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摘要 

本研究透過蒙地卡羅法之模擬以評量 Hsiao et al. (2012) 提出的縱橫資料反事實法

(Panel-Data Counterfactual Method)與 Abadie et al. (2010) 提出的合成對照組法

(Synthetic Control Method)之人工對照組估計之準確度。在使用主體之選擇由資料

產生，與具單位處理效果(Treatment effect)之估計方法中，何者對隨時間變動之處

理效果估計較佳為本研究之目標。將此二法，應用於多個實例資料，進行模擬及

交叉比對，以評估其可用性。結果顯示當共同因素在時間中的變動與因素負荷在

地區間的變動均小時，此二法之估計均良好。但以均方差衡量對人工對照的估計

時，縱橫資料反事實法在大多數情況下, 比合成對照組法準確。儘管此二法均需謹

慎使用，由蒙地卡羅模擬之結果顯示，縱橫資料反事實法明顯較佳。 

 

關鍵詞：人工對照組估計，模式模擬，縱橫資料反事實法，合成對照組法，蒙地

卡羅法 
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Abstract 

The accuracy of the artificial control estimation using the panel-data counterfactual 

method proposed by Hsiao et al. (2012) and the synthetic control method proposed by 

Abadie et al. (2010) were evaluated using the Monte Carlo simulations. The aim was to 

determine which of the methods is superior in studies with time-variant treatment effect, 

individual treatment effect and data-driven subject selection process. A cross checking 

process and simulations conducted under various model settings provide guidance on 

the applicability of these two methods. Both methods perform satisfactory when the 

variation of common factors in time and factor-loadings across regions are small. In 

most cases the panel-data counterfactual method is more accurate in artificial control 

estimation in term of mean-square-deviation criteria than the synthetic control method. 

Though both methods must be used with caution, the panel-data counterfactual method 

is clearly the better method suggested by the Monte Carlo results. 

 

Keywords: Artificial control estimation, model simulation, panel-data counterfactual 

method, synthetic control method, Monte Carlo method 
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1. Introduction 

Many studies in economics involve determining the effects of a certain event, 

incident or treatment; for example the study on Taiwan’s membership in the WTO is 

very likely involved with the study of the effect of becoming a WTO member on 

Taiwan’s GDP growth. A review on treatment effect methods by Imbens and 

Wooldridge (2009) discusses the assumptions and advantages of available methods in 

the literature. As the pool of the methods grow continuously, it can be difficult for 

researchers to choose between various methods available. Therefore, comparisons 

among or between the methods would provide insight and are valuable to researchers. 

Some of the new methods focus on treatment effect problems in macroeconomic setting 

and provide estimates of time-variant treatment effect in a targeted region. As these 

methods are potentially useful in many macroeconomics studies, it is important that 

their applicability are known to researchers. 

An important object of interest in policy evaluation is that the change in certain 

outcomes of the regions (or subjects, units, individuals and etc.) is affected by some 

treatments of interest (or incident, laws, policy changes and etc.). To study these 

treatment effects, two observations of the same unit that are exposed (targeted) or not 

exposed (control) to the treatment, is required to be known. However, a “fundamental 

problem of causal inference” (Holland, 1986) is that a unit can only be observed when it 
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is exposed to a single level of treatment at a time. Data available for evaluations of the 

treatment effects are therefore limited to different units or the same unit in different 

times. This problem raises different issues in macro- and microeconomic studies due to 

the difference in the goal of researches. Studies in macroeconomics tended to target the 

treatment effect in a certain region and at times required estimates of the trend of the 

treatment effects in time. These goals could not be accomplished without a control 

group of the targeted region. Since countries or regions possess unique characteristics 

that are unlikely to be matched directly by other countries or regions, the lack of control 

group is an important question in macroeconomic treatment effect studies. Studies in 

microeconomics on the other hand encountered a different issue as their goals usually 

were set to find the treatment effects amongst a certain group of individuals, of them 

some are and some are not affected by the treatment. Taking just the difference in the 

average of the individuals with varying actions is not appropriate because of the 

difference in the characteristics of the groups. For example, people who choose to buy 

health insurances are of different characteristics than those who choose not to. Such 

difference, if not adjusted, may lead to an inconsistent estimation of the treatment effect. 

Two artificial control methods, the SCM and the PDCM, are of interest because 

they yield the time-variant treatment effect and data-driven selection of control regions. 

The SCM proposed by Abadie et al. (2010) and the PDCM proposed by Hsiao et al. 
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(2012) both could generate a weighted sum of the control regions using 

pre-treatment-period data to fit the pre-treatment-period behavior of the targeted region. 

Created by combining the generated weighted sum with post-treatment-period data of 

the control regions, the artificial targeted region (or the counterfactual) mimics the 

behavior of the targeted region supposing that treatment does not occur. The treatment 

effects are therefore derived by differentiating the real targeted region with the 

counterfactual. 

Although the SCM and PDCM both produce the counterfactual, their underlying 

method and model specification are drastically different. The SCM is based on the 

assumption that the time-variant factor-loadings are the same across regions and the 

common factors are time-invariants that differ across regions. The PDCM whereas 

assumes region-specific factor-loading and time-variant common factors. Their 

minimizing functions in generating the weight are different as well. Though both SCM 

and PDCM can be used on any data with DID settings, the differences in methodology 

suggest that they are most likely different in applicability and goodness of 

post-treatment-period fit. 

In this article, the applicability of the methods in different model setting and the 

differences in goodness of post-treatment-period fit of the two methods were 

investigated. By utilizing the Monte Carlo Method proposed by Metropolis and Ulam 
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(1949), the SCM and PDCM were applied to different model structures and variable 

settings that were generated repeatedly using Matlab 2010a (MathWorks, MA, USA); 

the mean square deviation (MSD) of the counterfactual and post-treatment-period data 

of the targeted region were recorded along with the random variables. Regression 

analysis of the MSD showed that both PDCM and SCM fit better when common factor 

variance and factor-loading variance are small. In addition, results showed that the 

PDCM exhibited a mean MSD smaller than did SCM across most model settings. 

Therefore the PDCM is recommended over the SCM. 

The rest of the article is arranged as follows. Section 2 discusses the previous 

studies on treatment effects. Section 3 discusses the SCM and the PDCMs. Section 4 

discusses the generation and analysis of simulation data. The results and discussions are 

presented in Section 5. Section 6 concludes. 
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2. Literature Review 

The study of the treatment effect was pioneered by Ashenfelter (1978) with 

subsequent improvements by Ashenfelter and Card (1985), Heckman and Robb (1985), 

Lalonde (1986), Fraker and Maynard (1987), Card and Sullivan (1988), and Manski 

(1990). These studies have investigated mainly labor market programs using 

observational data and have been focused on the self-selection bias, in which the 

endogenous differences between individuals were motivated. Traditional methods such 

as the fix effect method and the instrumental variable method have been implemented to 

deal with the biases. A subsequent econometrics approach, the semi-parametric models, 

allows for “fewer functional form and homogeneity assumptions” (Imbens and 

Wooldridge, 2009). However, there would be no general approach without the 

assumptions of exogeneity, which is defined by the differences in the observed common 

factors account for “all biases in comparison between targeted and control unit” (Imbens 

and Wooldridge, 2009). Without a general method for treatment effect estimation, 

researchers must develop their own specific methods for different types of datasets. As 

most of the previous methods have been shown to depend heavily on the average 

treatment effect on groups for individuals, they are insufficient in estimating accurately 

the treatment effect on a single targeted region, as often the case in most 

macroeconomics studies. The correction for self-selection bias is adequate for 
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estimation of data that the targeted unit and the control unit are both groups with 

numerous individuals such that the average characteristic except self-selection can be 

matched after taking the means, whereas in many of the macroeconomic cases, the 

targeted region is consisted of a single unit with unique characteristics that cannot be 

matched by any other region alone. 

Of the methods proposed for various special cases, the difference-in-difference 

(DID) method has been widely used in empirical economics with influential 

applications such as Card (1989) and Card and Krueger (1994). The DID method relies 

on the setting that the targeted region is affected by the treatment after a certain time 

period (treatment period), whereas the control region is never affected. The treatment 

effects are obtained by differentiating the growth in the targeted region to the growth in 

the control region. This double difference eliminates the bias of the permanent 

differences between the targeted and control regions and the bias originated from time 

differences. The selection of the control region is, however, often ambiguous and 

subjective. The credibility of researches would increase if the selection processes are 

objective and clear, and the researchers could be relieved from repeated test using 

different control region groups. Moreover, the effects of many treatments are 

time-variant. For example, the drop in cigarette consumption due to an increase in 

tobacco taxes is expected to increase over time, because smokers need time to quit 
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smoking. Therefore, methods that could estimate effectively time-variant treatment 

effect are valuable to those studies. 
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3. Methods 

Both the synthetic control method (SCM) and the panel-data counterfactual method 

(PDCM) deal with macroeconomic treatment effects. Without exogeneity, the 

assumption that all observed common factors of the regions account for all biases when 

comparing the targeted and control regions, the general method of treatment effect does 

not exist. Therefore, the two methods have focused on the macroeconomic scene where 

the individual effect of a targeted region is desired. These special cases include a 

targeted region where the treatment occurs somewhere in the timeline and a group of 

control regions that are related to the target region and are not affected by the treatment. 

In the attempt to lessen the time-average treatment effect, both the SCM and the PDCM 

adopt the difference-in-difference method and create an artificial control of the targeted 

region allowing for time-variant estimation of the treatment. The benefit of allowing for 

a time-variant estimation lies in the event that the effects of the treatment would change 

over time, shrinking, spreading, auto-regressive and etc. Common examples for these 

settings are the signing of treaties, passing laws, riots or civil wars, and tax or wage 

changes. The SCM and the PDCM offers different perspective in achieving such goals.  

 

3-1. Synthetic Control Method 
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The synthetic control method (SCM) that was proposed initially by Abadie and 

Gardeazabel (2003) discussed the effect of riot on the GDP growth of Spanish Basque 

County. Based on the original idea, Abadie et al. (2010) improved further the method to 

discuss the effects of California’s tobacco tax program, Proposition 99, on the yearly per 

capita tobacco sales. The authors concluded that per capita tobacco sales in California 

dropped since 1988 when the tobacco tax program was implemented. Moreover, the 

magnitude of the drop is greater than what was proposed in a previous study by 

Fitchtenberg and Glantz (2000). The SCM allows for determining an individual and 

time-variant treatment effect. The method is used on a specific case of data in which a 

region (the targeted region) is affected by the treatment for all time periods after the 

treatment-period, and all other regions (the control regions) are not affected by the 

treatment in every time period. 

The SCM formulates a weighted sum of the control regions in order to simulate the 

behaviors of the targeted region. The SCM generates a weight (W) of the control 

regions using pre-treatment-period data in which the weighted sum of the control 

regions mimics the pre-treatment-period behavior of the targeted region. The weight (W) 

in the SCM is derived by minimizing  

‖𝐻1 − 𝐻0𝑊‖𝑉 (3-1) 
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where V is some (r+M x r+M) symmetric and positive semidefinite matrix, 

W = �𝑤2, … ,𝑤𝐽+1�
𝑇

 with 𝑤𝑗 ≥ 0 ∀𝑗 = 2, … , 𝐽 + 1, 𝐻1 = �𝑎1𝑇 , 𝑦1
𝐾1 , … , 𝑦1

𝐾𝑀�
𝑇

  is a 

vector that describes the pre-treatment-period characteristics of the targeted region, and 

𝐻0 =

⎣
⎢
⎢
⎡ �𝑎2𝑇 ,𝑦2

𝐾1 , … ,𝑦2
𝐾𝑀�

𝑇

⋮
�𝑎𝐽+1𝑇 ,𝑦𝐽+1

𝐾1 , … , 𝑦𝐽+1
𝐾𝑀 �

𝑇

⎦
⎥
⎥
⎤

 where 𝐾𝑙 = �𝑘𝑙1, … , 𝑘𝑙𝑙0�
𝑇

, l = 1, … , M,∑ 𝑘𝑙𝑙
𝑇0
𝑖=1 = 1 

are (𝑇0x 1) vectors that define the linear combination of pre-treatment-period data of the 

control regions. That is, 𝑦𝑖
𝐾𝑙 = ∑ 𝑘𝑙𝑙𝑦𝑖𝑖

𝑇0
𝑠=1 . The minimization of W in Equation (2-1) 

can be regarded as the minimization of the difference between the targeted and the 

control region behaviors of the pre-treatment-period data. In the empirical application of 

the SCM, W is chosen to minimize ‖𝐻1 − 𝐻0𝑊‖V, where V is a positive definite and 

diagonal matrix. For every possible V there is a unique 𝑊∗ that minimizes ‖𝐻1 −

𝐻0𝑊‖V. Therefore, W is treated as W(V) and the minimization equation becomes 

‖𝐻1 − 𝐻0𝑊(𝑉)‖V, which solely depends on V. Since the minimization process depends 

only on pre-treatment-period data, the V that minimizes the pre-treatment-period mean 

square deviation (MSD) is chosen as 𝑉∗and the minimizing weight 𝑊∗ = 𝑊(𝑉∗) is 

then determined. Therefore, the artificial control (or the counterfactual) of the targeted 

region is derived with the sum of the post-treatment-period control regions weighted by 

𝑊∗, and the treatment effect is obtained as the difference between the actual and 

counterfactual targeted region. 
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In this article, the simplified version of the SCM was used for a generalized 

application. The Matlab codes that Abadie et al. (2010) provided on their webpage were 

modified for implementing the SCM on generated data sets while the minimization 

process was kept the same. As in the empirical analysis conducted by the authors, the 

choice of V was restricted to a positive definite and diagonal matrix. For simplicity, 𝐾𝑙, 

the linear combination of  y𝑖𝑖, was picked as  y𝑗𝑗; all pre-treatment-period data were 

included. The optimization process of picking 𝑉∗ involved the use of Matlab function 

fmincon provided in the authors’ codes. The initial values of V that were chosen as the 

diagonal terms were the normalized standard deviations of 𝐻0, the control region 

behaviors of the pre-treatment-period data, and with other terms zero. The initial V was 

input into fmincon with the loss function, also provided in the authors’ Matlab codes, to 

find the 𝑉∗ that minimized pre-treatment-period MSD.  

The SCM not only takes into account the observed common factors but also employs 

control region data. The observed common factors are chosen by researchers, while all 

control regions are included. Slight modifications were made to the more generalized 

method for simplified computation and choices of less subjectivity. The combination 

weight W of the control regions was then chosen to minimize the difference in the 

observed common factors and pre-treatment-period data between the targeted and 

control regions. The treatment effect is the post-treatment-period difference between the 
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targeted region and the counterfactual, which is created by the weighted sum of the 

control regions in the post-treatment-periods. 

 

3-2. Panel-Data Counterfactual Method 

The panel-data counterfactual method (PDCM) that was proposed by Hsiao et al. 

(2012) employs a simple method of finding the artificial control that does not require 

specified common factors. The authors demonstrated by using PDCM that there is no 

treatment effect on the GDP growth of Hong Kong in its political integration with China 

in 1997 but a positive treatment effect on the GDP growth in its economic integration in 

2003. The PDCM, same as the SCM, was developed to estimate an individual and 

time-variant treatment effect. As with the SCM, the PDCM was designed for specific 

cases of data where a region (the targeted region) is affected by the treatment for all 

time periods after the treatment-period, and all other regions (the control regions) are 

not affect by the treatment in every time period. 

The PDCM method is constructed to minimize 

E �
1
𝑇0
�𝑦10� − 𝑒̃𝛼� − 𝑌𝛼�∗�

𝑇
𝐴�𝑦10� − 𝑒̃𝛼� − 𝑌𝛼�∗�� (3-2) 

For objective and simplified use, a special case of the general method proposed by the 

authors is employed. With the restriction of A = I, the simplified method allows for 

applying conveniently an ordinary least-square regression of the targeted region to the 
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control regions to generate the counterfactual combination in the pre-treatment periods. 

That is, 𝑦1𝑡0� = 𝛼�� + 𝛼�∗𝑇� 𝑦𝑡�   where 𝑦𝑡�  is the vector of control regions and 𝛼�� and 𝛼�∗𝑇�  

are the intersection and beta coefficients, respectively, of 𝑦𝑡�  regressing on 𝑦𝑖𝑖0 , the 

targeted region, in the pre-treatment periods t=1…𝑇0 . Therefore the differences 

∆𝚤𝚤�=  y1𝑡 − 𝛼�� + 𝛼�∗𝑇� 𝑦𝑡�  are obtained for t = 𝑇0 + 1, … ,𝑇 . The pre-treatment-period 

mean square deviation (MSD) therefore equals to ∑ ∆𝚤𝚤�
2𝑇

𝑇0+1 . 

In the method, the specific control regions to be used are selected from a larger pool 

of related regions. This selection process involves selecting the regions that would 

create a counterfactual combination that best-fit the targeted region in the pre-treatment 

periods. The selection is done in two steps. In the first step, the regions that minimize 

pre-treatment-period MSDs while control for the number of control regions used are 

picked. The suitable numbers of control regions are selected in the second step using 

two different criteria, the Akaike Information Criterion (AIC), 

AIC(p) = 𝑇0 ln�
𝑒0′𝑒0
𝑇0

� + 2(𝑝 + 2) 

and the corrected Akaike Information Criterion (AICC). 

AICC(p) = AIC(p) +
2(𝑝 + 2)(𝑝 + 3)
𝑇0 − (𝑝 + 1)− 2 

In both criteria, p is the number of related regions included and 𝑒0 is the least-square 

residual using the regions picked in the first step. AIC and AICC, in essence, give the 

mean squared deviation with a penalty term for the number regions used. Therefore, the 
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number with the lowest AIC or AICC is the number suitable to be used in the PDCM. 

Since AICC includes an additional penalty term, the number of regions used in AICC is 

lower than, if not equals to, that used in AIC. The maximum number of related regions 

(M) that is considered in this process has a significant impact in empirical use. Since the 

selection process is essentially a grid search process, the number of pre-treatment-period 

MSDs to be calculated is 2𝑀, which grows exponentially as M increases. Therefore, M 

is restricted in practical use to the computing resources limits. 

The PDCM employs data of the control regions without using the common factors. 

This eliminates the need for picking the observed common factor and in turn increases 

the objectivity of the studies. Due to limitations in computing resources, the maximum 

number of regions under consideration must be restricted, which means that an existing 

huge pool of related regions must be narrowed down in empirical studies. In 

determining the specific control regions to be used from the pool of related regions, 

criteria AIC and AICC are used. As the control regions to be used could be different, the 

estimation of using AIC and AICC are denoted as PDCM-AIC and PDCM-AICC, 

respectively. The PDCMs obtain a collection of beta-coefficients from regressing the 

control regions on the targeted region in pre-treatment-periods. The beta-coefficients are 

used to construct a counterfactual of the targeted region using data from 
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post-treatment-periods. The treatment effect is derived, as in the SCM, from the 

difference between the targeted region and the counterfactual. 
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4. Data Generation and Analysis 

4-1. Monte Carlo Method and Data Generation 

The objectives of both SCM and PDCM are to create a post-treatment-period 

counterfactual that mimics the behavior of the targeted region in the pre-treatment 

period. In the event that the treatment did not occur, the counterfactual generated by the 

two methods should be fitted as closely to the post-treatment period as possible. This 

closeness of fit is measured by the mean square deviation (MSD) between the 

counterfactual and the post-treatment-period targeted region. The smaller the MSD is, 

the more fit the counterfactual is. Since the counterfactuals of the SCM and the PDCM 

have been constructed differently, the need to develop a fitness test for comparing the 

two methods was warrant. 

The treatment effect is not obtainable directly from the observational data, therefore 

the Monte Carlo method developed by Metropolis and Ulam (1949) suggested repeated 

simulation en route constructed data. Through simulations, the post-treatment MSD 

would reveal the closeness of fit of the methods. Since the desired MSD utilized of the 

unaffected data of the targeted and control regions, the constructed data need not specify 

the time, magnitude and type of change the treatment induced. By creating a data set 

that is structured in the same way throughout the timeline, the imaginary treatment 

period can be located individually on the same dataset. This way, when the treatment 
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period is closer to the starting period, the data that can be obtained for estimation is 

shorter and provide less information, leading an expectation of a worse counterfactual 

fit. Other expected factors in the counterfactual fit include the maximum number of 

related regions to be chosen as the control regions, the number of common factors 

included in the data generating model, and the number of observed factors among all 

common factors. If the control regions can be chosen from more related regions, the 

chance of a close counterfactual fit is higher. The greater the number of common factors 

is, the more complicated the data will be and the counterfactual is expected to be less 

likely to be a close fit. The difference in counterfactual construction enables information 

on observed factors to be taken into account in the SCM, and the fitness of the SCM 

counterfactual is expected to be better as more observed factors are added. 

The difference of the SCM and the PDCM lies not only in the construction of the 

counterfactuals but also in the models the methods are constructed from. The model 

proposed by Hsiao et al. (2012) is designated in this study as Model (1), in which the 

common factors are fixed between regions and variant in time, and the factor-loadings 

are fixed in time and variant between regions. 

𝑦𝑖𝑖0 = 𝑟𝑖 + 𝜆𝑖𝑇𝐹𝑡 + 𝜀𝑖𝑖,      i = 1, … , N, t = 1, … , T Model (1) 

where 𝑟𝑖 is the individual fixed effect, 𝜆𝑖𝑇 is the (1 x K) unobserved factor loading 

vector where K is the number of factors, 𝐹𝑡 is the (K x 1) vector of unobserved factors, 
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and 𝜀𝑖𝑖 is the idiosyncratic term with E(𝜀𝑖𝑖) = 0. The model was generated by drawing 

𝑟𝑖 from N(0,1), 𝜆𝑖𝑇 from N(0,1), and 𝜀𝑖𝑖 from 𝜏 ∗N(0,1). The factors were generated 

using AR(1), 

𝐹𝑡 = 𝛾 ∗ 𝐹𝑡−1 + 𝜖𝑖𝑖 

where 𝛾 is a (K x K) matrix with diagonal elements drawn from U(0,1) and every 

other elements 0. 𝜖𝑖𝑖 is drawn from N(0,1). 𝜏 is the mean of the diagonal elements of 

𝛾. 

The data generating model Abadie et al. (2010) proposed was designated as Model (2), 

which includes common factors that are fixed in time and variant between regions, and 

factor-loadings that are fixed between regions and variant in time. 

𝑦𝑖𝑖0 = 𝑟𝑡 + 𝜆𝑂𝑡𝐹𝑂𝑖 + 𝜆𝑈𝑡𝐹𝑈𝑖 + 𝜀𝑖𝑖 ,      i = 1, … , N, t = 1, … , T Model (2) 

where  𝑟𝑡 is the cross-unit-constant unknown common factor, 𝜆𝑂𝑡 is the (1 x r) 

vector of unknown parameters, 𝑎𝑖 is a (r x 1) observed common factors, 𝜆𝑈𝑡 is a (1 x 

f) vector of unknown parameters, 𝐹𝑈𝑖 is a (f x 1) vector of unobserved common factors 

and 𝜀𝑖𝑖 is the idiosyncratic term with E(𝜀𝑖𝑖) = 0. r + f = K is the total number of 

factors. 𝑟𝑡 is generated from N(0,1), 𝜆𝑂𝑡 and 𝜆𝑈𝑡 from N(1,1), and 𝜀𝑖𝑖 from N(0,1). 

The common factors 𝐹𝑂𝑖 and 𝐹𝑈𝑖 are generated from χ²(1). 

Using Model (1) and Model (2), data were generated for simulations of the SCM and 

the two PDCM (PDCM-AIC and PDCM-AICC) methods. For each trial session that 
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employs different treatment period, number of factors used, number of factors observed 

and maximum number of related regions, 1000 trials were performed. Random numbers 

were independently drawn for every trial in every trial session. The results of the 

simulation as well as the random numbers were recorded for further investigation.  

The data structure remained unchanged in all time periods of a single trial. As both 

artificial control methods aimed to replicate pre-treatment targeted region behavior 

under different environments, the uniformity of data structure provided the actual data 

of targeted region in absence of the treatment. Therefore, the difference between the 

uniform structure data and the estimates of the artificial methods would reveal their 

accuracy in estimations. 

 

4-2. Data Processing Programs and Cross Checking 

The SCM and two PDCMs with varying control region selection criteria were applied 

to the simulation data generated by Model (1) and Model (2). The results and the 

realization of the random numbers were recorded for analyses.  

The MSD between the counterfactuals generated and the actual data of the targeted 

region were stored for direct comparison including: between SCM counterfactual and 

actual targeted region, between PDCM-AIC counterfactual and actual targeted region, 

and between PDCM-AICC counterfactual and actual targeted region.  
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The realization of random numbers in every trial was stored and processed for 

regression analysis of factors affecting the fitness of the counterfactuals. Specifically, 

the characteristics of random variables in the Model (1) includes the mean of the 

common factors’ variance over time (mean_var_factor), the mean of the common 

factors’ mean over time (mean_mean_factor), constant of targeted region (constant_y1), 

the mean and variance of the constants of control region (mean_constant_yn and 

var_constant_yn), the mean and variance of the factor-loadings of the targeted region 

(mean_fl_y1 and var_fl_y1), mean and variance of the factor-loadings of the control 

region’s mean and variance across regions (mean_mean_fl_yn, var_mean_fl_yn, 

mean_var_fl_yn and var_var_fl_yn), mean of the epsilon of targeted region 

(mean_ep_y1), and the mean and variance of the mean of the control region’s epsilon 

(mean_mean_ep_yn and var_mean_ep_yn). The characteristics of random numbers in 

the Model (2) were processed similarly, with changes to character factor and 

factor-loading due to the difference in data generating process. The characteristics of the 

common factors were split into those of the targeted region and those of the control 

regions. The characteristics of the factor-loadings were merged as one for the targeted 

region and the control regions. These characteristics were regressed on the 1000 trials in 

each session using Stata 12 (StataCorp, College Station, TX). 
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As the characteristics are in empirical sense unobservable to researchers, the goal of 

these analyses is to provide guidance only for the circumstance if a certain general 

impression is known. For example, the dataset of Taiwan’s GDP growth in the recent 

decades may include a big variance in common factors as the price in Taipei grew 

rapidly and the prices in rural areas stagnated. Therefore, these basic characteristics 

would provide information on the goodness of fit of the counterfactual that is produced. 

Besides the simulations on generated data, the performance of the applications of 

SCM and the two PDCM on real world data are of importance. The empirical data of 

California’s cigarette consumption was estimated using the two PDCMs, and the 

empirical data of Hong Kong’s political integration was estimated by the SCM. As the 

data of unaffected targeted region is unobservable, the goodness of fit cannot be 

determined if the results from distinct methods differ. 

In 1988, the tax increase of 25 cents per package of cigarette, Proposition 99, was 

passed by voters in California. The SCM estimated the tobacco consumption reduction 

effect of the tax increase to be significantly larger than the previous study by 

Fichtenberg and Glantz (2000) suggests. Twenty percent of the accrued tax was 

allocated to an anti-tobacco educational program that included media advertisements, 

health and education budget, and promotion of clean air community. The Proposition 99 

was widely believed to have decreased smoking in the state of California. The two 
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PDCMs were employed in cross checking this effect. The tobacco consumption data and 

common factors used were provided by Abadie et al. (2010) on their website 

(http://www.mit.edu/~jhainm/synthpage.html). 

The other cross checking estimated the effect of Hong Kong’s political integration on 

GDP growth. Hong Kong experienced a rapid growth under British sovereignty and was 

“returned” to China under “one country, two systems” on July 1997. The real GDP 

growth in Hong Kong dipped in 1997 but the Asian financial crisis in October and 

H5N1 Avian flu in December both broke out after the political integration. Therefore, 

the effect of the integration is difficult to be estimated. The PDCMs estimation 

suggested that the integration has no bearing on the real GDP growth of Hong Kong. 

The SCM was implemented to verify this result. All data used are obtained through 

OECD statistics, international financial statistics and CEIC database. 

  

http://www.mit.edu/~jhainm/synthpage.html
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5. Results and Discussions 

The result of implementing the PDCM on the data of California’s Proposition 99 

on cigarette tax is shown in Figure 1. The solid line represents the actual data of tobacco 

consumption in California over 1970 to 2000. Both the PDCM-AIC and the 

PDCM-AICC showed trends different from the results of the SCM. The PDCM-AIC 

estimation suggested that the Proposition 99 increases the tobacco sales; whereas the 

PDCM-AICC estimation showed that the Proposition 99 lowers the tobacco sales. The 

estimated effect is non-existent before year 1995 and far smaller than that of the SCM 

estimation. The result of implementing SCM on the data of Hong Kong’s political 

integration with China is shown in Figure 2. The solid line represents the actual data of 

GDP growth in Hong Kong. The dashed line representing the SCM estimation showed 

the estimation difference between 1997 and 2002 and suggested that Hong Kong suffers 

a drop in GDP growth as a result of the political integration. This result is different from 

the estimations from the two PDCM methods which suggested the political integration 

has no bearing on the GDP growth. This cross checking result indicated that there are 

differences in the estimation of the two methods. Both Figures 1 and 2 showed that the 

estimations using the two different methods can indeed produce outcomes significantly 

different. From which, one would be led to totally different conclusions. 

When a completely random white-noise data was implemented on both SCM and 
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PDCM methods (Figures 3 and 4). The fit is poor even for the pre-treatment-period data. 

However, when an accumulated white-noise data were implemented, the results are 

surprising. In some of the simulations, as shown in Figures 5 and 6, the estimation fits 

nicely before treatment-period and differs between the actual data and the estimations. 

If any conclusion could be drawn from these simulations, it points to a significant 

treatment effect, while there in fact is no change in the data structure. Therefore, the 

accumulated white-noise simulation study suggested that the two methods are not 

necessarily applicable with every data generating model. 

The mean MSDs of 1000 trials of Model (1) structures with different settings are 

shown in Table 1. The majority of the mean MSDs from the SCM are larger than those 

from the PDCM-AICC, whereas the majority of the mean MSDs from the PDCM-AIC 

is slightly larger than those from the PDCM-AICC but still much smaller than those of 

the SCM. The settings where the mean MSDs of PDCMs were significantly larger were 

the ones that the number of total regions approached the number of pre-treatment-period. 

This could be explained by the estimation method of the PDCMs that involves 

regressing the control regions on the targeted region. When the number of total regions 

approached the number of pre-treatment-period, the regression was possibly over-fitted 

so that the post-treatment-period estimation fared poorly. Since the SCM method does 

not utilize such regression approach, their mean MSDs do not show this character. The 
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mean MSDs shown in Table 2 were from different settings using 1000 trials of Model 

(2). The results showed patterns identical to those on Table 1. Contrary to the hypothesis, 

the numbers of observed common factors do not affect the fit of the SCM. As the 

maximum number of regions can be subjectively changed by researchers, it therefore 

could be made lower when the number of pre-treatment-period is small. Therefore, the 

goodness of fit of the PDCMs is better than that of the SCM in empirical use. 

The results of MSD decomposition are shown in Tables 3 to 14. Tables 3, 4 and 5 

showed the results of decomposing the 1000 MSDs of Model (1) estimated by the SCM 

with 10, 20 and 30 pre-treatment-periods, respectively. The Mean_var_factor and 

Var_fl_y1 are the two variables with consistent significant and positive coefficients. 

Mean_var_factor represents the mean of the factors’ variance over time and Var_fl_y1 is 

the variance of the factor-loadings of the targeted region. These results indicated that the 

magnitudes of both the factors and the factor-loadings of targeted region changed were 

inversely related to the accuracy of estimation. Tables 6 to 8 showed similar results for 

the PDCM-AICC estimations. 

The variation of factors is a big issue for prediction because when the variations of 

factors are large overtime, the scale relationship between the factors may suffer a 

greater change, which in turn would result in a larger mean MSD. The reason that larger 

variations of targeted region’s factor-loadings led to a reduced accuracy of estimation 
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may be that when a factor-loading is larger than the rest, the same change in the 

corresponding factor would result in more change to the region. This is a problem when 

the regions used are small because the prediction would be vulnerable to the sudden 

spike in that particular factor, and the small number of regions is not sufficient to cover 

the jump. 

Tables 9 to 14 displayed the MSD decompositions of Model (2). The results were 

similar to those in the SCM and the PDCM-AICC estimation analyses as Var_factor_y1 

was consistently significant and positive. Since Var_factor_y1 denotes the variance of 

factors of the targeted region, this result is consistent with the finding in Model (1). 

Analysis of the simulations revealed that the PDCMs estimated the counterfactual 

more accurately than the SCM. The cross checking results showed that the two methods 

may estimate counterfactuals differently in empirical use, which may lead to different 

conclusions in the treatment effect studies. The methods, though showed expected 

unfitness to white noise data, were possibly misleading when faced with accumulated 

white noise data. With the exception of the cases where the maximum number of 

regions is closed to the number of treatment period, the PDCM-AICC clearly 

outperforms the SCM. The regressions analyses on MSDs showed that both methods 

estimated more accurately when the variances of common factors and factor-loadings 

were smaller.  
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6. Conclusion 

The Monte Carlo results showed the estimation accuracy of the Panel-Data 

Counterfactual Method (PDCM) proposed by Hsiao et al. (2012) and the Synthetic 

Control Method (SCM) proposed by Abadie et al. (2012). The PDCM in most cases is 

more accurate in estimations than is the SCM, and the exceptions can be easily avoided. 

However, both the SCM and PDCM must be applied with caution because the results 

from the treatment could be misleading under certain settings such as data similar to 

accumulations of white noise. Both of the methods work better when the variation of 

factor in time and factor-loading across regions are smaller. Therefore, the methods may 

be more useful in topics that are known to be steadier and more balanced in factor 

influences, such as the manufacturing or dairy industries. The PDCM’s robust 

performance under different model settings, together with easy applicability and 

improved credibility, make it a tool of choice in treatment effect studies. 
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Figure 1. Trends in per-capita cigarette sales in California between 1970 and 2010 
before and after the tax hike from the Proposition 99 in 1988. The solid line indicates 
the real data and the two dashed lines indicate counterfactuals by the panel-data 
counterfactual - Akaike Information Criterion method (PDCM-AIC) and – corrected 
Akaike Information Criterion method (PDCM-AICC), respectively. 
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Figure 2. Trends in real GDP growth rate of Hong Kong between 1990 and 2003 before 
and after its political integration with China in 1997 and economic integration in 2003. 
The solid line denotes the real data and the dashed line the counterfactual by the he 
synthetic control method (SCM). 
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Figure 3. Counterfactual of white noise data estimated by the PDCMs: The solid line 
indicates the real targeted region, and the two dashed lines indicate counterfactuals by 
the panel-data counterfactual - Akaike Information Criterion method (PDCM-AIC) and 
– corrected Akaike Information Criterion method (PDCM-AICC), respectively. 



33 
 

 
Figure 4. Counterfactual of white noise data estimated by the SCM: The solid line 
denotes the real targeted region and the dashed line the counterfactual by the synthetic 
control method (SCM). 
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Figure 5. Counterfactual of the accumulations of white noise data estimated by the 
PDCMs: The solid line indicates the real targeted region, and the two dashed lines 
indicate counterfactuals by the panel-data counterfactual - Akaike Information Criterion 
method (PDCM-AIC) and – corrected Akaike Information Criterion method 
(PDCM-AICC), respectively. 
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Figure 6. Counterfactual of the accumulations of white noise data estimated by the SCM: 
The solid line denotes the real targeted region and the dashed line the counterfactual by 
the synthetic control method (SCM). 
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Table 1. Mean Square Deviations (MSD)1 of Counterfactual Estimates in Model (1) 
Generated Data 

 

Variables2  Estimation Methods3 

Factor Treatment 
Period Region  PDCM-AIC PDCM-AICC SCM  

2 10 4  2.057 2.305 5.706  
2 10 6  2.034 1.931 3.406  
2 10 8  3.278 1.544 3.080  
2 10 10  32621.228 32621.228 2.418  
        
2 20 4  1.270 1.353 5.435  
2 20 6  0.869 0.878 3.605  
2 20 8  0.917 0.909 3.000  
2 20 10  0.760 0.699 2.082  
        
4 10 4  6.841 7.534 12.014  
4 10 6  6.651 5.817 8.307  
4 10 8  7.518 4.546 7.047  
4 10 10  44607.660 44607.660 6.340  
        
4 20 4  4.438 4.581 10.680  
4 20 6  2.305 2.620 7.834  
4 20 8  1.540 1.689 6.382  
4 20 10  1.322 1.315 5.183  

1 Mean of 1000 trials in each variable setting.  
2 Factor and region denote the total common factors used in data generation and the maximum possible 
numbers of regions included, respectively. 
3 The panel-data counterfactual method using Akaike information criterion (PDCM-AIC); the panel-data 
counterfactual method using corrected Akaike information criterion (PDCM-AICC); synthetic control 
method (SCM). 
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Table 2. Mean-Square-Deviations (MSD)1 of Counterfactual Estimates in Model (2) 
Generated Data 

 
Variables2  PDCM3  SCM4 

Factor Treatment 
Period Region  AIC AICC   1 4  

4 10 4  10.448 9.924   15.046 13.913  
4 10 5  11.086 9.345   12.471 13.418  
4 10 6  12.206 9.211   12.098 12.599  
4 10 7  11.386 7.320   11.319 10.827  
4 10 8  19.703 8.323   10.922 9.687  
4 10 9  51.366 68.128   9.983 9.295  
4 10 10  62602.027 62602.027   8.406 10.390  
           

4 20 4  7.806 7.813   14.060 15.337  
4 20 5  6.930 6.967   13.214 13.695  
4 20 6  6.171 6.223   12.842 11.315  
4 20 7  5.426 5.437   10.433 11.249  
4 20 8  5.384 5.257   8.873 9.295  
4 20 9  5.050 4.894   10.032 8.500  
4 20 10  4.663 4.413   7.920 9.507  
           

4 30 4  7.599 7.593   15.696 15.003  
4 30 5  7.115 7.123   11.938 12.612  
4 30 6  5.197 5.227   11.339 11.983  
4 30 7  5.119 5.169   10.426 11.043  
4 30 8  4.592 4.609   11.585 8.582  
4 30 9  3.997 3.981   8.657 8.092  
4 30 10  3.682 3.627   8.891 7.997  

1 Mean of 1000 trials in each variable setting.  
2 Factor and region denote the total common factors used in data generation and the maximum possible 
numbers of regions included, respectively. 
3 PDCM is the panel data counterfactual method. AIC denotes the method using Akaike information 
criterion. AICC denotes the method using corrected Akaike information criterion. 
4SCM denotes the synthetic control method. Numbers 1 and 4 are the numbers of observed factors. 
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Table 3.  Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Synthetic Control Method in Model (1) Generated Data with Treatment Period at 10 
 

 Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_var_factor 8.684*** 
(11.97) 

7.384*** 
(11.84) 

4.176*** 
(9.25) 

4.204*** 
(9.22) 

5.783*** 
(10.22) 

4.746*** 
(9.95) 

5.598*** 
(10.24) 

Mean_mean_factor 0.706 
(0.58) 

-4.456*** 
(-4.31) 

1.218 
(1.70) 

-1.230 
(-1.51) 

-2.748** 
(-3.19) 

-0.354 
(-0.47) 

-3.596*** 
(-3.83) 

Constant_y1 -0.0924 
(-0.18) 

-0.275 
(-0.62) 

-0.514 
(-1.64) 

0.214 
(0.66) 

0.170 
(0.46) 

0.279 
(0.92) 

1.094** 
(2.67) 

Mean_constant_yn 0.543 
(0.60) 

-0.430 
(-0.46) 

0.436 
(0.62) 

0.119 
(0.15) 

1.030 
(1.05) 

0.700 
(0.80) 

-0.828 
(-0.69) 

Var_constant_yn 0.409 
(0.52) 

0.495 
(0.64) 

0.416 
(0.74) 

-0.322 
(-0.52) 

-0.0336 
(-0.04) 

0.650 
(0.98) 

0.145 
(0.15) 

Mean_fl_y1 1.817 
(1.71) 

0.781 
(0.86) 

-1.362* 
(-2.14) 

0.561 
(0.85) 

0.917 
(1.24) 

0.221 
(0.35) 

-0.400 
(-0.48) 

Var_fl_y1 6.213*** 
(7.29) 

10.08*** 
(13.73) 

5.958*** 
(11.43) 

5.773*** 
(11.56) 

5.908*** 
(9.31) 

4.847*** 
(9.80) 

5.908*** 
(8.94) 

Mean_mean_fl_yn 1.605 
(0.86) 

-1.039 
(-0.58) 

2.553 
(1.82) 

-1.057 
(-0.67) 

-1.580 
(-0.83) 

4.353** 
(2.59) 

-2.058 
(-0.82) 

Var_mean_fl_yn 5.498* 
(2.15) 

9.480** 
(3.18) 

6.526* 
(2.48) 

5.339 
(1.70) 

4.958 
(1.15) 

8.946* 
(2.12) 

2.261 
(0.40) 

Mean_var_fl_yn 0.355 
(0.17) 

-0.918 
(-0.46) 

-1.171 
(-0.85) 

-3.151* 
(-2.23) 

-0.817 
(-0.45) 

-1.506 
(-0.95) 

-3.133 
(-1.49) 

Var_var_fl_yn -0.138 
(-0.11) 

-0.665 
(-0.39) 

1.723 
(1.23) 

0.304 
(0.25) 

-0.907 
(-0.41) 

5.477* 
(2.35) 

-0.477 
(-0.15) 

Mean_ep_y1 3.432 
(1.69) 

-4.009* 
(-2.06) 

0.337 
(0.23) 

-0.560 
(-0.34) 

-2.135 
(-1.07) 

2.218 
(1.23) 

1.115 
(0.47) 

Mean_mean_ep_yn -1.624 
(-0.47) 

-2.395 
(-0.65) 

-0.102 
(-0.03) 

2.769 
(0.69) 

-8.550 
(-1.62) 

-6.394 
(-1.25) 

-5.238 
(-0.70) 

Var_mean_ep_yn 12.82 
(1.20) 

-6.196 
(-0.51) 

15.78 
(1.71) 

15.47 
(1.26) 

-16.19 
(-0.98) 

22.81 
(1.37) 

-7.154 
(-0.28) 

Tau1 1.476 
(0.78) 

-0.199 
(-0.12) 

2.448* 
(2.10) 

0.0232 
(0.02) 

0.749 
(0.52) 

0.548 
(0.46) 

-4.654** 
(-3.01) 

Tau2 0.749 
(0.39) 

2.848 
(1.72) 

0.755 
(0.64) 

-0.789 
(-0.64) 

2.376 
(1.72) 

1.358 
(1.15) 

0.923 
(0.60) 

Constant -10.70*** 
(-4.89) 

-11.81*** 
(-5.65) 

-6.094*** 
(-4.16) 

-1.960 
(-1.20) 

-7.437*** 
(-3.75) 

-7.079*** 
(-3.95) 

-2.797 
(-1.20) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting.  



39 
 

Table 4. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Synthetic Control Method in Model (1) Generated Data with Treatment Period at 20 
 

 Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_var_factor 7.414*** 
(10.40) 

6.484*** 
(11.07) 

7.624*** 
(8.33) 

4.626*** 
(9.58) 

6.192*** 
(10.11) 

2.803*** 
(9.50) 

2.902*** 
(10.18) 

Mean_mean_factor 0.234 
(0.19) 

-0.725 
(-0.85) 

-6.913*** 
(-4.56) 

1.034 
(1.27) 

-3.626*** 
(-3.55) 

2.015*** 
(3.94) 

0.0839 
(0.18) 

Constant_y1 -0.208 
(-0.43) 

-0.0609 
(-0.18) 

-0.110 
(-0.18) 

0.411 
(1.25) 

0.0801 
(0.18) 

-0.0245 
(-0.11) 

-0.116 
(-0.64) 

Mean_constant_yn 2.217** 
(2.64) 

0.633 
(0.89) 

2.536 
(1.82) 

0.346 
(0.42) 

-0.450 
(-0.38) 

-0.511 
(-0.81) 

-0.914 
(-1.55) 

Var_constant_yn 0.227 
(0.30) 

-0.120 
(-0.21) 

-0.221 
(-0.20) 

-0.983 
(-1.55) 

-0.0483 
(-0.06) 

-0.612 
(-1.33) 

0.117 
(0.28) 

Mean_fl_y1 0.387 
(0.41) 

-0.316 
(-0.46) 

2.152 
(1.77) 

-0.945 
(-1.47) 

0.513 
(0.59) 

-0.0610 
(-0.14) 

-0.127 
(-0.34) 

Var_fl_y1 6.748*** 
(8.69) 

5.702*** 
(10.01) 

8.297*** 
(8.29) 

5.362*** 
(9.64) 

5.962*** 
(8.62) 

5.167*** 
(14.97) 

3.598*** 
(11.50) 

Mean_mean_fl_yn -2.730 
(-1.57) 

-2.190 
(-1.56) 

-4.003 
(-1.54) 

3.314* 
(2.03) 

-2.017 
(-0.83) 

0.295 
(0.25) 

1.483 
(1.30) 

Var_mean_fl_yn 4.485 
(1.93) 

10.01*** 
(4.39) 

0.220 
(0.04) 

7.893* 
(2.42) 

3.660 
(0.73) 

8.022** 
(2.76) 

4.283 
(1.60) 

Mean_var_fl_yn -7.224*** 
(-3.58) 

-1.276 
(-0.86) 

-4.331 
(-1.70) 

-2.102 
(-1.38) 

-4.687* 
(-2.34) 

-0.588 
(-0.55) 

-0.869 
(-0.89) 

Var_var_fl_yn 2.101 
(1.45) 

0.932 
(0.75) 

1.489 
(0.76) 

-0.316 
(-0.19) 

2.596 
(1.39) 

-0.130 
(-0.09) 

0.523 
(0.35) 

Mean_ep_y1 -2.425 
(-1.25) 

0.941 
(0.64) 

3.015 
(1.06) 

-1.498 
(-0.87) 

0.427 
(0.18) 

-0.894 
(-0.67) 

2.559* 
(2.23) 

Mean_mean_ep_yn -7.315* 
(-2.22) 

-1.867 
(-0.64) 

7.014 
(1.10) 

-11.14** 
(-2.69) 

12.47 
(1.95) 

-0.382 
(-0.11) 

-0.306 
(-0.09) 

Var_mean_ep_yn 10.03 
(1.12) 

-16.03 
(-1.75) 

109.9*** 
(5.95) 

20.95 
(1.61) 

-24.46 
(-1.24) 

17.04 
(1.51) 

-5.681 
(-0.51) 

Tau1 0.767 
(0.42) 

1.233 
(0.99) 

-0.421 
(-0.19) 

-1.079 
(-0.89) 

0.881 
(0.55) 

0.675 
(0.82) 

1.469* 
(2.05) 

Tau2 4.374* 
(2.39) 

3.878** 
(3.10) 

-5.901** 
(-2.64) 

-0.0471 
(-0.04) 

3.175 
(1.94) 

0.779 
(0.96) 

1.326 
(1.87) 

Constant -6.852*** 
(-3.35) 

-8.876*** 
(-5.56) 

-8.673** 
(-2.98) 

-3.272 
(-1.89) 

-6.576** 
(-2.91) 

-3.784** 
(-3.21) 

-3.331** 
(-3.11) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting.  
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Table 5. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Synthetic Control Method in Model (1) Generated Data with Treatment Period at 30 
 

  Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_var_factor 5.877*** 
(8.15) 

10.60*** 
(9.70) 

8.600*** 
(11.21) 

7.362*** 
(9.88) 

2.816*** 
(6.75) 

1.386** 
(2.72) 

2.613*** 
(6.23) 

Mean_mean_factor 0.756 
(0.70) 

-0.868 
(-0.51) 

0.664 
(0.48) 

4.045*** 
(3.35) 

-0.0997 
(-0.13) 

-0.241 
(-0.26) 

-1.462* 
(-2.24) 

Constant_y1 0.591 
(1.29) 

-0.0820 
(-0.12) 

-0.254 
(-0.44) 

0.573 
(1.23) 

0.0476 
(0.17) 

0.383 
(1.01) 

-0.286 
(-1.08) 

Mean_constant_yn 0.402 
(0.50) 

-0.470 
(-0.33) 

-0.629 
(-0.50) 

0.425 
(0.37) 

-0.665 
(-0.88) 

-0.676 
(-0.62) 

-0.514 
(-0.65) 

Var_constant_yn -0.272 
(-0.37) 

0.661 
(0.59) 

-0.256 
(-0.23) 

-0.931 
(-1.07) 

-0.0457 
(-0.08) 

-0.748 
(-0.92) 

-0.967 
(-1.66) 

Mean_fl_y1 -0.847 
(-0.94) 

0.678 
(0.49) 

-1.201 
(-1.07) 

-0.853 
(-0.94) 

0.324 
(0.53) 

0.279 
(0.36) 

-0.485 
(-0.92) 

Var_fl_y1 5.842*** 
(8.00) 

8.245*** 
(7.53) 

5.309*** 
(5.82) 

4.951*** 
(6.31) 

5.943*** 
(12.29) 

6.386*** 
(10.40) 

4.629*** 
(10.64) 

Mean_mean_fl_yn -0.751 
(-0.48) 

-1.880 
(-0.69) 

-2.209 
(-0.90) 

3.176 
(1.39) 

-0.577 
(-0.37) 

-0.609 
(-0.29) 

0.172 
(0.11) 

Var_mean_fl_yn 5.282* 
(2.53) 

3.922 
(0.84) 

6.122 
(1.32) 

9.791* 
(2.08) 

0.729 
(0.23) 

3.096 
(0.66) 

-0.201 
(-0.05) 

Mean_var_fl_yn 0.308 
(0.16) 

-8.573** 
(-3.03) 

-1.850 
(-0.73) 

-2.744 
(-1.25) 

-3.794** 
(-2.71) 

-3.549 
(-1.82) 

-2.083 
(-1.53) 

Var_var_fl_yn -0.593 
(-0.45) 

3.479 
(1.50) 

1.199 
(0.45) 

2.101 
(0.87) 

1.386 
(0.70) 

-0.371 
(-0.13) 

0.349 
(0.21) 

Mean_ep_y1 -2.092 
(-1.18) 

0.817 
(0.28) 

-3.363 
(-1.24) 

3.586 
(1.53) 

-5.791*** 
(-3.57) 

-6.266** 
(-2.70) 

-0.640 
(-0.40) 

Mean_mean_ep_yn 4.170 
(1.37) 

-1.648 
(-0.29) 

4.333 
(0.73) 

2.355 
(0.40) 

-1.274 
(-0.30) 

-1.414 
(-0.22) 

1.470 
(0.31) 

Var_mean_ep_yn 29.76*** 
(3.40) 

-11.53 
(-0.67) 

62.77*** 
(3.50) 

-4.095 
(-0.23) 

13.15 
(0.95) 

131.8*** 
(5.86) 

5.748 
(0.34) 

Tau1 0.436 
(0.25) 

-5.859* 
(-2.28) 

-2.987 
(-1.47) 

1.238 
(0.71) 

1.531 
(1.41) 

0.477 
(0.33) 

1.803 
(1.84) 

Tau2 0.126 
(0.07) 

-0.635 
(-0.25) 

2.946 
(1.40) 

-3.307 
(-1.88) 

0.834 
(0.77) 

-1.117 
(-0.77) 

-0.261 
(-0.26) 

Constant -6.928*** 
(-3.50) 

-6.644* 
(-2.06) 

-12.32*** 
(-4.47) 

-6.183* 
(-2.55) 

-2.404 
(-1.58) 

-1.418 
(-0.68) 

-1.000 
(-0.64) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting. 
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Table 6. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in 
Model (1) Generated Data with Treatment Period at 10 
 
  Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_var_factor  5.742*** 
(12.45) 

5.325*** 
(10.50) 

3.460*** 
(6.30) 

2.461*** 
(7.00) 

3.530*** 
(8.52) 

2.317 
(0.25) 

-14621.7 
(-0.27) 

Mean_mean_factor  -1.393 
(-1.79) 

-0.816 
(-0.97) 

0.138 
(0.16) 

0.973 
(1.55) 

-4.004*** 
(-6.35) 

21.95 
(1.54) 

41883.5 
(0.45) 

Constant_y1  0.688* 
(2.10) 

-0.420 
(-1.17) 

0.878* 
(2.30) 

-0.110 
(-0.44) 

0.191 
(0.71) 

2.275 
(0.39) 

-18869.9 
(-0.47) 

Mean_constant_yn  -0.634 
(-1.10) 

1.197 
(1.57) 

-0.212 
(-0.25) 

-0.233 
(-0.39) 

-0.515 
(-0.72) 

12.78 
(0.76) 

-12156.1 
(-0.10) 

Var_constant_yn  -0.227 
(-0.45) 

-0.329 
(-0.53) 

1.065 
(1.57) 

0.589 
(1.23) 

0.593 
(1.06) 

16.09 
(1.27) 

-78818.8 
(-0.86) 

Mean_fl_y1  -0.869 
(-1.28) 

0.264 
(0.36) 

-0.426 
(-0.55) 

0.131 
(0.26) 

-0.0831 
(-0.15) 

-13.44 
(-1.12) 

68469.1 
(0.83) 

Var_fl_y1  6.473*** 
(11.94) 

5.132*** 
(8.60) 

5.068*** 
(7.99) 

2.500*** 
(6.50) 

3.853*** 
(8.29) 

5.531 
(0.59) 

-14651.7 
(-0.22) 

Mean_mean_fl_yn  -0.226 
(-0.19) 

1.149 
(0.79) 

-2.881 
(-1.69) 

1.312 
(1.08) 

1.291 
(0.93) 

-24.31 
(-0.76) 

-611565.9* 
(-2.47) 

Var_mean_fl_yn  -0.261 
(-0.16) 

-0.710 
(-0.29) 

-3.289 
(-1.03) 

-4.242 
(-1.75) 

-3.247 
(-1.03) 

-47.21 
(-0.59) 

-557375.0 
(-1.01) 

Mean_var_fl_yn  -1.897 
(-1.41) 

-2.146 
(-1.33) 

-4.858** 
(-2.91) 

-0.791 
(-0.73) 

-1.404 
(-1.06) 

-34.93 
(-1.16) 

87950.6 
(0.42) 

Var_var_fl_yn  1.023 
(1.29) 

1.898 
(1.39) 

4.341* 
(2.55) 

-0.399 
(-0.42) 

1.104 
(0.67) 

37.62 
(0.85) 

-246551.6 
(-0.80) 

Mean_ep_y1  1.549 
(1.20) 

1.997 
(1.26) 

-2.151 
(-1.19) 

-2.861* 
(-2.28) 

-2.217 
(-1.52) 

18.11 
(0.53) 

-171458.8 
(-0.73) 

Mean_mean_ep_yn  -0.0374 
(-0.02) 

-1.086 
(-0.36) 

5.219 
(1.24) 

1.169 
(0.38) 

8.241* 
(2.13) 

49.98 
(0.51) 

-1401605.4 
(-1.89) 

Var_mean_ep_yn  14.43* 
(2.13) 

9.158 
(0.93) 

32.95** 
(2.94) 

31.41*** 
(3.32) 

9.998 
(0.83) 

268.7 
(0.85) 

1088248.8 
(0.44) 

Tau1  0.132 
(0.11) 

1.497 
(1.10) 

2.517 
(1.78) 

2.669** 
(2.83) 

2.431* 
(2.31) 

22.62 
(0.99) 

-71223.9 
(-0.47) 

Tau2 
0.134 
(0.11) 

0.730 
(0.54) 

0.0863 
(0.06) 

1.616 
(1.70) 

1.318 
(1.30) 

16.39 
(0.73) 

35238.8 
(0.23) 

Constant -6.567*** 
(-4.72) 

-6.502*** 
(-3.82) 

-3.724* 
(-2.09) 

-3.654** 
(-2.91) 

-5.432*** 
(-3.74) 

3.625 
(0.11) 

148610.5 
(0.65) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting.  
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Table 7. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in 
Model (1) Generated Data with Treatment Period at 20 
 

 Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_var_factor  2.873*** 
(8.29) 

1.664*** 
(6.16) 

2.551*** 
(9.70) 

1.053*** 
(8.65) 

1.399*** 
(7.84) 

0.429*** 
(5.78) 

0.538*** 
(6.40) 

Mean_mean_factor  -0.292 
(-0.49) 

-0.938* 
(-2.38) 

-1.475*** 
(-3.38) 

0.367 
(1.79) 

0.702* 
(2.36) 

0.151 
(1.17) 

0.0638 
(0.47) 

Constant_y1  -0.163 
(-0.69) 

0.159 
(1.00) 

0.224 
(1.26) 

0.104 
(1.25) 

0.153 
(1.20) 

0.0900 
(1.62) 

0.0825 
(1.53) 

Mean_constant_yn  0.484 
(1.19) 

-0.257 
(-0.78) 

0.140 
(0.35) 

0.193 
(0.92) 

0.154 
(0.45) 

0.0395 
(0.25) 

0.314 
(1.80) 

Var_constant_yn  -0.221 
(-0.60) 

-0.00651 
(-0.03) 

-0.244 
(-0.78) 

-0.0131 
(-0.08) 

0.104 
(0.41) 

-0.153 
(-1.33) 

-0.0494 
(-0.40) 

Mean_fl_y1  0.573 
(1.25) 

-0.156 
(-0.49) 

-0.277 
(-0.79) 

0.200 
(1.23) 

-0.165 
(-0.65) 

-0.0707 
(-0.64) 

0.0452 
(0.41) 

Var_fl_y1  4.856*** 
(12.85) 

3.117*** 
(11.86) 

2.808*** 
(9.76) 

1.013*** 
(7.22) 

1.037*** 
(5.15) 

0.716*** 
(8.25) 

0.718*** 
(7.78) 

Mean_mean_fl_yn  -1.069 
(-1.26) 

0.124 
(0.19) 

-0.441 
(-0.59) 

0.404 
(0.98) 

-0.339 
(-0.48) 

-0.0308 
(-0.10) 

-0.670* 
(-1.99) 

Var_mean_fl_yn  -0.578 
(-0.51) 

-0.258 
(-0.25) 

-2.177 
(-1.51) 

-2.585** 
(-3.13) 

1.295 
(0.89) 

-0.137 
(-0.19) 

-0.263 
(-0.33) 

Mean_var_fl_yn  -2.320* 
(-2.36) 

-1.199 
(-1.75) 

-2.049** 
(-2.80) 

-0.691 
(-1.79) 

-1.018 
(-1.74) 

-0.829** 
(-3.08) 

-0.815** 
(-2.81) 

Var_var_fl_yn  -0.00451 
(-0.01) 

1.640** 
(2.85) 

0.672 
(1.20) 

0.0469 
(0.11) 

1.835*** 
(3.39) 

0.439 
(1.19) 

0.528 
(1.19) 

Mean_ep_y1  1.036 
(1.10) 

0.127 
(0.19) 

1.353 
(1.65) 

0.324 
(0.75) 

0.753 
(1.07) 

-0.102 
(-0.30) 

0.533 
(1.57) 

Mean_mean_ep_yn  -2.076 
(-1.29) 

1.056 
(0.78) 

3.859* 
(2.11) 

-0.958 
(-0.92) 

-0.336 
(-0.18) 

2.121* 
(2.35) 

1.312 
(1.33) 

Var_mean_ep_yn  6.007 
(1.38) 

4.726 
(1.12) 

22.99*** 
(4.33) 

6.891* 
(2.10) 

16.08** 
(2.80) 

16.48*** 
(5.80) 

13.13*** 
(3.97) 

Tau1  1.141 
(1.30) 

1.727** 
(2.99) 

0.290 
(0.45) 

0.689* 
(2.25) 

0.306 
(0.66) 

0.607** 
(2.95) 

0.521* 
(2.46) 

Tau2 1.031 
(1.16) 

1.048 
(1.82) 

0.000128 
(0.00) 

1.161*** 
(3.77) 

0.749 
(1.58) 

0.770*** 
(3.77) 

0.680** 
(3.25) 

Constant -3.343*** 
(-3.36) 

-3.003*** 
(-4.07) 

-2.717** 
(-3.24) 

-0.959* 
(-2.19) 

-2.139** 
(-3.25) 

-0.167 
(-0.57) 

-0.302 
(-0.95) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting.  
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Table 8. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in 
Model (1) Generated Data with Treatment Period at 30 
 

  Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_var_factor  1.436*** 
(5.94) 

1.086*** 
(5.59) 

0.704*** 
(7.18) 

0.548*** 
(3.46) 

0.601*** 
(8.35) 

0.266*** 
(4.17) 

0.307*** 
(5.68) 

Mean_mean_factor  0.284 
(0.78) 

0.872** 
(2.89) 

-0.108 
(-0.61) 

0.0918 
(0.36) 

0.156 
(1.22) 

0.297* 
(2.56) 

-0.148 
(-1.77) 

Constant_y1  -0.0276 
(-0.18) 

0.147 
(1.25) 

0.0415 
(0.57) 

-0.00305 
(-0.03) 

0.0926 
(1.86) 

0.0419 
(0.88) 

-0.0224 
(-0.66) 

Mean_constant_yn  -0.191 
(-0.71) 

-0.0714 
(-0.28) 

-0.0344 
(-0.21) 

0.0624 
(0.25) 

-0.0591 
(-0.45) 

0.0780 
(0.57) 

-0.0143 
(-0.14) 

Var_constant_yn  -0.0862 
(-0.35) 

0.0609 
(0.31) 

-0.0477 
(-0.34) 

0.288 
(1.55) 

-0.0555 
(-0.53) 

0.0973 
(0.96) 

0.0383 
(0.51) 

Mean_fl_y1  -0.484 
(-1.61) 

-0.0723 
(-0.29) 

-0.142 
(-0.99) 

0.135 
(0.70) 

-0.174 
(-1.66) 

-0.0165 
(-0.17) 

-0.0648 
(-0.96) 

Var_fl_y1  3.007*** 
(12.28) 

1.759*** 
(9.04) 

1.201*** 
(10.32) 

1.263*** 
(7.58) 

0.778*** 
(9.32) 

0.604*** 
(7.83) 

0.479*** 
(8.57) 

Mean_mean_fl_yn  -0.806 
(-1.55) 

-0.0155 
(-0.03) 

-0.302 
(-0.96) 

-0.0954 
(-0.20) 

0.0742 
(0.27) 

-0.280 
(-1.06) 

0.327 
(1.56) 

Var_mean_fl_yn  -1.162 
(-1.66) 

-0.0480 
(-0.06) 

-0.740 
(-1.25) 

-1.931 
(-1.94) 

-0.601 
(-1.12) 

-0.650 
(-1.10) 

-0.120 
(-0.22) 

Mean_var_fl_yn  -1.167 
(-1.81) 

-0.848 
(-1.68) 

-1.292*** 
(-3.97) 

0.351 
(0.75) 

-0.679** 
(-2.81) 

-0.863*** 
(-3.53) 

-0.837*** 
(-4.77) 

Var_var_fl_yn  0.537 
(1.21) 

0.538 
(1.31) 

0.484 
(1.42) 

-0.451 
(-0.88) 

0.848* 
(2.48) 

0.554 
(1.53) 

0.270 
(1.24) 

Mean_ep_y1  -0.206 
(-0.35) 

-0.581 
(-1.13) 

-0.550 
(-1.58) 

-0.785 
(-1.57) 

-0.217 
(-0.78) 

-0.373 
(-1.28) 

-0.149 
(-0.73) 

Mean_mean_ep_yn  2.643** 
(2.58) 

-1.137 
(-1.13) 

-0.326 
(-0.43) 

-2.313 
(-1.85) 

-0.906 
(-1.25) 

-0.788 
(-1.00) 

0.201 
(0.33) 

Var_mean_ep_yn  5.080 
(1.73) 

6.759* 
(2.22) 

4.976* 
(2.17) 

5.072 
(1.34) 

5.694* 
(2.39) 

12.17*** 
(4.31) 

12.85*** 
(5.95) 

Tau1 0.974 
(1.69) 

1.255** 
(2.75) 

0.834** 
(3.22) 

0.595 
(1.60) 

0.732*** 
(3.89) 

0.784*** 
(4.34) 

0.361** 
(2.86) 

Tau2 0.687 
(1.20) 

0.587 
(1.32) 

1.403*** 
(5.21) 

0.570 
(1.52) 

0.764*** 
(4.08) 

0.751*** 
(4.11) 

0.306* 
(2.34) 

Constant -1.250 
(-1.88) 

-1.399* 
(-2.44) 

-0.546 
(-1.55) 

-1.411** 
(-2.74) 

-0.838** 
(-3.18) 

-0.359 
(-1.37) 

0.106 
(0.53) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting.  
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Table 9. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Synthetic Control Method in Model (2) Generated Data with Treatment Period at 10 
 

 Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_factor_y1 0.719 
(1.39) 

0.578 
(1.26) 

-0.284 
(-0.82) 

1.403*** 
(4.00) 

-1.063*** 
(-3.30) 

-0.463 
(-1.58) 

0.522* 
(2.07) 

Var_factor_y1 3.969*** 
(9.85) 

4.247*** 
(11.61) 

2.902*** 
(10.41) 

3.100*** 
(11.34) 

2.990*** 
(11.80) 

2.747*** 
(12.20) 

2.713*** 
(13.67) 

Mean_var_factor_yn 1.825* 
(2.50) 

1.524* 
(2.09) 

0.443 
(0.69) 

0.227 
(0.34) 

0.0248 
(0.04) 

0.0662 
(0.10) 

-0.0879 
(-0.15) 

Mean_mean_factor_yn 0.503 
(0.58) 

-0.240 
(-0.26) 

-0.122 
(-0.16) 

0.532 
(0.63) 

0.709 
(0.87) 

1.393 
(1.73) 

-0.205 
(-0.30) 

Constant_y1 -0.134 
(-0.54) 

0.274 
(1.22) 

-0.0639 
(-0.37) 

0.0293 
(0.17) 

0.0800 
(0.50) 

0.00556 
(0.04) 

0.299* 
(2.56) 

Mean_constant_yn 0.0660 
(0.15) 

0.172 
(0.38) 

-0.0809 
(-0.21) 

0.00947 
(0.02) 

-0.120 
(-0.29) 

-0.0611 
(-0.15) 

0.189 
(0.54) 

Var_constant_yn -0.206 
(-0.57) 

-0.629 
(-1.67) 

-0.627* 
(-2.07) 

-0.00872 
(-0.03) 

0.258 
(0.82) 

-0.281 
(-0.87) 

-0.282 
(-1.05) 

Mean_mean_fl 5.358 
(1.72) 

3.252 
(1.11) 

3.379 
(1.51) 

0.748 
(0.34) 

-0.0435 
(-0.02) 

-0.801 
(-0.46) 

0.514 
(0.34) 

Var_mean_fl 2.798 
(0.17) 

4.419 
(0.29) 

-2.565 
(-0.21) 

-18.51 
(-1.60) 

4.790 
(0.47) 

-9.057 
(-1.01) 

2.878 
(0.38) 

Mean_var_fl 9.364*** 
(3.85) 

0.637 
(0.31) 

7.336*** 
(4.54) 

1.689 
(1.05) 

3.531* 
(2.43) 

2.435 
(1.89) 

0.276 
(0.25) 

Var_var_fl -4.512 
(-0.57) 

0.586 
(0.08) 

-8.624 
(-1.57) 

4.250 
(0.74) 

-7.537 
(-1.63) 

-7.612 
(-1.56) 

-0.113 
(-0.03) 

Mean_ep_y1 -2.170 
(-1.40) 

1.940 
(1.38) 

-2.890** 
(-2.65) 

2.372* 
(2.20) 

-0.239 
(-0.25) 

-0.222 
(-0.25) 

-0.238 
(-0.31) 

Mean_mean_ep_yn 1.420 
(0.52) 

-3.852 
(-1.31) 

-4.917 
(-1.89) 

-1.881 
(-0.70) 

-1.130 
(-0.44) 

-0.773 
(-0.30) 

3.387 
(1.50) 

Var_mean_ep_yn -13.01 
(-0.88) 

-5.205 
(-0.37) 

16.57 
(1.34) 

-9.275 
(-0.73) 

-3.870 
(-0.32) 

22.07 
(1.69) 

-14.96 
(-1.42) 

Constant -8.337 
(-1.64) 

1.654 
(0.34) 

2.230 
(0.56) 

1.075 
(0.28) 

1.545 
(0.42) 

3.044 
(0.84) 

-0.877 
(-0.28) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting. 
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Table 10. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Synthetic Control Method in Model (2) Generated Data with Treatment Period at 20 
 

 Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_factor_y1 -1.826*** 
(-3.33) 

-0.753 
(-1.69) 

0.563 
(1.28) 

0.137 
(0.47) 

0.106 
(0.36) 

-0.488* 
(-1.99) 

-0.357 
(-1.42) 

Var_factor_y1 2.552*** 
(5.48) 

2.557*** 
(7.22) 

3.515*** 
(10.03) 

2.721*** 
(11.96) 

2.317*** 
(9.94) 

2.491*** 
(13.62) 

2.376*** 
(11.08) 

Mean_var_factor_yn 3.245*** 
(4.26) 

1.107 
(1.59) 

1.268 
(1.56) 

0.450 
(0.76) 

0.518 
(0.82) 

-0.973 
(-1.73) 

-0.434 
(-0.70) 

Mean_mean_factor_yn -0.0455 
(-0.05) 

-0.372 
(-0.43) 

-1.635 
(-1.66) 

-0.596 
(-0.84) 

-0.518 
(-0.64) 

0.529 
(0.77) 

0.564 
(0.74) 

Constant_y1 -0.637* 
(-2.37) 

0.0395 
(0.19) 

0.0971 
(0.45) 

-0.147 
(-1.00) 

0.186 
(1.24) 

0.0715 
(0.58) 

0.124 
(0.96) 

Mean_constant_yn 0.0461 
(0.10) 

0.0816 
(0.19) 

-0.436 
(-0.86) 

-0.0916 
(-0.26) 

0.469 
(1.15) 

0.499 
(1.48) 

0.296 
(0.76) 

Var_constant_yn -0.201 
(-0.52) 

0.155 
(0.46) 

-0.128 
(-0.32) 

-0.0524 
(-0.20) 

-0.488 
(-1.52) 

-0.409 
(-1.65) 

-0.194 
(-0.71) 

Mean_mean_fl -1.978 
(-0.57) 

-2.065 
(-0.80) 

2.731 
(0.98) 

0.566 
(0.31) 

1.162 
(0.60) 

-2.022 
(-1.37) 

2.278 
(1.34) 

Var_mean_fl 24.89 
(1.45) 

-9.612 
(-0.68) 

24.36 
(1.75) 

-9.166 
(-0.90) 

9.034 
(0.94) 

6.893 
(0.87) 

0.188 
(0.02) 

Mean_var_fl 3.846 
(1.51) 

7.967*** 
(3.91) 

3.171 
(1.60) 

1.633 
(1.22) 

2.819* 
(2.01) 

1.350 
(1.22) 

0.541 
(0.45) 

Var_var_fl 6.200 
(0.70) 

1.391 
(0.20) 

-0.198 
(-0.03) 

3.879 
(0.81) 

-2.140 
(-0.40) 

7.487* 
(1.97) 

0.588 
(0.13) 

Mean_ep_y1 1.807 
(1.04) 

-1.064 
(-0.81) 

-0.698 
(-0.50) 

-0.179 
(-0.20) 

0.352 
(0.36) 

-1.002 
(-1.28) 

0.153 
(0.18) 

Mean_mean_ep_yn -0.0749 
(-0.03) 

-1.673 
(-0.63) 

-0.283 
(-0.09) 

1.858 
(0.86) 

-2.373 
(-0.93) 

2.097 
(1.03) 

0.0579 
(0.02) 

Var_mean_ep_yn -25.37 
(-1.52) 

-20.71 
(-1.52) 

-15.15 
(-0.96) 

0.318 
(0.03) 

3.894 
(0.32) 

1.680 
(0.17) 

3.804 
(0.33) 

Constant 1.543 
(0.27) 

1.800 
(0.39) 

-1.506 
(-0.31) 

-0.337 
(-0.10) 

0.880 
(0.24) 

2.416 
(0.82) 

-0.125 
(-0.04) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting. 
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Table 11. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Synthetic Control Method in Model (2) Generated Data with Treatment Period at 30 
 

 Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_factor_y1 -1.415* 
(-2.48) 

-0.777 
(-1.64) 

-0.873 
(-1.91) 

-0.973** 
(-2.60) 

0.130 
(0.42) 

1.390*** 
(4.10) 

-0.265 
(-0.92) 

Var_factor_y1 3.547*** 
(7.47) 

2.604*** 
(6.40) 

1.386*** 
(3.85) 

3.300*** 
(11.52) 

2.304*** 
(8.73) 

3.145*** 
(10.75) 

2.891*** 
(12.07) 

Mean_var_factor_yn 0.628 
(0.79) 

0.687 
(0.86) 

0.152 
(0.18) 

-1.470 
(-1.92) 

-0.885 
(-1.30) 

0.302 
(0.40) 

-0.895 
(-1.30) 

Mean_mean_factor_yn 1.411 
(1.44) 

1.788 
(1.84) 

0.211 
(0.21) 

0.855 
(0.92) 

1.131 
(1.30) 

-0.625 
(-0.67) 

-0.100 
(-0.12) 

Constant_y1 -0.316 
(-1.10) 

-0.434 
(-1.78) 

0.182 
(0.77) 

-0.181 
(-0.94) 

0.298 
(1.92) 

0.160 
(0.97) 

-0.0268 
(-0.19) 

Mean_constant_yn -0.0925 
(-0.18) 

-0.161 
(-0.33) 

-0.700 
(-1.33) 

0.218 
(0.50) 

-0.305 
(-0.73) 

0.118 
(0.25) 

-0.111 
(-0.27) 

Var_constant_yn -0.108 
(-0.26) 

-0.321 
(-0.88) 

0.192 
(0.47) 

-0.551 
(-1.59) 

-0.0756 
(-0.23) 

0.225 
(0.65) 

-0.641 
(-1.95) 

Mean_mean_fl 2.640 
(0.71) 

2.575 
(0.85) 

0.325 
(0.11) 

4.355 
(1.86) 

5.230* 
(2.49) 

-0.169 
(-0.08) 

0.415 
(0.24) 

Var_mean_fl -23.34 
(-1.24) 

-16.21 
(-1.04) 

-1.674 
(-0.11) 

4.040 
(0.32) 

-0.471 
(-0.05) 

2.993 
(0.27) 

6.643 
(0.69) 

Mean_var_fl 5.123 
(1.88) 

4.134 
(1.88) 

4.654* 
(2.14) 

1.878 
(1.09) 

4.605** 
(3.02) 

5.618*** 
(3.73) 

2.000 
(1.46) 

Var_var_fl -15.15 
(-1.62) 

2.427 
(0.32) 

15.90* 
(2.24) 

-0.202 
(-0.03) 

4.188 
(0.88) 

-9.443 
(-1.70) 

-6.865 
(-1.53) 

Mean_ep_y1 1.085 
(0.57) 

-1.228 
(-0.79) 

1.673 
(1.14) 

0.525 
(0.43) 

0.713 
(0.69) 

0.373 
(0.36) 

0.346 
(0.39) 

Mean_mean_ep_yn -2.211 
(-0.71) 

1.657 
(0.54) 

-0.690 
(-0.21) 

2.835 
(0.98) 

-1.217 
(-0.45) 

-1.419 
(-0.47) 

-1.068 
(-0.39) 

Var_mean_ep_yn 10.80 
(0.64) 

6.349 
(0.43) 

-9.467 
(-0.64) 

-18.87 
(-1.35) 

-31.54* 
(-2.35) 

-8.376 
(-0.61) 

27.23* 
(2.15) 

Constant 0.717 
(0.12) 

-1.347 
(-0.26) 

-0.762 
(-0.15) 

-4.411 
(-0.99) 

-4.533 
(-1.14) 

-1.898 
(-0.45) 

1.576 
(0.42) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting. 
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Table 12. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in 
Model (2) Generated Data with Treatment Period at 10 
 

 Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_factor_y1 0.312 
(1.54) 

-0.539* 
(-2.35) 

-0.236 
(-1.22) 

0.752** 
(2.66) 

-0.118 
(-0.50) 

57.14 
(0.38) 

5661.1 
(0.97) 

Var_factor_y1 3.337*** 
(21.22) 

3.730*** 
(20.35) 

2.868*** 
(18.37) 

3.801*** 
(17.23) 

3.207*** 
(17.43) 

30.15 
(0.26) 

6004.3 
(1.31) 

Mean_var_factor_yn -0.681* 
(-2.39) 

-0.823* 
(-2.26) 

-0.488 
(-1.36) 

-0.568 
(-1.06) 

-1.477** 
(-3.11) 

284.2 
(0.83) 

12678.0 
(0.94) 

Mean_mean_factor_yn 0.172 
(0.51) 

-0.291 
(-0.63) 

-0.403 
(-0.92) 

-0.165 
(-0.24) 

0.942 
(1.59) 

-63.65 
(-0.15) 

-5566.2 
(-0.35) 

Constant_y1 0.0523 
(0.54) 

0.109 
(0.97) 

-0.0266 
(-0.28) 

0.192 
(1.41) 

0.118 
(1.02) 

-144.5 
(-1.93) 

-2686.0 
(-1.00) 

Mean_constant_yn 0.0613 
(0.36) 

0.254 
(1.11) 

-0.293 
(-1.34) 

0.130 
(0.38) 

-0.395 
(-1.30) 

174.6 
(0.83) 

-9882.7 
(-1.22) 

Var_constant_yn -0.212 
(-1.50) 

-0.191 
(-1.01) 

-0.161 
(-0.95) 

-0.478 
(-1.79) 

-0.00278 
(-0.01) 

37.17 
(0.22) 

-2543.4 
(-0.41) 

Mean_mean_fl -0.367 
(-0.30) 

-0.116 
(-0.08) 

-1.327 
(-1.06) 

1.051 
(0.58) 

-0.594 
(-0.42) 

383.4 
(0.43) 

-18334.2 
(-0.52) 

Var_mean_fl -0.716 
(-0.11) 

-0.444 
(-0.06) 

-11.96 
(-1.76) 

2.727 
(0.29) 

-0.429 
(-0.06) 

-2440.4 
(-0.53) 

-22136.8 
(-0.13) 

Mean_var_fl 5.572*** 
(5.87) 

0.681 
(0.66) 

1.892* 
(2.09) 

2.356 
(1.82) 

1.496 
(1.42) 

-144.1 
(-0.22) 

-9555.3 
(-0.38) 

Var_var_fl -2.617 
(-0.84) 

-2.018 
(-0.55) 

-2.597 
(-0.85) 

-6.932 
(-1.49) 

-6.856* 
(-2.04) 

1449.9 
(0.58) 

90122.5 
(0.96) 

Mean_ep_y1 1.322* 
(2.18) 

0.0268 
(0.04) 

-0.403 
(-0.66) 

0.555 
(0.64) 

-0.295 
(-0.42) 

-174.6 
(-0.38) 

7378.1 
(0.42) 

Mean_mean_ep_yn 0.00262 
(0.00) 

-1.265 
(-0.86) 

0.490 
(0.34) 

1.509 
(0.70) 

-0.0298 
(-0.02) 

460.8 
(0.35) 

66007.9 
(1.27) 

Var_mean_ep_yn -7.614 
(-1.31) 

-7.409 
(-1.05) 

4.584 
(0.66) 

10.45 
(1.02) 

-8.319 
(-0.94) 

-4300.5 
(-0.64) 

62274.3 
(0.26) 

Constant -3.106 
(-1.57) 

3.481 
(1.43) 

3.102 
(1.38) 

-2.865 
(-0.92) 

3.751 
(1.39) 

-615.1 
(-0.33) 

-42698.6 
(-0.60) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting. 
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Table 13. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in 
Model (2) Generated Data with Treatment Period at 20 
 

 Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_factor_y1 -0.329* 
(-2.28) 

-0.218 
(-1.54) 

-0.171 
(-1.30) 

0.116 
(0.84) 

-0.0910 
(-0.85) 

-0.0594 
(-0.50) 

0.0102 
(0.10) 

Var_factor_y1 2.673*** 
(21.81) 

2.120*** 
(18.79) 

2.559*** 
(24.52) 

1.948*** 
(17.84) 

1.555*** 
(18.72) 

1.480*** 
(16.68) 

1.463*** 
(17.11) 

Mean_var_factor_yn -0.366 
(-1.83) 

-0.814*** 
(-3.67) 

-1.017*** 
(-4.21) 

-1.047*** 
(-3.69) 

-1.202*** 
(-5.35) 

-1.296*** 
(-4.74) 

-1.241*** 
(-5.03) 

Mean_mean_factor_yn 0.229 
(0.90) 

-0.0355 
(-0.13) 

-0.359 
(-1.22) 

-0.0823 
(-0.24) 

-0.0253 
(-0.09) 

1.009** 
(3.03) 

-0.0814 
(-0.27) 

Constant_y1 -0.0931 
(-1.31) 

-0.0407 
(-0.61) 

0.0581 
(0.90) 

0.0596 
(0.84) 

0.0515 
(0.97) 

-0.114 
(-1.91) 

0.0194 
(0.37) 

Mean_constant_yn 0.0316 
(0.26) 

-0.251 
(-1.88) 

-0.0769 
(-0.51) 

0.145 
(0.87) 

-0.000522 
(-0.00) 

-0.407* 
(-2.48) 

0.119 
(0.77) 

Var_constant_yn -0.0252 
(-0.25) 

0.0990 
(0.92) 

0.0174 
(0.15) 

0.164 
(1.28) 

-0.241* 
(-2.10) 

0.0304 
(0.25) 

-0.0628 
(-0.57) 

Mean_mean_fl -1.612 
(-1.76) 

-0.775 
(-0.94) 

-0.294 
(-0.35) 

0.800 
(0.93) 

0.0887 
(0.13) 

0.0225 
(0.03) 

0.729 
(1.07) 

Var_mean_fl -1.467 
(-0.32) 

0.233 
(0.05) 

5.060 
(1.22) 

-5.746 
(-1.18) 

5.362 
(1.57) 

-2.080 
(-0.54) 

-0.337 
(-0.10) 

Mean_var_fl 0.533 
(0.79) 

1.961** 
(3.03) 

1.675** 
(2.83) 

0.769 
(1.20) 

0.660 
(1.32) 

0.822 
(1.53) 

-0.942* 
(-1.96) 

Var_var_fl 4.273 
(1.84) 

-0.985 
(-0.44) 

-0.103 
(-0.05) 

-0.278 
(-0.12) 

2.832 
(1.50) 

3.351 
(1.81) 

3.321 
(1.81) 

Mean_ep_y1 0.321 
(0.70) 

-0.0650 
(-0.16) 

-0.666 
(-1.59) 

-0.477 
(-1.10) 

-0.109 
(-0.31) 

-0.479 
(-1.26) 

0.265 
(0.78) 

Mean_mean_ep_yn -0.686 
(-0.87) 

-0.948 
(-1.12) 

-0.657 
(-0.73) 

0.141 
(0.14) 

-0.420 
(-0.46) 

0.291 
(0.29) 

-1.942 
(-1.95) 

Var_mean_ep_yn -8.014 
(-1.83) 

-5.652 
(-1.30) 

-3.167 
(-0.67) 

5.003 
(0.97) 

-7.114 
(-1.63) 

1.266 
(0.26) 

0.594 
(0.13) 

Constant 3.832* 
(2.56) 

2.884 
(1.95) 

2.370 
(1.62) 

1.227 
(0.75) 

2.855* 
(2.21) 

2.648 
(1.86) 

4.587*** 
(3.38) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting. 
  



49 
 

Table 14. Coefficients (T-values) of Regression on Mean Square Deviation (MSD)1 by 
the Panel-Data Counterfactual Method using Corrected Akaike Information Criterion in 
Model (2) Generated Data with Treatment Period at 30 
 

 Maximum Region Number 
Regressors 4 5 6 7 8 9 10 

Mean_factor_y1 4.791*** 
(7.54) 

-1.863* 
(-2.45) 

1.362* 
(2.53) 

1.712*** 
(3.74) 

-3.009*** 
(-4.18) 

1.799*** 
(4.33) 

2.139*** 
(7.52) 

Var_factor_y1 2.115*** 
(12.37) 

4.556*** 
(26.79) 

2.306*** 
(19.74) 

2.006*** 
(14.95) 

3.931*** 
(21.58) 

0.901*** 
(8.09) 

0.585*** 
(7.57) 

Mean_var_factor_yn -0.159 
(-0.64) 

0.521 
(1.29) 

0.706* 
(2.15) 

0.308 
(1.27) 

0.443 
(1.15) 

-0.0335 
(-0.12) 

0.00321 
(0.02) 

Mean_mean_factor_yn -3.276** 
(-3.16) 

-4.184** 
(-2.69) 

-4.291** 
(-3.30) 

-3.232** 
(-3.21) 

-6.049*** 
(-3.52) 

-2.037 
(-1.87) 

-1.689* 
(-2.06) 

Constant_y1 0.162 
(0.57) 

-0.0976 
(-0.26) 

-0.0289 
(-0.10) 

-0.107 
(-0.56) 

0.0337 
(0.10) 

-0.559** 
(-3.14) 

0.0638 
(0.50) 

Mean_constant_yn -0.0953 
(-0.19) 

0.785 
(1.03) 

1.190* 
(2.00) 

-0.466 
(-0.96) 

-0.586 
(-0.72) 

-0.401 
(-0.79) 

0.690 
(1.79) 

Var_constant_yn -0.555 
(-1.24) 

0.579 
(0.93) 

-0.337 
(-0.65) 

-0.285 
(-0.75) 

-0.0602 
(-0.09) 

0.200 
(0.49) 

-0.464 
(-1.60) 

Mean_mean_fl 7.709* 
(2.11) 

-3.032 
(-0.64) 

-6.003 
(-1.71) 

-0.284 
(-0.11) 

4.004 
(0.97) 

0.541 
(0.23) 

-0.377 
(-0.23) 

Var_mean_fl 23.33 
(1.22) 

-18.43 
(-0.74) 

-10.62 
(-0.59) 

-1.915 
(-0.14) 

11.67 
(0.54) 

-12.60 
(-1.00) 

15.41 
(1.65) 

Mean_var_fl 9.469*** 
(3.46) 

0.127 
(0.04) 

4.235 
(1.61) 

0.238 
(0.13) 

3.872 
(1.27) 

0.681 
(0.41) 

-0.667 
(-0.56) 

Var_var_fl -0.740 
(-0.08) 

-20.99 
(-1.74) 

-2.030 
(-0.23) 

-2.004 
(-0.31) 

-13.68 
(-1.28) 

2.146 
(0.37) 

2.192 
(0.55) 

Mean_ep_y1 0.113 
(0.06) 

0.554 
(0.22) 

-1.799 
(-1.06) 

-0.255 
(-0.21) 

0.483 
(0.23) 

-0.161 
(-0.14) 

0.0439 
(0.05) 

Mean_mean_ep_yn 3.288 
(1.08) 

-6.790 
(-1.41) 

-0.0943 
(-0.02) 

-0.483 
(-0.16) 

-5.737 
(-1.08) 

3.221 
(1.03) 

3.103 
(1.26) 

Var_mean_ep_yn 1.622 
(0.10) 

-38.94 
(-1.63) 

59.78** 
(3.08) 

-3.162 
(-0.21) 

8.493 
(0.31) 

-2.696 
(-0.18) 

9.598 
(0.83) 

Constant -14.42** 
(-3.09) 

9.189 
(1.54) 

5.254 
(1.15) 

3.631 
(1.08) 

-0.221 
(-0.04) 

1.411 
(0.47) 

2.984 
(1.39) 

* p<0.05, **p<0.01, ***p<0.005.  
1 The regressand is the MSD of 1000 trials in each model setting. 
 
 


