears in the string graph approach.

To this end, T-CloudBrush is proposed, which integrates existing assembly programs
to deal with the varying coverage of transcriptome shotgun sequencing data. The
T-CloudBrush procedure is based on 2 observations: (1) A larger overlap size (k) is
suitable for higher coverage data, while a smaller overlap size (k) is suitable for lower
coverage data, and (2) the assembly result of an optimum overlap size is similar to that

of an adjacent optimum overlap size across a range of coverage. Figure 24 gives an

overview of the T-CloudBrush procedure.

Input.fasta

Overlap Graph
Construction

Overlap Size
Filter

HE overlap graph

Graph
Simplification

de Bruijn Graph
Construction

de Bruijn Graph

Simplification

Figure 24. Overview of T-CloudBrush procedure.

The T-CloudBrush procedure contains 2 stages. For the initial stage, reads were

64

assembled using the string graph approach. In a string graph approach, an overlap size
filter was added between graph construction and graph simplification. Using this
mechanism, it is possible to easily construct the assembled result with different overlap
sizes without reconstructing the overlap graph. Since the coverage affects the selection
of the parameter & (minimal overlap size), all applicable ks were applied to assemble
reads. Twenty-one was selected as the smallest k£ and nine-tenths of read length as the
upper-bound of k. Then, different assembled results were obtained for the same input
dataset. Due to the variation of coverage and applying multiple ks, some results have
better performance for transcripts of higher coverage, while others are suitable for
transcripts of lower coverage. For the second stage, the de Bruijn graph approach was
used to assemble those results again using larger k (larger than read length). This was
done in order to join them together, because there could be duplications and overlaps
between results with different ks. Using the de Bruijn graph approach as a merge tool
can ensure duplicated contigs are merged together. Note that using k larger than read

length can maintain the read coherency in a de Bruijn graph [52].

4.2.4 Comparing T-CloudBrush with Existing Tools

To evaluate the performance of T-CloudBrush, the simulated dataset of the entire
mouse transcriptome with a sequencing error rate of 0.3% as a benchmark was used. In

the experiment, all £s in CloudBrush were compared with T-CloudBrush. Table 8 shows

65

the results on the simulated data obtained from CloudBrush with k£ ranging from 21 to

31, and the results obtained from T-CloudBrush. T-CloudBrush achieved the best

precision and recall measurement. Compared with CloudBrush, T-CloudBrush

improved both precision and recall, reduced the number of contigs (longer than or equal

to 200 bps) from 29,569 to 28,888, and extended the average size of contigs from

1349.08 to 1502.84. This shows that T-CloudBrush filled many of the gaps between

highly fragmented contigs. Furthermore, the precision rate was greater than 90%, which

implies that the quality of resulting contigs is reliable.

T-CloudBrush was also compared with Trinity, a state-of-the-art transcriptome

assembler. Figure 25 shows the precision and recall of contigs with different thresholds

of lengths on simulated mouse data using T-CloudBrush and Trinity. From this figure, it

can be seen that T-CloudBrush outperformed Trinity on this dataset.

66

Table 8. Evaluation for assemblies of ssmulated mouse data with T-CloudBrush as
compared to CloudBrush using different k-mer

k-mer parameter 21 23 25 27 29 31 T-CloudBrush
Precision 93.43% 92.17% 92.23% 91.99% 91.86% 89.02% 93.15%
Recall 20.10% 60.32% 58.18% 55.13% 50.29% 42.22% 61.88%

of contigs 2200 bp 31163 30115 29569 30190 30981 29300 28888

mean size (bp) 1403.89 1399.1 1349.08 1217.17 1025.34 787.6 1502.84

largest contig 86226 81929 81929 81794 47318 15910 81751
120.00%
100.00%
—— T-CloudBrush
80.00% Precision
—=— T-CloudBrush
60.00% Recall
—&— Trinity
40.00% Precision
TR —*— Trinity
Recall

20.00%

0.00%

>50000
>35000
>25000
>15000
>5000
>500

o
=)
o
o
o
-
A

Figure 25. The variation of precision and recall with different lower bounds of
length on smulated mouse data using T-CloudBrush and Trinity.

4.3 Discussion

In these experiments, it was found that the optimal overlap size of graph-based

assemblers is positively correlated with the coverage of the sequence data. This

phenomenon occurs because lengths of overlap between reads are highly dependent on

67

the coverage and error rate. The lower the coverage, the lower the probability of having

a longer overlap between reads. Thus, selecting a shorter minimum overlap as a

criterion for assembling reads is appropriate for low coverage data. On the other hand,

the higher coverage may amplify the occurrence of sequencing errors in reads.

Therefore, selecting a longer minimum overlap as a criterion for assembling reads

should filter out the noise for high coverage data.

As for transcriptome sequencing data, coverage is associated with expression levels.

Because the expression levels exhibit a power-law distribution, choosing an appropriate

overlap size for graph-based assemblers becomes a problematic issue. However, these

problems can be solved by taking all of the possible overlap sizes into account. These

experiments show that by merging the results of different overlap sizes obtained by

graph-based assemblers, better performance for de novo transcriptome assembly is

obtained.

68

5. Conclusion and Future Research

De novo assembly remains the greatest challenge for DNA sequencing, and there are
specific problems for NGS, which produces high-coverage sequencing data. The
problems include (1) large volumes of data, (2) sequencing error, (3) repeats, and (4)
non-uniform coverage. This dissertation provides a possible solution for the
abovementioned problems.

Regarding large volumes of data, a distributed assembly program based on string
graphs and the MapReduce cloud computing framework is implemented. The method
was evaluated against the GAGE benchmarks set by Salzberg et al [27] to compare its
assembly quality with other de novo assembly tools. The results show that the proposed
assemblies have moderate N50 and a low misassembly rate of misjoints and indels.

As for sequencing errors, the structure of string graphs in the context of
high-coverage sequencing data was analyzed. Preliminary studies show that the
underlying string graph used to model the intersection of reads in high-coverage data
becomes too complicated for previously described assembly algorithms to handle. Thus,
several types of structural defects were identified in the string graph approach. The
proposed algorithms could detect the structural defects by examining neighboring reads
of a specific read for sequencing errors and to adjust edges of the string graph if

necessary.
69

To solve the non-uniform coverage problem, the relationships between read overlap
size, coverage, and error rate were studied using simulated data. Based on these
discovered relationships, a de novo transcriptome assembly procedure was developed,
and its performance was demonstrated on a simulated dataset of mice.

The next target is to incorporate the scaffolding issue and mate-pair analysis into the

MapReduce pipeline in order to resolve the repeat problem.

70

Appendix A: List of Publications

Journal Publications

Yu-Jung Chang, Chien-Chih Chen, Chuen-Liang Chen and Jan-Ming Ho, "A De Novo
Next Generation Genomic Sequence Assembler Based on String Graph and MapReduce
Cloud Computing Framework," BMC Genomics (2012) Volume 13 Supplement 7, S28.
(Chang and Chen contributed equally to this paper)

Chien-Chih Chen, Kai-Hsiang Yang, Chuen-Liang Chen and Jan-Ming Ho, "BibPro: A

Citation Parser Based on Sequence Alignment," IEEE Transactions on Knowledge and

Data Engineering, volume 24, number 2, pages 236-250, January 2012.

Chien-Chih Chen, Wen-Dar Lin, Yu-Jung Chang, Chuen-Liang Chen, and Jan Ming

Ho, "Enhancing de novo transcriptome assembly by incorporating multiple overlap

sizes," ISRN Bioinformatics, 2012. (Chen and Lin contributed equally to this paper)

Conference Papers

Yu-Jung Chang, Chien-Chih Chen, Chuen-Liang Chen, and Jan-Ming Ho, "De Novo
Assembly of High-Throughput Sequencing Data with Cloud Computing and New

Operations on String Graphs," Proceedings 5th International Conference on Cloud
Computing, [IEEE CLOUD 2012, IEEE Hawaii, USA. (Chang and Chen contributed
equally to this paper)

Yu-Jung Chang, Chien-Chih Chen, Chuen-Liang Chen and Jan-Ming Ho, "CloudBrush:
A String Graph Approach of De Novo Assembly for High-Throughput Sequencing Data

with Cloud Computing," Proceedings the 10th Asia Pacific Bioinformatics Conference,

pages 1, IEEE, Melbourne Australia.

Chien-Chih Chen, Kai-Hsiang Yang and Jan-Ming Ho, "BibPro: A Citation Parser
Based on Sequence Alignment Techniques," the IEEE 22nd International Conference on
Advanced Information Networking and Applications (AINA), March 2008.

71

Appendix B: CloudBrush Manual

Introduction

CloudBrush is a de novo genome assembler based on the string graph and MapReduce

framework.

System requirement

To use CloudBrush on a private Hadoop cluster, CloudBrush should be installed on the

namenode machine of the working Hadoop cluster.

Installation

Download CloudBrush.jar

> wget http://cloudbrush.iis.sinica.edu.tw/download/CloudBrush.jar

Usage:

The first step is converting .fasta file into .sfq file. (e.g. E_coli.fastq as input file)

e.g.
> wget http://cloudbrush.iis.sinica.edu.tw/download/Fastq2Sfq.class
> java Fastq2Sfq E _coli.fastq E_coli.sfq

The second step is uploading data into hdfs.

e.g.
hadoop fs —put E_coli.sfq input

72

After the upload is finished, start CloudBrush by executing:

hadoop jar CloudBrush.jar [-asm dir] [-reads dir] [-readlen readlen] [-k k] [options]

e.g.
> hadoop jar CloudBrush.jar —reads input —asm out —k 21 —readlen 36

Download the results from hdfs:

e.g.
> hadoop fs —cat output/* > result.fasta

The following table describes all the properties of a CloudBrush configuration in detail:

General Options:

Parameter Description Required Default
-asm <asmdir> output directory yes -
-reads <readsdir> input directory yes -
-readlen <bp> read length yes -
-k <bp> minimun overlap size yes -

to build overlap graph

(half of read length is a

possible choice)
-kmercov average coverage of no 30
<coverage> k-mer (used to

determine unique node

and repeat node)
-slots <slots> Hadoop slots to use no 50

73

Advanced Options:

-kmerup <coverage> threshold to build
overlap graph
(prevents node from
having too many
degrees)

-kmerlow <coveage> threshold to build
overlap graph
(prevents chimerical
edge in the beginning)

-maj <ratio> majority of position
weight matrix
-N <ratio> ratio of N character in

consensus sequence

-tiplen <len> threshold to detect tip
structure
-bubblelen <len> threshold to detect

bubble structure (max
bubble length)

-bubbleerrate <len> threshold to detect
bubble structure (max
bubble error rate)

-lowcov <coverage> threshold to detect low
coverage node
(coverage of node)

-lowcovlen <len> threshold to detect low
coverage node (node
length)

74

no

no

no

no

no

no

no

no

no

200

0.6f

0.1f

10*readlen

4*readlen-2*k-1

0.05f

2*readlen

Appendix C: CloudBrush Web Demo User
Guide

Building a Hadoop cluster to run a distributed NGS analysis program, like
CloudBrush, is usually not a trivial work for biologist. To demonstrate the performance
of CloudBrush, we build a web demo site that provide a graphical user interface to
execute CloudBrush. The web demo site is http://cloudbrush.iis.sinica.edu.tw:8082.

Figure A1 shows the main interface, which is structured as follows: the toolbar on the
top shows the buttons of Run Job and Upload. The upper panel displays all executed

jobs, and the lower panel shows job details like the execution time, result files,

parameters, and status of the currently selected job.

Web Demo of CloudBrush
0.0 © @
Uplogd Data Run Jok My Cluster Help Info
Job Mame Progress Execution Time
& readstackcorrector-20121227-225348 7 min 32 sec ”~
.Jf readstackcorrector-20121227-221 337 7 min 33 sec
.\5_5\ readstackcorrector-20121227-173947 7 min 34 sec
& readstackcorrector-20121227-171801 7 min 35 sec
(‘ﬁ impott-local-20121227 171711 0zec
3 cloudbrush2-20121124-132833 4h 13 min 11 sec
= »
£ | >

Please click on a job above to see mare details.

Pewered By clovdgens | CloudBrush Website | Contact

FigureAl. Themain interface.

75

Upload Data

First, you need to upload your input files (fastq format) into the HDFS Filesystem on
your cluster. This can be done by clicking on the Upload Data button, whereby the
source of your data has to be selected (see Figure A2). The input of CloudBrush or
ReadStackCorrector is a HDFS directory; thus, you can upload multiple files in the

same directory. Note that each read must have a unique name in a fastq file, and each

file must be less than 200 MB.

HploRE bt e ‘eb Demo of CloudBrush

@

My Cluster Help Info

Upload Data
File: Upload

)

Upload Data Run Jok

Enter a folder name and upload a file.

Exgeution Time:

Joby Mame
readstackcorrector-20121 227225348 7 min 32 sec 25
| readstackcorrector-20121227-221 337 Folder Marme: E cal 7 min 33 sec
\ reasdstackcorrector-20121227-173947 - 7 min 34 sec
readstackoorrector-20121 227171901 File Upload 7 min 35 sec
) import-iocal-201 21227171711 Filerame: Upload a fastq fie., |W Wi
\ cloudbrush2-200 21124-1 32833 Please upload a tasty file (= 200 MB). 4 h13min 11 sec P

Please click on a job above to see more

Cancel

Powatred by clowdgene | Cloudbrush Weksite | Contact

FigureA2. Theupload interface.

Run Job

After the upload is finished, a job can be submitted by clicking on the button Run Job.

There are 3 types of jobs that can be executed, as shown in Figure A3.

76

Web Demo of CloudBrush

(B
Run Job ™, @ 0
Upload Data Run Job Select an Application, b My Cluster Help Info
doby Mame Execiution Time
] cloudbrush-20121229-142107 Choze the application you want to execute: 3h 28 min 15 sec ~
* import-local-20121229-142000 4 =5 Applications 14 sec
5 import-iocel-20121220-141 808 {3 Genetics 15 sen
=] CloudBrush o
i il sl AR R =] CloucBrush (ReadStackCorrector+CloudBrush) R z
=] ReadStackCarrectar
~
Results
Contig
Summary
Cancel
D 51000 | [e— [¥
Fowerad by cloudgene | CleudBrush Weabsite | Contact

FigureA3. Thejob selection interface.
[1] ReadStackCorrector

ReadStackCorrector is an error correction tool. It can be used as a preprocessor of
CloudBrush. To execute ReadStackCorrector, you should specify the input directory
(browse from HDFS) as shown in Figure A4. Then, the job can be submitted by clicking
on the button Finish. Once the job is finished, the resultant file can be downloaded
directly via the web interface (see Figure AS5). Note that the output of
ReadStackCorrector can be used as the input of CloudBrush, which is under the folder

/My wor kspace/output/{Default Job Name}/output/.

77

L

Uplogd Cata Run Jok

Run Job

4 _t.‘f

Job Mame

readstackeorrectar- 20121 227-22534
readstackoorrector-201 21 227-221 33
readstackoorrector-20121227-17394
readstackeortector-20121227-171490
import-local-20121227-171711

cloudbrush2-201 211 24-1 32833

Flease click on a job above to see

General

Job-Marne: readstackcorrector-20121228-174740

Input Parameters

Reads:

Browese

hadoop node: 10

= Back

FigureA4. Theinterface of ReadSackCorrector.

Powered by cloudasne | Cloudbrush Website | Contact

b Demo of «

My Cluster Help Info

Execution Time
7 min 32 sec
7 min 33 sec
7 min 34 sec
7 min 35 sec

Osec

4h 13 min 11 sec

Uploa

2o000@0

0.0

d Data Run Job
Joh Mame
readstackoorrector-201 21237225348
readstackoorrector-20121227-221 337
readstackoorrector-20121 227173347
readstackoorrector-20121227-171901
import-local-20121 227171711

cloudbrush2-20121124-132333

Results

Progress

Corrected Reads fasta format

Corrected Reads sfa format

Arguments

output_file.fasta (5 MB)

output fasta (212 KB)

© e
My Cluster Help Info
Execution Time
7 min 32 sec G
7 min 33 sec
7 min 34 sec
7 min 35 sec n
0=zec
4h13min 11 sec
-
3 2
e
%

Figure AS. Theresult of ReadStackCorrector.

[2]

CloudBrush

Fowered by cloudgenes | CloudBrush Wekbsite | Contact

CloudBrush is the core program of sequence assembly. To execute CloudBrush, the

input directory (uploaded in the upload data step or the output directory of

ReadSackCorrector) and the program-specific parameters should be specified, after

78

which the job can be submitted by clicking on the button Finish (see Figure A6). Once

the job is finished, the result file can be downloaded directly via the web interface (see

Figure A7).

Run Job
Run Jobh
Set all par
Upload Data Run Jok iy Cluster Help Info
Jok Mame General Execution Time
rearistackeorrector-20121227-22534 Job-Name: cloudbrush-20121228-175058 7 min 32 sec A
readstackoorrector-20121227-221 33’ 7 min 33 sec
ressistackeomector- 20 12271 7age | Pt Parameters 7 in 34 ses
reatistackeortector-20121 227-1 7190 Reads: Bross: 7 min 35 zec
importlncal- 201212274 71 711 length of reads: 101 0 sec
cloudbrush2-20121124-132833 overlap size: 25 4 h 13 min 11 sec -
Fa | hadoop node: 10 ¥
Results =
Corrected Reads fasta iori
Corrected Reads sfa formi
Arguments —— .j&l | 2
Fowered by cloucgens | Cloudbrush Website | Contact

Figure A6. Theinterface of CloudBrush.

» Demo of
Upload Data Run Job My Cluster Help Info
Jok Mame Progress Execution Time
) cloudarush-20121229-142107 3h28min 15 sec 4y
@ import-local-20121229-142000 14 ser i 1
@ import-local-20121229-141808 15 zec
@ import-local-20121229-141811 15 zec uc]
L] %
-~
Results g
Contig output fasta (4 MB)
SHmmary, Summary
NS0 (bp)
0 10,000 20,000 30,000 40,000 50,000 &0,000 70,00
>50000 -
>40000
&= >35000
o >30000
£ >25000
o >20000
o >15000
N> 10000
v »5000
2 »1000 v
Fowered By cloudgene | Cloudbrush Website | Contact

FigureA7. Theresults page of CloudBrush.

79

[3] CloudBrush2 (ReadStackCorrector + CloudBrush)

Cloudbrush2 is a pipeline to concatenate ReadStackCorrector and CloudBrush. To
execute this pipeline, the input directory and the program-specific parameters should be

specified, which is similar to the operation of CloudBrush.

80

Appendix D: Source Code

The complete source code of ReadStackCorrector and CloudBrush can be
downloaded freely under an Apache License 2.0 at the following addresses:

https://github.com/ice91/ReadStackCorrector

https://github.com/ice91/CloudBrush

81

Bibliography

1. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning
DNA sequences. J. Comput. Biol. 7,203-214 (2000).

2. Idury, R. M. & Waterman, M. S. A new algorithm for DNA sequence assembly. J.
Comput. Biol. 2,291-306 (1995).

3. Myers, E. W. et al. A whole-genome assembly of Drosophila. Science 287,
2196-2204 (2000).

4. Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data.
Genome Res. 19, 1117-1123 (2009).

5. Collins, L. J., Biggs, P. J., Voelckel, C. & Joly, S. An approach to transcriptome
analysis of non-model organisms using short-read sequences. Genome Inform 21,
3-14 (2008).

6. Batzoglou, S. et al. ARACHNE: a whole-genome shotgun assembler. Genome Res.
12, 177-189 (2002).

7. de la Bastide, M. & McCombie, W. R. Assembling genomic DNA sequences with
PHRAP. Curr Protoc Bioinformatics Chapter 11, Unit11.4 (2007).

8. Miller, J. R, Koren, S. & Sutton, G. Assembly algorithms for next-generation
sequencing data. Genomics 95, 315-327 (2010).

9. Schatz, M. C., Delcher, A. L. & Salzberg, S. L. Assembly of large genomes using
82

10.

11.

12.

13.

14.

15.

16.

17.

18.

second-generation sequencing. Genome Res. 20, 1165-1173 (2010).

Koren, S., Treangen, T. J. & Pop, M. Bambus 2: scaffolding metagenomes.

Bioinformatics 27, 2964-2971 (2011).

Pop, M. & Salzberg, S. L. Bioinformatics challenges of new sequencing technology.

Trends Genet. 24, 142-149 (2008).

Li, Z. et al. Comparison of the two major classes of assembly algorithms:

overlap-layout-consensus and de-bruijn-graph. Brief Funct. Genomics 11, 25-37

(2012).

Xia, Q. et al. Complete resequencing of 40 genomes reveals domestication events

and genes in silkworm (Bombyx). Science 326, 433-436 (2009).

Medvedev, P., Georgiou, K., Myers, G. & Brudno, M. Computability of models for

sequence assembly. Algorithms in Bioinformatics 289-301 (2007).

M. C. Schatz, D. Sommer, D. R. Kelley, and M. Pop. Contrail: Assembly of large

genomes using cloud computing. at <http://contrail-bio.sourceforge.net.>

Lin, J. & Dyer, C. Data-intensive text processing with MapReduce. Synthesis

Lectures on Human Language Technologies 3, 1-177 (2010).

Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods

7,909-912 (2010).

Li, R. et al. De novo assembly of human genomes with massively parallel short read

83

19.

20.

21.

22.

23.

24.

sequencing. Genome Res. 20, 265-272 (2010).

Hernandez, D., Francois, P., Farinelli, L., Osteras, M. & Schrenzel, J. De novo

bacterial genome sequencing: millions of very short reads assembled on a desktop

computer. Genome Res. 18, 802-809 (2008).

Chaisson, M. J., Brinza, D. & Pevzner, P. A. De novo fragment assembly with short

mate-paired reads: Does the read length matter? Genome Res. 19, 336-346 (2009).

Birol, I. et al. De novo transcriptome assembly with ABySS. Bioinformatics 25,

2872-2877 (2009).

Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating

inhibitors. 1977. Biotechnology 24, 104-108 (1992).

Simpson, J. T. & Durbin, R. Efficient de novo assembly of large genomes using

compressed data structures. Genome Res. 22, 549-556 (2012).

Chen, C. C., Lin, W. D., Chang, Y. J., Chen, C. L. & Ho, J. M. Enhancing de novo

transcriptome assembly by incorporating multiple overlap sizes. ISRN

Bioinformatics 2012, (2012).

25.Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11,

26.

759-769 (2011).

Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data

without a reference genome. Nat. Biotechnol. 29, 644-652 (2011).

84

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Salzberg, S. L. et al. GAGE: A critical evaluation of genome assemblies and

assembly algorithms. Genome Res. 22, 557-567 (2012).

Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res. 25, 3389-3402 (1997).

Pettersson, E., Lundeberg, J. & Ahmadian, A. Generations of sequencing

technologies. Genomics 93, 105-111 (2009).

Pop, M. Genome assembly reborn: Recent computational challenges. Brief

Bioinform 10, 354-366 (2009).

Paul Medvedev Genome Graphs. (2010).

Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre

reactors. Nature 437, 376-380 (2005).

Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random

clones: a mathematical analysis. Genomics 2, 231-239 (1988).

White, T. Hadoop: The definitive guide. (Yahoo Press: 2010).

Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from

massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108, 1513-1518

(2011).

Ilie, L., Fazayeli, F. & Ilie, S. HITEC: accurate error correction in high-throughput

sequencing data. Bioinformatics 27,295-302 (2011).

85

37.

38.

39.

40.

41.

42.

43.

44,

45.

Walter, C. Kryder’s law. Sci. Am. 293, 32-33 (2005).

Dean, J. & Ghemawat, S. MapReduce: Simplified data processing on large clusters.

Communications of the ACM 51, 107-113 (2008).

Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a

curated non-redundant sequence database of genomes, transcripts and proteins.

Nucleic Acids Res. 35, D61-65 (2007).

Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26,

1135-1145 (2008).

Mardis, E. R. Next-generation DNA sequencing methods. Annu. Rev. Genomics

Hum. Genet. 9, 387-402 (2008).

Gao, S., Sung, W.-K. & Nagarajan, N. Opera: reconstructing optimal genomic

scaffolds with high-throughput paired-end sequences. J. Comput. Biol. 18,

1681-1691 (2011).

Jackson, B. G., Schnable, P. S. & Aluru, S. Parallel short sequence assembly of

transcriptomes. BMC Bioinformatics 10 Suppl 1, S14 (2009).

Nagarajan, N. & Pop, M. Parametric complexity of sequence assembly: theory and

applications to next generation sequencing. J. Comput. Biol. 16, 897-908 (2009).

Morin, R. et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA

and massively parallel short-read sequencing. BioTechniques 45, 81-94 (2008).

86

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Kelley, D. R., Schatz, M. C. & Salzberg, S. L. Quake: quality-aware detection and

correction of sequencing errors. Genome Biol. 11, R116 (2010).

Vishkin, U. Randomized speed-ups in parallel computation. Proceedings of the

Sixteenth Annual ACM Symposium on Theory of Computing 230-239 (1984).

Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding

pre-assembled contigs using SSPACE. Bioinformatics 27, 578-579 (2011).

Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11,

31-46 (2009).

Stein, L. D. The case for cloud computing in genome informatics. Genome Biol. 11,

207 (2010).

Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456,

60-65 (2008).

Myers, E. W. The fragment assembly string graph. Bioinformatics 21 Suppl 2,

ii79-85 (2005).

Mardis, E. R. The impact of next-generation sequencing technology on genetics.

Trends Genet. 24, 133-141 (2008).

Mullikin, J. C. & Ning, Z. The phusion assembler. Genome Res. 13, 81-90 (2003).

Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res. 18, 821-829 (2008).

87

56. Furusawa, C. & Kaneko, K. Zipf’s law in gene expression. Phys. Rev. Lett. 90,

088102 (2003).

57. Yang X., Chockalingam S. P., Aluru S. A survey of error-correction methods for

next-generation sequencing. Brief Bioinform. (2012).

88

