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Abstract

The accuracy of the artificial control estimation using the panel-data counterfactual

method proposed by Hsiao et al. (2012) and the synthetic control method proposed by

Abadie et al. (2010) were evaluated using the Monte Carlo simulations. The aim was to

determine which of the methods is superior in studies with time-variant treatment effect,

individual treatment effect and data-driven subject selection process. A cross checking

process and simulations conducted under various model settings provide guidance on

the applicability of these two methods. Both methods perform satisfactory when the

variation of common factors in time and factor-loadings across regions are small. In

most cases the panel-data counterfactual method is more accurate in artificial control

estimation in term of mean-square-deviation criteria than the synthetic control method.

Though both methods must be used with caution, the panel-data counterfactual method

is clearly the better method suggested by the Monte Carlo results.

Keywords: Artificial control estimation, model simulation, panel-data counterfactual

method, synthetic control method, Monte Carlo method
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1. Introduction

Many studies in economics involve determining the effects of a certain event,

incident or treatment; for example the study on Taiwan’s membership in the WTO is

very likely involved with the study of the effect of becoming a WTO member on

Taiwan’s GDP growth. A review on treatment effect methods by Imbens and

Wooldridge (2009) discusses the assumptions and advantages of available methods in

the literature. As the pool of the methods grow continuously, it can be difficult for

researchers to choose between various methods available. Therefore, comparisons

among or between the methods would provide insight and are valuable to researchers.

Some of the new methods focus on treatment effect problems in macroeconomic setting

and provide estimates of time-variant treatment effect in a targeted region. As these

methods are potentially useful in many macroeconomics studies, it is important that

their applicability are known to researchers.

An important object of interest in policy evaluation is that the change in certain

outcomes of the regions (or subjects, units, individuals and etc.) is affected by some

treatments of interest (or incident, laws, policy changes and etc.). To study these

treatment effects, two observations of the same unit that are exposed (targeted) or not

exposed (control) to the treatment, is required to be known. However, a “fundamental

problem of causal inference” (Holland, 1986) is that a unit can only be observed when it



is exposed to a single level of treatment at a time. Data available for evaluations of the

treatment effects are therefore limited to different units or the same unit in different

times. This problem raises different issues in macro- and microeconomic studies due to

the difference in the goal of researches. Studies in macroeconomics tended to target the

treatment effect in a certain region and at times required estimates of the trend of the

treatment effects in time. These goals could not be accomplished without a control

group of the targeted region. Since countries or regions possess unique characteristics

that are unlikely to be matched directly by other countries or regions, the lack of control

group is an important gquestion in macroeconomic treatment effect studies. Studies in

microeconomics on the other hand encountered a different issue as their goals usually

were set to find the treatment effects amongst a certain group of individuals, of them

some are and some are not affected by the treatment. Taking just the difference in the

average of the individuals with varying actions is not appropriate because of the

difference in the characteristics of the groups. For example, people who choose to buy

health insurances are of different characteristics than those who choose not to. Such

difference, if not adjusted, may lead to an inconsistent estimation of the treatment effect.

Two artificial control methods, the SCM and the PDCM, are of interest because

they yield the time-variant treatment effect and data-driven selection of control regions.

The SCM proposed by Abadie et al. (2010) and the PDCM proposed by Hsiao et al.



(2012) both could generate a weighted sum of the control regions using

pre-treatment-period data to fit the pre-treatment-period behavior of the targeted region.

Created by combining the generated weighted sum with post-treatment-period data of

the control regions, the artificial targeted region (or the counterfactual) mimics the

behavior of the targeted region supposing that treatment does not occur. The treatment

effects are therefore derived by differentiating the real targeted region with the

counterfactual.

Although the SCM and PDCM both produce the counterfactual, their underlying

method and model specification are drastically different. The SCM is based on the

assumption that the time-variant factor-loadings are the same across regions and the

common factors are time-invariants that differ across regions. The PDCM whereas

assumes region-specific factor-loading and time-variant common factors. Their

minimizing functions in generating the weight are different as well. Though both SCM

and PDCM can be used on any data with DID settings, the differences in methodology

suggest that they are most likely different in applicability and goodness of

post-treatment-period fit.

In this article, the applicability of the methods in different model setting and the

differences in goodness of post-treatment-period fit of the two methods were

investigated. By utilizing the Monte Carlo Method proposed by Metropolis and Ulam



(1949), the SCM and PDCM were applied to different model structures and variable

settings that were generated repeatedly using Matlab 2010a (MathWorks, MA, USA);

the mean square deviation (MSD) of the counterfactual and post-treatment-period data

of the targeted region were recorded along with the random variables. Regression

analysis of the MSD showed that both PDCM and SCM fit better when common factor

variance and factor-loading variance are small. In addition, results showed that the

PDCM exhibited a mean MSD smaller than did SCM across most model settings.

Therefore the PDCM is recommended over the SCM.

The rest of the article is arranged as follows. Section 2 discusses the previous

studies on treatment effects. Section 3 discusses the SCM and the PDCMs. Section 4

discusses the generation and analysis of simulation data. The results and discussions are

presented in Section 5. Section 6 concludes.



2. Literature Review

The study of the treatment effect was pioneered by Ashenfelter (1978) with

subsequent improvements by Ashenfelter and Card (1985), Heckman and Robb (1985),

Lalonde (1986), Fraker and Maynard (1987), Card and Sullivan (1988), and Manski

(1990). These studies have investigated mainly labor market programs using

observational data and have been focused on the self-selection bias, in which the

endogenous differences between individuals were motivated. Traditional methods such

as the fix effect method and the instrumental variable method have been implemented to

deal with the biases. A subsequent econometrics approach, the semi-parametric models,

allows for “fewer functional form and homogeneity assumptions” (Imbens and

Wooldridge, 2009). However, there would be no general approach without the

assumptions of exogeneity, which is defined by the differences in the observed common

factors account for “all biases in comparison between targeted and control unit” (Imbens

and Wooldridge, 2009). Without a general method for treatment effect estimation,

researchers must develop their own specific methods for different types of datasets. As

most of the previous methods have been shown to depend heavily on the average

treatment effect on groups for individuals, they are insufficient in estimating accurately

the treatment effect on a single targeted region, as often the case in most

macroeconomics studies. The correction for self-selection bias is adequate for



estimation of data that the targeted unit and the control unit are both groups with

numerous individuals such that the average characteristic except self-selection can be

matched after taking the means, whereas in many of the macroeconomic cases, the

targeted region is consisted of a single unit with unique characteristics that cannot be

matched by any other region alone.

Of the methods proposed for various special cases, the difference-in-difference

(DID) method has been widely used in empirical economics with influential

applications such as Card (1989) and Card and Krueger (1994). The DID method relies

on the setting that the targeted region is affected by the treatment after a certain time

period (treatment period), whereas the control region is never affected. The treatment

effects are obtained by differentiating the growth in the targeted region to the growth in

the control region. This double difference eliminates the bias of the permanent

differences between the targeted and control regions and the bias originated from time

differences. The selection of the control region is, however, often ambiguous and

subjective. The credibility of researches would increase if the selection processes are

objective and clear, and the researchers could be relieved from repeated test using

different control region groups. Moreover, the effects of many treatments are

time-variant. For example, the drop in cigarette consumption due to an increase in

tobacco taxes is expected to increase over time, because smokers need time to quit



smoking. Therefore, methods that could estimate effectively time-variant treatment

effect are valuable to those studies.



3. Methods

Both the synthetic control method (SCM) and the panel-data counterfactual method
(PDCM) deal with macroeconomic treatment effects. Without exogeneity, the
assumption that all observed common factors of the regions account for all biases when
comparing the targeted and control regions, the general method of treatment effect does
not exist. Therefore, the two methods have focused on the macroeconomic scene where
the individual effect of a targeted region is desired. These special cases include a
targeted region where the treatment occurs somewhere in the timeline and a group of
control regions that are related to the target region and are not affected by the treatment.
In the attempt to lessen the time-average treatment effect, both the SCM and the PDCM
adopt the difference-in-difference method and create an artificial control of the targeted
region allowing for time-variant estimation of the treatment. The benefit of allowing for
a time-variant estimation lies in the event that the effects of the treatment would change
over time, shrinking, spreading, auto-regressive and etc. Common examples for these
settings are the signing of treaties, passing laws, riots or civil wars, and tax or wage

changes. The SCM and the PDCM offers different perspective in achieving such goals.

3-1. Synthetic Control Method



The synthetic control method (SCM) that was proposed initially by Abadie and
Gardeazabel (2003) discussed the effect of riot on the GDP growth of Spanish Basque
County. Based on the original idea, Abadie et al. (2010) improved further the method to
discuss the effects of California’s tobacco tax program, Proposition 99, on the yearly per
capita tobacco sales. The authors concluded that per capita tobacco sales in California
dropped since 1988 when the tobacco tax program was implemented. Moreover, the
magnitude of the drop is greater than what was proposed in a previous study by
Fitchtenberg and Glantz (2000). The SCM allows for determining an individual and
time-variant treatment effect. The method is used on a specific case of data in which a
region (the targeted region) is affected by the treatment for all time periods after the
treatment-period, and all other regions (the control regions) are not affected by the
treatment in every time period.

The SCM formulates a weighted sum of the control regions in order to simulate the
behaviors of the targeted region. The SCM generates a weight (W) of the control
regions using pre-treatment-period data in which the weighted sum of the control
regions mimics the pre-treatment-period behavior of the targeted region. The weight (W)
in the SCM is derived by minimizing

|Hy — HoW IV (3-1)



where V is some (r+M x r+M) symmetric and positive semidefinite matrix,
T
W= (wz,...,w,+1)T with w; >0Vj =2,..,J + 1, H, = (¢, 7%,..,7,") is a

vector that describes the pre-treatment-period characteristics of the targeted region, and

—K —KpN\T
|[ (aZT'yzl""'yZM) ]| T T
Where Kl = (klll ...,leO) ,1 = 1, ""M'Ziil kli = 1
l T K1 —Km TJ
(a]+1 Vi ""y]+1)

are (Tyx 1) vectors that define the linear combination of pre-treatment-period data of the

H0:

control regions. That is, yfl = Z:‘;l kisyis. The minimization of W in Equation (2-1)
can be regarded as the minimization of the difference between the targeted and the
control region behaviors of the pre-treatment-period data. In the empirical application of
the SCM, W is chosen to minimize |[|H; — H,W ||V, where V is a positive definite and
diagonal matrix. For every possible V there is a unique W* that minimizes ||H; —
HyW||V. Therefore, W is treated as W(V) and the minimization equation becomes
\|[H, — HyW (V)||V, which solely depends on V. Since the minimization process depends
only on pre-treatment-period data, the V that minimizes the pre-treatment-period mean
square deviation (MSD) is chosen as V*and the minimizing weight W* =W (V") is
then determined. Therefore, the artificial control (or the counterfactual) of the targeted
region is derived with the sum of the post-treatment-period control regions weighted by
W=, and the treatment effect is obtained as the difference between the actual and

counterfactual targeted region.
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In this article, the simplified version of the SCM was used for a generalized
application. The Matlab codes that Abadie et al. (2010) provided on their webpage were
modified for implementing the SCM on generated data sets while the minimization
process was kept the same. As in the empirical analysis conducted by the authors, the
choice of V was restricted to a positive definite and diagonal matrix. For simplicity, K;,
the linear combination of y;., was picked as yj;; all pre-treatment-period data were
included. The optimization process of picking V* involved the use of Matlab function
fmincon provided in the authors’ codes. The initial values of V that were chosen as the
diagonal terms were the normalized standard deviations of Hj, the control region
behaviors of the pre-treatment-period data, and with other terms zero. The initial V was
input into fmincon with the loss function, also provided in the authors’ Matlab codes, to
find the V* that minimized pre-treatment-period MSD.

The SCM not only takes into account the observed common factors but also employs
control region data. The observed common factors are chosen by researchers, while all
control regions are included. Slight modifications were made to the more generalized
method for simplified computation and choices of less subjectivity. The combination
weight W of the control regions was then chosen to minimize the difference in the
observed common factors and pre-treatment-period data between the targeted and

control regions. The treatment effect is the post-treatment-period difference between the

11



targeted region and the counterfactual, which is created by the weighted sum of the

control regions in the post-treatment-periods.

3-2. Panel-Data Counterfactual Method

The panel-data counterfactual method (PDCM) that was proposed by Hsiao et al.
(2012) employs a simple method of finding the artificial control that does not require
specified common factors. The authors demonstrated by using PDCM that there is no
treatment effect on the GDP growth of Hong Kong in its political integration with China
in 1997 but a positive treatment effect on the GDP growth in its economic integration in
2003. The PDCM, same as the SCM, was developed to estimate an individual and
time-variant treatment effect. As with the SCM, the PDCM was designed for specific
cases of data where a region (the targeted region) is affected by the treatment for all
time periods after the treatment-period, and all other regions (the control regions) are
not affect by the treatment in every time period.

The PDCM method is constructed to minimize

1 ,— T
E [T—O( S —ea—va) A(y) - ea- Yo?*)] (3-2)

For objective and simplified use, a special case of the general method proposed by the

authors is employed. With the restriction of A = I, the simplified method allows for

applying conveniently an ordinary least-square regression of the targeted region to the

12



control regions to generate the counterfactual combination in the pre-treatment periods.
That is, 373 =a+ §:T37; where 7, is the vector of control regions and @ and @*"
are the intersection and beta coefficients, respectively, of §; regressing ony, the

targeted region, in the pre-treatment periods t=1...T,. Therefore the differences

—
— T ~

Ay= y, —a+ @'y, are obtained for t=Ty+1,..,T. The pre-treatment-period
mean square deviation (MSD) therefore equals to Zﬂﬂ Etz.

In the method, the specific control regions to be used are selected from a larger pool
of related regions. This selection process involves selecting the regions that would
create a counterfactual combination that best-fit the targeted region in the pre-treatment
periods. The selection is done in two steps. In the first step, the regions that minimize
pre-treatment-period MSDs while control for the number of control regions used are
picked. The suitable numbers of control regions are selected in the second step using
two different criteria, the Akaike Information Criterion (AIC),

IeO

e
AIC(p) =T, 1n< ;,

0

>+2(p+2)

and the corrected Akaike Information Criterion (AICC).

2(p+2)(p +3)
To—(p+1)-2

AICC(p) = AIC(p) +
In both criteria, p is the number of related regions included and e, is the least-square
residual using the regions picked in the first step. AIC and AICC, in essence, give the

mean squared deviation with a penalty term for the number regions used. Therefore, the

13



number with the lowest AIC or AICC is the number suitable to be used in the PDCM.
Since AICC includes an additional penalty term, the number of regions used in AICC is
lower than, if not equals to, that used in AIC. The maximum number of related regions
(M) that is considered in this process has a significant impact in empirical use. Since the
selection process is essentially a grid search process, the number of pre-treatment-period
MSDs to be calculated is 2™, which grows exponentially as M increases. Therefore, M
is restricted in practical use to the computing resources limits.

The PDCM employs data of the control regions without using the common factors.
This eliminates the need for picking the observed common factor and in turn increases
the objectivity of the studies. Due to limitations in computing resources, the maximum
number of regions under consideration must be restricted, which means that an existing
huge pool of related regions must be narrowed down in empirical studies. In
determining the specific control regions to be used from the pool of related regions,
criteria AIC and AICC are used. As the control regions to be used could be different, the
estimation of using AIC and AICC are denoted as PDCM-AIC and PDCM-AICC,
respectively. The PDCMs obtain a collection of beta-coefficients from regressing the
control regions on the targeted region in pre-treatment-periods. The beta-coefficients are

used to construct a counterfactual of the targeted region using data from

14



post-treatment-periods. The treatment effect is derived, as in the SCM, from the

difference between the targeted region and the counterfactual.

15



4. Data Generation and Analysis
4-1. Monte Carlo Method and Data Generation

The objectives of both SCM and PDCM are to create a post-treatment-period
counterfactual that mimics the behavior of the targeted region in the pre-treatment
period. In the event that the treatment did not occur, the counterfactual generated by the
two methods should be fitted as closely to the post-treatment period as possible. This
closeness of fit is measured by the mean square deviation (MSD) between the
counterfactual and the post-treatment-period targeted region. The smaller the MSD is,
the more fit the counterfactual is. Since the counterfactuals of the SCM and the PDCM
have been constructed differently, the need to develop a fitness test for comparing the
two methods was warrant.

The treatment effect is not obtainable directly from the observational data, therefore
the Monte Carlo method developed by Metropolis and Ulam (1949) suggested repeated
simulation en route constructed data. Through simulations, the post-treatment MSD
would reveal the closeness of fit of the methods. Since the desired MSD utilized of the
unaffected data of the targeted and control regions, the constructed data need not specify
the time, magnitude and type of change the treatment induced. By creating a data set
that is structured in the same way throughout the timeline, the imaginary treatment

period can be located individually on the same dataset. This way, when the treatment

16



period is closer to the starting period, the data that can be obtained for estimation is
shorter and provide less information, leading an expectation of a worse counterfactual
fit. Other expected factors in the counterfactual fit include the maximum number of
related regions to be chosen as the control regions, the number of common factors
included in the data generating model, and the number of observed factors among all
common factors. If the control regions can be chosen from more related regions, the
chance of a close counterfactual fit is higher. The greater the number of common factors
is, the more complicated the data will be and the counterfactual is expected to be less
likely to be a close fit. The difference in counterfactual construction enables information
on observed factors to be taken into account in the SCM, and the fitness of the SCM
counterfactual is expected to be better as more observed factors are added.

The difference of the SCM and the PDCM lies not only in the construction of the
counterfactuals but also in the models the methods are constructed from. The model
proposed by Hsiao et al. (2012) is designated in this study as Model (1), in which the
common factors are fixed between regions and variant in time, and the factor-loadings
are fixed in time and variant between regions.

yl=r+AF+¢g, i=1.,Nt=1,.,T Model (1)
where 7; is the individual fixed effect, A7 is the (1 x K) unobserved factor loading

vector where K is the number of factors, F; is the (K x 1) vector of unobserved factors,

17



and ¢, is the idiosyncratic term with E(g;;) = 0. The model was generated by drawing
r; from N(0,1), AT from N(0,1), and &; from 7 «N(0,1). The factors were generated
using AR(1),
Fo=y*xF_,+¢€;
where y is a (K x K) matrix with diagonal elements drawn from U(0,1) and every

other elements 0. €;; is drawn from N(0,1). 7 is the mean of the diagonal elements of

The data generating model Abadie et al. (2010) proposed was designated as Model (2),
which includes common factors that are fixed in time and variant between regions, and
factor-loadings that are fixed between regions and variant in time.

yo=r,+A°F% + AV FY, +¢,, i=1,.,Nt=1,..,T Model (2)

where 7, is the cross-unit-constant unknown common factor, 19, is the (1 x r)
vector of unknown parameters, a; is a (r x 1) observed common factors, AV, isa (1 x
f) vector of unknown parameters, FY; isa (f x 1) vector of unobserved common factors
and ¢g; is the idiosyncratic term withE(g;;) = 0. r + f = K is the total number of
factors. r, is generated from N(0,1), A°, and AV, from N(1,1), and &;; from N(0,1).
The common factors FY; and FU; are generated from y*(1).

Using Model (1) and Model (2), data were generated for simulations of the SCM and

the two PDCM (PDCM-AIC and PDCM-AICC) methods. For each trial session that

18



employs different treatment period, number of factors used, number of factors observed
and maximum number of related regions, 1000 trials were performed. Random numbers
were independently drawn for every trial in every trial session. The results of the
simulation as well as the random numbers were recorded for further investigation.

The data structure remained unchanged in all time periods of a single trial. As both
artificial control methods aimed to replicate pre-treatment targeted region behavior
under different environments, the uniformity of data structure provided the actual data
of targeted region in absence of the treatment. Therefore, the difference between the
uniform structure data and the estimates of the artificial methods would reveal their

accuracy in estimations.

4-2. Data Processing Programs and Cross Checking

The SCM and two PDCMs with varying control region selection criteria were applied
to the simulation data generated by Model (1) and Model (2). The results and the
realization of the random numbers were recorded for analyses.

The MSD between the counterfactuals generated and the actual data of the targeted
region were stored for direct comparison including: between SCM counterfactual and
actual targeted region, between PDCM-AIC counterfactual and actual targeted region,

and between PDCM-AICC counterfactual and actual targeted region.

19



The realization of random numbers in every trial was stored and processed for

regression analysis of factors affecting the fitness of the counterfactuals. Specifically,

the characteristics of random variables in the Model (1) includes the mean of the

common factors’ variance over time (mean_var_factor), the mean of the common

factors’ mean over time (mean_mean_factor), constant of targeted region (constant_y1),

the mean and variance of the constants of control region (mean_constant_yn and

var_constant_yn), the mean and variance of the factor-loadings of the targeted region

(mean_fl_y1 and var_fl_y1), mean and variance of the factor-loadings of the control

region’s mean and variance across regions (mean_mean_fl_yn, var_mean_fl_yn,

mean_var_fl_yn and var_var_fl_yn), mean of the epsilon of targeted region

(mean_ep_y1), and the mean and variance of the mean of the control region’s epsilon

(mean_mean_ep_yn and var_mean_ep_yn). The characteristics of random numbers in

the Model (2) were processed similarly, with changes to character factor and

factor-loading due to the difference in data generating process. The characteristics of the

common factors were split into those of the targeted region and those of the control

regions. The characteristics of the factor-loadings were merged as one for the targeted

region and the control regions. These characteristics were regressed on the 1000 trials in

each session using Stata 12 (StataCorp, College Station, TX).
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As the characteristics are in empirical sense unobservable to researchers, the goal of

these analyses is to provide guidance only for the circumstance if a certain general

impression is known. For example, the dataset of Taiwan’s GDP growth in the recent

decades may include a big variance in common factors as the price in Taipei grew

rapidly and the prices in rural areas stagnated. Therefore, these basic characteristics

would provide information on the goodness of fit of the counterfactual that is produced.

Besides the simulations on generated data, the performance of the applications of

SCM and the two PDCM on real world data are of importance. The empirical data of

California’s cigarette consumption was estimated using the two PDCMs, and the

empirical data of Hong Kong’s political integration was estimated by the SCM. As the

data of unaffected targeted region is unobservable, the goodness of fit cannot be

determined if the results from distinct methods differ.

In 1988, the tax increase of 25 cents per package of cigarette, Proposition 99, was

passed by voters in California. The SCM estimated the tobacco consumption reduction

effect of the tax increase to be significantly larger than the previous study by

Fichtenberg and Glantz (2000) suggests. Twenty percent of the accrued tax was

allocated to an anti-tobacco educational program that included media advertisements,

health and education budget, and promotion of clean air community. The Proposition 99

was widely believed to have decreased smoking in the state of California. The two
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PDCMs were employed in cross checking this effect. The tobacco consumption data and

common factors used were provided by Abadie et al. (2010) on their website

(http://www.mit.edu/~jhainm/synthpage.html).

The other cross checking estimated the effect of Hong Kong’s political integration on

GDP growth. Hong Kong experienced a rapid growth under British sovereignty and was

“returned” to China under “one country, two systems” on July 1997. The real GDP

growth in Hong Kong dipped in 1997 but the Asian financial crisis in October and

H5N1 Avian flu in December both broke out after the political integration. Therefore,

the effect of the integration is difficult to be estimated. The PDCMs estimation

suggested that the integration has no bearing on the real GDP growth of Hong Kong.

The SCM was implemented to verify this result. All data used are obtained through

OECD statistics, international financial statistics and CEIC database.
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5. Results and Discussions

The result of implementing the PDCM on the data of California’s Proposition 99

on cigarette tax is shown in Figure 1. The solid line represents the actual data of tobacco

consumption in California over 1970 to 2000. Both the PDCM-AIC and the

PDCM-AICC showed trends different from the results of the SCM. The PDCM-AIC

estimation suggested that the Proposition 99 increases the tobacco sales; whereas the

PDCM-AICC estimation showed that the Proposition 99 lowers the tobacco sales. The

estimated effect is non-existent before year 1995 and far smaller than that of the SCM

estimation. The result of implementing SCM on the data of Hong Kong’s political

integration with China is shown in Figure 2. The solid line represents the actual data of

GDP growth in Hong Kong. The dashed line representing the SCM estimation showed

the estimation difference between 1997 and 2002 and suggested that Hong Kong suffers

a drop in GDP growth as a result of the political integration. This result is different from

the estimations from the two PDCM methods which suggested the political integration

has no bearing on the GDP growth. This cross checking result indicated that there are

differences in the estimation of the two methods. Both Figures 1 and 2 showed that the

estimations using the two different methods can indeed produce outcomes significantly

different. From which, one would be led to totally different conclusions.

When a completely random white-noise data was implemented on both SCM and
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PDCM methods (Figures 3 and 4). The fit is poor even for the pre-treatment-period data.

However, when an accumulated white-noise data were implemented, the results are

surprising. In some of the simulations, as shown in Figures 5 and 6, the estimation fits

nicely before treatment-period and differs between the actual data and the estimations.

If any conclusion could be drawn from these simulations, it points to a significant

treatment effect, while there in fact is no change in the data structure. Therefore, the

accumulated white-noise simulation study suggested that the two methods are not

necessarily applicable with every data generating model.

The mean MSDs of 1000 trials of Model (1) structures with different settings are

shown in Table 1. The majority of the mean MSDs from the SCM are larger than those

from the PDCM-AICC, whereas the majority of the mean MSDs from the PDCM-AIC

is slightly larger than those from the PDCM-AICC but still much smaller than those of

the SCM. The settings where the mean MSDs of PDCMs were significantly larger were

the ones that the number of total regions approached the number of pre-treatment-period.

This could be explained by the estimation method of the PDCMs that involves

regressing the control regions on the targeted region. When the number of total regions

approached the number of pre-treatment-period, the regression was possibly over-fitted

so that the post-treatment-period estimation fared poorly. Since the SCM method does

not utilize such regression approach, their mean MSDs do not show this character. The
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mean MSDs shown in Table 2 were from different settings using 1000 trials of Model

(2). The results showed patterns identical to those on Table 1. Contrary to the hypothesis,

the numbers of observed common factors do not affect the fit of the SCM. As the

maximum number of regions can be subjectively changed by researchers, it therefore

could be made lower when the number of pre-treatment-period is small. Therefore, the

goodness of fit of the PDCMs is better than that of the SCM in empirical use.

The results of MSD decomposition are shown in Tables 3 to 14. Tables 3, 4 and 5

showed the results of decomposing the 1000 MSDs of Model (1) estimated by the SCM

with 10, 20 and 30 pre-treatment-periods, respectively. The Mean_var_factor and

Var_fl_y1 are the two variables with consistent significant and positive coefficients.

Mean_var_factor represents the mean of the factors’ variance over time and Var_fl_y1 is

the variance of the factor-loadings of the targeted region. These results indicated that the

magnitudes of both the factors and the factor-loadings of targeted region changed were

inversely related to the accuracy of estimation. Tables 6 to 8 showed similar results for

the PDCM-AICC estimations.

The variation of factors is a big issue for prediction because when the variations of

factors are large overtime, the scale relationship between the factors may suffer a

greater change, which in turn would result in a larger mean MSD. The reason that larger

variations of targeted region’s factor-loadings led to a reduced accuracy of estimation

25



may be that when a factor-loading is larger than the rest, the same change in the

corresponding factor would result in more change to the region. This is a problem when

the regions used are small because the prediction would be vulnerable to the sudden

spike in that particular factor, and the small number of regions is not sufficient to cover

the jump.

Tables 9 to 14 displayed the MSD decompositions of Model (2). The results were

similar to those in the SCM and the PDCM-AICC estimation analyses as Var_factor_y1

was consistently significant and positive. Since Var_factor_yl denotes the variance of

factors of the targeted region, this result is consistent with the finding in Model (1).

Analysis of the simulations revealed that the PDCMs estimated the counterfactual

more accurately than the SCM. The cross checking results showed that the two methods

may estimate counterfactuals differently in empirical use, which may lead to different

conclusions in the treatment effect studies. The methods, though showed expected

unfitness to white noise data, were possibly misleading when faced with accumulated

white noise data. With the exception of the cases where the maximum number of

regions is closed to the number of treatment period, the PDCM-AICC clearly

outperforms the SCM. The regressions analyses on MSDs showed that both methods

estimated more accurately when the variances of common factors and factor-loadings

were smaller.
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6. Conclusion

The Monte Carlo results showed the estimation accuracy of the Panel-Data

Counterfactual Method (PDCM) proposed by Hsiao et al. (2012) and the Synthetic

Control Method (SCM) proposed by Abadie et al. (2012). The PDCM in most cases is

more accurate in estimations than is the SCM, and the exceptions can be easily avoided.

However, both the SCM and PDCM must be applied with caution because the results

from the treatment could be misleading under certain settings such as data similar to

accumulations of white noise. Both of the methods work better when the variation of

factor in time and factor-loading across regions are smaller. Therefore, the methods may

be more useful in topics that are known to be steadier and more balanced in factor

influences, such as the manufacturing or dairy industries. The PDCM’s robust

performance under different model settings, together with easy applicability and

improved credibility, make it a tool of choice in treatment effect studies.
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Figure 1. Trends in per-capita cigarette sales in California between 1970 and 2010
before and after the tax hike from the Proposition 99 in 1988. The solid line indicates
the real data and the two dashed lines indicate counterfactuals by the panel-data
counterfactual - Akaike Information Criterion method (PDCM-AIC) and — corrected
Akaike Information Criterion method (PDCM-AICC), respectively.
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Figure 2. Trends in real GDP growth rate of Hong Kong between 1990 and 2003 before
and after its political integration with China in 1997 and economic integration in 2003.
The solid line denotes the real data and the dashed line the counterfactual by the he
synthetic control method (SCM).
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Figure 3. Counterfactual of white noise data estimated by the PDCMs: The solid line
indicates the real targeted region, and the two dashed lines indicate counterfactuals by
the panel-data counterfactual - Akaike Information Criterion method (PDCM-AIC) and
— corrected Akaike Information Criterion method (PDCM-AICC), respectively.
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Figure 4. Counterfactual of white noise data estimated by the SCM: The solid line
denotes the real targeted region and the dashed line the counterfactual by the synthetic
control method (SCM).
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Figure 5. Counterfactual of the accumulations of white noise data estimated by the
PDCMs: The solid line indicates the real targeted region, and the two dashed lines
indicate counterfactuals by the panel-data counterfactual - Akaike Information Criterion
method (PDCM-AIC) and — corrected Akaike Information Criterion method
(PDCM-AICC), respectively.
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Figure 6. Counterfactual of the accumulations of white noise data estimated by the SCM:

The solid line denotes the real targeted region and the dashed line the counterfactual by
the synthetic control method (SCM).
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Table 1. Mean Square Deviations (MSD)* of Counterfactual Estimates in Model (1)
Generated Data

Variables? Estimation Methods®
Factor Trs::irggnt Region PDCM-AIC  PDCM-AICC SCM
2 10 4 2.057 2305  5.706
2 10 6 2.034 1.931  3.406
2 10 8 3.278 1544  3.080
2 10 10 32621.228 32621228  2.418
2 20 4 1.270 1353  5.435
2 20 6 0.869 0878  3.605
2 20 8 0.917 0909  3.000
2 20 10 0.760 0699  2.082
4 10 4 6.841 7534  12.014
4 10 6 6.651 5817  8.307
4 10 8 7.518 4546  7.047
4 10 10 44607.660 44607.660  6.340
4 20 4 4.438 4581  10.680
4 20 6 2.305 2620  7.834
4 20 8 1.540 1689  6.382
4 20 10 1.322 1315 5183

' Mean of 1000 trials in each variable setting.

2 Factor and region denote the total common factors used in data generation and the maximum possible
numbers of regions included, respectively.

®The panel-data counterfactual method using Akaike information criterion (PDCM-AIC); the panel-data
counterfactual method using corrected Akaike information criterion (PDCM-AICC); synthetic control
method (SCM).

36



Table 2. Mean-Square-Deviations (MSD)* of Counterfactual Estimates in Model (2)
Generated Data

Variables® PDCM? scm?
Factor Trs::irggnt Region AIC AICC 1 4
4 10 4 10.448 9.924 15046  13.913
4 10 5 11.086 9.345 12471 13418
4 10 6 12.206 9.211 12.098  12.599
4 10 7 11.386 7.320 11319 10.827
4 10 8 19.703 8.323 10922 9.687
4 10 9 51366  68.128 0983  9.205
4 10 10 62602027 62602.027 8406 10.390
4 20 4 7.806 7.813 14.060 15.337
4 20 5 6.930 6.967 13214 13.695
4 20 6 6.171 6.223 12.842 11315
4 20 7 5.426 5.437 10433 11.249
4 20 8 5.384 5.257 8873  9.205
4 20 9 5.050 4.894 10032 8.500
4 20 10 4.663 4.413 7020 9507
4 30 4 7.599 7.593 15696  15.003
4 30 5 7.115 7.123 11.938  12.612
4 30 6 5.197 5.227 11339 11.983
4 30 7 5.119 5.169 10426 11.043
4 30 8 4,592 4.609 11585  8.582
4 30 9 3.097 3.081 8.657  8.092
4 30 10 3.682 3.627 8891  7.997

! Mean of 1000 trials in each variable setting.

2 Factor and region denote the total common factors used in data generation and the maximum possible
numbers of regions included, respectively.

*PDCM is the panel data counterfactual method. AIC denotes the method using Akaike information
criterion. AICC denotes the method using corrected Akaike information criterion.

*SCM denotes the synthetic control method. Numbers 1 and 4 are the numbers of observed factors.
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Table 3. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Synthetic Control Method in Model (1) Generated Data with Treatment Period at 10

Maximum Region Number
Regressors 4 5 6 7 8 9 10

8.684%**  7.384%%* 4 176%%% 4.204%** 5TBIFFF A4 TAGFF* 5 5QGRR
(11.97) (11.84) (9.25)  (9.22) (10.22)  (9.95)  (10.24)

Mean_var_factor

0.706 -4.456*** 1218  -1.230 -2.748** -0.354 -3.506%**
Mean_mean_factor ey 431y  (170) (-151) (319) (047) (:3.83)
00924 -0275 0514 0214 0170 0279  1.094*

Constant_y1 (-018)  (-062) (-164) (0.66)  (0.46)  (0.92)  (2.67)

0543 0430 0436 0119 1030 0700  -0.828
Mean_constant_yn 50 (046) (062) (0.15) (L.05)  (0.80)  (-0.69)
0409 0495 0416 -0322 -0.0336 0650  0.145
Var_constant_yn (052)  (0.64)  (0.74) (-052) (-0.04) (0.98)  (0.15)
1817 0781  -1362* 0561 0917 0221  -0.400

Mean_fl_y1 (L71)  (0.86) (214) (0.85) (L24)  (0.35)  (-0.48)

Var fl vi 6.213%%* 10.08%** 5958%** 5773%%x §QOGrRE 4.84TFx 5 QOGRRE
Iy (7.29)  (1373) (1143) (11.56) (9.31)  (9.80)  (8.94)
1.605  -1.039 2553  -1.057 -1.580 4.353**  -2.058
Mean_mean_flyn g6 (058 (182 (:0.67) (-083) (259)  (:0.82)
5.498*  0.480**  6.526* 5339 4958  8.946*  2.261
Var_mean_fl_yn (215  (3.18)  (248) (L70) (115  (212)  (0.40)
0355  -0.918 -1171 -3151* -0.817 -1.506  -3.133
Mean_var_fl_yn (0.17)  (-0.46) (-0.85) (-2.23) (-0.45) (-0.95)  (-1.49)
0138  -0.665 1723 0304 0907 5477*  -0.477
Var_var_fl_yn (-0.11)  (-039) (1.23)  (0.25) (0.41) (235  (-0.15)
3432  -4009* 0337 -0560 -2135 2218  1.115
Mean_ep_y1 (169)  (206) (023) (0.34) (-1.07) (1.23)  (0.47)
1624  -2.395 0102 2769  -8550  -6.394  -5.238
Mean_mean_ep_yn o417y (065) (0.03) (0.69) (-162) (-1.25)  (-0.70)
1282 6196 1578 1547  -1619 2281  -7.154
Var_mean_ep_yn 150 (os1)  (L71) (1.26) (-0.98) (1.37)  (:0.28)
Taul 1476 0199  2.448* 00232 0749 0548  -4.654**
0.78) (-0.12) (210) (0.02) (0.52)  (0.46)  (-3.01)

Tau? 0749  2.848 0755 -0.789 2376  1.358  0.923
(0.39) (1.72)  (0.64) (-0.64) (1.72)  (L15)  (0.60)

-10.70%%% -11.81%%* -6.004*** -1.060 -7.437%%* .7.079%** -2.797
(-4.89)  (-5.65) (-4.16) (-1.20) (-3.75)  (-3.95)  (-1.20)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.

Constant
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Table 4. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Synthetic Control Method in Model (1) Generated Data with Treatment Period at 20

Maximum Region Number
Regressors 4 5 6 7 8 9 10

TALA  §ABA* % T.624%%% 4.626%F% 6.192%%x 2803k 2,902k
Mean_var_factor — "jn40)  (11.07) (833 (9.58) (10.11)  (9.50)  (10.18)

0234  -0.725 -6.913*** 1034 -3.626%** 2.015%** 0.0839
Mean_mean_factor  o'1q)  (0gs) (456 (1.27) (355 (3.94)  (0.18)

0208 -0.0609 -0.110 0411 00801 -0.0245 -0.116
Constant_y1 (-043) (-0.18) (-0.18) (1.25) (0.18) (-0.11)  (-0.64)

2217%% 0633 2536 0346  -0450 -0.511  -0.914
Mean_constant yn "5 6y (089) (1.82) (0.42) (-038) (-0.81) (-1.55)

0227  -0120 -0221 -0.983 -0.0483 -0612  0.117
var_constant_yn a5 (021) (-020) (155 (0.06) (-133) (0.28)

Mean fl v1 0387  -0.316 2152 -0.945 0513 -0.0610 -0.127
Ty (0.41)  (-0.46) (L77) (-147) (0.59) (-0.14) (-0.34)

Var fl vi B.748%%* 5702%% 82Q7*** §3G2xk% 5 QE2REx 5 1GTHRF 3 5ggRE
Iy (8.69)  (10.01) (829) (9.64)  (8.62) (14.97) (11.50)
2730 2190 -4003 3314* -2.017 0295 1483
Mean_mean_flyn 157 (156 (154 (203) (0.83) (0.25)  (1.30)

4485 10.01*** 0220 7.893*  3.660 8.022**  4.283
vVar_mean_flLyn  jo3  T139) (004) (242 (0.73) (276)  (1.60)

72240 1276 4331 -2.102 -4687* -0.588  -0.869
Mean_var_flLyn  “‘35g  (086) (170) (-138) (2.34) (-055) (-0.89)

Var var fl vn 2.101 0.932 1.489 -0.316 2.596 -0.130 0.523
—var_t_y (1.45) (0.75) (0.76) (-0.19) (1.39) (-0.09) (0.35)

Mean e 1 -2.425 0.941 3.015 -1.498 0.427 -0.894  2.559*
_Ep_Y (-1.25) (0.64) (1.06) (-0.87) (0.18) (-0.67) (2.23)

7315 -1.867  7.014 -11.14** 1247  -0.382  -0.306
Mean_mean_ep_yn 555 (064) (1.10) (2.69) (195 (0.11) (:0.09)

1003 -16.03 109.9%** 2095  -2446 1704  -5.681
Var_mean_ep_yn 15 (175 (5.95) (161) (1.24) (L51)  (-0.51)

0.767 1.233 -0.421  -1.079 0.881 0.675 1.469*

Taul (0.42)  (0.99) (-0.19) (-0.89) (0.55)  (0.82)  (2.05)

4.374*  3.878** -5.901** -0.0471 3.175 0.779 1.326

Tauz (2.39)  (3.10)  (-2.64) (-0.04) (1.94)  (0.96)  (1.87)

Constant -6.852%** -8.876*** -8.673** -3.272 -6.576** -3.784** -3331**
(-335)  (556) (298) (-1.89) (-291) (-3.21) (-3.11)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.
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Table 5. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Synthetic Control Method in Model (1) Generated Data with Treatment Period at 30

Maximum Region Number
Regressors 4 5 6 7 8 9 10

5.877%%% 10.60%%* 8.600%** 7.362*** 2.816%%* 1.386%* 2.613%**
(8.15)  (9.70) (11.21) (9.88) (6.75)  (2.72)  (6.23)

Mean_var_factor

Mean mean factor 0720 0868 0.664 4045+ 00007 -0.241  -1462*
_fmean_ (0.70)  (-0.51)  (0.48)  (3.35) (-0.13) (-0.26)  (-2.24)

0591 -0.0820 -0.254 0573 00476 0383  -0.286
Constant_y1 (129) (-012) (0.44) (123) (017)  (1.01)  (-1.08)
0402 0470 -0.629 0425  -0.665 -0.676  -0.514
Mean_constant yn 55 (033) (-050) (0.37) (-0.88) (-0.62)  (-0.65)
Var constant vy 0272 0861 0256 0.931 -0.0457 0.748  -0967

ar_constant_yl (-0.37)  (059) (-0.23) (-1.07) (-0.08) (-0.92)  (-1.66)

Mean fl v1 -0.847 0.678 -1.201 -0.853 0.324 0.279 -0.485
LY (-0.94) (0.49) (-1.07)  (-0.94) (0.53) (0.36) (-0.92)

Vvar fl vi 5.842%** 8.245%** 5.309*** 4.0951*** 5.043*** 6£.386*** 4.629***
-y (8.00) (7.53) (5.82) (6.31) (12.29)  (10.40) (10.64)
Mean mean fl vn -0.751 -1.880 -2.209 3.176 -0.577 -0.609 0.172
- _TLY (-0.48) (-0.69)  (-0.90) (1.39) (-0.37)  (-0.29) (0.11)

5.282% 3922 6122 9791 0729  3.096  -0.201
Var_mean_fl_yn (253)  (0.84) (132) (208 (0.23)  (0.66)  (-0.05)
0.308 -8573** -1.850  -2.744 -3.794** -3549  -2.083
Mean_var_fl_yn (0.16)  (-3.03) (-0.73) (-1.25) (271) (-1.82) (-153)
Var var fl vn 0593 3479 1199 2101  1.386  -0.371  0.349

ar_var_fl_y (-0.45)  (L50)  (0.45)  (0.87) (0.70)  (-0.13)  (0.21)

Mean ep vi 2092 0817  -3363 3586 -5.791*** -6.266** -0.640
_ep_Y (-1.18)  (0.28)  (-1.24)  (1.53)  (-357) (-2.70)  (-0.40)
4170  -1.648 4333 2355  -1274  -1414  1.470
Mean_mean_ep_yn 137  (029) (073) (0.40) (-0.30) (-0.22)  (0.31)
Var mean | 29767 1153 6277*% 4095 1315 13L& 5748

ar_mean_ep_y (3.40)  (-067) (350) (-0.23) (0.95  (5.86)  (0.34)

0.436 -5.859*  -2.987 1.238 1.531 0.477 1.803

Taul (0.25)  (-2.28) (-1.47)  (0.71)  (1.41)  (0.33)  (1.84)

0.126 -0.635 2.946 -3.307 0.834 -1.117 -0.261

Tauz (0.07)  (-0.25)  (1.40) (-1.88)  (0.77)  (-0.77)  (-0.26)

Constant -6.028*** -6.644* -12.32%** -6183* -2.404 -1.418  -1.000
onsta (-350) (-2.06) (-4.47) (-255) (-1.58) (-0.68)  (-0.64)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.
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Table 6. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in
Model (1) Generated Data with Treatment Period at 10

Maximum Region Number

Regressors 4 5 6 7 8 9 10
B.742%%% 5325%x% 3 460%* 24G1%** 3530%%* 2317  -146217

Mean_var_factor 1545 (10500  (630)  (7.00) (852)  (025)  (-0.27)
1393 -0.816 0138 0973 -4.004*** 2195 418835

Mean_mean_factor 7o) (oo7) (016) (155 (635 (154)  (0.45)
0.688* -0420 0878 -0.110 0191 2275  -18869.9

Constant_y1 210)  (-1.17)  (230) (-0.44) (0.71)  (0.39)  (-0.47)
0634 1197 -0212 0233 -0515 1278  -12156.1

Mean_constant_yn 345 (157) (025 (-039) (-0.72) (0.76)  (-0.10)
0227 -0329 1065 0589 0593 1609  -78818.8

var_constant_yn 545 (053) (157)  (1.23)  (1.06)  (127)  (-0.86)
0869 0264  -0426 0131 -0.0831 -13.44  68460.1

Mean_fl_y1 (-128)  (0.36) (-055) (0.26)  (-0.15) (-1.12)  (0.83)
Var fl vi 6.473%* 5132%%* 506g*** 2500%%* 3853*** 5531  -146517
Ty (11.94)  (860) (799  (650)  (829)  (0.59)  (-0.22)
0226 1149  -2.881 1312 1291  -2431 -611565.9*

Mean_mean_flyn  59)  (079) (-169) (1.08) (093) (-0.76)  (-2.47)
0261  -0.710  -3289  -4242  -3247 -4721 -557375.0

Var_mean_fl_yn (-0.16) (029) (-1.03) (-L.75) (-1.03) (-059)  (-1.01)
1897  -2.146 -4.858** 0791  -1404  -3493  87950.6

Mean_var_fl_yn (-141)  (-133) (-291) (-0.73) (-L06) (-1.16)  (0.42)
1023 1898  4341* -0.399 1104  37.62 -2465516

Var_var_fl_yn (129)  (1.39)  (255) (-0.42) (0.67)  (0.85)  (-0.80)
1549 1997  -2151 -2.861* -2.217 1811 -171458.8

Mean_ep_y1 (120)  (1.26) (-119) (-2.28) (-152) (0.53)  (-0.73)
00374 -1.086 5219 1169  8241*  49.98 -1401605.4

Mean_mean_ep_yn ;o) (036) (124) (0.38) (213)  (0.51)  (-1.89)
1443* 9158  32.95%% 3141*** 0998 2687 1088248.8

var_mean_ep_yn 513y (093) (294) (332) (083) (0.85)  (0.44)
Taul 0132 1497 2517  2669%* 2431* 2262  -71223.9
011)  (110) (L78) (283) (231) (0.99)  (-0.47)

, 0134 0730 00863 1616 1318 1639 352388
Tau 0.11)  (054)  (0.06)  (L70)  (130) (0.73)  (0.23)
Constant 6.567*%% -6.502%*% -3.724% -3.654** -5432%** 3625 1486105
(-472) (-382) (209) (-291) (-3.74) (0.11)  (0.65)

* p<0.05, **p<0.01, ***p<0.005.

! The regressand is the MSD of 1000 trials in each model setting.
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Table 7. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in
Model (1) Generated Data with Treatment Period at 20

Maximum Region Number

Regressors 4 5 6 7 8 9 10
2.873%%% 1664%** 2E51%** 1 053%x 1.399%%x (.420%F% (,538%*

Mean_var_factor 829) (6.16) (9.70)  (8.65)  (7.84) (5.78)  (6.40)
0292  -0.938* -1475%** 0367 0702 0151  0.0638

Mean_mean_factor 549y (238) (-338) (L79) (236) (117)  (047)
0163 0159 0224 0104 0153  0.0900 0.0825

Constant_y1 (-069) (1.00)  (126) (125  (1.20) (162)  (L53)
0484 0257 0140 0193 0154 00395  0.314

Mean_constant_yn 19y (078) (0.35) (0.92) (045)  (0.25  (L.80)
0221 -0.00651 -0.244 -0.0131 0104  -0.153  -0.0494

var_constant_yn 560y (10.03) (-078) (-0.08) (0.41) (-1.33)  (-0.40)
0573 0156  -0277 0200  -0.165 -0.0707  0.0452

Mean_fl_y1 (125)  (-0.49) (-0.79)  (L23) (0.65) (-0.64)  (0.41)
Var fl vi 4.856%%% 3117*%% 2.808%* 1.013%% 1,037%% 0.716%%* 0,718%**
Ty (12.85) (11.86) (9.76) (7.22) (5.15) (8.25  (7.78)
1060 0124  -0441 0404  -0.339 -0.0308 -0.670%

Mean_mean_flyn 156 (019) (-059) (0.98) (048 (:0.10) (-1.99)
0578 0258 -2.177 -2585%* 1295  -0.137  -0.263

Var_mean_fl_yn (-0.51) (-0.25) (-151) (-3.13) (0.89) (-0.19)  (-0.33)
2320 -1.199 -2.049** -0.691  -1.018 -0.829** -0.815**

Mean_var_fl_yn (-2.36) (-1.75) (2.80) (-1.79) (-1.74)  (-3.08)  (-2.81)
000451 1640%* 0672 00469 1.835%** 0439  0.528

Var_var_fl_yn (-0.01)  (2.85)  (L20)  (0.11)  (3.39)  (L19)  (L.19)
103 0127 1353 0324 0753 -0102  0.533

Mean_ep_y1 (1.10)  (0.19)  (1.65)  (0.75)  (L.07)  (-0.30)  (1.57)
2076 1056  3.859* -0.958 -0.336 2121* 1312

Mean_mean_ep_yn ;159 (078) (211) (0.92) (018 (235  (L33)
6.007 4726 22.99%%* 6.891* 16.08%* 16.48%%* 1313+

vVar_mean_ep_yn  (qas  (112) (433) (210) (280) (5.80)  (3.97)
Taul 1141  1727** 0290 0.689* 0306 0.607**  0.521*
(130) (299) (045)  (2.25)  (0.66)  (2.95)  (2.46)

Tau2 1.031  1.048 0000128 1.161%** 0749 0.770%* 0.680%*
(116) (182  (000) (3.77) (1.58) (3.77)  (3.25)

Constant -3.343%%x 3.003%*% -2.717%* -0.950% -2.139** -0.167  -0.302
(-3.36)  (-4.07) (-324) (219) (325) (-057)  (-0.95)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.
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Table 8. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in
Model (1) Generated Data with Treatment Period at 30

Maximum Region Number
Regressors 4 5 6 7 8 9 10

1.436%** 1.086%** 0.704*** (.548%%* (.601%** 0.266%%* 0.307***
(5.94)  (559) (7.18)  (3.46)  (8.35)  (417)  (5.68)

Mean_var_factor

0.284  0.872** -0.08 00918 0156  0.297*  -0.148
Mean_mean_factor  o7g)  289)  (:0.61) (0.36) (122)  (256)  (-1.77)
00276 0147 00415 -0.00305 00926 0.0419 -0.0224

Constant_y1 (-018)  (L25)  (0.57) (-0.03) (L86)  (0.88)  (-0.66)

e consantyn 1% G4 0 o ow o oo
Vo consntyn OO 0089 00 om0 00w oy oo
ven flyL Q0 Gm ous s aws ot o
Var_fl_yl 3.007*** 1.759*** 1.201*** 1.263*** (.778*** (0.604*** (.479***

(12.28)  (9.04) (10.32) (7.58)  (9.32)  (7.83)  (8.57)
e mean Ly 9% A0 0% 4o ooz oz oz
Ve men fyn A2 ono am oo aon o
e var flyn S 8% A g g s o
Vet 05y 0%0 G ae oms o ose e
ven ey 9% AW 9% ot om e o
e mean ey 2037 A om z owe om om
Ve men ey 5 S e om sm sz e

0.974 1.255** 0.834**  0.595 0.732*** 0.784*** 0.361**

Taul (1.69)  (2.75)  (3.22)  (1.60)  (3.89)  (4.34)  (2.86)

Tau? 0.687 0587 1.403*** 0570 0.764*** 0.751*** 0.306*
(1200 (1.32) (5.21)  (152)  (4.08)  (411)  (2.34)
- - * _ _ *% Kk =

Constant 1250  -1.399 0546 -1.411** -0.838 0.359  0.106

(-1.88)  (-2.44) (-155) (-2.74)  (-3.18) (-1.37)  (0.53)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.
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Table 9. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Synthetic Control Method in Model (2) Generated Data with Treatment Period at 10

Maximum Region Number

Regressors 4 5 6 7 8 9 10

0719 0578  -0.284 1.403*** -1063*** -0.463  0522*
Mean_factor_y1 (139) (1.26) (-0.82) (4.00) (-3.30) (-1.58) (2.07)
Var factor vl 3.969%%* 4.247%%% 2.902%%* 3.100%** 2,990%** 2. 7AT*** 2 T13%k*

ar_tactor_y (9.85) (11.61) (10.41) (11.34) (11.80) (12.20) (13.67)

1.825% 1524* 0443 0227 00248 0.0662 -0.0879
Mean_var_factor_yn (250)  (2.09) (0.69) (0.34)  (0.04) (0.10) (-0.15)
0503 -0.240 -0.122 0532 0709  1.393  -0.205
Mean_mean_factor yn  5ey  (026) (-016) (063) (0.87) (173) (-0.30)
Constant V1 0134 0274 -0.0639 00293 00800 0.00556 0.299*

Yy (-0.54) (1.22) (-037) (0.17)  (050)  (0.04)  (2.56)

0.0660  0.172 -0.0809 0.00947 -0.120 -0.0611 0.189

Mean_constant_yn (0.15)  (0.38) (-021) (0.02) (-029) (-0.15) (0.54)

-0.206  -0.629 -0.627* -0.00872  0.258 -0.281  -0.282

Var_constant_yn (-057) (-167) (-207) (-003) (0.82) (-0.87) (-1.05)

5.358 3.252 3.379 0.748 -0.0435 -0.801 0.514

Mean_mean_fl (172)  (111) (151) (0.34) (-0.02) (-0.46) (0.34)
2798 4419 -2565 -1851 4790 -9.057  2.878
Var_mean_fl (0.17)  (0.29) (-021) (-1.60)  (0.47) (-101) (0.38)
0.364*** 0637 7.336*** 1689  3.531* 2435  0.276
Mean_var_fl (385  (0.31) (454) (L.05)  (243) (189)  (0.25)
Var var fl 4512 0586  -8.624 4250  -7.537 -7.612 -0.113
_var_ (-0.57) (0.08) (-1.57) (0.74)  (-1.63) (-1.56) (-0.03)

- - Kk * - - -
Mean_ep_ y1 2170  1.940 -2.890%* 2.372*  -0.239 -0.222 -0.238

(-1.40) (1.38) (-2.65) (2.20) (-0.25) (-0.25) (-0.31)

1420 -3852 -4917 -1.881 -1.130 -0.773  3.387
Mean_mean_ep_yn (052) (-131) (-1.89) (-0.70) (-0.44) (-0.30) (L.50)
Var mean . 1301 -5205 1657 -9.275 -3.870  22.07 -14.96

ar_mean_ep_y (-0.88) (-0.37) (1.34) (-0.73) (-0.32) (1.69) (-1.42)

-8.337 1.654 2.230 1.075 1.545 3.044  -0.877

Constant (-164) (0.34) (056) (0.28) (0.42)  (0.84) (-0.28)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.

44



Table 10. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Synthetic Control Method in Model (2) Generated Data with Treatment Period at 20

Maximum Region Number
Regressors 4 5 6 7 8 9 10

-1.826%** -0.753 0563 0137  0.106 -0.488* -0.357
(-3.33)  (-1.69) (1.28) (0.47) (0.36) (-1.99) (-1.42)

Mean_factor_y1l

Var_factor_yl 2.552%** 2 5E7*** 3 515x** 2 721 %rx 2 Z1THFR* 2,491%%* 2,376%+*
ar_factor_y. (5.48)  (7.22) (10.03) (11.96) (9.94) (13.62) (11.08)

3.245%** 1107 1268 0450 0518 -0.973 -0.434
Mean_var_factor_yn — “,56  (150) (156) (0.76) (082 (-173) (-0.70)
00455 -0.372 -1.635 -0506 -0.518 0529  0.564
Mean_mean_factor yn ooy (.043) (-1.66) (-0.84) (0.64) (0.77) (0.74)
Constant V1 -0.637* 00395 00971 -0.147 0186 0.0715 0.124

onstant_y (-237)  (0.19)  (0.45) (-1.00) (1.24) (0.58)  (0.96)

0.0461 0.0816 -0.436 -0.0916  0.469 0.499 0.296

Mean_constant_yn (0.10)  (0.19) (-0.86) (-0.26) (1.15)  (1.48)  (0.76)

-0.201 0.155 -0.128 -0.0524 -0.488 -0.409 -0.194

Var_constant_yn (-052) (0.46) (-032) (0.20) (-152) (-1.65) (-0.71)

-1.978 -2.065 2.731 0.566 1162  -2.022 2278

Mean_mean_fl (-0.57) (-0.80) (0.98) (0.31) (0.60) (-1.37) (L.34)
2480 9612 2436 -9.166 9.034 6893  0.188

Var_mean_fl (145)  (0.68) (L75) (0.90) (0.94) (0.87) (0.02)
3.846 7.967** 3171 1633 2.819* 1350 0541

Mean_var_fl (151)  (391) (160) (L22) (2.01) (122) (0.45)
Var var f 6200 1391 -0.198 3879 -2140 7.487* 0.588
ar_var_ (0.70)  (0.20) (-0.03) (0.81) (-0.40) (1.97)  (0.13)
Mean_ep_ y1 1.807  -1.064 -0.698 -0.179 0352 -1.002  0.153

(1.04)  (-081) (-0.50) (-0.20) (0.36) (-1.28) (0.18)

00749 -1.673 -0.283 1858 -2.373 2097  0.0579
Mean_mean_ep_yn (-0.03)  (-0.63) (-0.09) (0.86) (-0.93) (1.03)  (0.02)
Var mean . 2537 -2071 -1515 0318  3.894 1.680  3.804

ar_mean_ep_y (-152) (-152) (-0.96) (0.03) (0.32) (0.17) (0.33)

1.543 1.800 -1.506  -0.337 0.880 2416  -0.125

Constant (0.27)  (0.39) (-0.31) (-0.10) (0.24) (0.82)  (-0.04)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.
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Table 11. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Synthetic Control Method in Model (2) Generated Data with Treatment Period at 30

Maximum Region Number
Regressors 4 5 6 7 8 9 10

-1.415%  -0.777  -0.873 -0.973** 0.130 1.390*** -0.265
(2.48) (-1.64) (-1.91) (-2.60) (0.42) (4.10) (-0.92)

Mean_factor_y1l

Var factor vi 354754 2.604%x* 1.386%*x 3,300%%* 2.304%%* 3,145%% 2,891rr*
_factor_y (7.47)  (6.40) (385 (1152) (8.73) (10.75) (12.07)
0628 0687 0152 -1470 -0.885 0302  -0.895
Mean_var_factor yn 79, (086) (0.18) (-1.92) (-1.30) (0.40) (-1.30)
1411 1788 0211 0855 1131 -0.625 -0.100
Mean_mean_factor yn  j.a (184 (0.21) (092 (1.30) (-067) (-0.12)
Constant V1 0316 -0434 0182 -0181 0298 0.160 -0.0268

onstant_y (-110) (-1.78) (0.77) (-0.94) (1L.92)  (0.97) (-0.19)
00925 -0161 -0.700 0218 -0.305 0118  -0.111
Mean_constant_yn (-018) (-033) (-1.33) (0.50) (-0.73) (0.25) (-0.27)
0108 -0.321 0192 -0551 -0.0756 0225 -0.641
Var_constant_yn (-026) (-0.88) (0.47) (-159) (-023) (0.65) (-1.95)
Mear mean f 2640 2575 0325 4355 5230* -0.169 0415

€an_mean_ 071) (0.85 (0.11) (1.86) (2.49) (-0.08)  (0.24)

-23.34  -16.21  -1.674 4.040 -0.471 2.993 6.643

var_mean_fl (124) (104) (011) (032) (-0.05 (0.27)  (0.69)
5123 4134  4654% 1878 4605 5.618* 2,000

Mean_var_f (188) (188) (214) (1.09) (302) (373 (L46)
Var var fl 1515 2427 1590% 0202 4188  -9.443  -6.865
_var_ (162) (032) (224) (003 (0.88) (-L70) (-153)
Mean_ep_y1 1085 1228 1673 0525 0713 0373  0.346

(057) (-0.79) (L.14) (0.43) (0.69) (0.36)  (0.39)

2211 1657 -0.690 2.835 -1.217 -1419 -1.068
Mean_mean_ep_yn (-0.71)  (0.54) (-0.21) (0.98) (-0.45) (-0.47) (-0.39)
Var mean . 10.80  6.349  -9.467 -18.87 -3154* -8.376 27.23*

ar_mean_ep_y (0.64)  (0.43) (-0.64) (-1.35) (235 (-0.61) (2.15)
0717  -1.347 -0.762 -4.411 -4533 -1.898 1576
(012) (-0.26) (0.15) (0.99) (-1.14) (-0.45) (0.42)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.

Constant
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Table 12. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in
Model (2) Generated Data with Treatment Period at 10

Maximum Region Number

Regressors 4 5 6 7 8 9 10
0312 -0.539* -0.236 0.752* -0.118 57.14  5661.1
Mean_factor_y1 (154) (2.35) (-1.22) (266) (0.50) (0.38)  (0.97)

3.337%%* 3.730%** 2.868%** 3.801%** 3207*** 3015  6004.3
Var_factor_y1 (2122) (20.35) (18.37) (17.23) (17.43) (0.26)  (1.31)

0.681* -0.823* -0.488 -0.568 -1477** 2842 12678.0
Mean_var_factor_yn 59y (526) (-136) (-1.06) (-311) (0.83)  (0.94)

0172  -0.291 -0403 -0.165 0942  -63.65 -5566.2
Mean_mean_factor yn 51y (063 (-092) (0.24) (159) (0.15) (-0.35)
0.0523 0109 -0.0266 0192 0118 -1445 -2686.0
Constant_y1 (0.54)  (0.97) (-028) (141) (1.02) (-193) (-1.00)
0.0613 0254 -0293 0130 -0.395 1746 -9882.7

Mean_constant_yn (0.36)  (1.11) (-1.34) (0.38) (-1.30)  (0.83) (-1.22)

-0.212  -0.191 -0.161 -0.478 -0.00278 37.17 -2543.4

Var_constant_yn (-150) (-1.01) (-0.95) (-1.79) (-0.01) (0.22) (-0.41)
Mean_mean_f 030 (008 (108 (05 (042 (043 (052
Var_mean_fi (011 (008 (176 (029 (005 (059 (013
Mean_var_f GEn 065 (09 1) (4 (02) (0%
Var var f 2617 -2018 -2507 -6.932 -6.856* 1449.9 901225
_var_ (0.84) (055 (0.85) (-L49) (-2.04) (0.58)  (0.96)
Mean_ep_y1 218) (004 (065 (5 (04 (038 (042
Mean_mean ep yn ‘000 (oes (034 (70 (002 (035 (127)
Var_meanepyn 50 o Gesy  w0) (0% (o) (026
Constant 3106 3481 3102 -2.865 3751 -615.1 -42698.6

(-157) (1.43) (1.38) (-0.92) (1.39) (-0.33)  (-0.60)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.
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Table 13. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in
Model (2) Generated Data with Treatment Period at 20

Maximum Region Number
Regressors 4 5 6 7 8 9 10

-0.329~ -0.218 -0.171  0.116 -0.0910 -0.0594  0.0102
(2.28) (-154) (-1.30) (0.84) (-0.85) (-0.50)  (0.10)

Mean_factor_yl

2.673*** 2.120%** 2.559*** 1.048*** 1555*** 1480*** 1.463***

Var_factor_yl (21.81) (18.79) (2452) (17.84) (18.72) (16.68) (17.11)

-0.366  -0.814*** -1.017*%** -1.047*%** -1.202*** -1.296*** -1.241***

Mean_var_factor_yn s (367)  (-421) (-369) (535) (A.74) (55.03)

0229 -0.0355 -0.359 -0.0823 -0.0253 1.009** -0.0814

Mean_mean_factor yn g0y (013) (-122) (-024) (-0.09) (3.03) (-0.27)

-0.0931 -0.0407 0.0581 0.0596 0.0515 -0.114 0.0194

Constant_y1 (-1.31)  (-0.61) (0.90)  (0.84)  (0.97) (-1.91) (0.37)

0.0316  -0.251 -0.0769  0.145 -0.000522 -0.407* 0.119

Mean_constant_yn (0.26) (-1.88) (-051) (0.87) (-0.00) (-248) (0.77)

-0.0252 0.0990 0.0174 0.164  -0.241* 0.0304 -0.0628

Var_constant_yn (-0.25) (0.92) (0.15)  (1.28) (-2.10) (0.25)  (-0.57)

-1.612 -0.775 -0.294 0.800 0.0887  0.0225 0.729

Mean_mean_fl (-L76) (-0.94) (-0.35) (0.93) (0.13)  (0.03)  (1.07)

-1.467 0.233 5.060 -5.746 5.362 -2.080  -0.337

Var_mean_fl (032) (0.05) (122) (-1.18) (157) (-054) (-0.10)
Mean_var_fl 079 G0y (&) 120 (%) (s (1
T R
Mean_ep_ y1 0321 -00650 -0.666 -0.477 0109 -0479  0.265

(0.70)  (-0.16) (-1.59)  (-1.10) (-0.31) (-1.26)  (0.78)

-0.686 -0.948 -0.657 0.141 -0.420 0.291 -1.942

Mean_mean_ep_yn (-0.87) (-1.12) (-0.73) (0.14) (-046) (0.29)  (-1.95)

-8.014  -5.652 -3.167 5.003 -7.114 1.266 0.594

Var_mean_ep_yn (-1.83) (-1.30) (-0.67) (0.97) (-163) (0.26)  (0.13)

3.832%  2.884 2370 1227  2.855%  2.648 A4.587%**
(2.56)  (1.95) (1.62) (0.75) (2.21)  (1.86)  (3.38)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.

Constant
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Table 14. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)* by
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in
Model (2) Generated Data with Treatment Period at 30

Maximum Region Number
Regressors 4 5 6 7 8 9 10

4.791%%% -1.863% 1.362%  1.712%%% -3.009%** 1.799%%* 2,139%*
(7.54)  (-245) (253) (3.74) (-4.18) (4.33) (7.52)

Mean_factor_yl

Varfacor vl (g ory (a7 489 @159 (09 (5H
Meanvar fctor 0 (e (120 (19 (2 (19 (1) (002
Mean_mean foctor yn 5167 (Say) (330 (520 (350 (i87) (208
Constant_y1 05 (029 (010) (05 (O10) (319 (50
Mean_constant yn (016} (i3 (200 (0% (072 (079) (179
Varconstantyn (V0 0oy (065 (075 (009 (049 (160
Meanmean fl G Gogg cimy (o1 0en 029 (029

23.33 -18.43  -10.62 -1.915 11.67 -12.60 1541

Var_mean_fl (122)  (-0.74) (-0.59) (-0.14) (0.54)  (-1.00) (1.65)
Mean_var_f G5 ©of (oD (013 (o) @4 (o5
Var_var_f (GO0B (179 (023 (03 (128 () (5
Mean._ep_ v 013 0554 -1799 -0.255 0483  -0.161 0.0439

(0.06) (0.22) (-1.06) (-0.21) (0.23)  (-0.14) (0.05)

3288  -6790 -0.0043 -0.483 5737 3221  3.103
Mean_mean_ep_yn ;o5  (141) (002 (-016) (-1.08) (1.03) (1.26)
1622  -38.94 59.78** -3.162 8493  -2.696 9.598
Var_mean_ep_yn (0.10) (-163) (3.08) (021) (0.31)  (0.18) (0.83)
14.42%% 9189 5254 3631  -0.221 1411 2.984

Constant (-3.00) (1.54) (1.15) (L08)  (-0.04) (0.47) (1.39)

* p<0.05, **p<0.01, ***p<0.005.
! The regressand is the MSD of 1000 trials in each model setting.
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