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中文摘要 

本論文的主要目標為將支援向量機應用於洪災消減及災害預警上，主要可分為

以下兩個部分： 

當颱風來襲時，雨量預報在大部分災害預警系統中皆扮演了非常關鍵的角色。

為了能更快速的得到準確的降雨預報，各個防災單位總是積極研發各種新式的預

報模式。本研究提出一種稱為支援向量機(support vector machine, SVM)的類神經網

路，並以此為基礎架構有效的颱風時雨量預報模式。相較於傳統上較常被使用的

倒傳遞類神經網路，基於統計學習理論的支援向量機具有三項優勢。第一、支援

向量機具備了更佳的學習能力(generalization ability)，第二、支援向量機在架構和

權重的決定上保證有唯一解並且為全域最佳解，最後、支援向量機大量減少架構

模式所需的訓練時間。本研究以實際案例來說明支援向量機所具備的優勢。研究

結果顯示支援向量機相較於倒傳遞類神經網路不但能得到更加準確的預報結果，

並且有更佳的強健性，其中最大的優勢是能大幅的縮短架構模式所需的時間。除

了模式間的比較，為了能進一步提升長期預報的準確度，本研究更是新增了颱風

因子做為降雨預報模式的輸入項，並與沒加入颱風因子做為輸入項的模式進行比

較，以探討颱風因子對於雨量預報的影響。研究結果也證明了颱風因子可以有效

提升中長期預報的準確度。總結來說，本研究提出以支援向量機為基礎納入颱風

因子做為輸入項的預報模式確實能提升颱風時期雨量預報的準確度。而本模式亦
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預期能為洪水預報、土石流警戒等災害預警系提供幫助。 

對於洪水預警來說準確的流量預報是非常重要的關鍵。因此在第二階段的研究

中提出一個以支援向量機為基礎，整合型的洪水預報模式來提升洪水預報的準確

度。整合型的洪水預報模式可以分為兩個部分，雨量預報單元及流量預報單元。

在第一階段，將以雨量及颱風因子作為輸入項發展雨量預報單元。接著將預報雨

量及觀測流量作為輸入項發展流量預報單元。為了驗證整合型洪水預報模式的能

力，本研究另外架構了直接納入觀測流量、雨量及颱風因子的洪水預報模式進行

比較。並以實際發生的颱風事件作為研究案例並預報未來 1 至 6 小時的流量。研

究結果顯示第一階段的雨量預報單元可以得到合理的預報結果。而將此預報雨量

納入輸入項的整合型洪水預報模式，相較於直接納入各因子的洪水預報模式能得

到更為準確的預報結果，甚至連尖峰流量亦有顯著的改善。值得注意的是，本研

究提出的模式更是顯著的提升了中長延時的預報準確度。歸納結果，本研究提出

的模式有效的減少了輸入項和輸出項間，隨著預報時間延長所帶來的負面影響，

因此才能在中長延時仍能維持一定的準確度。而此一優勢將對於提升颱風時期洪

水預警的反應時間有所幫助。 

關鍵字：雨量預報，洪水預報，支援向量機，颱風因子，災害預警系統 
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Abstract 

The objective of this dissertation is to apply support vector machine for flood 

mitigation and disaster warning.  There are two major parts in this paper, which are 

summarized in the following manner. 

Typhoon rainfall forecasting plays a critical role in almost all kinds of disaster 

warning systems during typhoons.  To obtain more effective forecasts of hourly 

typhoon rainfall, novel models with better ability are desired.  Based on support vector 

machines (SVMs), which is a kind of neural networks (NNs), effective hourly typhoon 

rainfall forecasting models are constructed.  As compared with back-propagation 

networks (BPNs) which are the most frequently used conventional NNs, SVMs have 

three advantages: (1) SVMs have better generalization ability; (2) the architectures and 

the weights of the SVMs are guaranteed to be unique and globally optimal; (3) SVM is 

trained much more rapidly.  An application is conducted to clearly demonstrate these 

three advantages.  The results indicate that the proposed SVM-based models are more 

well-performed, robust and efficient than the existing BPN-based models.  To further 

improve the long lead-time forecasting, typhoon characteristics are added as key input 

to the proposed models.  The comparison between SVM-based models with and 

without typhoon characteristics confirms the significant improvement in forecasting 

performance due to the addition of typhoon characteristics for long lead-time 
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forecasting.  The proposed SVM-based models are recommended as an alternative to 

the existing models.  The proposed modeling technique is also expected to be useful to 

support reservoir operation systems and flood, landslide, debris flow, and other disaster 

warning systems. 

Accurate runoff forecasts are required to provide early warning of impending floods.  

In this part, an integrated flood forecasting model based on the support vector machine 

(SVM) is proposed to improve the flood forecasting performance.  In the first stage, 

the observed typhoon characteristics and rainfall are used to produce rainfall forecasts.  

Then the forecasted rainfall and observed runoff are used to yield runoff forecasts.  An 

actual application is performed to yield 1- to 6-h lead time runoff forecasts.  The 

results show that the rainfall forecasting in the first stage can generate reliable rainfall 

forecasts, and the proposed model can provide accurate runoff forecasts, especially for 

the peak values. It is worth noting that the proposed model can significantly improve the 

4- to 6-h lead time flood forecasting performance.  In conclusion, the proposed model 

effectively mitigates the negative impact of increasing forecast lead time and is useful to 

improve the long lead time flood forecasting during periods of typhoon. 

Keywords: rainfall forecasting, flood forecasting, support vector machines, typhoon 

characteristics, disaster warning systems.  
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Chapter 1 Introduction 

1.1 Motivations 

The island of Taiwan is situated in one of the main paths of the north-western Pacific 

typhoons. Each year, three to four typhoons attack the island on average.  The 

torrential rain brought by typhoons (tropical cyclones occurring in the western Pacific 

Ocean) frequently lead to serious disasters, such as flooding, landslide or debris flow.  

To mitigate disasters due to typhoons, the development of flood warning systems are 

always needed.  However, the highly non-linear and complex processes of typhoon 

rainfall and runoff make it difficult to construct a reliable physically-based model.  To 

obtain more effective forecasts of typhoon rainfall and runoff, the development of better 

models has always been regarded as an important task.   

An attractive alternative to the physically-based models is neural networks (NNs), 

which is a kind of information processing system with great flexibility in modeling 

nonlinear processes.  The conception of NNs was inspired by a desire to understand 

human brain.  Comprehensive reviews of the applications of NNs in hydrology have 

been presented by ASCE Task Committee (2000a, 2000b) and Maier and Dandy (2000).  

More recently, hydrologists, water resources engineers and managers have inspected 

more various applications of NNs for hydrologic forecasting, such as streamflow 
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forecasting (e.g., Tingsanchali and Gautam, 2000; Lin and Chen, 2004; Toth and Brath, 

2007), tidal level forecasting (e.g., Supharatid, 2003), and groundwater level forecasting 

(e.g., Lin and Chen, 2005a).  In addition to the great flexibility in modeling nonlinear 

systems, NNs are very suitable for being integrated with decision- support systems due 

to their high computational efficiency.  For instance, NN-based models have been 

integrated with reservoir operation systems (e.g., Khalil et al., 2005; Chaves and Kojiri, 

2007; Tu et al., 2008), city flood control systems (Chang et al., 2008), as well as debris 

flow warning systems (Chang et al., 2007). 

Because of their flexibility in modeling nonlinear systems and their computational 

efficiency, NNs have gained a considerable attention.  More recently, a powerful kind 

of NNs named Support Vector Machines (SVMs) have attracted the attention of some 

hydrologists but only limited application are examined, such as hydrologic time series 

analysis (Liong and Sivapragasam, 2002; Yu et al., 2004; Asefa et al., 2005; 

Sivapragasam and Liong, 2005; Yu and Liong, 2007), reservoir inflow forecasting (Lin 

and Chen, 2009a), and streamflow forecasting (Yu et al., 2006; Kalra and Ahmad, 2009).  

Based on statistical learning theory, SVMs have advantages over back-propagation 

networks (BPNs) which are the most frequently used conventional NNs.  Firstly, 

SVMs have better generalization ability to relate the relatively irrelative input to the 

desired output.  This advantage is very helpful to decrease the negative impact when 
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increasing forecast lead-time.  In other words, SVMs are capable of producing 

acceptably accurate forecasts for longer lead-time.  Secondly, the optimization 

algorithm for SVMs is more robust, and the architectures and the weights of the SVMs 

are guaranteed to be unique and globally optimal.  The performance of SVM-based 

models is more reliable because of the robust optimization algorithm.  Finally, SVMs 

are trained much more rapidly.  Thus, SVM-based models are more suitable to be 

integrated with disaster warning systems and decision support systems.   

Due to the aforementioned attractive advantages, SVMs have emerged as an 

alternative data-driven tool in many conventional NN dominated fields.  In this 

dissertation, SVMs were introduced and applied to typhoon rainfall and flood 

forecasting. 

1.2 Backgrounds and Inspiration 

1.2.1 Effective forecasting of hourly typhoon rainfall 

Rainfall forecasting plays a critical role in almost all kinds of disaster warning 

systems during typhoons.  In the Taiwan area, typhoon rainfall often causes casualties 

and has major economic impacts; however, it is an important water resource.  As a 

typhoon approaches the island, the major goal of reservoir operation is to control floods.  

But when the typhoon leaves, the goal switches to restore sufficient water for future 



4 
 

usage.  To achieve these two goals, reservoir operation should be appropriately 

conducted.  More effective (or more accurate and reliable) forecasts of hourly rainfall 

are required as a vital reference for hourly reservoir inflow forecasting and for making 

important reservoir operation decisions.  In addition, an improved hourly rainfall 

forecasting is expected to be useful to support flood, landslide, debris flow and other 

disaster warning systems. 

As to rainfall forecasting, applications of NNs have also been presented (e.g., Luk et 

al., 2001; Chiang et al., 2007), but studies on NN-based models for hourly typhoon 

rainfall forecasting are still limited.  To provide effective forecasts of hourly typhoon 

rainfall for being integrated with decision support systems, Lin and Chen (2005b) have 

assessed the potential of BPNs.  The results indicated that BPN-based models yield 

acceptable forecasts for a lead time of one to two hours only.  To provide effective 

warnings, longer lead-time forecasting is needed.  However, as the forecast lead-time 

increases, the correlation between desired output and available input decreases.  The 

data used for long lead-time forecasting include more relatively irrelative information 

which seriously undermines the performance of BPN-based models.  Based on 

previous studies (Lin and Chen, 2005b, 2008), the generalization ability of BPNs was 

not good enough.  To obtain effective forecasts of hourly rainfall for longer lead-time 

forecasting, it is justified to propose novel models with better generalization ability. 
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In this study, SVMs were used to construct typhoon rainfall forecasting models.  

Hong and Pai (2007) have constructed a SVM-based typhoon rainfall forecasting model 

with only antecedent rainfall as input.  Their forecasts were acceptably accurate but 

only for one-hour ahead forecasting.  With only antecedent rainfall as input, the 

performance of models usually decreases rapidly with increasing forecast lead-time.  

To further enhance the long lead-time forecasting, typhoon characteristics were 

regarded as key input and added to the proposed SVM-based models.  Lin and Chen 

(2005b) have confirmed that the trend of rainfall could be demonstrated by typhoon 

characteristics when a typhoon was nearby.  It is reasonable to speculate that typhoon 

characteristics are capable of providing valuable information for longer lead-time 

forecasting.  Such a speculation has prompted an investigation into the influence of 

typhoon characteristics on rainfall forecasting, in particular, for long lead-time 

forecasting. 

The objective of this study was to provide effective forecasts of hourly rainfall for 

supporting reservoir operation systems during typhoons.  For this purpose, SVM-based, 

instead of BPN-based models with typhoon characteristics were proposed to yield 1-to 

6-h lead time forecasts.  In order to compare SVMs and BPNs, BPN-based models 

with same input are also constructed.  Moreover, to assess the improvement in 

forecasting performances due to the addition of typhoon characteristics, two types of 
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model input (with and without typhoon characteristics) are designed for SVM-based 

models.  Finally, an application was conducted and 11 typhoon events were used in 

this study.  To reach just conclusions, cross validations were applied to evaluate the 

overall performance of the models and the statistical significance of the improvement in 

forecasting performance was identified by paired comparison t-tests.  The results 

demonstrated the superiority of the proposed models more clearly. 

1.2.2 Typhoon flood forecasting using integrated SVM 

To mitigate disasters caused by typhoons, accurate and reliable flood forecasts are 

essential to provide early warning of impending floods and their improvement has been 

verified as a crucial task.  In recent years, NNs have been successfully employed in 

various hydrologic modeling applications (e.g., de Vos and Rientjes, 2005; Hu et al., 

2007; Lin and Chen, 2004; Wu and Chau, 2011) and specifically for rainfall and flood 

forecasting (e.g., Chang et al., 2004; Chiang et al., 2007; Lin and Chen, 2005b; Lin et 

al., 2010; Luk et al., 2001; Pramanik et al., 2011; Rathinasamy and Khosa, 2012; Toth 

and Brath, 2007).  The major advantage of NNs is their capability to simulate complex 

relationship between desired output and available input given the existence of sufficient 

training datasets.   

However, flood forecasting performance of most NNs decreases rapidly with 
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increasing of the forecast lead time.  Operational agencies which are responsible for 

flood mitigation and warnings could well benefit from improved forecast accuracy of 

the longer lead times.  Multi-stage NN-based models were developed in attempt to 

achieve a longer as well as accurate forecast lead time (Chang et al., 2007; Lin and Wu, 

2011).  The concept of multi-stage NN-based models is that two or more NN-based 

models are connected.  Using the two-stage as an example, the connection between the 

two stages is that forecasted values from the first-stage module are used as input to the 

second-stage module.  It is widely known that rainfall is one of the most important 

inputs to flood forecasting model and the accuracy of long lead time flood forecasting 

can be advanced with more accurate rainfall forecasts.  Lin et al. (2009c) improved 

longer lead time streamflow forecast by adopting BPNs to predict rainfall as input to a 

Radial Basis Function (RBF)-based reservoir inflow forecasting model.  Chiang and 

Chang (2009) used Quantitative Precipitation Forecasting (QPF) information as input to 

Recurrent Neural Network (RNN)-based flood forecasting model and reported a similar 

finding, that is, the forecasted rainfall was capable of providing useful information for 

flood forecasting, especially for long lead time. 

In previous studies, multi-stage NN-based flood forecasting models were based on 

conventional NNs.  The architecture and the weights of these conventional NNs were 

determined by a trial and error procedure which consisted of iterative time-consuming 
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process.  Although the selection of NN-based models generally disregard the 

efficiency of the model training, it is essential to develop a well-performing model that 

can be quickly trained.   

In this study, an integrated support vector machine (SVM)-based model was 

developed to yield 1- to 6-h lead time runoff forecasts.  SVMs have been used for 

hydrologic time series forecasting (Liong and Sivapragasam, 2002; Sivapragasam and 

Liong, 2005; Wu et al., 2009; Yu and Liong, 2007; Yu et al., 2004).  More recently, 

Rasouli et al. (2012) employed SVM and other machine learning methods with weather 

and climate inputs to forecast daily streamflow.  According to statistical learning 

theory, SVM has better generalization ability and requires less training time than 

conventional NNs (e.g., BPN).  For both rainfall and inflow forecasting, Lin et al. 

(2009a, 2009b) demonstrated that SVM-based models outperform BPN-based models.  

Moreover, the development of SVM-based models is efficient and thus expected to be 

suitable for development of the integrated model presented herein. 

The objective of this study is to demonstrate an integrated SVM-based model for 

typhoon flood forecasting.  A rainfall forecasting module was established in the first 

stage to pre-process the typhoon information (namely, typhoon characteristics and 

rainfall) as well as to produce rainfall forecasts.  Afterwards, the rainfall forecasts 
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along with the observed runoff were used as input to the flood forecasting module in the 

second stage.  This procedure was expected to reduce the input dimensionality and 

improve the performance of the longer forecast lead times, especially for the prediction 

of peak runoff.    
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Chapter 2 Support vector machine 

In the early 1990s, Vapnik developed SVMs for classification and then extended for 

regression (Vapnik, 1995).  There are two major differences between the SVMs and 

the BPNs.  Firstly, instead of empirical risk minimization (ERM), the structural risk 

minimization (SRM) induction principle is used to construct SVMs.  For training 

BPNs, the only one objective is to minimize the total error (or empirical risk).  As to 

SVMs, according to the SRM induction principle, both the empirical risk and the model 

complexity should be minimized simultaneously.  The use of SRM induction principle 

results in the better generalization ability of SVMs.  Another major difference is the 

determination of the model architecture and the weights.  For BPNs, the architecture 

and the weights are respectively determined by a trial-and-error procedure and an 

iterative process (the error back-propagation algorithm), which both are very 

time-consuming.  Vapnik (1995) dispensed with the time-consuming training process 

and expressed the determination of the architecture and weights of SVMs in terms of a 

quadratic optimization problem which can be rapidly solved by a standard programming 

algorithm.  In this section, the methodology of the support vector regression (SVR) 

used in this paper is briefly described and more mathematical details about SVR can be 

found in several text books (Vapnik, 1995; Vapnik, 1998; Cristianini and Shaw-Taylor, 

2000).   
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Based on dN  training data )],(),...,,(),,[( 2211 dd NN yyy xxx , the objective of the 

support vector regression is to find a non-linear regression function to yield the output 

ŷ , which is the best approximate of the desired output y  with an error tolerance of  .  

Firstly, the input vector x  is mapped onto a higher dimensional feature space by a 

non-linear function )(x .  Then the regression function that relates the input vector x  

to the output ŷ  can be written as 

bfy  )()(ˆ T
xwx   (2.1) 

where w  and b  are weights and bias of the regression function, respectively.  Based 

on the SRM induction principle, w  and b  are estimated by minimizing the following 

structural risk function: 





dN

i

i

T yLCR
1

)ˆ(
2

1
ww  (2.2) 

where the Vapnik’s  -insensitive loss function L  is defined as 















yyyy
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yyyL

ˆfor     ˆ

ˆfor                   0
|ˆ|)ˆ(  (2.3) 

The first and second terms in Eq. (2) represent the model complexity and the empirical 

error, respectively.  The trade-off between the model complexity and the empirical 

error is specified by a user-defined parameter C  and 1C  is set herein. 

Vapnik (1995) expressed the SVR problem in terms of the following optimization 
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problem: 
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where   and  , which are slack variables, represent the upper and the lower training 

errors, respectively.  The above optimization problem is usually solved in its dual form 

using Lagrange multipliers.  Rewriting Eq. (4) in its dual form and differentiating with 

respect to the primal variables ( ξξw ,,,b ) gives 
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 (2.5) 

where   and   are the dual Lagrange multipliers.  Note that the solution to the 

optimal problem (Eq. (5)) is guaranteed to be unique and globally optimal because the 

objective function is a convex function.   
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The optimal Lagrange multipliers *  are solved by the standard quadratic 

programming algorithm and then the regression function can be rewritten as 





dN

i

ii bKxf
1

* ),()( xx  (2.6) 

where the kernel function ),( xxiK  is defined as 

)()(),( T
xxxx  iiK   (2.7) 

The kernel function used in this paper is the radial basis function: 

)||
1

exp(),( 2
xxxx  i

x

i
n

K  (2.8) 

where xn  is the number of components in input vector x . 

Some of solved Lagrange multipliers )(    are zero and should be eliminated 

form the regression function.  Finally, the regression function involves the nonzero 

Lagrange multipliers and the corresponding input vectors of the training data, which are 

called the support vectors.  The final regression function can be rewritten as 





sv

1

),()(
N

k

kk bKf xxx   (2.9) 

where kx  denotes the k th support vector and svN  is the number of support vectors.  

The architecture of a SVM is presented in Fig. 2.1. 
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Figure 2.1 Architectural graph of SVM 
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Chapter 3 Effective forecasting of hourly typhoon rainfall 

3.1 Application 

3.1.1 The Study Area and Data 

The study area is the Fei-Tsui Reservoir Watershed in northern Taiwan. The Fei-Tsui 

Reservoir is located downstream of three major tributaries (the Kingkwa Creek, the 

Diyu Creek and the Peishih Creek).  The reservoir has a surface area of 10 km
2
, a 

mean depth of 40 m, a maximum depth of 120 m, a full capacity of 406 million m
3
, and 

a total watershed area of 303 km
2
.  From 1988 to 2007, the maximum and average 

yearly rainfall is 5736.6 mm and 3808.6 mm, respectively.  Fig. 3.1 shows the study 

area and the locations of six rain gauges (Fei-Tsui, Pin-Lin, Shi-San-Ku, 

Chiu-Chiung-Ken, Bi-Hu and Tai-Pin).  The rainfall data are obtained from the Water 

Resources Agency and the typhoon characteristics are collected from the Central 

Weather Bureau.  The time periods of the data of rainfall and typhoon characteristics 

are hourly.  A total of 11 typhoon events with typhoon characteristics and rainfall data 

available simultaneously are used herein.  Table 3.1 summarizes the date of occurrence 

and duration of these 11 typhoon events.  The typhoon characteristics include the 

position of the typhoon center, the distance between the center and the reservoir, the 

maximum wind speed near the center, the atmospheric pressure of the center, the radius 

of winds over 15 m/s, and the speed of the typhoon movement.  
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Table 3.1 Descriptions of typhoon events used in the modeling 

Name of typhoon Date Duration 

(hour) 

Maximum 

wind speed 

(m/s) 

Maximum 

hourly 

rainfall 

(mm) 

Ted 1992/09/20 69 108 19.6 

Tim 1994/07/09 49 191 16.3 

Gladys 1994/08/31 32 126 31.0 

Seth 1994/10/08 75 184 18.7 

Herb 1996/07/30 70 191 46.7 

Haiyan 2001/10/15 28 130 14.1 

Rammasun 2002/07/03 32 165 22.5 

Nock-Ten 2004/10/24 44 155 35.4 

Haitang 2005/07/17 66 198 42.5 

Matsa 2005/08/04 48 144 31.2 

Talim 2005/08/31 43 191 42.6 

 

 

 

Figure 3.1 The study area 
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3.1.2 Development of Models 

In this study, SVM-based models with typhoon characteristics (SVM-RT) are 

proposed to yield 1- to 6-h lead time rainfall forecasts.  To make comparisons between 

SVMs and BPNs, BPN-based models with typhoon characteristics (BPN-RT) are 

constructed.  Otherwise, SVM-based models without typhoon characteristics (SVM-R) 

are also constructed to evaluate the improvement in forecasting performance due to the 

addition of typhoon characteristics.  Hence, a total of 18 NN-based forecasting models 

(SVM-RT, BPN-RT and SVM-R for 1- to 6-h lead time forecasts) are constructed.   

The SVM-R has a general form as 

 )1(1 ,,,  
RLttttt RRRfR   (3.1) 

where t  is the current time, t  is the lead-time period (from one to six hours), tR  

is rainfall at time t , and RL  denotes the lag length of rainfall.  The model 

development is schematized in Fig. 3.2(a).  Firstly, only rainfall is used as input and 

the lag length of rainfall ( RL ) is determined by the process shown in Fig. 3.2(b).  The 

criterion for selecting the lag lengths is the relative percentage error (RPE): 

   
 

100
1

RPE 



LE

LELE
 (3.2) 

where  LE  and  1LE  are the RMSEs for models with L  and 1L  lag 
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lengths, respectively.  In general, the RMSE decreases with increasing lag term.  

When the RPE is less than 5%, the increase of lag lengths is stopped.  Then rainfall is 

added to the input and the lag length of rainfall (LR) is determined by the same process. 

Once LR is determined, the inputs of SVM-R are completely specified. 

 

Figure 3.2 Flowcharts of (a) the model development and (b) the lag length 

determination 
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Based on the SVM-R, all typhoon characteristics (include the position of the typhoon 

center, the distance between the center and the reservoir, the maximum wind speed near 

the center, the atmospheric pressure of the center, the radius of winds over 15 m/s, and 

the speed of the typhoon movement) are then added to develop the SVM-RT and 

BPN-RT.  The form of the SVM-RT and BPN-RT is 

 )1(1)1(1 ,,,,,,,  
TYR LtttLttttt TYTYTYRRRfR   (3.3) 

where tTY  is typhoon characteristics at time t, and TYL  denotes the lag length of 

typhoon characteristics which is determined by the same process shown in Figure 3.2(b).  

To further investigate the influence of each typhoon characteristic on rainfall forecasting, 

a total of six models with single typhoon characteristic are constructed by individually 

adding each typhoon characteristic in turn to the model without typhoon characteristics 

(SVM-R). 

3.1.3 Cross Validation and Performance Measures 

For event-based data, the collected events are usually separated into two sets of data: 

training and testing.  Some events are chosen as training data and used to construct 

NN-based models.  Then the performance of the NN-based models is tested by the 

remaining events which are not used in the training process.  Different selections of 

training data and testing data produced different results and sometimes lead to different 
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conclusions.  To reach just conclusions, cross validations are conducted herein.  Each 

single typhoon event (except Typhoon Herb) is used to test the NN-based models in turn.  

Typhoon Herb yielded the maximum rainfall and should be used as training data.  

Then conclusions are drawn based on the overall performance for the 10 testing events.  

Three performance measures are used to evaluate the model performance herein. 

1. Coefficient of efficiency (CE): 














n

t

t

n

t

tt

RR

RR

1

2

1

2

)(

)ˆ(

1CE  (3.4) 

where tR  and tR̂  denote the observed and forecasted rainfall at time t , respectively, 

R  is the average of the observed rainfall, and n  is the number of forecasts.  If the 

CE  value is equal to one, the forecasts are perfect. 

2. Mean absolute error (MAE): 





n

t

tt RR
n 1

ˆ1
MAE  (3.5) 

3. Root mean square error (RMSE): 

 



n

t

tt RR
n 1

2
ˆ1

RMSE  (3.6) 
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3.2 Results and Discussion 

Table 3.2 presents the three performance measures (CE, MAE and RMSE) of three 

NN-based models (SVM-RT, BPN-RT and SVM-R) for 1- to 6-h lead time rainfall 

forecasts.  According to the three performance measures, the proposed SVM-based 

model with typhoon characteristics (SVM-RT) produces the best performance and 

BPN-RT performs the worst among all models.  To further identify whether SVM-RT 

performs significantly better than BPN-RT and SVM-R for the same testing event, 

paired comparison t -tests are conducted at the 1% significance level.  The equation of 

t -tests is defined as 

n
s

X

S

X
t

X

00  



  (3.7) 

The results listed in Table 3.3 show that SVM-RT significantly yields higher CE, 

lower RMSE, and lower MAE values than both BPN-RT and SVM-R.  To clearly 

demonstrate the superiority of the proposed models (SVM-RT), more performance 

comparisons are discussed in depth in the rest of this section. 
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Table 3.2 Coefficient of efficiency (CE), mean absolute error (MAE) and root mean 

square error (RMSE) for various models 

Lead time 

(hour) 

CE 

SVM-RT BPN-RT SVM-R 

1 0.44  0.35  0.43  

2 0.32  0.17  0.26  

3 0.24  0.04  0.17  

4 0.24  0.02  0.10  

5 0.21  -0.12  0.01  

6 0.21  -0.19  -0.02  

Lead time 

(hour) 

MAE (mm) 

SVM-RT BPN-RT SVM-R 

1 3.21  3.85  3.29  

2 3.59  4.34  3.77  

3 3.91  4.67  4.12  

4 3.93  4.82  4.31  

5 4.04  5.08  4.58  

6 4.20  5.32  4.75  

Lead time 

(hour) 

RMSE (mm) 

SVM-RT BPN-RT SVM-R 

1 5.14  5.54  5.21  

2 5.69  6.27  5.95  

3 6.04  6.81  6.30  

4 6.06  6.88  6.62  

5 6.23  7.40  6.96  

6 6.28  7.69  7.11  

 

Table 3.3 Paired comparison t-tests of three performance measures (CE, MAE and 

RMSE) resulting from SVM-RT and BPN-RT and from SVM-RT and SVM-R 

Model Alternate 

hypothesis 

t-statistic Statistically significant 

at the 1% level 

SVM-RT CESVM-RT>CEBPN-RT 3.18  Yes 

and MAESVM-RT<MAEBPN-RT 4.35  Yes 

BPN-RT RMSESVM-RT<RMSEBPN-RT 3.37  Yes 

SVM-RT CESVM-RT>CESVM-R 6.47  Yes 

and MAESVM-RT<MAESVM-R 7.20  Yes 

SVM-R RMSESVM-RT<RMSESVM-R 6.85  Yes 

Note: The critical t-value is 2.39. 
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3.2.1 The Improvement Due to the Use of SVM-based Models Instead 

of BPN-based Models 

To highlight the improvement in forecasting performance due to the use of 

SVM-based models instead of BPN-based models, we first focus on the comparison 

between the proposed SVM-based models (SVM-RT) and BPN-based models with the 

same input (BPN-RT).  As shown in Fig. 3.3(a), the CE values of both SVM-RT and 

BPN-RT decrease with increasing forecast lead-time.  However, it is clear that 

SVM-RT yields significantly higher CE values than BPN-RT for 1- to 6-h lead-time 

forecasting.  Thus, it is concluded that SVM-based models perform better than 

BPN-based models.  Fig. 3.3(a) also shows that the CE values of SVM-RT decrease 

more slowly than those of BPN-RT.  For 1- to 2-h lead time forecasts, the CE values of 

SVM-RT only decrease from 0.44 to 0.32, but those of BPN-RT rapidly decrease from 

0.35 to 0.17.  Then, for 3- to 6-h lead time forecasts, the performance of BPN-RT gets 

worse and the CE values are almost equal or even lower than zero.  It is clear that 

BPN-RT cannot yield effective forecasts when the forecast lead-time is greater than two 

hours.  As to SVM-RT, the performance is still acceptable for long lead-time 

forecasting.  For 3- to 6-h lead time forecasts, the CE values only decrease from 0.24 

to 0.21.  The use of SVM-based models instead of BPN-based models effectively 

decreases the negative impact of increasing forecast lead-time. 



24 
 

The improvement in CE due to the use of SVM-based models instead of BPN-based 

models presented in Fig. 3.3(b) more clearly shows that the proposed SVM-based 

models (SVM-RT) effectively improve the forecasting performance.  For 1- to 6-h lead 

time forecasts, the improvement in CE increases from 9% to 40%.  It is clear that 

SVM-based models are more appropriate for long lead-time forecasting than 

BPN-based models.  There are reasonable explanations for the results presented in Fig. 

3.3.  As the forecast lead time increases, the correlation between desired output and 

available input decreases.  Hence the data used for long lead-time forecasting include 

more relatively irrelative information and the models require better generalization 

ability to relate the input to the desired output.  Based on the statistical learning theory, 

SVMs have better generalization ability than BPNs.  Thus, a greater improvement in 

performance could be obtained by using SVM-based models instead of BPN-based 

models, especially for long lead-time forecasting. 
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Figure 3.3 (a) CE values of SVM-RT and BPN-RT and (b) the improvement in CE 

due to the use of SVM-based models instead of BPN-based models 
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According to other two performance measures (MAE and RMSE), similar results are 

also obtained.  For 1- to 6-h lead time forecasts, the bar charts presented in Fig. 3.4(a) 

and 3.4(b) clearly show that both MAE and RMSE values of SVM-RT are lower than 

those of BPN-RT.  In addition, the MAE and RMSE values of SVM-RT increase more 

slowly than those of BPN-RT with increasing forecast lead-time.  The negative impact 

of increasing forecast lead-time has been effectively decreased by using SVM-based 

models instead of BPN-based models.  The percentages of decrease in MAE and 

RMSE due to the use of SVM-based models instead of BPN-based models are presented 

in Fig. 3.4(c).  For 1- to 6-h lead time forecasts, SVM-RT respectively decreases MAE 

and RMSE values from 17% to 21% and from 7% to 18% as compared to BPN-RT.  

Again, the results confirm that the proposed SVM-based models (SVM-RT) effectively 

improve the forecasting performance. 
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Figure 3.4 (a) MAE, (b) RMSE values of SVM-RT and BPN-RT, and (c) the 

percentages of decrease in MAE and RMSE due to the use of SVM-based models 

instead of BPN-based models 
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3.2.2 The Comparison of Robustness between SVM-based and 

BPN-based Models 

A robust parameter optimization algorithm is required to construct a robust model 

which can yield reliable forecasts.  But for hydrological models, there are very limited 

studies on the related topics.  In addition to better generalization ability, the robustness 

of optimization algorithm for SVMs is one of the major advantages over BPNs.  For a 

robust optimization algorithm, the obtained optimal weights are slightly influenced by 

the initial conditions, such as initial weights.  On the contrary, the optimization 

algorithm is less robust, if obtained optimal weights highly depend on the initial weights.  

For BPNs, the weights are determined by an iterative process and the optimal weights 

depend on the initial weights which are usually set randomly.  Even when a BPN is 

trained with the same training data, but different initial weights may lead to different 

optimal weights and, of course, different forecasting performance.  Hence, enough sets 

of initial weights should be tried to get the globally optimal weights.  Based on our 

experiences, at least 30 sets of initial weights are required to obtain a reliable 

forecasting performance.  As to SVMs, the determination of the architecture and the 

weights is expressed in terms of a quadratic optimization problem with a convex 

objective function, and the weights are solved by the standard programming algorithm.  

The solved weights are guaranteed to be unique and globally optimal.  Thus, the same 
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optimal weights could be always obtained when a SVM is trained with the same 

training data.  Theoretically, the performance of SVM-based models is more reliable 

than that of BPN-based models 

To demonstrate the robustness of SVM-based models more clearly, SVM-RT and 

BPN-RT are taken for example herein.  Being trained with 10 typhoon events and 

tested by the remaining one event, SVM-RT yields a constant RMSE.  As to BPN-RT, 

different initial weights lead to different RMSE values even when the same training and 

testing data are used.  In this case, BPN-RT is trained with 30 different sets of initial 

weights and hence yields 30 different RMSE values for each testing typhoon event.  

The lack of robustness can be observed by the variation in RMSE, which is evaluated 

by the coefficient of variation (CV).  A higher CV value of RMSE represents the 

higher variation in RMSE and also indicates that the performance of BPN-RT is less 

reliable.  For each typhoon event, the CV is calculated from a data set of 30 RMSE 

values resulting from BPN-RT trained with 30 different sets of initial weights.  Fig. 

3.5(a) presents the CV values of 10 typhoon events.  Among 10 events, 6 events have 

CV values greater than 20% and 2 events exceeding 40%.  For Typhoon Gladys, 

BPN-RT yields the highest CV value of 50%.  The result clearly shows that BPN-RT 

lacks robustness.   
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To discuss the robustness of SVM-RT and BPN-RT in depth, the performance of 

SVM-RT and BPN-RT tested by Typhoon Gladys is highlighted.  Fig. 3.5(b) presents 

the RMSE values of BPN-RT trained with 30 different sets of initial weights and the 

constant RMSE value of SVM-RT.  As shown in Fig. 3.5(b), the constant RMSE 

yielded by SVM-RT indicates that SVM-RT is a robust model and the performance is 

reliable.  On the contrary, it is found that the variation in RMSE for BPN-RT is very 

significant.  The great variation in RMSE confirms that the initial weights have great 

influence on the forecasting performance of BPN-based models.  Thus, enough sets of 

initial weights should be tried to ensure the satisfactory and reliable results.  For the 

case of Typhoon Gladys, 16 sets (more that 50% of all sets) have significantly worse 

performances (with RMSE>10 mm).  It is reasonable to speculate that the iterative 

processes have been trapped in the local optimal solutions and such a situation can be 

completely avoided by the use of SVMs.  Based on the above results, it is concluded 

that SVM-based models are more robust than BPN-based models. 
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Figure 3.5 (a) CV values for each typhoon event resulting from BPN-RT trained 

with 30 different sets of initial weights.  (b) RMSE values of BPN-RT trained with 30 

different sets of initial weights and the constant CE value of SVM-RT (taking Typhoon 

Gladys as an example) 
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3.2.3 The Comparison of Efficiency between SVM-based and 

BPN-based Models 

Efficiency is an important issue for models, but the efficiency of hydrological models 

is only assessed in limited studies.  Lin and Chen (2005c, 2006) have examined the 

efficiency of BPN-based models and the results clearly show the time-consuming 

training process of BPNs.  In many conventional NN dominated fields, SVMs defeat 

BPNs because of much higher efficiency.  However, the high efficiency of SVMs has 

also received little attention in the hydrologic domain.  According to the previous 

study (Lin and Chen, 2009), SVMs are trained much more rapidly than BPNs.  In fact, 

the optimal architecture and weights of SVMs are rapidly “solved”, not “searched”.  

On the contrary, BPNs are trained by the error back-propagation algorithm which is a 

very time-consuming iterative process.  Based on the methodologies of SVMs and 

BPNs, it is obvious that the development of SVM-based models could be more efficient 

than that of BPN-based models.   

To demonstrate the high efficiency of SVM-based models more clearly, SVM-RT and 

BPN-RT are taken for example.  For BPN-RT, the architectures with one to ten hidden 

neurons are tested to determine the optimal architecture (the most appropriate number of 

hidden neurons).  For each number of hidden neurons, 30 different sets of initial 
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weights are tried during the training process.  The whole constructing process of 

BPN-RT requires 20000 seconds (about 5.5 hours), but the construction of SVM-RT 

needs only 2 seconds.  As compared to BPN-RT, only about 0.01% of time is required 

for SVM-RT.  Obviously, the development of SVM-based models is much more 

efficient than that of BPN-based models.  In addition, as compared to BPN-based 

models, the SVM-based models could be more rapidly retrained with real-time data and 

are more suitable to be integrated with the decision support system for real-time rainfall 

forecasting or real-time reservoir operation. 

3.2.4 The Improvement Due to the Addition of Typhoon 

Characteristics 

To highlight the influence of typhoon characteristics on rainfall forecasting, we focus 

on the performance comparison between SVM-R and SVM-RT.  As shown in Fig. 

3.6(a), the CE values of both SVM-R and SVM-RT decrease with increasing forecast 

lead-time.  However, the CE values of SVM-R decrease more rapidly than those of 

SVM-RT.  The results show that SVM-RT forecasts rainfall depth more accurately than 

SVM-R, especially for long lead time forecasting.  For 1- to 3-h lead time forecasts, 

the CE values of SVM-R and SVM-RT respectively decrease from 0.43 to 0.17 and 

from 0.44 to 0.24.  Then, the performance of SVM-R gets worse and the CE values 
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decrease rapidly from 0.10 to -0.02 for 4- to 6-h lead time forecasts.  It is clear that 

SVM-R cannot yield effective forecasts (i.e. CE<0) when the forecast lead-time is 

greater than four hours.  As to SVM-RT, the performance does not get worse for long 

lead-time forecasting.  For 4- to 6-h lead time forecasts, the CE values only decrease 

from 0.24 to 0.21.  The addition of typhoon characteristics effectively decreases the 

negative impact of increasing forecast lead-time.   

The improvement in CE due to the addition of typhoon characteristics is presented in 

Fig. 3.6(b).  As shown in Fig. 3.6(b), the improvement increases with increasing 

forecast lead-time.  For 1- to 3-h lead time forecasts, the improvement in CE only 

increases from 0% to 7%.  The improvement due to the addition of typhoon 

characteristics is not very significant for one- to three-hour ahead forecasts.  A much 

greater improvement in CE is obtained for the long lead-time forecasting.  The 

improvement in CE increases from 15% to 23% for 4- to 6-h lead time forecasts.  

Obviously, the addition of typhoon characteristics significantly improves the long 

lead-time forecasting. 
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Figure 3.6 (a) CE values of SVM-RT and SVM-R and (b) the improvement in CE 

due to the addition of typhoon characteristics 
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According to the other two performance measures (MAE and RMSE), similar results 

are also obtained.  Fig. 3.7(a) and 3.7(b) show that both the MAE and RMSE values of 

SVM-R increase more rapidly than those of SVM-RT.  Fig. 3.7(c) presents the 

percentages of decrease in MAE and RMSE due to the addition of typhoon 

characteristics.  For 1- to 3-h lead time forecasts, SVM-RT respectively decreases 

MAE and RMSE values from 2% to 5% and from 1% to 4% as compared to SVM-R.  

The percentages of decrease in MAE and RMSE values are not very significant.  

However, the addition of typhoon characteristics brings a greater decrease in MAE and 

RMSE values for the long lead time forecasting.  As compared to SVM-R, SVM-RT 

respectively decreases MAE and RMSE values from 9% to 12% and from 8% to 10% 

for 4- and 6-h lead time forecasts.  Again, the results confirm that typhoon 

characteristics effectively improve the long lead-time forecasting and decrease the 

negative impact of increasing forecast lead-time. 
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Figure 3.7 (a) MAE, (b) RMSE values of SVM-RT and SVM-R, and (c) the 

percentages of decrease in MAE and RMSE due to the addition of typhoon 

characteristics 
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To investigate the influence of each typhoon characteristic on rainfall forecasting, 

performance comparisons between models with single typhoon characteristic and 

models without typhoon characteristics (SVM-R) for 10 testing events are made.  The 

number of events for which the model with single typhoon characteristic yields a higher 

CE value than SVM-R is presented in Fig. 3.8.  Though only single typhoon 

characteristic is added to the model, improvement in performance could still be obtained 

for at least 40% of total events.  The results show that each collected typhoon 

characteristics are effective for typhoon rainfall forecasting.  Among all collected 

typhoon characteristics, the position of typhoon center is the most effective typhoon 

characteristic for improving rainfall forecasting.  The addition of the position of 

typhoon center improves forecasting performance for 90% of total events.  In addition, 

the distance between the center and the reservoir and the speed of the typhoon 

movement improves forecasting performance for 87% and 73% of total events, 

respectively.  It is noted that the aforementioned three typhoon characteristics (the 

position of typhoon center, the distance between the center and the reservoir, and the 

speed of the typhoon movement) are highly related to the typhoon path.  Thus, more 

accurate forecasts of typhoon path may be required to further improve the accuracy 

level of typhoon rainfall forecasting. 
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Figure 3.8 The number of events for which the model with each single typhoon 

characteristic yields a higher CE value than SVM-R 
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3.3 Summary 

To provide effective forecasts of hourly rainfall for supporting reservoir operation 

systems during typhoons, more accurate, robust and efficient models are proposed in 

this chapter.  For this purpose, SVMs, instead of BPNs, are adopted to construct 

forecasting models.  In addition to using SVMs instead of BPNs, typhoon 

characteristics are added to the proposed model to further improve the long lead-time 

forecasting.  An application is conducted to demonstrate the superiority of the 

proposed models.  Firstly, the forecasting performance of SVM-based models is 

compared with that of BPN-based models.  The results clearly show that SVM-based 

models yield acceptably accurate forecasts for 1- to 6-h lead time forecasts, but 

BPN-based models produce effective 1- to 2-h lead time forecasts only.  Hence 

SVM-based models perform much better than BPN-based models.  In addition, the 

other two major advantages of SVMs over BPNs are the robustness and the efficiency, 

which are very important but have received little attention in the hydrologic domain.  

Representative examples given in this paper indicate that SVM-based models are more 

robust and the development of SVM-based models is much more efficient. 

Finally, the comparison between the SVM-based models with and without typhoon 

characteristics is presented to confirm that the addition of typhoon characteristics 
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effectively decrease the negative impact of increasing forecast lead-time and 

significantly improves the forecasting performance, especially for long lead-time 

forecasting.  In conclusion, the proposed SVM-based models are more accurate, robust 

and efficient than existing BPN-based models, and the typhoon characteristics should be 

used as input to the typhoon rainfall forecasting models for long lead-time forecasting.  

The proposed SVM-based models with typhoon characteristics are recommended as an 

alternative to the existing models.  The proposed modeling technique is useful to 

improve the hourly typhoon rainfall forecasting and is suitable to be integrated with 

reservoir operation systems.  The proposed modeling technique is also expected to be 

helpful to support flood, landslide, debris flow and other disaster warning systems. 
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Chapter 4 Typhoon flood forecasting using integrated 

SVM 

4.1 Model development 

4.1.1 Model construction 

The architecture of the proposed two-stage SVM-based model (named SVM-QRf 

herein) is illustrated in Fig. 4.1a.  In the first stage, the rainfall forecasting module, 

which is developed based on SVMs, is used to pre-process the typhoon information 

(namely, typhoon characteristics and rainfall) and to produce rainfall forecasts.  Then 

in the second stage, the forecasted rainfall and the observed runoff are used as input to 

the flood forecasting module which is also developed based on SVMs.  For 

comparison with the proposed model, another SVM-based flood forecasting model 

(named SVM-QRT) with observed runoff, rainfall and typhoon characteristics is also 

constructed.  It should be noted that rainfall and typhoon characteristics are directly 

used as input to SVM-QRT without any processing (Lin et al., 2009a).  The 

architecture of SVM-QRT is illustrated in Fig. 4.1b.   
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Figure 4.1 Architectural graphs of (a) the proposed model and (b) the existing 

model 

 

The construction of the proposed model, SVM-QRf, is summarized below.  First, the 

rainfall and typhoon characteristics are used as input to the rainfall forecasting module.  

The general form of the rainfall forecasting module is 

),,,,,,,( )1(1)1(1  
TYR LtttLttttt TYTYTYRRRfR   (4.1) 

where t  is the current time, t  is the lead-time period (from 1 to 6 h), tR  is 

observed rainfall at time t , and RL  denotes the lag length of rainfall, tTY  is typhoon 
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characteristics at time t, TYL  denotes the lag length of typhoon characteristics, and 

ttR   is the forecasted rainfall at time tt  .   

Then, the forecasted rainfall ( ttR  ) and observed runoff data are used as input to the 

flood forecasting module in the second stage.  The general form of the proposed model 

is 

),,,,( )1(1 ttLttttt RQQQfQ
Q     (4.2) 

where tQ  is observed runoff at time t , and QL  denotes the lag length of runoff, 

ttQ   is the forecasted runoff at time tt  . 

As to the model without using forecasted rainfall (SVM-QRT), it has a general form 

as 

),,,,,,,,,,,( )1(1)1(1)1(1  
TYRQ LtttLtttLttttt TYTYTYRRRQQQfQ   (4.3) 

The flowchart of the development of SVM-QRf and SVM-QRT is shown in Fig. 4.2.  

In model construction, determination of the appropriate lag lengths of input is an 

important step.  A trial-and-error procedure is applied to determine the lag lengths of 

input.  The lag lengths, LTY, LR and LQ, are determined by the same process.  The 

criterion for selecting the lag lengths is the relative percentage error (RPE):   

   
 

100
1

RPE 



LE

LELE
 (4.4) 
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where  LE  and  1LE  are the RMSEs for models with L  and 1L  lag lengths, 

respectively.  In general, the RMSE decreases with increasing lag term.  When the 

RPE is less than 5%, the increase of lag lengths is stopped and the best inputs of 

forecasting models are selected.   

 

Figure 4.2 Flowchart of the model development 
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For event-based data, the collected events are separated into two sets of data: training 

and testing.  Some of the collected events are chosen as training data and used to 

construct NN-based models.  The performance of the NN-based models is tested by 

the remaining events.  Different selections of training data and testing data yield 

different results and sometimes lead to different conclusions.  In this study, we used 

cross validation and each single typhoon event (except the event with the 

maximum-runoff) is used to test the NN-based models in turn.  Hence, for N typhoon 

events, a total of N-1 testing results are obtained.  The conclusions are drawn on the 

basis of the overall performance for these testing results.   

4.1.2 Performance measures  

To evaluate the forecasting performance of models, three criteria are used.  They are 

listed below. 

1. Mean coefficient of efficiency (MCE) 

For a single testing event, the coefficient of efficiency (CE) is written as 














n

t

t

n

t

tt

QQ

QQ

1

2

1

2

)(

)ˆ(

1CE  (4.5) 

where tQ  and tQ̂  denote the observed and forecasted runoff at time t, respectively, 
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Q  is the average of the observed runoff, and n is the number of time steps.  If the CE 

value is equal to one, the forecasts are perfect.  Because the cross validations are used 

herein, the mean CE of N testing events is written as 






N

j

j
N 1

CE
1

MCE  (4.6) 

where CEj is the CE for the jth testing event. 

2. Root mean square error (RMSE) 

The RMSE is a measure which represents the errors between two sets of data.  The 

smaller the RMSE value, the better the forecasts.  The RMSE is written as 





n

t

tt QQ
n 1

2)ˆ(
1

RMSE  (4.7) 

3. Mean error of peak runoff (MEPR) 

For a single testing event, the error of peak runoff (EPR) is defined as 

p

pp

Q

QQ 


ˆ
EPR  (4.8) 

where pQ̂  and pQ  is the forecasted peak runoff and the observed peak runoff 

respectively.  The mean error of peak runoff of N testing events is written as 





N

j

j
N 1

EPR
1

MEPR  (4.9) 

where jEPR  is the error of peak runoff for the jth testing event.    
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4.2 Application, results and discussion 

4.2.1 Application  

Taiwan is located in one of the main paths of the north-western Pacific typhoons.  

During the past 100 years, on average, approximately four typhoons have hit Taiwan 

each year.  To mitigate disasters due to typhoons, accurate and reliable runoff forecasts, 

especially for long lead time, are required to provide early warning of impending floods.  

The study area is the Wu River basin in central Taiwan.  The elevation of this basin 

varies from 10 m to. 3500 m.  The basin with an area of 2026 km
2
 ranks fourth in 

Taiwan.  The length of the main river is 119 km and the average slope is 1/92.  In 

addition, the study area is abundant in rainfall during the rainy season (May to October).  

Heavy rainfalls brought by typhoons frequently caused flood disasters in the Wu River 

basin.  In 2008, two typhoons (Kalmaegi and Fung-Wong) successively hit the central 

Taiwan.  The direct economic loss caused by these two typhoons is estimated to be 

about 3 billion USD.  Another important matter is that Taichung with a population of 

about 3 million people is located downstream of the Nan-Pei Bridge on the Wu River.  

Therefore, a well-performing and efficient flood forecasting model is needed. 

Figure 4.3 shows the study area and the locations of four hourly rainfall stations 

(Pei-Shan, Chin-Liu, Hui-Suen and Tsui-Luan) and one hourly water-level station 
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(Nan-Pei Bridge).  The rainfall and runoff data were obtained from the Water 

Resources Agency and the data of typhoon characteristics were collected from the 

Central Weather Bureau.  In this paper, the effect of areal rainfall was considered.  

The areal rainfall of the watershed was calculated by the Thiessen method.  The 

typhoon characteristics include the latitude and longitude (degree) of the typhoon center, 

the distance (km) between the typhoon center and the water-level station, the 

near-center maximum wind speed (m/s), the central pressure (hPa), the storm radius (km) 

and the speed (km/hr) of the typhoon movement.  For this study, typhoon events that 

include the typhoon characteristics, rainfall and runoff data were listed in Table 4.1. 

 

Figure 4.3 The study area and locations of rainfall and water-level stations 
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Table 4.1 Description of typhoon events used in the modeling 

Name Date Duration 
(h) 

Scale Maximum 
hourly 
rainfall (mm) 

Peak runoff 
(m

3
/s) 

Tim 10 Jul 1994 50 Intense typhoon 11.48 87.8 

Doug 8 Aug 1994 30 Intense typhoon 38.03 749 

Toraji 29 Jul 2001 62 Moderate typhoon 85.07 1530 

Nari 16 Sep 2001 111 Moderate typhoon 19.00 84.5 

Nakri 9 Jul 2002 96 Minor typhoon 21.09 244 

Nanmadol 3 Dec 2004 37 Moderate typhoon 13.21 61.6 

Haitang 17 Jul 2005 81 Intense typhoon 38.94 916.6 

Talim 31 Aug 2005 55 Intense typhoon 14.36 262.4 

Longwang 1 Oct 2005 40 Intense typhoon 16.73 208.4 

Sepat 17 Aug 2007 48 Intense typhoon 21.14 228.2 

Wipha 17 Sep 2007 52 Moderate typhoon 20.02 183 

Krosa 4 Oct 2007 79 Intense typhoon 27.01 267.5 

Kalmaegi 16 Jul 2008 58 Moderate typhoon 67.56 370.2 

Fung-wong 26 Jul 2008 73 Moderate typhoon 30.25 388.2 

Sinlaku 11 Sep 2008 127 Intense typhoon 47.86 662 

Jangmi 27 Sep 2008 52 Intense typhoon 29.44 696 

Note: According to the classification system of the Taiwan Central Weather Bureau, the 
intensities of minor, moderate and intense typhoons are 34-63, 64-99, and 100  knot, 
respectively. 
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4.2.2 Results of rainfall forecasts  

Before the rainfall forecasting module is constructed, a hypothetical SVM-based 

model (named SVM-QRi) is first tested to show the influence of rainfall forecasts on 

flood forecasting.  It should be noted that the rainfall inputs to the SVM-QRi are the 

ideal values.  That is, the gauge measurements (ideal values) are used as perfect 

rainfall forecasts.  Table 4.2 provides the list of inputs that are used to construct 

SVM-based models.  The MCE values of SVM-QRi and the conventional model 

(SVM-QRT) are presented in Fig. 4.4.  The comparison between SVM-QRT and 

SVM-QRi shows the influence of ideal rainfall on flood forecasting.  Additionally, 

the result of a BPN-based model (named BPN-QRT), which uses the same inputs as 

SVM-QRT, is also presented in Fig. 4.4.  As shown in Fig. 4.4, SVM-QRi performs 

the best among all models.  Furthermore, SVM-QRT clearly yields higher MCE than 

BPN-QRT, which is consistent with the conclusion of Lin et al. (2009a, 2009b) that 

SVM mostly outperforms BPN.  However, both SVM-QRT and BPN-QRT cannot 

yield effective forecasts when the forecast lead time is greater than 3 h, whereas 

SVM-QRi give accurate flood forecasts up to 6 h.  The results confirm that if the 

perfect rainfall forecasts are available, the SVM-based model can effectively mitigate 

the negative impact of increasing forecast lead time. 
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In reality, perfect rainfall forecasts do not exist.  So we need the rainfall forecasting 

module to obtain the future rainfall information.  Lin et al. (2009b) confirmed that the 

addition of typhoon characteristics significantly improves the rainfall forecasting 

performance, especially for long lead time forecasting.  Hence, data of rainfall and 

typhoon characteristics are used to develop a SVM-based rainfall forecasting module.  

The RMSE values resulting from the rainfall forecasting module are presented in Fig. 

4.5.  As shown in Fig. 4.5, the RMSE values increase from 4.3 mm to 6.3 mm for 1- 

to 3-h lead time forecasts, while they only increase slightly from 6.6 mm to 7 mm for 

4- to 6-h lead time forecasts.  We note that in this region, the maximum yearly rainfall 

is higher than 2000 mm and the maximum hourly rainfall is higher than 80 mm.  The 

RMSE values of 1- to 6-h lead time forecasts are all lower than 8 mm, which indicates 

the SVM-based rainfall forecasting module can yield quite accurate rainfall forecasts. 

Table 4.2 Input variables to the NN models 

Lead time  

(h) 

Input 

SVM-QRT SVM-QRf SVM-QRi 

1 Q(t), Q(t-1), R(t), Ty(t) Q(t), Q(t-1), R̂ (t+1) Q(t), Q(t-1), R(t+1) 

2 Q(t), Q(t-1), R(t), Ty(t) Q(t), Q(t-1), R̂ (t+2) Q(t), Q(t-1), R(t+2) 

3 Q(t), Q(t-1), R(t), Ty(t) Q(t), Q(t-1), R̂ (t+3) Q(t), Q(t-1), R(t+3) 

4 Q(t), Q(t-1), R(t), Ty(t) Q(t), Q(t-1), R̂ (t+4) Q(t), Q(t-1), R(t+4) 

5 Q(t), Q(t-1), R(t), Ty(t) Q(t), Q(t-1), R̂ (t+5) Q(t), Q(t-1), R(t+5) 

6 Q(t), Q(t-1), R(t), Ty(t) Q(t), Q(t-1), R̂ (t+6) Q(t), Q(t-1), R(t+6) 

Note: Q: observed runoff; R: observed rainfall; R̂ : forecasted rainfall; Ty: observed 
typhoon characteristics. 
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Figure 4.4 MCE values of SVM-QRT, BPN-QRT and SVM-QRi 

 

 

Figure 4.5 RMSE values of the rainfall forecasts 
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4.2.3 Influence of forecasted rainfall on flood forecasting 

The MCE and MEPR of three SVM-based models (SVM-QRT, SVM-QRf and 

SVM-QRi) for 1- to 6-h lead time forecasts are summarized in Table 4.3.  The input 

data of SVM-QRi are the perfect rainfall forecasts and antecedent runoff.  However, 

SVM-QRi is a hypothetical model and cannot be used in practice.  As for the input 

data of both SVM-QRT and SVM-QRf, the antecedent runoff, rainfall and typhoon 

characteristics are used.  However, in the SVM-QRf model, the rainfall forecasting 

module is used to pre-process typhoon information (namely, typhoon characteristics 

and rainfall) and to provide the forecasted rainfall.  For SVM-QRT, the rainfall and 

typhoon characteristics are directly used as inputs without any processing.  In this 

subsection we focus on the comparison between SVM-QRf and SVM-QRT to highlight 

the advantage of the proposed model.   

Table 4.3 MCE and MEPR for various models 

Lead time (h) SVM-QRT SVM-QRf SVM-QRi 

MCE    

1 0.73 0.93 0.93 

2 0.56 0.85 0.84 

3 0.47 0.76 0.74 

4 0.12 0.65 0.63 

5 -0.28 0.58 0.55 

6 -0.80 0.46 0.39 

MEPR (%)    

1 7.28 4.42 3.74 

2 13.23 8.16 4.06 

3 16.41 11.49 5.21 

4 22.28 13.58 6.73 

5 28.12 14.28 7.92 

6 32.51 15.10 11.78 
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The MCE values for runoff forecasts of both SVM-QRT and SVM-QRf decrease with 

increasing forecast lead time (Fig. 4.6a).  However, the MCE values of SVM-QRT 

decrease more rapidly than those of SVM-QRf.  For 1- to 3-h lead time forecasts, both 

models provide reasonable runoff forecasts.  For 4- to 6-h lead time forecasts, the 

performance of SVM-QRT gets worse and the MCE values are almost equal or even 

lower than zero.  It is clear that SVM-QRT cannot yield effective forecasts when the 

forecast lead time is greater than 3 h.  As to SVM-QRf, the performance is still 

acceptable for long lead time forecasting.  Regardless of the forecast lead time, the 

proposed model can provide more accurate runoff forecasts than the model without 

using forecasted rainfall.  Furthermore, the improvement in MCE due to the use of 

SVM-QRf instead of SVM-QRT is presented in Fig. 4.6b.  It is also concluded that 

SVM-QRf outperforms SVM-QRT.   

As shown in Fig. 4.7a, a similar trend is observed that the MEPR values of both 

SVM-QRT and SVM-QRf increase with increasing forecast lead time.  However, it is 

clear that SVM-QRf yields significantly lower MEPR values than SVM-QRT for 1- to 

6-h lead time forecasts.  Fig. 4.7a also shows that the MEPR values of SVM-QRf 

increase more slowly than those of SVM-QRT.  For 1- to 6-h lead time forecasts, the 

MEPR values of SVM-QRf only increase from 4.4% to 15.1%, but those of SVM-QRT 

rapidly increase from 7.3% to 32.5%.  The improvement in MEPR due to the use of 
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the proposed model instead of the model without using forecasted rainfall presented in 

Fig. 4.7b more clearly shows that the proposed model effectively improves the 

forecasting performance.  For 1- to 6-h lead times, the improvement in MEPR 

increases from 2.9% to 17.4%.  This indicates that SVM-QRf is more appropriate for 

forecasting peak runoff than SVM-QRT, especially for long lead time forecasting.   

In this study, it is founded that the runoff forecasts cannot be improved by using raw 

typhoon characteristics as input to an SVM-based model.  Because of the short 

concentration time in the study basin, the direct use of observed data (runoff, rainfall 

and typhoon characteristics) in model development cannot provide useful information 

for long lead time forecasting.  When the forecast lead time increases, the data used for 

long lead time forecasting include more complex noise and the correlation between 

desired output and available input decreases rapidly.  Because the rainfall forecasting 

module successfully reduces the complication of typhoon characteristics, the proposed 

model effectively improves the long lead-time forecasting.  
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Figure 4.6 (a) MCE values of SVM-QRT and SVM-QRf and (b) the improvement in 

MCE due to the use of SVM-QRf instead of SVM-QRT 

 



58 
 

 

Figure 4.7 (a) MEPR values of SVM-QRT and SVM-QRf and (b) the improvement 

in MEPR due to the use of SVM-QRf instead of SVM-QRT 
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In addition to the overall performance, evaluation of individual events is described 

herein.  The number of events for which SVM-QRf yields a higher CE than SVM-QRT 

is counted and presented in Fig. 4.8a.  In a like manner, Fig. 4.8b presents the results 

for another performance measure, EPR.  Fig. 4.8 shows that SVM-QRf performs better 

than SVM-QRT for most of the events.  To further assess whether SVM-QRf performs 

better than SVM-QRT for the same testing events, paired comparison t-tests are 

conducted at the 1% significance level.  Table 4.4 shows that SVM-QRf yields 

significantly higher CE and lower EPR than SVM-QRT.  To highlight the comparison, 

Fig. 4.9 shows the hydrographs of 1-h lead time forecasts resulting from SVM-QRf and 

SVM-QRT for the most extreme runoff event (resulting from Typhoon Haitang).   As 

shown in Fig. 4.9, both SVM-QRf and SVM-QRT slightly underestimate the peak runoff, 

but reproduce low runoff appropriately because low runoff is more frequent in data set 

than high runoff.  However, SVM-QRf captures the peak runoff better than SVM-QRT.  

It is concluded that for peak runoff forecast, SVM-QRf is capable of providing more 

accurate forecasts as compared to SVM-QRT.  For 1- to 6-h lead times, the comparison 

of the observed runoff with the forecasts resulting from SVM-QRf is presented in Fig. 

4.10.  The result shows that the proposed two-stage model (SVM-QRf) is able to make 

good forecasts because the forecasted hydrograph accurately matches the observed 

hydrograph.  This indicates that SVM-QRf exhibits excellent overall performances.   
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Table 4.4 Paired comparison t-tests of two performance measures (CE and EPR) 

resulting from SVM-QRT and SVM-QRf. 

Alternative hypothesis t Statistic Critical t 

value 

Statistically significant at the 

1% level 

CESVM-QRT < CESVM-QRf 2.95 2.37 Yes 

EPRSVM-QRf < EPRSVM-QRT 4.19 2.37 Yes 

 

 

 

 

Figure 4.8 Number of events for which (a) CE values of SVM-QRf are higher than 

those of SVM-QRT and (b) EPR values of SVM-QRf are lower than those of SVM-QRT 

 



61 
 

 

 

Figure 4.9 Comparison of the observed runoff with the 1-h lead time forecasts 

resulting from (a) SVM-QRf and (b) SVM-QRT for Typhoon Haitang 
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Figure 4.10 Comparison of the observed runoff with the 1- to 6-h lead time forecasts 

resulting from SVM-QRf 
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4.3 Summary 

In this chapter, a integrated SVM-based model is proposed for improving runoff 

forecast during typhoon events.  In the first stage, the rainfall forecasting module is 

used to pre-process the typhoon information (namely, typhoon characteristics and 

rainfall) and to produce rainfall forecasts.  Then, in the second stage, the forecasted 

rainfall and observed runoff are used as input to the flood forecasting module to yield 

runoff forecasts.  A case study for the Wu River basin in central Taiwan is performed 

to assess the proposed model (i.e. SVM-QRf).  In addition, a single-stage SVM-based 

model (i.e. SVM-QRT), which directly uses observed runoff, rainfall and typhoon 

characteristics as input without any processing, is also constructed for comparison.   

Regarding the performance of rainfall forecasting, it is found that the first-stage of the 

proposed model yields quite accurate 1- to 6-h lead time rainfall forecasts.  The use of 

typhoons characteristics can effectively reduce the negative impacts of increasing 

forecast lead time.  As to the performance of flood forecasting, a comparison between 

the proposed two-stage model and the single-stage model shows that the proposed 

model significantly improves the runoff forecasts.  In addition to the overall 

performance, the proposed model significantly improves the forecasts of peak runoff, 

especially for long lead time forecasting.  The better performance of the proposed 
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model confirms that the processed typhoon information is more useful than the raw 

typhoon information. The use of forecasted rainfall and the proposed two-stage 

structures are justified.  In conclusion, the proposed model is expected to improve 

hourly typhoon flood forecasting. 
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Chapter 5 Conclusions 

In this dissertation, SVMs are investigated and applied on different hydrological 

problems, including typhoon rainfall forecasting and flood forecasting.  These studies 

have indicated that SVMs are robust and efficient tools for flood warning system.  

Conclusions of these studies are summarized as follow: 

5.1 Effective forecasting of hourly typhoon rainfall 

1. In order to provide effective hourly rainfall forecasts, support vector machines 

(SVMs), instead of back propagation neural networks (BPNs), are presented to 

construct forecasting models. 

2. An application in the Fei-Tsui Reservoir is conducted to demonstrate the three 

advantages of the proposed models. 

3. As to forecasting performance, SVM-based models can yield accurately accurate 

forecasts for 1- to 6-h lead time forecasting, but BPN-based models produce 

effective 1- to 2-h lead time forecasting only.  This result indicates that SVMs have 

better generalization ability than BPNs 

4. The other two major differences between SVMs and BPNs are the robustness and 

the efficiency.  The results of this study demonstrate that the SVMs are more 

robust and efficient than BPNs. 
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5. To further improve the long lead time forecasting, the comparison between the 

SVM-based models with and without typhoon characteristics is also presented in 

this study.  The result confirms that the addition of typhoon characteristics 

effectively decrease the negative impact of increasing forecast lead time and 

significantly improves the forecasting performance, especially for long lead time 

forecasting. 

6. It would be more interesting if the study compares the results of SVM with another 

model (e.g. Radial Basis Function Network and/or other Neural Networks) to assess 

the skill of SVM in a competing contest. 

7. Research should continue on the selection of the effective typhoon characteristics to 

further improve the model performance. 

5.2 Typhoon flood forecasting using integrated SVM 

1. Based on the combination of the rainfall forecasting module and flood forecasting 

module, an integrated SVM-based model is proposed to improve long lead time 

flood forecasting. 

2. An application in the Wu River basin is conducted to demonstrate the superiority of 

the proposed models. 

3. According to the previous study, a SVM-based rainfall forecasting module with 



67 
 

rainfall and typhoon characteristics is proposed.  In an area with abundant rainfall, 

the rainfall forecasting module still yields quite accurate 1- to 6-h lead time rainfall 

forecasts. 

4. As to the performance of flood forecasting, it can be found that the proposed 

integrated model is capable of providing more accurate forecasts as compared to the 

single-stage model.  The better performance of the proposed model confirms that 

the processed typhoon information is more useful than the raw typhoon information. 

5. In addition to the overall performance, the hydrographs of 1-h lead time forecasts 

resulting from SVM-QRf and SVM-QRT for the most extreme runoff event 

(resulting from Typhoon Haitang) are also presented to show the performance of 

peak runoff forecasts.  It is concluded that the proposed model significantly 

improves the forecasts of peak runoff, especially for long lead time forecasting.   

6. Although the study uses the data of maximum-runoff Typhoon just in the training 

data set.  It would be helpful to use that data in the testing data set either, to assess 

the ability of model in extrapolation as well. 

7. The study shows that the two-stage SVM based approach improves the forecasting 

especially at long lead times.  In the future work, it would be valuable to extend the 
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forecast to even longer lead times such as 9, 12 or even 24 hours as in most flood 

forecasting applications.   
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