
 

國立臺灣大學理學院數學所 

碩士論文 

Department of Mathematics 

College of Science 

National Taiwan University 

Master Thesis 

 

界面耦合法在移動界面問題上的應用 

    Solving Some Moving Interface Problems by the 

Coupling Interface Method 

 

 

 

劉思瀚 

 Ssu-Han Liu 

 

指導教授：陳宜良 教授 

Advisor：Professor I-Liang Chern 

中華民國102年7月 

July 2013 





1 

誌謝 

能完成這篇論文，我要特別感謝我的指導教授陳宜良老師，也要感謝李曉林教授

提供FronTier library以及舒宇宸教授在程式修改上的指導。最後感謝每一個家人和

朋友一路上的支持與鼓勵。 



 

2 
 

中文摘要 

由陳宜良教授以及舒宇宸教授所提出的界面耦合法目的在笛卡兒網格下解橢圓介

面問題，此方法已被證明是處理界面問題中非常有競爭力的方法。在這篇論文,我

們把界面耦合法應用在不同問題上,例如:一維移動界面問題、二維固定界面的熱

傳導問題以及二維的融化問題等,我們也提供數值例子來驗證方法的收斂性。 

 

關鍵字: 界面耦合法、移動界面問題、交替方向隱式法、克蘭克－尼科爾森方法、

融化問題、界面追蹤法。 
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Abstract 

The coupling interface method (CIM) proposed by Chern and Shu aims for solving 

elliptic complex interface problems in arbitrary dimensions under Cartesian grid. It has 

been proven that the method is very competitive in dealing with interface problems. In 

this thesis, we apply the CIM to various problems, including one dimensional moving 

interface problems, two dimensional diffusion equations with fixed interface, two 

dimensional melting problems, etc. Numerical examples are presented to test the 

accuracy of the method in these applications.  

Keywords: coupling interface method, moving interface problems, ADI method, 

Crank-Nicolson scheme, melting problems, front tracking method  
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Chapter 1  

Coupling Interface Method in One Dimension 

In this chapter we review the coupling interface method (CIM) in one dimension 

under Cartesian grid for solving interface problems proposed by Chern and Shu[5]. It 

contains a first-order method (CIM1) and a second-order method (CIM2).  

Consider the elliptic interface problem on a domain        ,          on      . 

The elliptic coefficient        may have jumps across some interface points on      . 

We partition       into     subintervals evenly and define 

   
   

   
              

                                   

One basic assumption is that there is at most one interface point in each subinterval 

(which is achievable by refining meshes). A grid point    is called on-front if 

either           or             contains an interface point. Otherwise, it is called an 

interior point. At an interior point   , we approximate       
   by a standard central finite 

difference scheme. Namely, 

      
  

                                       

  
                                                            

At an on-front grid point   , we discuss the CIM1 and CIM2 below. In both methods, we 

call the side where    is located the     side, and the other side the     side (see figure 

1). Given an interface point       in             , the jump conditions at       are the 
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following: 

                                                                                                                                                 

                                                                                                                                         

 

Figure 1. 

CIM1 

The idea is to approximate   by linear functions on both side of the interface point. 

Suppose there is no interface point in          , we approximate   
  by 

  
  

       
 

                                                                                                                                        

Suppose there is an interface point    in          . First, we expand   in Taylor series 

about      from both side of the interface to get 

           
                                                                                                            

               
                                                                                                 

In particular, we have 
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where   
     

 
 and      . 

The jump condition         gives 

            
              

             

           
          

                                                                                                      

Second, we approximate    about      from both side of the interface to get 

            
                                                                                                                                

              
                                                                                                                             

The jump condition           gives 

        
      

                                                                                                                                 

Combining the two expressions (5) and (6), we can form a 2×2 linear system 

     
  
 

    
    

 
 
   

       
 

   
     

    
    

where 

   
      

     
    

Therefore, solving this linear equation, we have 

  
  

 

 
                     

 

  
                                                                                              

    
  

 

 
                     

 

  
                                                                                         

where                     . 

Let        be the number of the interface point in          . Here,              . We 

can combine (4) and (7) into one formula:  
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where       means that we approximate   
  from right.  

Similarly, we have 

      
  

 

 
                                          

 

  
                                 

where   
     

 
 (here and after we give a unified definition:   

       

 
). Here        

means that we approximate   
  from left.  

Combining (9) and (10), we get a unified formula: 

      
  

 

 
                                            

 

  
                                 

where 

                                                                                                                                                  

Finally, we approximate       
  by 

      
  

 

 
         

        
                                                                                                           

CIM2 

Suppose there is an interface point      in          . To derive CIM2, we further 

assume that there is no other interface points inside             . The idea is to 

approximate   by quadratic functions on both side of   . These involve six coefficients. 

They are determined by the two jump conditions and realizing    at      ,    ,      

and     . First, we expand   in Taylor series about    from both side of the interface to 

get 
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In particular, we have 

           
       

 
 
 

 
   

        
 

 
  
                                                                     

             
         

 
 
 

 
     

         
 

 
    
                                                 

The jump condition         gives  

             
         

 
 
 

 
     

          
       

 
 
 

 
   

        

        
 

 
    
         

 

 
  
               

After some calculations we can get 

  
  

 
          

   
 

 
            

                                                

Second, we expand    in Taylor series about    from both side of the interface to get 
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In particular, we have 

           
       

 
 
 

 
   

      
                                                                                       

           
         

 
 
 

 
     

        
                                                                          

The jump condition           gives 

      
         

 
 

 

 
     

        
            

       

 
 

 

 
   

      
                

After some calculations we can get 

       
 

 
     

       
 

 
       

      
         

 
     

       
 

               

Combining the two expressions (16) and (19), we can form a 2×2 linear system 

     
  
  

    
     

 
 
   

                                  
                                          

   
     

     
    

where 

 
 
 

 
 
                     

            

              

                    

   

 
 
 

 
              

             

             

             

   

   

  

 
        

 

 
        

     
 

 
        

 

 
   

    

Therefore, solving this linear equation, we have 
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where 

 
                                                                  

                                                     
   

 
                    

  

  
 

                     
  

  
 

   

with the corresponding coefficients: 

          
 

 
             

 

 
       

   
  

  
  

 
 
 

 
 
                                     

                             

                                                          

                                                               

  

 
 
 

 
 
                                                                 

                                                             

                               

                                         

   

 

Now, we try to unify the above finite difference formulae (20) and (21) into just one 

formula. At a grid point    , we assume    satisfies one of the following assumptions:  

1.    is an interior point. 

2. If there is an interface point    in            then there are no other interface points 

inside            .  

3. If there is an interface point    in            then there are no other interface points 

inside            .  
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Let us define an orientation indicator   to be 

   
 
  
 

   

                 

                 
                        

 

Define the following parameters: 

          
 

 
             

 

 
       

   
  

  
  

 
 
 

 
                                     

                           

                                                         

                                                              

                                                                                       

        
                                          
                                                        

                                                              

                             
     

  
       

With these notations, we can express   
   as 

  
   

 

  
                                                                                                                                   

Finally, we approximate       
  by 

      
    

   
      

   

                
 

 
      

 

 
          

 

  
                            

                
 

  
                 

  
 

  
                                                                        

where 
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In summary, at an interior point we adopt a standard central finite difference 

scheme, which produces       local truncation error. At an on-front grid point, the 

CIM1 produces       local truncation error and the CIM2 produces       local 

truncation error, so the global error is      and      , respectively. Refer to [5] for 

more information about the CIM (ex: stability of the coefficient matrix). 
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Chapter 2 

Application to One Dimensional Moving Interface 

Problems 

In this chapter we apply the coupling interface method to the one dimensional 

moving interface problems. The model problem we considered is the following: 

                                                                                                                        

  

  
               

    
                                                                                                                    

Here,      is the trajectory of the moving interface. We denote its left hand side by      

side and right hand side by   .The notation   ,   ,   
  and   

   are the limiting values 

of         and          from the left and right hand side of      . The function    

represents the velocity of the interface, which is a known function of  ,  ,    ,   ,   
   

and   
  and   is a constant. The coefficient          and the source term        are   

assumed to be smooth on both side of      but may be discontinuous at     . This is a 

parabolic problem and the solution in each domain          and           is smooth. 

Across the interface, there are two kinds of jump conditions considered. 

JC 1. Jump conditions of the form 

                                                                                                                                       

                               
                

                                                                      

     are given 
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JC 2. The solution on the interface 

                                                                                                                                                              

is given. One example is a mathematical model for solidification problems. 

Numerical method 

We partition       into     subintervals evenly and define 

  
 

   
                       

                                 

We use    as the temporal step size in time and assume the ratio      is a constant (ex: 

equals to 1). Using the Crank-Nicholson scheme, the semi-discrete difference scheme 

for (25) can be written in the following form: 

  
      

 

  
   

  
 

 
   

     
    

       
     

 

 
         

          
     

 

 
   

    
                  

where     
  and         

  are    and        at      
  , and   

  is a correction term for time 

which meaning will be discussed later. The interface location is determined by the 

trapezoidal method applied to (26) 

       

  
 
 

 
                                                                                                                                

where                        
      

    , and   ,     ,   
    are      ,          and  

    
     , respectively. 
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Spatial discretization 

Since the discussion here doesn’t concern with time, we will drop    or the 

superscript   for simplicity. At an interior point    , a standard central finite difference 

scheme is adopted. Namely, 

     
         

  
        

         
                                       

  
        

At an on-front grid point   , we approximate      by 

     
 

 
               

We study the following two kinds of jump conditions to compute         . 

JC 1. 

We use the CIM2 to get a first order approximation of         . As for   ,   ,   
   

and    
 , suppose the interface point   is situated in          . First, compute       and 

         by (20) and (21). Then by (14), (15), (17) and (18), we have 

       
       

 
 
 

 
            

 

 
         

         

         
         

 
 
 

 
               

 

 
            

         

  
   

       
 

 
 

 
                         

  
   

         
 

 
 

 
                              

JC 2. 

In this case, we can't directly apply the CIM2 since we don't know the value 
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of      . So, we go back and check how we derive the CIM2. Suppose the interface 

point   is situated in           and recall the definition of the following two parameters 

  
    
 

                                                                                                                                                       

                                                                                                                                                             

From (14) and (29), we can get 

            
       

 
 
 

 
            

 

 
         

         

                  
 

 
                     

From the above equation, we can compute       as 

      
 

 
 
        

                                                                                              

Combining (17) and (34) we can compute   
  as 

  
  

       
 

  
 

 
                

       
       

 
 

    

       
                                                                               

These formulas have an easy explanation, first we give a lemma. 

Lemma Given   ,   ,   ,   four points with   ,   ,    are distinct. Suppose U is a 

smooth function in an interval containing   ,   ,   ,  , then 

                                                                        

                                                                         

where 
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Proof:  

Expanding U in Taylor series about   ,    and    respectively and comparing the 

coefficients, we get the desired result.                                        

Define 

                                         

                                         

Then it’s easy to find that                

                  
 

 
 
        

                    

                  
       

 
 

    

       
                   

which are the same as (34) and (35). So we find out that (34) and (35) is just the Taylor 

expansion approximation using     ,    and   three nearby points.  

There remains one problem in computing the derivatives of   at an on-front point. 

If the interface      becomes closer and closer to a grid point as time changes, then the 

coefficients in (34) and (35) may become very large. To avoid this situation, at time 

level    , instead of using (34) and (35) to compute the derivatives, we use the following 

approximations: 
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where    and    are (32) and (33) at time   , respectively. Each of the above formula is 

a linear combination of two approximations. By using these formulas, we still get the 

same order of accuracy as before and the magnitudes of the coefficients in (36) and (37) 

will be of order       . Similarly, at     we use the following approximation 

       
                                                                                           

  
                        

                       
                                                     

For time level     , we still use (37) and (39) (change n to n+1) to compute   
      (in 

order to compute     ). However, in forming linear system, we don't want to pollute 

our tri-diagonal linear system, so in this case we use (34) with one exception:  

If             , then set   
            (which is also second-order accurate) 

 

Grid crossing and the time correction term 

When discretizing the time derivative term, we need to pay more attention since 

the interface is moving. In some situations we need to add a time correction term 

  
  discussed below.   

Suppose      
   and      

     are on the same side of the interface     , then 

  
      

 

  
 
 

 
      

         
                                                                                                

so there is no need for any correction and we set   
   . However, if the interface point 
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     crosses at    from time    to time     , say, at time   ,          ,  
          (see 

figure 2), then the time derivative of   may have a jump at      and we need to add a 

correction term   
 . The following theorem tells us how to choose   

 . 

 

Figure 2. (a)      increases with time (b)      decreases with time 

Theorem[11] Suppose the equation         has a unique solution    in the interval 

          . If we choose 

  
  

      

  
 
 

  
    

 

 
                                                                                                                    

then we can get a first order approximation of the time derivative of   

  
      

 

  
   

  
 

 
      

         
                                                                                      

Here               
          

  , where        
   and        

   are the limiting values 

of          from up and down side of     . Note that                 for the case in figure 

2(a), and                for the case in figure 2(b). 

Proof: 

First, by Taylor expansion, we express   
  and   

    about time    from each side of 

the interface to get 
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Subtracting (41) from (42), we obtain 

  
      

                               
             

   

                                                            
                                                              

Since 

     
          

          

     
            

         

                        
                  

we have 

        
   

 

 
      

       
     

 

 
                                                                                         

Therefore, combining (43) and (44) gives 

  
      

                                  
 

 
      

       
     

 

 
                

                                
 

 
                 

 

 
      

       
                                   

Divide both sides of (45) by    

  
      

 

  
 
      

  
 
 

  
    

 

 
              

 

 
      

       
            

We get the desired result.                                                                                 

Computing   
                                                                                                                    

Next, we discuss how to compute   
 . The computation of        is easy. 
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JC 1. 

                         

                             

                         

                           

JC 2. 

          

We also need to compute    and        . In order to get a first-order approximation of the 

correction term   
 , we need to get a second order approximation of      and a first order 

approximation of        . We follow the idea proposed by Li [11]. First we discuss how to 

find   .  

Suppose we have already known      and      (we will expain why we can make 

this assumption later). Using the trapezoidal method twice, we get 

      

     
 
 

 
                 

        

       
 
 

 
                   

Combining the above two equation and eliminate    , we get 

     

     
 
       
       

 
 

 
                                                                                                  

Using (46), we can compute   . First, we simplify the equation. 

Let            and set 
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With these notations, (46) becomes 

  
   

 
  

      
            

After some arrangements, we get the following equation 

                                         

So we can solve this by quadratic formula 

    
        

         

   
                                                                                                       

It's very important to decide which solution is the correct one (which is not 

mentioned in [11]); otherwise we may get the wrong estimation of    . We separate it into 

four different situations. 

              

              

In this case, since                  
           , 

           
         

         

   
                       

Therefore, 

                 
        

         

   
  

               

In this case, since          , we have         
           . 
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Combining this fact and  
 
  , we have 

               
         

         

   
                       

Therefore, 

                    
        

         

   
  

                           

         
        

         

   
 

           
         

         

    
 

           
 

 
   

   
    

 
    
    

 
 

    
         

                        
   

           
 

 
   

   
    

 
   
    

 
 

    
                

 
               

           
 

 
   

   
    

 
   
    

 
 

    
                 

            
 

 
   

   
    

 
   
    

 
 

    
                                        

            
 

 
   

   
    

 
   
    

 
 

    
                                       

                                    

Therefore, 

               
        

         

   
  

              

              

Similar to (A)(I), 
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Therefore, 

                  
        

         

   
  

               

Similar to (A)(II), 

               
         

         

   
                       

Therefore, 

                      
        

         

   
  

                           

         
        

         

   
 

          
 

 
   

  
   

 
  
   

 
 

   
         

                        
   

          
 

 
   

  
   

 
  
   

 
 

   
                

 
                 

          
 

 
   

  
   

 
  
   

 
 

   
                          

           
 

 
   

  
   

 
  
   

 
 

   
               

                             

Therefore, 

               
        

         

   
                                                                                               

Next, we discuss how to compute        . 

JC 1. 

First, we differentiate the jump condition                      to get 
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From this we can find that   

     
  

  
                                                                                                                                               

            

By Taylor expansion, we have      

           
        

         

           
        

           

            
          

         

            
          

           

We use these quantities to approximate       

                  
      

           
      

      
        

    

Combining the above approximation and (48), we can estimate         

                         

                   
  

  
          

      
           

      
      

        
   

                  
  

  
          

        
         

      
      

        
                                                               

            

Similarly, we can approximate        by 

                  
        

         
    

        
      

    , 

and get an estimation of         
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JC 2. 

In this case, with the knowledge of    
 ,   

    and the solution on the interface, we 

can get a simple estimation of         

        
  
         

       
 
        

 

     
                                                                                                     

Note that the discussion above is still valid even if the interface crosses several 

grid points during one time step. However, if we choose smaller time step (ex∶      ) 

so that the interface crosses only one grid point during one time step, we will get a 

smaller error constant. 

Time step restriction 

Since we use the Crank Nicholson scheme, we don't worry about the time step 

restriction from finite difference discretization. However there is a restriction from 

moving interface based on the classical stability theory: 

          
 

     
    

Since 

  

  
 
  

  
    

we have 

           
 

     
    

or in discrete form 
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Numerical algorithm 

Since we need to know the information at time level      in advance in order to 

compute the time correction term, we use the predict-correct approach to solve this 

problem. The local truncation errors are       at most grid points, but      at two on 

front grid points and those grid points where the interface crosses. So the global error is 

second order accurate at all grid points. Below is the detailed process.  

Algorithm 1 

Choose a tolerance   (the meaning of   will be clear soon). Suppose we have obtained 

all necessary quantities at the time   , in other word, we have computed   
 ,    and    . 
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    (However, we still use to   
    compute these 

quantities). Set 

       
        

   

 
                    

      
     

   

 
         

        
          

          
          

      

         
      

       

                
      

     

            
        

     

                     . 

                
      

       

                     
          

                                          

                
        

     

                         
      

                               
   

       
      

     Go to next time level. 
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Numerical examples 

JC 1.  

Example 1. 

                                                               

  

  
 
     

      
        

    
         

    
          

with 

   
                       

                        
                                 

   
  

 
     

  

 
   

The jump conditions used are 

     , 

                                    
                         

     

The exact solution is 

        
                 

                                        

                    
                            

  

Since we assume the solution u is continuous across interface     , the interface      can 

be determined from the scalar equation: 

                 
                         

   . 

Figure 3 shows how the interface crosses the grid as         change. 

 

Figure 3. Moving interface     ,        , from left to right,         (3,1),(2,1),(1.8,1),(1,1). 
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Figure 4 shows the computed solution for     . Figure 5 shows the corresponding 

absolute error plot for      (recall that M is the number of the grid points). We see 

that the error in the solution in u is relatively large around the interface compared to 

other grid points. 

 

Figure4. The computed solution        at       with         (2,1) and       

 

 

Figure 5. The absolute error at t=0.1 with          (2,1) and       

Table 1 shows the results of the grid refinement analysis, where       is the error 

between      and the computed interface at the final time t. 
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Table 1.  Numerical results for example 1. 

       t=0.1  

                             

M max-norm error order      order max-norm error order      order 

40                                                 

80            2.087            1.830            1.747            1.699 

160            1.909            2.167            1.890            2.186 

320            1.942            2.071            1.954            2.102 

640            1.977            2.038            1.973            2.042 

1280            1.988            2.016            1.988            2.032 

       t=0.1  

                               

M max-norm error order      order max-norm error order      order 

40                                                 

80            1.887            1.952            2.038            2.229 

160            1.906            2.197            1.965            2.068 

320            1.960            2.103            1.963            2.027 

640            1.978            2.051            1.964            2.001 

1280            1.989            2.785            2.005            2.023 

As you can see, the faster the interface moves, the larger the      becomes. In fact, for 

        (1,1) and         (3,1), the interface crosses two grid points during the first 

few time steps. 

Example 2.[11](nonlinear case) 

                                            

  

  
 
     

      
        

    
         

    
          

with 

        
 

 

 
                     

                           

 
 

 
                         

              
   

   
                       

                        
                               ,    

  

 
     

  

 
   

The jump conditions used are 
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      ,                                     
                         

     

The exact solution is 

        
                 

                                         

                    
                            

  

Since we assume the solution u is continuous across interface     , the interface      can 

be determined from the scalar equation: 

                 
                         

     

Basically, this example is similar to example 1, except that we add a nonlinear term and 

a forcing term. 

 

Figure 6. The computed solution        at       with          (3,1) and       

 

Figure 7. The absolute error at       with         (3,1) an       
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Table 2. Numerical results for example 2. 

       t=0.1  

                             

M max-norm error order      order max-norm error order      order 

40                                                 

80            2.086            1.835            1.749            1.709 

160            1.909            2.167            1.884            2.181 

320            1.942            2.071            1.957            2.106 

640            1.975            2.037            1.972            2.046 

1280            1.989            2.016            1.989            2.027 

       t=0.1  

                               

M max-norm error order      order max-norm error order      order 

40                                                 

80            1.889            1.964            2.031            2.233 

160            1.905            2.196            1.965            2.068 

320            1.959            2.103            1.959            2.028 

640            1.977            2.051            1.963            2.002 

1280             1.989            2.026            2.006            2.022 

 

JC 2. 

Example 1.[11]  

This is a classical Stefan problem of tracking a freezing front of ice and water. 

   
 

 
                                                                 

  

  
 
  
 
    

     
  
 
    

                       

Here,      and     , where   is the heat conductivity,   is the specific heat ,   is 

the density and   is the latent heat. The following thermal properties are used: 

                                             

and 
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The interface condition used is 

         

The exact solution is 

       

 
 
 

 
      

             

    
                                       

      
              

             
                                  

  

             

where 

                  
  

  
        is the error function and   is the root of the equation: 

   
 

    
 
     

     

   
 
   

 

  

               
 
    

   
     

The value of   is 0.2054269… 

 

Figure 8. Moving interface     ,          
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Figure 9. The computed solution        at     with       

 

Figure 10. The absolute error at     and       

Table 3. Numerical results for example 1. 

 t=1 

M max-norm error order      order 

40                         

80            1.960            1.958 

160            1.975            1.852 

320            1.982            1.950 

640            2.003            1.967 

1280            1.990            2.040 
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Example 2.  

We retest example 1 in JC 1 and use the interface condition: 

                        
     

 

Figure 11. The computed solution        at       with          (1,1) and       

 

 

Figure 12. The absolute error at       with               and       
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Table 4. Numerical results for example 2. 

       t=0.1  

                             

M max-norm error order      order max-norm error order      order 

40                                                 

80            2.933            2.818             1.340            2.446 

160            1.549            2.087            1.741            2.129 

320            1.896            2.046            1.872            2.056 

640            1.905            1.964            1.937            2.022 

1280            1.965            2.005            1.969            2.015 

       t=0.1  

                               

M max-norm error order      order max-norm error order      order 

40                                                 

80            1.503            2.317            1.914            1.967 

160            1.791            2.142            1.933            1.904 

320            1.895            2.045            1.971            1.996 

640            1.948            2.029            1.985            2.010 

1280             1.974            2.011            1.992            1.986 

 

Table 5 shows the results of the grid refinement analysis using (34) and (35) (instead of 

using (36) and (37)) to compute the derivatives. As you can see, some Instability occurs. 

Table 5. Numerical results for example 2 

t=0.1 

                             

M max-norm error order      order max-norm error order      order 

40 ERROR  ERROR                          

80                                    1.324            2.795 

160            1.681            2.035            1.738            2.176 

320            1.908            2.038            1.872            2.057 

640            1.891            1.957            1.937            2.015 

1280            1.967            2.002            1.969            2.015 



 

42 
 

t=0.1 

                               

M max-norm error order      order max-norm error order      order 

40                         ERROR  ERROR  

80            1.516            2.309 ERROR  ERROR  

160            1.791            2.157                         

320            1.895            2.030 ERROR  ERROR  

640            1.948            2.024                         

1280            1.974            2.010            1.990            1.983 

Modification:  

We use the predict-correct approach to solve the moving interface problems. The 

numerical results confirm that our method converges to the exact solution with 

second-order accuracy. However, this method has two defects when we want to 

generalize it into higher dimensional moving interface problems. 

1. it’s time consuming to solve an implicit system iteratively in each time step. 

2. it’s hard to generalize the idea of (46) of finding grid-crossing time    to higher 

dimensional moving interface problems. 

In order to improve the disadvantages mentioned above, we make the following 

modifications. First, assume the equation is linear. i.e.    . 

1. Instead of using predict-correct approach, we use the Adams-Bashforth scheme to 

approximate the interface location. That is, 

               
  

 
                                                                                                  

2. Instead of using (47) to approximate the grid-crossing time   , we use the following 
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simpler method. Suppose there is a grid crossing at    from time    to time      at 

time   , then by Taylor expansion we have 

                                . 

  So 

           
     

                                                                                                                               

3. Instead of using (49) and (50) (in JC 1) or (51) (in JC 2) to approximate        , we use 

the following modified method. 

From (48), we have 

         
  

  
        

So 

             

  

  
                                   

      

 
  

  
                                

      

  

       

  

  
           

                                 

 
  

  
           

                              

                                                          

Combining (52), (53) and (54), we have the following simplified algorithm: 

Algorithm 2 

Suppose we have obtained all necessary quantities at the time   , in other word, we have 

computed   
 ,    and    . 
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(Adams-Bashforth scheme,       ) 

                  
   

                                    

              
     

                      
                   

                      
                   

                                           
  

  

                                       

   
  
      

 

  
     

  
 

 
         

          
     

 

 
   

    
      

                                            
     

           
                                                   

                 
   

        
     

  Go to next time level. 

Numerical results 

 

Table 6.  Numerical results for example 1 in JC 1. 

       t=0.1  

                             

M max-norm error order      order max-norm error order      order 

40                                                 

80            1.895            1.658            1.747            1.576 

160            1.904            2.161            1.890            2.149 

320             1.954            2.061            1.954            2.094 

640            1.978            2.039            1.973            2.044 

1280            1.989            2.017            1.988            2.026 
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       t=0.1  

                               

M max-norm error order      order max-norm error order      order 

40                                                 

80            1.878            1.869            1.842            2.151 

160            1.911            2.168            1.932            2.043 

320            1.955            2.089            2.003            2.090 

640            1.977            2.048            1.994            2.031 

1280            1.990            2.025            1.998            2.019 

  

 

 

Table 7. Numerical results for example 1 in JC 2. 

     

M max-norm error order      order 

40                          

80            2.198            2.113 

160            1.956            2.029 

320            1.972            2.003 

640            1.974             2.011 

1280             2.033            1.998 

 

 

 

Table 8.  Numerical results for example 2 in JC 2. 

       t=0.1  

                             

M max-norm error order      order max-norm error order      order 

40                                                 

80            2.125            2.265             1.345            2.112 

160            1.963            2.055            1.742            1.982 

320             1.871            1.998            1.872            2.059 

640            1.942            2.002            1.938            1.997 

1280            1.967            1.999            1.969            2.018 
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       t=0.1  

                               

M max-norm error order      order max-norm error order      order 

40                                                 

80            1.501            1.961            2.042            3.821 

160            1.790            1.995            1.926            0.132 

320            1.896            2.021            1.952            1.707 

640            1.948            2.013            1.948            1.991 

1280             1.974            2.012            1.966            1.980 

If the equation is non-linear (i.e.    ), the above method doesn’t work because 

we need to approximate the   
       

    term. In this situation, we still use predict-correct 

approach. However we can use (53) and (54) to simplify our computation of the time 

correction term. 

Table 9.  Numerical results for example 2 in JC 1. 

       t=0.1  

                             

M max-norm error order      order max-norm error order      order 

40                                                 

80            2.067            1.830            1.749            1.710 

160            1.901            2.175            1.884            2.180 

320             1.942            2.070            1.957            2.106 

640            1.975            2.037            1.972            2.046 

1280            1.988            2.016            1.989            2.027 

       t=0.1  

                               

M max-norm error order      order max-norm error order      order 

40                                                 

80            1.880            1.984            1.912            2.150 

160            1.910            2.201            1.921            1.997 

320            1.956            2.102            1.996            2.056 

640            1.976            2.051            1.983            2.012 

1280            1.990            2.026            1.997            2.011 
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In summary, we apply the CIM to the one dimensional moving interface problems 

using Crank-Nicholson scheme to solve the pde and prediction correction approach to 

move the interface. We verify the method is second-order accurate. We also make some 

modifications to make the computation and the generalization to higher dimension 

easier. 
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Chapter 3 

Coupling Interface Method in Two Dimensions 

In this chapter we review the coupling interface method (CIM) in two dimensions 

under Cartesian grid for solving interface problems [5]. It contains a first-order method 

(CIM1) and a second-order method (CIM2).  

Let             be our domain   of consideration. Denote the interface in   by  .  

Consider the elliptic interface problem           on   . The elliptic coefficient 

          may have jumps across  . We partition       into     subintervals evenly 

and define 

  
   

   
              

                                        

First, we classify the grid points into 2 categories. Let          and           denote 

the number of intersections of the interface    and the grid segment            

     and                , respectively. We assume             and            for 

all   and  . A grid point         is called an interior grid point if                     , 

i.e. none of its four neighboring segments intersects  . Otherwise, we call it an on-front 

grid point. At an interior point        , we approximate            and           by a 

standard central finite difference scheme. Namely, 
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At an on-front grid point        , we discuss the CIM1 and CIM2 below. In both 

methods, we call the region where         is located the     region, and the other region 

the     region. Given an interface point   in the  -direction, the jump conditions we 

know are      and        . Now, let             
    

   and           
    

   be the unit normal 

and tangential vectors of   at  , respectively (Note that the directions of         and        are 

irrelevant). First, we try to decompose the jump datum        into its tangential and 

normal directions. Since 

                                                     

                   
  

 
   

    
 
     

  
 
   
    

 
  

                    
  

 
  
     

  
 
  
      

  
 
  
 
    

  
 
  
 
   

therefore, 

 
   

  
 

   
  

 

   
   

  
 
  
     

  
 
  
 

   
  

 
  
 
    

  
 
  
        

Hence, from the above formula, we can get 
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Similarly, given an interface point   in the  -direction, the jump conditions we know 

are      and       . And we have 

      
         

 
    

          
    

     
      

 
                                                                          

where            
    

   and           
    

   are the unit normal and tangential vectors of    

at  , respectively. 

CIM1  

We deal with             first. We apply the one dimensional formula (11) to the 

  -direction to get 

            
 

 
                

        
      

                  
         

      

   
       ,     

where    
      

 is the extension of (12) in the  -direction and the coefficients are defined 

with respect to the intersection p. By (57) , we may rewrite (59) as 

            
 

 
                

        
      

                     
     

     
      

             

where 

 

            
     

                                             

   
      

     
          

      

   
  
     

        
   

  

It remains to compute    
   . Since 
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we approximate    
    and    

  
 
 by the following formulas: 

 
   

                     

   
  

 
            

      
                                                                                                                     

Combining (60), (61) and (62), we have  

       
 
  
 
 

 
     

  
 
 
  
    

        
  

 
        

  
 
 
  
             

 
  
  
            

  
 
   

     
  

 
           

After some arrangements of the above equation, we get 

 

 
                

        
      

                
      

  

                  
  

 
                           

   
 
            

                                         

 

Next, we consider            
. We apply the one dimensional formula (11) to the 

  -direction to get 

           
 
 

 
                

        
      

                  
         

      
   

                  

where    
      

 is the extension of (12) in the  -direction and the coefficients are defined 

with respect to the intersection   . Follow the similar procedure as in computing 

           , we have 

 

 
                

        
      

                
      

  

               
   

 
                             

 
 
 
            

                                          

where 
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Combining (63) and (65), we can form a 2 by 2 linear system 

 
                

  
 

              
   

 

              
   

 
                

 
 
   

           

           

  

 
 

 
 
                

        
      

                
      

 

                
        

      
                

      
 
   

    

    
    

Solving this linear system, we can get a first order approximation of              and 

           
. Finally, we approximate             and            by 

            

                                                     

  
                                

             
    

 
                                                                   

        

          
  

                                                     

  
                                 

             
    

 
            

            
                                           

       

CIM2 

First, we classify the on-front grid points into normal and exceptional. We define the 

interface orientation indicator           and           to be                    and           

        , respectively. A normal on-front grid point         is defined to satisfy the 

following conditions: 

(a)                           

So           have three possible values:         nd  

             the only interface point in                  is contained in               . 
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                the only interface point in                                                . 

                there is no interface point in                 . 

(A parallel argument applies to the y-direction) 

(b) If            , then           . 

(A parallel argument applies to the y-direction) 

(c) If            , then 

    

                                                         

                                                                      

                                                                    

  

(A parallel argument applies to the y-direction) 

Condition (a) and (b) mean that we can apply the CIM2 to both    and  -directions. 

Condition (c) allows us to approximate the cross derivatives by one-side interpolation 

(its meaning will be clear soon). Figure 13 contains all 8 possible cases of a normal 

on-front grid point. 

 

Figure 13. 8 possible cases of a normal on-front grid point. Bullet: grid point. Curve: interface. No  

interface crosses through straight lines 
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Given a normal on-front grid point        , our purpose is to derive a first order 

approximation of            and         . We deal with          first. For simplicity, we 

drop the sub-index       from         . We apply the one dimensional formula (23) to the 

  -direction to get  

         
 

  
   

                      
              

   
      

   
                           

where   
     is the extension of (22) in the  -direction and the coefficients are defined 

with respect to the intersection p. By (57) , we may rewrite (68) as 

         
 

  
   

                 
     

                                                                               

where 

 

          
     

    
                                                                                         

                  
              

    
      

   
  
    

        
    

  

It remains to compute    
   . Since 

   
                  

                
     

     
  

 
  
 
                                                                                                                       

we need to approximate    
    and    

  
 
. First, we approximate    

   . 

Assume     . By (17) we may compute    
    as 

   
    

           

 
  

 

 
                     

By a similar derivation for the case       we can get a unified formula: 
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where             is defined as 

               

 

 
                                 

                                          
                                               

  

 

Next, we approximate    
  

 
. By Taylor expansion we have 

   
  

 
         

     
  

   
              

               
          

  
   
        

By one-side interpolation we know 

    
  

   
     

       
           

 
        

so  

   
  

 
              

             
                                                                                       

It suffices to approximate         and           
 . We separate it into three cases. 

(A)             

             
 
             

  
        

                
 
                   

  
                                    

   So from (72) we get 

         
  

 
        

             

  
     

                   

  
                                       

(B)             
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   So from (72) we get 

        
  

 
         

           

 
     

                 

 
  

 

 
        

                       

(C)              

             
 
           

 
 
 

 
        

         

                
 
                 

 
 
 

 
           

         

So from (72) we get 

         
  

 
         

           

 
     

                 

 
  

 

 
        

                      

Combining (73), (74) and (75), we can derive a unified formula for    
  

 
: 

   
  

 
       

 

 
              

 

 
                 

 

 
        

                                        

where               is defined as 

              

 
 

 
 

 
                                 

                                          

                                               

  

Combining (70), (71) and (76), we can write    
    as 

   
     

 

 
               

 

 
                

  

                        
 

 
              

 

 
                 

 

 
        

   
 
       

             
 

 
            

 

 
              

  
 

 
          

  
 
                                                 

where 
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Finally, combining (69) and (77), we derive 

         
 

  
   

               
 

 
            

 

 
              

  
 

 
          

  
 
    

                  

After some arrangements of the above equation, we get  

 

  
   

                     
      

         
 

 
         

  
 
           

  

 
        

   
 
         

                                     

 

Next, we consider         . We apply the one dimensional formula (23) to the 

  -direction to get 

        
 

 

  
   

    
                  

              
   

      

   
                      

where   
     is the extension of (22) in the  -direction and the coefficients are defined 

with respect to the intersection  . Follow the similar procedure as in computing         , 

we have 

        
 

 

  
   

    
             

     
 
                                                                           

where 

 

          
     

    
                                                                                         

                  
              

    
      

   
  
 
   

        
 
   

  

With the following estimation of    
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we can compute    
    as 

   
       

     
     

  
 
  
 
 

             
 

 
            

 

 
            

  
 
 
 

 
            

                                                  

where 

                    
 
                                       

   

Finally, combining (80) and (81), after some arrangements, we can get 

 

  
   

    
                 

 
     

  
  

 
        

   
 
                  

 

 
         

 
 
 
         

                                 

 

Combining (78) and (82), we can form a 2 by 2 linear system 

 
       

 

 
         

  
   

 
        

   
 

  

 
        

   
 

       
 

 
         

 
 
 
  

        

        

  

 
 

  
 
  
                     

    

  
    

                 
 
   

   
          

          
                                                                        

Solving this linear system, we can get a first order approximation of            and 

        . Finally we approximate            and           by 
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In summary, at an interior point we adopt a standard central finite difference 

scheme, which produces       local truncation error. At an exceptional on-front grid 

point, the CIM1 produces      local truncation error and at a normal on-front grid point, 

the CIM2 produces      local truncation error. Since the number of exceptional points 

is     , so the global error is      . Refer to [5] for numerical examples and more 

information about the CIM (ex: non-singularity of the coupling matrix). 
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Chapter 4 

Application to Two Dimensional Diffusion 

Equations with Fixed Interface 

In this chapter we apply the coupling interface method to the two dimensional 

diffusion equations with fixed interface. Let              be our domain    of 

consideration. Denote the interface in   by  . The model problem we considered is the 

following: 

  

  
                                                                                                                            

The coefficient            and the source term          are smooth functions in   

  but may have discontinuity across the interface  . This is a parabolic problem and the 

solution in each domain is smooth. Recall that given an on-front grid point        , we 

call the region where         is situated the    region, whereas the other the     region. 

Across the interface, there are two kinds of jump conditions considered. 

JC 1. Jump conditions at the interface of the form 

                                                                                                                                          

                          
      

                                                                                                

are given. As a model problem consider heat conduction with a heat source 

applied only along the interface  . Then          can be written as 

                                                 
 

. 
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From the differential equation we know that across  , the jump in temperature is 

zero. But there is a jump in the normal derivative which equals the strength of 

the source         

JC 2. The solution on the interface 

                                                                                                                                                           

     is given. 

Numerical Method 

We partition       into     subintervals evenly and define 

  
   

   
              

                                        

We use    as the temporal step size in time and assume the ratio      is a constant (ex: 

equals to 1). Using the Crank-Nicholson scheme, the semi-discrete difference scheme 

for (85) can be written in the following form: 

    
        

 

  
 
 

 
           

            
     

 

 
           

 
           

   
  

 

 
     

      
                     

where            
  and           

 
 are        and        at         

  , respectively. 

Spatial discretization 

Since the discussion here doesn't concern with time, we will drop    or the 

superscript    for simplicity. At an interior point         , a standard central finite 

difference scheme is adopted. Namely, 
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At an on-front grid point        , we study the following two kinds of jump conditions 

to compute            and           .
 

JC 1. 

At a normal on-front gird point         , we use the CIM2 to approximate 

           and           . At an exceptional on-front gird point        , we use the CIM1 

to approximate             and           . 

JC 2. 

In this case, we can't directly apply the CIM since we don't know the value of      . 

So, we follow the idea of JC 2 in chapter 2 (1-D moving interface problems). First we 

consider the  -direction; we separate it into three parts. 

(A)                     

   Denote the interface point in                 and                 by     

          and             , respectively. Then 

             
        

      
       

    and we approximate            by 

                  
    

 
                                

(B)                     
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Given       ,       ,        and       four points. Define 

         
                                                       

where 

            
 

              
         

 

              
        

 

              
      

   Then 

                  
                              

   (Since the interface is fixed, we don’t need to make any adjustment like we did in 

chapter 2), where    is the  -component of the interface point   and we approximate 

             by  

                   
 

  
                             

                 

(C)                     

We approximate            by 

                   
                                                     

  
        

A parallel argument applies to the y-direction. 

Numerical examples 

In the test problems below, the computational domain is                , and the 

interface   is the circle             . 

JC 1. 

Example 1. (update from [5] ) 
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where         . 

The jump conditions are chosen from the following exact solution: 

          

                                                                                                                
 

 
 

 
                    

  
 

             

  
                                         

 

 
 
   

 

Figure 14. The computed solution          at     with       

 

Figure 15. The absolute error at     and       
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Table 10. Numerical results for example 1. 

 t=1 

M Max-norm error order 

20             

40            2.499 

80            2.380 

160            2.176 

Example 2. 

          
                                       

 

 
 

                                
 

 
 

  

          
                                                                            

 

 
 

                                                                       
 

 
 

  

The jump conditions are chosen from the following exact solution: 

          
                                    

 

 
 

                                    
 

 
 

  

 

Figure 16. The computed solution          at     with       

 

0

10

20

30

40

0
10

20
30

40

-1

-0.5

0

0.5

1

x-axis

t=1    M=40

y-axis

c
o
m

p
u
te

d
 s

o
lu

ti
o
n
 u



 

66 
 

 

Figure 17. The absolute error at     and       

Table 11. Numerical results for example 2. 

 t=1 

M Max-norm error order 

20             

40            2.240 

80            1.970 

160            1.974 

JC 2. 

Example 1.(update from [5]) 

We retest example 1 in JC 1 and use the interface condition 

           
 

 
       

 

Figure 18. The computed solution          at     with       
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Figure 19. The absolute error at     and       

 

Table 12. Numerical results for example 1. 

     

M Max-norm error order 

20             

40            1.551 

80            1.806 

160            1.746 

 

Example 2. 

            

          

    
 

 
                                                                                                                                                

 

 
 

                  
 

 
             

 

 
                    

 

 
              

 

 
 

   

The interface condition is chosen from the following exact solution: 
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Figure 20. The computed solution          at      with       

 

 

Figure 21. The absolute error at      and       

 

Table 13. Numerical results for example 2. 

      

M Max-norm error order 

20             

40            1.983 

80            1.959 

160            1.976 
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Combining CIM with ADI method (Alternating Direction 

Implicit method) 

The classical ADI method for the problem                     is 

    
     

     
 

    
           

     
           

 
 
 

 
     

      
      

    
        

     

    
           

     
           

   
 
 

 
     

      
      

In other word, a single multidimensional implicit time step is replaced by a sequence of 

steps, each of which is implicit in only one coordinate direction. In addition, the 

equations can be solved along one line of grid points at a time, which can be solved 

easily. If there is no interface, this gives decoupled tri-diagonal systems to solve in each 

step: 

     
     

 
  

 
          

     
       

  
  

 
          

 
  

  

 

 

 
     

      
      

     
    

  

 
          

   
       

     
 
  

 
          

     
  

  

 

 

 
     

      
      

With this method, each of the two steps can be shown to give a first order 

approximation to the full heat equation over time     , so that     
     

represents a first 

order approximation to the solution at time       . Because of the symmetry of the two 

steps, the local error in the second step almost cancels the local error in the first steps, 

so that the combine method is second order over full time step. Because     
      does 

approximate the solution at time       , it's possible to simply evaluate the given 

boundary conditions at time       . First, without any modification, we apply the ADI 
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method to our problem.  

JC 1. 

Unfortunately, ADI method cannot be applied when          has jump across the 

interface. This is because when forming the linear system at time level        and     , 

we need to compute the coefficients used to approximate         
     

and         
   

 at 

normal on-front point (exceptional point is similar). When computing this, we need to 

compute the coefficients of   
           

      and    
         

   . From this, we find 

that   
      and   

    must both be zero and consequently          is required to be 

continuous across the interface. Assuming          is continuous across the interface, 

we redefine the normal on-front grid points to be the on-front grid points satisfy 

condition (a) and (b) in p.52~53 and the formulae in computing       and     by CIM 

can be simplified as follows: 

         

 
 
 

 
 

                                                     

  
                                           

 

  
   

                                                                 
                         

                         
  

 

 
                                                                                                                  

   

        
 

 
 
 

 
 

                                                     

  
                                          

 

  
   

    
                                                           

                       

                         
   

 

 
            

            
                                                                                      

   

where 
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with the corresponding simplified coefficients: 

           
   

 

 
           

   
 

 
         

   
  

   
 

 

      
   

 
 
           

   
 
 
    

  

 
 
 

 
               

                           

             
                    

            
 
                                                     

          
                                                               

  

(Replace   by   and   by   we get the coefficients for  -direction) 

            
 

 
    

      
                

      
        

           
 
 

 
    

      
                

      
        

where 

   
      

           
      

  
  
         

    

   
      

           
      

  
  
 
        

 
   

 

JC 2. 

In this case, no restriction on         . The formula in computing       and      by 
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CIM at grid point is  

        

 
 
 

 
 
                   

  
                                          

  
                                                         

 

 
                                                         

  

        

 
 
 

 
 
                   

  
                                          

  
                                                         

 

 
            

            
                                 

  

where 

            
        

      
       

Here              and              are the interface point in                  

and               , respectively. (A parallel argument applies to the y-direction) 

Numerical examples 

JC 1. 

Example 1.[12] 

            

          

                                                                                                                     
 

 
 

        
  

 
           

 

 
          

 

 
                             

 

 
 
   

The jump conditions are chosen from the following exact solution: 
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Figure 22. The computed solution          at      with       

 

Figure 23. The absolute error at      and       

 

Table 14. Numerical results for example 1. 

 t=   

M Max-norm error order 

20             

40            1.774 

80            1.917 

160            1.905 

320            1.970 
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Example 2. 

          . 

          
                                                 

 

 
 

                                             
 

 
 

  

The jump conditions are chosen from the following exact solution: 

          
                                  

 

 
 

                                       
 

 
 

  

 

Figure 24. The computed solution          at       with       

 

 

Figure 25. The absolute error at       and       
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Table 15. Numerical results for example 2. 

 t=0.5 

M Max-norm error order 

20             

40            1.921 

80            1.876 

160            1.823 

320            2.130 

JC 2. 

Example 1. (update from [5]) 

We retest example1 JC 2 in C-N case. 

 

Figure 26. The computed solution          at     with       

 

Figure 27. The absolute error at     and       
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Table 16. Numerical results for example 1. 

 t=1 

M Max-norm error order 

20             

40            1.746 

80            1.868 

160            1.933 

320            1.966 

Example 2. 

We retest example 2 JC 2 in C-N case. 

 

Figure 28. The computed solution          at      with       

 

 
Figure 29. The absolute error at      and       
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Table 17. Numerical results for example 2. 

      

M Max-norm error order 

20             

40            1.971 

80            1.960 

160            1.983 

320            1.992 

 

Numerical tests give promising results and the method appears to be second order 

accurate. However, from local truncation error table for interior points and normal 

on-front grid points (see table 18 and 19) 

Table 18. Local truncation error for JC 1. 

                                

M Max-norm  

LTE error 

order Max-norm  

LTE error 

order 

20 0.221  4.730  

40 0.206 0.101 4.641 0.027 

80 0.259 -0.330 6.104 -0.395 

160 0.244 0.086 5.676 0.105 

320 0.258 -0.081 5.887 -0.053 

Table 19. Local truncation error for JC 2. 

 
                          

M Max-norm  

LTE error 

order Max-norm  

LTE error 

order 

20 3.778  16.529  

40 4.283 -0.166 6.644 1.315 

80 130.686 -4.947 21.481 -1.693 

160 18.515 2.819 3.753 2.517 

320 47.997 -1.374 6.084 -0.697 
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Figure 30. Local truncation error at t= π⁄2 M=40 (example 1 JC 1). 

 

Figure 31. Local truncation error at t=0.25 M=40 (example 2 JC 1). 

 

Figure 32. Local truncation error at t=1 M=80 (example 1 JC 2). 
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Figure 33. Local truncation error at t=π M=80 (example 2 JC 2). 

We find out that the local truncation error at these points is only     . So there must be 

some cancellation in the errors. We are not sure whether such cancellation will always 

occur. For safety, we are going to do the local truncation error analysis and modify the 

ADI scheme by adding correction terms so that the local truncation errors at normal 

on-front points are      so we are guaranteed to get a second-order accurate solution. 

Local truncation error analysis 

For simplicity, assume    . 

JC 1. 

We define         and          to be the approximations of          and          by 

CIM, respectively. 

The difference scheme is 
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Adding the equations (91) and (92), we get 

    
        

 

  
    

     
    
     

 
 

 
    

     
     

       
     

 

 
     

      
                                           

Subtracting the equations (91) from (92), we get 

    
     

 
 

 
     

      
     

  

 
    

     
     

       
      

Substituting this into (93), we get 

    
        

 

  
    

      
 

 
     

      
     

  

 
    

     
     

       
      

 

 
    

     
     

       
     

 

 
     

      
       

This is the difference scheme which we actually use to get the next time solution     
   . 

We check each term one by one. 

Assume ∆t=h. 

    

       
    
        

 

  
        

     
          

    Nothing needs to be modified. 
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Nothing needs to be modified. 

    

       
 

 
     

      
         

     
         

   Nothing needs to be modified. 

    

   Before we discuss the    
      

 

 
     

      
     

  

 
    

     
     

       
      term, we 

give some estimations of    
     

     
       

   . Since all quantities are continuous in 

time, we can write 

   (i)                      

        
     

          
 
     

           

               
       

            
   

     
                                                                          

with     
      

         

So 

                
     

     
       

            
 
         

   
                                                                   

   (ii)  
                       

                         
  

        
     

          
 
     

          

               
       

            
   

     
            

with     
      

         

So 
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(iii)                       
                       

                         
    both conditions are false 

        
     

          
 
     

        

               
       

            
   

     
          

with     
      

         

So 

               
     

     
       

            
 
         

   
                                                                  

We separate    
      

 

 
     

      
     

  

 
    

     
     

       
      term into three cases. 

   (I)                            
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Nothing needs to be modified. 

(II)                       
                       

                         
    both conditions are false 

      
     

 
 

 
     

      
     

  

 
    

     
     

       
      

   
 

 
         

          
           

    
 

 
        

     
       

Nothing needs to be modified. 

                                                           

                 
     

 
 

 
     

      
     

  

 
    

     
     

       
      

                
 

  
  
          

 
 

 
     

      
        

     
  

  

 

 

  
  
          

    
     

     
       

      

We separate it into two parts 

                 
 

  
  
           

 

 
     

      
        

       term 
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      We need to modify this term. 

               
  

 

 

  
  
              

     
     

       
     term     

  (a) either (i) or (ii) holds for (i,j), (i-1,j) and (i+1,j) 

                      
  

 

 

  
  
          

    
     

     
       

     

                      
  

 

 

  
  
          

         
 
         

   
                                

                      
  

 

 

  
  
          

           
     

                

                        
 

 
  
          

         
     

      

                                                                              

          We need to modify this term. 

(b) else 

                      
  

 

 

  
  
          

    
     

     
       

     

                       
  

 

 

  
  
          

         
 
         

   
                              

                       
  

 

 

  
  
          

           
     

                

                                                                                 

Nothing needs to be modified. 

 

So we add two correction terms        
  and        

 
 to the difference scheme: 
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Thus, the actual difference scheme used to get the     
    becomes 

    
        

 

  
    

     
 
 

 
     

      
     

  

 
    

     
     

       
      

 

 
    

     
     

       
     

                           
 

 
     

      
            

         
 
  

We use        
  to correct the error in (D)(III)1. 

Choose 

       
  

 

 

 

  
    

     
   

    
      

then 

   
     

 
 

 
     

      
             

          
     

       

Next, we use        
 
 to correct the error in (D)(III)2(a). 

Since 

  
          

         
     

 

                   
     

              
     

                  
     

                    
     

 

        
                            

     
          

     
  

                           
     

          
     

    
                

     
              

     
  

                 
     

      

           
      

   
       

 

  
        

So if we choose 
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then 

  

 

 

  
  
          

    
     

     
       

            
 
       

 

Finally, in order to compute        
 

, we need to know how to compute       
 
. Suppose 

           We use the local coordinate transformation at p: 

 
 
 
   

  
   

 

   
 

  
 
  
    
    

          
 
    

  
  
   

  
    

 

  
 

  
 
  
 
 
      

Define 

                              

then 

                              

and 

                                     

                        
                                

   

                   

    
  

 

 
     

           
 
 
 
      

          
   

 
     

           
  

 
 

       
 
            

 
   

 
 
 
             

 
  
   

 
            

 
   

  
 
  

It remains to compute            
 

,             
 

 and            
 

  

Since in a neighborhood of  , the interface lies in the   direction, we can parameterize 

the interface locally by        with         and write the jumps as 
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Define                              . 

Since 

                                 
  

 
              

   
 
              

 
 
 
  

                                 
 
 
 
              

   
 
              

  
 
  

we have 

        
   

  
                

  

  
                                                                                    

1.compute            
 

 

differentiating (95) with respect to   we get 
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                    . 

                                            
 

                                                                              

Differentiating this with respect to   again we get 

           
 

  
                 

                     
      

                                       
                       

Let     and use (97) and        . We get 

           
 

             
                                                                                                               

2.compute            
 

  

From (98) we have 

 
   

  
                                                      

Combining this with (100), we can get 

           
 

             
 

  
   

  
 
     

 

     
     

 
 

                            
             

  

  
 
 

 

     
   

3.compute            
 

 

Since 

   
              

                         
                     
 

   
                         

                     

 
  

and 
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We can rewrite    
            as 

   
              

                         
  
    

 
     

        
 

   
                         

  
 
   

      

        
  

                              
               

                 
 

        
  

Therefore, 

                                 

                                               
     

 

        
  

Differentiating this with respect to   we have 

                           
                       

 

  
                 

                     
        

 

        
  

                                          
      

      

         
 
 

                      

Let     and        . We get 

                    
 

           
 

       

                          
 

          
                   

Hence 
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JC 2. 

We define         and          to be the approximations of          and          by 

CIM, respectively. Same as JC 1, assuming     , the difference scheme is 

    
        

 

  
    

      
 

 
     

      
     

  

 
    

     
     

       
      

 

 
    

     
     

       
     

 

 
     

      
       

Now, at interface point, following the idea discussed in JC 1, we only need to consider 

the following term    
      

 

 
     

      
     

  

 
    

     
     

       
      under the 

condition                     . 

   
     

 
 

 
     

      
     

  

 
    

     
     

       
      

      
 

 
        

         
     

  

 
    

        
     

          
      

           
 

 
     

      
     

  

 
    

     
     

       
            

     
  

where 

     
 

                    
         

 

                 
        

 

                 
   

We separate it into two parts. 
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So we may choose 

           
          

     
 
 

 
   

    
       

then 

         
 

 
        

         
         

 

 
     

      
           

     
        

  

               
     

       

2. 

We only need to consider the case when both                     and            

                 . From (94), we have 

        
     

     
       

            
 
         

   
        

so 

          
  

 
    

        
     

          
         

  

 
    

     
     

       
     

          
  

 
            

 
            

   
      

  

 
         

 
         

   
       

      
  

 
                

 
             

 
           

   
  

  

 
          

   
 

         
  

 
                

   
             

   
           

     
  

  

 
          

     
      

      
  

 
           

 
           

   
  

  

 
           

     
       

   
       

       
   

 
           

     
 
   

 
            

       
       

            

So we may choose 

            
 
 
  

 
           

     
       

   
   



 

92 
 

then 

         
  

 
    

        
     

          
         

  

 
    

     
     

       
            

 
       

However, it's impossible to know       
         

 in advance, so we can't compute 

            
 
  

          
             

           
    

                                                              

                                                                                                                                    
  

Numerical examples 

JC 1. 

Example 1.[12] 

 

Figure 34. The computed solution          at      and      with correction term. 

 

 

Figure 35. The absolute error at      and      with correction term. 
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Figure 36. Local truncation error at       and      with correction term. 

Table 20. Numerical results for example 1. 

 t=   t=    

M Max-norm error order Max-norm  

LTE error 

order 

20                         

40            1.756            1.168 

80            1.911            0.190 

160            1.903            1.010 

320            1.969            0.966 

 

Example 2. 

 

Figure 37. The computed solution          at       and      with correction term. 
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Figure 38. The absolute error at       and      with correction term. 

 

Figure 39. Local truncation error at        and      with correction term. 

Table 21. Numerical results for example 2. 

 t=    t=     

M Max-norm error order Max-norm  

LTE error 

order 

20                         

40            1.485            1.757 

80            1.737            0.660 

160            1.845            0.617 

320            1.906            1.038 

As you can see, the local truncation error is much smaller. 
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JC 2. 

Although we don't know how to compute        
 

, we still test an example to see what 

will happen if we know        
 

. 

Example 2. (Assuming        
 
 is known) 

 

Figure 40. The computed solution          at      and      with correction term. 

 

 

Figure 41. The absolute error at      and      with correction term. 
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Figure 42. Local truncation error at     and      with correction term. 

Table 22. Numerical results for example 2   

 t=   t=  

M Max-norm error order Max-norm  

LTE error 

order 

20                     

40            1.970       1.315 

80            1.960       1.649 

160            1.982       1.978 

320            1.992       1.548 

 

In summary, we apply the CIM to the two dimensional diffusion equations with 

fixed interface using Crank-Nicholson scheme and confirm its second-order accuracy. 

We also combine the CIM with ADI method and add some correction terms to make 

sure it is second-order as well.  
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Chapter 5  

Application to Two Dimensional Melting Problems 

In this chapter we apply the coupling interface method to the two dimensional 

melting problems. Let             be our domain   of consideration. Denote the phase 

transition interface in   by  . By conservation of energy, we have 

  

  
 

 

   
                                                                                                                        

where    is the specific heat at constant pressure,   is the density of the material,   is the 

thermal conductivity and    
 

   
 the diffusion coefficient. We denote the region, 

temperature, thermal conductivity, specific heat with constant pressure, density and 

diffusion coefficient of water (ice) by    ,    ,    ,    
 ,     and     (replace    by   ), 

respectively. See figure 43 for the relative position of water and ice. The rate of net heat 

deposited at the interface is 

               
   

   
    

   
   

   
    

      

Here the jump is taken from water to ice and     is the outward normal direction of ice. 

This net heat will be the latent heat to either melt or freeze (depending on the sigh of    ) 

the material at the interface. The energy balance at the ice-water interface can be written 

as  
 
                                                                                                                                                     

where   is the latent heat and    is the normal velocity of the moving front. Finally, the 

temperature at the interface is a constant (melting temperature) 
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Figure 43. The relative position of water and ice. 

Numerical method 

We partition       into     subintervals evenly like we did in previous chapters. 

As usual, we denote the mesh size and the temporal step size in time by   and   , 

respectively. The Crank-Nicholson scheme for (101) is 

    
        

 

  
 
 

 
             

          
 
  

 

 
             

            
   

                                       

 

Spatial discretization 

Since the discussion here doesn't concern with time, we will drop    or the 

superscript    for simplicity. At an interior point         , a standard central finite 

difference scheme is adopted. Namely, 
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At an on-front grid point        , as in JC 2 in chapter 4, we consider the  -direction 

first. We separate it into three parts. 

(A)                     

Denote the interface point in                 and                 by     

              and             , respectively. Then 

             
        

      
       

        and we approximate          by 

                
 

 
                                

(B)                     

Given       ,       ,        and       four points. Define 

        
                                                        

where                  is defined in (90).  

   Then 

                  
                            , 

where    is the  -component of the interface point   

(C)                     

We approximate            by 

               
                   

  
        

A parallel argument applies to y-direction. 
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Next we discuss how to compute    and    at interface points. We need to compute 

these quantities in order to approximate    and  
  

     
 . We give a first order and second 

order method to compute these quantities. 

Method 1 (first order method) 

Given an interface point p=(     ), Suppose we want to compute 
  

     
 at p in liquid 

state (the solid state is the same), consider the following point : 

     h   . 

Choose the grid points in liquid state which is the closest to   . We call this point 

       . By Taylor expansion we have  

                                 
                

We can easily get a first order approximation of         and        . Finally, we 

approximate 
   

     
 by 

   
    

 
      

 
       

Method 2 (second order method ) 

Given an interface point p=(     ), Suppose we want to compute       at p in 

liquid state, choose the grid points in liquid state which is the closest to p (the solid state 

is the same). We call this point        . By Taylor expansion we have 
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So it suffices to find a second order approximation of         and        , and a first 

order approximation of               
        .

 We follow the idea in the CIM. 

  ) approximation of          

   (A)                     

     1.       

We approximate          by 

                       
          

       
 

       
       

where          is an interface point in                

2.       

We approximate          by 

                        
    
            

  

      
        

where          is an interface point in                

   (B)                     

We approximate          by 

                     
 

 
                

 

 
                 

 

(II) approximation of          

   (A)                     
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   (B)                      

      If                                                , then 

                      
     

             

   
   

                   

   
         

      Else if                        , then 

                          
           

  
   

                 

  
         

      Else if                        , then 

                         
           

  
   

                 

  
          

      Else 

                             

   (C)                      

If        , follow (B) and set     . If        , follow (B) and set      . 

A parallel argument applies to y-direction. 

 

Representation of the interface location 

We use the front tracking method (FronTier library[6]) to simulate the melting 

problem. Front tracking is a numerical method in which the interface is explicitly 

represented in the discrete form of curves in two dimension. The discrete solution is 

based on a composite grid that consists of a spatial grid, together with a co-dimension 
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one grid that represents the tracked fronts. In two space dimensions the front consists of 

curves with piecewise linear segments called bonds.  

When using front tracking method, a robust and stable calculation of curvature on 

a discretized interface mesh is required to give an accurate growth rate of the ice-water 

interface. Several methods have been proposed to estimate the normal vector at each 

vertex of a discrete mesh. FronTier library use the method of local least square fitting: 

first they construct a local coordinate system by defining a height function and then 

perform polynomial fitting to obtain derivatives, and finally convert the derivatives to 

normal or curvature. For the details, refer to [9]. In 2D, the curve is defined by a height 

function      . Given a height function  , let    denote its first derivative. The 

function   defines a curve composed of points             and the unit normal vector 

to the curve is 

    
          

         
  

Although the CIM is a second order method, the FronTier library only provide 

explicit Euler method to compute the interface in melting problem, so the overall 

method is only first-order. 
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Numerical examples 

Example 1. 

  

  
                                                                 

          

            

with 

          

                                                                                          

                 
 

      
                       

  

The exact solution is 

          
                                                                      

                                              
  

 

Figure 44. The computed interface at        with        

Table 23. Numerical results for example 1. 

        

M max-norm error order       in interface 

location 

order 

32                         

64            1.858            1.911 

128            1.929            1.504 

256            1.964            0.873 
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Example 2. 

  

  
                                                                  

          

            

with 

         

 
 
 

 
  

 
    

 

 
  

 

 
       

 

 
  

 

      
                   

 

 
    

                                                                                             
 

 
    

  

The exact solution is 

         

 
 
 

 
     

 

 
  

 

 
       

 

 
  

 

      
                      

 

 
    

                                                                                                      
 

 
        

  

 

Figure 45. The computed interface at        with        

Table 24. Numerical results for example 2. 

        

M max-norm error order       in interface 

location 

order 

32                         

64            0.571            2.039 

128            0.660            1.295 

256            0.721            1.857 
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Remark : 

1. If we can get a second order approximation of the interface location, then in order to 

get an overall second order accuracy we need to consider the grid crossing and the time 

correction term (like in the 1-D case): 

    
        

 

  
     

  
 

 
             

          
 
  

 

 
             

            
   

                    

where     
  is a correction term for time. Suppose         

   and         
     are on the 

same region of the interface, then there is no need for any correction and we set     
   . 

However, if there is a grid crossing at          from time     to time      , say, at 

time   ,            (see figure 46), then like what we did in chapter 1 we need to add 

a correction term     
  to make sure the time derivative of    has at least first-order 

accuracy. The following theorem tells us how to choose     
 . 

 

Figure 46.  

Theorem If there is a grid crossing at         from time    to time      at time    

         , then if we choose 
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then we can get a first order approximation of the time derivative of   

    
        

 

  
     

  
 

 
        

           
                                                                                   

where                  
             

  . 

Note that                       if         is in the water region at time    and in the ice 

region at time      (see figure 46(a)), and                      if         is in the ice 

region at time   and in the water region at time     (see figure 46(b)) 

The proof is exactly the same as in one-dimensional case, so we omit it. In order to 

find     
 , we need to compute    and        . First we discuss how to find   . If there is a grid 

crossing at         from time    to time      at time   , then at time    by front tracking 

we may find two under-tracking interface points   
  and   

  with corresponding normal 

vectors     ,      and normal velocities           ,respectively such that         lies in the 

region enclosed by four straight lines connecting   
 ,   

   ,   
    and   

  (see figure 47), 

where 

  
      

               

  
      

               

are the estimated positions of the interface at time     . Here       and       depend on 

how we approximate the interface location (ex.            and            if we use 

the forward Euler method). Then we may find            and         such that 
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and we estimate    by  

         . 

 

Figure 47. 

Next, we discuss how to find        . Like in the 1D case, we have the following formula: 

                             
  

    
             

So we may calculate         as 

                                     
  

    
            

  
     

  

    
    

                 

     
  

    
    

                 

                    

and 

                                     
  

    
            

  
      

  

    
    

               

      
  

    
    

                

                    

2. When we use the second order method to compute    and    at the interface points, 
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if the grid point         we choose lies in the following region (see figure 48), then the 

state we determine at         will be wrong. Consequently the error in computing 

   and    will become larger.   

 

Figure 48. 

In summary, we apply the CIM to the two dimensional melting problems using 

Crank-Nicholson scheme and front tracking method (explicit Euler method) to move the 

interface. The overall method is first-order. We also provide a second-order method to 

compute normal derivatives at the interface and a method to compute time correction 

term.  
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Chapter 6  

Conclusions 

 In this thesis, we apply the coupling interface method (CIM) to various 

interface problems. In one dimensional moving interface problems, combining the 

Crank-Nicholson scheme and prediction correction approach (latter on linear multistep 

method), we verify the method is second-order accurate. We also apply the CIM to the 

two-dimensional diffusion problems with fixed interface combining Crank-Nicholson 

scheme and ADI method. The result is second-order also. Finally, we apply the CIM to 

two dimensional melting problems. Although the overall method is first-order, we 

provide a second-order method to compute normal derivatives at the interface and a 

method to compute time correction term for future reference.  
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