SRR AR SX 5 s
UEREh
Department of Mathematics
College of Science

National Taiwan University

Master Thesis

FoMezadd o PR
Solving Some Moving Interface Problems by the

Coupling Interface Method

Bl R

Ssu-Han Liu

REFE T L K
Advisor : Professor I-Liang Chern
PERFLI02ET
July 2013

SRV e W -2 -
nRXLEBEeELE
REoELESEH REPELYER

Solving Some Moving Interface Problems by the Coupling
Interface Method

A X A42) BamE (R98221001) AR L £ K ZHZAHATHRZ
BEEpaHXNRR 10257 A 198 ATHEFRXEELZLERBAR
O XA 0 4FLE A

REE &,
- F%» il (%2)

(45 %#3%)
TR
A T E
YD - (&%)

"
At

RAERWmY o AR LA S R T LR &R B E e

i-FronTier library 1 2 473 R4 AAgst B ec b andp o B S R 3#5E - B R e
FF i" &%'.} Eﬁiifﬁgj:llﬁ% O

g 2
d FE R IR
B X Kﬁi,’ai s 1 .,
B R ER PR 8LE 2D hay + aRER
24t F AP A

s AL

T hwmc,

=1
&
-
A
e
o)
F
M
=
ﬁm
fa
>
=1
&
T
W

\ aad
b
=
P
'

Jd
v
F_k

s R oe g
EirME™ &7 R RALY, bldei- BBE R G KA
Ll "]’F"‘:ﬁ'@‘-rﬂiﬁl*"
- |‘3¥E‘I’J'§f§

BER IR - &
LR S gk 5
ﬁﬂ'lbi’;ﬂggg,;\;ﬂaa; ﬁfiﬂifﬁ' -

7~ ’_]} B 228 =2 9

IJ—J- j\:%?\’z%_ E S m»];:g,’{.bt_o

M R o
B R R RN S
L - BERGRFHE -T2 ENE R
EVE R R R AR
" S E

ﬁ"ﬁfl‘ F\:Bzv}g\ %‘iimé R

Abstract

The coupling interface method (CIM) proposed by Chern and Shu aims for solving
elliptic complex interface problems in arbitrary dimensions under Cartesian grid. It has
been proven that the method is very competitive in dealing with interface problems. In
this thesis, we apply the CIM to various problems, including one dimensional moving
interface problems, two dimensional diffusion equations with fixed interface, two
dimensional melting problems, etc. Numerical examples are presented to test the
accuracy of the method in these applications.

Keywords: coupling interface method, moving interface problems, ADI method,

Crank-Nicolson scheme, melting problems, front tracking method

CONTENTS

FHZ R € F T b #
5 TSR OR 1
P2 B B 2
ABSTRACT et b e r e 3
CONTENTS ettt et e et e bt e e e b e e enn e e sneeanbeenree s 4
LIST OF FIGURES ... 5
LIST OF TABLES ...ttt n et 7
Chapter 1 Coupling interface method in one dimension............cccccevvveiieiie e 8
Chapter 2 Application to one dimensional moving interface problems......................... 17
Chapter 3 Coupling interface method in two dimensions............cccccevevieiie e e, 48

Chapter 4 Application to two dimensional diffusion equations with fixed interface.....60

Chapter 5 Application to two dimensional melting problems...........cccoccevviiiiieiciinnnen, 97
Chapter 6 CONCIUSIONS. ... e 110
REFERENCE ..ottt ne e e e e 111

LIST OF FIGURES

FIQ. Lurieeiiricnerirsinnecnrssrc s seesressssssrnesreseesressessseessesnsessessressesssesfhonys QU b o ffie o | 8 9
o RSSO PP PTURUURTARTRTTPTUPPTORURUTT. .. 0. | 10)% 23
o R TSSO TO PP PP PP 33
o R ST T PO TP TP PP URPRPRUPPPIR 34
o R TSSOSO P TP TP PP URPRPRUPPPIR 34
o T TP TR PP PP URPRPRUPPPIR 36
FO. e 36
FE0. B, e bbb b et 38
o TSP T TP PP PP TRURPRORPPOR 39
o 30 T TSP T TP TP TRPRPRPRPPR 39
o 30 TSP PP P PP TP PRPRPROR 40
o 30 TSRS PP PP TRTPRTRPRPROR 40
o 30 T TSP U PR PP PRTRPRPRRPRPIR 53
o 30 ST USSP P PPV PRTRPRPROS 64
o 30 T TSP U PP PP TP TRPRPROR 64
o 30 TSSO TR PR P PP PRPRRPIR 65
o 30 TSP U PR P PP URPRPRIR 66
FEO. L8 e bbbttt bbbttt 66
o B0 T TSP PP PP TRPRURPRPRIR 67
FHO. 20 . o bbbt bbbttt 68
o 2 PP PO TP PP PRSPPSO 68
FHO. 22, . o bbbt bbbttt e e 73
o 2 TP PO RPN 73
FHO. 24 bbbttt bbbt nes 74
o A TSP U TPV 74
FHO.26. . o oot b bttt bbbt nreenes 75
o A PRSP PO ROV 75
FHO. 28 . oLt b ettt bbb b nreene s 76
FHO. 20 - e b bbbttt b bbb b reene s 76
.30 ettt b bbb bttt b e bbb b reeres 78
o 3 PSSRSO PP TRPRRP 78
o PRSP PO TPV 78
o 2 TS PSPPSRI 79
o 7 SRS P PRSPPI 92
o 1 TSRS P USRS 92
o 1 TSRS RPN 93

e OO RRRTRTNY Ay A0 oWy AT 94
FIG.39. oo eeeees e eeeees e e e ee e e 94
FIGLA0. oo e eeeees e e e e e enese 95
FIGLAL. oo eeee e eeeees e e e e e ettt 95
FIGLA2 .ot 96
FIG.A3. oo eeee e e e 98
FIGA oot 104
FIGLAD ..o eeee e e et 105
FIGLAB ..o e er e e 106
FIGLAT oo eeee et 108
FIGLAB . eeeeveeeeeeeeeeeeeee e eeeess e e e e e e r e e e 109

LIST OF TABLES

JLIE: Lo -0 SRR TURURTRTRURSRRUTRURR - S, 1 § (90 Y £ I 35
LI Lo LTRSS SR P 37
LI Lo [T USSP 39
LI Lo [TSSO 41
LI Lo [PSRRI 41
LI Lo [SRR 44
LI Lo [SO SOPP 45
LI Lo [T = TSSOSO 45
LI Lo [T SRR 46
LI Lo L0 OSSPSR 65
LI Lo L= 00 SRRSO 66
LI Lo [0 PSP 67
LI Lo [0 SRS 68
LI Lo [0 SRR 73
LI Lo L0 TSP 75
TADIE.LO ..o e re e 76
LI Lo][00 OO R ST 77
LI Lo [0 PSPPSR 77
LI Lo [0 K SRS OPRRSROP 77
TADIE.20. ... e e e re e aare s 93
LI Lo [0 PSPPSR 94
JLIE: Lo L= OSSR 96
LI o] L= USSP 104
TADIE.24 ... raens 105

Chapter 1

Coupling Interface Method in One Dimension

In this chapter we review the coupling interface method (CIM) in one dimension
under Cartesian grid for solving interface problems proposed by Chern and Shu[5]. It
contains a first-order method (CIM1) and a second-order method (CIM2).

Consider the elliptic interface problem on a domain Q = [a, b], (eu’)’ = fon[a,b].
The elliptic coefficient e(x) > 0 may have jumps across some interface points on [a, b].

We partition [a, b] into M + 1 subintervals evenly and define

h 2 MT1’ (step size)

X; 2 a+ih,i=0,1,..,M + 1. (grid points)

One basic assumption is that there is at most one interface point in each subinterval
(which is achievable by refining meshes). A grid point x;is called on-front if
either [x;_1,%;) or [X;,Xj4+1) contains an interface point. Otherwise, it is called an

interior point. At an interior point x;, we approximate (eu’); by a standard central finite

difference scheme. Namely,

€i-1/2Uj-1 — (51—1/2 + Ei+1/2)ui t €+1/2Ui+1

2 + 0(h?). (1)

(eu)j =

At an on-front grid point x;, we discuss the CIM1 and CIM2 below. In both methods, we
call the side where x; is located the Q~ side, and the other side the Q* side (see figure

1). Given an interface point X in [x;_1,Xj4+1), the jump conditions at X are the

8

following:

[ulg 2uf® —u® =7, ()
[eugdg 2 ()T (®) — (eW)~(®) = o. ()
Q- side Q+ side Q+ side Q- side
€- £+ £+ €
U- ¢ - — -~ r——->ut ut¢ — — — - r—==>u-

\ / \ /
\ / \ /
\ / \ /
\ / \ !
Nl ¢ \ /
. ahy,Bh, . . . Bhyah,
i X i+1 i-1 X i
(a) (b)
Figure 1.
CIM1

The idea is to approximate u by linear functions on both side of the interface point.
Suppose there is no interface point in [x;, x;41), We approximate u; by
ul =$+O(h). 4)
Suppose there is an interface point % in [x;,x;;1). First, we expand u in Taylor series
about % from both side of the interface to get
u”(x) = u; + uj(x — x;) + 0(h?), for x € [x;,%)
ut (%) = Ujpg + Uiy (X = Xj41) + O(h?). forx € (% Xi41)
In particular, we have

u~(®) = y; + uj(ah) + 0(h?),

ut(®) = ujyq +ujy; (=Bh) +0(h?),

where o é%andﬁ 21—-a.
The jump condition [u]; = T gives
T = (Ujyq + ufy; (—Bh)) — (u; + u(ah)) + 0(h?)
= —(ah)uj — (B)u}y; + Uiy — u; + O(h?).
Second, we approximate u’ about X from both side of the interface to get
W)"® = uj +0(h),
W)*(®) = ujy; +0(h).
The jump condition [euy]; = o gives
o =¢%uj,; —euj + O(h).

Combining the two expressions (5) and (6), we can form a 2x2 linear system

Agxz [ul{lil] = [(1;] _ [ui+10_ ui] + [%((f;lz)))

where

A= [—ah —Bh]l

—e~ gt

Therefore, solving this linear equation, we have

1 o

uj = (p*(uirs —u) —p*T—Bh) + O(h),
, 1, _ o

Uiv =4 (P Uiy —w) —p T+ ahg) + 0(h),

where € 2 ag* + e, pT 2 et/E

)

(6)

(7)

(8)

Let vit+1/2 be the number of the interface point in [x;, xj11). Here, yi41/, = 0 or 1. We

can combine (4) and (7) into one formula:

10

! 1 =+ =+ o
Uit1/2 = h (1 + Yirr2(p" — 1))(ui+1 —u) + Yit1/2 (_P = Bhg) + 0(h), C)
where i + 1/2 means that we approximate u; from right.
Similarly, we have

/ 1 =+ =+ °
Uiii2 =5 (1 + Yi—12(p" — 1))(“1 = Uj—1) + Yi-1/2 (P T— Bhg) + 0(h), (10)
where o £ X"h;’?(here and after we give a unified definition: o = 'Xih—_ﬁl). Here i —1/2
means that we approximate u; from left.

Combining (9) and (10), we get a unified formula:

’ 1 = n e o
Ugays = ((1 + Yis1/2(* — D)DEYDu; + vy, (FotT - Bh§)> +0(h), (11)
where
DEVDy; & tui, Fus (12)

Finally, we approximate (eu’); by
(eu)] = %si(ufﬂ/z —uj_y/,) + O(D). (13)
CIM2

Suppose there is an interface point X in [x;,Xj4+1). To derive CIM2, we further
assume that there is no other interface points inside [x;_1,Xj+2]. The idea is to
approximate u by quadratic functions on both side of &. These involve six coefficients.
They are determined by the two jump conditions and realizing u at x;_1, X;, Xij+1
and x;,,. First, we expand u in Taylor series about X from both side of the interface to

get

11

um(x) = uj 4 uj(x — x;) + %u{’(x —x;)% + 0(h3)

U; — Uj_ 1 1
=u + (lTll + Ehu{') (X — Xi) + Eu{'(x — Xi)z + 0(h3)

g p Wiz 1 2
forx € [x;_1,%) here we use u; = o + 2hu1 + 0(h?)),

1
Ut (%) = Ujpq + Ui (X —Xip1) + Eu{:q(x — Xi41)% + 0(h3)

Uiz — Ui 1, 1,
= Ujpq + (% - Ehui+1) (X — X41) + Eui+1(X — Xi+1)? + 0(h®)
Uitz — Uj 1
for x € (%, Xi;1) <here we use uj,; = % — Ehu{gl + O(h2)>.
In particular, we have
—ray uj—ujg 1 iz 1 " 2 3
u X)) =u+ 5 + zhui (ah) + > Ui (ah)= + 0(h?), (14)
Fray Uj+2 — Uj+1 1 " 1 12 2 3
u () = ujyq + — Ehui+1 (—Bh) + zuiﬁ(—ﬁh) + 0(h?). (15)
The jump condition [u]; = T gives
= (U —u) + (w - lhu-”) (—ph) — (w + lhuf’) (ah)
i+1 i h 2 i+1 h 2 1

1 " 2 1 " 2 3
+ 50 (B0 — S/ (ah)? + O(h?).

After some calculations we can get

-1, 2y o Lo 2,41 3
T= Th (a+ a®)ui" + zh B+ BHuiy; — Bujyz + (1 + Bujp; — (1 +)u; + auy_, +0(h3). (16)
Second, we expand u’ in Taylor series about X from both side of the interface to get
W)~ = uj +uj'(x — x;) + 0(h?)

u; — uj_ 1
- (Tl + zhu{’) +uj'(x —x;) + 0(h?),

W)Y (®) = ujyq + il (X = x441) + 0(h?)

Uj42 — Uj 1
= (% B Ehuﬂl) + uily (x — Xi41) + 0(h?).

12

In particular, we have

U;

W)~ (®) = (% + %hu{’) + ' (ah) + O(h?), a7

WY@ = (L iy) + s (<) + O(0?) (18

The jump condition [euy]; = o gives

o=gt ((T L B Bh)) —& ((T +2hu)') + u{'(ah)) +0(h2).

After some calculations we can get

1 1 Uiz — Uj uj — uj_
0 = —he” (E + 0() u;’ —het (E + B) ui, + et (%) —€” (ITII) + 0(h?). (19)

Combining the two expressions (16) and (19), we can form a 2x2 linear system

A [Uy’] _ [T] _ [bj_1ui_1 + bjouj + bi1Ui+1 + bty] 0(h3)]
2x2 ug'y 4 o Ci+1,—1Ui—1 + Cit1,0Ui + Cit1,1Ui+1 T Cit1,2Ui42 0(h?))’
where
(bi,—l = q,
) bio=—-(1+),
b, =1+ B,
\bi,z = —.
(Ciy1-1 =€ /h,
) Ciy10 = —& /h,
Ciy11 =—¢/h,
\Cit12 = —€7/h.

;hz(a + a?) %hZ(B + B2
—he” G + a) —he* (% + B) .

Therefore, solving this linear equation, we have

A=

1
u = h—Z(L(l)ui +Ji) +0(h), (20)
1
Uiy = h_Z(L(_l)qu +Jiv1) + O(h), @D

13

where

(€Y)
{L U; £ a;_qUj_1 +ajpu; + aj1Ujzq + iU,

(G
LY Vujpg £ aj41-1Ui-1 + Qipq,00 + 3j411Uik1 + 412042

h
o2 —(1+2B)p*t— (B + 62)%,

A - 2, Oh
Jig 2 (1 +20)p T—(a+«)?
with the corresponding coefficients:

éé(3+32)(%+a)e-+(a+a2)@+s)s+,

o | U

pt &

)

(aj_; = (B+BHp~ +a(l+2R)p",
ajp 2 —(B+BHDp”— (1 +a)(1+2B)p",
aj1 = (1 + B)Z +l

\2j2 = —B2pt.

(3411 2 —a?p”,

ajr10 = (1 +)%p7,

ajp11 2 —(a+a®)p* = (1+B)(1+ 2c)p7,
\ai+12 2 (a+ a®)pt + B(1 + 2a)p™.

A

Now, we try to unify the above finite difference formulae (20) and (21) into just one

formula. At a grid point x;, we assume x; satisfies one of the following assumptions:

1. x; Is an interior point.

2. If there is an interface point % in [x;, X;+1), then there are no other interface points

inside [X;_q, Xj4+2].

3. If there is an interface pointXin [x;_4,x;), then there are no other interface points

inside [X;_5, Xj4+1].

14

Let us define an orientation indicator s to be

1 if X € [x4, Xi41),
s L {—1 if X € [Xi_1,Xi),
0 x;is an interior point.

Define the following parameters:

éé(B+BZ)(%+OL)£_+(a+a2)<%+8)s+,

L

pi

)

“”>| T

I(a_s 2 (B+pp™ +a(l +2B)p,
4 ap 2 —(B+pHp” — (1 +a)(1+2p)p%,
| as 2 (1+B)%p",

kaZS = _sz+.
L(S)U' A {a—sui—s + AU + dgUj4s + dosUj4os lfs = il,
i Uj_1 — 2Uj + Ujyq ifs = 0.

[eu']
Js £ — <|S|(1 +2B)p*[u] +s(B + BZ)hT :
With these notations, we can express u; as
1
= o (L9, +1g) + O(h2 1),
Finally, we approximate (eu’); by
(eu)i = gfu; + gu;
1

1 1
= HD(S)EiHD(S)ui + & <h_2 (L(S)ui +]ﬁ)) + O(h2—|s|)

1 1
= h—2<D(s)£iD(s)ui + Eihz <h—2 (L(S)ui +]5\()>> + O(h2—|s|),

where
Ujpq — Uj_
(% ifs=0,
Disyu; = i U; — Uj_q ifs=1,
Uj+1 — U ifS = —1.

15

(22)

(23)

(24)

In summary, at an interior point we adopt a standard central finite difference
scheme, which produces O(h?) local truncation error. At an on-front grid point, the
CIM1 produces O(1) local truncation error and the CIM2 produces O(h) local
truncation error, so the global error is O(h) and O(h?), respectively. Refer to [5] for

more information about the CIM (ex: stability of the coefficient matrix).

16

Chapter 2
Application to One Dimensional Moving Interface

Problems

In this chapter we apply the coupling interface method to the one dimensional

moving interface problems. The model problem we considered is the following:

u; + Auuyg = (guy)y — f(x,t) x€[0,8) U (1], (25)
dg _ =t u- ut
a—w(t,«f,u ,ut,ug,uy) t>0. (26)

Here, £(t) is the trajectory of the moving interface. We denote its left hand side by Q~
side and right hand side by Q*.The notation u~, u*, u;y andu; are the limiting values
of u(x, t) and u,(x,t) from the left and right hand side of &(t). The function w
represents the velocity of the interface, which is a known function of t,§, u~,u™, uy
and uf and L is a constant. The coefficient e(x,t) > 0 and the source term f(x,t) are
assumed to be smooth on both side of £(t) but may be discontinuous at &(t). This is a
parabolic problem and the solution in each domain [0, E(t)) and (€(t),1]is smooth.
Across the interface, there are two kinds of jump conditions considered.

JC 1. Jump conditions of the form

[ul(® 2 uE*",) —u@E, v =1V, (27)
[eux] (1) 2 (&%, Dux (¥, 1) — (7, Dux(§7, 1) = o(V), (28)
are given

17

JC 2. The solution on the interface
u(g,t) =r(v), (29)
is given. One example is a mathematical model for solidification problems.

Numerical method

We partition [0,1] into M + 1 subintervals evenly and define

1
h £ Myi’ (step size in space)

x; 2 ih,i = 0,1, ...,M + 1. (grid points)
We use At as the temporal step size in time and assume the ratio At/h is a constant (ex:
equals to 1). Using the Crank-Nicholson scheme, the semi-discrete difference scheme

for (25) can be written in the following form:

U{H-l — u? n A n.n n+1. .n+1 1 n n+1 1 n n+1
. G + > (ufug; +ufttugtt) = > ((euy; + (eu)ett) — > (F* + €M1, (30)

where ug; and (guy)y; are uy and (euy)y at (x;, t"), and C{' is a correction term for time
which meaning will be discussed later. The interface location is determined by the
trapezoidal method applied to (26)
En+1 _ En 3 1 o 1

At = 2(w + with), (31)

where w" = W(tn, g u~utt,u u;{'n), and &, u*®, uf™ are &(t"), u(tt, t) and

u, (8%, t), respectively.

18

Spatial discretization

Since the discussion here doesn’t concern with time, we will drop tor the
superscript n for simplicity. At an interior point x;, a standard central finite difference

scheme is adopted. Namely,

U; — U;_
Uyj = % + 0(h?),

€i-1/2Uj—1 — (&= + & u; + & U
(sux)x,i _d 1/24i-1 (i—-1/2 hz1+1/2) i i+1/2 1+1+O(h2).

At an on-front grid point x;, we approximate uy ; by
1
Ugj = HD(S)ui + O(h)
We study the following two kinds of jump conditions to compute (guy)y ;.
JC 1.
We use the CIM2 to get a first order approximation of (eu,),;. As foru™, u*, ug
and uy, suppose the interface point & is situated in [x;,x;.1). First, compute uyy; and

Uyx i+1 DY (20) and (21). Then by (14), (15), (17) and (18), we have

u; — Uj_ 1 1
u =uy; + (IT” + Ehuxx,i) (ah) + Euxx,i(och)2 +0(h?),
+ Uitz —Ujyg 1 1 2 3
u’ =Uujyq t+ (T - Ehuxx,i+1> (—Bh) + Euxx,i+1(_8h) + 0(h?),

uj — Uj_ 1
u; = (lTll + Ehuxx,i> + uxx,i(ah) + O(hz)'

r_ (ui+2 — Ujt1

1
h - Ehuxx,i+1) + uxx,i+1(_Bh) + O(hz)-

In this case, we can't directly apply the CIM2 since we don't know the value

19

of [euy]. So, we go back and check how we derive the CIM2. Suppose the interface

point € is situated in [x;, x;;,) and recall the definition of the following two parameters

§—x4
h)

o2

(32)

B2l-a (33)

From (14) and (29), we can get

r=u() =+ (=

1 1) 3
2L gy) (@) + 5 g (@h)? + 0(h)

1
= (14 u; —auj_q + > (a4 a®)h%uyy; + O(h3).

From the above equation, we can compute uyy ; as

1
Ui =7 (auj_; — (1 +)u; + r) + O(h). (34)
5 (a + a?)h?

Combining (17) and (34) we can compute uy as

U — Uj_ 1
up = ‘T'l + (5 + a) huyy; + 0(h?)

Ui — Ui 1+ 2a ,
=% T O(Z)h(aui_l (14 @)u; + 1) + 0(h?). (35)

These formulas have an easy explanation, first we give a lemma.
Lemma Given x4, X,, X3, X four points with x;, X,, x5 are distinct. Suppose U is a

smooth function in an interval containing x4, X, X3, X, then

U'(®) = c;U(xq) + coU(x2) + c3U(x3) + (C10(|X1 —x[3)+¢,0(Ix, — x[?) + c30(|x5 — X|3)),
U"(x) = dU(xq) + dU(xz) + d3U(x3) + (d10(|X1 —x[?)+d,0(|x, — x[*) + d30(|x3 — X|3))-

where

20

_ (x—x%) + (X —X3) _(x—x1) + (x—x3) _(x—x) + (x—x%;)

€1 =) -) -)

! (x1 — x2) (X1 — X3) g (x2 —x1) (X2 — X3) ° (x3 —x1)(x3 = X3)
d, = : d, = 2 d; = 2

e (x1 — %) (%1 —X3) 2T (x2 —=x1)(xz —X3) ’ 5T (x5 —x1) (X3 —%2)
Proof:

Expanding U in Taylor series about x;, x, and x5 respectively and comparing the

coefficients, we get the desired result. O
Define

D'u(xy, X2, X3,X) £ cyu(x1) + cu(xy) + cau(xs),
D?u(xy, Xz, X3,X) £ diu(xy) + dyu(x,) + dzu(xs).

Then it’s easy to find that

1
D2u(xi-1,%,6 X)) = ———— (@u_y — (1 + @y + 1),
5 (a + a?)h?
— Uj—1 n 1 + 20
h (a+ a?)h

D'u(xi-1,%,§,8) = = (auj_y — (1 + au; + 1),
which are the same as (34) and (35). So we find out that (34) and (35) is just the Taylor
expansion approximation using x;_4, x; and & three nearby points.

There remains one problem in computing the derivatives of u at an on-front point.
If the interface £(t) becomes closer and closer to a grid point as time changes, then the
coefficients in (34) and (35) may become very large. To avoid this situation, at time
level t" , instead of using (34) and (35) to compute the derivatives, we use the following

approximations:

ug(lx,i = (anzu(Xi—lr Xiy En,Xi) + BnDzu(Xi_z,Xi_l, En,Xi) + O(h)' (36)

21

ur" = a"Dlu(xi_1,x;, 8", §") + B"Du(xi—z, Xi-1, 8% &) + 0(h?), (37)
where o™ and " are (32) and (33) at time t", respectively. Each of the above formula is
a linear combination of two approximations. By using these formulas, we still get the
same order of accuracy as before and the magnitudes of the coefficients in (36) and (37)
will be of order 0(1/h). Similarly, at x;,,we use the following approximation

Ugyir1 = B D*U(E", Xit1, Xis2s Xit1) + a"D2u(E™, Xit2, Xir3, Xi41) + 0(h), (38)
ug™ = "D u(E", Xip 1, Xig2, §") + "D u(E, X4z, X143, §) + O(h?). (39)
For time level t*2, we still use (37) and (39) (change n to n+1) to compute uX"** (in
order to compute w™*1). However, in forming linear system, we don't want to pollute

our tri-diagonal linear system, so in this case we use (34) with one exception:

If |E"*1 —x;] < h?, thenset ul** = r(t"*1) (which is also second-order accurate)

Grid crossing and the time correction term

When discretizing the time derivative term, we need to pay more attention since
the interface is moving. In some situations we need to add a time correction term
C{" discussed below.

Suppose (x;, t*) and (x;, t**1) are on the same side of the interface £(t), then

1
S U Lt) + 0(a)
At 2\ i ’
so there is no need for any correction and we set C{* = 0. However, if the interface point

22

€(t) crosses at x; from time t™ to time t**1, say, at time , £(t) = x;, t* < T < t"*1 (see
figure 2), then the time derivative of u may have a jump att =t and we need to add a

correction term C{". The following theorem tells us how to choose C;".

g, (n+1

t n \'\\

(a) (b)

Figure 2. (a) &(t) increases with time (b) £(t) decreases with time

Theorem[11] Suppose the equation £(t) = x; has a unique solutiontin the interval
(t™, t™+1). If we choose

cp=—ty =

[ul 1
At At (

1 .
w+EM—Qm¢b (40)

then we can get a first order approximation of the time derivative of u

ul*tl —yp 1
— (= E((Ut)?ﬂ + (ut){l) + 0(Ab).

At
Here [u].¢ £ u(x;,) — u(x;, T7), where u(x;, t) and u(x;, t™) are the limiting values
of u(x;, t) from up and down side of £(t). Note that [u] . = —[u](t) for the case in figure
2(a), and [u].¢ = [u](®) for the case in figure 2(b).

Proof:

First, by Taylor expansion, we express ul and u** about time t from each side of

i
the interface to get

23

ul' = u(x;,) + (" — Due(x;, T7) + 0(At?), (41)
ul* = u(x,) + (" — Due(x;, T) + 0(At?). (42)
Subtracting (41) from (42), we obtain
uf ™t —u = [ul g — Hude + " u(x;, T) — tPue(x, T)
= [ul.g — tlul + " [uel.¢ + Atue(x;, T7) + O(At?). (43)
Since
(upi' = ue(x;, t7) + 0(AY),
(U = u(x;, t) + 0(AY)
= ue(x;,) + [¢ + O(AD),
we have
T— 1 n n+1 1
ue(x;, t7) = > ((ut)i + (up);) 5 [uc] s + O(AD). (44)
Therefore, combining (43) and (44) gives
n+1 n _ z n+1 1 n n+1 1 2
ut - P = [ulg — B + 0 o+ At (5 (@DF + (@O = S [ud) + 02t
n 1 T 1 n n+1 2
= [ul¢ + (t + EAt - t) [ug] £ + At E((ut)i + (u)P*t) | + 0(ae?). (45)
Divide both sides of (45) by At

At At At

n+1 _ .n ;
= R (e g) e+ (@D + @IT™) + 00,

We get the desired result. O
Computing CJ!

Next, we discuss how to compute C{'. The computation of [u] ; is easy.

24

JC 1.
(2)&" < g"*1 (figure 2(a))

[ul.e = —[u]l(®) = —t(®.
(b)g" > gn+1 (figure 2(b))

[ul.e = [u](® = t(®.
JC 2.
[u],e = 0.
We also need to compute tand [u].z. In order to get a first-order approximation of the
correction term C;', we need to get a second order approximation of t and a first order
approximation of [u].;. We follow the idea proposed by Li [11]. First we discuss how to
find t.

Suppose we have already known £**1 and w™** (we will expain why we can make

this assumption later). Using the trapezoidal method twice, we get

EE — En 1 n t 2
—e =§(w +wt) + 0(At?),
n+1 t
— 1 ~
—Etn+1 —E‘E =3 (wt+ wh*1) + 0(At2).

Combining the above two equation and eliminate wt, we get

Xi — En En+1 — X 1
o~ T = 5 (W = W) + 0(Ar?). (46)

Using (46), we can compute t. First, we simplify the equation.

Let At & t— t™ and set

25

(q1 =Xi_zn'

qQz = &+ —x;,
1

qs =§(Wn—W

qs = q3At+q, +q;.

I’l+1)
]

With these notations, (46) becomes

E_ q2 _ 2
A Ao a4 T 0@,

After some arrangements, we get the following equation
(q3 + 0(AtY))(AD)? — (q4 + O(AL3))AE + q,At = 0.

So we can solve this by quadratic formula

qs * \/(%)2 — 4q1q3At
2q3

At = + 0(At?). (47)

It's very important to decide which solution is the correct one (which is not
mentioned in [11]); otherwise we may get the wrong estimation of t. We separate it into
four different situations.

(A)gq3<0,q,>0

(Dqs>0

In this case, since q; < 0 and q4 + +/(q4)% — 4q1q3At > 0,

qq t \/(%)2 —4q,q3At
2q3

< 0 - |(~ At should > 0).

Therefore,

qs — \/(Q4)2 —4q,q3At

At =
2q3

(I g4 <0

In this case, since 4q;q3;At < 0, we have q, + +/(q4)% — 4q;q3At > 0.

26

Combining this fact and q, < 0, we have

qq + \/(%)2 —4q1q3At

< 0 - |(At should > 0).
2q3 |

Therefore,

qs — \/(%)2 —4q1q3At

At =
2q3

(B) q3 < 0,q; < 0 (hence q, < 0)

Qs — \/(%)2 —4q1q3At

2q3
_ "9 + \/(%)2 — 4q1q93At
—2q3
o T ([0 — 20,080+ 20,0580+ (45807)
2 —2q3 —2q3 —2q3
S V. . S \/(qut — (@1 +92)") (= 2q,q3At > 0)
2 —2q3 —2q3 —2q3
1 —q1 —q 1
=-=At At —
Ty e g [CELL CERL D]
> lAt+ I + L + ! (lqsAt] = g1 + qz|) (triangle inequality)
T2 —2q3 —2q3 —2q3
v . I (—asAt+ (g1 +92)) (¥ q3 < 0and (q; +qz) <0)
2 —2q3 —2q3 —2q3

= At - |(~ At should < At).

Therefore,

Qs ++/(94)% — 495 q3At

At =
2q3

(€)gq3>0,g9: <0
Daqs<0

Similar to (A)(1),

qs — \/(%)2 — 4q1q3At
2q3

<0 - |(~ At should > 0).

27

Therefore,

Af = qq + \/(Q4)2 4Q1Q3At
2q3

(IDqs>0

Similar to (A)(I1),

- \/(%)2 —4q1q3At
2q3

< 0 - |(~ At should > 0).

Therefore,

= qq + \/(Q4)2 —4q,q3At
2q3

(D) g3 > 0,q; > 0 (hence q, > 0)

qq + \/(%)2 —4q1q3At

2q3
1 q1 QZ
BT — 2q1q3At + 2q,q3At At
2 t+ 243 T 245 2q (\/(‘h +q2)? q193At + 2q,93At + (q3At)?)
2 293 293 2q3
1 q1 qz2
=S At+o— —|(qsAt —
2 t+ 23 T 243 + |(C13 (91 + q2))|
1 1 . 9z
> —-At+— — At —
-2 + 2q3 t oo 2q3 + (q3 (ql + qz))

= At - |(~ At should < At).

Therefore,

- \/(CM)Z —4q,q3At

~ s
At =
2q3

Next, we discuss how to compute [u¢] ;.
JC 1.

First, we differentiate the jump condition u(¢*,t) — u(€~,t) = t(t) to get

28

da
ux(z+:t) a + ut(z+lt) - (ux(z) + ut(z)> =7

From this we can find that

d
[= - = [ug]w. (48)
(a) En < En+1

By Taylor expansion, we have
u(xf',f) = u' + 0(At),
u(xj‘,f) = u]-n+1 + 0(AY),
ux(x]-+,f) = uy; + 0(Ab),
u(x7,%) = un+1 + 0O(At).
We use these quantities to approximate [uy|w
[uxlw ~ (ug;—ugi) w(E uf ol ugf?, ug;
Combining the above approximation and (48), we can estimate [u]
[ude = —[ud ®
dr p n n+1 n n+1
z—a(t)+(uX’])w(tu Uy) X]
dr p n+1 n+1 n n+1
=—a(t)—(u —uX])w(tu iUy X] (49)
(b) En > En+1
Similarly, we can approximate [u,]w by
[ug]w =~ (u)r(l_;r1 - u;‘,]-)w(f, u]-“,u]-“H, u;‘,j,u;‘,;’l ,

and get an estimation of [u.] ¢

29

. dt . -
[ucle =] ® ~ - ©® - (ugr —ug)w(E uf', ud*t ug;, uptt), (50)

JC 2.
In this case, with the knowledge of ul', u™** and the solution on the interface, we

can get a simple estimation of [u] ¢

u™t—r® r@®-—ud
[ut]:'{ = tn+1 _ E - E —tn

+ 0(At). (51)
Note that the discussion above is still valid even if the interface crosses several
grid points during one time step. However, if we choose smaller time step (ex:At = h/2)
so that the interface crosses only one grid point during one time step, we will get a
smaller error constant.
Time step restriction
Since we use the Crank Nicholson scheme, we don't worry about the time step
restriction from finite difference discretization. However there is a restriction from
moving interface based on the classical stability theory:

At < min (h,

)
Since

aw_aw/
ot ot/

we have

At < min (h,

i)
ow/otl/)’

or in discrete form

30

At"
whtl _ yn

n

At"*1 = min <h, w

).
Numerical algorithm

Since we need to know the information at time level t"** in advance in order to
compute the time correction term, we use the predict-correct approach to solve this
problem. The local truncation errors are O(h?) at most grid points, but O(h) at two on

front grid points and those grid points where the interface crosses. So the global error is

second order accurate at all grid points. Below is the detailed process.

Algorithm 1

Choose a tolerance 6 (the meaning of & will be clear soon). Suppose we have obtained
all necessary quantities at the time t™, in other word, we have computed u{, &" and At™.
1.Find i such that x;, < &" <xj 41.

2. Compute (guy)y; and uy;.

n ,,+n ,,—n +n

3.Compute u™", u™", uy", uyg

Set &8*1 = £ + AtPw(t", B um, ut, ug ", up),

uft! = uf (initial guess).

4.Find i; such thatx;, <& <x; 44

n : n .n+l gn gn+l
5.Compute Cj; using uj’, uj; -, §", &7

If iy <i; compute C{; fori = iy +1,...,14,
If iy > i; compute C{; fori = i; +1, ..., 1o,
If ip =1i; There is no need to comput Cf;.

31

6. Use the following difference scheme

n+1 n
Ut —uj

A 1
ac Gt g (ufuy +uf) =5 ((Sux))n + (ut ') — 5 (1 +67),

to form a linear system and solve for u**?

7.Set un+1 un+1

8. Compute uj, ™, uf ", gyt uls (However, we still use to £2%! compute these

guantities). Set

At? _
Er21+1 — En +Tw(tn:5n;u_'n n)+ W(tn+1 En+1: - +1,uj|-,n+1 u ,n+1'u)-:,2n .

12 1,2 ’ VX2

9.If [T — g1 > 6

set En+1 — Er21+1,

n+1 _ .n+1
Uj; = Ujy -
Go back to 4.

else if [E4+1 — g0l < §

Accept ufy! and £8** as approximations at time level t"*?,

n+1 _ ,.n+1
Setuj " =uj;

En+1 — Eg+1'

At"

Wn+1 —wh

n

At™*1 = min (h,

)

w

Go to next time level.

32

Numerical examples

JC1.

Example 1.

ut = (SuX)X XE [Ol E) U (E) 1]1

dg _ (& wi — ewHub)
dt ug(E,t) — u (&, t)

with

t>0,

if x <
€= {El if x < 3(0) for some choice of ¢; and ¢,,

e, if x > &(t)

5T 7T
y Wy = —.,

Wi=7 4

The jump conditions used are
[u] =0,
[eug] (€, t) = —g;wycos(wy — WyE) exp(—g,wit) — &y wycos(w,§) exp(—g;wit).

The exact solution is

sin(w;x) exp(—g; w?t) x < &(b),
sin(w, — w,x) exp(—g,w3t) x > &(b).

u(x, t) = {
Since we assume the solution u is continuous across interface £(t), the interface &(t) can
be determined from the scalar equation:

sin(w; &) exp(—g,w?t) = sin(w, — w,&) exp(—g,w5t).

Figure 3 shows how the interface crosses the grid as (&4, €,) change.

@31
(@21
1.8,1)

@y

r r i r]
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
X-axis

Figure 3. Moving interface £(t), 0 < t < 0.3, from left to right, (g4, &,) =(3,1),(2,1),(1.8,1),(1,1).

33

Figure 4 shows the computed solution for M = 80. Figure 5 shows the corresponding
absolute error plot for M = 80 (recall that M is the number of the grid points). We see
that the error in the solution in u is relatively large around the interface compared to

other grid points.

(51,52):(2,1) t=0.1
0035 T T T T T T T T T

0.03

0.025

0.02

0.015

computed solution u

0.01

0.005

O r r r r r r r r r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure4. The computed solution u(x, t) at t = 0.1 with (g4, &,) =(2,1) and M = 80.

(€,£)=@1) t=0.1

absolute error

0 01 0.2 03 04 05 06 07 08 0.9 1
X-axis

Figure 5. The absolute error at t=0.1 with (g,,£,) = (2,1) and M = 80.

Table 1 shows the results of the grid refinement analysis, where |Eg| is the error
between £(t) and the computed interface at the final time t.

34

Table 1. Numerical results for example 1.

t=0.1
(e1,€;) = (3,1) (e1,82) = (2,1)
M max-norm error | order |Ee| order | max-normerror | order |Ee] order
40 3.029 x 1072 5.342 x 1072 1.359 x 1072 1.486 x 1073
80 7.131x 1073 2.087 1.503 x 1072 | 1.830 4.048 x 1073 1.747 | 4578 x 10~* | 1.699

160 1.899x 1073 | 1.909 | 3.348 x 1073 | 2.167 1.092x 1073 | 1.890 | 1.006 x 10~* | 2.186

320 4942 x 107* 1.942 | 7.970x 10™* | 2.071 2.818 x 107 1.954 | 2343 x107° | 2.102

640 1257 x10™* | 1.977 | 1.941x 10™* | 2.038 7.178 X 1075 1973 | 5.668 x 107 | 2.042

1280 3.168 x 107> 1.988 | 4.800x 107> | 2.016 1.809 x 107> 1.988 | 1.391x107° | 2.032

t=0.1
(€1, €;) = (1.8,1) (e1,82) = (L1)
M max-norm error | order |Ee| order | max-normerror | order |E¢| order
40 1.468 x 1072 6.283 x 1073 1.801 x 1072 1.703 x 1072
80 3.970 x 1073 1.887 | 1.624x 1073 | 1.952 4387 x 1073 2.038 | 3.633x 1073 | 2.229

160 1.059 x 1073 1.906 | 3.543x107* | 2.197 1.124 x 1073 1.965 | 8.665x107* | 2.068

320 2.722 x 107* 1.960 | 8.248 x 1075 | 2.103 2.884 x 107* 1.963 | 2.126 x 107* | 2.027

640 6.910 x 1075 | 1.978 | 1.990 x 1075 | 2.051 7.391x 1075 | 1.964 | 5310x 1075 | 2.001

1280 1.741 x 1075 1.989 | 4.887 x 107¢ | 2.785 1.842 x 1073 | 2.005 | 1.307 x 107> | 2.023

As you can see, the faster the interface moves, the larger the |Eg| becomes. In fact, for
(e1,€2) =(1,1) and (g4, &5) =(3,1), the interface crosses two grid points during the first
few time steps.

Example 2.[11](nonlinear case)
U + Uuy = (SuX)X - f(X' t) X € [0' E) V) (E' 1]!

dg (e,wf — e;wHu(gb)

P t>0,
dt ux(€, 0 —ux(E, 1)
with

xt) =1 2 W sin(2wx) exp(—2ewit) x < §(1),
f(x,t) =

— 2wy sin(2w, — 2w;x) exp(=26,wjt) x = §(0).

_(a ifx<ED _ s 7w

€= {82 if x > £(t) for some choice of ¢, and &, , wy = Wy =

The jump conditions used are

35

[u]l =0, [euy] (& t) = —g,wpcos(wy — w,8) exp(—e,wit) — £;w, cos(w,§) exp(—g; wit).
The exact solution is

sin(w;x) exp(—g;w?t) x < &(b),
sin(w, — w,x) exp(—e, w3t) x > &(b).

u(x, t) = {
Since we assume the solution u is continuous across interface £(t), the interface £(t) can
be determined from the scalar equation:

sin(w;&) exp(—g;w?t) = sin(w, — w,&) exp(—e,w3t).

Basically, this example is similar to example 1, except that we add a nonlinear term and

a forcing term.

(51,62)=(3,1) t=0.1

0.03

0.025

0.02

0.015

computed solution u

0.01

0.005

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x-axis

Figure 6. The computed solution u(x, t) at t = 0.1 with (¢;,€,) = (3,1) and M = 80.

(al,a2)>=@3,1) t=0.1

absolute error

0 01 02 03 04 05 06 07 08 09 1
X-axis

Figure 7. The absolute error at t = 0.1 with (g4, &,) =(3,1) an M = 80.

36

Table 2. Numerical results for example 2.

t=0.1
(e1,82) = (31 (e1,82) = (21)
M max-norm error | order |Ee| order | max-normerror | order |Ee] order
40 3.027 x 1072 5.340 x 1072 1.355 x 1072 1.487 x 1073
80 7.130 x 1073 2.086 1.497 x 1072 | 1.835 4.030 x 1073 1.749 | 4.547 x 10~* | 1.709
160 1.899 x 1073 1.909 3.333x 1073 | 2.167 1.092 x 1073 1.884 | 1.003 x 10~* | 2.181
320 4.942 x 107* 1.942 7.934 x 107* | 2.071 2.812 x 1074 1.957 2.330 x 1075 | 2.106
640 1.257 x 107* 1.975 1.933 x 107* | 2.037 7.169 x 1075 1.972 | 5.644 x 107% | 2.046
1280 3.167 x 1075 1.989 4779 x 1075 | 2.016 1.806 x 105 1.989 1.385x 107% | 2.027
t=0.1
(e1,82) = (1.8,1) (e1,82) = (LD
M max-norm error | order |E§| order | max-norm error | order |E§| order
40 1.464 x 1072 6.305 x 1073 1.792 x 1072 1.710 x 1072
80 3.954x107% | 1.889 | 1.616x 1073 | 1.964 | 4.385x 1073 | 2.031 | 3.637 x 1073 | 2.233
160 1.056 x 1073 1.905 3.528 x 10™* | 2.196 1.123 x 1073 1.965 8.677 x 10™* | 2.068
320 2.716 x 10 1.959 8.214 x 1075 | 2.103 2.889 x 1074 1.959 2.128 x 10™* | 2.028
640 6.897 x 107> | 1.977 | 1.982x 107> | 2.051 | 7.412x 1075 | 1.963 | 5.314 x 1075 | 2.002
1280 1.738 x 1075 | 1.989 4.868 x 107% | 2.026 1.846 x 1075 2.006 | 1.308 x 107> | 2.022
JC 2.

Example 1.[11]

This is a classical Stefan problem of tracking a freezing front of ice and water.

k
Uy = Euxx
gk
dt o

Here, C = cp and 6 = Lp, where kis the heat conductivity,

uX(E t) - _ux(E+ t)

€[0,9) U (§1],

t >ty = 0.5.

the density and L is the latent heat. The following thermal properties are used:

k, = 2.22,k, = 0.556,C, = 1.762,C, = 4.226,c = 338,

and

37

cis the specific heat ,pis

_(k if x <&(b),
k‘&; if x = &(t),

_(C if x < &(t),
C_&i if x > £(v),

The interface condition used is

The exact solution is

(v {1 - SLG/2D M} x <30,
u(x,t) = | {1 erfc (X/Z\/Kzt)} > §(1)
" e \A/evien) X '

LU erfe(fia/i)

£ = 2/t

where
u*=-20,uy =10,k; = %,erf(x) is the error function and ¢ is the root of the equation:

K1¢2

e_q)z kz\/K_l qu_ K2 (I)O'\/E

+ + =
erfg k1\/K_2u*erfc(q)w/K1/K2) Cyu

The value of ¢ is 0.2054269...

1 3 T T T 3 3 3

0.95-

0.9

0.85-

0.8

t-axis
©
)
ol
T

0.7

0.65

0.6

05 r r r r r r r
0.1 0.2 0.3 0.4 0.5 0.6 0.7

X-axis

Figure 8. Moving interface £(t), 0.5 <t < 1.

38

computed solution u

_20 r r r r r r r r r
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x-axis

Figure 9. The computed solution u(x, t) att = 1 with M = 80.

absolute error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 10. The absolute error att = 1 and M = 80.

Table 3. Numerical results for example 1.

t=1

M max-norm error | order |Ee| order

40 2992 x 107* 4.632 x 107

80 7.688 X 105 1.960 | 1.192x107% | 1.958

160 1.955 x 1075 1.975 | 3.302x 1077 | 1.852

320 4949 x 107 1.982 | 8549 x 1078 | 1.950

640 1.235x 107° 2.003 | 2187 x 1078 | 1.967

1280 3.110 x 1077 1.990 | 5318x107° | 2.040

39

Example 2.

We retest example 1 in JC 1 and use the interface condition:

u(g t) = sin(w;8) exp(—g;wit).

(sl,e2)= (1,1) and t=0.1

computed solution u

0.06

0.04

0.02

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

Figure 11. The computed solution u(x, t) at t = 0.1 with (g4, ¢,) = (1,1) and M = 80.

-4 (51,52)=(1,1) and t=0.1

absolute error

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X-axis

Figure 12. The absolute error at t = 0.1 with (g4, £,) = (1,1) and M = 80.

40

Table 4. Numerical results for example 2.

t=0.1
(e1,€;) = (3,1) (e1,82) = (2,1)
M max-norm error | order |E¢| order | max-normerror | order |Ee| order
40 4251 x 1073 2.551 x 1072 1.057 x 1073 1.063 x 1073
80 5.567 x 107 2.933 3.618 x 1073 | 2.818 4176 x 107* | 1.340 1.954 X 10™* | 2.446

160 1903 x 10™* | 1.549 | 8.516x 10™* | 2.087 1.249 x 10™* | 1.741 | 4.466 x 107> | 2.129

320 5114 x 1075 | 1.896 | 2.062 x 107* | 2.046 3.412x 1075 | 1.872 | 1.074x 1075 | 2.056

640 1.366 x 107° 1.905 | 5.287 x 1075 | 1.964 8.908 x 107 | 1.937 | 2.645x 1076 | 2.022

1280 3.498 x 107° 1965 | 1.317 x 1075 | 2.005 2.276 X 107° 1.969 | 6.546 x 1077 | 2.015

t=0.1
(g1, 82) = (1.81) (e1,82) = (L1)
M max-norm error | order |E§| order | max-normerror | order |E§| order
40 1.552 x 1073 3.531x 1073 2.609 x 1073 2.404 x 1073
80 5476 x 1074 1.503 7.088 x 10™* | 2.317 6.923 x 107 1914 | 6.150 x 10~* | 1.967
160 1.582 x 107* 1.791 1.606 X 10™* | 2.142 1.813 x 107* 1.933 1.643 x 107* | 1.904

320 4.253 x 1075 1.895 | 3.893x 107° | 2.045 4.625 x 1075 1971 | 4119x 1075 | 1.996

640 1.102x 105 | 1.948 | 9.542x107° | 2.029 1.168x 1075 | 1.985 | 1.023x 1075 | 2.010

1280 2.806 x 1076 | 1.974 | 2.367 x 107% | 2.011 2.936x 107 | 1.992 | 2.583x107° | 1.986

Table 5 shows the results of the grid refinement analysis using (34) and (35) (instead of

using (36) and (37)) to compute the derivatives. As you can see, some Instability occurs.

Table 5. Numerical results for example 2

t=0.1
(e1,€2) = (3,1) (e1,82) = (2,1)
M | max-normerror | order |E¢| order | max-normerror | order |Ee| order
40 ERROR ERROR 1.041x 1073 1.426 x 1073
80 6.229 x 107* 3.509 x 1073 4159 x 107* 1.324 | 2.055x107* | 2.795

160 1.943 x 107* 1.681 | 8564 x 107* | 2.035 1.247 x 107* 1.738 | 4548 x 1075 | 2.176

320 5.176 x 1075 1.908 | 2.086x 10~* | 2.038 3.406 X 107> 1.872 | 1.093 x 1075 | 2.057

640 1.396 x 107° 1.891 | 5373 x 1075 | 1.957 8.893x107% | 1.937 | 2.705x107% | 2.015

1280 3.566 x 107 1.967 | 1.341x 107> | 2.002 2.272x107° 1.969 | 6.693 x 1077 | 2.015

41

(e1,€;) = (1.8,1) (e1,82) = (L1)
M | max-normerror | order |Ee| order | max-normerror | order |E¢| order
40 1.565 x 1073 3.585 x 1073 ERROR ERROR
80 5472 x 107 1.516 | 7.236 x 10™* | 2.309 ERROR ERROR
160 1.581 x 107* 1.791 | 1.623 x107* | 2.157 1.783 x 107* 1.713 x 107
320 4252 x 1075 1.895 | 3.973 x 1075 | 2.030 ERROR ERROR
640 | 1.102x1075 | 1.948 | 9.771x107¢ | 2.024 | 1.164x107° 1.068 x 107°
1280 2.805 x 107° 1.974 | 2426 x107% | 2.010 2.931x107° 1.990 | 2.702x107° | 1.983
Modification:

We use the predict-correct approach to solve the moving interface problems. The

numerical results confirm that our method converges to the exact solution with

second-order accuracy. However, this method has two defects when we want to

generalize it into higher dimensional moving interface problems.

1. it’s time consuming to solve an implicit system iteratively in each time step.

2. it’s hard to generalize the idea of (46) of finding grid-crossing time t to higher

dimensional moving interface problems.

In order to improve the disadvantages mentioned above, we make the following

modifications. First, assume the equation is linear. i.e. A = 0.

1. Instead of using predict-correct approach, we use the Adams-Bashforth scheme to

approximate the interface location. That is,

At
En+1 — En + ?(Bwn _ Wn—l), withw™1 2 w9,

(52)

2. Instead of using (47) to approximate the grid-crossing time t, we use the following

42

simpler method. Suppose there is a grid crossing at x; from time t* to time t"** at
time t, then by Taylor expansion we have

x; = &) = & + wh(f — t") + 0(At2).

So

n Xi— 8

t=t"+ o + 0(At?). (53)

3. Instead of using (49) and (50) (in JC 1) or (51) (in JC 2) to approximate [u] ¢, we use
the following modified method.

From (48), we have

dt

[ud = 5 — [uxdw.
So
dt _ - -) 1
E(t) — [u] (OW® ifgn > gt
[ut];f =

dt . o
_E(t) + [u](OW® ifgn+t > gn

ITE) — [ul(t)wh +0(AY) ifEn > g,
— dt (54)

—S® + [ud (W +0(AL) ifE > g
Combining (52), (53) and (54), we have the following simplified algorithm:

Algorithm 2

Suppose we have obtained all necessary quantities at the time t, in other word, we have
computed uj', &" and At™.

1.Find iy such that x;, < &" <xj 44,

+,n —,n +,n

n
yUg Uy

2.Compute u™",u

43

At" _ g M L
Set En+1 — En + T (3W(tn, En; un, u+,n’ uxln' u)—l(—,n) _ W(tn_l, En—l; u—,n—l’ u+,n—1’ uX,n 1’ u)—i—,n i))

(Adams-Bashforth scheme, w1 = w?)
3. Compute (guy)y;.

4.Find i; such that x;, <& <x; 44.

If iy <1i; compute C{; fori= iy +1,...,1,
5.Compute C; {If ig > i; compute Ciy fori= i +1,...,1i,,
If ip =1i; There is no need to comput C{}.

6. Use the following difference scheme

utt — g 1)
IA—tl B Cil'll = E ((Sux);i + (eux);;fl — E (fin + fin+1):

to form a linear system and solve for u*?

7. Accept ul*! and £"** as approximations at time level t"*1,

)

At"

n
Wn+1 —_ Wn w

At"1 = min (h,

Go to next time level.

Numerical results

Table 6. Numerical results for example 1 in JC 1.

t=0.1
(e1,82) = (3,1) (e1,82) = (2,1
M max-norm error | order |E¢| order | max-norm error | order |Ee| order
40 2.494 x 1072 4.407 x 1072 1.358 x 1072 1.313 x 1073
80 6.707 x 1073 1.895 1.397 x 1072 | 1.658 4,046 x 1073 1.747 | 4.404x107* | 1.576
160 1.792 x 1073 1.904 3.123x 1073 | 2.161 1.092 x 1073 1.890 9.931 x 1075 | 2.149
320 4.624x107* | 1.954 | 7.483 x107* | 2.061 2.818 x 107* 1.954 | 2327 x 1075 | 2.094
640 1.174 x 107* 1.978 1.821x 107* | 2.039 7.178 x 1075 1973 5.641 x 1076 | 2.044
1280 2.958 x 1075 1.989 | 4.499 x 1075 | 2.017 1.809 x 107> 1.988 | 1.385x107% | 2.026

44

t=0.1

(e1,82) = (1.8,1) (e1,82) = (1,1)
M max-norm error | order |Ee| order | max-normerror | order |E¢| order
40 1.456 x 1072 5.762 x 1073 1.343 x 1072 1.182 x 1072
80 3.961 x 1073 1.878 1.578 x 1073 | 1.869 3.746 x 1073 1.842 2.661 x 1073 | 2.151
160 1.053 x 1073 1911 | 3.511x107* | 2.168 9.819 x 107* 1932 | 6.458 x 107* | 2.043
320 2.716 x 107 1.955 8.250 x 1075 | 2.089 2.450 x 107* 2.003 1.517 x 10™* | 2.090
640 6.900x 1075 | 1.977 | 1.995x 107> | 2.048 | 6.152x 107> | 1.994 | 3.712x 1075 | 2.031
1280 1.737 x 1073 1.990 | 4.903x 107® | 2.025 1.540 x 107> 1.998 | 9.158 x 107 | 2.019

Table 7. Numerical results for example 1 in JC 2.
t=1

M max-norm error | order |Ee| order

40 9.417 x 1074 2.264 x 1075

80 2.052 x 107* 2.198 5.232x 107° 2.113

160 5.279 x 1075 1.956 1.282x 107¢ 2.029

320 1.346 x 1075 1.972 3.198 x 1077 2.003

640 3.427 x 107° 1974 7.934 x 1078 2.011

1280 8.374x 1077 2.033 1.987 x 1078 1.998

Table 8. Numerical results for example 2 in JC 2.
t=0.1
(g1, 82) = (31) (e1,82) = (2,1)

M max-norm error | order |E§| order | max-normerror | order |E§| order
40 3.940 x 1073 2.023 x 1072 1.060 x 1073 7.578 x 10~*
80 9.034 x 1074 2.125 4209 x 1073 | 2.265 4174 x107% | 1.345 1.753 x 107* | 2.112
160 2317 x 107™* 1.963 | 1.013x 1073 | 2.055 1.248 x 1074 1.742 | 4.438x 107> | 1.982
320 6.335x 1075 | 1.871 | 2.536x 10™* | 1.998 3.409 x 1075 1.872 | 1.065 x 107> | 2.059
640 1.649 x 1075 1.942 6.333 x 1075 | 2.002 8.900 x 10 1.938 | 2.668 x107° | 1.997
1280 4219 x 107 1.967 | 1.584x 1075 | 1.999 2.274 x 1076 1969 | 6.588x 1077 | 2.018

45

t=0.1
(g1,82) = (1.8,1) (e1,82) = (L)
M max-norm error | order |Ee| order | max-norm error | order |E¢| order
40 1.549 x 1073 2.407 x 1073 2.836x 1073 3.080 x 1073
80 5.474 x 1074 1.501 6.182 x 107% | 1.961 6.885 x 1074 2.042 2.719 x 107% | 3.821
160 1.583 x 107* 1.790 1.551 x 10™* | 1.995 1.812 x 107* 1.926 1.988 x 10™* | 0.132
320 4253 x 1075 | 1.896 | 3.821x 1075 | 2.021 | 4.685x 107> | 1.952 | 6.088x 107> | 1.707
640 1.102 x 1073 1.948 9.464 x 107° | 2.013 1.214 x 1075 1.948 1.532x 1075 | 1.991
1280 2.806 x 107° 1.974 2.347 x 107° | 2.012 3.107 x 107° 1.966 3.884 x 107° | 1.980

If the equation is non-linear (i.e. A # 0), the above method doesn’t work because

we need to approximate the uf**ujf* term. In this situation, we still use predict-correct

approach. However we can use (53) and (54) to simplify our computation of the time

correction term.

Table 9. Numerical results for example 2 in JC 1.
t=0.1
(e1,82) = (31) (e1,82) = (21)
M max-norm error | order |E¢| order | max-norm error | order |Ee| order
40 2.948 x 1072 5.313 x 1072 1.355 x 1072 1.487 x 1073
80 7.036 x 1073 2.067 1.494 x 1072 | 1.830 4,030 x 1073 1.749 4547 x 10~ | 1.710
160 1.884 x 1073 1.901 3.309 x 1073 | 2.175 1.092 x 1073 1.884 1.003 x 10™* | 2.180
320 4905 x 1074 1.942 7.881 x 1074 | 2.070 2.812x 1074 1.957 2.330 x 1075 | 2.106
640 1.248 x 10~* 1.975 1.920 x 10™* | 2.037 7.169 x 1075 1972 5.644 x 107° | 2.046
1280 3.146 x 1075 1.988 4748 x 1075 | 2.016 1.806 x 1075 1.989 1.385x 107° | 2.027
t=0.1
(e1,82) = (1.8,1) (e1,82) = (L,1)
M max-norm error | order |E¢| order | max-normerror | order |Ee| order
40 1.453 x 1072 6.392 x 1073 1.544 x 1072 1.476 x 1072
80 3.949 x 1073 1.880 1.616 x 1073 | 1.984 4104 x 1073 1.912 3.325x 1073 | 2.150
160 1.051 x 1073 1.910 3.514 x 107% | 2.201 1.084 x 1073 1.921 8.331x 107* | 1.997
320 2.709 x 107 1.956 8.188 x 1075 | 2.102 2.718 x 107* 1.996 2.003 x 107* | 2.056
640 6.884 x 1075 1.976 1.976 x 1075 | 2.051 6.875 x 1075 1.983 4967 x 1075 | 2.012
1280 1.733 x 1073 1.990 4853 x107° | 2.026 1.722 x 1075 1.997 1.232x 1075 | 2.011

46

In summary, we apply the CIM to the one dimensional moving interface problems
using Crank-Nicholson scheme to solve the pde and prediction correction approach to
move the interface. We verify the method is second-order accurate. We also make some
modifications to make the computation and the generalization to higher dimension

easier.

47

Chapter 3

Coupling Interface Method in Two Dimensions

In this chapter we review the coupling interface method (CIM) in two dimensions
under Cartesian grid for solving interface problems [5]. It contains a first-order method
(CIM1) and a second-order method (CIM2).

Let [a, b] X [a, b] be our domain Q of consideration. Denote the interface in Q by I
Consider the elliptic interface problem V- (eVu) =fon Q. The elliptic coefficient
e(x,y) > 0 may have jumps across I'. We partition [a, b] into M + 1 subintervals evenly

and define

A

h 2 MT1’ (mesh size)
Xj £a+ih,yj£a+jh0<ij<M+ 1, (grid points)

First, we classify the grid points into 2 categories. Letyj,q/,;and vj;;1/, denote
the number of intersections of the interface I' and the grid segment [x;, Xj4+1) X
{;} and {xi} x [yj, yj+1), respectively. We assume yi 1/, <1 and yjj41/, < 1 for
alliand j. A grid point (x;,y;) is called an interior grid point if yit1/2; = Yij+1/2 = 0,
i.e. none of its four neighboring segments intersects I'. Otherwise, we call it an on-front

grid point. At an interior point (x;,y;), we approximate (euy)y;; and (suy)yi],by a

standard central finite difference scheme. Namely,

&i—1/2,Ui-1,j — (81—1/2,]' + Si+1/z,j)ui,j + €i+1/2,jUi+1,j
h2

(Eux)x,i,j = + O(hz)r (55)

48

() _ &j-1/2Uij-1 — (Si,j—l/z + Si.j+1/z)ui.j T Eij+1/2Uij+1
Yyij h2

+ 0(h?). (56)
At an on-front grid point (xi,y]-), we discuss the CIM1 and CIM2 below. In both
methods, we call the region where (x;,y;) is located the Q™ region, and the other region
the Q% region. Given an interface point p in the x-direction, the jump conditions we
know are [u], and [guy,],. Now, let n, = (n%,n)) and t, = (t§,) be the unit normal
and tangential vectors of I at p, respectively (Note that the directions ofn—pandgare
irrelevant). First, we try to decompose the jump datum [euy], into its tangential and
normal directions. Since

(Vu®), = ((Vui)p 'Tp)rp + ((Vui)p 'Q)Q

= (ud), (i n3) + (uE), (65, 5)

= () m + (u) 5 (w) nd + (u) 85),

therefore,
(),] [Cui),ms + (),
(uyi)p (uﬁ)png + (u.:—r)ptil; .

Hence, from the above formula, we can get

[eux]p = 8;(11;);) - Sﬁ(u;)p

e ((wpnd + (u)pty) — &5 ((up)pny + (Up)pth)
= (&5 (u)p — & (u)p)nf + (2f)y — &5 (We)p)th

= [eup]pnf + [euelpty

49

= [euplpnd + (gf uclp + (g — &) (up)p) LS. (57)
Similarly, given an interface point q in the y-direction, the jump conditions we know
are [u]q and [euy]4. And we have
[suy] sun]qn + (sq uelq + (sq ea)(u{)q)tz. (58)
where iy = (n%, n) and ty = (t%,t}) are the unit normal and tangential vectors of I
at q, respectively.

CiM1

We deal with (uy)itq/2, first. We apply the one dimensional formula (11) to the

x-direction to get

— = S [euy]
(Ugit1/2j = %((1 + Yiz1/2i(Pp — 1))D)(<i1/2)ui,j + Yit1/2j (+pf;[u]p - Bphh)> + 0(h),(59)

€p

D(+1/2)

where is the extension of (12) in the x-direction and the coefficients are defined

with respect to the intersection p. By (57) , we may rewrite (59) as

(ux)iil/z,j <(1 + Y1+1/2](pp - 1))D(+1/2)u1] + Y1+1/2] (hb (ut)ptx +](+1/2))) + O(h)' (60)

where

bp = —Bp(Py — Pp),
I(“/z) ¥p5[ul, — Bph <[: nlo n¥ + pp [uelp t’;,).
p

It remains to compute (ug). Since
(ut_)p = (Vu_)p ’ Q

= (upth + (u7), tps (61)

50

we approximate (ux), and (u;)p by the following formulas:

{(u;)p = (uy)it1/2 + O(h), (62)

(47) = (), ,, , +OCh.

Combining (60), (61) and (62), we have

2

(uy),, i = 1((1 +yl+1](pp - 1))D) w+y,, 1 <hb ((ux) 1+ (uy) 1ty>tx +]()>> + 0(h).
After some arrangements of the above equation, we get

1 i .)
H((1+Yii1/2'i(pp 1))D(1/2)‘111 +Y1+1/ZJ](1/2))

=(1- Yiil/z,ij(t)S)z) (Wir1/25 = (Visa/2i0pthtp) (W), ., ,, + OCh). (63)

Next, we consider (uy)ij+1/2' We apply the one dimensional formula (11) to the

y-direction to get

1 _ _ [euy]
(lly)i,jil/2 =4 (1 + Va2 (3 — D)DFPuis + vija1/2 <+§q+[u]q —Bah— q) +0(h), (64)

q

where D(+1/2)

is the extension of (12) in the y-direction and the coefficients are defined
with respect to the intersection q. Follow the similar procedure as in computing
(uy)i+1/2,, We have

((1 + Y1]+1/2(Pq - 1))D(+1/2)u1] + Y11+1/z](+1/2))

— - 2
~Yije1/2Dqthty (Uxdiz1 2 + (1 —Yij+1/2bq(ty)) (uy)i,].il/2 +0(h), (65)

where

51

bq = —Bq(P3 — Ba).
[Sun]q y

T((]il/Z) = Fpilulq - th(= M + F_Ja'[ut]qtg)
q

Combining (63) and (65), we can form a 2 by 2 linear system

_ 2 _
[1 = Yi+1/2,bp (t)p()) _Yiil/z,jbpt);()t; (Ux)it1/2;
_ — 2
_Vi.iil/qut)c(ltg 1- Yi.iil/zbq(tz) (uy)i,jil/z

h o)

1 <(1 + V25 (Pp = 1))5:(}1/2)111,1' + YiJ_r1/2,iTlgil/2)) [O(h)
- +
h = ~ —

<(1 +Yi.jil/2(Pc+1 - 1))D§/i1/2)ui.i + Yi,ji-l/z]éil/z))

Solving this linear system, we can get a first order approximation of (uy);44/,;and

(uy)i,]_ir1 - Finally, we approximate (euy)s,;; and (Euy)y,i,j by

€i—1/2,jUi-1j=(8ic1/2jF€i+1/2,)UijtEi+1/2, Uit

+ 0(h?) ifYit1/2j + Yie1/2j = 0,
(Eux)x,i,j = i h®) 1 : l : (66)
T ((ux)i+1/2,j - (ux)i—l/z,j) +0(1) if Yiy1/2j + Yic1/2j # 0.

€ij—1/2Uij—1—(Eij—1/2FEij+1/2)Uij+Eij+1/2Yij+1

+ 0(h?) ify;; + Yii—1/2 =0,
2 j+1/2 ij—1/2
(euy) - h (67)

yi] b ((Uy)i,].ﬂ/2 - (UY)i,j—l/z) +0(1) if Yijr1/2 + Yij-1/2 # 0.

CIM2

First, we classify the on-front grid points into normal and exceptional. We define the
interface orientation indicator s, ;) and sy ;) t0 be vit1/25 — Yi-1/2j and Yij41/2 —
Yij-1/2, respectively. A normal on-front grid point (x; y;) is defined to satisfy the
following conditions:
(@) Yis1/2j T Yi-1/2j =0or1

So sy ij) have three possible values: —1,0,1 and

Sx,(ij) = —1 < the only interface point in [x;_1,Xi+1) X {y;} is contained in [x;_1, %) X {y;}.

52

sxGj = 1 < the only interface point in [x;_,Xi41) X {y;} is contained in [x;, xi11) X {y;}.
sx(ij = 0 < there is no interface point in [x;_1, xi+1) X {y;}.
(A parallel argument applies to the y-direction)
(b) If sy iy = 21, thenyiyz/,5 = 0.
(A parallel argument applies to the y-direction)

() If sy j = %1, then

lf Sy,(i,j) = 0' then Yi—SX’(i'j),j+1/2 = Yi—SX’(i,]‘),]'—l/Z = 0'
if Sy.(ij) = 1, then Yi—Sx,(i,j)rj—l/Z =0,
if Sy,(ij) = —1, then Yi—SX,(i'j),]'+1/2 = 0.

(A parallel argument applies to the y-direction)
Condition (a) and (b) mean that we can apply the CIM2 to both x and y-directions.
Condition (c) allows us to approximate the cross derivatives by one-side interpolation
(its meaning will be clear soon). Figure 13 contains all 8 possible cases of a normal

on-front grid point.

|
\ y { ‘ Y P S
/ \ r.n ‘ (@)
(Sx,Sy)= (1,0) (Sx,Sy)= (-1,0) (Sx,Sy)= (0,1) (Sx,Sy)= (0,-1)
[@] [
N - R / \ St
(@) \j .‘/ (@) !
) \ |
(Sx,8y)=(1,1) (Sx,8y)= (-1,1) (Sx,8y)= (1,-1) (Sx,8y)= (-1,-1)

Figure 13. 8 possible cases of a normal on-front grid point. Bullet: grid point. Curve: interface. No

interface crosses through straight lines
53

Given a normal on-front grid point (xi,yj), our purpose is to derive a first order

approximation of (uy,);; and (uyy)ij. We deal with (uy);; first. For simplicity, we
drop the sub-index (i, j) froms, ;). We apply the one dimensional formula (23) to the

x-direction to get

[euy]p
é13

1
(ux)ij = h—2<LEf”ui,,- ~ IsxI(1 +2Bp)pp[ulp = sx(Bp + Bp)h >+ O(h*™=d), (68)
where Lgf") is the extension of (22) in the x-direction and the coefficients are defined
with respect to the intersection p. By (57) , we may rewrite (68) as

1
(Wedij = 77 (Lu + hsebp (UD)pts +Jp) + 0(h2 1), (69)

where
b, = —(Bp + B3) (0} —pp),
[eun]p

Jp =— <|Sx|(1 + zﬁp)p;[u]p + Sx(Bp + G[Z))h< = n);() + p;[ut]pt)ﬁ>>-
p

It remains to compute (ug),. Since
(u)p = (Vu)p -ty
= (up)pth + (u;)pty, (70)
we need to approximate (ug), and (u;,)p. First, we approximate (uy)p.
Assume s, = 1. By (17) we may compute (uy), as

(_ _ Ujj — Uj—1,j 1 2
ux)p = T + E + (Xp h(uxx)i,]- + O(h)

By a similar derivation for the case s, = —1 we can get a unified formula:

1 1
(U)p = = Dty + 5 (5 + 6p | Bt + OCh?), (71)

54

where Dy s yu;; is defined as

1
E(U(X +h,y)—u(x—hy)) ifsy=0,

u(x,y) —u(x—hy) ifsy, =1,
u(x+h,y) —u(x,y) ifsy = —1.

Dy (s xy) =

Next, we approximate (u;)p. By Taylor expansion we have
(u;)p = (u}’)i,]- + (U;X)i,]. (Xp - Xi) + O(hz)
= (uy)i,j + sxaph(u;x)i,]_ + 0(h?).

By one-side interpolation we know

(u}’)i’j - (UY)i_SX,j
o + 0(h),

(u}_’x)i_j = Sx

SO

(u>7)p =(1+ ap)(uy)i,j - ocp(uy)i_SX,j + 0(h?).

It suffices to approximate (UY)ij and (uy).__ , - We separate it into three cases.

(A) sy =%1s,=0

_ Uij+1 — Ujj—1
(wy),, = L5+ 0(h2),

_ Ui—syj+1 — Ui—syj—1 2
(uy)i_SXJ_ = h + 0(h?).

So from (72) we get

(u;)p = (1+ ap) (ui,j+1 - ui,j—l) . (ui—sx,j+1 - ui—sx,j—l) +0(h?).

2h 2h

(B) sy =11s,=1

|
(UY)L]- = % + E (UYY)i’jh + O(hz)’

55

(72)

(73)

Ujmsyj = Uimsyjo1 1
(uy), s = — h1 = +3 (), b+ O,

So from (72) we get

_ Ujj — Ujj—1 Uj—s,j = Uj—s j—1\ 1
(05), = (14 op) () = o (F2=29) 45 (uyy), b + OB,

(C) sy =215y, =-1

(y)ll u”%__(uyy) h + 0(h?),

(uy). = Uj— SX]+1h Ui Sxi) __(uyy)l .]h+ O(hz)

1=Sx,)

So from (72) we get

Ujizq — U Uj—s, j+1 — Ui—s,j 1
(uy) = (1+ay) (u) ap(i=5x) s IS])_E(uyy)i,th“O(hz)'

Combining (73), (74) and (75), we can derive a unified formula for (u;)p:

1 1 h
(uy), = (14 0p) £ Dy s, yuij = p Dy 5,y Uisij + 5y 5 (Uyy), + 00,

where Dy,(sy)u(x’ y) is defined as
1
(Qe +h) —u(xy—h) ifs, =0,
Dy,(sy)u(x, y) = { u(x,y) —u(x,y —h) ifs, =1,

k u(x,y +h) —uxy) ifs, = —1.
Combining (70), (71) and (76), we can write (u), as
1 X
(ut)p (%,(sx) Ui,j + Sy (2 + ap) h(uxx)i,j) tp
1 1 h y 5
+ (1 + O(p) h Dy,(sy)ui_j — 0p h Dy,(sy)ui—Sx.i + Syz (uyy)i,]_ ty, + 0(h?)
1 1 X 1 y 2
= HTXui,j +h (sx (E + ap) (ug)ijtp + ESY(HYY)i,jtP) + 0(h?),

where

TyUij 2 Dy (s, Ui th + ((1 + op) Dy 5) Ui — apr,(sy)ui—sx.i) -
56

(74)

(75)

(76)

(77)

Finally, combining (69) and (77), we derive

1 1 1 1
(Udij = 15 L(SX)UIJ +hsybp (= Teug; +h(sy (5 + 0) (it +55y(uyy)) |t 41, |+ 0(h?71%),
h h 2 2 ij

After some arrangements of the above equation, we get

D“l,_;

(L(SX)u” + sxbp Tyxu; 5ty +]p)

(— |5yl (1 + ocp> by(t5)) (uxe)ij + (_71 sxsybptptg) (uyy)i,j + o(n?Isd), (78)

Next, we consider (uyy)i]_. We apply the one dimensional formula (23) to the

y-direction to get

) [euy |
(uyy),, = h2<ﬁ gy = [y (1 + 2B4)pg [ulg — 5y(Bq + B ——2 | + 0 (h7Il), (79)
q

where Lg,sy) is the extension of (22) in the y-direction and the coefficients are defined

with respect to the intersection q. Follow the similar procedure as in computing (uyy);;,
we have

(), = 1 (L5 g + sy b gt +) + 0 (2T, (80)

where
bq = —(Bq +B2) (P — 7).
== (151004 2t 50+ 00 (220)

With the following estimation of (u;)q and (uy)q
1
(uy) h Dy (s,)ij + Sy (E + O‘q) h(uyy)i,j +0(h?),

57

i 1 1 h ,
(ux)g = (1+ aq)H Dy (s,)Uij — %q o Dy (s,0Uij-s, T Sx3 (ux)ij + 0(h?),

we can compute (ug)q as
(u)q = (ux)qty + (u§)qtg
1 1 y 1 X)

= HTyui'j +h (sy (E + aq> (uyy)i']_tq + > sx(uxx)i_jtq> + 0(h%), (81)
where

a y
Tyu;; Dy,(sy)ui.jtq + ((1 + aq)DX,(sX)ui,j — anX,(SX)ui,j—Sy) t)((l'
Finally, combining (80) and (81), after some arrangements, we can get
1/ (s
by (L(Y)ui_j + Syquyui_]'tE; +]q)

hz \'Y

-1 1
= (Srsesybatith) ey + (1= Isyl (5 +) ba(£)°) (), + O (027 I1). (82)

Combining (78) and (82), we can form a 2 by 2 linear system

Lol (G ap) b)) Shssbpte][0
?sxsybqtﬁtg 1—|sy] (% + aq) bq(tsq')2 (uyy)i,j
1 L5us; + subp Tyt +J, | [O(h271sx)
" h? L_E,SY)ui,j + s,bTyut! + g * O(hZ—ISyI)]'

Solving this linear system, we can get a first order approximation of (uyy);;and

(uyy)i']_. Finally we approximate (euy)y; and (suy)y’i']_by

€i—1/2,jUi—1j—(Eim1/2F€it1/2,)Uij+Eit1/2,jUis1] +0(h?) if s =0
(wdyij =1 h? - (83)
F (DX'(SX)Si'ijr(SX)ui_]‘ + Si']‘hz (uXX)i,j) + O(h) if Sx = il
€1 j—1/2Uij—1— (& j—1/2F€ij+1/2)Uij+Eij+1/2 U0 j+1 + 0(h?) s =0
(EuY)yi]' = 1 h® 2 Y , (84)
" W (Dy,(sy)si,j Dy‘(sy)ui,j + Ei’jh (uyy)i,j) + 0(h) if Sy = +1.

58

In summary, at an interior point we adopt a standard central finite difference
scheme, which produces 0(h?) local truncation error. At an exceptional on-front grid
point, the CIM1 produces 0(1) local truncation error and at a normal on-front grid point,
the CIM2 produces O(h) local truncation error. Since the number of exceptional points
is0(1), so the global error is O(h?). Refer to [5] for numerical examples and more

information about the CIM (ex: non-singularity of the coupling matrix).

59

Chapter 4
Application to Two Dimensional Diffusion

Equations with Fixed Interface

In this chapter we apply the coupling interface method to the two dimensional
diffusion equations with fixed interface. Let [a,b] X [a,b] be our domain Q of

consideration. Denote the interface in Q by I'. The model problem we considered is the

following:
du
Fri V- (eVu) — f(x,y,t) (x,y) € Q\T. (85)

The coefficient e(x,y,t) > 0 and the source term f(x, y, t) are smooth functions in Q \
I" but may have discontinuity across the interface I'. This is a parabolic problem and the
solution in each domain is smooth. Recall that given an on-front grid point (x;,y;), we
call the region where (xi, y]-) is situated the Q™ region, whereas the other the Q* region.
Across the interface, there are two kinds of jump conditions considered.
JC 1. Jump conditions at the interface of the form
[u](T,t) 2 ut —u™ = 1([, 1), (86)
[eu,](T,t) 2 etu,t —e7u,” = o(T,0), (87)
are given. As a model problem consider heat conduction with a heat source

applied only along the interface I'. Then f(x, y, t) can be written as

fxy,t) = [C(s, 08(x — X(s))8(y — Y(s))ds.
60

From the differential equation we know that across I, the jJump in temperature is
zero. But there is a jump in the normal derivative which equals the strength of
the source C(s, t).
JC 2. The solution on the interface
u(l,t) =r(T, 1), (88)
is given.
Numerical Method

We partition [a, b] into M + 1 subintervals evenly and define

A

h 2 MT1’ (mesh size)
Xj £a+ih,yj£a+jh0<ij<M+ 1, (grid points)
We use At as the temporal step size in time and assume the ratio At/h is a constant (ex:

equals to 1). Using the Crank-Nicholson scheme, the semi-discrete difference scheme

for (85) can be written in the following form:

u?iﬂ _ u{}i 1 n nt1y 4 L n n+1 1, 0 i
e > ((Sux)x,i,j + (Sux)x,i,j) += ((Euy)y,i,j + (SUY)y,i,j) —3 (fi.j + fi,j , (89)

At 2
where (euy)};; and (auy):ij are (eu,), and (suy)y at (x;,y;, t"), respectively.
Spatial discretization

Since the discussion here doesn't concern with time, we will drop t or the

superscript n for simplicity. At an interior point (xi,y]-), a standard central finite

difference scheme is adopted. Namely,

61

&i-1/2jUi-1j = (8io1/2 + Eiv1/2,))Uij + Eiv1/2,Uise,

(Sux)x,i,j = h2 + O(hz):
& i-1/2Uij-1 — (Eij—1/2 T &ij Uj; + & U j
() = ij—1/24ij-1 (ij—1/2 1,]+1/2) ij ij+1/24ij+1 n O(hz).
Yyij h?

At an on-front grid point (Xi,yj), we study the following two kinds of jump conditions
to compute (guy)y,;; and (Euy)y,i,j'
JC 1L
At a normal on-front gird point (xi,y]-), we use the CIM2 to approximate
(euy)y,; and (qu)y,i,j' At an exceptional on-front gird point (x;,y;), we use the CIM1
to approximate (euy)y;; and (Euy)y,i,j'
JC 2.
In this case, we can't directly apply the CIM since we don't know the value of [u,].
So, we follow the idea of JC 2 in chapter 2 (1-D moving interface problems). First we
consider the x-direction; we separate it into three parts.
(A) Yis1/2j t Yie1/2j = 2
Denote the interface point in [x;_1,%;) X {y;} and [xi,xi41) X {y;} by p- =
(%p_,yp_) and p, = (xp,,¥p,), respectively. Then
(Ux)it1/2j = % + 0(h),

px — %

and we approximate (guy)y;; by
Si,j
(euy)yij = T ((W)i+1/2j — (Uyiz1/2;) + O(D).

(B) Yis1/2j * Yi-1/2; =1
62

Given (x4,), (X5,y), (x3,¥) and (x,y) four points. Define
D>2<U(X1»X2:X3' (x, Y)) 2 dyxu(xy,y) + daxu(xy,y) + d3xu(xs,y)

where

2 2

(x1 —X2)(xq — X3) ,dz,x B (x2 —x1)(x2 — X3) '

dix = dsx = (90)

(x3 —x1) (X3 — X))’
Then

(uxx)ij = D3u (Xi—sX:Xi:Xp: (%1, Yj)) + 0(h),

(Since the interface is fixed, we don’t need to make any adjustment like we did in
chapter 2), where x,, is the x-component of the interface point p and we approximate

(euy)yij by

1
(euy)xij = oz (Dy(s,)€i,i Dx (s, Wi + €1h? (Ux)ij) + OCh).

(C) Yit1/2j + Yi-1/2 =0

We approximate (euy)y;; by

€i—1/2,jUi-1,j — (51—1/2,]' + Ei+1/z,j)ui,j + €i+1/2,jUi+1,j
(euy)yxij = Iz + 0(h?).

A parallel argument applies to the y-direction.

Numerical examples

In the test problems below, the computational domain is Q = [—1,1] x [—1,1], and the

interface I is the circle x? + y? = (1/2)2.

JC1.

Example 1. (update from [5])

63

NN

VI Al
—_ =
Y S
=
o o
L L
v O
&g
rl
+
Al
—
———
I
)
-
>
>
N
w

<
=

f
ifr

e + (8r? + 4)e(-29

9+ (8r2 + 4)e(2Y
(0.5*/2+0.5%) " 052)
10
The jump conditions are chosen from the following exact solution:

r2e(-
)

r*/2+r2+0.1log(2r)
10

ol

f(x,y,t)

X% + y?.

where r

vi Al

) e(_t)

rze(_t)

) (0.5*/2+0.52) +0.52
10

10

(r4/2 +r2+0.1log(2r)

8

u(x,y,t)

M=40

=1

t

40

0.25 "

\ \
n wn
1_ =] <
o o
n uonnjos pandwod

X-axis

y-axis

= 40.

= 1withM

t)att

Figure 14. The computed solution u(x, y,

=1 M=40

t

‘ -
AR o TR

| \ %ﬁw&%ﬂ@&hfwﬁﬁ
\ \ T R SRR R
w11
,, , R R R

, R
\ \ —’»”o”fo’"f”’!’
A R 1 L

04

20

Joud 8Injosqe

y-axis

X-axis

= 40.

Figure 15. The absolute erroratt = 1 and M

64

Table 10. Numerical results for example 1.

t=1
M Max-norm error order
20 5.588 x 10~*
40 9.884 x 1075 2.499
80 1.899 x 107> 2.380
160 4.203 x 10~ 2.176
Example 2.
1
e®Y) sin(t) ifr < >
e(x,y,t) = 1
(x? + y?) cos(t) ifr > >
1
—10sin?(t)e™(sin(10xy) + 10cos(10xy))(x? + y?) — cos(10xy)cos(t) ifr < >
fxy,t) =
1
40xycos?(t) cos(10xy) — 100(x? + y2)?cos?(t) sin(10xy) + sin(10xy)sin(t) ifr > >

The jump conditions are chosen from the following exact solution:

1
cos(10xy)sin(t) ifr<—,
— 2
u(x,y,t) = 1
sin(10xy)cos(t) ifr > >
t=1 M=40

computed solution u

y-axis

Figure 16. The computed solution u(x,y,t) att = 1 with M = 40.

65

absolute error

y-axis

Figure 17. The absolute error at t = 1 and M = 40.

Table 11. Numerical results for example 2.

t=1
M Max-norm error order
20 3.382 x 1072
40 7.161 x 1073 2.240
80 1.828 x 1073 1.970
160 4,652 x 107* 1.974

JC 2.
Example 1.(update from [5])
We retest example 1 in JC 1 and use the interface condition

1
u(r=1/2,t) = Ze(‘t).

t=1 M=40

I
N
a

0.15

o
N
A /Z'

computed solution

40

20

y-axis x-axis

Figure 18. The computed solution u(x,y,t) att = 1 with M = 40.

66

absolute error

y-axis

Figure 19. The absolute error att = 1 and M = 40.

Table 12. Numerical results for example 1.

t=1 M=40

X-axis

t=1
M | Max-norm error | order
20 1.386 x 1073
40 4729 x 1074 1.551
80 1.352 x 10~* 1.806
160 | 4.030 x 10~° 1.746

Example 2.
e(x,y,t) = 1.

sin GT[) sin(t)

ifr <

N R

’

fxy,t) = 8n<—2nrzsin (211 (rz 4 %)) + cos (21_[(rz " %))) cos(t) + sin (211 (rz + %)) sin(t) ifr > %

The interface condition is chosen from the following exact solution:

(sin (% 11) cos(t)
ux,y,t) = !

|

\

1
sin | 2m (rz + §> cos(t) ifr >

ifr <

)

1
2)
1
2

67

t=2m M=40

SESSIISSZS
SSESEES I
e

computed solution

. 0o
y-axis 0 x-axis

Figure 20. The computed solution u(x, y, t) at t = 27 with M = 40.

0.04

ol
,ll/l' &

o S
< ST
T

absolute error

y-axis 0 o x-axis

Figure 21. The absolute error at t = 2mand M = 40.

Table 13. Numerical results for example 2.

t=2m

M Max-norm error | order
20 1.440 x 1071
40 3.643 x 1072 1.983
80 9.372 x 1073 1.959
160 2.382 x 1073 1.976

68

Combining CIM with ADI method (Alternating Direction

Implicit method)

The classical ADI method for the problem u; = V- (eVu) — f(x,y, t) is

n+1/2 __ N
ij L n+1/2 n n n+1
—At/Z = (sux)x'i,j + (suy)y' (f +1577),
1/2
uiy - n+_/ = (eu)V 4 (eu)n+1 _1 (€7 + £o+2
At/2 XIXi] Yij 2vH DS

In other word, a single multidimensional implicit time step is replaced by a sequence of
steps, each of which is implicit in only one coordinate direction. In addition, the
equations can be solved along one line of grid points at a time, which can be solved
easily. If there is no interface, this gives decoupled tri-diagonal systems to solve in each

step:

At Atl
n+1/2 n+1/2 1
(ui'j 2 ()) B (it (SUY)YIJ) 22 (+67)

n+1 At Atl
(n+1 _ _(y)y”) _ (usjﬂ/z + 7(5ux)2;j1/2> _ __(fn +£0+1),

With this method, each of the two steps can be shown to give a first order

approximation to the full heat equation over time At/2, so that u““/2

represents a first
order approximation to the solution at time t"*1/2. Because of the symmetry of the two
steps, the local error in the second step almost cancels the local error in the first steps,
so that the combine method is second order over full time step. Because u““/ % does

approximate the solution at time t®*1/2, it's possible to simply evaluate the given

boundary conditions at time t"*1/2. First, without any modification, we apply the ADI

69

method to our problem.
JC L

Unfortunately, ADI method cannot be applied when £(x,y, t) has jump across the
interface. This is because when forming the linear system at time level t"*1/2 and t"+1,
we need to compute the coefficients used to approximate (uxx)ir,lj“/ and (uyy):;r1 at
normal on-front point (exceptional point is similar). When computing this, we need to
compute the coefficients of b{;J’l/ZTXui‘f;’l/2 and bA*1T,ull**. From this, we find
that bgﬂ/ % and bg+! must both be zero and consequently e(x,y,t) is required to be
continuous across the interface. Assuming (x,y,t) is continuous across the interface,
we redefine the normal on-front grid points to be the on-front grid points satisfy

condition (a) and (b) in p.52~53 and the formulae in computing uy and uy, by CIM

can be simplified as follows:

(5i—1/2,jui—1,j—(8i—1/2,j+5i+1/2,j)ui.j+€i+1/2,jui+1,j

+ 0(h?) if Yip1/2) + Vic1/2§ =0,

h2
i i +Yi—1/2; = 1and
=31 (G0 2—|sgl o VYit1/2 i-1/2
(uXX)l,] i 2 (Lx Ui +]p) + O(h) if {Yii3/2,j — 0if Sx(if) = 1’
1
H((ux)i+1/2,j — (up)i-1/24) + 0(1) else.

{ 8i,j—1/2ui,j—1—(1’3i,j—1/2 +Si,j+1/2)ui,j +&ij+1/2Uij+1

+0(h?) ifyij1/2 + Vij-1/2 = 0,

h2
RN CY - (Yij+1/2 + Yij-1/2 = 1and
(vyy);; = iﬁ(Lyy iy +Jg) + 0 (2711) lf{Yi.ji3/2 = 0ifsyqj = 1"
1
H((UY)L]-H/Z - (uy)i,]-_l/z) + 0(1) else.

where

70

Jp=- <|Sx|(1 +2Bp)pp[ulp + sx(Bp + B3)h <[o np + pp[ut]ptp>)

'!5

]q = - <|Sy|(1 + ZBq)pq[+ Sy(Bq + BQ)h<[] 1’1 + pq[ut] tz))'

q
L(sx) L Ap,—s, Ui—sy,j + ap,oUijj + Ap,sy Uitsy,j + Ap, 25, Uit2sy,j if sx = 1,
X ui_llj - 2ui,]— + ui+1,j if Sy = 0.
(sy) _ |3q-syUij-sy t+agoui; + aq,syUij+sy + aq,2sy Uij+2sy if sy = 11,
) Ujj—1 — Zui_]- + Ujj+1 if Sy =0.

with the corresponding simplified coefficients:

5, 2 ((Bp +B2) (+ ap) + (o + a3) (+ Bp)> €ps

1
(Bp + Bp)(+ O‘p) + (ap + O‘p)(+ Bp)
Ap,—sy, = ((Bp +B3) +ap(1+ ZBp)) Pp
apo = (_(Bp +B85) — (1 +ap)(1+ ZBp)) Pp:

2
| aps, 2 (1+8p) pp,
ap2s, = —BpPp-

=)

el
>
k=4 kel

(Replace x by y and p by q we get the coefficients for y-direction)

1,
(ux)iil/z,j = E (D)((il/Z)ul] + Y1+1/2]](+1/2)) + O(h),

1

+ +
(u}’)1]+1/2 h (D(1/2)1'11] + YI]+1/2](1/2)) + O(h);

where

[eun]p

J$EY = Fu], - sph< n% + [ut]pt;g),

](+1/2) Flu]q _ th <[5un]q n)é + [ut]qtg)

JC2.

In this case, no restriction on £(x,y, t). The formula in computing uy, and uy, by

71

CIM at grid point is

Uj—1j = 2Ujj + Uiy
h2
DyxUij = { DZu (Xi—sx'xir Xp» (X1, Yj)) +0Ch) ifyir1/2j +Vic2j =1

+0(h?) if Yir1/25 + Yi-1/2) = 0,

1 .
h ((ux)i+1/2,j - (ux)i—l/z,j) +0(1) ifyiyr/25 + Vic1/2j = 2

((Ujj—1 — 2Ujj + Ujj4q
h2
Dyyu;j = { Dju (Yj—syJYj'qu (xi, Yj)) +0Ch) ifyijp12 +Vijo12 =1

1 :
H((UY)i,jﬂ/z - (uy)i,j—1/2) +0) ifYijrrsz +Vijo1z = 2.

+0(h?) ifYij+1/2 +Vij-12 = 0,

where

Uy, — Ujj
LD o).
X — X

p+ — A

(Uit1/2 =
Here p_ = (x,_,yp_) and p, = (xp,,yp,) are the interface point in [x;_y,x;) X {y;}
and [x;, x;11) X {y;}, respectively. (A parallel argument applies to the y-direction)

Numerical examples

JC1.

Example 1.[12]

e(x,y,t) = 1.
0 ifr<3,
ey)= <sin(t) - %2 cos(t)) sin G (x+ 1)) sin (E v+ 1)> ifr 3.
The jump conditions are chosen from the following exact solution:
1 ifr<z,
uGy.) = cos(t)sin G (x+ 1)) sin G v+ 1)> ifr 2 %

72

o o v
o ® SIS

I
IS

[N

computed solution

o
N
W

W
R
N
A
W
AR

W

N
W

N
N
&

R
W
N

N
RN

W
““‘\\\\‘““\\

L
T

3y

W

X
40

N
\&
W
W
N

W
RN

A

R

S
\\\\\\\“\‘\\\

AN

D

N
“\“““\ N
I

W
SN
TR

.“\\\\‘“‘
T
h

20

W
\\\\\‘““‘\‘
i

i
1l
fl

i
b
!

y-axis 25 30 35 40

Figure 22. The computed solution u(x,y, t) at t = 2w with M = 40.

t=2m M=40

3 T~
5 2y
e -
[}
2
2 -
o
2 \ ~
a9 1+ AR -
! JAARARRY N
TR
LSS D O
2o A
ZTNE
40 i
SR SRS
2822030, %00 e SN et S N e e
30 e OO0 % S e S g LR S et 40
% o’o%“O:“:.c::“;\‘
20 oSSRl 30
=
10 S 20
) 0 o
y-axis x-axis

Figure 23. The absolute error at t = 2mand M = 40.

Table 14. Numerical results for example 1.

t=2m

M

Max-norm error

order

20

8.853 x 107

40

2.589 x 10~

1.774

80

6.856 X 1075

1.917

160

1.831 x 1073

1.905

320

4.674 x 1076

1.970

73

Example 2.
e(x,y,t) = 1.
(16 + 4(x% + y?))e(D ifr <
f(x,y,t) =
(1 - (x%+y?)sin(xy)eCV ifr > >

The jump conditions are chosen from the following exact solution:

1
4(x% + y?)el® ifr < >
u(x,y,t) =
sin(xy)e(-® ifr > 7

computed solution

v-axis

Figure 24. The computed solution u(x,y,t) att = 0.5 with M = 40.

x 10°

25—

15

absolute error

N
MR

/L] X R
I I
e Y.
0000385

() \
l,‘t‘o“ .
2 X
\X seSisants!

NS
X R S
5 {“(\\\\ \Ih'{:::::“\“‘“\\\e\‘*‘
S S SIS LA SN

=

20
10

y-axis x-axis
Figure 25. The absolute error at t = 0.5 and M = 40.

74

Table 15. Numerical results for example 2.

t=0.5
M Max-norm error order
20 8.189 x 1073
40 2162 x 1073 1.921
80 5.890 x 10~* 1.876
160 1.665 x 10~* 1.823
320 3.804 x 107> 2.130
JC 2.
Example 1. (update from [5])
We retest examplel JC 2 in C-N case.
t=1 M=40

0.25

0.2

0.15

N

computed solution

y-axis x-axis
Figure 26. The computed solution u(x,y,t) att = 1 with M = 40.

t=1 M=40

aboslute error

o 0 X-axis

y-axis

Figure 27. The absolute error att = 1 and M = 40.

75

Table 16. Numerical results for example 1.

t=1
M Max-norm error order
20 5.647 x 1073
40 1.683 x 1073 1.746
80 4612 x 107% 1.868
160 1.208 x 1074 1.933
320 3.092 x 10~° 1.966
Example 2.
We retest example 2 JC 2 in C-N case.

t=2m M=40

computed solution

y-axis x-axis

absolute error

o
y-axis

Figure 29. The absolute error at t = 2mand M = 40.

76

Numerical tests give promising results and the method appears to be second order

accurate. However, from local truncation error table for interior points and normal

Table 17. Numerical results for example 2.

t=2mn
M Max-norm error order
20 1.383 x 107!
40 3.528 x 1072 1971
80 9.071 x 1073 1.960
160 2.294 x 1073 1.983
320 5.769 x 10~* 1.992

on-front grid points (see table 18 and 19)

Table 18. Local truncation error for JC 1.

Examplel t = /2 Example2 t = 0.25
M | Max-norm order Max-norm order
LTE error LTE error
20 0.221 4.730
40 0.206 0.101 4.641 0.027
80 0.259 -0.330 6.104 -0.395
160 0.244 0.086 5.676 0.105
320 0.258 -0.081 5.887 -0.053
Table 19. Local truncation error for JC 2.
Examplelt=1 Example2t=1
M | Max-norm order Max-norm order
LTE error LTE error
20 3.778 16.529
40 4.283 -0.166 6.644 1.315
80 130.686 -4.947 21.481 -1.693
160 18.515 2.819 3.753 2.517
320 47.997 -1.374 6.084 -0.697

mple1
=40 Exal
=12 M

0.4

03

r(LTE)
| truncation errol
local

’.---.---~
~........... 40
..........
_............
e
= 2
Q.‘ 2L 2
S ! e
.......- N 2z
....... 2 LR =
-_”..' S S =
o = S S
~"’..”:" 2z 2o >
s e R e
S Lz s
)z..:.:.. X/ ...::
o ,-....~.~.¢.~..-~ 2%
.. Q'~Q~Q~.qv 5 .q-0-
'.-Q~v(>~q Y 2 Q-~ &2
v¢.-.- X .~ Z25 ..
= oz] e
Rz 22 .’..,. =S
2 e T
2 Q’. “’~'~ ~Q-~0 2
1 2
0. '~""-""’::.:.”’
.......... s
.....-r.......... =
Rzt =
o S

e
LT
e
..""1?.-%
:,....,7,.‘....-...
.......z.:"~'~z~:,~,.

=

X-axis
o O

1JCI).
ple

=40 (exam
=2 M

tion error at t

al

al trunc

igure 30. Loc

Figure

2
ple
0 Exam
M=4

0.25

r(LTE)
| trunction error(
local

o2
o
R 2R
LILers
S
~q0.-ﬁ..~b
...Q.QQ.~0.Q
..:.-.:::.-"
'.-"-'-.~,-

R TR

S e
=

Z

X-axis
0

0
y-axis

2JC1).
mple

=0.25 M

ation error at t

al trunc

igure 31. Loc

Figure

1
M=80 Example
t=1 M=

150 -,

100

50 ~

v LTE)
| trunction error(l
local

0 3
80

x-axis
)
y-axis

mple
=80 (exa
ation error at t

al trunc

) 32. Loc

Figure

78

t=1m M=80 Example2

25

local truncation error(LTE)

40

y-axis x-axis

Figure 33. Local truncation error at t=t M=80 (example 2 JC 2).

We find out that the local truncation error at these points is only O(1). So there must be
some cancellation in the errors. We are not sure whether such cancellation will always
occur. For safety, we are going to do the local truncation error analysis and modify the
ADI scheme by adding correction terms so that the local truncation errors at normal
on-front points are O(h) so we are guaranteed to get a second-order accurate solution.
Local truncation error analysis
For simplicity, assume € = 1.
JC L

We define Dy,u;; and Dyyu;;to be the approximations of (uyy);; and (uyy)i’]_ by
CIM, respectively.

The difference scheme is

n+1/2 _.n

L) L) +1/2 _n+1/2
A2 D/ u?}' 7+ Dyyuiy — E(fll} +f3*), (91)
Wit /2 .
Y Lj +1/2 n+1/2
At/2 =D u;) %+ Dyy tupy ™t — > (3 +£571). 92)

79

Adding the equations (91) and (92), we get

un+1 un

ij i n+1/2 n+1/2 1,,n+1 +1
——— = D += (Dnyu Dyt uf;)——(f“+fn : (93)

Subtracting the equations (91) from (92), we get

n+1/2 _

2 n+1 ph+1yn+1
i = (u” + uj)"‘ (Dyyull Dyy “uij ")

Substituting this into (93), we get

Wit

n
ij Atu _Dn+1/2< (u1]+un+1)+At(D“ n Dn+1 i’1+1)+ (Dn u +Dn+1 n+1)__(fn +fir,}+1 .

This is the difference scheme which we actually use to get the next time solution u“+1.
We check each term one by one.

Assume At=h.

(A)

n+1 _ 1’1

ij Ui j n+1/2 2
—_= 0(At2).
— =) + 0(ard)

Nothing needs to be modified.
(B)

(Dnyu _|_Dn+1 n+1

%((uyy) + (uyy)n+1) +0(h?) ifYij+1/2 +Vij-1/2 =0,
_)1 n+1 2— Yij+1/2 +Y1] 1/2 — =1land
RE ((uyy) * (UYY)) o (h |SY|) f{YIH'S/Z = 0ifsy i = £1°
%((uyy) + (uyy)n+1) +0(1) else.

n+1/2 .
(u yy) +0(h?) ifYijr1/2 +Vij-1/2 = 0,

n+1/2 _ Yij+1/2 + Yij-1/2 = = land
= < O hZ |SY| f
(yy) () Y1]+3/2 =0 lfsy(ll) = +1

n+1/2
L (uyy)ij +0(1) else.

80

Nothing needs to be modified.
©

1 fn fn+1 _ fn+1/2 A 2

E(ij Thj) =1 + O(At?).

Nothing needs to be modified.
(D)

Before we discuss the D“+1/2((ufy +ul) +=— (Dyy ufy — DR tufit)term we

Dn+1 n+1

give some estimations of Dy uj’ yy Uiy - Since all quantities are continuous in

ij
time, we can write
(1) Yij+1/2 + Yij-1/2 =0

D}, uf! (uyy) +Nfih2 + 0(h?),
DUl = (uyy)y + NI h? 4 O(h%).
with N} — N}t = 0(h)

So

Dgyufj — Dy tu n+1 (uyy) (uyy);+1 +0(h%). 94)([®

(I) {Y1]+1/2 + Yij-1/2 = = 1land
Yij+3/2 = 0 lfSy(l]) =*1

Dyyuf; = (uyy) +Nh + 0(h?),
Dn+1un+1 (uyy)n+1 Nn+1h + O(hZ)
with Nfs — NI/ = 0(h)

So

81

n+1 .
Dyyujy — Dy iy = (uyy)” (uyy) +0(h?). (94)(ii)

Yij+1/2 T Yij-1/2 = 1 and

: both conditions are false
Yijis/z = 0ifsyp = £1

(1) Yije1/2 + Yij-1/2 =0 ;{
Dyyup; = (uyy) + NP + 0(h),
DIHLufH = (uyy)r1+1 + NI+ 0(h).
with Nfs — NI/t = 0(h)
So

n+1
Dyyujy — Dy tuy = (uyy) (uyy)i,]- +0(h). (94) (iii)

We separate Do '/2 ((ufy +ufit) + 5 (Dpyul —

Dn“un+1)term into three cases.

() Yis1/2j + Yic1/2j =0

A
n+1/2< (u1]+un+1)+ t(Dyy ufl D;l;—lu{l]+1)

((uxx)l, + (U ') + 0(h?) + — D““/ ?(DByuly — DI tufit
1 n+ n+ n n+)
E(x)ij 72+ +om?) + D v ((uyy)i,j - (uyy)i,j 1) +0(h?) (by(94(1)))
é Z)Y 4 10(1) + 5 DB ()]~ (uyy)[) + O (by(04(iD)
1 i n+ n n+
l—(ST 40 + 5 70572 ()], = (uy)7*") +001) (by(94(i))
2 T2 + 00 + DI <‘(uyyt)?j+1/zﬂt ¥ O(At3)>

+1/2
= (wOp 2+ 0(h) +— D““/2 <—(uyyt):]_ At+O(At3)>

(wOp 2+ 0() +— D““/Z (—(uyyt)j‘j“/ “At+ O(At3)>

1
(5 (el 24+ 0(h?) if (i) holds for (i.j), (i — 1,) and (i + 1,j),
1
= 3 (uxx)?;rl/z +0(h) if (ii) holds for some (i,j), (i — 1,j) and (i + 1,j), and (i) holds for the rest,

1
E(uxx)?j-'-l/z + 0(1) else.

82

Nothing needs to be modified.

Yi+1/2j T Yi—1/2j = 1 and -
I v; c+ Vi1 =0, . both conditions are false
() Yi+1/2j T Yi-1/2, {YiiB/Zj =0if Sx,(i,j) = +1

n+1/2 1 1
((ul] + un+) +— (Dyyulj n+1u?]+ >

((uxx)” + (u i) +0(1)
1 n+1/2
) (uxx)i,j +0(D).
Nothing needs to be modified.

(11D Yit1/2 + Yi—1/2j = 1and viy3/2; = 0if sy = £1
n+1/2< (u1]+un+1)+ (Dyyu1] D“+1u{1]+1 >

1 At 1
_ (hz g(sx)n+1/2< (u1] +u§j+1 >+]n+1/2>+ L(SX)n+1/2

n+1 n+1
hZ X (DJyuf; — Dy uij™).

We separate it into two parts

1. (é LE(SX)'H+1/2 (% UB] + UE]'+1) +]1‘1+1/2) term

1
h_ZLE(SX) n+1/2< (u1] +u?j+1 >+]n+1/2

11
(syx),n+1/2 n n+1/2 = = (1 (x)n+1/2 n+1 n+1/2
7 (LS S+ P + o > (LS +15717?%)

N| = N =
:Tl,_\ :Tl,_\

(L(Sx)n n +]p +]n+1/2]g)+

N =

1
(sx)n+1 n+1 n+1 n+1/2 n+1
L IR IR)
h? (

(Here we use the fact that L;SX)’HH/ 2= LE(SX)’H = LE(SX)’HH i

since
the coefficients a,, _s , ap o, ap s and ap 5 only depend on apand Bp>
(u) +5 (u B2 (27) o)
XX/ 1, XX 2 h2
1
= (udiy % + 0(At2) + = (0(At?)) + 0(h)

= (uxfi 2 + 0(D).

83

We need to modify this term.
2. itlj-z L(Sx) n+1/2(Dyyu1] n+1 Il+1) term

(@) either (i) or (ii) holds for (i,j), (i-1,j) and (i+1,))

At 1 L [ont1/2pn n _ pnerynen
7 h2 X yyUij — Dyy uj]

A 1 Sy),n+ n n+ N e
= L2 (0,)7 — (") +00) (b (4)GD))

At 1

= S Lo (—(uyyt)fj“/zAt - O(At3)> +0(h)

1
(sx)n+1/2 n+1/2
4_LXS " (yyt)i'j +0(h)
= 0(D).

We need to modify this term.

(b) else

At 1 somsi/z(pn 0 _pogagne
7 h2 X yyUiy — Dyy uj]

A1
(sx)n+1/2 n n+1
=T ((“yy)i,j - (uyy)i,]_) +0(1) (by(94¢(iii)))
_ Al
4 h? T <_(uyyt):j+1/2At + O(At3)> +0(1)
= 0(D).

Nothing needs to be modified.

So we add two correction terms (C,){; and (Cy) to the difference scheme:

n+1/2 N
Uy Uij n+1/2 n+1/2 4o (fn +) (G — (C)“
a2z o Ui yy Ui ij Jij My)iy
n+1 n+1/2
Uij — Uy — pht1/2 n+1/z +1 n+1 (+E0FY) — (COR — (C)“
At/z - XX l,] i,j x/1 y

84

Thus, the actual difference scheme used to get the un+1 becomes

n+1 n
Uij — — Ui n+1/2 (1
TV Dxx E (ul] + un+1) + (Dyyu

At L

+1,n+1 +1, n+1
— Dyy i >+ (Dyyu1]+Dn uj

We use (Cy)jj to correct the error in (D)(I1)1.

Choose

hl (2]n+1/2 jn]n+1)l

N =

(CX)Ej =

then

n+1/2 ((u” + uirf]-*'l > - (CX)E] = (uxx)?;’l/z + O(h)

Next, we use (Cy)inj to correct the error in (D)(111)2(a).

Since
O,n+1/2 n+1/2
Lg(s i/ (uyyt)

n+1/2

S + ap, 0(uyyt)n+1/2

n+1/2 n+1/2

= ap,s, (Uyye), +aps,(u yyt)1+S ;T ap,2s, (U 3/>'t)1+2S ;

((Bp +B3) +op(1+ ZBP)) Pp ((Yyt):l+sl/]2 (u yyt)n+1/2)

n+1/2 n+1/2 n+1/2 n+1/2
+(1+ 2Bp)pp ((yyt)1+S ; (uyyt)i,j) +B5Pp ((uyyt)- .= (uyyt)i”sx_j)

1+Sy,)

n+1/2

= (1 + ZBp)pp[Uyyt] + 0(h)

[uyy]g+1 - [uyy];
= (1+2B,)pp A + 0(h).

So if we choose

[u]n+1 [u]n
n —1 yy ~ LYyy
(CY)i’j = Tpp(l + ZBP)< 2 At p)‘

85

then

SRR gyl — D) — ()] = O

Finally, in order to compute (Cy):]_, we need to know how to compute [uyy];. Suppose
p = (xp,yp). We use the local coordinate transformation at p:

N o R O R A A]

Define

uEn,t) £ uxE@En),y@En,b),

then

u(xy,t) =X y),nxy),0,

and

uy (x,y,t) = g (§n, D& + 0, n, Ony,

uyy (x,y,t) = Tge (§m, 8, * + 2y (5,1, Ny + Ty (§ 1, Oy %,

Let (x,y) = p we get

(u;—fy)p %—" (0,0,t) (ny) + 2uEn (0,0, t)npn + 7, (0,0,0) (np)

= gy] = g g (02 + 200l o 50 +]’y (3)”.

It remains to compute [ﬁEE]ZO,O)’ , [ﬁiﬂ]zo,o)
Since in a neighborhood of p, the interface lies in the n direction, we can parameterize

the interface locally by & = (1) with x'(0) = 0 and write the jumps as

86

T, 1) £ t&xGm),), y(x(m),m), t)
= [u]l O,), y(x(m).m), v
=[] (c(m),n, B). (95)
5, t) 2 ax(x(m),n),yx(m),m), t)
= [up]GO, m), y(x(m),m),)
= [U,] (), O. (96)
(A)
[te] (&, ©) = [ux] xE M), y(En), Onf + [uy] (x(En),y(En), On.
(8] g 5y = Tunlbn + [uy];ng
= [un]p- (97)
(B)
Define f(€,n,t) 2 f(x(§1),y(E),).
Since
ez (51,0 = Uy (5, y, D (0X)” + 204y (x,y, ONENY + uyy (x,y, (02,

~ 2 2
Unn (El n, t) = Uxx (X' N t) (ni;) - 21'lxy (X; Y t)l‘lgl’lg + uyy(X: Y t) (l‘lg) ’

we have

ot . Ou
o~ (Fgg + g) +F= 20— (e +uyy) +£=0, (98)

1.compute [ﬁ‘l‘l]zo,o)

differentiating (95) with respect to n we get

87

T, (0,0 = [T). n, ©) X' M) + [Ty Ge()m, ©).

(note that if we letn = 0,we get [ﬁn] =1,(0,t))

t
(0,0)

Differentiating this with respect to n again we get

~ a ~ ! ~ 4

T, = <% [ug](x(n),n.t)>x (M) + [T] (), . Ox" (M)
+|[1ign | XD, m, X' () + [y] ()0, ©).

Letn = 0 and use (97) and x'(0) = 0. We get

0 t " ~

t

2.compute [Uig] ©0)

From (98) we have

a~ i~
15| &0 0 - ([Eg] G0 + [l En0) + [Eno =0

Combining this with (100), we can get

ot I Gk t
[UEE] (0,0) = _[unn](o,o) + E] 0.0) + [f] (0,0)

ouy’
= X" Olunll = Tn (0,0 + [5| + 105,
p
t

3.compute [ﬁin](o,o)

Since

iy ()., B = uie GO, M,y O, M, O ey o sixemm)

+ y
 uy GO,y 0D, O o amm)

and

88

(99)

(100)

1]
X
[n(X(X(n).n),y(x(n).n))] B [n’g —ng]l 1+ (X:)zl
y - y X v/ .
M xamm.yxanm) np Dp l X' (n) J
1+ ()?

We can rewrite i (x(),n, t) as

n} + nﬁx’(n))
V1+()?

Y _ x/
uE OO, M, YD,),) (M)

V1+&)2

= (B0 — T (. m,OX ()

it (), m, 0 = uf &M,).y, m),) (

1
Therefore,
5, t) = [ty (x(m),m,) (by(96))

= ([l e, 1, © = [ayJ e, m, DY () e

Differentiating this with respect to) we have

Gy(n,t) = <[ﬁgg](x(n),n,t)x’(n) + [gy | Gx@).m,) — (% [ﬁq](x(n),n,t)> X' @) — [0y] G, X () > JHIT

+ ([Ee] e, © = []G, B () X

a+()?3

Letn = 0and x'(0) = 0. We get
(e] t ~ 1t "
5,(0,1) = [ugﬂ](o,o) - [u”](o,O)X D)

= [tgn] gy 0, — T (0, OX" (D) (by (99)).
Hence

11 t = ~ 1
[ugn](o'o) = O-T'I (0’ t) + TT](O' t)X (T])

89

JC2.

We define Dyyu;; and Dyyu;; to be the approximations of (uy);; and (uyy)ij by

CIM, respectively. Same as JC 1, assuming At = h, the difference scheme is

n+1

n.
uuAtu _Dn+1/2< (u1]+un+1)+At(D Dn+1 n+1)+ (Dyyu” +Dn+1 n+1 _%(fir.}+filj+1 .

Now, at interface point, following the idea discussed in JC 1, we only need to consider
the following term D“+1/2((uly +ul) += (Dyy ufy — DI tufit?) under the
condition yiy1/25 + Yi-1/2 = 1.

n+1/2((ull + un+1) T (Dyyull Dyy tupy)
= dyx <% (u]in—s j ?g]) + (Dyyul sei — Dyy 1u?+51<1 >

1
+dyx <§ (u” + un+1) + (Dyyu11 gglu?]“ > +ds Xun+1/2,

where

2

(Xi—sx—Xi)(Xi—sy —Xp)

2

(%i—Xi—sy) (Xi—Xp)

2

(xp=Xi-s,) (xp=%i)’

dl,x =

, dz,x = , d3,x =

We separate it into two parts.

1
dllxz(u?_s i ult?)+d2X2(u1] +un+1)+d3x n+1/2

Uj— Sx)
1 1
=5 (dl.xu?—sx,j + dgxug + dg,xu(xp,yj,tn)) ~3 ds xup
1 n+1 +1 1’1+1/2
2 (dl Xul S it d,, Xu Ty d; Xu(xp,yl,t)) - —d3 Xup + d3X

1 ;
= > (] +wmw“)+om>+%x<“1“ 0$+u?0>

= (ufi 2 + 0(D).

90

So we may choose

(CON = dsx (vz (up + up“))

then

1 1/2
dlx (Uj_ Sx] :H-si])-i'de (u1]+un+)+d3x n+t/ —(CX)E]-

= (ufi 2 + 0(h).

We only need to consider the case when both v;;.1/2 + Vij-1/2 < 1 and Yirqje1/2 +
Yit1,j-1/2 < 1. From (94), we have

+1
Dyyuj; — Dyytufy™ = (uyy) (uyy):]- +0(h?),

SO

At
= (pn ,yn _ pn+1,,n+1 2t nn n+1, n+1
dqx 2 (Dyyui_sx‘j Dyy u;” SX]) +dyx 2 (Dyyu” Dy vy Ui

= dl_xz ((uyy)in_S i (yy):H-S1]) dZX ((uyy) (uyy):jﬂ) + O(h)

At At
(dlx(uyy)1 5y +d2><(uyy) +d3><(uyy)) 7 BX(uyy)

At _ At _
(dl x(uyy)?:l +dy X(uyy)n+1 + d3,X(uyy)p n+1) + ZdS.X(uyy)p " o)

-7 ((yyxx)l] (u yyxx)n+1) %d?"x ((uyy);mrl - (uyy);n) +0(h)

L)

Atz Atz ™
T a (uyyxxt)ir,le/2 * 4 d3x ((uyyt)p n+1/2) oW

= 0(1).

So we may choose

(), =3 =5 ((uyy) - (uyy);n)'

91

then

At At n
dixg (D¥yu ¢ ; —Dituftl) +d, - (Dhyui = Dy tufitt) — (Cy)i,,- = 0(h).

(—sy),n+1

N in advance, so we can't compute

However, it's impossible to know (uyy)
u; (xy,t)=y—x
u, (xy,D=y%—x%
but (u;)yy=0 on y=x and (u;)yy=2 ony=x.

Consider{ both functions satisfy uy=Au and equal to 0 on the line y=x,

n
(CY)Lf
Numerical examples

JC1.

Example 1.[12]

t=2m M=40

computed solution

x-axis

t=2m M=40
x 10
3 [
‘
|
52 |
@ |
@ |
% |
@ N
a1l NN
© 5 Corammsh
080 00 8 S R
9 e B B S B TN
OO e e O g e T e
03000 e S 00 S Y e 8 e N
S0 etessed: SIS
0 LS55 SOSSSSSESE TS
a0" S SEE
B S S

P e e
eSS S e e
e Rt
= S Seeesesaatosaias
ST

40

30

y-axis x-axis

Figure 35. The absolute error at t = 2mand M = 40 with correction term.

92

/2 M

t

40 with correction term Example1

IS
-
D
et
S
B = 0| o|lo| v
g S) S| & | | ©
““““ S = Slzlsl 2
S o || 4| o °
©]
< x
= o m
(3] N ™ [3¢) o0 (%]
i~ =) | I I |
z2 < 2| Ll E 5|c|lo|lo|olo °
& I £ 5 | H | =] = | =] |
= g S 5| x| x| x| x| x
= e X M| = | NN O
S S s 5183838~
AN gl) > ! 2
T c b — | Y|\ | &
DO SR S @a .
o) N 5 g .
ey ~ D i =
o S e c
A KRR L IR0 E <]
AN SAAL000C) = Ol = | ;| o 0
R Y o I -) Rl a3 ® S
K X ARG I =] I
. TSN A, = 2 = Nl < =
G OO
S KOl ® m °© AN I IR B
\ \ g s
e o— =) o
900! ARERR = >
S i = Z| el s
oA @ |~ | 8 v s |w |w e
\ Y/ o EIS Sl L5 sle|le|els
54 3 = N £ I =) I
. > 8 2 g x| x| x| x| x
c <] | ;| |lo|lmn
> - 5 Q| | @
\ E 0 C|lwn| x| x|
o S ©® | N| O | |
IS =
o
8 8 °g S
e 3 o o uonnjos UwHSQEOQ
e & = oclolo| 3|8
(3.L7)Jous uonouN} [e20) ™ N || 0| | =
[«b]
P
S
2
L

Example 2.

4.0 with correction term.

t)att=0.5and M
93

y-axis

Figure 37. The computed solution u(x, y,

absolute error

0.8

0.6

0.4+

0.2

55
¢S
XS
5

“ll 4758
Y. 74 ','

20

y-axis

‘||g Aty
L AP SCSSO
(e SR
S
0“\ ‘&
877

lllll'%‘ y
271K X
Ill,':‘ ‘

10

X-axis

—{_ /

40

Figure 38. The absolute error at t = 0.5 and M = 40 with correction term.

local truncation error(LTE)

t=0.25 M=40 with correction term example2

y-axis

Figure 39. Local truncation error at t = 0.25and M = 40 with correction term.

Table 21. Numerical results for example 2.

t=0.5 t=0.25
M Max-norm error order Max-norm order
LTE error
20 2.775 x 1074 6.603 x 1073
40 9.911x 1075 1.485 1.954 x 1073 1.757
80 2.974 x 1075 1.737 1.237 x 1073 0.660
160 8.280 x 107 1.845 8.064 x 107* 0.617
320 2.209 x 1076 1.906 3.928 x 10~ 1.038

As you can see, the local truncation error is much smaller.

94

JC2.

Although we don't know how to compute (Cy)?]_, we still test an example to see what
will happen if we know (Cy)?j.

Example 2. (Assuming (Cy)inj is known)

computed solution

y-axis x-axis

Figure 40. The computed solution u(x,y,t) at t = 2mand M = 80 with correction term.

t=2m M=80

T

/

Serles) 4
/ LR W””
0.01~ el e

absolute error

y-axis 0 .0

Figure 41. The absolute error at t = 2mand M = 80 with correction term.

95

Figure 42

t=2m M=80 with correction term example2

= N w

local trunction error(LTE)

o

. Local truncation error at t = mand M = 80 with correction term.

Table 22. Numerical results for example 2.

y-axis

t=21 t=m
M Max-norm error order Max-norm order
LTE error
20 1380 x 1071 16.529
40 3.523 x 1072 1.970 6.644 1.315
80 9.058 x 1073 1.960 2.119 1.649
160 | 2293 x1073 1.982 0.538 1.978
320 5.766 X 10™* 1.992 0.184 1.548

In summary, we apply the CIM to the two dimensional diffusion equations with
fixed interface using Crank-Nicholson scheme and confirm its second-order accuracy.

We also combine the CIM with ADI method and add some correction terms to make

sure it is second-order as well.

96

Chapter 5

Application to Two Dimensional Melting Problems

In this chapter we apply the coupling interface method to the two dimensional
melting problems. Let [a, b] X [a, b] be our domain Q of consideration. Denote the phase

transition interface in Q by I'. By conservation of energy, we have

T K
— = —AT = DAT (xy) €EQ\T, (101)

ot Cyp

where C,, is the specific heat at constant pressure, p is the density of the material, k is the

thermal conductivity and D éc—Kpthe diffusion coefficient. We denote the region,
p

temperature, thermal conductivity, specific heat with constant pressure, density and
diffusion coefficient of water (ice) by Q;, Ty, ¥, C}D, p; and D; (replace 1 by s),
respectively. See figure 43 for the relative position of water and ice. The rate of net heat
deposited at the interface is

H = —[CpkT,] 2 - (C}DKI % — CSKs %).

Here the jump is taken from water to ice and n is the outward normal direction of ice.
This net heat will be the latent heat to either melt or freeze (depending on the sigh of H)
the material at the interface. The energy balance at the ice-water interface can be written
asp,.Lv, =H, (102)

where L is the latent heat and v,, is the normal velocity of the moving front. Finally, the

temperature at the interface is a constant (melting temperature)

97

T=Ty onT, (103)

Water (12
(@)- Ice ()~

I n.

~

"4

Water ()«

Figure 43. The relative position of water and ice.

Numerical method

We partition [a, b] into M + 1 subintervals evenly like we did in previous chapters.
As usual, we denote the mesh size and the temporal step size in time by h and At,

respectively. The Crank-Nicholson scheme for (101) is

Till’}+1 _ Tl’l 1

, 1 +1
T L (0t + ()0 300 (o (5. (05

Spatial discretization

Since the discussion here doesn't concern with time, we will drop t or the
superscript n for simplicity. At an interior point (xi,y]-), a standard central finite

difference scheme is adopted. Namely;,

Tio1j — 2Tij + Tiyq;

(Txx)i,j = h2 +0(h?),
Tij-1 — 2T + Tjj+1
(Tyy),; = 2 +0(h?).

98

At an on-front grid point (Xi,yj), as in JC 2 in chapter 4, we consider the x-direction
first. We separate it into three parts.
A) Yi+1/2j T Yi-1/2j = 2
Denote the interface point in [xi_1,x;) X {y;} and [x;,xi41) X {y;} by p- =
(%p_,yp_) and p, = (xp,,¥p,), respectively. Then
Tps

— T
~— — T 0o(h),
Xp, — X

P+ 1

(TQit1/2j =
and we approximate (Tyy);; by
(Txx)ij = %((Tx)i+1/2,j — (Tyi-1/2) + O(1).
(B) Yi+1/2j + Yi-1/2 =1
Given (x4,¥), (X2,¥), (x3,y) and (x,y) four points. Define
D>2<T(X1»X2:X3; (x, Y)) 2 dyxT(xy,y) +daxT(Xp,y) +d3xT(x3,Y),
where (dy, da, ds,) is defined in (90).
Then
(Txx)ij = DT (Xi—sxvxi: Xp» (i, Yj)) + 0(h),
where x,, is the x-component of the interface point p
(C) Yit1/2j + Yi-1/2 =0

We approximate (Tyy);; by

Ti_1j — 2T + Titq,
h2

(Txx)i,j = + 0(h?).

A parallel argument applies to y-direction.

99

Next we discuss how to compute T, and Ty at interface points. We need to compute
these quantities in order to approximate v, and [Z—;]. We give a first order and second
order method to compute these quantities.

Method 1 (first order method)

Given an interface point p=(x;, yp), Suppose we want to compute Z—; at p in liquid

state (the solid state is the same), consider the following point :

p; = p +hn.

Choose the grid points in liquid state which is the closest to p;. We call this point
(xi,;). By Taylor expansion we have

Tpi = Tij + (To)ij(%p, — ;) + (Ty)i,j (yp, — ;) + O(h?).

We can easily get a first order approximation of (Ty);; and (Ty)ij' Finally, we

imate 201
approximate — by

Y
on h

+ 0(h).
Method 2 (second order method)

Given an interface point p=(xp,yp), Suppose we want to compute Ty, T, at p in
liquid state, choose the grid points in liquid state which is the closest to p (the solid state
is the same). We call this point (xi, y]-). By Taylor expansion we have

TX = (Tx)i,j + (Txx)i,j (Xp - Xi) + (TXY)i,j (Yp - Yj) + O(hz):

T, = (1), + (T, (5 = %) + (Tyy), (v =) + 0(h).

100

So it suffices to find a second order approximation of (Ty);; and (Ty)i,j’ and a first
order approximation of (Txy)i’]- and (Tyx)i,],. We follow the idea in the CIM.
(1) approximation of (Ty);;
(A) Yis1/2 + Yie1/2j = 2
1 xp > %4

We approximate (Ty);; by

T(R", yj,t") — T
(Toij = 0 ¢,
1

+ 0(h),
where (&7,y;) isan interface pointin [x;, x;11) X {y;}

2. Xp <X

We approximate (Ty);; by

TS} — T(&",y;, t")

Xj— xn

(T = + 0(h),
where (&7,y;) isan interface pointin [x;_;,x;) X {y;}
(B) Yir1/zjtVi-1/2j <1

We approximate (Ty);; by

1 1
(Tx)i,j = E Dx,(sx)T(Xv Y) + SXE (Txx)i,jh + O(hz)-

(1) approximation of (Txy)i]_

(A) Yij+1/2 + Vij-1/2 = 2

(Txy)ilj =0+ 0(1).

101

(B) Yij+1/2 T Vij-1/2 = 1

If Yic1/25 + Yier/2j + Yi-1/2-s, T Yi+1/2j-s, = 0, then

Ti+1,j - Ti—l,j Ti+1,j—sy - Ti—l,j—Sy
(To),; = sy ((2h?) - 2h? + 0.

E|Se |f Yi_l/z'j + Yi_l/z‘]‘_sy = 0, then

Tij — Tiy, Ti,j—sy B Ti—l,j—sy
(Tw),, = sy <<—h2) - = +0(h).

Else if Yi+1/2,j + Yi+1/2,j—sy =0, then

Ti+1,]' - Ti,j Ti+1,j—sy - Ti,j—sy
(Ty), =3y ((—hz) — 2 +0(h).

Else

(Txy)ilj =0+ 0(1).
(©) Yij+1/2 + Vij-1/2 =0
If y, <yj, follow (B) and sets, = 1. If y, >y;, follow (B) and sets, = —1.

A parallel argument applies to y-direction.

Representation of the interface location

We use the front tracking method (FronTier library[6]) to simulate the melting
problem. Front tracking is a numerical method in which the interface is explicitly
represented in the discrete form of curves in two dimension. The discrete solution is

based on a composite grid that consists of a spatial grid, together with a co-dimension

102

one grid that represents the tracked fronts. In two space dimensions the front consists of
curves with piecewise linear segments called bonds.

When using front tracking method, a robust and stable calculation of curvature on
a discretized interface mesh is required to give an accurate growth rate of the ice-water
interface. Several methods have been proposed to estimate the normal vector at each
vertex of a discrete mesh. FronTier library use the method of local least square fitting:
first they construct a local coordinate system by defining a height function and then
perform polynomial fitting to obtain derivatives, and finally convert the derivatives to
normal or curvature. For the details, refer to [9]. In 2D, the curve is defined by a height
function f: R — R. Given a height function f, let f’ denote its first derivative. The
function f defines a curve composed of points (x, f(x)) € R? and the unit normal vector

to the curve is

L _ D)
JEGZ+1

Although the CIM is a second order method, the FronTier library only provide
explicit Euler method to compute the interface in melting problem, so the overall

method is only first-order.

103

Numerical examples

Example 1.
JaT
Frin AT — g(x,y,t) xy)€eQ\T, Q=[-33]%x[-33], t>0,
Up = _[Tn]'
T=0onT,
with
0 if Vx2+y2<—-t+2,
= 1
gty 0 —exp (t+ Jx?2 +y?— 2) —— if yx?2+yZ>—-t+2.

The exact solution is

0 if yx2+y2<—t+2

Txyt) =
Y exp(t+ x2+y2—2)—1 if yx2+y2>—-t+2.

INTERFACE
Time = 0.2500

T T T T T T T T

Figure 44. The computed interface at t = 0.25 with M = 128.

Table 23. Numerical results for example 1.

t=0.25
M max-norm error order error in interface order
location
32 8.089 x 1072 3.008 x 1073
64 2.231x 1072 1.858 8.000 x 10™* 1911
128 5.860 x 1073 1.929 2.820 x 107 1.504
256 1.502 x 1073 1.964 1.540 x 107* 0.873

104

Example 2.

oT

Frin AT — g(x,y,t) xy)eQ\T, Q=[-2,2] x[-22], t>0,

Up = _[Tn]:

T=0onT,

with
(1 1 1 1 _ 1
—exp(—t—— x2+y2+—)— if yx2+y2<-t+1,
3 9 3 3 XZ +y2 3

gxy,t) =)
Ik 0 if X2+y2>§t+1.

The exact solution is

1 1 1 1 i 1
eXp(;t—g x2+y2+§>ﬁ—1 if X2+y2S§t+1,
Tx,y,t) = Xty

1
0 if x2+y2>§t+1.

INTERFACE
Tine = 0.2500

,,,,,,

T T T T T T T T

Figure 45. The computed interface att = 0.25 with M = 128.

Table 24. Numerical results for example 2.

t=0.25
M max-norm error order error in interface order
location
32 2.890 x 1072 3.398 x 1073
64 1.946 x 1072 0.571 8.270 x 107 2.039
128 1.232x 1072 0.660 3.370 x 107* 1.295
256 7474 x 1073 0.721 9.300 x 1075 1.857

105

Remark :

1. If we can get a second order approximation of the interface location, then in order to
get an overall second order accuracy we need to consider the grid crossing and the time
correction term (like in the 1-D case):

n+1 n
T — T

At

1 1
- CP,] = EDi,j ((Txx)f_ll + (Tyy):’l]) + EDi'j ((Txx)irllj-l_l + (Tyy):;l),

where Cf} is a correction term for time. Suppose (x;, yj, t") and (x;, y;, t"**) are on the
same region of the interface, then there is no need for any correction and we set C{; = 0.
However, if there is a grid crossing at (x;y;) from time t" to time t"*1, say, at
timet, t" < t < t"*1 (see figure 46), then like what we did in chapter 1 we need to add
a correction term Cj; to make sure the time derivative of T has at least first-order

accuracy. The following theorem tells us how to choose Cj}.

Interface at t™ Interface at t" e Interface at t" Interface at t" 1

{a}.p {b}d

Figure 46.

Theorem If there is a grid crossing at (x;,y;) from timet" to time t"*! at timet €

(t™, t*+1), then if we choose

106

1 1 o
Ciy = - (t“ +5At— t) [Tele

then we can get a first order approximation of the time derivative of T

n+1 n
Ti,j - Tl,]

1
At i =5 (W™ + (T)7)) + 0(4v),

L)

where [T]; £ T(Xi, y]-,f+) — T(Xi, yj,f_).

Note that [T] = —[T](x;,y;, t) if (x;,y;) is in the water region at time t" and in the ice
region at time t"** (see figure 46(a)), and [T]; = [T1(x;y;,F) if (x;,y;) is in the ice
region at time t"and in the water region at time t"**(see figure 46(b))

The proof is exactly the same as in one-dimensional case, so we omit it. In order to
find Cj};, we need to compute tand [T ;. First we discuss how to find t. If there is a grid
crossing at (x;,y;) from time t” to time t"** at time €, then at time t" by front tracking
we may find two under-tracking interface points p7 and p5 with corresponding normal
vectors nq, n, and normal velocities vy, ; , vy, 2, respectively such that (xi, y]-) lies in the
region enclosed by four straight lines connecting p?, p?*?, p3*! and p? (see figure 47),
where

pi*! = p! + Ao, 11y,

p3*t = p3 + ATy, o1y,
are the estimated positions of the interface at time t"**. Here v, and0,,, depend on

how we approximate the interface location (ex.v,; = v, and v,, = vy, if we use

the forward Euler method). Then we may find At € (0, At) and s € (0,1) such that

107

(1 - S) (p;1 + AE Gn,lﬁl) + S(p;1 + A% Gn,ZﬁZ) = (Xi, y]),
and we estimate t by
t~t" + At

1‘1+1

Pi

Figure 47.

Next, we discuss how to find [T;] ;. Like in the 1D case, we have the following formula:

- ~ [OT .

[Ted (x5, F) = —va (x5 35, ©) [G_ﬁ] (%15, ©).

So we may calculate [T;] ¢ as

[T = ~ITCe033,8) = vaCy,, D) [o] (03,0
aT

Un 2 [](pz,t“) ifs > 0.5

oT in figure 46(a),

Un 1 [](pl,tn) ifs < 0.5

and

[T = [T1Ce033©) = ~vis033,0) [52] G0

—Up2 [61] (p3,t™) ifs > 0.5
~ n in figure 46(b),

aT
—Un1 [ﬁ] (p7,t") ifs < 0.5

2. When we use the second order method to compute Ty and T, at the interface points,
108

if the grid point (Xi,yj) we choose lies in the following region (see figure 48), then the
state we determine at (xi, yj) will be wrong. Consequently the error in computing

Ty and Ty, will become larger.

True interface«

Figure 48.

In summary, we apply the CIM to the two dimensional melting problems using

Crank-Nicholson scheme and front tracking method (explicit Euler method) to move the

interface. The overall method is first-order. We also provide a second-order method to

compute normal derivatives at the interface and a method to compute time correction

term.

109

Chapter 6

Conclusions

In this thesis, we apply the coupling interface method (CIM) to various
interface problems. In one dimensional moving interface problems, combining the
Crank-Nicholson scheme and prediction correction approach (latter on linear multistep
method), we verify the method is second-order accurate. We also apply the CIM to the
two-dimensional diffusion problems with fixed interface combining Crank-Nicholson
scheme and ADI method. The result is second-order also. Finally, we apply the CIM to
two dimensional melting problems. Although the overall method is first-order, we
provide a second-order method to compute normal derivatives at the interface and a

method to compute time correction term for future reference.

110

REFERECE

[1] R. Almgren, Variational algorithms and pattern formation in dendritic
solidification, Journal of Computational Physics 106 (1993) 337-354.

[2] N. Al-Rawahi, G. Tryggvason, Numerical simulation of dendritic solidification
with convection: two-dimensional geometry, Journal of Computational Physics
180 (2002) 471-496.

[3] R.P. Beyer, R.J. LeVeque, Analysis of a one-dimensional model for the immersed
boundary method, SIAM Journal in Numerical Analysis Vol. 29, No. 2 (Apr., 1992)
332-364.

[4] S. Chen, B. Merriman, S. Osher, P. Smereka, A simple level set method for solving
Stefan problems, Journal of Computational Physics 135 (1997) 8-29.

[5] I.L. Chern, Y.C. Shu, A coupling interface method for elliptic interface problems,
Journal of Computational Physics 225 (2007) 2138-2174.

[6] J. Glimm, M. J. Graham, J. Grove, X. L. Li, T.M. Smith, D. Tan, F. Tangerman, Q.
Zhang, J, front tracking in two and three dimensions, Comp. Math. 7 (1998) 1-12.

[7] F. Gibou, R.P. Fedkiw, L.T. Cheng, M. Kang, A second-order- accurate symmetric
discretization of the poisson equation on irregular domains, Journal of
Computational Physics 176 (2002) 205-227.

[8] D. Juric, G. Tryggvason, A front-tracking method for dendritic solidification,

Journal of Computational Physics 123 (1996) 127-148.

[9] X.M. Jiao, H.Y. Zha, Consistent computation of first- and second-order differential
quantities for surface meshes, ACM Solid and Physical Modeling Symposium
(2008) 159-170.

[10] X.L. Li, J. Glimm, X.M. Jiao, C. Peyser, Y.H. Zhao, Study of crystal growth and
solute precipitation through front tracking method, Acta Mathematica Scientia

30B(2) (2010) 377-390.
111

[11] Z.L. Li, Immersed interface methods for moving interface Problems, Numerical
Algorithms 14 (1997) 269-293.

[12] Z.L. Li, The immersed interface method — a numerical approach for partial
differential equations with interfaces, Ph. D. Thesis, University of Washington
(1994).

[13] Z.L. Li, The immersed interface method: numerical solutions of pdes involving
interfaces and irregular domains, SIAM Frontiers in Applied mathematics 33
(2006).

[14] Z.L. Li, Fast and accurate numerical approaches for Stefan problems and crystal
growth, Numerical Heat Transfer Part B (1999), in press.

[15] R.J. LeVeque, Finite difference methods for ordinary and partial differential

equations: steady-state and time-dependent problems, SIAM (2007).

112

http://www4.ncsu.edu/~zhilin/Li_cover.jpg
http://www4.ncsu.edu/~zhilin/Li_cover.jpg

