

國立臺灣大學電機資訊學院資訊工程學研究所

博士論文

Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Doctoral Dissertation

針對高通量定序資料之可延展序列組合演算法

Scalable Assembly of
High-Throughput De Novo Sequencing Data

陳建智

Chien-Chih Chen

指導教授：賴飛羆、陳俊良、何建明 博士

Advisor: Feipei Lai, Chuen-Liang Chen, Jan-Ming Ho,

Ph.D.

 中華民國 102 年 1 月

Jan, 2013

 ii

 i

致謝

 這篇論文的完成要感謝許多人的幫忙與支持，首先要感謝我碩士班及博士班的

指導教授陳俊良老師。從碩士班到博士班一路走來，老師面對問題的處理方式及

處事態度一直是我學習的目標。再來要感謝中研院的何建明老師，來中研院的最

大的收穫就是學到面對科學應有的態度:像是發掘問題永遠比解決問題來得重

要；從三個 I (1) Innovation、(2) Impact 跟 (3) Importance 去衡量研究的價值，都

是從老師身上學到的重要準則。還要感謝賴飛羆老師的協助讓我能夠順利完成學

業。

 此外感謝口試委員趙坤茂教授、高成炎教授、劉邦鋒教授、洪士灝教授跟林仲

彥教授提出的建議跟指正，以及文鐽學長跟育榮學長提供的意見跟協助，使得論

文內容更加完整。

 最後感謝我的父母及家人對我的支持跟包容。僅以這篇論文獻給我的太太育妏

和我的女兒昭羽。

 ii

 iii

摘要

 DNA 定序技術是研究分子生物的最重要的步驟之一，用來判定 DNA 片段所

代表的序列資訊。隨著次世代定序技術的發展，基因體學跟轉錄體學的研究已進

入到下一個里程。然而目前的定序技術無法將基因體或轉錄體從頭到尾一次定序

完成，必需將樣本切成很多短的片段，再透過序列組合演算法將基因體或轉錄體

還原。因此序列組合組合演算法一直是生物資訊中的核心問題。序列組合的挑戰

在於: (1)序列中的錯誤、(2)序列中有重複片段、(3)序列中每各位置被定序到的次

數不平均、(4)針對大量資料時計算複雜度的問題。其中，隨著次世代定序技術所

帶來快速增加的資料量，使得序列組合軟體能具備可延展運算能力來處理大量序

列資料為最迫切的需求。這類的需求剛好符合雲端運算的運作模式。在雲端雲算

中，使用者可以依需求透過網路向供應商去設置幾千台的電腦資源來做大量資料

的平行處理。針對大量的資料，這種可延展的雲端應用通常是發展在 MapReduce

的架構下。

 在本篇論文中，我們提出一個以 MapReduce 為架構的高通量序列組合演算

法，稱作 CloudBrush。CloudBrush 是以雙向串圖(bidirected string graph)為基礎，主

要分成兩個階段: 建構圖形(graph construction)和簡化圖形(graph simplification) 。

在建構圖形的步驟，我們以一個讀序(read)當做圖上的一個節點(node)，節點跟節

點間的圖邊(edge)定義為讀序跟讀序間的重複(overlap)。我們提出一個前綴延伸

(prefix-and-extend)的演算法來判定兩兩讀序間的重複。在圖形簡化的步驟，我們採

取常見的串圖簡化方法包括:傳遞簡約 (transitive reduction)、路徑壓縮 (path

compression)、移除分枝結構(tips removal)和移除氣泡結構(bubble removal) 。此外

我們提出一個新的串圖簡化方式:圖邊調整(edge adjustment)來移除串圖內因序列

錯誤所造成的複雜結構。此簡化方式主要是利用圖形中鄰居間的序列資訊來做判

斷，移除可能是錯誤造成的圖邊。

 在效能評比部分，我們利用 Genome Assembly Gold-Standard Evaluation 為基準

 iv

來衡量 CloudBrush 組出的序列品質並跟其他序列組合工具做比較。實驗結果顯示

我們的演算法可組出中等長度的 N50，且不易發生序列誤接(mis-assembly)的情形。

 此外針對轉錄體的序列資料我們另外提出一個 T-CloudBrush 的流程。

T-CloudBrush 主要是利用多重參數 (multiple-k)來克服轉錄體序列資料深度

(coverage)差異的問題。多重參數的概念主要是來自於這項觀察:在考慮序列組出的

品質情況下，序列資料的深度跟序列組合演算法使用的重複區域(overlap size)參數

呈現正相關的關係。實驗結果顯示 T-CloudBrush 可以增進轉錄體序列組合的品質。

 綜合上述，本篇論文在可延伸的運算架構底下，探討序列組合算法所面臨的

挑戰，並針對大資料的處理，序列錯誤及序列資料深度差異的問題提出可能的解

法。

關鍵字: 序列組合、平行運算、基因體學、轉錄體學、生物資訊。

 v

Abstract

DNA sequencing is one of the most important procedures in molecular biology

research for determining the sequences of bases in specific DNA segments. With the

development of next-generation sequencing technologies, studies on genomics and

transcriptomics are moving into a new era. However, the current DNA sequencing

technologies cannot be used to read entire genomes or a transcript in 1 step; instead,

small sequences of 20–1000 bases are read. Thus, sequence assembly continues to be

one of the central problems in bioinformatics. The challenges facing sequence assembly

include the following: (1) sequencing error, (2) repeat sequences, (3) nonuniform

coverage, and (4) computational complexity of processing large volumes of data. From

these challenges, considering the rapid growth of data throughput delivered by

next-generation sequencing technologies, there is a pressing need for sequence

assembly software that can efficiently handle massive sequencing data by using scalable

and on-demand computing resources. These requirements fit in with the model of cloud

computing. In cloud computing, computing resources can be allocated on demand over

the Internet from several thousand computers offered by vendors for analyzing data in

parallel. Such cloud-computing applications are constantly being developed for large

datasets and are run under the framework of MapReduce.

In this dissertation, we have proposed CloudBrush, a parallel pipeline that runs on the

 vi

MapReduce framework for de novo assembly of high-throughput sequencing data.

CloudBrush is based on bidirected string graphs and its analysis consists of 2 main

stages: graph construction and graph simplification. During graph construction, a node

is defined for each nonredundant sequence read, and the edge is defined for overlap

between reads. We have developed a prefix-and-extend algorithm for identifying

overlaps between a pair of reads. The graph is further simplified by using conventional

operations such as transitive reduction, path compression, tip removal, and bubble

removal. We have also introduced a new operation, edge adjustment, for removing error

topology structures in string graphs. This operation uses the sequence information of all

graph neighbors for each read and eliminates the edges connecting to reads containing

rare bases.

CloudBrush was evaluated against Genome Assembly Gold-Standard Evaluation

(GAGE) benchmarks to compare its assembly quality with that of other assemblers. The

results showed that our assemblies have a moderate N50, a low misassembly rate of

misjoins, and indels. In addition, we have introduced 2 measures, precision and recall,

to address the issues of faithfully aligned contigs in order to target genomes. Compared

with the assembly tools used in the GAGE benchmarks, CloudBrush was found to

produce contigs with high precision and recall.

We have also introduced a T-CloudBrush pipeline for transcriptome data.

 vii

T-CloudBrush uses the multiple-k concept to overcome the problem of nonuniform

coverage of transcriptome data. This concept is based on observation of the correlation

between sequencing data coverage and the overlap size used during assembly. The

experiment results showed that T-CloudBrush improves the accuracy of de novo

transcriptome assembly.

In summary, this dissertation explores the challenges facing sequence assembly under

the scalable computing framework and provides possible solutions for the problems of

sequencing errors, nonuniform coverage, and processing of large volumes of data.

Keywords: sequence assembly, parallel computing, genomics, transcriptomics,

bioinformatics.

 viii

Table of Contents

1. Introduction .. 1

1.1 Shotgun Sequencing and Assembly.. 2

1.2 Review of Sequencing Technology .. 4

1.3 Review of Assembly Algorithms.. 7

1.3.1 Evolution of Assembly Algorithms ... 7

1.3.2 Comparison of String Graphs and de Bruijn Graphs............................. 10

1.3.3 Common Stages of Genome Assembly ... 12

1.4 Overview of this Dissertation... 14

2. Genome Assembly with MapReduce ... 16

2.1 Introduction .. 16

2.2 Methods .. 17

2.2.1 Distributed Graph Processing in MapReduce 17

2.2.2 CloudBrush: String Graph Assembly Using MapReduce 19

2.3 Results and Discussion ... 30

2.3.1 Comparison with Other Tools Using GAGE Benchmarks 30

2.3.2 Runtime Analysis... 32

3. Error Correction.. 34

3.1 Introduction .. 34

3.2 Methods .. 35

3.2.1 Correct Sequencing Error by String Graph ... 35

3.2.2 Correct Sequencing Error by Read Stack .. 43

3.3 Results and Discussion ... 46

3.3.1 Analysis of Edge Adjustment .. 46

3.3.2 Evaluation of Assembly Accuracy... 51

 ix

4. De Novo Assembly of Transcriptome Data .. 57

4.1 Introduction .. 57

4.2 Results .. 58

4.2.1 On the Relationship Between Coverage and Optimum k 58

4.2.2 The Effect of Sequencing Error Rate... 62

4.2.3 T-CloudBrush: Multiple Overlap Size of CloudBrush 63

4.2.4 Comparing T-CloudBrush with Existing Tools 65

4.3 Discussion... 67

5. Conclusion and Future Research .. 69

Appendix A: List of Publications ... 71

Appendix B: CloudBrush Manual .. 72

Appendix C: CloudBrush Web Demo User Guide ... 75

Appendix D: Source Code.. 81

Bibliography ... 82

 x

List of Figures

Figure 1. Generic pipeline of de novo sequencing projects.. 2

Figure 2. Illustration of de novo assembly.. 3

Figure 3. The difference between an overlap graph and a de Bruijn graph.....................11

Figure 4. Common stages of genome assembly. .. 14

Figure 5. The data format of a bidirected string graph in MapReduce 18

Figure 6. Workflow of CloudBrush assembler. .. 21

Figure 7. Illustration of the prefix-and-extend strategy.. 23

Figure 8. Illustration of transitive reduction... 25

Figure 9. Illustration of path compression.. 26

Figure 10. Illustration of tips removal. ... 27

Figure 11. The illustration of bubble removal. ... 29

Figure 12. Runtime analysis of Dataset D3 (C. elegans) by CloudBrush. 33

Figure 13. Chimerical link structure problem solved by edge adjustment..................... 36

Figure 14. Branch structure problem solved by edge adjustment. 37

Figure 15. Braid structure problem solved by edge adjustment. 38

Figure 16. The pseudocode of the EA algorithm in sequential versions. 39

Figure 17. The pseudocode of the EA algorithm in the MapReduce version................. 40

Figure 18. Illustration of the position weight matrix.. 42

Figure 19. Illustration of read stack construction. .. 46

Figure 20. The variation of precision and recall with different lower bounds of length on

simulated data and datasets D1 and D2. ... 54

Figure 21. Histogram of the coverage (expression levels) of the 26,332 transcripts of

mice. ... 60

Figure 22. The relationship between optimum k and coverage. Green cells represent

 xi

high ratios indicating high completeness of transcripts. Red cells represent low ratios

indicating low completeness of transcripts... 61

Figure 23. The relationship between optimum ks and coverage for one transcriptome

sequence for different error rates.. 63

Figure 24. Overview of T-CloudBrush procedure. ... 64

Figure 25. The variation of precision and recall with different lower bounds of length on

simulated mouse data using T-CloudBrush and Trinity... 67

Figure A1. The main interface. ... 75

Figure A2. The upload interface. .. 76

Figure A3. The job selection interface.. 77

Figure A4. The interface of ReadStackCorrector. .. 78

Figure A5. The result of ReadStackCorrector... 78

Figure A6. The interface of CloudBrush. ... 79

Figure A7. The results page of CloudBrush. .. 79

 xii

List of Tables

Table 1. Comparison of sequencing technology... 7

Table 2. Evaluation of S. aureus (genome size 2,872,915 bp). 31

Table 3. Evaluation of R. sphaeroides (genome size 4,603,060 bp) 31

Table 4. Edge analysis of the overlap graph before and after edge adjustment 49

Table 5. Analysis of simplified string graphs with and without edge adjustment 51

Table 6. Evaluation of assemblies of the simulated dataset (100×, 36 bp, 1% error) and

dataset D1 with CloudBrush, Contrail, Velvet, and Edena... 55

Table 7. Evaluation of assemblies of the simulated dataset (200× 150 bp, 1% error) and

datasets D2 and D3 with CloudBrush, Contrail, and Velvet .. 56

Table 8. Evaluation for assemblies of simulated mouse data with T-CloudBrush as

compared to CloudBrush using different k-mer ... 67

 1

Chapter 1

1. Introduction

With the rapid development of next-generation sequencing (NGS) technologies, the

cost of DNA sequencing continues to fall rapidly, faster than the rate according to

Moore’s law for computing costs [50]. To keep pace with the increasing availability of

sequencing data, ever more efficient or scalable fundamental sequence tools are needed.

A fundamental step in analyzing de novo sequencing data, in the absence of a

reference genome, is genome assembly—the problem of determining the sequence of an

unknown genome—with the most well-known assembly problem being the Human

Genome Project. In general, the genome of an organism offers great insight into its

phylogenetic history, interaction with the environment, and internal function [31]. Thus,

de novo assembly continues to play a central role in biology for the sequencing of novel

species. Figure 1 shows a generic pipeline of de novo sequencing projects. This

dissertation focuses on the subject of de novo assembly.

With the evolution of genome sequencing technology, methods for assembling

genomes have changed. Therefore, it is an interesting aspect to study the evolution in

graph structure with the growth in read length and coverage, and thus develop

algorithms that efficiently assemble next generation genomic sequence data.

 2

Figure 1. Generic pipeline of de novo sequencing projects.

1.1 Shotgun Sequencing and Assembly

The process through which scientists decode the DNA sequence of an organism is

called sequencing. In 1977, Frederick Sanger developed the basic sequencing

technology that is still widely used today [22]. Although genomes vary in size from

millions of base pairs (bp) in bacteria to billions of base pairs in humans, the chemical

reactions researchers use to decode the DNA base pairs are accurate for only about

600–700 bp at a time. To overcome this limitation, a technique called shotgun

 3

sequencing has been developed. The shotgun process involves shearing the genome of

an organism into multiple small fragments. Following this, the ends of the fragments

(called reads) are decoded via sequencing. In most sequencing projects, the fragment

sizes are carefully controlled. This provides a link between the reads generated from the

ends of the same fragment, which are called paired ends or mate pairs. Figure 2 shows

an illustration of the shotgun sequencing process. Reconstructing a complete genome

from a set of reads requires an assembly program.

Figure 2. Illustration of de novo assembly.

The assembly program relies on the basic assumption that 2 reads that share the same

string of letters originate from the same place in the genome (Figure 2). Using such

overlaps between the reads, the assembly program can join the reads together and

produce contiguous pieces of DNA (contigs). Note that shotgun sequencing can be

viewed as a random sampling process, with each DNA fragment originating from a

 4

random location within the genome [30]. Thus, in the same way raindrops will

eventually cover a whole sidewalk, it is possible to sequence an entire genome by

oversampling the genome to ensure each position is seen. Eric Lander and Michael

Waterman provide a statistical model [33] to examine the correlation between the

oversampling of the genome (also called coverage) and the number of contigs that can

be reconstructed by an idealized assembly program.

The high cost of Sanger’s sequencing technology has long been a limiting factor for

genome projects [12]. Current NGS technologies have far greater speed and much lower

costs than Sanger sequencing. However, this reduction in cost comes at the expense of

read lengths, with new sequencing having much shorter reads (30–400 bp). Therefore,

their application has mainly been restricted to resequencing projects [13, 51], where a

good reference sequence exists. For the de novo sequence assembly, assembling a large

genome (>100 Mbp) using NGS data is a challenge. Thus, while sequencing cost is no

longer a limiting factor for most de novo large genome projects, sequence assembly

remains a major challenge.

1.2 Review of Sequencing Technology

There are many factors to consider in DNA sequencing, such as read length, bases per

second, and raw accuracy. Extensive research and development has led to an

exponential reduction in cost per base. Automated sequencing based on the Sanger

 5

method was developed in 1980 [49, 53]. It dominated the industry for almost 2 decades,

and led to a number of monumental accomplishments, including the only finished-grade

human genome sequence. Subsequent improvements in the Sanger method have

increased the efficiency and accuracy by more than 3 orders of magnitude. At each step,

more sophisticated DNA sequencing instruments, programs, and bioinformatics have

provided more automation and higher throughput. A further revolution in sequencing

began around 2005, when several massively parallel sequencing methods became

available and began to produce massive throughput at far lower costs than Sanger

sequencing. This allowed larger-scale production of genomic sequences.

The automated Sanger method is considered a “first-generation” technology, while

newer methods are NGS technology. NGS platforms include the Genome Sequencer

from Roche 454 Life Sciences (www.454.com), the Solexa Genome Analyzer from

Illumina (www.illumina.com), and the SOLiD System from Applied Biosystems

(www.appliedbiosystems.com). Common to all these technologies is the high degree of

parallelism in the sequencing process. Millions of DNA fragments are immobilized to a

surface and then sequenced simultaneously, leading to a throughput order of a

magnitude higher than that achievable through Sanger sequencing. This performance

comes at a price: read lengths are considerably shorter, ranging from 25–50 bp (SOLiD)

to 400 bp (454 Titanium instrument). Table 1 shows a partial comparison of sequencing

 6

technology [25].

Refinements and automation have greatly improved cost effectiveness. In 1985, the

cost of reading 1 single base was $10, while the same amount of money rendered

10,000 bases 20 years later [29]. This cost reduction mainly came about with the

development of the 454 Sequencer, quickly followed by the Solexa/Illumina and ABI

SOLiD technologies. Since then, the cost of sequencing a base has halved every 5

months, whereas, in accordance with Kryder’s law, the cost of storing a byte of data has

halved every 14 months [37]. As this gap widens, the question of how to design higher

throughput analysis pipelines becomes crucial [50].

 7

Table 1. Comparison of sequencing technology

 First Generation Next Generation

Company ABI Roche Illumina ABI

Platform 3730xl 454 FLX Titanium GAIIx SOLiD-4

Sequencing

Method
Sanger

Synthesis

(pyrosequencing)
Synthesis Ligation

Run time 2 h 10 h 14 d 12 d

Millions of reads/run 0.000096 1 320 > 840

Base/read 650 400 150 50

Reagent cost/Mb $1,500 $12.40 $0.12 < $0.11

Machine cost $550,000 $500,000.00 $540,000.00 $595,000

Error rate 0.1–1 1 ≥0.1 >0.06

Error type Substitution Indel Substitution A-T bias

1.3 Review of Assembly Algorithms

1.3.1 Evolution of Assembly Algorithms

Early genome assemblers followed a simple but effective strategy in which the

assembler greedily joins together the reads that are most similar to each other. This

simple merging process will accurately reconstruct the simplest genomes, but it fails to

do so for repetitive sequences that are longer than the read length. The problem is that

the greedy algorithm cannot tell how to connect the unique sequences on either end of a

repeat, and it can easily assemble together distant portions of the genome into

misassembled contigs. Considering these repetitive sections in the genome, the

 8

sequence assembly problem may be modeled as a graph traversal problem. This

formulation allows researchers to use techniques developed in the field of graph theory

to solve the assembly problem. However, optimal path discovery is impractical because

there can be an exponential number of paths between any source and sink node.

Therefore, assemblers rely on heuristics and approximation algorithms to reduce the

computational complexity.

The evolution of assembly algorithms has accompanied the development of

sequencing technologies. Currently, there are 2 widely used classes of algorithms: string

graph algorithms and de Bruijn graph algorithms. The string graph approach follows the

overlap graph model by treating reads as nodes and assigning a edge between 2 nodes

when the overlap (or intersection) between these 2 reads is larger than a cutoff length. A

string graph is obtained by removing the transitive edges of the overlap graph [52]. In

the overlap graph model, sequence assembly becomes the problem of identifying a path

through the graph that contains all the nodes, i.e., a Hamiltonian path. This model

became successful with the widespread use of the Sanger sequencing technology. Many

widely used assembly programs adopted overlap graphs, such as Arachne [6], Celera

Assembler [3], Phrap [7], Phusion [54], and Newbler [32]. However, with the far shorter

reads and far higher coverage generated by these NGS technologies, computation of

overlap became a bottleneck for the overlap graph model assembly. This is due to the

 9

considerable increase in the number of reads generated in a short-read NGS project as

compared to the number generated using Sanger sequencing. For these reasons, the de

Bruijn graph approach has been developed specifically to address the challenges of

assembling very short reads.

Approaches using de Bruijn graphs approaches are based on early attempts to

sequence genomes through a technique called sequencing by hybridization [2]. In de

Bruijn graphs, instead of treating reads as nodes, each read is broken up into a collection

of overlapping strings of length k (k-mers). For applications in DNA sequence assembly,

de Bruijn graphs have a node for every k-mer observed in the sequence set and an edge

between nodes if these 2 k-mers are observed adjacently in a read. It is easy to see that

in a graph containing the information obtained from all the reads, a solution to the

assembly problem corresponds to a path in the graph that uses all the edges, i.e., an

Eulerian path. In late 2007 and early 2008, several next-generation de Bruijn graph

assemblers were released for very short reads compatible with the Solexa technology,

including VELVET [55], EULER-USR [20], ABySS [4], ALLPATHS-LG [35], and

SOAPdenovo [18].

The development of assembly algorithms is tied closely to the development of

sequencing technologies. Thus, research and practice have moved from the string graph

approach for Sanger sequencing to the de Bruijn graph approach for NGS [12]. As

 10

short-read sequencing progressively shifts towards longer reads (>100 bp), the

landscape of assembly software has had to adapt to high-coverage, longer reads. In the

future, de novo assembly algorithms are likely to return to the string graph approach for

long-read sequencing.

1.3.2 Comparison of String Graphs and de Bruijn Graphs

The main difference between string graph and de Bruijn graph algorithms is the

method used to exploit the overlap information [12]. In the string graph algorithm, the

identification of overlap between each pair of reads is explicit, typically by aligning

all-against-all pairwise reads. In the de Bruijn algorithm, overlaps between reads are

implicitly captured by decomposing all the reads into k-mers and simultaneously

recording their neighboring relations. Figure 3 shows the differences between a string

graph and a de Bruijn graph for assembly.

 11

GACCTACAAGTTAG
R1: GACCTACA
R2: ACCTACAA
R3: CCTACAAG
R4: CTACAAGT
R5: TACAAGTT
R6: ACAAGTTA
R7: CAAGTTAG
E1: TACAAGTC
E2: ACAAGTCC
E3: CAAGTCCG

R1 R2 R3 R4 R5 R6 R7

E1 E2 E3

GAC ACC CCT TAC ACA CAA AAG AGT GTT TTA TAG

GTC TCC CCG

(a) Reads (b) Overlap Graph
(String Graph)

(c) de Bruijn Graph (of 3-mer)

CTA

Figure 3. The difference between an overlap graph and a de Bruijn graph.

Paul Medvedev showed that both the de Bruijn graph and string graph models for

genome assembly are NP-hard [14]. However, the success of both the de Bruijn and

string graph models in practice indicates that by defining a more restricted graph model

and suboptimal heuristics, it is possible to develop more efficient algorithms for genome

assembly.

The question of whether the string graph or the de Bruijn graph approach is superior

remains an open question, and the answer most likely depends on the sequencing

technology and the specific genome characteristics. Only de Bruijn graph assemblers

have demonstrated the ability to successfully assemble very short reads (<50 bp). For

longer reads (>100 bp), string graph assemblers have been quite successful and have a

much better track record overall [9]. The main drawback to the de Bruijn approach is

 12

the loss of information caused by decomposing a read into a path of k-mers. Typically,

de Bruijn graph assemblers attempt to recover the information lost from breaking up the

reads, and attempt to resolve small repeats using complicated read threading algorithms

[23]. Using the string graph model of assembly can avoid this problem. Therefore, the

quality of de Bruijn graph implementations in assembling long reads is lower than the

quality of string graph implementations. Furthermore, when read lengths increase, it is

relatively easy to increase minimum overlap size in string graph implementations;

however, it is hard to increase k-mer size in de Bruijn graphs for several reasons,

including computational limitations. Most of the current de Bruijn graph assemblers can

only accept a k-mer size of up to 31 bp, with some of the latest versions going up to 127

bp [18, 35, 55]. The limited k-mer size in the de Bruijn graph approach has therefore

limited its potential to use long reads to overcome repeats.

1.3.3 Common Stages of Genome Assembly

For the assembly of whole genomes, the graph construction and graph traversal is

followed by sophisticated steps aimed at reconstructing larger contiguous segments of

the genome being assembled. In most assemblers, there are a core set of steps needed

[8]. In Figure 4, the common stages of genome assembly are introduced. The 4 major

stages are (1) error correction, (2) graph construction, (3) graph traversal, and (4)

scaffolding.

 13

Due to high coverage, many error correction techniques in NGS data have been

developed in recent years. As errors occur infrequently, the majority of reads in a

specific position can be used to correct errors. This general idea has been implemented

in most error-correction algorithms. Currently, error correction can be built in as a

module in assemblers, such as is found with Velvet [55] and ALLPATHS-LG [35], or be

isolated as stand-alone software, such as Quake [46] and HiTEC [36].

The scaffolding phase of assembly focuses on resolving repeats by linking the initial

contigs to scaffolds. A scaffold is a collection of contigs linked by mate pairs. Mate

pairs constrain the separation distance and the orientation of contigs containing mated

reads. If the mate pair distances are long enough, they permit the assembler to link

contigs across almost all repeats. Like error correction, stand-alone scaffolders are also

available, such as Bambus [10], Opera [42], and SSPACE [48], allowing mate-pair

information to be added to virtually any assembler.

 14

Figure 4. Common stages of genome assembly.

1.4 Overview of this Dissertation

De novo assembly is much like a large jigsaw puzzle in that the DNA reads that

shotgun sequencing produces must be assembled into a complete picture of the genome.

Unlike a simple jigsaw puzzle, several factors make de novo assembly challenging. First,

the data contain errors, some from limitations in sequencing technology and others from

human mistakes during laboratory work. Second, there are repetitive sections in the

genome. Similar to pieces of sky in jigsaw puzzles, reads belonging to repeats are

difficult to position correctly. The magnitude of the challenge depends on the

sequencing technology, because the fraction of repetitive reads depends on the read

lengths themselves. In addition, with the rapid growth of sequence data, de novo

assembly is complicated by the computational complexity of processing larger volumes

 15

of data; furthermore, non-uniform coverage of sequence data also becomes an issue for

sequence assembly.

The unifying theme of this dissertation is to develop an efficient de novo sequence

assembler. The following chapters describe possible solutions to the above challenges.

As for the rapid growth of sequence data, chapter 2 proposes a MapReduce framework

assembler to accommodate large datasets. Chapter 3 explores the error-correction issue

of sequence assembly. Chapter 4 studies the issue of non-uniform coverage of

transcriptome sequence data, and provides a feasible procedure. Finally, chapter 5

discusses the dissertation’s findings, and explains the wider implications of these

findings, as well as suggesting topics for future research.

 16

Chapter 2

2. Genome Assembly with MapReduce

2.1 Introduction

The current sequencer of the Illumina GAIIx produces reads longer than 150 bp and

up to 320 Gbp data output per run. To assemble genomic data generated by such

high-throughput sequencers is a big challenge even for multi-core processors with

memory constraints. Most of the recent assemblers use de Bruijn graphs [4, 15, 18, 20,

35, 55] to model and manipulate the sequence reads. These assemblers have

successfully assembled small genomes from short reads but have had limited success

scaling to larger mammalian-sized genomes, mainly because they require memory and

other computational resources that are unobtainable for most users. For larger genomes,

the choice of assemblers is often limited to those that will run without crashing.

Addressing this limitation, a string graph-based de novo assembler, namely

CloudBrush, is presented. CloudBrush uses the Hadoop/MapReduce distributed

computing framework to enable de novo assembly of large genomes. MapReduce [38]

is a distributed data processing model and execution environment that runs on large

clusters of commodity machines. Hadoop is an open-source project for distributed

computing. It consists of subprojects, including MapReduce, distributed file systems,

and several others [34]. Hadoop is known for its scalability to handle petabyte-scale

 17

data and tolerance of hardware failures. It is becoming the de facto standard for

large-scale data analysis, especially in “cloud computing” environments where

computing resources are rented on demand, thus allowing data to be analyzed in

parallel.

2.2 Methods

2.2.1 Distributed Graph Processing in MapReduce

Genome assembly has been modeled as a graph-theoretic problem. Graph models of

particular interests include de Bruijn and string graphs in either directed or bidirected

forms. Here, a bidirected string graph was used to model the genome assembly problem.

In a bidirected string graph, nodes represent reads, and edges represent the overlaps

between reads. To model the double-stranded nature of DNA, a read can be interpreted

in either forward or reverse-complement directions. For each edge that represents an

ordered pair of nodes with overlapping reads, 4 possible types exist according to the

directions of the 2 reads: forward-forward, reverse-reverse, forward-reverse, and

reverse-forward. The type attribute is incorporated into each edge of the bidirected

string graph. It is noteworthy that traversing the bidirected string graph should follow a

consistent rule, i.e., the directions of in-links and out-links of the same node should be

consistent. In other words, the read of a specific node can only be interpreted in a

unique direction in one path of traversal.

 18

Reads: MapReduce data format:
1 ATCGTGCA 1 N *ff 2!4 *s ATCGTGCA *v 1
(TGCACGAT) 2 N *rr 1!4 *ff 3!3 *s TGCAGACA *v 1

2 TGCAGACA 3 N *rr 2!3 *s ACATTAAA *v 1
(TGTCTGCA)

3 ACATTAAA
(TTTAATGT)

1 ATCGTGCA 3 TTTAATGT
2 TGCAGACA 2 TGTCTGCA
3 ACATTAAA 1 TGCACGAT

1 2 3

Key Value

ReadID msgType[*fieldType fieldValue(s)]

 msgType
 “N” (NODEMSG)
 “T” (TRIMMSG)
 …

 fieldType
 “s” (sequence)
 “v” (coverage)
 “ff”, “rr”, “fr”, “rf” (edge type)
 …

Multiple fields

Separated by Tab Separated by ‘!’

Figure 5. The data format of a bidirected string graph in MapReduce

The MapReduce framework [16] uses key-value pairs as the only data type to

distribute the computations. To manipulate a bidirected string graph in MapReduce, a

node adjacency list was used to represent the graph (which stores node id – the

identifier of a node – as the key), and node data structure was used to represent the

value. Node data structure contains features of the node and is represented by several

types of defined messages. Each type of message may contain multiple fields, and each

 19

field has its type and value as shown in Figure 5(a). For example, the message of a node

consists of fields, including sequence, coverage, and 1 of the 4 edge types. Using the

Contrail assembler [15] and its data structure, the overlap and string graphs were

modeled with an extension to record nodal overlap lengths. Figure 5(b) shows an

example of a bidirected string graph in MapReduce. Note that each node can be

represented not only its forward sequence but also its reverse-complement sequence as

shown in the red sequence in Figure 5(b).

 In MapReduce, a basic unit of computations is usually localized to a node’s internal

state and its neighbors in the graph. The results of computations on a node are output as

values, each keyed with the identification of a neighbor node. Conceptually, this process

can be thought of as “passing” the results of computation along out-links. In the reducer,

the algorithm receives all partial results having the same destination node id and

performs the computation. Subsequently, the data structure corresponding to each node

is updated and written back to distributed file systems.

2.2.2 CloudBrush: String Graph Assembly Using MapReduce

The core of the string graph assembly algorithm can be divided into 2 parts: graph

construction and graph traversal. The most critical step to construct a string graph is

computing the overlap between all pairs of reads. For high-throughput sequence data,

this step requires redesigning to make it computationally feasible. To find all pairs of

 20

read-read overlaps, a prefix-and-extend strategy is presented that speeds up construction

of the string graph in the MapReduce framework.

As for graph traversal, it is inherently a sequential operation. However, traversing a

chain of one-in one-out nodes can be formulated as a list rank problem, a well-studied

parallel problem. A graph traversal problem can be formulated as a graph simplification

problem, which manipulates graph structure transforming each node into the one-in

one-out format without any loss of information. By incorporating the solution of list

rank problems in parallel [47], it is possible to efficiently implement a parallel graph

traversal algorithm in the MapReduce framework.

The pipeline of CloudBrush is summarized as follows. First, a string graph is

constructed in 4 steps: retaining non-redundant reads as nodes, finding overlaps

between reads, edge adjustment, and removing redundant transitive edges. Second,

several techniques are used to simplify the graph, including path compression, tip

removal, bubble removal, and edge adjustment. Figure 6 shows the workflow of

CloudBrush.

 21

Figure 6. Workflow of CloudBrush assembler.

2.2.2.1 Graph Construction in MapReduce

Retaining non-redundant reads as nodes

Since a sequence read may have several redundant copies in the dataset due to

oversampling in machine sequencing, the first step in graph construction is to merge

redundant copies of the same read into a single node. This can be accomplished by

constructing a prefix tree as Edena does. A distributed prefix tree for MapReduce based

on Edena’s prefix-tree approach was implemented [19]. In the mappers, each read of

each strand was divided into a w-mer prefix u with the remaining suffix v, and prefix u

was used as the key to distribute its ID with suffix v and orientation to reducers, where w

is a parameter specified by users and each read is associated with a unique ID. A reducer,

 22

which receives information of reads with the same key, then builds a prefix tree of the

reads’ suffixes. After traversing the prefix trees, the reducer then merges identical reads

and keeps a record of the number of identical copies for further processing. Examples of

such processing include computing the coverage of a node at a later stage.

Finding pairwise overlaps between reads

Read-read overlaps are basic clues to connect reads to contigs. However, finding

overlaps is often the most computationally intensive step in string graph-based

assemblies. An algorithm was developed to run the prefix-and-extend strategy for

MapReduce. The prefix-and-extend strategy is similar to the seed-and-extend strategy

[28]. However, the seed, i.e., a common substring of 2 reads, must start at position 1 of

1 of the reads. The seed is denoted by brush in this dissertation. The strategy consists of

2 phases, i.e., the prefix and the extend phases. In the prefix phase, a pair of reads is

reported if the prefix of one of the reads exactly matches a substring of the other at the

given seed length. The pair is then said to have a brush. In the extend phase, pairs of

reads with a brush are further examined starting from the brush. If the match extends to

one end of the second read, then an edge containing the 2 nodes of the 2 reads is created

as shown in Figure 7.

 23

brush

brush

k-mer

k-mer

edge candidate

edge confirmation

prefix phase

extend phase

Figure 7. Illustration of the prefix-and-extend strategy.

The prefix and extend phases are implemented as 2 MapReduce procedures. In the

prefix procedure, for each read R, a tuple is output for every k-mer subsequence of each

strand of R, such that the key of the tuple is set as the k-mer subsequence, and the value

of the tuple contains the node ID of R, as well as the orientation and the position of the

k-mer subsequence, where k is a user-defined parameter. Then, each reducer receives all

reads with the same k-mer subsequence. Following this, reads at position 1 are labeled

as brush reads, and the other reads are labeled as suffix reads. For each brush read Ri, a

tuple is output for each node containing Ri with the node ID as key and its candidate

edges. In the extend procedure, each candidate edge is tested by extending the brush

match into full alignment as shown in Figure 7. If the match extends to 1 end of the

 24

second read, then an edge containing the 2 nodes of the 2 reads is created.

Edge adjustment algorithm

After finding overlaps as edges, the edge adjustment (EA) algorithm is used on the

graph structure. To perform the EA algorithm in MapReduce framework, a pass of the

neighbors’ edges for each node Ri is performed, such that Ri knows all the neighboring

nodes in the reducer. Once a node has all its neighbors’ information, the EA algorithm

can easily compute the consensus sequence from the neighbors’ content and thus

execute the algorithm. Note that in the MapReduce framework, each node can compute

its own consensus sequence in parallel. More detail regarding the EA algorithm is given

in chapter 3.

Reducing transitive edges

After the EA algorithm, the graph still has unnecessary edges caused by oversampling

in the sequencing. Consider 2 paths of consecutively overlapping nodes R1R2R3 and

R1R3. The path R1R3 is transitive because it spells the same sequence as

R1R2R3 but ignoring the middle node Rb.

To perform the transitive reduction in MapReduce framework, a pass of the

neighbors’ edges for each node Ri is performed such that Ri knows all the neighboring

nodes in the reducer. In contrast to a de Bruijn graph, the overlap size information is

attached in the edge of the bidirected string graph. Thus, it is possible to sort neighbors

by overlap size and remove transitive edges in order. Using Figure 8 as an example, R2

 25

and R3 are R1’s neighbor. From the viewpoint of R1, the nodes R2 and R3 are checked for

any overlaps between each other. Once R3 overlaps with R2, R3 is treated as a transitive

edge of R1, and will be removed from R1’s adjacency list. Note that once a transitive

edge is removed, its symmetric edge is also removed to maintain the structure of the

bidirected string graph.

R1: ACGGCAGTCTGACTT

R2: GCAGTCTGACTTATG

R3: GTCTGACTTATGGCG

R1 R2 R3

R1 R2 R3

Figure 8. Illustration of transitive reduction.

2.2.2.2 Graph Simplification in MapReduce

Once the graph is constructed, several techniques can be used to simplify the graph,

including path compression, tip removal, bubble removal, and low coverage node

removal. This MapReduce implementation of path compression, tip removal, bubble

removal, and low coverage node removal are similar to Contrail’s implementation [15].

However, the novel implementation described by this dissertation differs in that it has an

additional field of overlap size for the data structure of message passing between nodes

tailed for the string graphs.

Path compression

 26

Path compression is used to merge a chain of nodes (each having a single in-link and

a single out-link along a specific strand direction) into a single node. Figure 9 shows an

illustration of path compression.

Figure 9. Illustration of path compression.

Contrail uses a randomized parallel list ranking algorithm [47] to efficiently compress

simple chains of length S in O(log(S)) rounds. The algorithm randomly assigns a head

or tail tag to each compressible node, which means that each node so assigned has only

a single out-link for a single direction. The path compression is an iterative algorithm.

For each iteration, the algorithm merges each pair of nodes so that 1 has a head tag and

the other has a tail tag, and they are linked together. Until the number of compressible

nodes decreases below a defined threshold (the default being 1024), MapReduce

procedures assign them all to the same reducer, and merge them in 1 round.

Tip removal and bubble removal

Read errors distort the graph structure by creating tips and bubbles. Tips are generally

due to errors at the end of reads. Bubbles are created by errors within reads or by nearby

tips presenting spurious overlaps [55]. After path compression, tips and bubbles are

 27

easily recognized with local graph structures. Figure 10 and Figure 11 illustrate how tips

and bubbles are removed. Nodes with only one out edge and lengths less than a defined

threshold are treated as tips. To remove tips in the MapReduce framework, node id is

output as the key and node data structure as value to pass graph structure to reducer and

output as a key-value pair for each tip. The key contains the node ID of a tip’s neighbor,

and value is a tip’s node ID. After shuffle and sort, reducers will receive keys

corresponding to the node ID and its neighbors, which are treated as tips. This node can

then remove tips in reduce stage.

Figure 10. Illustration of tips removal.

In contrast, bubbles are shaped from a set of nodes that has only a single in-link and a

single out-link, such as nodes R2 and R3 in Figure 11. These nodes are adjacent to the

same neighbor for both the in-link and the out-link. Thus, nodes that have one in-link

and one out-link are treated as potential bubbles. To ensure the consistency of a

potential bubble’s neighbor, one side neighbor with a large node ID is defined as major

 28

neighbor and the other side’s neighbor with a small node ID as minor neighbor. To

remove bubbles in the MapReduce framework, two MapReduce procedures are used. In

the first procedure, the graph structure is passed to the reducer, and a key-value pair for

each potential bubble is output. The key is the node ID of its major neighbor, and value

is a potential bubble’s information, which includes node feature and its minor

neighbor’s node ID. After shuffle and sort, reducers will receive keys corresponding to

node ID and its neighbors, which are potential bubbles. Using Figure 11 as an example,

R2 and R3 are potential bubbles, and R4 is their major neighbor. Thus, the information

from R2 and R3 will be output to the same machine with R4 in the reducer. Since R2 and

R3 have the same minor neighbor R1. R2 and R3 are merged into a single node in the

reducer when their sequences are similar. Once bubbles have been merged, the link

between the major neighbor (R4) and the merged node (R2) is removed. Note that a

second procedure is used to maintain the bidirected string graph structure’s consistency.

To do this, a bubble message is stored, which includes information about the minor

neighbor and the node removed to the node data structure of the major neighbor. In the

second procedure, the bubble message from the node is popped, and a key-value pair for

each bubble message is output. The key is the minor neighbor’s node ID, and the value

is the removed node’s ID. Thus, it is possible to remove the link between the minor

neighbor and the removed node in the reducer of the second procedure. Note that tip

 29

removal and bubble removal lead to additional simple chains of nodes that can be

further merged by path compression.

R1

R2

R3

R4

R1

R2

R3

R4

R1 R3R1-3-4

=

path
compression

bubble
removal

R4

Figure 11. The illustration of bubble removal.

Edge adjustment in graph simplification

To further simplify the graph, the EA algorithm is reused in graph simplification.

However, this time, it is only performed on unique nodes. A unique node is a node

whose sequence is present exactly once in the genome. In general, a unique node should

have a single in-link and a single out-link; however, sequencing error may cause

branching on the unique node. Using the EA algorithm on the unique node can fix this

problem.

The A-statistic [52] is then applied to detect the unique node. The formula of the

A-statistic is as follows:

2ln)/(),(×−×Δ=Δ rGnrA ,

(2.1)

where Δ is contig length, r is the number of reads that comprise this contig, n is the

 30

number of total reads, and G is the genome size. Although the size of the genome G is

unknown, the expected k-mer frequency can be computed in all reads in the MapReduce

framework. The expected k-mer frequency is equal to (_ 1) /read length k n G− + × , thus the

information of n/G can be obtained via the expected k-mer frequency. The A-statistic

can then be rewritten as follows:

(, ,) /(_ 1) (/ _) ln 2A c f f read length k c read lengthΔ = Δ × − + − Δ × × ,

(2.2)

where c is the coverage of contig and f is the expected k-mer frequency. According to

the formula, the A-statistic is computed for each node in the string graphs. The EA

algorithm is performed on the nodes with A-statistics >10. Note that A-statistics >10

mean that the nodes are likely located in unique regions [52]. The EA algorithm can be

performed iteratively until there are no further neighbors of the unique node to be

removed.

2.3 Results and Discussion

2.3.1 Comparison with Other Tools Using GAGE Benchmarks

To give a comprehensive comparison, GAGE [27] can be used as a benchmark to

evaluate CloudBrush and compare with 8 assemblers evaluated in GAGE. Table 2 and

Table 3 summarize the validation results for the 2 genomes: Staphylococcus aureus and

Rhodobacter sphaeroides.

 31

Table 2. Evaluation of S. aureus (genome size 2,872,915 bp).

Assembler Num N50 (kb)
N50

corr. (kb)

Indel

>5 bp
Misjoins

ABySS 302 29.2 24.8 9 5

ALLPATHS-LG 60 96.7 66.2 12 4

Bambus2 109 50.2 16.7 164 13

MSR-CA 94 59.2 48.2 10 12

SGA 1252 4 4 2 4

SOAPdenovo 107 288.2 62.7 31 17

Velvet 162 48.4 41.5 14 14

CloudBrush 527 9.7 9.5 2 10

Table 3. Evaluation of R. sphaeroides (genome size 4,603,060 bp)

Assembler Num N50 (kb)
N50

corr. (kb)

Indel

>5 bp
Misjoins

ABySS 1915 5.9 4.2 34 21

ALLPATHS-LG 204 42.5 34.4 37 6

Bambus2 177 93.2 12.8 363 5

CABOG 322 20.2 17.9 24 10

MSR-CA 395 22.1 19.1 32 10

SGA 3066 4.5 2.9 4 4

SOAPdenovo 204 131.7 14.3 406 8

Velvet 583 15.7 14.5 27 8

CloudBrush 661 12.8 12.7 10 2

 32

As described elsewhere [27], a more aggressive assembler is prone to creating more

segmental indels, as it strives to maximize the length of its contigs, while a conservative

assembler minimizes errors at the expense of contig size. From Table 2 and Table 3, it

can be seen that SGA’s assemblies have the fewest errors of misjoints and indels >5 bp

but have the shortest N50. CloudBrush produced the second fewest errors and led to

longer N50. This shows that CloudBrush is a conservative assembler but is capable of

assembling longer contigs.

2.3.2 Runtime Analysis

To evaluate the performance of CloudBrush’s approach, CloudBrush analysis was

performed on 3 different sizes of Hadoop clusters using machines leased from Hicloud

(http://hicloud.hinet.net/). The 3 clusters consisted of 20, 50, and 80 nodes, respectively.

Each node had 2 core CPU (roughly 2 GHz) and 4 GB of RAM. A 6 GB dataset

consisting of 33.8 million read pairs was used as the benchmark to analyze the

CloudBrush’s runtime. CloudBrush is counted separately in 2 phases: Graph

Construction and Graph Simplification. In Figure 12, it is observed that Graph

Construction is CloudBrush’s main bottleneck, with 20, 50, or 80 nodes. However, with

the increase in the number of nodes, the computation time of Graph Construction

decreases considerably, while the runtime of Graph Construction decreases slightly.

These experiments show that Graph Construction tends to scale well in MapReduce.

 33

Computation of Graph Simplification does not do so well.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

20 nodes 50 nodes 80 nodes

R
un

tim
e

(s
)

Graph
Construction
Graph
Simplification
Total Time

Figure 12. Runtime analysis of Dataset D3 (C. elegans) by CloudBrush.

 34

Chapter 3

3. Error Correction

3.1 Introduction

Error correction is one of the most important steps in genome assembly, often taking

much longer than the assembly itself. High-quality data can produce dramatic

differences in the results. For example, the evaluation results of GAGE [27] show the

contig sizes after error correction often increased dramatically, as much as 30-fold. This

highlights the critical importance of data quality to a good assembly. There are generally

2 ways to correct for errors in genome assembly.

The first method is based on read alignment. Initially, this finds all the overlapped

reads by doing multiple alignments. Reads that contain an error in a specific position

can be corrected by using the majority of the reads that have this base correctly. This

idea has been implemented in most error-correction algorithms [57] and can be

extended to the concept of the k-mer frequency spectrum. The method of k-mer

frequency spectrum counts the frequencies of all k-mers in the reads dataset, and then

divides them into 2 types: trusted k-mers and untrusted k-mers. The process of error

correction is to modify reads with minimal change that will transform all the untrusted

k-mers into trusted k-mers.

The second method is based on the topological features of the graph. In using the

 35

graph-based assembly approach, sequencing errors may generate complex structures in

the graph. For example, sequencing errors at the end of reads may create tips in the

graph, and sequencing errors within long reads may create bubbles in the graph. By

simplifying the graph (removing tips and smoothing bubbles), the number of errors can

be reduced, allowing the assembly of longer contigs.

 In this chapter, structural defects in a string graph as caused by sequencing error are

addressed, and an EA algorithm is proposed to resolve the problem.

3.2 Methods

3.2.1 Correct Sequencing Error by String Graph

3.2.1.1 Structural Defects in a String Graph

Tips and bubbles are well-defined problems with a solution making use of the

topological features of the graph as described elsewhere [15, 55]. Some errors, however,

create more complex structures that cannot be readily identified from the topology of

the graph. In this dissertation, these structures are referred to as “structural defects.” A

well-known structural defect is the chimerical link problem. Figure 13(a) displays an

example of chimerical links caused by sequencing error in string graphs.

 36

D

B
C

A

H

F
G

E

A B

C

D

E F HG

D

B
C

A

H

F
G

E
C

A B

C

D

E F HG

D

B
C

A

H

F
G

E
C

A B

C

D

E F HG

Figure 13. Chimerical link structure problem solved by edge adjustment.

In this instance, the chimerical link is caused by false overlap between node C and

node G. In addition to sequencing errors, repeat regions also cause structural defects in a

string graph, as seen, for example, in the well-known “frayed rope” pattern [8].

Furthermore, repeats shorter than the read lengths may also complicate processing in

string graphs, for example, if a short repeat exists in reads D, E, F, I, J, L, and M, where

C, D, E, and F are reads from a specific region in the genome, while I, J, L, and M are

reads from another region in the same genome (Figure 14(a)). It is noteworthy that in

the string graph, the edge between nodes D and L is labeled a “branch structure,” which

may lead an assembly algorithm to report an erroneous contig.

 37

D

I
J

E
F

L
M

C

D

E F

I J L M

C
D

I
J

E
F

C

D

E F

I J

L
M

L M

D

Figure 14. Branch structure problem solved by edge adjustment.

In addition to false overlaps, missing overlaps also introduce structural defects into

the string graph, for example, the formation of a braid structure caused by sequencing

errors appearing in continuous reads (Figure 15(a)). In this instance, 2 missing overlaps

forbid the adjacent reads from being merged together; node B lost an overlap link to

node C, and node D lost an overlap link to node E (Figure 15(a)). Similar to the

chimerical link problem, it is challenging to use topological features of the graph to deal

with braid structures.

 38

A B

C

D

E F

A
B

C
D

E
F

A
B

C
D

E
F

A B

C

D

E F

Figure 15. Braid structure problem solved by edge adjustment.

3.2.1.2 Edge Adjustment Algorithm

The EA algorithm presented in this dissertation fixes structural defects in string

graphs. For a node n in the string graph G, the EA algorithm adjusts edges of n by

examining neighbors of n to decide whether each neighbor has sequencing errors or not.

Figure 16 shows the pseudocode of the EA algorithm in sequential versions. Figure 17

shows the pseudocode of the EA algorithm in the MapReduce version.

 39

Require: overlap graph G = (N, E)

1: for all nodes n ∈ N do

2: construct Position Weight Matrix (PWM) of the forward neighbors

3: ConsensusSequence  ComputeConsensusSequence(PWM)

4: if ConsensusSequence != ∅ then

5: for all forward neighbors u ∈ n.AdjacencyList do

6: if !consistent(u.sequence, ConsensusSequence) then

7: remove the edge between u and n

8: end if

9: end for

10: end if

11: construct Position Weight Matrix (PWM) of the reverse neighbors

12: ConsensusSequence  ComputeConsensusSequence(PWM)

13: if ConsensusSequence != ∅ then

14: for all reverse neighbors w ∈ n.AdjacencyList do

15: if !consistent(w.sequence, ConsensusSequence) then

16: remove the edge between w and n

17: end if

18: end for

19: end if

20: end for

1: function ComputeConsensusSequenc(parameters: matrix)

2: ConsensusSequence  ∅

3: for each column ci of matrix do // from i = 1 to matrix.length

4: if the ratio of letter ‘A’ in ci > 0.6 then

5: ConsensusSequence  ConsensusSequence + “A”

6: else if the ratio of letter ‘T’ in ci > 0.6 then

7: ConsensusSequence  ConsensusSequence + “T”

8: else if the ratio of letter ‘C’ in ci > 0.6 then

9: ConsensusSequence  ConsensusSequence + “C”

10: else if the ratio of letter ‘G’ in ci > 0.6 then

11: ConsensusSequence  ConsensusSequence + “G”

12: else

13: ConsensusSequence  ConsensusSequence + “N”

14: end if

15: end for

16: if (N’s ratio in ConsensusSequence > 10%) then

17: return ∅

18: else

19: return ConsensusSequence

20: end function

Figure 16. The pseudocode of the EA algorithm in sequential versions.

 40

1: class Mapper

2: method Map (nid n, node N)

3: Emit (nid n, NODE_MSG N) // Pass along graph structure

4: for all nodeid m ∈ N.AdjacencyList do

5: Emit (nid m, NBR_MSG N) //Emit information to neighbor

6: end for

1: class Reducer

2: method Reduce(nid m, [MSG1 N1, MSG2 N2, …])

3: M  ∅

4: for all MSGi Ni ∈ [MSG1 N1, MSG2 N2, …] do

5: if IsNode(MSGi) then

6: M  Ni // Recover graph structure

7: else if IsForwardNeighbor(MSGi)

8: add Ni to Forward Position Weight Matrix (FPWM)

9: else if IsReverseNeighbor(MSGi)

10: add Ni to Reverse Position Weight Matrix (RPWM)

11: end if

12: end for

13: FCS  ComputeConsensusSequence(FPWM)

14: for all forward neighbors u ∈ M.AdjacencyList do

15: if u.sequence is not consistent with FCS then

16: remove u from M.AdjacencyList

17: end if

18: end for

19: RCS  ComputeConsensusSequence(RPWM)

20: for all reverse neighbors w ∈ M.AdjacencyList do

21: if w.sequence is not consistent with RCS then

22: remove w from M.AdjacencyList

23: end if

24: end for

25: Emit(nid m; node M)

Figure 17. The pseudocode of the EA algorithm in the MapReduce version.

Note that the NGS reads are of the same length. Thus, neighbors of n may be divided

into 2 groups, i.e., forward neighbors and reverse neighbors. A forward neighbor of n

overlaps with the suffix n, while a reverse neighbor of n overlaps with the prefix n. To

construct node n’s position weight matrix (PWM) of its neighbors in 1 of the 2

 41

directions, the reads of the neighbors to n are aligned. Then, the subsequences of each

read ranging from the end of node n to the end of the second-last neighbor are used to

define PWM of n. A consensus sequence of neighbors can be obtained by computing the

PWM of the neighbors. PWM has 4 rows corresponding to A, T, C, and G, respectively.

An element of PWM in column i is the number of occurrences of β at position i, where

β ∈ {A,T,C,G}. The consensus sequence of these subsequences may then be defined as

follows:









≤∀
>

=
6.0/|''

6.0/|

ii

iii
i SN

S
Consensus

β
ββ

,

(3.1)

where i represents the position in the consensus sequence corresponding to the column

position in PWM; β ∈ {A,T,C,G}; βi is the number of occurrences of β at position i; and

Si is the sum of the occurrences of letters at position i. The letter “N” at position i of the

consensus sequence is used if for every letter in {A,T,C,G}, 6.0/ ≤ii Sβ . Note that, if

the percentage of “N” in the consensus sequence is greater than 10%, this consensus

sequence is rejected by the EA algorithm, and all neighbors in the specific direction are

retained. Otherwise, the consensus sequence is used to detect sequencing errors in each

neighbors n' of n by comparing the subsequence of n' with the consensus sequence. The

edge (n, n') is removed if the subsequence of n' is found to be inconsistent with the

consensus sequence. Our approach defined that the subsequence of n' is consistent with

 42

the consensus sequence if every character of the subsequence is equal to the character,

except character “N” on the consensus sequence at the same position. Note that for each

node of the string graph, the EA algorithm generates a consensus sequence for each

direction to perform the consistency check and to remove edges that are inconsistent

with the consensus sequence. In an illustration of an EA algorithm, read 1 has 3

neighboring reads: 2, 3, and 4 (Figure 18). The range of the PWM exists from the end of

read 1 to the end of read 3. Since read 2 has a character “A,” which is different from the

first character “T” of the consensus sequence (Figure 18), the edge between read 1 and

read 2 will be removed. Next, the following examples were used to illustrate the

reduction of structural defects in a string graph by using the EA algorithm.

Figure 18. Illustration of the position weight matrix.

One example each of a chimerical link problem, a branch structure problem, and a

braid problem, which were solved with the EA algorithm are displayed (Figures

13(b)–15(b)). To solve the chimerical link problem, the EA algorithm generates a

consensus sequence for read A (shown in red) from the neighboring reads B, C, and D

 43

(Figure 13(b)). Since read C has 1 character that is different from the consensus

sequence, the overlap link between reads A and C will be removed. By contrast, the EA

algorithm generates a consensus sequence for read G (shown in green) from the

neighboring reads C, E, and F (Figure 13(b)). Thus, the overlap link between reads C

and G will be removed in a similar manner.

To solve the branch structure problem, the EA algorithm generates a consensus

sequence for read L from the neighboring reads D, I, and J (Figure 14(b)). Therefore,

read D differs from the consensus sequence, which is primarily represented by reads I

and J. The overlap link between reads D and L are removed.

To solve the braid structure problem, in which the errors in reads C and D complicate

the graph structure, the EA algorithm removes the overlap link between reads C and E,

and between reads B and D (Figure 15(b)). Thus, reads C and D are isolated from the

main graph, and no braid structure exists.

3.2.2 Correct Sequencing Error by Read Stack

Although the EA algorithm can reduce the effect of sequencing errors in string graph

assembly, there are some limitations of graph-based error correction. Some error

patterns and datasets may cause string graph construction to lack sufficient information

to create edges, such as low coverage region of data, or the error occurs in the prefix or

suffix region of reads. In these cases, using the error correction before creating the

 44

graph is a better choice.

In the review of GAGE, the error-correction model of ALLPATHS-LG—called a read

stack (RS) algorithm—showed a substantial improvement in sequencing assembly. To

explore the reason for its effectiveness, an overview of the RS algorithm is given in this

section.

The RS algorithm can be divided into 3 phases: (1) the recommendation phase, (2)

the correction phase, and (3) the screening phase. In the recommendation phase, a stack

of reads is built by aligning the same k-mer contained by those reads. Once the reads

stack is built, the column of reads stack is computed to give correction

recommendations. In the correction phase, it collects the information of correction

recommendation and makes decisions about which base should be corrected. In the

screening phase, reads that contain unique k-mers (after error correction) are discarded.

 Two modules are used to build read stacks: PreCorrect and FindError. The

FindErrors module uses a contiguous k-mer, whereas PreCorrect uses a split k-mer (a (k

+ 1)-mer with an unspecified central base). PreCorrect corrects only the central column

in the stack. It is run before FindErrors and can correct some errors not found by

FindErrors. Figure 19 illustrates the construction of FindError and PreCorrect. The

correction recommendation was created on the basis of frequencies and quality scores of

base calls in columns of the stack, such as the central column in PreCorrect and left and

 45

right columns in FindError (Figure 19). For each column, the quality scores are summed

separately for each of the 4 potential calls. The base call with the highest quality score

sum is declared the winner. Any other base call with no more than 1 call of quality 20 or

more and quality score sum less than one-quarter that of the winner is declared a loser

call. If there is a winner call, a correction recommendation is issued for each of the loser

calls. The corrections are made only if all of the various correction recommendations for

the same base agree with each other. Note that there is one heuristic used in the RS

algorithm that makes it more accurate than other error-correction algorithms. Some base

locations are marked as “confirmation” if they belong to winner calls and other bases in

this column are loser calls. A confirmed base location will not be error-corrected even if

it is marked in another stack as in need of correction. This conservative mechanism is

designed to prevent false positives in the error correction that occur in repeat regions.

 46

central column
left columns right columns

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

k+1 mer k mer

Figure 19. Illustration of read stack construction.

The RS algorithm is useful for error correction. Unfortunately, the construction of

read stacks makes it very costly to apply to NGS data, and the execution time is usually

longer than whole assembly time. However, the construction of read stack is easy to be

paralleled. A MapReduce version of the RS algorithm as a preprocessor is provided in

Appendix D.

3.3 Results and Discussion

3.3.1 Analysis of Edge Adjustment

Simulated datasets generated from the E. coli genome were prepared to evaluate the

effectiveness of the EA algorithm. In other words, the position of each read on the target

genome and thus the positions of sequencing errors on the read are also present in the

 47

dataset. The overlap graph of the dataset was subsequently constructed by creating a

node to present each read and an edge between each pair of reads if a node had a

sequence overlap with a size no smaller than an integer k. Two attributes are associated

with each edge of the overlap graph from the simulated data. In the first attribute, if the

positions of the 2 reads overlap with each other on the genome, then the overlapping

region is designated as a true edge; otherwise, it is designated as a false edge. The

second attribute is used to denote whether any sequencing error exists on the 2 reads of

the edge. Therefore, it is now possible to classify edges of the overlap graph into 4

classes according to these 2 attributes. Class I denotes the subset of true edges without

sequencing errors; class II denotes the subset of true edges with sequencing errors; class

III denotes the subset of false edges with sequencing errors; and class IV denotes the

subset of false edges without sequencing errors. It is noteworthy that class I edges are

most desired to improve the quality of data for subsequent stages of sequence assembly.

By contrast, class III edges are chimerical edges; class II edges contain sequencing

errors; and class IV edges contain reads that intersect repeats. Edges of classes II, III,

and IV may introduce errors or structural defects into the latter stages of sequence

assembly. Therefore, it is the design goal of the EA algorithm to minimize the number

of class II, III, and IV edges and to maximize the number of class I edges.

To test the effectiveness of the EA algorithm, 4 sets of simulated data were generated.

 48

In the first and second sets, 36-bp reads were generated at a constant coverage of 100×,

and single base errors were inserted at rates of 0.5% and 1%, respectively. In the third

and fourth sets, 150-bp reads were generated at a constant coverage of 200×, and single

base errors were inserted at rates of 0.5% and 1%, respectively. Table 4 shows the

number of edges of the overlap graphs before and after performing the EA algorithm.

Most of the edges removed by the EA algorithm were class II edges (i.e., possessing

sequencing errors). It was also observed that the EA algorithm was quite effective in

removing class III (chimerical) edges for the 2 150-bp datasets and satisfactory in

removing the class III edges for the 2 36-bp datasets. By contrast, only about 20% of the

class IV edges (i.e., those containing reads that intersect repeats) are removed by the EA

algorithm.

 49

Table 4. Edge analysis of the overlap graph before and after edge adjustment

 A braid index was used to provide an approximate measure of the number of braid

structures in a set S of reads. To acquire the braid index, the overlap graph Go(S) of S

was constructed. Following this, a simplified string graph Gs(S) of S was constructed.

This string graph was derived from Go(S) by removing contained reads, transitive edges,

Simulated

E. coli Dataset
Edge Type

of edges before

Edge Adjustment

of edges after

Edge Adjustment

Class I 92829732 92754696 [99.92%]

Class II 14519426 322510 [2.22%]

Class III 252762 118542 [46.90%]

100 × 36 bp

0.5% error

dataset

Class IV 377856 294110 [77.84%]

Class I 76439532 76364264 [99.90%]

Class II 24836446 749900 [3.02%]

Class III 358432 76162 [21.25%]

100 × 36 bp

1% error

dataset

Class IV 132412 92834 [70.11%]

Class I 115230002 115163888 [99.94%]

Class II 74214420 438274 [0.59%]

Class III 1347100 51988 [3.86%]

200 × 150 bp

 0.5% error

dataset

Class IV 403836 322746 [79.92%]

Class I 32604042 32580388 [99.93%]

Class II 53758272 554020 [1.03%]

Class III 1422472 57494 [4.04%]

200 × 150 bp

1% error

dataset

Class IV 256952 225124 [87.61%]

 50

and concatenating “one-in one-out” nodes. For each node v of Go(S), its neighborhood

was examined for a pair of vertices, u1 and u2, and an additional vertex v’, such that the

following properties exist: (1) (u1, u2) is not an edge of Go(S); (2) u1 and u2 form a

consensus when both are aligned to v; (3) (v, v’) is not an edge of Go(S); and (4) v and v’

form a consensus when aligned to u1 and u2. The braid index is then defined as the

number of tuples (v, v’, u1, u2) satisfying the aforementioned 4 properties. Table 5 shows

the braid indices of the simplified string graphs of the 4 datasets with and without the

application of the EA algorithm. It was observed that datasets with a larger sequencing

error have a larger braid index and may therefore possess more complicated braid

structures. By contrast, the EA algorithm has also been shown to be effective in

removing braid structures.

 51

Table 5. Analysis of simplified string graphs with and without edge adjustment

3.3.2 Evaluation of Assembly Accuracy

Hypothetically, a perfect assembly result produces nothing but subsquences of the

reference sequences. In particular, rearrangements do not exist in any contig. To

distinguish superior assembly results from those containing collapsed repetitive regions

or rearrangements, a strict measurement scheme known as precision and recall was

designed. The precision and recall scheme focuses on the quality of the contigs. A

contig must be aligned along its whole length with a base similarity of at least 95% in

Simulated data Graph feature
Without

edge adjustment

With

edge adjustment

of node 2502312 1572470

of edge 2220162 26079

100 × 36 bp

0.5% error

dataset braid index 342736 750

of node 4418943 2964253

of edge 4051264 46649

100 × 36 bp

1% error

dataset braid index 873835 802

of node 3839687 2680727

of edge 6618017 7739

200 × 150 bp

 0.5% error

dataset braid index 1750824 242

of node 5085964 4245557

of edge 8501560 16767

200 × 150 bp

1% error

dataset braid index 2350695 413

 52

order to be considered valid. The union of all the valid contig areas in the references

was treated as a true positive, and the recall was defined using the following formula:

number of true positive bases in reference
Recall

total length of reference sequence
=

.

(3.2)

Similarly, the union of all the valid contigs areas on the side of contigs was treated as

a true positive in contigs, and precision was defined using the following formula:

number of true positive bases in contigs
Precision

total length of contigs
=

.

(3.3)

Importantly, only contigs with length ≥ 200 bp were evaluated.

Three real and 2 simulated datasets were used to test CloudBrush and the other

assemblers. The first real dataset was a set of short-read data from an E. coli library

(NCBI Short Read Archive, accession no. SRX000429) consisting of 20.8 million 36-bp

reads. The second real dataset was released by Illumina, which included 12 million

paired-end 150-bp reads. This dataset contains sequences from a well-characterized E.

coli strain, the K-12 MG1655 library, sequenced on an Illumina MiSeq platform. For the

2 real datasets, the first half of reads were used to evaluate assemblers, and their

coverage was 81× and 197×, respectively. The 36-bp and 150-bp datasets were denoted

by D1 and D2, respectively. Furthermore, Caenorhabditis elegans sequence reads

(strain N2) were downloaded from the NCBI SRA (accession no. SRX026594). This

 53

comprised the D3 dataset and consisted of 33.8 M read pairs sequenced using the

Illumina Genome Analyzer II and a constant coverage of 67×. The 2 simulated datasets

were generated at random from the E. coli K-12 genome using 36-bp reads with 100×

coverage and 1% mismatch errors, and 100-bp reads with 200× coverage and 1%

mismatch errors.

Assembly was performed on these datasets using Edena [12], Velvet [4], Contrail [10],

and CloudBrush assemblers. Edena was the first string graph-based assembler for data

of short reads. Velvet was one of the first de Bruijn graph-based assemblers for short

reads, and it is often used as a standard tool for assembling small- to medium-sized

genomes. Contrail is the first de Bruijn graph-based assembler to use the MapReduce

framework. Each assembler is required to set the parameter k, i.e., the minimum length

of overlap for 2 contigs to form a longer contig. Considering the relationship between

parameter k and coverage [20], the following were used: k = 21 on dataset D1 and 100×

simulated data, k = 75 on dataset D2 and 200× simulated data, and k = 51 on dataset D3.

Importantly, pair-end information was not used in this experiment.

Figure 20 shows the precision and recall of contigs with different length thresholds

on the 2 simulated datasets of E. coli genome with a 1% error rate and datasets D1 and

D2. CloudBrush was observed to outperform the other assemblers for the 2 simulated

datasets; the other assemblers generated more mis-assembly contigs when reads become

 54

longer from 36 bp to 150 bp (Figures 20(a) and 20(b)). For the D1 and D2 datasets,

CloudBrush had a similar performance for precision and recall, leading the other

assemblers (Figures 20(c) and 20(d)). Longer reads and a larger error rate may generate

more complex structure defects. CloudBrush may have a greater ability to handle

complicated graph structures by using the EA algorithm.

Figure 20. The variation of precision and recall with different lower bounds of

length on simulated data and datasets D1 and D2.

A number of different evaluation criteria (summarized in Tables 6 and 7) were

considered. It is noteworthy that CloudBrush and Contrail ran on a cluster with 150

nodes each having 2 core CPU and 4 GB of RAM; while Edena and Velvet ran on a

single machine with 16 core CPU and 128 GB of RAM. Besides, Edena failed to work

 55

on datasets D2 and D3 in longer read data; therefore, no results were generated.

Furthermore, precision and recall had to be computed by parsing the result of

MegaBLAST [21].

Table 6. Evaluation of assemblies of the simulated dataset (100×, 36 bp, 1% error)

and dataset D1 with CloudBrush, Contrail, Velvet, and Edena

Dataset Assembler
of

contigs1
N50

Largest

contig

size

Precision Recall
of valid

contigs1

of invalid

contigs1

Runtime

(s)

CloudBrush 447 17907 95387 99.79% 97.51% 420 27 6218

Contrail 906 8982 40066 99.72% 96.76% 858 48 5499

Velvet 507 15632 100501 99.68% 96.95% 498 9 590

100×, 36

bp,

 1% error

Edena 4012 1436 11264 98.84% 91.85% 3868 144 2524

CloudBrush 521 15149 66832 99.26% 97.10% 481 40 5555

Contrail 930 8605 40066 99.73% 96.81% 886 44 4789

Velvet 505 15862 73042 99.62% 96.90% 494 11 452

D1 dataset

Edena 889 9045 44942 99.18% 96.34% 823 66 1401

1 Contigs with lengths >200 bp are counted.

 56

Table 7. Evaluation of assemblies of the simulated dataset (200× 150 bp, 1% error)

and datasets D2 and D3 with CloudBrush, Contrail, and Velvet

Dataset Assembler
of

contigs1
N50

Largest

contig

size

Prec

-ision
Recall

of valid

 contigs1

of invalid

 contigs1

Runtime

(s)

CloudBrush 229 112531 327245 99.20% 96.00% 152 77 10616

Contrail 2540 7554 36335 90.12% 95.92% 957 1583 15823

200×, 150

bp, 1% error

Velvet 209 78642 327101 99.63% 98.10% 168 41 1317

CloudBrush 361 52961 156592 98.10% 98.15% 230 131 8622

Contrail 300 43609 124089 98.47% 96.98% 250 50 7200

D2

dataset

Velvet 189 71764 174184 93.60% 92.20% 164 25 927

CloudBrush 37064 8880 114585 93.65% 92.41% 24603 10387 48603

Contrail 31870 8274 105244 96.99% 90.89% 25236 6116 44619

D3

dataset

Velvet 23565 10847 106863 95.55% 89.01% 20187 2838 13963

 1 Contigs with lengths > 200 bp are counted.

 57

Chapter 4

4. De Novo Assembly of Transcriptome Data

4.1 Introduction

Recently, research on de novo assembly has focused on both error removal and repeat

resolution for genomic sequences, whereas only a few studies shed light on de novo

transcriptome assembly [21, 26, 43]. However, de novo transcriptome assembly offers a

unique opportunity to study the metabolic states of organisms [21] and provides an

alternative path to study non-model organisms [5], and thus, it is a desirable and

challenging approach. The main difference between genome assembly and

transcriptome assembly is the variation in coverage. For example, in a genome

assembly project, short reads are randomly sampled from a genome, and thus, the

coverage is anticipated to be uniformly distributed on the genome. On the other hand,

the distribution of short reads in a transcriptome analysis project is highly dependent on

gene expression levels, and the abundance of expressed genes exhibit a power-law

distribution [56]. While the coverage is related to the key parameter k (or k-mer size) for

de Bruijn graph approaches [55] or minimum overlap size for string graph approaches,

it seems that a single run of an assembly program would not be sufficient for de novo

transcriptome sequencing data. In this chapter, the relationships between sequencing

error rate, coverage, and parameter k (minimal overlap size) have been studied using

 58

simulated data. Accordingly, a transcriptome assembly procedure for de novo assembly

of whole-transcriptome sequencing data is proposed. The primary innovation outlined in

this chapter is to utilize the relationship between minimal overlap size and the coverage

of sequence data. The performance and practicability of the proposed procedure is

demonstrated by using a simulated transcriptome dataset of mice.

4.2 Results

4.2.1 On the Relationship Between Coverage and Optimum k

For genome assembly projects, it has been shown that the parameter k of de Bruijn

graph approaches affects assembly results and is related to coverage [55]. Because the

coverage of transcripts is correlated with expression levels and is thus varied, it is

necessary to study the relationship between coverage and ks that optimize assembly. To

do this, an experiment on 2 synthetic transcriptome datasets of mice was conducted, one

of which was error-free and the other, with a sequencing error rate ~0.3%. The synthetic

dataset of 80 million pair-ended 36-bp reads was randomly sampled from 26,332

transcripts of mice collected from the NCBI RefSeq database [39]. To mimic the varied

coverage of transcriptome shotgun sequencing data, the number of reads of each

transcript was proportional to the number of expressed sequence tags (ESTs) multiplied

by the length of the transcript, where the EST numbers were computed according to the

NCBI dbEST database. Most transcripts have low coverage, and the variation of

 59

coverage is large, extending from 1 to 4,266 (see Figure 21). Moreover, the distribution

of the coverage is a power-law distribution and is similar to the experimental data of the

whole transcriptome shotgun sequencing for HeLa [45]. Each transcript was separately

assembled by Velvet with different parameter ks, and a k value was classified as

optimum for a transcript if the transcript could be consistently aligned with 95% or

more of the contig length [23]. Figures 22a and 22b show the relationship between the

optimum k and coverage for the error-free dataset and the dataset with an error-rate of

~0.3%, respectively. Here, a red-green heat map is used to indicate the degree of

optimization: a green cell represents a higher ratio of transcripts that are assembled well

(achieving 95% consistent alignment with contig lengths), and a red cell represents a

lower ratio of these transcripts. From these figures, 2 phenomena were observed. First,

the upper left corners of Figures 22a and 22b are red, which means that optimum ks of

transcripts with lower coverage are distributed on smaller values. In contrast, the lower

right corner of Figure 22b is red, which implies that the optimum ks of transcripts with

higher coverage are distributed on larger values when there is a sequencing error rate.

 60

Figure 21. Histogram of the coverage (expression levels) of the 26,332 transcripts

of mice.

Since the meaning of k can be treated as the minimum length of overlap for 2 short

reads to form a longer contig, the lower coverage implies less chance to have an overlap

longer than or equal to k. This, in turn, implies shorter contigs, and furthermore explains

why a smaller k is more suitable for transcripts with lower coverage. The

Lander-Waterman model [33] explains this first phenomenon. In this model, the

expected number of contigs in a genome assembly project is (c*G/L)e−(1−(k/L))c, where G

is the genome length; L is the read length; c is the coverage; and k is the minimum

length required for the detection of an overlap. Taking every transcript to be the genome

in the Lander-Waterman model, this formula was then used to estimate the relationship

between optimum ks and coverage, where a k value was classified as optimum for a

transcript if the expected number of contigs is less than or equal to 1. Figure 22c

summarizes the relationship between optimum ks and coverage. As can be seen, the

results shown in Figure 22c are similar to the results shown in Figures 22a and 22c.

 61

Figure 22. The relationship between optimum k and coverage. Green cells

represent high ratios indicating high completeness of transcripts. Red cells

represent low ratios indicating low completeness of transcripts.

For the second phenomena, it was thought that sequencing errors would result in

structural defects in the underlying de Bruijn graphs. Although de Bruijn graph

approaches have been designed to handle most of such undesirable cases, the

sequencing error rate times and higher coverage mean more error-called bases, which

implies more chances to produce structural defects that would not be resolved. In

 62

addition, a smaller k would give more chances to produce structural defects than would

a larger k. Thus, using a larger k to assemble very high coverage data is a practical

approach when there is a sequencing error rate.

4.2.2 The Effect of Sequencing Error Rate

Because a sequencing error rate of 0.3% is commonly seen in the control lane of the

Illumina Solexa sequencer [20], it is possible that the sequencing error rate might

increase for non-control lanes. To see the crosstalks among coverage, sequencing error

rate, and optimum k, mouse transcripts were arbitrarily picked to generate simulated

datasets with coverage 2×, 4×, 8×, 16×, … till 16384×. In addition, errors were

simulated with average rates of 0%, 0.3%, 0.6%, 0.9%, ... till 2.4% for every coverage.

Error rates that were slightly increased from start to end in reads were applied. For the

average error rate of 0.3%, the error rate at the first nucleotide is 0.2%. This increases

0.005% for every subsequent nucleotide. Similarly, for average error rates 0.6%,

0.9%, ... till 2.4%, the error rates start with 0.5%, 0.8%, ..., and 2.3%, respectively.

Figure 23 shows results of 1 simulated transcript, which demonstrate a consistent trend

with Figure 22b. With the increased error rate, the range of optimum ks of each

coverage narrows, and a positive correlation between coverage and optimum ks

becomes noticeable. It should be noticed that for all datasets with sequencing errors, no

k remains optimal for most tested coverage.

 63

Figure 23. The relationship between optimum ks and coverage for one

transcriptome sequence for different error rates.

4.2.3 T-CloudBrush: Multiple Overlap Size of CloudBrush

Choosing an appropriate parameter k for de Bruijn graph approaches is a practical

issue for short-read sequence data. From the above experiments, it can be seen that

coverage affects the distribution of optimum ks, and that no k is optimal for all coverage

if there are sequencing errors. Thus, the issue of choosing k becomes tricky, especially

for de novo transcriptome assembly, where data of different coverage are mixed in 1

sample. However, utilizing the correlation between coverage and optimum ks, it is

possible to merge the results of different parameter ks together and produce a more

accurate assembly of transcriptome sequencing data. Similarly, the same benefit also

 64

appears in the string graph approach.

To this end, T-CloudBrush is proposed, which integrates existing assembly programs

to deal with the varying coverage of transcriptome shotgun sequencing data. The

T-CloudBrush procedure is based on 2 observations: (1) A larger overlap size (k) is

suitable for higher coverage data, while a smaller overlap size (k) is suitable for lower

coverage data, and (2) the assembly result of an optimum overlap size is similar to that

of an adjacent optimum overlap size across a range of coverage. Figure 24 gives an

overview of the T-CloudBrush procedure.

Figure 24. Overview of T-CloudBrush procedure.

The T-CloudBrush procedure contains 2 stages. For the initial stage, reads were

 65

assembled using the string graph approach. In a string graph approach, an overlap size

filter was added between graph construction and graph simplification. Using this

mechanism, it is possible to easily construct the assembled result with different overlap

sizes without reconstructing the overlap graph. Since the coverage affects the selection

of the parameter k (minimal overlap size), all applicable ks were applied to assemble

reads. Twenty-one was selected as the smallest k and nine-tenths of read length as the

upper-bound of k. Then, different assembled results were obtained for the same input

dataset. Due to the variation of coverage and applying multiple ks, some results have

better performance for transcripts of higher coverage, while others are suitable for

transcripts of lower coverage. For the second stage, the de Bruijn graph approach was

used to assemble those results again using larger k (larger than read length). This was

done in order to join them together, because there could be duplications and overlaps

between results with different ks. Using the de Bruijn graph approach as a merge tool

can ensure duplicated contigs are merged together. Note that using k larger than read

length can maintain the read coherency in a de Bruijn graph [52].

4.2.4 Comparing T-CloudBrush with Existing Tools

To evaluate the performance of T-CloudBrush, the simulated dataset of the entire

mouse transcriptome with a sequencing error rate of 0.3% as a benchmark was used. In

the experiment, all ks in CloudBrush were compared with T-CloudBrush. Table 8 shows

 66

the results on the simulated data obtained from CloudBrush with k ranging from 21 to

31, and the results obtained from T-CloudBrush. T-CloudBrush achieved the best

precision and recall measurement. Compared with CloudBrush, T-CloudBrush

improved both precision and recall, reduced the number of contigs (longer than or equal

to 200 bps) from 29,569 to 28,888, and extended the average size of contigs from

1349.08 to 1502.84. This shows that T-CloudBrush filled many of the gaps between

highly fragmented contigs. Furthermore, the precision rate was greater than 90%, which

implies that the quality of resulting contigs is reliable.

T-CloudBrush was also compared with Trinity, a state-of-the-art transcriptome

assembler. Figure 25 shows the precision and recall of contigs with different thresholds

of lengths on simulated mouse data using T-CloudBrush and Trinity. From this figure, it

can be seen that T-CloudBrush outperformed Trinity on this dataset.

 67

Table 8. Evaluation for assemblies of simulated mouse data with T-CloudBrush as

compared to CloudBrush using different k-mer

k-mer parameter 21 23 25 27 29 31 T-CloudBrush

Precision 93.43% 92.17% 92.23% 91.99% 91.86% 89.02% 93.15%

Recall 20.10% 60.32% 58.18% 55.13% 50.29% 42.22% 61.88%

of contigs ≥200 bp 31163 30115 29569 30190 30981 29300 28888

mean size (bp) 1403.89 1399.1 1349.08 1217.17 1025.34 787.6 1502.84

largest contig 86226 81929 81929 81794 47318 15910 81751

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

>
10

00
00

>
50

00
0

>
35

00
0

>
25

00
0

>
15

00
0

>
50

00

>
50

0

T-CloudBrush
Precision
T-CloudBrush
Recall
Trinity
Precision
Trinity
Recall

Figure 25. The variation of precision and recall with different lower bounds of

length on simulated mouse data using T-CloudBrush and Trinity.

4.3 Discussion

In these experiments, it was found that the optimal overlap size of graph-based

assemblers is positively correlated with the coverage of the sequence data. This

phenomenon occurs because lengths of overlap between reads are highly dependent on

 68

the coverage and error rate. The lower the coverage, the lower the probability of having

a longer overlap between reads. Thus, selecting a shorter minimum overlap as a

criterion for assembling reads is appropriate for low coverage data. On the other hand,

the higher coverage may amplify the occurrence of sequencing errors in reads.

Therefore, selecting a longer minimum overlap as a criterion for assembling reads

should filter out the noise for high coverage data.

As for transcriptome sequencing data, coverage is associated with expression levels.

Because the expression levels exhibit a power-law distribution, choosing an appropriate

overlap size for graph-based assemblers becomes a problematic issue. However, these

problems can be solved by taking all of the possible overlap sizes into account. These

experiments show that by merging the results of different overlap sizes obtained by

graph-based assemblers, better performance for de novo transcriptome assembly is

obtained.

 69

5. Conclusion and Future Research

De novo assembly remains the greatest challenge for DNA sequencing, and there are

specific problems for NGS, which produces high-coverage sequencing data. The

problems include (1) large volumes of data, (2) sequencing error, (3) repeats, and (4)

non-uniform coverage. This dissertation provides a possible solution for the

abovementioned problems.

Regarding large volumes of data, a distributed assembly program based on string

graphs and the MapReduce cloud computing framework is implemented. The method

was evaluated against the GAGE benchmarks set by Salzberg et al [27] to compare its

assembly quality with other de novo assembly tools. The results show that the proposed

assemblies have moderate N50 and a low misassembly rate of misjoints and indels.

As for sequencing errors, the structure of string graphs in the context of

high-coverage sequencing data was analyzed. Preliminary studies show that the

underlying string graph used to model the intersection of reads in high-coverage data

becomes too complicated for previously described assembly algorithms to handle. Thus,

several types of structural defects were identified in the string graph approach. The

proposed algorithms could detect the structural defects by examining neighboring reads

of a specific read for sequencing errors and to adjust edges of the string graph if

necessary.

 70

To solve the non-uniform coverage problem, the relationships between read overlap

size, coverage, and error rate were studied using simulated data. Based on these

discovered relationships, a de novo transcriptome assembly procedure was developed,

and its performance was demonstrated on a simulated dataset of mice.

The next target is to incorporate the scaffolding issue and mate-pair analysis into the

MapReduce pipeline in order to resolve the repeat problem.

 71

Appendix A: List of Publications

Journal Publications

Yu-Jung Chang, Chien-Chih Chen, Chuen-Liang Chen and Jan-Ming Ho, "A De Novo

Next Generation Genomic Sequence Assembler Based on String Graph and MapReduce

Cloud Computing Framework," BMC Genomics (2012) Volume 13 Supplement 7, S28.

(Chang and Chen contributed equally to this paper)

Chien-Chih Chen, Kai-Hsiang Yang, Chuen-Liang Chen and Jan-Ming Ho, "BibPro: A

Citation Parser Based on Sequence Alignment," IEEE Transactions on Knowledge and

Data Engineering, volume 24, number 2, pages 236-250, January 2012.

Chien-Chih Chen, Wen-Dar Lin, Yu-Jung Chang, Chuen-Liang Chen, and Jan Ming

Ho, "Enhancing de novo transcriptome assembly by incorporating multiple overlap

sizes," ISRN Bioinformatics, 2012. (Chen and Lin contributed equally to this paper)

Conference Papers

Yu-Jung Chang, Chien-Chih Chen, Chuen-Liang Chen, and Jan-Ming Ho, "De Novo

Assembly of High-Throughput Sequencing Data with Cloud Computing and New

Operations on String Graphs," Proceedings 5th International Conference on Cloud

Computing, IEEE CLOUD 2012, IEEE Hawaii, USA. (Chang and Chen contributed

equally to this paper)

Yu-Jung Chang, Chien-Chih Chen, Chuen-Liang Chen and Jan-Ming Ho, "CloudBrush:

A String Graph Approach of De Novo Assembly for High-Throughput Sequencing Data

with Cloud Computing," Proceedings the 10th Asia Pacific Bioinformatics Conference,

pages 1, IEEE, Melbourne Australia.

Chien-Chih Chen, Kai-Hsiang Yang and Jan-Ming Ho, "BibPro: A Citation Parser

Based on Sequence Alignment Techniques," the IEEE 22nd International Conference on

Advanced Information Networking and Applications (AINA), March 2008.

 72

Appendix B: CloudBrush Manual

Introduction

CloudBrush is a de novo genome assembler based on the string graph and MapReduce

framework.

System requirement

To use CloudBrush on a private Hadoop cluster, CloudBrush should be installed on the

namenode machine of the working Hadoop cluster.

Installation

Download CloudBrush.jar

> wget http://cloudbrush.iis.sinica.edu.tw/download/CloudBrush.jar

Usage:

The first step is converting .fasta file into .sfq file. (e.g. E_coli.fastq as input file)

e.g.

> wget http://cloudbrush.iis.sinica.edu.tw/download/Fastq2Sfq.class

> java Fastq2Sfq E_coli.fastq E_coli.sfq

The second step is uploading data into hdfs.

e.g.

hadoop fs –put E_coli.sfq input

 73

After the upload is finished, start CloudBrush by executing:

hadoop jar CloudBrush.jar [-asm dir] [-reads dir] [-readlen readlen] [-k k] [options]

e.g.

> hadoop jar CloudBrush.jar –reads input –asm out –k 21 –readlen 36

Download the results from hdfs:

e.g.

> hadoop fs –cat output/* > result.fasta

The following table describes all the properties of a CloudBrush configuration in detail:

General Options:

Parameter Description Required Default

-asm <asmdir> output directory yes -

-reads <readsdir> input directory yes -

-readlen <bp> read length yes -

-k <bp> minimun overlap size

to build overlap graph

(half of read length is a

possible choice)

yes -

-kmercov

<coverage>

average coverage of

k-mer (used to

determine unique node

and repeat node)

no 30

-slots <slots> Hadoop slots to use no 50

 74

Advanced Options:
-kmerup <coverage> threshold to build

overlap graph

(prevents node from

having too many

degrees)

no 200

-kmerlow <coveage> threshold to build

overlap graph

(prevents chimerical

edge in the beginning)

no 1

-maj <ratio> majority of position

weight matrix

no 0.6f

-N <ratio> ratio of N character in

consensus sequence

no 0.1f

-tiplen <len> threshold to detect tip

structure

no 10*readlen

-bubblelen <len> threshold to detect

bubble structure (max

bubble length)

no 4*readlen-2*k-1

-bubbleerrate <len> threshold to detect

bubble structure (max

bubble error rate)

no 0.05f

-lowcov <coverage> threshold to detect low

coverage node

(coverage of node)

no 1

-lowcovlen <len> threshold to detect low

coverage node (node

length)

no 2*readlen

 75

Appendix C: CloudBrush Web Demo User

Guide

Building a Hadoop cluster to run a distributed NGS analysis program, like

CloudBrush, is usually not a trivial work for biologist. To demonstrate the performance

of CloudBrush, we build a web demo site that provide a graphical user interface to

execute CloudBrush. The web demo site is http://cloudbrush.iis.sinica.edu.tw:8082.

Figure A1 shows the main interface, which is structured as follows: the toolbar on the

top shows the buttons of Run Job and Upload. The upper panel displays all executed

jobs, and the lower panel shows job details like the execution time, result files,

parameters, and status of the currently selected job.

Figure A1. The main interface.

 76

Upload Data

First, you need to upload your input files (fastq format) into the HDFS Filesystem on

your cluster. This can be done by clicking on the Upload Data button, whereby the

source of your data has to be selected (see Figure A2). The input of CloudBrush or

ReadStackCorrector is a HDFS directory; thus, you can upload multiple files in the

same directory. Note that each read must have a unique name in a fastq file, and each

file must be less than 200 MB.

Figure A2. The upload interface.

Run Job

After the upload is finished, a job can be submitted by clicking on the button Run Job.

There are 3 types of jobs that can be executed, as shown in Figure A3.

 77

Figure A3. The job selection interface.

[1] ReadStackCorrector

ReadStackCorrector is an error correction tool. It can be used as a preprocessor of

CloudBrush. To execute ReadStackCorrector, you should specify the input directory

(browse from HDFS) as shown in Figure A4. Then, the job can be submitted by clicking

on the button Finish. Once the job is finished, the resultant file can be downloaded

directly via the web interface (see Figure A5). Note that the output of

ReadStackCorrector can be used as the input of CloudBrush, which is under the folder

/My workspace/output/{Default Job Name}/output/.

 78

Figure A4. The interface of ReadStackCorrector.

Figure A5. The result of ReadStackCorrector.

[2] CloudBrush

CloudBrush is the core program of sequence assembly. To execute CloudBrush, the

input directory (uploaded in the upload data step or the output directory of

ReadStackCorrector) and the program-specific parameters should be specified, after

 79

which the job can be submitted by clicking on the button Finish (see Figure A6). Once

the job is finished, the result file can be downloaded directly via the web interface (see

Figure A7).

Figure A6. The interface of CloudBrush.

Figure A7. The results page of CloudBrush.

 80

[3] CloudBrush2 (ReadStackCorrector + CloudBrush)

Cloudbrush2 is a pipeline to concatenate ReadStackCorrector and CloudBrush. To

execute this pipeline, the input directory and the program-specific parameters should be

specified, which is similar to the operation of CloudBrush.

 81

Appendix D: Source Code

The complete source code of ReadStackCorrector and CloudBrush can be

downloaded freely under an Apache License 2.0 at the following addresses:

https://github.com/ice91/ReadStackCorrector

https://github.com/ice91/CloudBrush

 82

Bibliography

1. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. A greedy algorithm for aligning

DNA sequences. J. Comput. Biol. 7, 203-214 (2000).

2. Idury, R. M. & Waterman, M. S. A new algorithm for DNA sequence assembly. J.

Comput. Biol. 2, 291-306 (1995).

3. Myers, E. W. et al. A whole-genome assembly of Drosophila. Science 287,

2196-2204 (2000).

4. Simpson, J. T. et al. ABySS: a parallel assembler for short read sequence data.

Genome Res. 19, 1117-1123 (2009).

5. Collins, L. J., Biggs, P. J., Voelckel, C. & Joly, S. An approach to transcriptome

analysis of non-model organisms using short-read sequences. Genome Inform 21,

3-14 (2008).

6. Batzoglou, S. et al. ARACHNE: a whole-genome shotgun assembler. Genome Res.

12, 177-189 (2002).

7. de la Bastide, M. & McCombie, W. R. Assembling genomic DNA sequences with

PHRAP. Curr Protoc Bioinformatics Chapter 11, Unit11.4 (2007).

8. Miller, J. R., Koren, S. & Sutton, G. Assembly algorithms for next-generation

sequencing data. Genomics 95, 315-327 (2010).

9. Schatz, M. C., Delcher, A. L. & Salzberg, S. L. Assembly of large genomes using

 83

second-generation sequencing. Genome Res. 20, 1165-1173 (2010).

10. Koren, S., Treangen, T. J. & Pop, M. Bambus 2: scaffolding metagenomes.

Bioinformatics 27, 2964-2971 (2011).

11. Pop, M. & Salzberg, S. L. Bioinformatics challenges of new sequencing technology.

Trends Genet. 24, 142-149 (2008).

12. Li, Z. et al. Comparison of the two major classes of assembly algorithms:

overlap-layout-consensus and de-bruijn-graph. Brief Funct. Genomics 11, 25-37

(2012).

13. Xia, Q. et al. Complete resequencing of 40 genomes reveals domestication events

and genes in silkworm (Bombyx). Science 326, 433-436 (2009).

14. Medvedev, P., Georgiou, K., Myers, G. & Brudno, M. Computability of models for

sequence assembly. Algorithms in Bioinformatics 289-301 (2007).

15. M. C. Schatz, D. Sommer, D. R. Kelley, and M. Pop. Contrail: Assembly of large

genomes using cloud computing. at <http://contrail-bio.sourceforge.net.>

16. Lin, J. & Dyer, C. Data-intensive text processing with MapReduce. Synthesis

Lectures on Human Language Technologies 3, 1-177 (2010).

17. Robertson, G. et al. De novo assembly and analysis of RNA-seq data. Nat. Methods

7, 909-912 (2010).

18. Li, R. et al. De novo assembly of human genomes with massively parallel short read

 84

sequencing. Genome Res. 20, 265-272 (2010).

19. Hernandez, D., François, P., Farinelli, L., Osterås, M. & Schrenzel, J. De novo

bacterial genome sequencing: millions of very short reads assembled on a desktop

computer. Genome Res. 18, 802-809 (2008).

20. Chaisson, M. J., Brinza, D. & Pevzner, P. A. De novo fragment assembly with short

mate-paired reads: Does the read length matter? Genome Res. 19, 336-346 (2009).

21. Birol, I. et al. De novo transcriptome assembly with ABySS. Bioinformatics 25,

2872-2877 (2009).

22. Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating

inhibitors. 1977. Biotechnology 24, 104-108 (1992).

23. Simpson, J. T. & Durbin, R. Efficient de novo assembly of large genomes using

compressed data structures. Genome Res. 22, 549-556 (2012).

24. Chen, C. C., Lin, W. D., Chang, Y. J., Chen, C. L. & Ho, J. M. Enhancing de novo

transcriptome assembly by incorporating multiple overlap sizes. ISRN

Bioinformatics 2012, (2012).

25. Glenn, T. C. Field guide to next-generation DNA sequencers. Mol. Ecol. Resour. 11,

759-769 (2011).

26. Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data

without a reference genome. Nat. Biotechnol. 29, 644-652 (2011).

 85

27. Salzberg, S. L. et al. GAGE: A critical evaluation of genome assemblies and

assembly algorithms. Genome Res. 22, 557-567 (2012).

28. Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Res. 25, 3389-3402 (1997).

29. Pettersson, E., Lundeberg, J. & Ahmadian, A. Generations of sequencing

technologies. Genomics 93, 105-111 (2009).

30. Pop, M. Genome assembly reborn: Recent computational challenges. Brief

Bioinform 10, 354–366 (2009).

31. Paul Medvedev Genome Graphs. (2010).

32. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre

reactors. Nature 437, 376-380 (2005).

33. Lander, E. S. & Waterman, M. S. Genomic mapping by fingerprinting random

clones: a mathematical analysis. Genomics 2, 231-239 (1988).

34. White, T. Hadoop: The definitive guide. (Yahoo Press: 2010).

35. Gnerre, S. et al. High-quality draft assemblies of mammalian genomes from

massively parallel sequence data. Proc. Natl. Acad. Sci. USA 108, 1513-1518

(2011).

36. Ilie, L., Fazayeli, F. & Ilie, S. HiTEC: accurate error correction in high-throughput

sequencing data. Bioinformatics 27, 295-302 (2011).

 86

37. Walter, C. Kryder’s law. Sci. Am. 293, 32–33 (2005).

38. Dean, J. & Ghemawat, S. MapReduce: Simplified data processing on large clusters.

Communications of the ACM 51, 107-113 (2008).

39. Pruitt, K. D., Tatusova, T. & Maglott, D. R. NCBI reference sequences (RefSeq): a

curated non-redundant sequence database of genomes, transcripts and proteins.

Nucleic Acids Res. 35, D61-65 (2007).

40. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26,

1135-1145 (2008).

41. Mardis, E. R. Next-generation DNA sequencing methods. Annu. Rev. Genomics

Hum. Genet. 9, 387-402 (2008).

42. Gao, S., Sung, W.-K. & Nagarajan, N. Opera: reconstructing optimal genomic

scaffolds with high-throughput paired-end sequences. J. Comput. Biol. 18,

1681-1691 (2011).

43. Jackson, B. G., Schnable, P. S. & Aluru, S. Parallel short sequence assembly of

transcriptomes. BMC Bioinformatics 10 Suppl 1, S14 (2009).

44. Nagarajan, N. & Pop, M. Parametric complexity of sequence assembly: theory and

applications to next generation sequencing. J. Comput. Biol. 16, 897-908 (2009).

45. Morin, R. et al. Profiling the HeLa S3 transcriptome using randomly primed cDNA

and massively parallel short-read sequencing. BioTechniques 45, 81-94 (2008).

 87

46. Kelley, D. R., Schatz, M. C. & Salzberg, S. L. Quake: quality-aware detection and

correction of sequencing errors. Genome Biol. 11, R116 (2010).

47. Vishkin, U. Randomized speed-ups in parallel computation. Proceedings of the

Sixteenth Annual ACM Symposium on Theory of Computing 230-239 (1984).

48. Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D. & Pirovano, W. Scaffolding

pre-assembled contigs using SSPACE. Bioinformatics 27, 578-579 (2011).

49. Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11,

31-46 (2009).

50. Stein, L. D. The case for cloud computing in genome informatics. Genome Biol. 11,

207 (2010).

51. Wang, J. et al. The diploid genome sequence of an Asian individual. Nature 456,

60-65 (2008).

52. Myers, E. W. The fragment assembly string graph. Bioinformatics 21 Suppl 2,

ii79-85 (2005).

53. Mardis, E. R. The impact of next-generation sequencing technology on genetics.

Trends Genet. 24, 133-141 (2008).

54. Mullikin, J. C. & Ning, Z. The phusion assembler. Genome Res. 13, 81-90 (2003).

55. Zerbino, D. R. & Birney, E. Velvet: algorithms for de novo short read assembly

using de Bruijn graphs. Genome Res. 18, 821-829 (2008).

 88

56. Furusawa, C. & Kaneko, K. Zipf’s law in gene expression. Phys. Rev. Lett. 90,

088102 (2003).

57. Yang X., Chockalingam S. P., Aluru S. A survey of error-correction methods for

next-generation sequencing. Brief Bioinform. (2012).

