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中文摘要

我們比較了 von Kármán 方程式的數值解與線性近似的結果，發現某些 von

Kármán 方程式的解的特性，能夠被其線性化方程所表現。為了更進一步驗證這

個結果，我們採用 amplitude equation。為了解決 damping 項造成的影響，我們

提出一個新的方法。此方法雖然 amplitude 部份近似的很好，但 phase 部份相當

差，有待進一步的研究。
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Abstract

By the comparison between the numerical results and the linearized solution,

we show some solutions of von Kármán’s equation have global feature that can be

captured by the linearized solutions, although there are some shifts in amplitude

and phase.

To show the validity of this approach and polish the approximation, we use

the amplitude equation approach, which can tune the amplitude and phase of the

linearized solutions to make them fit. We encounter difficulty in the course of finding

the amplitude equation of damping systems. To solve this problem, we propose an

idea to deal with the exponential growth of the zero-th order solution. Although the

phase of the approximate solution deviates from the numerical results very much,

the amplitude fits well. Further investigation is under way.
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Chapter 1

Introduction

From hurricanes to eddies in water tubs, phenomena involving rotating fluids

are ubiquitous. They are not only interesting in themselves but also important in

both science and engineering. As a devastating example, we note that typhoons and

tornados have been causing great damages every year, and so the study of related

topics clearly is of utmost importance in meteorology. A better understanding of

the structure and the dynamics of these big swirls will help us better equipped to

deal with the potential damage they can cause. Another good example is concerned

with electric fans. The study of rotating flows may improve the efficiency of fans,

which is of course important in engineering. For more details, one may refer to [4]

and [10] for more information.

One of the important topics in rotating flows is concerned with rotating disk

systems. Many engineering applications contain disk-like structures such as hard

disks and flywheels. Because all these devices work in the air or in some fluid, the

study of rotating flows with rotating disks is inevitable.

To immerse a disk into a fluid in a cylindrical container is perhaps one of the

1



2 CHAPTER 1. INTRODUCTION

simplest examples involving rotating disks. The effect of the rotating disk is similar

to stirring tea in a cup. This seemingly easy daily task actually exhibits an interest-

ing fluid dynamic phenomenon which has become the famous tea leaf problem1; and

this problem had been solved qualitatively by Einstein [6]. However, the quantita-

tive analysis is more difficult. Indeed, up to now we still have no analytical solution

for it.

In analogy to the tea leaf problem, we can do a slightly varied version of the

experiment, this time replacing the tea leaves with another fluid. Thus, we have

two immiscible fluids with different densities in the cylindrival container. When the

disk is rotating, one can see the interface between the two layers of fluid to deform

into many interesting shapes when the rotating speed of the disk is varied. This

problem, like many other fluid problems, is difficult to analyze.

To get some insight into this problem, we may investigate the problem with a

simpler geometry. One example is to consider an infinite disk rotating in a space full

of fluid. In other words, we have effectively removed the sidewall and the bottom

of the cylindrical container, and make the size of the system infinite. This idealized

case may be thought of as an approximation to a large enough system which can be

more easily susceptible to mathematical analysis. As it turns out, this is indeed the

case, and the first person to tackle it is none other than the famous von Kármán [11].

In 1921 he managed to find an analytical solution to this problem using similarity

principles. Because of the assumed form of the similarity solution, the original

governig equations, a set of coupled partial differential equations, are reduced to a

system of ordinary differential equations, which are much easier to deal with.

1http://en.wikipedia.org/wiki/Tea_leaf_paradox
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The same problem was once again picked up by Cochran in 1934 [5] , who cor-

rected some of the numerical errors contained in [11] and did a numerical integration

of the equations derived by von Kármán.

In 1940, Bödewadt consider a similar problem with opposite boundary condi-

tions. Bödewadt’s disk is stationary and the fluid at infinity is rotating, while von

Kármán’s disk is rotating and the fluid at infinity is stationary. In a sense, then,

Bödewadt’s system is more closely related to the tea leaf problem.

Generalizing the original von Kármán problem a bit, another important study

was done by Batchelor when he extended these one-disk problems to two disks [1].

The similarity solution still holds for the two-disk problems. However, Batchelor de-

rived his conclusion only from physical intuition and continuity of solutions, leaving

the analytical part mostly untouched.

Interestingly, however, Stewartson did not agree with Batchelor’s conclusion

about the flow between a rotating disk and a stationary disk [9]. Instead, he derived

another conclusion from both theoretical argument and experiment. The two conclu-

sions, which had been derived respectively by two famous figures in fluid dynamics,

are conflicting.

Eventually, the conflict was settled down by numerical results. In 1968 Mellor,

Chapple and Stokes showed the multiplicity of the solutions to this problem [7]. For

high Reynolds numbers, their research indicated that solutions of the two types are

both possible. (That is, the solutions are not unique, and which solution can be

realized then depends on how one reaches the final configuration.)

To make the problem more complicated and interesting, some researchers further

consider suction or injection at the disk surface so that the z-component of the



4 CHAPTER 1. INTRODUCTION

velocity can be nonzero at the disk. For more, the readers are referred to an excellent

review article by Zandbergen and Dijkstra [12].

In this thesis, we will investigate the simplest possible scenario of the one-disk

and two-disk problems. By comparing with numerical results, we show that these

nonlinear similarity solutions contain features which are prominently present in the

solutions to the linearized equations. We also discuss an attempt to use the ampli-

tude equation approach to show why the behavior of some solutions of the nonlinear

systems is dominated by that of the linearized systems. The structure of the thesis

is as follows: After this brief introduction, we give a simple review of the solution

to the original von Kármán approach in Chapter 2. Then in Chapter 3 we consider

the linearized solution to von Kármán’s equations and show how it compares to the

numerical solution to the full set of von Kármán’s equations. Chapter 4 begins with

the observation of why an amplitude equation approach might be able to explain the

adequacy of using our linearized solution to approximate the full nonlinear solution,

then we discuss a simplified system which is meant to illustrate the point we are

trying to get across, together with the difficulties we have encountered. Chapter 5

summarizes our investigation.



Chapter 2

A review of von Kármán’s swirling

solution

In this chapter we give a brief review of the similarity solution first proposed by

von Kármán, which actually can be applied to problems consisting of one or two

infinite disks. We also present some numerical results of these equations which will

serve as a benchmark for our analysis of Chapter 3.

2.1 von Kármán’s similarity solution

Consider the viscous incompressible fluid in the region z > 0, with an infinite

disk on the plane z = 0 (Fig. 2.1). The disk rotates along z-axis at angular velocity

Ω, while as z → ∞, the fluid has uθ → 0. With the assumption that the solu-

tion has azimuthal symmetry and if we consider only time-independent solutions,

Navier-Stokes equation and the incompressibility condition in cylindrical coordinates

5
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Figure 2.1: An infinite disk with fluid.
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In the above, ν is the kinematic viscosity, and P is the pressure in the fluid. Though

axial symmetry alone has already helped simplifying the equations a lot, this by

itself does not make finding the solutions any easier.

To make further progress, von Kármán proposed a similarity solution in 1921,

which reduces the coupled partial differential equations with both r and z depen-

dence into coupled ordinary differential equations depending on just one single vari-

able z. This significantly simplifies the whole problem. Following von Kármán,

let

ur = rΩf(ζ), uθ = rΩg(ζ), uz =
√
νΩh(ζ), (2.5)
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where

ζ =

√
Ω

ν
z

is a rescaled height parameter. After substituting this ansatz into Eqns. (2.1)-(2.4),

the equations become

f 2 + hf ′2 = − 1

ρΩ2

1

r

∂P

∂r
+ f ′′, (2.6)

2fg + hg′ = g′′, (2.7)

hh′ = − 1

ρνΩ

∂P

∂ζ
+ h′′, (2.8)

2f + h′ = 0. (2.9)

In conformity to the usual practice, we will impose the no-slip boundary condition

on the disk. We also assume that the radial and angular velocity both vanish at

infinity. (Thus, rotation is assumed to be strong only near the “driving” disk whereas

the fluid far away is only “sucked in” along the axial direction and is not rotating

at all.) Therefore,

ur = 0, uθ = rΩ, uz = 0 at z = 0,

ur = 0, uθ = 0, as z → ∞.

Note that we do not specify the axial velocity at infinity, as it will have to be

determined self-consistently afterwards so that mass conservation can be satisfied

for given value of Ω. Then the boundary conditions for f , g, and h are

f = 0, g = 1, h = 0 at ζ = 0, (2.10)

f → 0, g → 0 as ζ → ∞. (2.11)

Integrating Eqn. (2.8), we get

− 1

ρνΩ
P =

1

2
h2 − h′ +Π(r)
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for some function Π(r) yet to be determined. Substituting this expression into Eqn.

(2.6), we get

f 2 + hf ′2 − f ′′ =
ν

Ω

1

r

dΠ

dr
. (2.12)

Since the left-hand-side of the above equation is a function of z only, wheras the

right-hand-side depends on r only, they each must be equal to some constant. But

in view of the boundary condition Eqn. (2.11), we have

f → 0, f ′ → 0, , f ′′ → 0, g → 0 as ζ → ∞.

So the constant is 0.

Hence we have

f 2 + hf ′2 =f ′′ (2.13)

2fg + hg′ =g′′ (2.14)

2f + h′ = 0 (2.15)

Before attempting any solutions, we note in passing that we now have three equa-

tions involving three unknown functions f , g, and h, and there are five boundary

conditions for this 5th order system, so that everything is self-consistent up to this

point.

Although this system still can not be solved analytically, one can numerically

solve it using computers (Fig. 2.2). In finding the numerical solution, we have used

a user-friendly fortran package called BVP_SOLVER-2 [3] to solve boundary value

problems.

From the numerical result, we see that there is a radially outward flow near the

disk. By the continuity condition, this tells us that that there is a suction towards

the disk, and fluid far away from the disk is sucked in, as already mentioned before.
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Figure 2.2: The numerical result of von Kármán’s equations.



10 CHAPTER 2. A REVIEW OF VON KÁRMÁN’S SWIRLING SOLUTION

Thus, the disk acts like a suction fan, which rotates and throws the fluid nearby

radially out, whose action then induces a suction to drive the fluid in axially.

2.2 Rotating fluid with a stationary disk

Obviously, the magic of von Kármá’s similarity solution is the assumption made

in Eqn. (2.5). This also points the way to generalizing it to other systems that

resemble von Kármán’s. Here we consider a rotating fluid with a stationary disk.

We assume

ur = 0, uθ = 0, uz = 0 at z = 0, (2.16)

ur = 0, uθ = rΩ, as z → ∞. (2.17)

In other words, the fluid exhibits solid rotation far away from a stationary disk.

Using the same similarity form of Eqn. (2.5), the boundary conditions become

f = 0, g = 0, h = 0 at ζ = 0, (2.18)

f → 0, g → 1 as ζ → ∞. (2.19)

Similarly, after imposing Eqn. (2.19) to Eqn. (2.12), we get

f 2 + hf ′2 =f ′′ − 1 (2.20)

2fg + hg′ = g′′ (2.21)

2f + h′ = 0 (2.22)

From the numerical result (Fig. 2.3), we observe that there is a radially inward

flow near the stationary disk this time. This solution then reminds one of the famous

tea cup problem: when we stir the tea (to make it a rotating fluid), tea leaves near
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Figure 2.3: The numerical result of the rotating fluid with a stationary disk.
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z

Figure 2.4: Two infinite disks.

the bottom of the cup tend to aggregate near the center of the cup, which is a result

of the radial inward flow, whereas the fluid near the central column will rise (just to

satisfy the cntinuity equation).

2.3 The two-disk problem

In the two examples we discussed above, the fluid extends infinitely in the positive

z-direction. In fact, the similarity solution still works even if we place another disk

at z = d plane (Fig. 2.4). This makes the system finite along the z-axis and so

slightly more realistic, although it is still infinite in the r-direction.

Assume the upper disk at z = d has an angular velocity Ω, and the lower one at

z = 0 has an angular velocity of Ω′. The boundary conditions are

ur = 0, uθ = rΩ, uz = 0 at z = d, (2.23)

ur = 0, uθ = rΩ′, uz = 0 at z = 0. (2.24)

Using the ansatz of Eqn. (2.5) we once again get Eqns. (2.6)-(2.9). And the
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boundary conditions become

f = 0, g = 1, h = 0 at ζ = d, (2.25)

f = 0, g =
Ω′

Ω
, h = 0 at ζ = 0. (2.26)

Before going on, a remark is in order: Though we can still argue as before that

each side of the equality sign of Eqn. (2.12) must separately equal some constant,

the numerical value of this constant can not be directly read off from the current

boundary conditions, because we don’t know f ′ and f ′′ at either boundary.

To progress further, we may eliminate the pressure using cross differentiation.

(This is equivalent to taking the curl of the Navier-Stokes equation.) For instance,

Differentiating Eqn. (2.8) with respect to r gives us an expression for ∂2P
∂r∂ζ

, and a

similar trick differentiating Eqn. (2.6) with respect to ζ yields yet another expression

for the same ∂2P
∂r∂ζ

. Then, we may use the two results to eliminate ∂2P
∂r∂ζ

. The result is

2ff ′ + h′f ′ + hf ′′ − 2gg′ = f ′′′,

or

(2f + h′)f ′ + hf ′′ − 2gg′ = f ′′′.

The first term of the above equation is zero by the continuity equation (Eqn. (2.9)).

So, finally, we get

hf ′′ − 2gg′ =f ′′′ (2.27)

2fg + hg′ = g′′ (2.28)

2f + h′ = 0. (2.29)

Unlike the one-disk problem, various different combinations of d and Ω′/Ω might

result in different classes of solutions. Here we consider a particular case with
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Figure 2.5: The numerical result of the rotating fluid within a stationary disk and

a rotating disk.

Ω′ = 0. For this system, we can define the Reynolds number to be Re ≡ Ωd2/ν.

Since ζ =
√

Ω/νz, z = d corresponds to ζ =
√
Ωd2/ν =

√
Re. The numerical

result of Re = 1000 is shown in Fig. 2.5. Before ending this brief review, we must

emphasize once again that this solution is just one of several possible solutions. In

fact, there exists many solutions for a given Reynolds number [7].



Chapter 3

Linearized Solution

Inspecting the coupled differential equations of von Kármán’s, one does not have

a clear idea of how an analytical solution can be sought directly. However, after

playing around with the system parameters from the numerical results, a persistent

feature eventually emerges: For regimes we have studied, the behavior of the solu-

tions does not look complicated at all. Encouraged by this observation, we decided

to see if there is any approximate way to look at things.

As an illustration, we found that, as long as the Reynolds number is not too

small, f , g, and h are almost constants in the domain except for regions near the

boundaries. This then suggests the possibility of treating the variables as some

constants plus a suitable perturbation. As such, we may attempt to linearize the

equations and study their behavior. As a first test case, we try it on the one-disk

problem in which the Reynolds number may be thought of as being infinite (because

there is no physical finite length scale to enter the definition of Reynolds number).

15
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3.1 The one-disk problem

Let g∞ and h∞ be the asymptotic values of g and h as ζ → ∞. Then the

equations in Sections 2.1 and 2.2 can be written as

f 2 + hf ′2 = f ′′ − g2∞ (3.1)

2fg + hg′ = g′′ (3.2)

2f + h′ = 0 (3.3)

Now, we may use Eqn. (3.3) to eliminate f in all the equations above. This

yields

h′′′ = −(h′)2

2
+ hh′′2 − 2g2∞, (3.4)

g′′ = −h′g + hg′. (3.5)

Let

h ≡ h∞ + h1,

g ≡ g∞ + g1,

and assume h1 and g1 are small. After substituting these expressions into Eqns.

(3.4) and (3.5) and neglect higher order terms, the linearized system is

h′′′
1 = h∞h′′

1 + 4g∞g1 (3.6)

g′′1 = −g∞h′
1 + h∞g′1. (3.7)

The second equation of the above can be integrated to yield

g′1 = −g∞h1 + h∞g1 + c0, (3.8)

where c0 is a constant.
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Since Eqn. (3.6) can be recast into

g1 =
1

4g∞
(h′′′

1 − h∞h′′
1),

we may substitute this equation into Eqn. (3.8) to obtain

h
(4)
1 − 2h∞h

(3)
1 + h2

∞h
(2)
1 = −4g2∞h1 + 4g∞c0. (3.9)

This is a linear inhomogeneous differential equation whose solution can be derived

from standard method. Thus, let h1 = eλζ and then the associated characteristic

equation is

λ4 − 2h∞λ3 + h2
∞λ2 = −4g2∞ (3.10)

⇒ λ2(λ− h∞)2 = −4g2∞. (3.11)

In von Kármán’s original problem one has g∞ = 0, while in the problem con-

sisting of a rotating fluid with a stationary disk, g∞ = 1. In either case, h∞ is

determined by numerical results.

3.1.1 Von Kármán’s problem (g∞ = 0, h∞ < 0)

Since g∞ = 0,

λ = 0, 0, h∞, h∞.

Hence

h1 = Aeh∞ζ +Bζeh∞ζ + Cζ +D.

Since h1 → 0 as ζ → ∞, C = 0 and D = 0. We should also note that h∞ < 0 so

that the solution eventually exhibits exponential decay as ζ tends to infinity. At the

other boundary ζ = 0, h = 0 and h′ = −2f = 0, so h1(0) = −h∞ and h′
1(0) = 0.
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Hence A = −h∞ and B = h2
∞, and then

h = h∞ − h∞eh∞ζ + h2
∞ζeh∞ζ .

Since f = −h′

2
, we also have

f = −1

2
h3
∞ζeh∞ζ .

From Eqn. (3.8) and the fact that g∞ = 0 we obtain

g′1 = h∞g1 + c0, (3.12)

⇒ g1 = g0e
h∞ζ − c0

h∞
, (3.13)

where g0 is a constant. Since g1 → 0 as ζ → ∞, we have c0 = 0. Then, by

g = g∞ + g1 and g∞ = 0 we have g = g0e
h∞ζ . By the boundary condition g(0) = 1

we finally arrive at

g = eh∞ζ .

We can compare this approximate solution with the numerical result. From

Fig. 3.1, we see that the linearized solution has captured the qualitative behavior of

the actual solution amazingly well.

3.1.2 Rotating fluid with a stationary disk

Since g∞ = 1, we immediately have

λ(λ− h∞) = ±2i,

⇒ λ =
h∞

2
(1±

√
1± 8i

h2
∞
).

Since h1 → 0 as ζ → ∞, λ must have a negative real part, so the admissible λ’s

are h∞
2
(1−

√
1 + 8i

h2
∞
) and h∞

2
(1 +

√
1− 8i

h2
∞
), which are complex conjugate to each

other.
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Figure 3.1: The numerical result of von Kármán’s equations and the approximate

solution with h∞ = −0.88.
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Let the two admissible λ’s be α + βi and α − βi, where α and β are real and

α < 0. Then from Eqn. (3.9),

h1 = Ae(α+βi)ζ +Be(α−βi)ζ .

Note that c0 = 0 since h1 → 0 as ζ → ∞.

By h(0) = h∞ + h1(0) = 0 and h′(0) = h′
1(0) = −2f(0) = 0, we can use them to

to get the values of A and B. And then

h = h∞ + Ae(α+βi)ζ +Be(α−βi)ζ

and

f = −h′

2
= −A

2
(α + βi)e(α+βi)ζ − B

2
(α− βi)e(α−βi)ζ .

From Eqn. (3.8),

g1 =
−A

α− h∞ + βi
e(α+βi)ζ +

−B

α− h∞ − βi
e(α−βi)ζ + g0e

h∞ζ ,

where g0 is a constant. But we do not want g1 to diverge as ζ → ∞, and this

dictates that g0 = 0.

But now comes a weak point of this approximation: Here we observe that the

boundary condition g(0) = 0 has not been imposed, and yet all of the integration

constants have been determined. What this means is that the boundary condition

h1(∞) = 0 is too strong a requirement for our purpose, because it has killed more

than one integration constants in one stroke! In Fig. 3.2 we compare the numerical

result with this less-than-perfect approximation to check how poor it is.

From the figure we readily see that, surprisingly, although the boundary condi-

tion of g is not satisfied, the global behavior of the approximate solution is not too

bad at all. All qualitative features of the numerical result are correctly captured by

this approximation.
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Figure 3.2: The numerical result of von Kármán’s equations and the approximate

solution with h∞ = 1.35.
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3.2 The two-disk problem

Let g0 and h0 be two constants which play the role of g∞ and h∞. Recall from

Chapter 2 that the equations governing this problem are Eqns. (2.27)-(2.29). After

reducing the equations, we get

h(4) = hh(3) + 4gg(1) (3.14)

g(2) = −h(1)g + hg(1). (3.15)

The linearization method is the same as in the one-disk problem of the previous

section. Thus, let

h = h0 + h1 (3.16)

g = g0 + g1 (3.17)

and assume h1 and g1 are much smaller than h0 and g0, we arrive at the following

linearized system

h
(4)
1 = h0h

(3)
1 + 4g0g

(1)
1 , (3.18)

g
(2)
1 = −g0h

(1)
1 + h0g

(1)
1 . (3.19)

Writing Eqn. (3.18) as

g
(1)
1 =

h
(4)
1 − h0h

(3)
1

4g0
(3.20)

and substituting it into Eqn. (3.19) we have

h
(5)
1 − 2h0h

(4)
1 + h2

0h
(3)
1 = −4g20h

(1)
1 . (3.21)

It is not surprising that this equation has the same structure as the corresponding

one in the previous section.
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Similarly, the characteristic roots are

λ = 0,
h0

2
(1±

√
1± 8g0i

h2
0

).

We denote the two complex conjugate pairs by γ1, γ̄1, γ2, γ̄2, where ℜ(γ1) < 0, and

ℜ(γ2) > 0. Hence

h1 = Aeγ1ζ +Beγ̄1ζ + Ceγ2ζ +Deγ̄2ζ + E,

where A, B, C, D, and E are constants to be determined by the boundary conditions.

Substituting this h into Eqn. (3.20) and integrating the equation, we obtain an

explicit expression of g with another integration constant F .

Now we specialize to the particular case in which the lower disk is stationary.

The boundary conditions are

h(0) = 0, h(

√
Ωd2

ν
) = 0, (3.22)

h′(0) = −2f(0) = 0, h′(

√
Ωd2

ν
) = −2f(

√
Ωd2

ν
) = 0, (3.23)

g(0) = 0, g(

√
Ωd2

ν
) = 1. (3.24)

These six boundary conditions can determine all the six integration constants.

Because this is just a direct solution of six linearly coupled algebraic equations, we

will simply avoid the complicated-looking analytical expression and proceed directly

to a comparison of the numerical result and this approximation. This is shown

in Fig. 3.3. In the above, we have chosen h0 = 0.75 and g0 = 0.3, which are

approximately the values of h and g in the middle region in the numerical result.

The qualitative features of the numerical result and the approximate solution are

the same. But there is a numerical shift: the values of the numerical result are

larger than the approximate solution, which isn’t unlike what was observed in the
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Figure 3.3: The numerical result of two-disk problem and the approximate solution

with h0 = 0.75 and g0 = 0.3.
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previous case. Having seen the qualitative as well as the quantitative success of this

simple approximation, we will discuss in the next chapter whether there is a method

to correct the shortcoming of our approximation and in what sense it is good.
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Chapter 4

The amplitude equation approach

In the last chapter we compared the numerical results with those predicted by

the linearized equations. It is obvious from the comparison that the approximate

solutions exhibit the major feature of the numerical solutions except that the nu-

merical fit is not perfect. Specifically, we found that, from a peek of Fig. 3.2, the

oscillation phenomenon of the approximate solution is smaller in magnitude than the

numerical solution. This by itself suggests that an amplitude equation approach, in

which one assumes that the actual solution can be well approximated by the linear

solution but with a modification in its (usually) complex amplitude which typically

is slowly varying in space and time, may be the next best thing one can do in anal-

ysis. The other two cases we discussed before similarly suggest like treatment. The

equation satisfied by this amplitude is then termed the amplitude equation.

Mathematically, there are different ways to derive the amplitude equation, and

here we focus particularly on the multiple scale analysis. Introducing an amplitude

into our system has the merit of helping us understand why our linear solution

can well-approximate the full nonlinear solution. However, in trying to complete

27
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this program, we have encountered certain technical difficuty which still begs for

clarification. In spite of all this, we feel that we are still on the right track.

In the following, we will first review the multiple scale analysis, and then explain

how the idea may be tailored to fit our problem.

4.1 A brief review of the multiple scale analysis

Here we briefly review the multiple scale analysis via an example. For more

details, one can refer to books on perturbation methods, such as [2] and [8]. The

example we will use as our illustration is the Duffing equation:

ẍ+ ω2
0x+ ϵx3 = 0, (4.1)

where ϵ is a small number.

As a tentative solution, one can try using a regular perturbation method. Thus,

assuming

x(t) = x0(t) + ϵx1(t) + · · ·

and substituting it into Eqn. (4.1) and collecting terms of the same power of ϵ, we

get

ϵ0 : ẍ0 + ω2
0x0 = 0

ϵ1 : ẍ1 + ω2
0x1 + x3

0 = 0

and so on. The zero-th order equation gives

x0(t) = Aeiω0t +Be−iω0t.

After substituting x0 into the ϵ1-equation, we can solve for x1. But we immedi-

ately find out that x3
0 contributes eiωt and e−iωt terms, which are secular terms in
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the equation for x1. The secular terms make ϵx1 grow in time, which usually is an

undesired feature or artifact.

The problem originates from the fact that the frequency of the nonlinear per-

turbation is in resonance with the natural frequency of the equation for x1. Since

physically we know the frequency must be altered by the presence of the cubic term,

one must use one way or another to account for this shift. Indeed, this is exactly

the major idea behind the amplitude equation approach. Thus, we try to change

the originally constant amplitudes A and B into A(t) and B(t), which turn out to

be something like eiω1t so that the frequency of the solution is effectively shifted

to ω0 + ω1. Note that though we have used the term “amplitude,” its meaning is

not restricted to a revision of only the amplitude in its traditional sense. Rather,

because it is complex, the phase is also changed.

Furthermore, since the perturbation is small, the correction in frequency should

be also small, so we can write ω1 as ϵω1. That means the change in phase is a

long-term effect. In other words, this phenomenon belongs in a longer time scale,

so instead of ϵω1 we put ϵ and t together and have A(ϵt) and B(ϵt) instead of A(t)

and B(t).

More generally, we let

x = x(T0, T1, T2, · · · ) = x0(T0, T1, T2, · · · ) + ϵx1(T0, T1, T2, · · · ) + · · · , (4.2)

where

T0 = t, T1 = ϵt, T2 = ϵ2t, · · · .
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Then

d

dt
=

dT0

dt

∂

∂T0

+
dT1

dt

∂

∂T1

+
dT2

dt

∂

∂T2

+ · · ·

=
∂

∂T0

+ ϵ
∂

∂T1

+ ϵ2
∂

∂T2

+ · · · . (4.3)

In these new variables, we can handle phenomena of different scales. Substituting

Eqns. (4.2) and (4.3) into Eqn. (4.1), we have

ϵ0 :
∂2x0

∂T 2
0

+ ω2
0x0 = 0 (4.4)

ϵ1 :
∂2x1

∂T 2
0

+ ω2
0x1 + 2

∂2x0

∂T0∂T1

+ x3
0 = 0 (4.5)

and so on.

From Eqn. (4.4), we have

x0 = A0(T1, T2, · · · )eiω0T0 +B0(T1, T2, · · · )e−iω0T0 .

Substituting x0 into Eqn. (4.5) we have

∂2x1

∂T 2
0

+ ω2
0x1 + 2(iω0

∂A0

∂T1

eiω0T0 − iω0
∂B0

∂T1

e−iω0T0)

+ (A3
0e

i3ω0T0 + 3A2
0B0e

iω0T0 + 3A0B
2
0e

−iω0T0 +B3
0e

−i3ω0T0) = 0.

Note that the 3A2
0B0e

iω0T0 and 3A0B
2
0e

−iω0T0 are the cause of secular terms, i.e., the

resonance terms. But now we have the extra terms 2iω0
∂A0

∂T1
eiω0T0 and −2iω0

∂B0

∂T1
e−iω0T0 .

If we require (from hindsight) that

2iω0
∂A0

∂T1

eiω0T0 + 3A2
0B0e

iω0T0 = 0,

−2iω0
∂B0

∂T1

e−iω0T0 + 3A0B
2
0e

−iω0T0 = 0,

then all the resonance terms are eliminated. This, then, is the basic idea behind

the multiple scale analysis: By introducing new long time scales one may kill the



4.2. DAMPING AND NEGATIVE DAMPING SYSTEMS 31

secular terms to save the day. The above two equations are the amplitude equations

we were looking for, which determine A0 and B0. Note the eiω0T0 and e−iω0T0 are

cancelled out. So

2iω0
∂A0

∂T1

+ 3A2
0B0 = 0 (4.6)

−2iω0
∂B0

∂T1

+ 3A0B
2
0 = 0. (4.7)

After solving this system, we find out

A0 ∝ e
i 3C

2

8ω0
T1 = e

i 3C
2

8ω0
ϵt

B0 ∝ e
−i 3C

2

8ω0
T1 = e

−i 3C
2

8ω0
ϵt
,

where C2 is an integration constant. So we get a correction on frequency, which tends

to 0 as ϵ → 0. Usually simply one stops at this point as the lowest order correction

to the original nonlinear problem, though the method clearly can be carried through

to higher orders.

To summarize, the scheme of this approach is assuming a slowly varying ampli-

tude, which has to be determined in the next order approximation by some solvabil-

ity conditions. In this example, the solvability condition is to eliminate the resonace

terms. From the solvability condition, we can get the amplitude equation and then

solve for the amplitude.

4.2 Damping and negative damping systems

The multiple scale analysis works very well for the example we illustrated, but it

can not be applied directly to our problem. The main trouble is that our system has

both positive and negative damping. This is because two of the characteristic values
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of Eqn. (3.21) have a negative real part, and two others have a positive real part. The

difficulty can be easily seen this way: Because the resonance terms in the example

come from the cancellation of eiω0t and e−iω0t, for example eiω0t · eiω0t · e−iω0t = eiω0t,

so if there are real parts, then er+iω0t · er+iω0t · er−iω0t ̸= er+iω0t, and there is no

resonance terms, which at first sight might be hailed as a good news while in reality

it is not, because now one loses insight as to how the solvability condition might be

imposed. Not only that, the nonlinear terms also give rise to stronger positive and/

or negative damping, which must be seriously dealt with. Because of this difficulty,

we decided to take a detour and investigate the problem using a simplified model

equation.

To illustrate the problem more clearly, therefore, we consider the following ex-

ample:

ẍ+ (ϵx2 − 1)ẋ+ x = 0. (4.8)

The unperturbed system (ϵ = 0) has characteristic values with a positive real part,

so it exhibits negative damping. When x is small, this linear approximation (i.e.

ϵ = 0) is good. But x grows exponentially in time till it saturates (shifting from

negative damping to positive damping), we must take the ϵx2 term into account to

make the approximation good when t is large. Therefore, we need an amplitude

which can cancel out the exponential growth.

Copying what was done in the previous section, we let

x = x(T0, T1, T2, · · · ) = x0(T0, T1, T2, · · · ) + ϵx1(T0, T1, T2, · · · ) + · · · ,

where

T0 = t, T1 = ϵt, T2 = ϵ2t, · · · .



4.2. DAMPING AND NEGATIVE DAMPING SYSTEMS 33

Then, with
d

dt
=

∂

∂T0

+ ϵ
∂

∂T1

+ ϵ2
∂

∂T2

+ · · · .

we get

ϵ0 :
∂2x0

∂T 2
0

− ∂x0

∂T0

+ x0 = 0

ϵ1 :
∂2x1

∂T 2
0

+ 2
∂2x0

∂T1∂T0

+ x2
0

∂x0

∂T0

− ∂x1

∂T0

− ∂x0

∂T1

+ x1 = 0

and so on. To simplify the equations, let L ≡ ∂2

∂T 2
0
− ∂

∂T0
+1, then the above equations

become

ϵ0 :Lx0 = 0

ϵ1 :Lx1 + 2
∂2x0

∂T1∂T0

+ x2
0

∂x0

∂T0

− ∂x0

∂T1

= 0.

The solution of the zeroth order equation is

x0 = A0(T1, · · · )eλT0 +B0(T1, · · · )eλ̄T0 ,

where λ = 1+
√
3i

2
. Then the first order equation becomes

Lx1 + 2(
∂A0

∂T1

λeλT0 +
∂B0

∂T1

λ̄eλ̄T0) + (A2
0e

2λT0 + 2A0B0e
(λ+λ̄)T0

+B2
0e

2λ̄T0)(A0λe
λT0 +B0λ̄e

λ̄T0)− (
∂A0

∂T1

eλT0 +
∂B0

∂T1

eλ̄T0) = 0.

Note after expanding the product, the only resonance terms are 2(∂A0

∂T1
λeλT0+∂B0

∂T1
λ̄eλ̄T0)

and −(∂A0

∂T1
eλT0 + ∂B0

∂T1
eλ̄T0), so the amplitude equations are ∂A0

∂T1
= 0 and ∂B0

∂T1
= 0.

But then the amplitude is just a constant, which can not cancel out the exponential

growth.

The point is that even with a straightforward expansion, there is no resonance

in this non-conservative system. This means we can not blindly apply the original

solvability condition to this problem.
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4.2.1 A possible approach

How do we remedy the difficulty discussed above? Though we have not yet

completely solved this problem, it is believed that we may be on the right track

following the main idea of the approach expounded below.

To motivate the idea, we note that the trouble comes from nonlinear terms,

which makes the behavior of the solutions differ in the small amplitude regime

from the large amplitude regime. We may view the nonlinear terms as causing a

sort of “frequency-amplitude interaction.” For example, in the Duffing equation the

frequency would be corrected by a small factor depending on the amplitude. When

the zeroth order solution not only oscillates but also grows or decays exponentially,

the small parameter ϵ, which is related to the amplitude, presumably should also

be affected. In other words, the small parameter itself should change with time, too.

This means adopting the slow time scale ϵt in the original oscillation problems like

the Duffing equation is no longer valid for our problem. Instead, we should try to

use a nonlinear time scale τ , which is to be determined when we carry out the next

order perturbation calculation.

So let us explicitly work it out for Eqn. (4.8). Let x = x(t, τ), where τ is an-

other time scale to be determined in the next order approximation. The differential

operator becomes

d

dt
=

∂

∂t
+

dτ

dt

∂

∂τ
.

We assume dτ
dt

is of order ϵ. And we do not consider d2τ
dt2

term. So

d2

dt2
=

∂2

∂t2
+ 2

dτ

dt

∂2

∂τ∂t
+ (

dτ

dt
)2

∂2

∂τ 2
.
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Then the zeroth order solution is

x0(t, τ) = A(τ)eλt +B(τ)eλ̄t, λ =
1 +

√
3i

2
. (4.9)

The first order equation is

ϵ
∂2x1

∂t2
+ 2

dτ

dt

∂2x0

∂τ∂t
+ [ϵ(x0 + ϵx1)

2 − 1](
∂x0

∂t
+ ϵ

∂x1

∂t
+

dτ

dt

∂x0

∂τ
) + ϵx1 = 0.

After expansion and taking only ϵ and dτ
dt

terms, we obtain the following equation:

ϵ
∂2x1

∂t2
+ 2

dτ

dt

∂2x0

∂τ∂t
+ ϵx2

0

∂x0

∂t
− ϵ

∂x1

∂t
− dτ

dt

∂x0

∂τ
+ ϵx1 = 0

Substituting Eqn. (4.9) into this equation, we get

ϵ(
∂2x1

∂t2
− ∂x1

∂t
+ x1) +

dτ

dt
(2A′λeλt + 2B′λ̄eλ̄t − A′eλt −B′eλ̄t)

+ ϵ(A3λe3λt + A2B(2λ+ λ̄)e(2λ+λ̄)t + AB2(λ+ 2λ̄)e(λ+2λ̄)t +B3λ̄e3λ̄t) = 0.

Now, in analogy to the usual solvability condition, we impose the following re-

striction: All terms containing eiℑ(λ)t and e−iℑ(λ)t must be eliminated. (Note that

we use ℑ(z) to denote the imaginary part of z, and ℜ(z) to denote the real part of

z.) Collecting terms with eiℑ(λ)t and e−iℑ(λ)t, we get

dτ

dt
(2λ− 1)A′eℜ(λ)t + ϵ(2λ+ λ̄)A2Be3ℜ(λ)t = 0

dτ

dt
(2λ̄− 1)B′eℜ(λ)t + ϵ(2λ̄+ λ)AB2e3ℜ(λ)t = 0.

Note here A′ and B′ denote dA
dτ

and dB
dτ

respectively.

The amplitude equations contain the variable t explicitly. Since we want a clean

amplitude equation, which depends only on the other time scale τ , we let

dτ

dt
= ϵe2ℜ(λ)t. (4.10)
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Integrating this equation and requiring τ(0) = 0, we have

τ =
ϵ

2ℜ(λ)
(e2ℜ(λ)t − 1) (4.11)

Note that as ℜ(λ) → 0, τ → ϵt. So the system without damping is just a degenerate

case.

Then we have

(2λ− 1)A′ + (2λ+ λ̄)A2B = 0

(2λ̄− 1)B′ + (2λ̄+ λ)AB2 = 0.

This system can be solved analytically. Substituting λ, we get

A′ + (
1

2
− i

√
3

2
)A2B = 0

B′ + (
1

2
+ i

√
3

2
)AB2 = 0.

Multiply B to the first equation, A to the second equation and then add them

together to get
dAB

dτ
+ A2B2 = 0.

Hence

AB(τ) =
1

τ + C

So the equations become

A′ + (
1

2
− i

√
3

2
)(

1

τ + C
)A = 0

B′ + (
1

2
+ i

√
3

2
)(

1

τ + C
)B = 0.

These are linear equations and can be easily integrated. Then we have

log(A) + (
1

2
− i

√
3

2
) log(τ + C) + C1 = 0

log(B) + (
1

2
+ i

√
3

2
) log(τ + C)− C1 = 0
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Figure 4.1: The numerical result and the approximation with ϵ = 0.5.

We can compare this approximation with the numerical result. From Fig. 4.1, it

is obvious that the approximation is not all that good. However, if we concentrate

only on the behavior of the amplitude, then the result is seen to be amazingly good.

For one thing, the exponentially growing amplitude of the zeroth order solution is

cancelled out almost totally, and the amplitude of the approximation agrees with

the numerical result very well.

Since we have got the amplitude right at the very least, there must be some

ingredient in our approach that has got things right. But what is it? This is the

part that we have not been able to crack. Encouraged by this coincidence in the

good fit of the amplitude, we are now actively investigating a possible modification

of our approach. Though this endeavour is quite far away from our original fluid

mechanics problem of the swirling flow, it does seem to be a worthy detour in our

research.
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Chapter 5

Conclusion

By comparing the numerical results and the linearized solution, we show that

the overall feature of the similarity solution of von Kármán’s swirling flow can be

captured by the linearized solution. The minor discrepancy in the amplitude and

the phase shift presumably can be accounted for by the nonlinearity intrinsic to the

problem.

To better understand why the linear solution works so well for the nonlinear

system, we suspected that an amplitude equation approach could save the day.

This conviction led us to the study of a much simplified model equation for which

the idea could be developed and put to the test. In the new perturbation scheme we

considered, we have modified the traditional multiple scale analysis into a form that

allows a variable long time scale, which does reduce to the method of two-timing

for oscillators containing a weak cubic restoring force. However, our method suffers

from the fact that the computed oscillation is way off from the actual solution in

phase, even though the amplitude matches rather well. This suggests that we may

be on the right track, and further polishing of the idea might bring us a much closer

39



40 CHAPTER 5. CONCLUSION

agreement between the theory and the actual solution. Further investigation along

this line is currently under way.
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