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Abstract

The objective of this dissertation is to apply support vector machine for flood
mitigation and disaster warning. There are two major parts in this paper, which are

summarized in the following manner.

Typhoon rainfall forecasting plays a critical role in almost all kinds of disaster
warning systems during typhoons. To obtain more effective forecasts of hourly
typhoon rainfall, novel models with better ability are desired. Based on support vector
machines (SVMs), which is a kind of neural networks (NNSs), effective hourly typhoon
rainfall forecasting models are constructed. As compared with back-propagation
networks (BPNSs) which are the most frequently used conventional NNs, SVMs have
three advantages: (1) SVMs have better generalization ability; (2) the architectures and
the weights of the SVMs are guaranteed to be unique and globally optimal; (3) SVM is
trained much more rapidly. An application is conducted to clearly demonstrate these
three advantages. The results indicate that the proposed SVM-based models are more
well-performed, robust and efficient than the existing BPN-based models. To further
improve the long lead-time forecasting, typhoon characteristics are added as key input
to the proposed models. The comparison between SVM-based models with and
without typhoon characteristics confirms the significant improvement in forecasting

performance due to the addition of typhoon characteristics for long lead-time
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forecasting. The proposed SVM-based models are recommended as an alternative to

the existing models. The proposed modeling technique is also expected to be useful to

support reservoir operation systems and flood, landslide, debris flow, and other disaster

warning systems.

Accurate runoff forecasts are required to provide early warning of impending floods.

In this part, an integrated flood forecasting model based on the support vector machine

(SVM) is proposed to improve the flood forecasting performance. In the first stage,

the observed typhoon characteristics and rainfall are used to produce rainfall forecasts.

Then the forecasted rainfall and observed runoff are used to yield runoff forecasts. An

actual application is performed to yield 1- to 6-h lead time runoff forecasts. The

results show that the rainfall forecasting in the first stage can generate reliable rainfall

forecasts, and the proposed model can provide accurate runoff forecasts, especially for

the peak values. It is worth noting that the proposed model can significantly improve the

4- to 6-h lead time flood forecasting performance. In conclusion, the proposed model

effectively mitigates the negative impact of increasing forecast lead time and is useful to

improve the long lead time flood forecasting during periods of typhoon.

Keywords: rainfall forecasting, flood forecasting, support vector machines, typhoon

characteristics, disaster warning systems.
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Chapter 1 Introduction

1.1 Motivations

The island of Taiwan is situated in one of the main paths of the north-western Pacific
typhoons. Each year, three to four typhoons attack the island on average. The
torrential rain brought by typhoons (tropical cyclones occurring in the western Pacific
Ocean) frequently lead to serious disasters, such as flooding, landslide or debris flow.
To mitigate disasters due to typhoons, the development of flood warning systems are
always needed. However, the highly non-linear and complex processes of typhoon
rainfall and runoff make it difficult to construct a reliable physically-based model. To
obtain more effective forecasts of typhoon rainfall and runoff, the development of better

models has always been regarded as an important task.

An attractive alternative to the physically-based models is neural networks (NNSs),
which is a kind of information processing system with great flexibility in modeling
nonlinear processes. The conception of NNs was inspired by a desire to understand
human brain. Comprehensive reviews of the applications of NNs in hydrology have
been presented by ASCE Task Committee (2000a, 2000b) and Maier and Dandy (2000).
More recently, hydrologists, water resources engineers and managers have inspected

more various applications of NNs for hydrologic forecasting, such as streamflow



forecasting (e.g., Tingsanchali and Gautam, 2000; Lin and Chen, 2004; Toth and Brath,

2007), tidal level forecasting (e.g., Supharatid, 2003), and groundwater level forecasting

(e.g., Lin and Chen, 2005a). In addition to the great flexibility in modeling nonlinear

systems, NNs are very suitable for being integrated with decision- support systems due

to their high computational efficiency. For instance, NN-based models have been

integrated with reservoir operation systems (e.g., Khalil et al., 2005; Chaves and Kaojiri,

2007; Tu et al., 2008), city flood control systems (Chang et al., 2008), as well as debris

flow warning systems (Chang et al., 2007).

Because of their flexibility in modeling nonlinear systems and their computational

efficiency, NNs have gained a considerable attention. More recently, a powerful kind

of NNs named Support Vector Machines (SVMs) have attracted the attention of some

hydrologists but only limited application are examined, such as hydrologic time series

analysis (Liong and Sivapragasam, 2002; Yu et al.,, 2004; Asefa et al., 2005;

Sivapragasam and Liong, 2005; Yu and Liong, 2007), reservoir inflow forecasting (Lin

and Chen, 2009a), and streamflow forecasting (Yu et al., 2006; Kalra and Ahmad, 2009).

Based on statistical learning theory, SVMs have advantages over back-propagation

networks (BPNs) which are the most frequently used conventional NNs. Firstly,

SVMs have better generalization ability to relate the relatively irrelative input to the

desired output. This advantage is very helpful to decrease the negative impact when
2



increasing forecast lead-time. In other words, SVMs are capable of producing
acceptably accurate forecasts for longer lead-time. Secondly, the optimization
algorithm for SVMs is more robust, and the architectures and the weights of the SVMs
are guaranteed to be unique and globally optimal. The performance of SVM-based
models is more reliable because of the robust optimization algorithm. Finally, SVMs
are trained much more rapidly. Thus, SVM-based models are more suitable to be

integrated with disaster warning systems and decision support systems.

Due to the aforementioned attractive advantages, SVMs have emerged as an
alternative data-driven tool in many conventional NN dominated fields. In this
dissertation, SVMs were introduced and applied to typhoon rainfall and flood

forecasting.

1.2 Backgrounds and Inspiration

1.2.1 Effective forecasting of hourly typhoon rainfall

Rainfall forecasting plays a critical role in almost all kinds of disaster warning
systems during typhoons. In the Taiwan area, typhoon rainfall often causes casualties
and has major economic impacts; however, it is an important water resource. As a
typhoon approaches the island, the major goal of reservoir operation is to control floods.

But when the typhoon leaves, the goal switches to restore sufficient water for future



usage. To achieve these two goals, reservoir operation should be appropriately

conducted. More effective (or more accurate and reliable) forecasts of hourly rainfall

are required as a vital reference for hourly reservoir inflow forecasting and for making

important reservoir operation decisions. In addition, an improved hourly rainfall

forecasting is expected to be useful to support flood, landslide, debris flow and other

disaster warning systems.

As to rainfall forecasting, applications of NNs have also been presented (e.g., Luk et

al., 2001; Chiang et al., 2007), but studies on NN-based models for hourly typhoon

rainfall forecasting are still limited. To provide effective forecasts of hourly typhoon

rainfall for being integrated with decision support systems, Lin and Chen (2005b) have

assessed the potential of BPNs. The results indicated that BPN-based models yield

acceptable forecasts for a lead time of one to two hours only. To provide effective

warnings, longer lead-time forecasting is needed. However, as the forecast lead-time

increases, the correlation between desired output and available input decreases. The

data used for long lead-time forecasting include more relatively irrelative information

which seriously undermines the performance of BPN-based models. Based on

previous studies (Lin and Chen, 2005b, 2008), the generalization ability of BPNs was

not good enough. To obtain effective forecasts of hourly rainfall for longer lead-time

forecasting, it is justified to propose novel models with better generalization ability.
4



In this study, SVMs were used to construct typhoon rainfall forecasting models.

Hong and Pai (2007) have constructed a SVM-based typhoon rainfall forecasting model

with only antecedent rainfall as input. Their forecasts were acceptably accurate but

only for one-hour ahead forecasting. With only antecedent rainfall as input, the

performance of models usually decreases rapidly with increasing forecast lead-time.

To further enhance the long lead-time forecasting, typhoon characteristics were

regarded as key input and added to the proposed SVM-based models. Lin and Chen

(2005b) have confirmed that the trend of rainfall could be demonstrated by typhoon

characteristics when a typhoon was nearby. It is reasonable to speculate that typhoon

characteristics are capable of providing valuable information for longer lead-time

forecasting. Such a speculation has prompted an investigation into the influence of

typhoon characteristics on rainfall forecasting, in particular, for long lead-time

forecasting.

The objective of this study was to provide effective forecasts of hourly rainfall for

supporting reservoir operation systems during typhoons. For this purpose, SVM-based,

instead of BPN-based models with typhoon characteristics were proposed to yield 1-to

6-h lead time forecasts. In order to compare SVMs and BPNs, BPN-based models

with same input are also constructed. Moreover, to assess the improvement in

forecasting performances due to the addition of typhoon characteristics, two types of
5



model input (with and without typhoon characteristics) are designed for SVM-based
models. Finally, an application was conducted and 11 typhoon events were used in
this study. To reach just conclusions, cross validations were applied to evaluate the
overall performance of the models and the statistical significance of the improvement in
forecasting performance was identified by paired comparison t-tests. The results

demonstrated the superiority of the proposed models more clearly.

1.2.2 Typhoon flood forecasting using integrated SVM

To mitigate disasters caused by typhoons, accurate and reliable flood forecasts are
essential to provide early warning of impending floods and their improvement has been
verified as a crucial task. In recent years, NNs have been successfully employed in
various hydrologic modeling applications (e.g., de Vos and Rientjes, 2005; Hu et al.,
2007; Lin and Chen, 2004; Wu and Chau, 2011) and specifically for rainfall and flood
forecasting (e.g., Chang et al., 2004; Chiang et al., 2007; Lin and Chen, 2005b; Lin et
al., 2010; Luk et al., 2001; Pramanik et al., 2011; Rathinasamy and Khosa, 2012; Toth
and Brath, 2007). The major advantage of NNs is their capability to simulate complex
relationship between desired output and available input given the existence of sufficient

training datasets.

However, flood forecasting performance of most NNs decreases rapidly with



increasing of the forecast lead time. Operational agencies which are responsible for

flood mitigation and warnings could well benefit from improved forecast accuracy of

the longer lead times. Multi-stage NN-based models were developed in attempt to

achieve a longer as well as accurate forecast lead time (Chang et al., 2007; Lin and Wu,

2011). The concept of multi-stage NN-based models is that two or more NN-based

models are connected. Using the two-stage as an example, the connection between the

two stages is that forecasted values from the first-stage module are used as input to the

second-stage module. It is widely known that rainfall is one of the most important

inputs to flood forecasting model and the accuracy of long lead time flood forecasting

can be advanced with more accurate rainfall forecasts. Lin et al. (2009¢) improved

longer lead time streamflow forecast by adopting BPNs to predict rainfall as input to a

Radial Basis Function (RBF)-based reservoir inflow forecasting model. Chiang and

Chang (2009) used Quantitative Precipitation Forecasting (QPF) information as input to

Recurrent Neural Network (RNN)-based flood forecasting model and reported a similar

finding, that is, the forecasted rainfall was capable of providing useful information for

flood forecasting, especially for long lead time.

In previous studies, multi-stage NN-based flood forecasting models were based on

conventional NNs. The architecture and the weights of these conventional NNs were

determined by a trial and error procedure which consisted of iterative time-consuming
7



process.  Although the selection of NN-based models generally disregard the

efficiency of the model training, it is essential to develop a well-performing model that

can be quickly trained.

In this study, an integrated support vector machine (SVM)-based model was

developed to yield 1- to 6-h lead time runoff forecasts. SVMs have been used for

hydrologic time series forecasting (Liong and Sivapragasam, 2002; Sivapragasam and

Liong, 2005; Wu et al., 2009; Yu and Liong, 2007; Yu et al., 2004). More recently,

Rasouli et al. (2012) employed SVM and other machine learning methods with weather

and climate inputs to forecast daily streamflow. According to statistical learning

theory, SVM has better generalization ability and requires less training time than

conventional NNs (e.g., BPN). For both rainfall and inflow forecasting, Lin et al.

(2009a, 2009b) demonstrated that SVM-based models outperform BPN-based models.

Moreover, the development of SVM-based models is efficient and thus expected to be

suitable for development of the integrated model presented herein.

The objective of this study is to demonstrate an integrated SVM-based model for

typhoon flood forecasting. A rainfall forecasting module was established in the first

stage to pre-process the typhoon information (namely, typhoon characteristics and

rainfall) as well as to produce rainfall forecasts. Afterwards, the rainfall forecasts



along with the observed runoff were used as input to the flood forecasting module in the

second stage. This procedure was expected to reduce the input dimensionality and

improve the performance of the longer forecast lead times, especially for the prediction

of peak runoff.



Chapter 2 Support vector machine

In the early 1990s, Vapnik developed SVMs for classification and then extended for
regression (Vapnik, 1995). There are two major differences between the SVMs and
the BPNs. Firstly, instead of empirical risk minimization (ERM), the structural risk
minimization (SRM) induction principle is used to construct SVMs. For training
BPNSs, the only one objective is to minimize the total error (or empirical risk). As to
SVMs, according to the SRM induction principle, both the empirical risk and the model
complexity should be minimized simultaneously. The use of SRM induction principle
results in the better generalization ability of SVMs. Another major difference is the
determination of the model architecture and the weights. For BPNs, the architecture
and the weights are respectively determined by a trial-and-error procedure and an
iterative process (the error back-propagation algorithm), which both are very
time-consuming. Vapnik (1995) dispensed with the time-consuming training process
and expressed the determination of the architecture and weights of SVMs in terms of a
quadratic optimization problem which can be rapidly solved by a standard programming
algorithm. In this section, the methodology of the support vector regression (SVR)
used in this paper is briefly described and more mathematical details about SVR can be
found in several text books (Vapnik, 1995; Vapnik, 1998; Cristianini and Shaw-Taylor,

2000).
10



Based on N, training data[(x,,Y;),(X;,Y,)...,(Xy, Yy, )], the objective of the
support vector regression is to find a non-linear regression function to yield the output
¥, which is the best approximate of the desired output y with an error tolerance of «.
Firstly, the input vector x is mapped onto a higher dimensional feature space by a
non-linear functiong(x) . Then the regression function that relates the input vector x

A

to the output ¢ can be written as
¥=f(X)=w'g(x)+b (2.1)

where w and b are weights and bias of the regression function, respectively. Based
on the SRM induction principle, w and b are estimated by minimizing the following

structural risk function:

Nd
R=%WTW+CZLE()7i) (2.2)

i=1

where the Vapnik’s & -insensitive loss function L, is defined as

R R 0 for ly—-y|<e¢
L.(M)=y-y |g={ -9l (2.3)

ly-9|-¢ forly-y|=¢

The first and second terms in Eq. (2) represent the model complexity and the empirical
error, respectively. The trade-off between the model complexity and the empirical

error is specified by a user-defined parameter C and C =1 is set herein.

Vapnik (1995) expressed the SVR problem in terms of the following optimization
11



problem:

Minimize
ROWDEE) =W WHCY (4 +£)
subject to
Yi— Vi =Y _(WT¢(Xi)+b) <&+ (2.4)
Vi—Vi= (WT¢(Xi)+b)_ Y, <e+dl
& =0
§i =0
i=12,..,1

where & and &', which are slack variables, represent the upper and the lower training
errors, respectively. The above optimization problem is usually solved in its dual form
using Lagrange multipliers. Rewriting Eq. (4) in its dual form and differentiating with
respect to the primal variables (w,b,&,&") gives

Maximize

>y —af) e (e +al) -3 33 (e - a)la - a9 H(x,)

i=1 j=1

subject to
Ng
Z(“i o) =0 (2.9)
i=1
0<g;<C
0<g/<C
i=12,..,N,
where « and «' are the dual Lagrange multipliers. Note that the solution to the

optimal problem (Eqg. (5)) is guaranteed to be unique and globally optimal because the

objective function is a convex function.

12



The optimal Lagrange multipliers o are solved by the standard quadratic

programming algorithm and then the regression function can be rewritten as
Ng
f(x)=> ' K(x;,x)+b (2.6)
i=1
where the kernel function K(X;,x) is defined as
K(x;,X) = ¢(x;)" $(x) (2.7)
The kernel function used in this paper is the radial basis function:

K(x,) = ex0(—= %, ~x ) (2.8)

X

where n, is the number of components in input vector x.

Some of solved Lagrange multipliers (a—«') are zero and should be eliminated
form the regression function. Finally, the regression function involves the nonzero
Lagrange multipliers and the corresponding input vectors of the training data, which are

called the support vectors. The final regression function can be rewritten as

f(x):iakK(xk,x)er (2.9)

k=1

where X, denotes the kth support vector and N, is the number of support vectors.

The architecture of a SVM is presented in Fig. 2.1.

13
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Chapter 3 Effective forecasting of hourly typhoon rainfall
3.1 Application
3.1.1 The Study Area and Data
The study area is the Fei-Tsui Reservoir Watershed in northern Taiwan. The Fei-Tsui
Reservoir is located downstream of three major tributaries (the Kingkwa Creek, the
Diyu Creek and the Peishih Creek). The reservoir has a surface area of 10 km?, a
mean depth of 40 m, a maximum depth of 120 m, a full capacity of 406 million m®, and
a total watershed area of 303 km?. From 1988 to 2007, the maximum and average
yearly rainfall is 5736.6 mm and 3808.6 mm, respectively. Fig. 3.1 shows the study
area and the locations of six rain gauges (Fei-Tsui, Pin-Lin, Shi-San-Ku,
Chiu-Chiung-Ken, Bi-Hu and Tai-Pin). The rainfall data are obtained from the Water
Resources Agency and the typhoon characteristics are collected from the Central
Weather Bureau. The time periods of the data of rainfall and typhoon characteristics
are hourly. A total of 11 typhoon events with typhoon characteristics and rainfall data
available simultaneously are used herein. Table 3.1 summarizes the date of occurrence
and duration of these 11 typhoon events. The typhoon characteristics include the
position of the typhoon center, the distance between the center and the reservoir, the
maximum wind speed near the center, the atmospheric pressure of the center, the radius

of winds over 15 m/s, and the speed of the typhoon movement.
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Table 3.1 Descriptions of typhoon events used in the modeling

Name of typhoon Date Duration  Maximum  Maximum
(hour) wind speed  hourly
(m/s) rainfall
(mm)
Ted 1992/09/20 69 108 19.6
Tim 1994/07/09 49 191 16.3
Gladys 1994/08/31 32 126 31.0
Seth 1994/10/08 75 184 18.7
Herb 1996/07/30 70 191 46.7
Haiyan 2001/10/15 28 130 14.1
Rammasun 2002/07/03 32 165 22.5
Nock-Ten 2004/10/24 44 155 354
Haitang 2005/07/17 66 198 425
Matsa 2005/08/04 48 144 31.2
Talim 2005/08/31 43 191 42.6

® Rain Gauge

O Water-level Station
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3.1.2 Development of Models

In this study, SVM-based models with typhoon characteristics (SVM-RT) are
proposed to yield 1- to 6-h lead time rainfall forecasts. To make comparisons between
SVMs and BPNs, BPN-based models with typhoon characteristics (BPN-RT) are
constructed. Otherwise, SVM-based models without typhoon characteristics (SVM-R)
are also constructed to evaluate the improvement in forecasting performance due to the
addition of typhoon characteristics. Hence, a total of 18 NN-based forecasting models

(SVM-RT, BPN-RT and SVM-R for 1- to 6-h lead time forecasts) are constructed.

The SVM-R has a general form as
Rt+At = f( Rt' Rt—l’ T Rt—(LR—l)) (3-1)

where t is the current time, At is the lead-time period (from one to six hours), R,
is rainfall at time t, and L; denotes the lag length of rainfall. The model
development is schematized in Fig. 3.2(a). Firstly, only rainfall is used as input and
the lag length of rainfall (L) is determined by the process shown in Fig. 3.2(b). The
criterion for selecting the lag lengths is the relative percentage error (RPE):

E(L)-E(L+1)

E(L)

RPE = x100 (3.2)

where E(L) and E(L+1) are the RMSEs for models with L and L+1 lag
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lengths, respectively. In general, the RMSE decreases with increasing lag term.
When the RPE is less than 5%, the increase of lag lengths is stopped. Then rainfall is
added to the input and the lag length of rainfall (Lg) is determined by the same process.

Once Lg is determined, the inputs of SVM-R are completely specified.

(a)
Use only rainfall as input
Determine the lag length of rainfall Lg
!
Develop SVM-R
Add typhoon characteristics to the input
Determine the lag length of typhoon characteristics Lty
Develop SVM-RT and BPN-RT
(b)
L=1
Compute the RMSEs for the model with lag length L and I=1+1
L+1, ie. E(L) and E(L+1)
l No
Compute the relative percentage error
= RPE<5%
rpE = EW)-E(L+D) 0
E(L)
Yes

Figure 3.2 Flowcharts of (a) the model development and (b) the lag length

determination
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Based on the SVM-R, all typhoon characteristics (include the position of the typhoon
center, the distance between the center and the reservoir, the maximum wind speed near
the center, the atmospheric pressure of the center, the radius of winds over 15 m/s, and
the speed of the typhoon movement) are then added to develop the SVM-RT and

BPN-RT. The form of the SVM-RT and BPN-RT is
Rt+At = f( Rt’ Rt—l’ T Rt—(LR—l)’TYt’TYt—l’ “"TYt—(LW—l)) (3.3)

where TY, is typhoon characteristics at time t, and L,, denotes the lag length of
typhoon characteristics which is determined by the same process shown in Figure 3.2(b).
To further investigate the influence of each typhoon characteristic on rainfall forecasting,
a total of six models with single typhoon characteristic are constructed by individually
adding each typhoon characteristic in turn to the model without typhoon characteristics

(SVM-R).
3.1.3 Cross Validation and Performance Measures

For event-based data, the collected events are usually separated into two sets of data:
training and testing. Some events are chosen as training data and used to construct
NN-based models. Then the performance of the NN-based models is tested by the
remaining events which are not used in the training process. Different selections of

training data and testing data produced different results and sometimes lead to different
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conclusions.  To reach just conclusions, cross validations are conducted herein. Each
single typhoon event (except Typhoon Herb) is used to test the NN-based models in turn.
Typhoon Herb yielded the maximum rainfall and should be used as training data.
Then conclusions are drawn based on the overall performance for the 10 testing events.

Three performance measures are used to evaluate the model performance herein.

1. Coefficient of efficiency (CE):
CE=1-&—— (3.4

where R, and Iit denote the observed and forecasted rainfall at time t, respectively,

R is the average of the observed rainfall, and n is the number of forecasts. If the

CE value is equal to one, the forecasts are perfect.

2. Mean absolute error (MAE):
1 A
MAE == "|R ~R| (3.5)
N

3. Root mean square error (RMSE):

RMSE = [Z>(R, - R f (3.6)
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3.2 Results and Discussion

Table 3.2 presents the three performance measures (CE, MAE and RMSE) of three
NN-based models (SVM-RT, BPN-RT and SVM-R) for 1- to 6-h lead time rainfall
forecasts. According to the three performance measures, the proposed SVM-based
model with typhoon characteristics (SVM-RT) produces the best performance and
BPN-RT performs the worst among all models. To further identify whether SVM-RT
performs significantly better than BPN-RT and SVM-R for the same testing event,
paired comparison t-tests are conducted at the 1% significance level. The equation of

t -tests is defined as

X —ato| _|X =

S s
§ Jn

t= (3.7)

The results listed in Table 3.3 show that SVM-RT significantly yields higher CE,

lower RMSE, and lower MAE values than both BPN-RT and SVM-R. To clearly

demonstrate the superiority of the proposed models (SVM-RT), more performance

comparisons are discussed in depth in the rest of this section.
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Table 3.2 Coefficient of efficiency (CE), mean absolute error (MAE) and root mean

square error (RMSE) for various models

Lead time CE

(hour) SVM-RT BPN-RT SVM-R
1 0.44 0.35 0.43

2 0.32 0.17 0.26

3 0.24 0.04 0.17

4 0.24 0.02 0.10

5 0.21 -0.12 0.01

6 0.21 -0.19 -0.02
Lead time MAE (mm)

(hour) SVM-RT BPN-RT SVM-R
1 3.21 3.85 3.29

2 3.59 4.34 3.77

3 3.91 4.67 4.12

4 3.93 4.82 4.31

5 4.04 5.08 4.58

6 4.20 5.32 4.75
Lead time RMSE (mm)

(hour) SVM-RT BPN-RT SVM-R
1 5.14 5.54 5.21

2 5.69 6.27 5.95

3 6.04 6.81 6.30

4 6.06 6.88 6.62

5 6.23 7.40 6.96

6 6.28 7.69 7.11

Table 3.3 Paired comparison t-tests of three performance measures (CE, MAE and
RMSE) resulting from SVM-RT and BPN-RT and from SVM-RT and SVM-R

Model Alternate t-statistic Statistically significant
hypothesis at the 1% level
SVM-RT CEsvm-rr>CEgpn-rT 3.18 Yes
and MAEsym-rr<MAEgpn-RrT 4.35 Yes
BPN-RT RMSEsym-rr<RMSEgpn.rT 3.37 Yes
SVM-RT CEsvm-rr>CEsvym-r 6.47 Yes
and MAEsym-rr<MAEsym-r 7.20 Yes
SVM-R RMSEgsym-rr<RMSEsym-r 6.85 Yes

Note: The critical t-value is 2.39.
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3.2.1 The Improvement Due to the Use of SVM-based Models Instead

of BPN-based Models

To highlight the improvement in forecasting performance due to the use of
SVM-based models instead of BPN-based models, we first focus on the comparison
between the proposed SVM-based models (SVM-RT) and BPN-based models with the
same input (BPN-RT). As shown in Fig. 3.3(a), the CE values of both SVM-RT and
BPN-RT decrease with increasing forecast lead-time. However, it is clear that
SVM-RT vyields significantly higher CE values than BPN-RT for 1- to 6-h lead-time
forecasting. Thus, it is concluded that SVM-based models perform better than
BPN-based models. Fig. 3.3(a) also shows that the CE values of SVM-RT decrease
more slowly than those of BPN-RT. For 1- to 2-h lead time forecasts, the CE values of
SVM-RT only decrease from 0.44 to 0.32, but those of BPN-RT rapidly decrease from
0.351t0 0.17. Then, for 3- to 6-h lead time forecasts, the performance of BPN-RT gets
worse and the CE values are almost equal or even lower than zero. It is clear that
BPN-RT cannot yield effective forecasts when the forecast lead-time is greater than two
hours. As to SVM-RT, the performance is still acceptable for long lead-time
forecasting. For 3- to 6-h lead time forecasts, the CE values only decrease from 0.24
to 0.21. The use of SVM-based models instead of BPN-based models effectively

decreases the negative impact of increasing forecast lead-time.
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The improvement in CE due to the use of SVM-based models instead of BPN-based

models presented in Fig. 3.3(b) more clearly shows that the proposed SVM-based

models (SVM-RT) effectively improve the forecasting performance. For 1- to 6-h lead

time forecasts, the improvement in CE increases from 9% to 40%. It is clear that

SVM-based models are more appropriate for long lead-time forecasting than

BPN-based models. There are reasonable explanations for the results presented in Fig.

3.3. As the forecast lead time increases, the correlation between desired output and

available input decreases. Hence the data used for long lead-time forecasting include

more relatively irrelative information and the models require better generalization

ability to relate the input to the desired output. Based on the statistical learning theory,

SVMs have better generalization ability than BPNs. Thus, a greater improvement in

performance could be obtained by using SVM-based models instead of BPN-based

models, especially for long lead-time forecasting.
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Figure 3.3 (a) CE values of SVM-RT and BPN-RT and (b) the improvement in CE

due to the use of SVM-based models instead of BPN-based models
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According to other two performance measures (MAE and RMSE), similar results are

also obtained. For 1- to 6-h lead time forecasts, the bar charts presented in Fig. 3.4(a)

and 3.4(b) clearly show that both MAE and RMSE values of SVM-RT are lower than

those of BPN-RT. In addition, the MAE and RMSE values of SVM-RT increase more

slowly than those of BPN-RT with increasing forecast lead-time. The negative impact

of increasing forecast lead-time has been effectively decreased by using SVM-based

models instead of BPN-based models. The percentages of decrease in MAE and

RMSE due to the use of SVM-based models instead of BPN-based models are presented

in Fig. 3.4(c). For 1- to 6-h lead time forecasts, SVM-RT respectively decreases MAE

and RMSE values from 17% to 21% and from 7% to 18% as compared to BPN-RT.

Again, the results confirm that the proposed SVM-based models (SVM-RT) effectively

improve the forecasting performance.
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Figure 3.4 (a) MAE, (b) RMSE values of SVM-RT and BPN-RT, and (c) the
percentages of decrease in MAE and RMSE due to the use of SVM-based models

instead of BPN-based models
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3.2.2 The Comparison of Robustness between SVM-based and

BPN-based Models

A robust parameter optimization algorithm is required to construct a robust model
which can yield reliable forecasts. But for hydrological models, there are very limited
studies on the related topics. In addition to better generalization ability, the robustness
of optimization algorithm for SVMs is one of the major advantages over BPNs. For a
robust optimization algorithm, the obtained optimal weights are slightly influenced by
the initial conditions, such as initial weights. On the contrary, the optimization
algorithm is less robust, if obtained optimal weights highly depend on the initial weights.
For BPNs, the weights are determined by an iterative process and the optimal weights
depend on the initial weights which are usually set randomly. Even when a BPN is
trained with the same training data, but different initial weights may lead to different
optimal weights and, of course, different forecasting performance. Hence, enough sets
of initial weights should be tried to get the globally optimal weights. Based on our
experiences, at least 30 sets of initial weights are required to obtain a reliable
forecasting performance. As to SVMs, the determination of the architecture and the
weights is expressed in terms of a quadratic optimization problem with a convex
objective function, and the weights are solved by the standard programming algorithm.

The solved weights are guaranteed to be unique and globally optimal. Thus, the same
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optimal weights could be always obtained when a SVM s trained with the same

training data. Theoretically, the performance of SVM-based models is more reliable

than that of BPN-based models

To demonstrate the robustness of SVM-based models more clearly, SVM-RT and

BPN-RT are taken for example herein. Being trained with 10 typhoon events and

tested by the remaining one event, SVM-RT yields a constant RMSE. As to BPN-RT,

different initial weights lead to different RMSE values even when the same training and

testing data are used. In this case, BPN-RT is trained with 30 different sets of initial

weights and hence yields 30 different RMSE values for each testing typhoon event.

The lack of robustness can be observed by the variation in RMSE, which is evaluated

by the coefficient of variation (CV). A higher CV value of RMSE represents the

higher variation in RMSE and also indicates that the performance of BPN-RT is less

reliable. For each typhoon event, the CV is calculated from a data set of 30 RMSE

values resulting from BPN-RT trained with 30 different sets of initial weights. Fig.

3.5(a) presents the CV values of 10 typhoon events. Among 10 events, 6 events have

CV values greater than 20% and 2 events exceeding 40%. For Typhoon Gladys,

BPN-RT yields the highest CV value of 50%. The result clearly shows that BPN-RT

lacks robustness.

29



To discuss the robustness of SVM-RT and BPN-RT in depth, the performance of

SVM-RT and BPN-RT tested by Typhoon Gladys is highlighted. Fig. 3.5(b) presents

the RMSE values of BPN-RT trained with 30 different sets of initial weights and the

constant RMSE value of SVM-RT. As shown in Fig. 3.5(b), the constant RMSE

yielded by SVM-RT indicates that SVM-RT is a robust model and the performance is

reliable. On the contrary, it is found that the variation in RMSE for BPN-RT is very

significant. The great variation in RMSE confirms that the initial weights have great

influence on the forecasting performance of BPN-based models. Thus, enough sets of

initial weights should be tried to ensure the satisfactory and reliable results. For the

case of Typhoon Gladys, 16 sets (more that 50% of all sets) have significantly worse

performances (with RMSE>10 mm). It is reasonable to speculate that the iterative

processes have been trapped in the local optimal solutions and such a situation can be

completely avoided by the use of SVMs. Based on the above results, it is concluded

that SVM-based models are more robust than BPN-based models.
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Figure 3.5 (a) CV values for each typhoon event resulting from BPN-RT trained
with 30 different sets of initial weights. (b) RMSE values of BPN-RT trained with 30
different sets of initial weights and the constant CE value of SVM-RT (taking Typhoon

Gladys as an example)
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3.2.3 The Comparison of Efficiency between SVM-based and

BPN-based Models

Efficiency is an important issue for models, but the efficiency of hydrological models
is only assessed in limited studies. Lin and Chen (2005c, 2006) have examined the
efficiency of BPN-based models and the results clearly show the time-consuming
training process of BPNs. In many conventional NN dominated fields, SVMs defeat
BPNs because of much higher efficiency. However, the high efficiency of SVMs has
also received little attention in the hydrologic domain. According to the previous
study (Lin and Chen, 2009), SVMs are trained much more rapidly than BPNs. In fact,
the optimal architecture and weights of SVMs are rapidly “solved”, not “searched”.
On the contrary, BPNs are trained by the error back-propagation algorithm which is a
very time-consuming iterative process. Based on the methodologies of SVMs and
BPNSs, it is obvious that the development of SVM-based models could be more efficient

than that of BPN-based models.

To demonstrate the high efficiency of SVM-based models more clearly, SVM-RT and
BPN-RT are taken for example. For BPN-RT, the architectures with one to ten hidden
neurons are tested to determine the optimal architecture (the most appropriate number of

hidden neurons). For each number of hidden neurons, 30 different sets of initial
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weights are tried during the training process. The whole constructing process of
BPN-RT requires 20000 seconds (about 5.5 hours), but the construction of SVM-RT
needs only 2 seconds. As compared to BPN-RT, only about 0.01% of time is required
for SVM-RT. Obviously, the development of SVM-based models is much more
efficient than that of BPN-based models. In addition, as compared to BPN-based
models, the SVM-based models could be more rapidly retrained with real-time data and
are more suitable to be integrated with the decision support system for real-time rainfall

forecasting or real-time reservoir operation.

3.24 The Improvement Due to the Addition of Typhoon

Characteristics

To highlight the influence of typhoon characteristics on rainfall forecasting, we focus
on the performance comparison between SVM-R and SVM-RT. As shown in Fig.
3.6(a), the CE values of both SVM-R and SVM-RT decrease with increasing forecast
lead-time. However, the CE values of SVM-R decrease more rapidly than those of
SVM-RT. The results show that SVM-RT forecasts rainfall depth more accurately than
SVM-R, especially for long lead time forecasting. For 1- to 3-h lead time forecasts,
the CE values of SVM-R and SVM-RT respectively decrease from 0.43 to 0.17 and

from 0.44 to 0.24. Then, the performance of SVM-R gets worse and the CE values
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decrease rapidly from 0.10 to -0.02 for 4- to 6-h lead time forecasts. It is clear that

SVM-R cannot yield effective forecasts (i.e. CE<0) when the forecast lead-time is

greater than four hours. As to SVM-RT, the performance does not get worse for long

lead-time forecasting. For 4- to 6-h lead time forecasts, the CE values only decrease

from 0.24 to 0.21. The addition of typhoon characteristics effectively decreases the

negative impact of increasing forecast lead-time.

The improvement in CE due to the addition of typhoon characteristics is presented in

Fig. 3.6(b). As shown in Fig. 3.6(b), the improvement increases with increasing

forecast lead-time. For 1- to 3-h lead time forecasts, the improvement in CE only

increases from 0% to 7%. The improvement due to the addition of typhoon

characteristics is not very significant for one- to three-hour ahead forecasts. A much

greater improvement in CE is obtained for the long lead-time forecasting. The

improvement in CE increases from 15% to 23% for 4- to 6-h lead time forecasts.

Obviously, the addition of typhoon characteristics significantly improves the long

lead-time forecasting.
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Figure 3.6 (a) CE values of SVM-RT and SVM-R and (b) the improvement in CE

due to the addition of typhoon characteristics
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According to the other two performance measures (MAE and RMSE), similar results

are also obtained. Fig. 3.7(a) and 3.7(b) show that both the MAE and RMSE values of

SVM-R increase more rapidly than those of SVM-RT. Fig. 3.7(c) presents the

percentages of decrease in MAE and RMSE due to the addition of typhoon

characteristics. For 1- to 3-h lead time forecasts, SVM-RT respectively decreases

MAE and RMSE values from 2% to 5% and from 1% to 4% as compared to SVM-R.

The percentages of decrease in MAE and RMSE values are not very significant.

However, the addition of typhoon characteristics brings a greater decrease in MAE and

RMSE values for the long lead time forecasting. As compared to SVM-R, SVM-RT

respectively decreases MAE and RMSE values from 9% to 12% and from 8% to 10%

for 4- and 6-h lead time forecasts. Again, the results confirm that typhoon

characteristics effectively improve the long lead-time forecasting and decrease the

negative impact of increasing forecast lead-time.

36



ESVM-R
SVM-RT

EOSVM-R
SVM-RT

Lead time (hour)

(c)

15% 4

ASEAIIIP JO ITRIUNING

0%

Lead time (hour)

Figure 3.7

(a) MAE, (b) RMSE values of SVM-RT and SVM-R, and (c) the

percentages of decrease in MAE and RMSE due to the addition of typhoon

characteristics

37



To investigate the influence of each typhoon characteristic on rainfall forecasting,

performance comparisons between models with single typhoon characteristic and

models without typhoon characteristics (SVM-R) for 10 testing events are made. The

number of events for which the model with single typhoon characteristic yields a higher

CE value than SVM-R is presented in Fig. 3.8. Though only single typhoon

characteristic is added to the model, improvement in performance could still be obtained

for at least 40% of total events. The results show that each collected typhoon

characteristics are effective for typhoon rainfall forecasting. Among all collected

typhoon characteristics, the position of typhoon center is the most effective typhoon

characteristic for improving rainfall forecasting. The addition of the position of

typhoon center improves forecasting performance for 90% of total events. In addition,

the distance between the center and the reservoir and the speed of the typhoon

movement improves forecasting performance for 87% and 73% of total events,

respectively. It is noted that the aforementioned three typhoon characteristics (the

position of typhoon center, the distance between the center and the reservoir, and the

speed of the typhoon movement) are highly related to the typhoon path. Thus, more

accurate forecasts of typhoon path may be required to further improve the accuracy

level of typhoon rainfall forecasting.
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Figure 3.8 The number of events for which the model with each single typhoon

characteristic yields a higher CE value than SVM-R
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3.3 Summary

To provide effective forecasts of hourly rainfall for supporting reservoir operation
systems during typhoons, more accurate, robust and efficient models are proposed in
this chapter. For this purpose, SVMs, instead of BPNs, are adopted to construct
forecasting models. In addition to using SVMs instead of BPNs, typhoon
characteristics are added to the proposed model to further improve the long lead-time
forecasting.  An application is conducted to demonstrate the superiority of the
proposed models. Firstly, the forecasting performance of SVM-based models is
compared with that of BPN-based models. The results clearly show that SVM-based
models yield acceptably accurate forecasts for 1- to 6-h lead time forecasts, but
BPN-based models produce effective 1- to 2-h lead time forecasts only. Hence
SVM-based models perform much better than BPN-based models. In addition, the
other two major advantages of SVMs over BPNs are the robustness and the efficiency,
which are very important but have received little attention in the hydrologic domain.
Representative examples given in this paper indicate that SVM-based models are more

robust and the development of SVM-based models is much more efficient.

Finally, the comparison between the SVM-based models with and without typhoon

characteristics is presented to confirm that the addition of typhoon characteristics
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effectively decrease the negative impact of increasing forecast lead-time and
significantly improves the forecasting performance, especially for long lead-time
forecasting. In conclusion, the proposed SVM-based models are more accurate, robust
and efficient than existing BPN-based models, and the typhoon characteristics should be
used as input to the typhoon rainfall forecasting models for long lead-time forecasting.
The proposed SVM-based models with typhoon characteristics are recommended as an
alternative to the existing models. The proposed modeling technique is useful to
improve the hourly typhoon rainfall forecasting and is suitable to be integrated with
reservoir operation systems. The proposed modeling technique is also expected to be

helpful to support flood, landslide, debris flow and other disaster warning systems.
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Chapter 4 Typhoon flood forecasting using integrated
SVM
4.1 Model development

4.1.1 Model construction

The architecture of the proposed two-stage SVM-based model (named SVM-QRs
herein) is illustrated in Fig. 4.1a. In the first stage, the rainfall forecasting module,
which is developed based on SVMs, is used to pre-process the typhoon information
(namely, typhoon characteristics and rainfall) and to produce rainfall forecasts. Then
in the second stage, the forecasted rainfall and the observed runoff are used as input to
the flood forecasting module which is also developed based on SVMs. For
comparison with the proposed model, another SVM-based flood forecasting model
(named SVM-QRT) with observed runoff, rainfall and typhoon characteristics is also
constructed. It should be noted that rainfall and typhoon characteristics are directly
used as input to SVM-QRT without any processing (Lin et al., 2009a). The

architecture of SVM-QRT is illustrated in Fig. 4.1b.
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The construction of the proposed model, SVM-QRy, is summarized below. First, the

rainfall and typhoon characteristics are used as input to the rainfall forecasting module.

The general form of the rainfall forecasting module is

Rt+At = f(Rt’ Rt—11"'1 Rt—(LR—l)1TYI’TYt—l"”'TYt—(LTY—l))

(4.1)

where t is the current time, At is the lead-time period (from 1 to 6 h), R, is

observed rainfall at time t, and L, denotes the lag length of rainfall, TY, is typhoon
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characteristics at time t, L;, denotes the lag length of typhoon characteristics, and

R, is the forecasted rainfall at time t+At .

Then, the forecasted rainfall (R,,,, ) and observed runoff data are used as input to the
flood forecasting module in the second stage. The general form of the proposed model
IS
QHAt = f(Qt’Qt—l"”1Qt—(LQ—1)’ Rt+At) (4-2)

where Q, is observed runoff at time t, and L, denotes the lag length of runoff,

Q..a s the forecasted runoff at time t-+At .

As to the model without using forecasted rainfall (SVM-QRT), it has a general form

as
t+At f(Qt’Qt—l’“"Qt—(LQ—l)’ Rt’ Rt—l!"" Rt—(LR—l)’TYt’TYt—l"“’TYt—(LTY—l)) (4-3)

The flowchart of the development of SVM-QR; and SVM-QRT is shown in Fig. 4.2,
In model construction, determination of the appropriate lag lengths of input is an
important step. A trial-and-error procedure is applied to determine the lag lengths of
input. The lag lengths, Lyy, Lg and Lg, are determined by the same process. The
criterion for selecting the lag lengths is the relative percentage error (RPE):

E(L)-E(L+1)

E(L)

RPE =

x100 (4.4
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where E(L) and E(L+1) are the RMSEs for models with L and L +1 lag lengths,
respectively. In general, the RMSE decreases with increasing lag term. When the

RPE is less than 5%, the increase of lag lengths is stopped and the best inputs of

forecasting models are selected.

Use only typhoon characteristics
as input

A 4
Determine the lag length of typhoon
characteristics Lty

'

Add rainfall to the input

A4

Determine the lag length of rainfall Ly

Develop the rainfall | Yes R No

) «——  Use rainfall forecasts \/\
forecasting model e -
\\\\\\ - -
v o v
Yield forecasted Add runoff to the
rainfall as input input
h 4
Add runoff to the Determine the lag length of runoff
input Lq
A 4 l

Determine the

lag length of SVM-QR¢ SVM-QRT
runoff Lq

Figure 4.2 Flowchart of the model development
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For event-based data, the collected events are separated into two sets of data: training

and testing. Some of the collected events are chosen as training data and used to

construct NN-based models. The performance of the NN-based models is tested by

the remaining events. Different selections of training data and testing data yield

different results and sometimes lead to different conclusions. In this study, we used

cross validation and each single typhoon event (except the event with the

maximum-runoff) is used to test the NN-based models in turn. Hence, for N typhoon

events, a total of N-1 testing results are obtained. The conclusions are drawn on the

basis of the overall performance for these testing results.

4.1.2 Performance measures

To evaluate the forecasting performance of models, three criteria are used. They are

listed below.

1. Mean coefficient of efficiency (MCE)

For a single testing event, the coefficient of efficiency (CE) is written as

n

Z(Q’[ _Qt)z
CE=1-2— (4.5)
Z(Qt _Q)2

where Q, and Qt denote the observed and forecasted runoff at time t, respectively,
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Q s the average of the observed runoff, and n is the number of time steps.  If the CE
value is equal to one, the forecasts are perfect. Because the cross validations are used

herein, the mean CE of N testing events is written as
l N

MCE == CE, (4.6)
N =

where CE; is the CE for the jth testing event.

2. Root mean square error (RMSE)

The RMSE is a measure which represents the errors between two sets of data. The

smaller the RMSE value, the better the forecasts. The RMSE is written as

RMSE = \/%Zn‘,(Qt -Q)’ (4.7)

3. Mean error of peak runoff (MEPR)

For a single testing event, the error of peak runoff (EPR) is defined as

A

Qr-Qr @8

p

EPR =

where Q, and Qo Is the forecasted peak runoff and the observed peak runoff
respectively. The mean error of peak runoff of N testing events is written as

N
MEPR = %ZEPRJ. (4.9)
j=1

where EPR; is the error of peak runoff for the jth testing event.
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4.2 Application, results and discussion

4.2.1 Application

Taiwan is located in one of the main paths of the north-western Pacific typhoons.
During the past 100 years, on average, approximately four typhoons have hit Taiwan
each year. To mitigate disasters due to typhoons, accurate and reliable runoff forecasts,
especially for long lead time, are required to provide early warning of impending floods.
The study area is the Wu River basin in central Taiwan. The elevation of this basin
varies from 10 m to. 3500 m. The basin with an area of 2026 km? ranks fourth in
Taiwan. The length of the main river is 119 km and the average slope is 1/92. In
addition, the study area is abundant in rainfall during the rainy season (May to October).
Heavy rainfalls brought by typhoons frequently caused flood disasters in the Wu River
basin. In 2008, two typhoons (Kalmaegi and Fung-Wong) successively hit the central
Taiwan. The direct economic loss caused by these two typhoons is estimated to be
about 3 billion USD. Another important matter is that Taichung with a population of
about 3 million people is located downstream of the Nan-Pei Bridge on the Wu River.

Therefore, a well-performing and efficient flood forecasting model is needed.

Figure 4.3 shows the study area and the locations of four hourly rainfall stations

(Pei-Shan, Chin-Liu, Hui-Suen and Tsui-Luan) and one hourly water-level station
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(Nan-Pei Bridge). The rainfall and runoff data were obtained from the Water

Resources Agency and the data of typhoon characteristics were collected from the

Central Weather Bureau. In this paper, the effect of areal rainfall was considered.

The areal rainfall of the watershed was calculated by the Thiessen method. The

typhoon characteristics include the latitude and longitude (degree) of the typhoon center,

the distance (km) between the typhoon center and the water-level station, the

near-center maximum wind speed (m/s), the central pressure (hPa), the storm radius (km)

and the speed (km/hr) of the typhoon movement. For this study, typhoon events that

include the typhoon characteristics, rainfall and runoff data were listed in Table 4.1.

B Water-level statior1
@ Rainfall station

Elevation (m)
B 0-19%
I 196 - 509
71509 - 876
[ 1876-1276
[ 11276 - 1700
[ 1700 - 2154
—km B 2154 - 2665
B 2665 - 3941

Figure 4.3 The study area and locations of rainfall and water-level stations
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Table 4.1 Description of typhoon events used in the modeling

Name Date Duration Scale Maximum  Peak runoff
(h) hourly (m*/s)
rainfall (mm)
Tim 10Jul 1994 50 Intense typhoon 11.48 87.8
Doug 8Aug 1994 30 Intense typhoon 38.03 749
Toraji 29 Jul 2001 62 Moderate typhoon 85.07 1530
Nari 16 Sep 2001 111 Moderate typhoon 19.00 84.5
Nakri 9 Jul 2002 96 Minor typhoon 21.09 244
Nanmadol 3 Dec 2004 37 Moderate typhoon 13.21 61.6
Haitang 17 Jul 2005 81 Intense typhoon 38.94 916.6
Talim 31 Aug 2005 55 Intense typhoon 14.36 262.4
Longwang 10ct2005 40 Intense typhoon 16.73 208.4
Sepat 17 Aug 2007 48 Intense typhoon 21.14 228.2
Wipha 17 Sep 2007 52 Moderate typhoon 20.02 183
Krosa 4 Oct 2007 79 Intense typhoon 27.01 267.5
Kalmaegi 16 Jul 2008 58 Moderate typhoon 67.56 370.2
Fung-wong 26 Jul 2008 73 Moderate typhoon 30.25 388.2
Sinlaku 11 Sep 2008 127 Intense typhoon 47.86 662
Jangmi 27 Sep 2008 52 Intense typhoon 29.44 696

Note: According to the classification system of the Taiwan Central Weather Bureau, the
intensities of minor, moderate and intense typhoons are 34-63, 64-99, and >100 knot,
respectively.
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4.2.2 Results of rainfall forecasts

Before the rainfall forecasting module is constructed, a hypothetical SVM-based

model (named SVM-QR;) is first tested to show the influence of rainfall forecasts on

flood forecasting. It should be noted that the rainfall inputs to the SVM-QR; are the

ideal values. That is, the gauge measurements (ideal values) are used as perfect

rainfall forecasts. Table 4.2 provides the list of inputs that are used to construct

SVM-based models. The MCE values of SVM-QR; and the conventional model

(SVM-QRT) are presented in Fig. 4.4. The comparison between SVM-QRT and

SVM-QR; shows the influence of ideal rainfall on flood forecasting. Additionally,

the result of a BPN-based model (named BPN-QRT), which uses the same inputs as

SVM-QRT, is also presented in Fig. 4.4. As shown in Fig. 4.4, SVM-QRi performs

the best among all models. Furthermore, SVM-QRT clearly yields higher MCE than

BPN-QRT, which is consistent with the conclusion of Lin et al. (2009a, 2009b) that

SVM mostly outperforms BPN. However, both SVM-QRT and BPN-QRT cannot

yield effective forecasts when the forecast lead time is greater than 3 h, whereas

SVM-QR; give accurate flood forecasts up to 6 h. The results confirm that if the

perfect rainfall forecasts are available, the SVM-based model can effectively mitigate

the negative impact of increasing forecast lead time.
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In reality, perfect rainfall forecasts do not exist. So we need the rainfall forecasting
module to obtain the future rainfall information. Lin et al. (2009b) confirmed that the
addition of typhoon characteristics significantly improves the rainfall forecasting
performance, especially for long lead time forecasting. Hence, data of rainfall and
typhoon characteristics are used to develop a SVM-based rainfall forecasting module.
The RMSE values resulting from the rainfall forecasting module are presented in Fig.
4.5. As shown in Fig. 4.5, the RMSE values increase from 4.3 mm to 6.3 mm for 1-
to 3-h lead time forecasts, while they only increase slightly from 6.6 mm to 7 mm for
4- to 6-h lead time forecasts. We note that in this region, the maximum yearly rainfall
is higher than 2000 mm and the maximum hourly rainfall is higher than 80 mm. The
RMSE values of 1- to 6-h lead time forecasts are all lower than 8 mm, which indicates

the SVM-based rainfall forecasting module can yield quite accurate rainfall forecasts.

Table 4.2 Input variables to the NN models

Lead time Input

(h) SVM-QRT SVM-QRy SVM-QR,

1 Q). Q(t-1), R(), TY() q(t), Q(t-1), R(t+1)  Q(t), Q(t-1), R(t+1)
2 Q). Q(t-1), R(), TY() Q(t), Q(t-1), R(t+2)  Qlt), Q(t-1), R(t+2)
3 Q). Q(t-1), R(), TY() qQ(t), Q(t-1), R(t+3)  Qlt), Q(t-1), R(t+3)
4 Q). Q(t-1), R(Y), TY() Q(t), Q(t-1), R(t+4)  Qlt), Q(t-1), R(t+4)
5 Q). Q(t-1), R(Y), TY() Q(t), Q(t-1), R(t+5)  Q(t), Q(t-1), R(t+5)
6 Q). Q(t-1), R(Y), TY() Q(t), (t-1), R(t+6)  Q(t), Q(t-1), R(t+6)

Note: Q: observed runoff; R: observed rainfall; R: forecasted rainfall; Ty: observed
typhoon characteristics.
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4.2.3 Influence of forecasted rainfall on flood forecasting

The MCE and MEPR of three SVM-based models (SVM-QRT, SVM-QR¢ and
SVM-QR;)) for 1- to 6-h lead time forecasts are summarized in Table 4.3. The input
data of SVM-QR; are the perfect rainfall forecasts and antecedent runoff. However,
SVM-QR; is a hypothetical model and cannot be used in practice. As for the input
data of both SVM-QRT and SVM-QRy, the antecedent runoff, rainfall and typhoon
characteristics are used. However, in the SVM-QR: model, the rainfall forecasting
module is used to pre-process typhoon information (namely, typhoon characteristics
and rainfall) and to provide the forecasted rainfall. For SVM-QRT, the rainfall and
typhoon characteristics are directly used as inputs without any processing. In this
subsection we focus on the comparison between SVM-QR; and SVM-QRT to highlight

the advantage of the proposed model.

Table 4.3 MCE and MEPR for various models

Lead time (h) SVM-QRT SVM-QRs SVM-QR;
MCE

1 0.73 0.93 0.93
2 0.56 0.85 0.84
3 0.47 0.76 0.74
4 0.12 0.65 0.63
5 -0.28 0.58 0.55
6 -0.80 0.46 0.39
MEPR (%)

1 7.28 4.42 3.74
2 13.23 8.16 4.06
3 16.41 11.49 5.21
4 22.28 13.58 6.73
5 28.12 14.28 7.92
6 32,51 15.10 11.78
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The MCE values for runoff forecasts of both SVM-QRT and SVM-QR; decrease with

increasing forecast lead time (Fig. 4.6a). However, the MCE values of SVM-QRT

decrease more rapidly than those of SVM-QR;. For 1- to 3-h lead time forecasts, both

models provide reasonable runoff forecasts. For 4- to 6-h lead time forecasts, the

performance of SVM-QRT gets worse and the MCE values are almost equal or even

lower than zero. It is clear that SVM-QRT cannot yield effective forecasts when the

forecast lead time is greater than 3 h. As to SVM-QRy, the performance is still

acceptable for long lead time forecasting. Regardless of the forecast lead time, the

proposed model can provide more accurate runoff forecasts than the model without

using forecasted rainfall. Furthermore, the improvement in MCE due to the use of

SVM-QRs instead of SVM-QRT is presented in Fig. 4.6b. It is also concluded that

SVM-QRs outperforms SVM-QRT.

As shown in Fig. 4.7a, a similar trend is observed that the MEPR values of both

SVM-QRT and SVM-QR; increase with increasing forecast lead time. However, it is

clear that SVM-QRy yields significantly lower MEPR values than SVM-QRT for 1- to

6-h lead time forecasts. Fig. 4.7a also shows that the MEPR values of SVM-QRg

increase more slowly than those of SVM-QRT. For 1- to 6-h lead time forecasts, the

MEPR values of SVM-QR; only increase from 4.4% to 15.1%, but those of SVM-QRT

rapidly increase from 7.3% to 32.5%. The improvement in MEPR due to the use of
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the proposed model instead of the model without using forecasted rainfall presented in

Fig. 4.7b more clearly shows that the proposed model effectively improves the

forecasting performance. For 1- to 6-h lead times, the improvement in MEPR

increases from 2.9% to 17.4%. This indicates that SVM-QR; is more appropriate for

forecasting peak runoff than SVM-QRT, especially for long lead time forecasting.

In this study, it is founded that the runoff forecasts cannot be improved by using raw

typhoon characteristics as input to an SVM-based model. Because of the short

concentration time in the study basin, the direct use of observed data (runoff, rainfall

and typhoon characteristics) in model development cannot provide useful information

for long lead time forecasting. When the forecast lead time increases, the data used for

long lead time forecasting include more complex noise and the correlation between

desired output and available input decreases rapidly. Because the rainfall forecasting

module successfully reduces the complication of typhoon characteristics, the proposed

model effectively improves the long lead-time forecasting.
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MCE due to the use of SVM-QR; instead of SVM-QRT
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in MEPR due to the use of SVM-QRs instead of SVM-QRT
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In addition to the overall performance, evaluation of individual events is described

herein. The number of events for which SVM-QR; yields a higher CE than SVM-QRT

is counted and presented in Fig. 4.8a. In a like manner, Fig. 4.8b presents the results

for another performance measure, EPR. Fig. 4.8 shows that SVM-QRs performs better

than SVM-QRT for most of the events. To further assess whether SVM-QR; performs

better than SVM-QRT for the same testing events, paired comparison t-tests are

conducted at the 1% significance level. Table 4.4 shows that SVM-QR; yields

significantly higher CE and lower EPR than SVM-QRT. To highlight the comparison,

Fig. 4.9 shows the hydrographs of 1-h lead time forecasts resulting from SVM-QR; and

SVM-QRT for the most extreme runoff event (resulting from Typhoon Haitang).  As

shown in Fig. 4.9, both SVM-QR¢ and SVM-QRT slightly underestimate the peak runoff,

but reproduce low runoff appropriately because low runoff is more frequent in data set

than high runoff. However, SVM-QR; captures the peak runoff better than SVM-QRT.

It is concluded that for peak runoff forecast, SVM-QRs is capable of providing more

accurate forecasts as compared to SVM-QRT. For 1- to 6-h lead times, the comparison

of the observed runoff with the forecasts resulting from SVM-QRy is presented in Fig.

4.10. The result shows that the proposed two-stage model (SVM-QRy) is able to make

good forecasts because the forecasted hydrograph accurately matches the observed

hydrograph. This indicates that SVM-QR; exhibits excellent overall performances.
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Table 4.4 Paired comparison t-tests of two performance measures (CE and EPR)
resulting from SVM-QRT and SVM-QR¢

Alternative hypothesis t Statistic  Critical t  Statistically significant at the
value 1% level
CEsym-arT < CEsvm-are 2.95 2.37 Yes
EPRsvm-ars < EPRsym-qrT 4.19 2.37 Yes

()

B CEsvvorr> CEsvmgre
B CEsvmgrr > CEgyamorr

Lead time=1h

Lead time=2h Lead time=3 h Lead time=4 h Lead time=5h Lead time=6h
(b)
B EPRgvwm. grt < EPRgym. gre

SOV

Lead time=1h Lead time=2h Lead time =3 h Lead time=4 h Lead time=5h Lead time=6h

‘J‘al ‘Jl N

Figure 4.8 Number of events for which (a) CE values of SVM-QR; are higher than

those of SVM-QRT and (b) EPR values of SVM-QRs are lower than those of SVM-QRT
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4.3 Summary

In this chapter, a integrated SVM-based model is proposed for improving runoff
forecast during typhoon events. In the first stage, the rainfall forecasting module is
used to pre-process the typhoon information (namely, typhoon characteristics and
rainfall) and to produce rainfall forecasts. Then, in the second stage, the forecasted
rainfall and observed runoff are used as input to the flood forecasting module to yield
runoff forecasts. A case study for the Wu River basin in central Taiwan is performed
to assess the proposed model (i.e. SVM-QRy). In addition, a single-stage SVM-based
model (i.e. SVM-QRT), which directly uses observed runoff, rainfall and typhoon

characteristics as input without any processing, is also constructed for comparison.

Regarding the performance of rainfall forecasting, it is found that the first-stage of the
proposed model yields quite accurate 1- to 6-h lead time rainfall forecasts. The use of
typhoons characteristics can effectively reduce the negative impacts of increasing
forecast lead time. As to the performance of flood forecasting, a comparison between
the proposed two-stage model and the single-stage model shows that the proposed
model significantly improves the runoff forecasts. In addition to the overall
performance, the proposed model significantly improves the forecasts of peak runoff,

especially for long lead time forecasting. The better performance of the proposed
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model confirms that the processed typhoon information is more useful than the raw
typhoon information. The use of forecasted rainfall and the proposed two-stage
structures are justified. In conclusion, the proposed model is expected to improve

hourly typhoon flood forecasting.
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Chapter 5 Conclusions

In this dissertation, SVMs are investigated and applied on different hydrological
problems, including typhoon rainfall forecasting and flood forecasting. These studies
have indicated that SVMs are robust and efficient tools for flood warning system.

Conclusions of these studies are summarized as follow:

5.1 Effective forecasting of hourly typhoon rainfall
1. In order to provide effective hourly rainfall forecasts, support vector machines
(SVMs), instead of back propagation neural networks (BPNSs), are presented to

construct forecasting models.

2. An application in the Fei-Tsui Reservoir is conducted to demonstrate the three

advantages of the proposed models.

3. As to forecasting performance, SVM-based models can yield accurately accurate
forecasts for 1- to 6-h lead time forecasting, but BPN-based models produce
effective 1- to 2-h lead time forecasting only.  This result indicates that SVMs have

better generalization ability than BPNs

4. The other two major differences between SVMs and BPNs are the robustness and
the efficiency. The results of this study demonstrate that the SVMs are more

robust and efficient than BPNSs.
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5. To further improve the long lead time forecasting, the comparison between the
SVM-based models with and without typhoon characteristics is also presented in
this study. The result confirms that the addition of typhoon characteristics
effectively decrease the negative impact of increasing forecast lead time and
significantly improves the forecasting performance, especially for long lead time

forecasting.

6. It would be more interesting if the study compares the results of SVM with another
model (e.g. Radial Basis Function Network and/or other Neural Networks) to assess

the skill of SVM in a competing contest.

7. Research should continue on the selection of the effective typhoon characteristics to
further improve the model performance.

5.2 Typhoon flood forecasting using integrated SVM

1. Based on the combination of the rainfall forecasting module and flood forecasting
module, an integrated SVM-based model is proposed to improve long lead time

flood forecasting.

2. An application in the Wu River basin is conducted to demonstrate the superiority of

the proposed models.

3. According to the previous study, a SVM-based rainfall forecasting module with
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rainfall and typhoon characteristics is proposed. In an area with abundant rainfall,

the rainfall forecasting module still yields quite accurate 1- to 6-h lead time rainfall

forecasts.

. As to the performance of flood forecasting, it can be found that the proposed

integrated model is capable of providing more accurate forecasts as compared to the

single-stage model. The better performance of the proposed model confirms that

the processed typhoon information is more useful than the raw typhoon information.

In addition to the overall performance, the hydrographs of 1-h lead time forecasts

resulting from SVM-QR; and SVM-QRT for the most extreme runoff event

(resulting from Typhoon Haitang) are also presented to show the performance of

peak runoff forecasts. It is concluded that the proposed model significantly

improves the forecasts of peak runoff, especially for long lead time forecasting.

. Although the study uses the data of maximum-runoff Typhoon just in the training

data set. It would be helpful to use that data in the testing data set either, to assess

the ability of model in extrapolation as well.

The study shows that the two-stage SVM based approach improves the forecasting

especially at long lead times. In the future work, it would be valuable to extend the
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forecast to even longer lead times such as 9, 12 or even 24 hours as in most flood

forecasting applications.
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