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摘摘摘 要要要

自旋-1玻色-愛因斯坦凝聚是一類特殊的，含有三個分量函數的系統。通常以

Ψ = (ψ1, ψ0, ψ−1) 表示。 它的行為由一個能量泛函 E[Ψ] 及兩個限制條件所描述。

這兩個限制分別是原子數守恆與磁化量守恆，也就是說
∫
|Ψ|2 及

∫
(|ψ1|2 − |ψ−1|2)

是兩個固定的數。而所謂的基態即指在這兩個條件之下，使能量 E 達到最小的狀態

Ψ。要解釋這篇論文所討論的問題，我們還得指出，根據能量 E 的表達式裡的某個

參數的正負號，自旋-1玻色愛因斯坦凝聚被分成順磁性與反磁性兩類。這兩類系統

表現出來的行為有本質上的不同。這篇論文裡的工作，其動機來自於兩個現象，恰好

一個屬於順磁性，另一個反磁性。

1. 任何順磁性系統中的基態，必定滿足下列形式

Ψ = (γ1ψ, γ0ψ, γ−1ψ),

其中 γj 皆為常數，而 ψ 為函數。這個形式稱作單模近似。由其名稱即可知，這原本

只被視為一種簡化的假設。然而在後來的研究中卻發現，對順磁性系統的基態來說，

此形式是完全正確，而非只是近似。

2. 考慮外加一個均勻磁場的情形。若將磁場的強度由零慢慢增加，當強度超過某個特

定的數值時，反磁性系統的基態會經歷一個從 ψ0 ≡ 0到 ψ0 6= 0的分歧。

雖然這兩個現象很早就已經在數值模擬中被發現，但在我們的研究之前，還沒有

一個真正嚴格的數學證明。這篇論文包含我們在 [16, 17]這兩篇論文裡的工作，它

們分別給出了上面兩個現象的嚴格證明。 比起兩篇原本的論文，在本文中我們盡可

能把所有的細節都交待清楚。 我們的證明方法主要是使用了下面這個原理：質量密

度(也就是 |ψ1|2, |ψ0|2 及 |ψ−1|2)的重分配將必定導致動能的下降。這個原理可視為某

個廣為人知的梯度的凸性不等式的簡單推廣。我們將會說明這個原理如何給出解決上

面問題的一個統一的想法。

關關關鍵鍵鍵詞詞詞：自旋，旋量，玻色-愛因斯坦凝聚系統，薛丁格系統，單模近似，質量重分

配，分歧
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Abstract

Spin-1 Bose-Einstein condensate (BEC) is a special three-component system, writ-

ten as Ψ = (ψ1, ψ0, ψ−1). Its behavior is described by an energy functional E[Ψ] with

two constraints: the conservation of the number of atoms and the conservation of total

magnetization. That is
∫
|Ψ|2 and

∫
(|ψ1|2 − |ψ−1|2) are fixed numbers. And a ground

state is a minimizer of E under the constraints. To explain the problems considered in

this thesis, we remark that according to the sign of a specific parameter in the energyE,

spin-1 BECs are classified into two groups: ferromagnetic ones and antiferromagnetic

ones. They exhibit rather different behaviors. The works in this thesis are motivated

by the following two phenomena.

1. Any ground state of a ferromagnetic system is of the form

Ψ = (γ1ψ, γ0ψ, γ−1ψ),

where γj are constants and ψ a function. This is called single-mode approximation.

According to the name, this form was originally only used as a simplified assumption,

while from later studies it is found to be exactly the case for ferromagnetic ground

states.

2. When an external magnetic field is applied, the ground state of an antiferromagnetic

system undergoes a bifurcation from ψ0 ≡ 0 to ψ0 6= 0 as the strength of the magnetic

field surpasses a critical value.

Although these phenomena have been well-known from numerical simulations for

quite a long time, there were no rigorous mathematical justifications before our inves-

tigations. In this thesis, our works [16, 17] on their proofs are given, with more details.

The proofs rely on a principle which says that a redistribution of the mass densities (i.e.

|ψ1|2, |ψ0|2 and |ψ−1|2) will decrease the kinetic energy. This principle can be regarded

as a simple generalization of a well-known convexity inequality for gradients. We will

show how this principle can give a rather unified approach toward our problems.

Keywords: spin-1, spinor, BEC system, Schrödinger system, single-mode approxima-

tion, mass redistribution, bifurcation
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Chapter 1

Introduction

When a Bose-Einstein condensate (BEC) of dilute atomic gas is confined by an optical

trap, all its hyperfine spin states can be active simultaneously. In this situation, a spin-f

BEC is described by a (2f + 1)-component order parameter

Ψ = (ψf , ψf−1, ..., ψ−f ),

where the components ψj are complex-valued functions in the mean-field theory. Since

the first realization of such spinor BECs in 1997 [19] (spin-1 BEC of 23Na), their rich

structures have drawn great interest and a lot of researches.

This thesis focuses on some facts exhibited by the ground states of spin-1 BEC

which have been well-known from numerical simulations for a long time. The aim is to

provide rigorous mathematical justifications of them, based on a principle which says

that a redistribution of the mass densities between different components will decrease

the kinetic energy. Before further discussion, we shall first introduce the mathematical

model.

1.1 Mathematical model of spin-1 BEC

A spin-1 BEC, as mentioned above, is described by a three-component vector function

Ψ = (ψ1, ψ0, ψ−1), where each ψj is a complex-valued function on R3. We leave

the specification of the suitable function space for Ψ to §2.1, although it should be

very clear from the energy functional given below. Also note that we consider Ψ as

1



being independent of time since we will only be interested in ground states. For the

dynamical law, see e.g. [15].

The energy of the system is

E[Ψ] = Ekin[Ψ] + Epot[Ψ] + E0[Ψ] + E1[Ψ] + EZee[Ψ],

where1

Ekin[Ψ] =

∫ ∑
j

|∇ψj|2

Epot[Ψ] =

∫
V (x)|Ψ|2

E0[Ψ] =

∫
β0|Ψ|4

E1[Ψ] =

∫
β1|Ψ∗FΨ|2

EZee[Ψ] =

∫ [
p(|ψ1|2 − |ψ−1|2) + q(|ψ1|2 + |ψ−1|2)

]
.

V (x) is a real-valued function, and β0, β1, p, q are real constants. In the definition of

E1[Ψ], Ψ is regarded as a column vector and Ψ∗ is its conjugate transpose. F stands

for the triple (Fx, Fy, Fz) of 3× 3 matrices given by

Fx =
1√
2

0 1 0

1 0 1

0 1 0

 , Fy =
i√
2

0 −1 0

1 0 −1

0 1 0

 , Fz =

1 0 0

0 0 0

0 0 −1

 .

Thus

Ψ∗FΨ = (Ψ∗FxΨ,Ψ
∗FyΨ,Ψ

∗FzΨ).

The notation |Ψ| denotes the Euclidean length (
∑

j |ψj|2)1/2, and similarly for |∇ψj|

and |Ψ∗FΨ|.

Physically, V represents a state-independent trap potential, the terms with coeffi-

cients β0 and β1 describe the interactions between the atoms, p and q are the linear
1Remark on notation. When the domain of an integration is not specified, it’s understood to
be R3. Also, the dummy variable x as well as the differential dx in integrals are almost never
written explicitly. Nevertheless, we shall sometimes retain the variable x for the trap potential
V . This convention seems better in some places.
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and quadratic Zeeman effects induced by an external uniform magnetic field, and the

components of F are called the spin-1 Pauli matrices.

Besides the energy, the system is described to have the following two conserved

quantities:

Number of atoms N [Ψ] =

∫
|Ψ|2,

Total magnetization M[Ψ] =

∫ (
|ψ1|2 − |ψ−1|2

)
.

And a ground state is a minimizer of E under fixed N andM. By normalization, we

can assume N [Ψ] = 1. AndM[Ψ] = M for some constant M . Note that |M[Ψ]| ≤

N [Ψ] for every state Ψ, so we must have |M | ≤ 1. Due to the symmetry of the roles

of ψ1 and ψ−1, we will only consider 0 ≤ M ≤ 1. The general assumptions on the

parameters of E are the following:

(A1) V ∈ L∞loc(R3), and V (x) tends to infinity as |x| tends to infinity. Precisely2

lim
R→∞

( inf
|x|≥R

V (x)) =∞.

Note that in particular V is bounded from below.

(A2) β0 > |β1| > 0.

(A3) q ≥ 0.

(A4) V ≥ 0 and p = 0.

We give some remarks for these assumptions.

1. (A2) indicates a repulsive nature of the system. (A1) will then guarantee that

V (x) traps the system essentially in a localized region, which will be crucial in

some places, including the proof of the existence result.

2. I’m not sure whether (A2) must be true in principle, but it holds for real systems

as far as I know. (For example spin-1 BEC of 23Na and 87Rb.) Mathematically,

2We’ll write inf (and the like) also for ess inf .
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the fact |β1| < β0 is also helpful in the proof of existence when β1 < 0. For

β1 > 0, the assumption β1 < β0 is in fact not used in this thesis. By the way,

the case β0 = β1 = 0 or only β1 = 0 can also be studied mathematically. We’ll

however not consider them since they exhibit no further difficulty but only result

in some degenerate situations not of much interest.

3. According to the sign of β1, spin-1 BECs are classified into two groups: ferro-

magnetic ones for β1 < 0, and antiferromagnetic ones for β1 > 0. The typical

examples are respectively 23Na and 87Rb. They show very different behaviors

from each other.

4. Physically, the values of p and q can be tuned by modifying the applied magnetic

field. It’s also possible to make q negative, but we do not consider this case in

this thesis.

5. Due to the conservations ofN andM, ground states are not changed by shifting

the values of V and p by any constants. Hence (A4) causes no loss of generality

for our purposes.

Note. The model of spin-1 BEC appeared very soon after the first realization. The ear-

liest papers being [9], [18] and [12]. As to the understanding of the model, I however

most benefited from [22] and various papers by Dr. Weizhu Bao and his collaborators,

for example [3], [2] and [15]. Besides them, the review article [11] is also a reference I

consulted from time to time. Our expression of the energy functional is mostly similar

to that given in [22], [15] and [11].

1.2 The motivations

The whole study is motivated by two phenomena, pertaining to ferromagnetic and

antiferromagnetic systems respectively.
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1. For a ferromagnetic system, when there is no external magnetic field (i.e. q = 0),

its ground state Ψ obeys the single-mode approximation (SMA)

Ψ = (γ1ψ, γ0ψ, γ−1ψ),

where each γj is a constant, and ψ is a function independent of j.

2. For an antiferromagnetic system, as q increases from zero, its ground state Ψ

undergoes a bifurcation from ψ0 ≡ 0 to ψ0 6= 0 at a critical qc > 0.

The SMA, as the name indicates, was originally only regarded as an approximation,

which was used to simplify the study of spin-1 BEC. As later investigations showed,

it turns out to be exactly the case but not only an approximation for ferromagnetic

systems (and is in general not suited for antiferromagnetic systems).

These phenomena have been known from numerical simulations for a long time.

For clear declarations and discussions of them, see respectively [21] and [22, 15]. The

bifurcation phenomenon was recently also observed in experiments [10]. Nevertheless,

there seems to be no sound mathematical reasonings for the validity of these facts be-

fore. In theoretical discussions on the bifurcation, like in [22], the researchers usually

assume Ψ is a constant vector, which is of course not a satisfactory demonstration.

We will later first consider q = 0. Due to the SMA, a ferromagnetic ground state

can be characterized as a one-component system. On the other hand, the antiferromag-

netic ground state has only two components since ψ0 ≡ 0. They will be referred to as

simplified characterizations in this thesis. Their proofs first appeared in our paper [16].

It’s interesting that, by using the mentioned redistribution method, they can be proved

in almost the same way.

On the other hand, the bifurcation phenomenon can also be deduced by using mass

redistribution, while a lot more technical details are involved. The most difficult part

is to prove that we do have ψ0 ≡ 0 for some q strictly larger than zero. The proof first

appeared in [17], where there are also many relevant discussions on the redistribution

method. I am recently also preparing a simplified version, which go straight to the

verification of the bifurcation phenomenon.
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Note. The outline of the thesis is very clear from the contents. Moreover, I’ll use a few

words in the beginning of every chapter or section to indicate what we are going to do.
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Chapter 2

Preliminaries

In this chapter we give some preliminaries which are essential for the discussions in

the rest of this thesis. In Section 2.1, we introduce a reduction which says that we can

simply consider (|ψ1|, |ψ0|, |ψ−1|) for our purposes. Many notations are also given in

the same section. In Section 2.2, the fundamental facts such as the existence of ground

state, the Euler-Lagrange system and its direct corollaries are given. In Section 2.3, the

idea of mass redistribution is introduced.

2.1 A reduction of the model

We shall write H1 for H1(R3,C), and similarly for other function spaces. Let

B =
{

(ψ1, ψ0, ψ−1)
∣∣ψj ∈ H1 ∩ L2

V ∩ L4 for each j
}
,

where L2
V is the V -weighted L2 space. That is, a measurable function f belongs to L2

V

if ‖f‖2
L2
V

:=
∫
V (x)|f |2 is finite. Note that L2

V is nothing but L2 space with respect to

the (σ-finite) measure V (x)dx. By endowing B with the norm

‖Ψ‖ =
∑
j

(
‖ψj‖H1 + ‖ψj‖L2

V
+ ‖ψj‖L4

)
, (2.1)

B is a Banach space. Obviously, B is the appropriate space for our variational model.

Precisely, ground states are minimizers of the following problem:

minE over {Ψ ∈ B | N [Ψ] = 1, M[Ψ] = M } .

7



For our purposes, we can reduce this model on B to a model on B+, where

B+ = {(u1, u0, u−1) ∈ B |uj ≥ 0 for each j } .

We give the reduction in the following.

Given Ψ = (ψ1, ψ0, ψ−1) ∈ B, we have

Ekin[Ψ] =
∑
j

|∇ψj|2 ≥
∑
j

|∇|ψj||2

by the convexity inequality for gradients (Section 8.1). Moreover, let

ψj = |ψj|eiθj ,

then it’s easy to check that

E1[Ψ] =

∫
β1

{
2|ψ0|2

[
|ψ1|2 + |ψ−1|2 + 2|ψ1||ψ−1| cos(θ1 − 2θ0 + θ−1)

]
+ (|ψ1|2 − |ψ−1|2)2

}
.

Hence

E1[Ψ] ≥
∫
β1

{
2|ψ0|2(|ψ1| − sgn(β1)|ψ−1|)2 + (|ψ1|2 − |ψ−1|2)2

}
,

where

sgn(β1) =

{
1 if β1 > 0

−1 if β1 < 0.

And the equality holds if

cos (θ1 − 2θ0 + θ−1) ≡ −sgn(β1). (2.2)

For other parts of the energy, we obviously have

Epot[Ψ] = Epot[(|ψ1|, |ψ0|, |ψ−1|)],

E0[Ψ] = E0[(|ψ1|, |ψ0|, |ψ−1|)],

EZee[Ψ] = EZee[(|ψ1|, |ψ0|, |ψ−1|)].

8



We thus obtain

E[Ψ] ≥ E [(|ψ1|, |ψ0|, |ψ−1|)],

where (remember that we have assumed p = 0)

E [u] :=

∫ {∑
j

|∇uj|2 + V (x)|u|2 + β0|u|4

+ β1

[
2u2

0(u1 − sgn(β1)u−1)2 + (u2
1 − u2

−1)2
]

+ q(u2
1 + u2

−1)

}
for u = (u1, u0, u−1) ∈ B+. Also, note that the conservations ofN andM are actually

constraints on |ψj| and have nothing to do with the phases. These observations lead us

to replace the original variational problem by the following one:

min
u∈A
E [u], (2.3)

where the admissible class

A = {u ∈ B+ | N [u] = 1, M[u] = M } .

The validity of using this reduced model is provided by Corollary 8.5, Corollary 8.6

and Corollary 8.8, of which we can say the last one is the only not totally trivial asser-

tion. We give careful examinations of them for the sake of being completely rigorous.

For later discussions, one can indeed just forget the original model and focus on (2.3).

We introduce some more notations to conclude this section. Define

Eg = min
u∈A
E [u],

and

G = {u ∈ A | E [u] = Eg } .

Thus Eg is the ground-state energy, and G is the set of minimizers of (2.3), which

are exactly the objects to study. Since many assertions and discussions in this thesis

involve different values of M and q, in later parts of this thesis we will write AM (the

9



admissible class has nothing to do with q), GM,q and Eg(M, q) to specify their values

explicitly.

Similar to E, we will use Ekin, Epot, E0, E1, and EZee to denote the five parts of E .

Moreover, we will use H(u) to denote the integrand of E [u], i.e.

E [u] =

∫
H(u).

Hkin, Hpot, etc. are similarly defined for the corresponding parts.

2.2 Fundamental properties

In some aspects our three-component system can be regarded as a generalization of

the one-component system studied in [14]. The fundamental properties about the one-

component model hold and can be proved similarly for our model. (The uniqueness

is however a remarkable exception. See Remark 2.2 below. Detailed discussions are

given in §7.1.) We summarize them in the following.

Theorem 2.1. G 6= ∅. u ∈ G is at least of class C1, and satisfies the Euler-Lagrange

system
(µ+ λ)u1 = Lu1+2β1

[
u2

0(u1 − sgn(β1)u−1)+u1(u2
1 − u2

−1)
]
+qu1

µu0 = Lu0 + 2β1u0(u1 − s(β1)u−1)2

(µ− λ)u−1 = Lu−1+2β1

[
u2

0(u−1 − sgn(β1)u1)+u−1(u2
−1 − u2

1)
]
+qu−1

(2.4a)

(2.4b)

(2.4c)

in the sense of distribution, where L = −∆ + V + 2β0|u|2, and λ and µ are the La-

grange multipliers induced by the constraints N [u] = 1 andM[u] = M respectively.

Moreover, for each uj , either uj ≡ 0 or uj > 0 on all of R3.

The existence result can be proved by the standard direct method in the calculus

of variations, in which one tries to show that a minimizing sequence in A has a subse-

quence which weakly converges to an element in G. The only difference from a typical

situation is that here the system is on the whole space but not a bounded domain. As

a result, we do not have compact embedding H1 ↪→ L2 to guarantee that the weak

10



limit is still in A. Instead, we should use the assumption (A1), which implies that, in

some sense, most part of u is really contained in bounded domains, on which compact

embedding applies. A precise argument can be given almost the same as in Lemma

A.2 of [14]. (See also [1, 6].) Nevertheless, besides the conclusion of existence, some

observations from its proof will also be needed later. We give them in Proposition 2.2

below. For convenience we give the proof in Section 8.3. The most important point

is that we actually have strong convergence but not only weak convergence for the ex-

tracted subsequence of the minimizing sequence. This holds for our model since the

norm of B is bounded by a constant multiple of the energy functional.

Proposition 2.2. Let {un} be a sequence in B+. Suppose

N [un]→ 1, M[un]→M,

and E [un] is uniformly bounded in n, then {un} has a subsequence {un(k)}∞k=1 con-

verging weakly to some u∞ ∈ A, which satisfies

E [u∞] ≤ lim inf
k→∞

E [un(k)].

If we assume further that E [un]→ Eg, then u∞ ∈ G, and un(k) → u∞ in the norm of

B.

The Euler-Lagrange system (2.4) is called a time-independent Gross-Pitaevskii sys-

tem (GP system). We remark that (2.4) is indeed valid not only in the sense of distri-

bution, but also when tested by elements in B. In fact, E , N andM are continuously

(Fréchet) differentiable as functionals from B into R, and (2.4), after multiplied by 2,

is exactly

µN ′[u] + λM′[u] = E ′[u].

We omit the verification of this fact. Once (2.4) is obtained, that u ∈ G is continu-

ously differentiable follows standard regularity theorem (see e.g. [13], 10.2). And the

strict positivity of a nonvanishing component can be obtained by the strong maximum

principle. We give the proof of this last assertion also in Section 8.3. We shall usually

use this fact tacitly to avoid repeatedly referring to Theorem 2.1.

11



Corollary 2.3. Let u ∈ G. If 0 < M < 1, then uj 6= 0 for j = 1,−1.

Proof. Since
∫

(u2
1 − u2

−1) = M > 0, u1 6= 0, and hence u1 > 0. To prove u−1 6= 0,

assume otherwise, then (2.2c) gives u2
0u1 = 0, and so u0 = 0. Thus among the three

components only u1 6= 0, which implies M = 1 from the constraint N [u] = 1,

contradicting to our assumption.

The two-component ground state

Since we will investigate whether u0 ≡ 0 for u ∈ G, it will be convenient to introduce

the two-component admissible class

Atwo = {u ∈ A |u0 ≡ 0} .

Note that for u ∈ Atwo the constraints are equivalent to∫
u2

1 =
1 +M

2
and

∫
u2
−1 =

1−M
2

.

Due to the following uniqueness result, there is no need to introduce the corresponding

class of minimizers Gtwo.

Theorem 2.4. There exists exactly one element z = (z1, 0, z−1) ∈ Atwo which mini-

mizes the energy E over Atwo. Moreover, z is independent of the value of q ∈ [0,∞).

Proof. The existence of z can be proved as for the general three-component case. On

the other hand, the fact that z is independent of q follows the simple observation that

EZee equals the constant q over Atwo, and hence plays no role in the minimization. We

prove the uniqueness of z in the following.

Given u,v ∈ Atwo. Let w ∈ B+ be defined by w2
j = (u2

j + v2
j )/2 for j = 1, 0,−1,

then w is also in Atwo. Let D = (E [u] + E [v])/2− E [w], then D = Dkin +Dn +Ds,

where

Dkin =
Ekin[u] + Ekin[v]

2
− Ekin[w] =

∫ ∑
j=1,−1

(
|∇uj|2 + |∇vj|2

2
− |∇wj|2

)
,

12



which is nonnegative by the convexity inequality for gradients. Also,

Dn =
En[u] + En[v]

2
− En[w] =

β0

4

∫ (
|u|2 − |v|2

)2 ≥ 0,

and

Ds =
Es[u] + Es[v]

2
− Es[w] =

β1

4

∫ (
u2

1 − u2
−1 − v2

1 + v2
−1

)2 ≥ 0,

as are easily checked. Now assume, moreover, u and v both minimize E over Atwo,

then we must have Dkin = Dn = Ds = 0. Otherwise we get the contradiction

E [w] < (E [u] + E [v])/2. From Dn = 0 and Ds = 0 we then conclude that u = v.

This proves the uniqueness of z.

Remark 2.1. Let u ∈ G. The assertion u0 ≡ 0 is obviously equivalent to u = z.

We will show in Section 3.2 that z ∈ G when q = 0. As a corollary, the assertions in

Theorem 2.1 for elements in G also apply to z.

Remark 2.2. The convexity argument used to prove the uniqueness of z is standard.

The idea however fails for general G, due to the term H1(u). Although the unique-

ness will not be needed essentially, the lack of it still causes troubles in some of our

presentations. See Section 7.1 for more discussions on the uniqueness problem.

2.3 Mass redistribution

Let f = (f1, f2, . . . , fn) be an n-tuple of real-valued function in H1(Rd), and let g =

|f |. The convexity inequality for gradients (Section 8.1) says

|∇g|2 ≤
∑
k

|∇fk|2.

This fact has a simple while interesting generalization, when f 2
1 , . . . , f

2
n do not sum to

a single g2, but are distributed into multiple parts. To be precise, we give the following

definition.

13



Definition 2.1. Let f be as above, and let g = (g1, g2, . . . , gm) be an m-tuple of non-

negative functions. We say g is a mass redistribution of f if

g2
1 = a11f

2
1 + a12f

2
2 + · · ·+ a1nf

2
n

g2
2 = a21f

2
1 + a22f

2
2 + · · ·+ a2nf

2
n

...

g2
m = am1f

2
1 + am2f

2
2 + · · ·+ amnf

2
n,

where a`k (` = 1, . . . ,m; k = 1, . . . , n) are nonnegative constants satisfying
m∑
`=1

a`k = 1 for each k = 1, . . . , n.

That is, the coefficients of every column sum to 1.

Note that g = |f | is the only mass redistribution of f for m = 1. For general m, we

have the following result.

Proposition 2.5. Let g be a mass redistribution of f as in Definition 2.1, then we have

(1) |g| = |f |, and

(2)
∑m

`=1 |∇g`|2 ≤
∑n

k=1 |∇fk|2.

Proof. The first assertion follows directly from the definition of mass redistribution.

For the second assertion, apply the convexity inequality for gradients to

g` =
(

(
√
a`1f1)

2
+ (
√
a`2f2)

2
+ · · ·+ (

√
a`nfn)

2
)1/2

,

and we get

|∇g`|2 ≤ a`1|∇f1|2 + a`2|∇f2|2 + · · ·+ a`na`n|∇fn|2.

The assertion is then obtained by summing over ` = 1, 2, . . . ,m.

Remark 2.3. It should be clear why we use the word “redistribution”. On the other

hand, we will consider mass redistributions of u ∈ A. The adjective “mass” is added

since the square of uj represents the mass density of the j-th component. Indeed, we

might as well use the term “square redistribution”. For convenience, however, we shall

later only say redistribution.
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Let’s write AM and GM,q here. Redistribution provides a simple and concrete way

to variate an element in AM into another element, in the same space or in another AM ′ .

Indeed, if v is a redistribution of some u ∈ AM , then (1) of Proposition 2.5 implies

N [v] = 1, and one needs only to take care of the value of M[v]. Also, it’s easy to

compare E [v] with E [u]. Precisely, again from (1) we have

Epot[v] = Epot[u] and E0[v] = E0[u], (2.5)

and from (2) we have

Ekin[v] ≤ Ekin[u]. (2.6)

As will be seen, these features make it easy to deduce some facts by using redistribu-

tion, which might otherwise be harder to obtain or need more elaboration.

The true merit of redistribution (in my opinion and for our purpose) exhibits in

Chapter 5, when we use it to obtain simple inequalities satisfied by ground states. To

be precise, let u ∈ GM,q for some M, q. Then for any redistribution v of u in the same

class AM , the fact E [u] ≤ E [v] together with (2.5) imply

Ekin[u] + E1[u] + EZee[u] ≤ Ekin[v] + E1[v] + EZee[v].

And (2.6) further implies

E1[u] + EZee[u] ≤ E1[v] + EZee[v]. (2.7)

Inequality (2.7) is particularly simple in that it involves only algebraic expressions

of u (v is practically also expressed in terms of u). This inequality, with suitable

constructions of v, will be sufficient for our proof of the bifurcation phenomenon.

The “best” way to gain sharper inequalities from redistribution will be the topic of

Section 6
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Chapter 3

The Simplified Characterizations

In this chapter we assume q = 0, i.e. no external magnetic field. Thus

E = Ekin + Epot + E0 + E1 and H = Hkin +Hpot +H0 +H1.

In Section 3.1, we prove the SMA. And in Section 3.2, we consider the phenomenon

u0 ≡ 0 for u ∈ G. A direct consequence of these results is that we can characterize

elements in G (and hence ground states) by systems with fewer (one or two) compo-

nents.

It’s interesting that, though these two phenomena look quite different, they can

be proved in essentially the same way. To explain the idea, let P denote the property

(SMA or u0 ≡ 0) to be justified. We will prove that, for every u ∈ A, there corresponds

a redistribution ũ of u which also lies in A, such that

(a) ũ has the property P , and

(b) E [ũ] ≤ E [u].

From (b), we have E [ũ] = E [u] provided u ∈ G, from which we shall prove u is

exactly ũ, and hence u has the property P .

3.1 The single-mode approximation

In this section we assume β1 < 0. Let

A1 = {u ∈ A |u = (γ1f, γ0f, γ−1f) for some constants γj and some function f} .
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The goal is to prove G ⊂ A1.

Now given any u ∈ A. It’s easy to see that a redistribution of u in A1 can be

expressed as γ|u|, where γ = (γ1, γ0, γ−1) is any triple of nonnegative constants sat-

isfying 
γ2

1 + γ2
0 + γ2

−1 = 1

γ2
1 − γ2

−1 = M.

(3.1)

Let Γ denote the set containing all such γ:

Γ :=
{

(γ1, γ0, γ−1) ∈ R3
∣∣ γj ≥ 0 for each j, γ satisfies (3.1)

}
. (3.2)

Then for each γ ∈ Γ, since γ|u| is a redistribution of u, we have

Hpot(γ|u|) ≡ Hpot(u) and H0(γ|u|) ≡ H0(u). (3.3)

Also,

Hkin(γ|u|) = |∇|u||2 ≤
∑
j

|∇uj|2 = Hkin(u). (3.4)

On the other hand,

H1(γ|u|) = β1P (γ)|u|4,

where

P (γ) = 2γ2
0(γ1 + γ−1)2 +M2.

Since β1 < 0, to make E [γ|u|] ≤ E [u] as possible as we can, we compute the max-

imum of P (γ) for γ ∈ Γ. It’s easy to check that there is a unique γ? ∈ Γ such

that

max
γ∈Γ

P (γ) = P (γ?) = 1.

Indeed the maximizer γ? = (γ?1 , γ
?
0 , γ

?
−1) is given by

γ?1 =
1

2
(1 +M) , γ?0 =

√
1

2
(1−M2), γ?−1 =

1

2
(1−M) .

We can now state our main theorem in this section.
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Theorem 3.1. Assume q = 0 and β1 < 0. If u ∈ G, then u = γ?|u|.

Proof. By direct calculation we have

H1(u)−H1(γ?|u|) = −β1

{
|u|4 −

[
2u2

0(u1 + u−1)2 + (u2
1 − u2

−1)2
]}

= −β1(u2
0 − 2u1u−1)2 ≥ 0.

(3.5)

By (3.3), (3.4) and (3.5), we have H(u) ≥ H(γ?|u|) for every u ∈ A. And hence

u ∈ G implies E [u] = E [γ?|u|], and the equality holds if and only if the inequalities

in (3.4) and (3.5) are equalities. That is

∑
j

|∇uj|2 − |∇|u||2 = 0, (3.6)

and

u2
0 − 2u1u−1 = 0. (3.7)

From (8.1), the equality (3.6) holds iff

uj∇uk − uk∇uj = 0 for j 6= k. (3.8)

Since u is not identically zero (by the assumption N [u] = 1), at least one component

of u is strictly positive everywhere. Assume u1 > 0. Then from (3.8) we have

∇
(
u0

u1

)
= ∇

(
u−1

u1

)
= 0,

which implies u0 and u−1 are both constant multiples of u1. This shows u ∈ A1.

That u must be γ?|u| then follows either by (3.7) or by the fact that γ? is the unique

maximizer of P over Γ. The case u0 > 0 or u−1 > 0 can be proved similarly.

Remark 3.1. Since |u| is bounded away from zero, we can also conclude from (3.6)

and Corollary 8.3 that u ∈ A1.

The above theorem implies that searching for ground states of a ferromagnetic

spin-1 BEC can be reduced to an one-component minimization problem. Precisely, let

As = {|u| |u ∈ A} =
{
f ∈ H1 ∩ L4 ∩ L2

V

∣∣ f ≥ 0 and
∫
f 2 = 1

}
, (3.9)

18



and define Es : As → R by

Es[f ] =

∫ {
|∇f |2 + V f 2 + (β0 + β1)f 4

}
.

Then E [γ?f ] = Es[f ] for f ∈ As. Also let

Gs =
{
f ∈ As

∣∣∣ Es[f ] = min
g∈As
Es[g]

}
.

Then if u ∈ G, by Theorem 3.1 we have for every f ∈ As

Es[|u|] = E [γ?|u|] ≤ E [γ?f ] = Es[f ].

Thus |u| ∈ Gs. Conversely if f ∈ Gs, then for every u ∈ A we have

E [γ?f ] = Es[f ] ≤ Es[|u|] = E [γ?|u|] ≤ E [u].

Hence γ?f ∈ G. We thus obtain the following one-component characterization of G.

Corollary 3.2. G = {γ?f | f ∈ Gs}.

3.2 The vanishing of u0

We assume β1 > 0 in this section. Recall the definition of Atwo in Section 2.2 We want

to show that G ⊂ Atwo. Now, similarly, for every u ∈ A we want to find an appropriate

redistribution ũ = (ũ1, 0, ũ−1) ∈ Atwo so that E [ũ] ≤ E [u]. This time, however, the

assumption ũ ∈ Atwo alone doesn’t give us an obvious candidate of ũ. In view that

such ũ satisfies |ũ| = |u| and hence N [ũ] = 1, as a guess, we try just imposing the

additional assumption that ũ also satisfies

ũ2
1 − ũ2

−1 = u2
1 − u2

−1,

to makeM[ũ] = M automatically. This results in only one possibility, that is

ũj =

√
u2
j +

u2
0

2
for j = 1,−1. (3.10)

It’s fortunate that it works, and we obtain our main theorem of this section as follows.
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Theorem 3.3. Assume β1 > 0 and M > 0, then u ∈ G implies u0 ≡ 0.

Proof. For u ∈ A, define ũ ∈ Atwo by (3.10). Again since ũ is a redistribution of u,

we have

Hpot(ũ) = Hpot(ũ) and H0(ũ) = H0(ũ),

and

Hkin(ũ) ≤ Hkin(u).

Also obviously

H1(u)−H1(ũ) = 2β1u
2
0(u1 − u−1)2 ≥ 0.

Thus for u ∈ G we have E [u] = E [ũ], and

u2
0(u1 − u−1)2 ≡ 0.

From this equality, we have either u0 ≡ 0 or u1 ≡ u−1. However, since we assume

M > 0, we cannot have u1 ≡ u−1, and hence u0 ≡ 0.

Remark 3.2. From Theorem 3.3 and Theorem 2.4, z is then the unique element in G

when 0 < M ≤ 1 and q = 0. From Theorem 3.4 below, z is also an element in G

when M = q = 0, but is not the unique one.

3.3 Some degenerate situations

The requirement M > 0 in Theorem 3.3 is necessary. In fact, for M = 0, ground

states are not unique, and u0 ≡ 0 corresponds to only one possible state. Moreover,

the SMA is again valid. Precisely, consider the following variational problem:

min
f∈As

∫ {
|∇f |2 + V f 2 + β0f

4
}
, (3.11)

where As is defined by (3.9). We have the following characterization.
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Theorem 3.4. Assume β1 > 0 and M = 0, then

G =
{(
t,
√

1− 2t2, t
)
f
∣∣∣ 0 ≤ t ≤ 1/

√
2, f is a minimizer of (3.11)

}
.

Proof. Since M = 0, γ ∈ Γ (defined by (3.2)) implies

γ =
(
t,
√

1− 2t2, t
)

for some t ∈
[
0, 1/
√

2
]
.

Now it’s easy to see that for any u ∈ A and γ ∈ Γ we have

H(γ|u|) = |∇|u||2 + V |u|2 + β0|u|4,

which is independent of γ. Obviously, H(γ|u|) ≤ H(u). It remains to show that

u ∈ G (and hence E [γ|u|] = E [u]) implies u = γ|u| for some γ ∈ Γ. The proof is

almost the same as before and we omit it.

In contrast to the above result, the following corollary of Theorem 3.3 shows that

SMA is almost never the case when M > 0.

Corollary 3.5. Assume β1 > 0 and 0 < M < 1, then u ∈ G ∩ A1 implies u1 and u−1

are constants. Moreover, such u exists only if V is a constant.

Proof. By Theorem 3.3, the Euler-Lagrange system (2.4) is reduced to the following

two-component system:
(µ+ λ)u1 = Lu1 + 2β1u1(u2

1 − u2
−1)

(µ− λ)u−1 = Lu−1 + 2β1u−1(u2
−1 − u2

1),

(3.12)

where L = −∆ + V + 2β0(u2
1 + u2

−1).

Since 0 < M < 1, for j = 1,−1, uj > 0. So u ∈ A1 implies u−1 = κu1 for some

constant 0 < κ < 1. The system (3.12) then gives the following two equations for u1:

(µ+ λ)u1 = −∆u1 + V u1 + 2β0(1 + κ2)u3
1 + 2β1(1− κ2)u3

1, (A)

(µ− λ)u1 = −∆u1 + V u1 + 2β0(1 + κ2)u3
1 + 2β1(κ2 − 1)u3

1. (B)
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Now

1

2
((A)− (B)) =⇒ λu1 = 2β1(1− κ2)u3

1.

Since u1 > 0, we get

u1 =

√
λ

2β1(1− κ2)
.

In particular u1 and u−1 = κu1 are constants. Hence ∆u1 = 0. Then,

1

2
((A) + (B)) =⇒ µu1 = V u1 + 2β0(1 + κ2)u3

1,

from which we get

V = µ− 2β0(1 + κ2)u2
1.

And hence V is also a constant.
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Chapter 4

Some Further Properties

Now that we have proved the two simplified characterizations in the situation without

external magnetic field, in the remaining of this thesis (except Chapter 8) we shall,

more or less, focus on the bifurcation phenomenon. For convenience, we will thus

only consider β1 > 0, despite the fact that some assertions hold also for β1 < 0. Also,

we will, of course, not always assume q = 0.

In this chapter, we use the notations AM , GM,q and Eg(M, q) to specify the values

of M and q. We will establish some more results for elements in GM,q. Most of

the results are directly relevant to the proof of the bifurcation phenomenon. Some of

them however are just given for completeness or serving as illustrations of using the

redistribution technique.

4.1 Continuity and monotonicity of Eg(M, q)

In this section we prove that Eg(M, q) is continuous and increasing in each variable.

Since the two variables are of quite different natures, we treat them separately.

4.1.1 Eg as a function of M

In this subsection we fix a q ∈ [0,∞) and consider Eg(·, q). The proof of continuity

will rely on the monotonicity, and hence we prove the latter first. For this we need the

following lemma.

Lemma 4.1. E is bounded on ∪0≤M≤1GM,q.
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Proof. The assertion is equivalent to say that we can choose for every M ∈ [0, 1]

an fM ∈ AM , such that E [fM ] is uniformly bounded in M . This is easy to do. For

example, let f be any nonnegative function in H1 ∩L2
V ∩L4 such that

∫
f 2 = 1. Then

for each M ∈ [0, 1], let fM = ((1+M
2

)1/2f, 0, (1−M
2

)1/2f). We have fM ∈ AM and

E [fM ] =

∫ {
|∇f |2 + V f 2 + β0f

4 + β1M
2f 4 + q

}
,

which is bounded above by the finite number E [f1].

Proposition 4.2. Eg(·, q) is strictly increasing on [0, 1].

Proof. Let u ∈ GM,q. We first consider 0 < M ≤ 1. For small δ ≥ 0, let u(δ) be the

redistribution of u defined by
u1(δ)2 = (1− δ)u2

1

u0(δ)2 = u2
0 + δu2

1 + δu2
−1

u−1(δ)2 = (1− δ)u2
−1 .

Then u(δ) ∈ A(1−2δ)M . Since u(δ) is a redistribution of u, Ekin[u(δ)] ≤ Ekin[u]. One

can also check by direct computation that

EZee[u]− EZee[u(δ)] = qδ

∫
(u2

1 + u2
−1) ≥ 0,

and

E1[u]− E1[u(δ)] = β1δ

∫
(u1 − u−1)2

[
2u2

0 + 4u1u−1 + δ(u1 − u−1)2
]
≥ 0. (4.1)

Moreover, if δ > 0, strict inequality holds in (4.1). To see this, for 0 < M < 1,

note that u1u−1 > 0 (Corollary 2.3) and that (u1 − u−1)2 can not be identically zero

(otherwise M = 0). While for M = 1, only u1 > 0, and the positivity of (4.1) is

obvious. Thus we obtain

Eg((1− 2δ)M, q) ≤ E [u(δ)] < E [u] = Eg(M, q)

for each small δ > 0, which shows Eg(·, q) is strictly increasing on (0, 1].
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It remains to show that Eg(·, q) is strictly increasing at 0. Let {Mn} be a sequence

in (0, 1) such that Mn → 0+. And let un ∈ GMn,q for each n. By Lemma 4.1, E [un] is

uniformly bounded, and hence Lemma 2.2 implies there is a subsequence {un(k)} of

{un} such that un(k) ⇀ u∞ weakly in B for some u∞ ∈ A0. Moreover,

Eg(0, q) ≤ E [u∞] ≤ lim inf
k→∞

E [un(k)] = lim inf
k→∞

Eg(Mn(k), q) = inf
0<M≤1

Eg(M, q).

The last equality is due to the just proved monotonicity of Eg(·, q) on (0, 1]. Thus

Eg(0, q) ≤ Eg(M, q) for every M ∈ (0, 1]. To see why strict inequality must hold, as-

sume Eg(0, q) = Eg(M, q) for some M > 0. Then since Eg(·, q) is strictly increasing

on (0, 1], we have Eg(M/2, q) < Eg(0, q), a contradiction.

Proposition 4.3. Eg(·, q) is continuous on [0, 1].

Proof. The ideas of proving the left continuity and the right continuity are different.

We first prove the right continuity. Let u ∈ GM,q for some 0 ≤ M < 1. For small

δ ≥ 0, let u(δ) be the redistribution of u defined by
u1(δ)2 = u2

1 + δu2
0 + δu2

−1

u0(δ)2 = (1− δ)u2
0

u−1(δ)2 = (1− δ)u2
−1 .

Let’s use Mδ to denoteM[u(δ)]. Then Mδ = M + δ
∫

(u2
0 + 2u2

−1). Since M < 1, u0

and u−1 cannot both vanish, and hence Mδ > M for δ > 0. Obviously Mδ → M+ as

δ → 0+. Now since Eg(·, q) is strictly increasing, we have

0 < Eg(Mδ, q)− Eg(M, q) (4.2)

for δ > 0. On the other hand, since u ∈ GM,q while u(δ) need not lie in GMδ,q, we

have Eg(Mδ, q)− Eg(M, q) ≤ E [u(δ)]− E [u]. Thus

Eg(Mδ, q)− Eg(M, q) ≤ (E1[u(δ)]− E1[u]) + (EZee[u(δ)]− EZee[u]) (4.3)
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from (2.5) and (2.6). It’s easy to check that the right-hand side of (4.3) tends to zero as

δ → 0+, and hence we obtain

lim sup
δ→0+

(Eg(Mδ, q)− Eg(M, q)) ≤ 0.

This together with (4.2) imply the right continuity of Eg(·, q) on [0, 1).

For the left-continuity on (0, 1], we prove by contradiction. Let M ∈ (0, 1]. As-

sume there is a sequence {Mn} in (0, 1) such that Mn → M−, and Eg(Mn, q) doesn’t

converge to Eg(M, q). By choosing a suitable subsequence, we can assume without

loss of generality that the sequence {Mn} itself satisfies

Eg(M, q)− Eg(Mn, q) > ε for each n, for some ε > 0.

Now for each n choose one un ∈ GMn,q. Lemma 2.2 implies that there is a subse-

quence {un(k)}∞k=1 such that un(k) → u∞ for some u∞ ∈ AM . Moreover, we have

Eg(M, q) ≤ E [u∞] ≤ lim inf
k→∞

E [un(k)] = lim inf
k→∞

Eg(Mn(k), q) ≤ Eg(M, q)− ε,

a contradiction.

Proposition 4.3 implies the following approximation result.

Corollary 4.4. For any M ∈ [0, 1], we can find a sequence un ∈ GMn,q such that

Mn ∈ [0, 1], Mn →M , Mn 6= M for each n, and un → u∞ in the norm of B for some

u∞ ∈ GM,q.

Proof. Let {Mn} be a sequence in [0, 1] such that Mn →M and Mn 6= M for each n.

Then let un ∈ GMn,q for each n. By definition we have N [un] = 1 andM[un]→M .

Since E [un] = Eg(Mn, q), by continuity of Eg(·, q) we also have E [un] → Eg(M, q).

Thus by Lemma 2.2, {un} has a subsequence {un(k)}∞k=1 such that un(k) → u∞

strongly in B for some u∞ ∈ GM,q. The sequence un(k) ∈ GMn(k),q thus satisfies

the assertion to be proved.
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Remark 4.1. Suppose we have uniqueness of element in GM,q, and let uM be the

unique element in GM,q. Then Corollary 4.4 simply says the map M 7→ uM is contin-

uous from [0, 1] into B. In particular, let’s here write zM for z to specify the dependence

on M explicitly. Then we have the corollary that M 7→ zM is continuous from [0, 1]

into B. (We’ll use this fact in §5.2.2.) To be rigorous, this is true since zM is the

unique element in GM,0 for 0 < M ≤ 1, and as M → 0+, the limit of zM in B, which

should lie in G0,0 by Corollary 4.4, must be z0. Of course, we might as well just prove

the analogue of Corollary 4.4 for the “two-component world”, and the continuity of

M 7→ zM follows Theorem 2.4 directly.

4.1.2 Eg as a function of q

Now we consider the function Eg(M, ·) for fixed M ∈ [0, 1]. For u ∈ B+, let’s here

write E [u, q] instead of E [u] to indicate the value of q. The proofs of monotonicity and

continuity of Eg(M, ·) are much easier than those of Eg(·, q) above, and the proof of

continuity doesn’t rely on the monotonicity. We put the assertions in a single proposi-

tion.

Proposition 4.5. For fixed M ∈ [0, 1], Eg(M, ·) is an increasing and continuous func-

tion on [0,∞). Moreover, it’s strictly increasing if M > 0.

Proof. Let q1 > q2 ≥ 0 and u ∈ GM,q1 . We have

Eg(M, q1)− Eg(M, q2) ≥ E [u, q1]− E [u, q2]

= (q1 − q2)

∫
(u2

1 + u2
−1) ≥ 0,

(4.4)

which impliesEg(M, ·) is an increasing function on [0,∞). IfM > 0, we have u1 > 0,

and hence the last inequality in (4.4) is strict, which proves the strict monotonicity .

We next prove the continuity. Given any q1, q2 ≥ 0, let uk = (uk1, u
k
0, u

k
−1) ∈ GM,qk

for k = 1, 2. Since E [u1, q1] = Eg(M, q1) and E [u1, q2] ≥ Eg(M, q2), we have

(q1 − q2)

∫ (
(u1

1)2 + (u1
−1)2

)
= E [u1, q1]− E [u1, q2]

≤ Eg(M, q1)− Eg(M, q2).

(4.5)
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Similarly,

Eg(M, q1)− Eg(M, q2) ≤ E [u2, q1]− E [u2, q2]

= (q1 − q2)

∫ (
(u2

1)2 + (u2
−1)2

)
.

(4.6)

From (4.5) and (4.6), and the fact
∫ (

(uk1)2 + (uk−1)2
)
≤ N [uk] = 1 for k = 1, 2, we

find

|Eg(M, q1)− Eg(M, q2)| ≤ |q1 − q2|,

and hence Eg(M, ·) is continuous.

Remark 4.2. Eg(0, ·) is not strictly increasing. Indeed, by Proposition (4.7) below, for

q > 0, u ∈ G0,q satisfies u1 = u−1 = 0. Such one-component ground state, as the

two-component z, is unique and independent of q. This is easily obtained by imitating

the proof of Theorem 2.4). Thus Eg(0, ·) is a constant function on (0,∞), and hence

on [0,∞) by continuity.

With the continuity of Eg(M, ·), we can show the following analogue of Corollary

4.4. The proof is the same as that of Corollary 4.4 by changing the roles of M and q,

and hence we omit it.

Corollary 4.6. For any q ∈ [0,∞), there is a sequence un ∈ GM,qn such that qn ∈

[0,∞), qn → q, qn 6= q for each n, and un → u∞ in the norm of B for some u∞ ∈

GM,q.

4.2 u−1 is no larger than u1

The goal in this section is indicated by the title. The relevant assertions are Proposition

4.7 (and Remark 4.3 following it), Proposition 4.8, and Proposition 4.11.

Proposition 4.7. Suppose q > 0 and u ∈ G0,q (i.e. M = 0). We have u1 = u−1 = 0.

Proof. Let v = (v1, v0, v−1) be the element in A0 defined by
v2

1 = v2
−1 = (u2

1 + u2
−1)/2

v2
0 = u2

0 .

28



Then E [u] − E [v] = (Ekin[u] − Ekin[v]) + E1[u]. Since v is a redistribution of u,

Ekin[u]−Ekin[v] ≥ 0. Also, E1[u] ≥ 0, and hence E [u]−E [v] ≥ 0. Nevertheless, u ∈

G0,q, so we must have E [u]− E [v] = 0. Thus actually Ekin[u]− Ekin[v] = E1[u] = 0.

In particular the term (u2
1 − u2

−1)2 in H1(u) is zero, which implies u1 = u−1. To see

why they must vanish, note that now we have

E [u] =

∫ {∑
j

|∇uj|2 + V (x)|u|2 + β0|u|4 + q(u2
1 + u2

−1)

}
≥
∫ {
|∇|u||2 + V (x)|u|2 + β0|u|4

}
= E [(0, |u|, 0)].

(4.7)

Again since u ∈ G0,q and (0, |u|, 0) ∈ A0, we must have E [u] = E [(0, |u|, 0)]. Thus

the inequality in (4.7) is equality, which implies u = (0, |u|, 0) since
∑

j |∇uj|2 ≥

|∇|u||2 and q > 0.

Remark 4.3. From Theorem 3.4, for M = q = 0, we also have u1 = u−1, while

u1 = u−1 = 0 corresponds to only one possibility. This together with Proposition 4.7

provide satisfactory descriptions of the degenerate situation M = 0. Also, on the other

extreme M = 1, only u1 > 0. Therefore, there is no need to consider the bifurcation

phenomenon for M = 0, 1.

Proposition 4.8. For every 0 ≤M ≤ 1 and q ≥ 0, u ∈ GM,q satisfies u−1 ≤ u1.

Proof. Let v be defined by v1 = max(u1, u−1), v−1 = min(u1, u−1), and v0 = u0.

Then we have E [v] = E [u]. To check this equality, for the kinetic part Ekin one can use

the formula

vj =
1

2
(uj + u−j + j|uj − u−j|)

for j = 1,−1. Then direct computation gives

|∇v1|2 + |∇v−1|2 =
1

2

{
|∇u1|2 + |∇u−1|2 + 2∇u1 · ∇u−1 + 2

∣∣∇|u1 − u−1|
∣∣2}.

And |∇v1|2 + |∇v−1|2 = |∇u1|2 + |∇u−1|2 is obtained by applying the fact

|∇|f ||2 = |∇f |2 a.e. for every f of class H1.
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The equalities of the other parts are obvious. Thus, we have

Eg(M[v], q) ≤ E [v] = E [u] = Eg(M, q).

Since Eg(·, q) is strictly increasing, we thus obtain

M[v] ≤M. (4.8)

On the other hand, it’s also obvious by definition that

v2
1 − v2

−1 ≥ u2
1 − u2

−1. (4.9)

(4.8) and (4.9) imply v2
1 − v2

−1 = u2
1 − u2

−1, that is v2
1 − u2

1 = v2
−1 − u2

−1, of which the

left-hand side is nonnegative while the right-hand side is nonpositive by definition of

v. Thus we really have v1 = u1 and v−1 = u−1, which means u−1 ≤ u1.

Proposition 4.8 can be used to improve itself. Precisely, we shall prove that strict

inequality u−1 < u1 holds when M > 0, by using the strong maximum principle. In

doing so, the knowledge of the non-strict inequality itself is needed.

Lemma 4.9. Let f ∈ L1(R3,R3) be such that the distributional divergence ∇ · f ∈

L1(R3). Then
∫
∇ · f = 0.

Proof. For R > 0, let ϕR : R3 → R be defined by

ϕR(x) =


1, |x| < R

R + 1− |x|, R ≤ |x| < R + 1

0, R + 1 ≤ |x|.

Then it’s obvious that

lim
R→∞

∫
(∇ · f)ϕR =

∫
∇ · f .

On the other hand, ∫
(∇ · f)ϕR = −

∫
R≤|x|<R+1

f(x) · n(x),

where n(x) = x/|x|. Thus
∫

(∇ · f)ϕR → 0 as R → ∞, which proves the assertion.
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Corollary 4.10. Let u ∈ GM,q. If 0 < M < 1, the Lagrange multiplier λ in the GP

system (2.4) is positive.

Proof. (2.4a) multiplied by u−1 minus (2.4c) multiplied by u1 gives

2λu1u−1 = ∇ · (−u−1∇u1 + u1∇u−1) + 2β1(u2
1 − u2

−1)(u2
0 + 2u1u−1).

By Lemma 4.9,
∫
∇ · (−u−1∇u1 + u1∇u−1) = 0, and hence

λ

∫
u1u−1 = β1

∫
(u2

1 − u2
−1)(u2

0 + 2u1u−1). (4.10)

Now u1u−1 > 0 by Corollary 2.3, and hence
∫
u1u−1 > 0. On the other hand, by

Proposition 4.8 we have u2
1− u2

−1 ≥ 0, which cannot be identically zero since M > 0.

Thus we also have
∫

(u2
1 − u2

−1)(u2
0 + 2u1u−1) > 0, and (4.10) implies λ > 0.

Proposition 4.11. For 0 < M ≤ 1 and q ≥ 0, u ∈ GM,q satisfies u−1 < u1.

Proof. If M = 1, we have u1 > 0 ≡ u−1. For 0 < M < 1, let w = u1 − u−1. Then

(2.4a) minus (2.4c) gives

∆w +Qw = −λ(u1 + u−1)− µw, (4.11)

where

Q = −V − 2β0|u|2 − 2β1

[
2u2

0 + (u1 + u−1)2
]
− q.

Since λ > 0 and w ≥ 0, by subtracting |µ|w from both sides of (4.11), we obtain

∆w + Q̃w ≤ 0, where Q̃ = Q − |µ| is locally bounded. By Corollary 8.11, either

w > 0 everywhere or w ≡ 0. But w ≡ 0 means u1 = u−1, contradicting to the

assumption M > 0. Thus w > 0, which is what we want to show.

Remark 4.4. The subtraction of |µ|w in the proof above is indeed not necessary since

we also have µ > 0 for 0 < M < 1. This is easy to obtain by using (2.4b) when

u0 > 0, and by using (2.4c) when u0 ≡ 0. We omit the details.

Recall the definition of z from Theorem 2.4. Since z ∈ GM,0 (for any 0 ≤M ≤ 1),

we have the following corollary.
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Corollary 4.12. For 0 < M ≤ 1, z−1 < z1.

Remark 4.5. Although z is independent of q, it’s dependent on M . To be precise we

shall sometimes write zM = (zM1 , 0, z
M
−1) to specify this dependence. For notational

simplicity, we will however not do so when such explicitness is not really necessary.

4.3 Exponential decay of ground states

In this section we prove the exponential decay of ground states with the aid of Propo-

sition 4.8, The approach of using the fundamental solution of Helmholtz equation is

exactly taken from [14], Lemma A.5.

Proposition 4.13. Let u ∈ GM,q, for arbitrary 0 ≤M ≤ 1 and q ≥ 0. For any a > 0,

there exist constants Uj(a) (j = 1, 0,−1) such that uj(x) ≤ Uj(a)e−a|x|.

Proof. (2.4b) can be arranged as (−∆ + a2)u0 = Q0u0, where

Q0 = a2 + µ− V − 2β0|u|2 − 2β1(u1 − u−1)2. (4.12)

Thus

u0(x) = (Ya ∗ (Q0u0))(x) =

∫
Ya(x− y)Q0(y)u0(y)dy,

where Ya(x) = e−a|x|/(4π|x|) is the fundamental solution of the operator −∆ + a2.

(Ya is also referred to as the Yukawa potential. See [13], 6.23.) By the assumption

(A1), Q0 < 0 outside a bounded set, say B(R0), the open ball centered at the origin

with radius R0. Thus we obtain

u0(x) ≤
∫
|y|<R0

Ya(x− y)Q0(y)u0(y)dy = e−a|x|
∫
|y|<R0

ea(|x|−|x−y|)

4π|x− y|
Q0(y)u0(y)dy.

Thus u0(x) ≤ U0(a)e−a|x|, where (see also Lemma 4.14 below)

U0(a) = sup
x∈R3

∫
|y|<R0

ea(|x|−|x−y|)

4π|x− y|
Q0(y)u0(y)dy <∞. (4.13)

For uj , j = 1,−1, we similarly have

(−∆ + a2)uj = Qjuj − 2β1u
2
0(uj − u−j)
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from (2.4a) and (2.4c), where

Qj = a2 + µ+ jλ− V − 2β0|u|2 − 2β1(u2
j − u2

−j)− q.

Now since u−1 ≤ u1, Q1 is also negative outside B(R1) for some radius R1, and

u1(x) =

∫
Ya(x− y)

[
Q1(y)u1(y)− 2β1u0(y)2(u1(y)− u−1(y))

]
dy

≤
∫
Ya(x− y)Q1(y)u1(y)dy

≤
∫
|y|<R1

Ya(x− y)Q1(y)u1(y)dy.

As above we conclude that u1(x) ≤ U1(a)e−a|x|, where U1(a) is given by (4.13) with

all the indices 0 replaced by 1. In contrast, the fact u−1 ≤ u1 makes it difficult to apply

the same argument to u−1. Nevertheless, also since u−1 ≤ u1, at least we can choose

U−1(a) = U1(a).

For our next result, we give the following estimate of Uj(a).

Lemma 4.14. For j = 1 and 0,

Uj(a) ≤ eaRj

4π
sup
x∈R3

(∫
|y|<Rj

Qj(y)2

|x− y|2
dy

)1/2

.

Proof. Since |x| − |x− y| ≤ |y|, we have for j = 1, 0∫
|y|<Rj

ea(|x|−|x−y|)

4π|x− y|
Qj(y)uj(y)dy ≤

∫
|y|<Rj

eaRj

4π|x− y|
Qj(y)uj(y)dy

=
eaRj

4π

∫
|y|<Rj

Qj(y)

|x− y|
uj(y)dy

≤ eaRj

4π

(∫
|y|<Rj

Qj(y)2

|x− y|2
dy

)1/2

,

where the last inequality is obtained by Hölder’s inequality and the fact∫
(uj)

2 ≤
∫
|u|2 = 1.

We thus obtain the assertion of the lemma.
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The assertion of exponential decay is indeed far stronger than what we need. On the

other hand, we will consider sequences {un} of ground states corresponding to differ-

ent values of q, and hence different Lagrange multipliers, where estimates independent

of n are required. We give what we really need in the following.

Corollary 4.15. Given a sequence un = (un1 , u
n
0 , u

n
−1) ∈ GM,qn . Let µn and λn be the

Lagrange multipliers corresponding to un. If the sequences {µn} and {λn} are both

bounded, then for any ε > 0, there is rj > 0 (j = 1, 0,−1) independent of n such that

uj(x) ≤ ε for |x| ≥ rj .

Proof. The assertion is easily seen by repeating the proof of Proposition 4.13 for un.

It suffices to give Un
j (a) (the analogue of Uj(a) for un) an upper bound independent of

n. Take Un
0 (a) for example. By assumption, there is c > 0 such that µn < c for every

n. From (4.12) we have

Qn
0 = a2 + µn − V − 2β0|un|2 − 2β1(un1 − un−1)2

≤ a2 + µn − V

< a2 + c− V.

Hence we can find R0 independent of n so that Qn
0 < 0 outside B(R0). Then, by

Lemma 4.14, we have

Un
0 (a) ≤ eaR0

4π
sup
x∈R3

(∫
|y|<R0

Qn
0 (y)2

|x− y|2
dy

) 1
2

≤ eaR0

4π
sup
x∈R3

(∫
|y|<R0

(a2 + c− V (y))2

|x− y|2
dy

) 1
2

,

which is independent of n. Un
1 (a) can be estimated similarly, and again for Un

−1(a) we

use the fact Un
−1(a) ≤ Un

1 (a).
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Chapter 5

The Bifurcation Phenomenon

We begin our proof of the bifurcation phenomenon. According to Remark 4.3, it suf-

fices to consider 0 < M < 1.

Our main theorem is the following.

Theorem 5.1. For fixed 0 < M < 1, there is a qc > 0 such that for q > qc, u ∈ GM,q

satisfies u0 > 0, while for 0 ≤ q < qc, z is the unique element in GM,q.

Remark 5.1. We do not know what happens at the critical qc. Since Eg is continuous

with respect to q, z is of course an element in GM,qc . However, since we do not prove

the uniqueness of ground state, we are not sure if it’s possible that there are other

three-component ground states at qc. We give more detailed discussions in §7.1.

The proof idea of Theorem 5.1 is to use (2.7) to derive some conditions on the

situation to be excluded. More precisely, to prove that u ∈ GM,q cannot have some

property, we assume the opposite, then exploit the fact that any redistribution v ∈ AM

of u (in particular those not having the property) satisfy (2.7). How this idea works

will be clear in the proof.

We regard M as a fixed number in (0, 1) in the following. The proof is divided into

three claims.

Claim 1. For q large enough, z is not an element in GM,q.

Proof. Assume z ∈ GM,q for some M, q. Since z is independent of q, it’s quite easy to

prove the claim by (2.7). For example, consider v to be the redistribution of z defined
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by 
v2

1 = (1− σ)z2
1

v2
0 = σz2

1 + z2
−1

v2
−1 = 0 ,

(5.1)

where σ = (1−M)/(1 +M), which is just the constant making v ∈ AM . Then (2.7)

implies

EZee[z]− EZee[v] ≤ E1[v]− E1[z]. (5.2)

It’s easy to check that the left-hand side of (5.2) equals (1 − M)q. In contrast, the

right-hand side, no matter what it is, is independent of q. Thus, since M < 1, (5.2)

gives an upper bound of q. That is there is an upper bound of q for z to be in GM,q.

Since three-component elements in GM,q in general depend on q, it’s far more

difficult to prove that there is a positive lower bound of q for the existence of u ∈ GM,q

with u0 > 0. We leave this to the last claim. We shall first give the observation that

the two-component regime and the three-component regime are really separated by a

specific qc. That is, we exclude by the next claim the possibility that two-component

and three-component ground states will alternately be the case (in any range on the

q-axis).

Claim 2. Assume for some q there exists u ∈ GM,q with u0 > 0, then for every q′ > q,

z /∈ GM,q′ .

Proof. Let’s here write E [u, q] instead of E [u] to specify the value of q. Since u ∈

GM,q, E [u, q] ≤ E [z, q]. Thus, by the assumption u0 > 0, for q′ > q we have

E [u, q′] = E [u, q] + (q′ − q)
∫ (

u2
1 + u2

−1

)
< E [z, q] + (q′ − q)

∫ (
z2

1 + z2
−1

)
= E [z, q′].

Hence z /∈ GM,q′ .
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Now define

qc = inf
{
q
∣∣ z /∈ GM,q′ for q′ > q

}
.

From Claim 1, qc < ∞. By definition of qc, for any q > qc and v ∈ GM,q, we have

v0 > 0. Moreover, Claim 2 implies that for any 0 ≤ q < qc, z is the unique element

in GM,q. To complete the proof of Theorem 5.1, it remains to show qc > 0. That is we

have to prove the following assertion.

Claim 3. There exists q > 0 such that z ∈ GM,q.

Since the proof of Claim 3 requires much more effort, we give it in a separate

section.

5.1 Proof of Claim 3

Let u ∈ GM,q. To give a restriction on the presence of u0, we consider the redistribu-

tion v ∈ AM of u defined by 
v2

1 = u2
1 +

1

2
u2

0

v2
0 = 0

v2
−1 = u2

−1 +
1

2
u2

0 .

(5.3)

Then (2.7) implies

q

∫
u2

0 ≥ 2β1

∫
u2

0(u1 − u−1)2. (5.4)

From (5.4), it’s easy to see u0 ≡ 0 if q = 0 (we can not have u1 − u−1 ≡ 0 since

M > 0). This is exactly the argument used in the proof of Theorem 3.3. For q > 0,

however, no matter how small it is, whether u0 ≡ 0 is not so obvious. We shall prove

that, for q small enough, there does exist a positive constant c independent of q, such

that the right-hand side of (5.4) is no less than c
∫
u2

0, and hence obtain a lower bound

of q for u0 > 0. This is made possible by the assertions of the following lemma.
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Lemma 5.2. Given q ∈ [0,∞). Let un ∈ GM,qn and u∞ ∈ GM,q be as claimed in

Corollary 4.6, then the following assertions hold.

(a) There exists a large enough R such that

1

2

∫
(un0 )2 ≤

∫
B(R)

(un0 )2 for all n, (5.5)

where B(R) = {x ∈ R3 | |x| < R}.

(b) un → u∞ uniformly.

We first prove Claim 3 by this lemma.

Proof of Claim 3. Let un = (un1 , u
n
0 , u

n
−1) ∈ GM,qn be as claimed in Corollary 4.6 for

q = 0. Then un → z in B since z is the unique element in GM,0 for 0 < M < 1. For

this sequence, let R be the corresponding radius asserted in (a) of Lemma 5.2, and let

k = infB(R)(z1 − z−1). Note that k > 0 by Corollary 4.12. Now by (b) of Lemma 5.2,

un → z uniformly, and hence (un1 − un−1) ≥ k/2 on B(R) for n large enough. From

this fact and (5.5) we obtain∫
(un0 )2(un1 − un−1)2 ≥

∫
B(R)

(un0 )2(un1 − un−1)2

≥ k2

4

∫
B(R)

(un0 )2

≥ k2

8

∫
(un0 )2

(5.6)

for n large enough. On the other hand, for any n, (5.4) implies

qn

∫
(un0 )2 ≥ 2β1

∫
(un0 )2(un1 − un−1)2. (5.7)

Since qn → 0, (5.6) and (5.7) imply un0 ≡ 0 for n large enough, which completes the

proof.

Now we prove Lemma 5.2. The proofs of both assertions need the following ob-

servation.
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Lemma 5.3. Given q ∈ [0,∞). Let un ∈ GM,qn and u∞ ∈ GM,q be as claimed

in Corollary 4.6, then the Lagrange multipliers µn, λn corresponding to un converge

respectively to those corresponding to u∞, denoted by µ∞, λ∞.

Proof. Multiply (2.4a) by u1 and multiply (2.4c) by u−1, and take integration, we

obtain

(µ+ jλ)

∫
u2
j = Fj(u, q) for j = 1,−1, (5.8)

where

Fj(u, q) =

∫ {
|∇uj|2 + V u2

j + 2β0|u|2u2
j

+ 2β1

[
u2

0uj(uj − u−j) + u2
j(u

2
j − u2

−j)
]

+ qu2
j

}
.

If
∫
u2

1 and
∫
u2
−1 are positive, we can solve (5.8) for µ and λ, and obtain

µ =
[
F1(u, q)/(

∫
u2

1) + F−1(u, q)/
∫
u2
−1

]
/2

λ =
[
F1(u, q)/(

∫
u2

1)− F−1(u, q)/
∫
u2
−1

]
/2.

(5.9)

Now since we consider M as being fixed in (0, 1),
∫

(unj )2 and
∫

(u∞j )2 (j = 1,−1) are

bounded away from zero. Thus (5.9) applies for µn, λn and µ∞, λ∞, and it’s easy to

see that µn → µ∞ and λn → λ∞ follow the fact un → u∞ in B.

Proof of Lemma 5.2 (a). From the above lemma, µn → µ∞, and in particular {µn} is

a bounded sequence, say µn ≤ C for some constant C > 0. Multiply (2.4b) for un by

un0 , and take integration, we obtain

µn

∫
(un0 )2 =

∫ {
|∇un0 |2 + V (x)(un0 )2 + 2β0|un|2(un0 )2 + 2β1(un0 )2(un1 − un−1)2

}
,

which implies ∫
V (x)(un0 )2 ≤ µn

∫
(un0 )2 ≤ C

∫
(un0 )2. (5.10)

On the other hand, by the assumption (A1), there exists R > 0 such that V (x) ≥ 2C

for |x| > R, and hence∫
V (x)(un0 )2 ≥

∫
B(R)c

V (x)(un0 )2 ≥ 2C

∫
B(R)c

(un0 )2. (5.11)
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From (5.10) and (5.11), we obtain
∫

(un0 )2 ≥ 2
∫
B(R)c

(un0 )2, which is easily checked to

be equivalent to (5.5).

Proof of Lemma 5.2 (b). The idea is that, if the GP system (2.4) for un tends to that

for u∞ in a suitable sense, then uniform convergence can be obtained by the global

boundedness result for elliptic operators. We take (2.4a) for example.

Let vn1 = un1 − u∞1 . Subtract (2.4a) for u∞ from (2.4a) for un, we obtain

∆vn1 − V (x)vn1 = Pn − P∞ + Sn − S∞, (5.12)

where

Pn = −(µn + λn − qn)un1 ,

Sn = 2β0|un|2un1 + 2β1

[
(un0 )2(un1 − un−1) + un1

(
(un1 )2 − (un−1)2

)]
,

and P∞ and S∞ are given by the same expressions with n replaced by∞ (q∞ is under-

stood to be q). Apply global boundedness theorem for elliptic operators (see e.g. [8],

Theorem 8.16) to (5.12), we obtain for every r > 0

sup
B(r)

|vn1 | ≤ sup
∂B(r)

|vn1 |+ C‖Pn − P∞ + Sn − S∞‖L2 , (5.13)

where C > 0 depends only on the radius r and supB(r) V . Now since qn → q, µn →

µ∞, λn → λ∞ (by Lemma 5.3), and un → u∞ in B, we see Pn − P∞ → 0 in L2.

Also, Sn − S∞ → 0 in L2 since H1 is continuously embedded in L6. On the other

hand, µn → µ∞ and λn → λ∞ also implies µn, λn, µ∞ and λ∞ all lie in a bounded

set. By Corollary 4.15, given ε > 0, we can find r1 such that each un1 as well as u∞1 are

bounded above by ε outside B(r1). In particular, we have

sup
|x|≥r1

|vn1 (x)| ≤ 2ε for all n. (5.14)

Let r = r1 in (5.13), and let n→∞, we obtain

lim sup
n→∞

(
sup

x∈B(r1)

|vn1 (x)|
)
≤ 2ε. (5.15)
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From (5.14) and (5.15) we have

sup
x∈R3

|vn1 (x)| ≤ 3ε for n large enough.

Since ε > 0 is arbitrary, we conclude that vn1 → 0 uniformly on R3. Similarly vn0 and

vn−1 converge to zero uniformly, which complete the proof.

5.2 What remains

We have completed the proof of our main theorem. Some remarks are however worth

mentioning.

5.2.1 Estimates of qc from the proof

Although our statement of Theorem 5.1 is a qualitative one, our proof does provide

some quantitative information. For example, as the proof of Claim 1 says, (5.2) gives

an upper bound of q for z ∈ GM,q, which is hence an upper bound of qc. Similarly, (5.4)

provides a lower bound of qc. In view of the fact that z can be obtained by minimizing

E over the two-component class Atwo
M (instead of the much larger AM ), and the fact that

z is independent of q, the upper bound, which is expressed in terms of z, is particularly

useful. Since we will need this upper bound in §5.2.2 below, we now compute it out.

Let v be as in the proof of Claim 1. The right-hand side of (5.2) is

E1[v]− E1[z]

= β1

∫ {[
2v2

0(v1 − v−1)2 + (v2
1 − v2

−1)2
]
−
[
(z2

1 − z2
−1)2

]}
= β1

∫ {[
2(σz2

1 + z2
−1)(1− σ)z2

1 + (1− σ)2z4
1

]
−
[
(z2

1 − z2
−1)2

]}
= β1

∫ {[
2σ(1− σ) + (1− σ)2 − 1

]
z4

1 +
[
2(1− σ) + 2

]
z2

1z
2
−1 − z4

−1

}
= β1

∫ {
− σ2z4

1 + (4− 2σ)z2
1z

2
−1 − z4

−1

}
,

where σ = (1−M)/(1 +M). Thus (5.2) gives

qc ≤
β1

1−M

∫ {
− σ2z4

1 + (4− 2σ)z2
1z

2
−1 − z4

−1

}
. (5.16)
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As to such quantitative consideration, it is then of interest to find as sharp inequal-

ities as possible from redistribution. However, for a u ∈ GM,q, it’s not quite clear

which redistribution v ∈ AM is the best one in that (2.7) gives the sharpest inequal-

ity. It turns out that, instead of choosing a specific redistribution in (2.7), a better

way to derive sharp inequalities might be by using “redistributional perturbations”

u(δ) = (u1(δ), u0(δ), u−1(δ)). We’ll consider this in Chapter 6.

5.2.2 The boundedness of qc with respect to M

Let’s here write qc(M) to specify its dependence on M . We are interested in the

behavior of the curve qc(M) in the (M, q)-plane. Numerical simulations show that

qc(M) is continuous and increasing in of M , with

lim
M→0+

qc(M) = 0. (5.17)

We recommend [?], Figure 5 for a clear diagram of the curve. Note that from Proposi-

tion 4.7, (5.17) is quite natural. Unfortunately, it seems not easy to prove the continuity

and the monotonicity from our method. Nevertheless, one fact that is not quite clear

numerically can be settled. That is, as M → 1−, whether qc(M) tends to infinity or

some finite number. The following theorem says that it’s the latter that is the case.

Theorem 5.4. qc(M) is uniformly bounded for 0 < M < 1.

Proof. Let’s write zM for z. From (5.16) we obtain

qc(M) ≤ β1

1−M

∫ {
− σ2

(
zM1
)4

+ (4− 2σ)
(
zM1
)2 (

zM−1

)2 −
(
zM−1

)4
}

≤ β1(4− 2σ)

1−M

∫ (
zM1
)2 (

zM−1

)2

≤ β1(4− 2σ)

1−M
‖zM1 ‖L∞

∫ (
zM−1

)2
.

Since
∫ (

zM−1

)2
= (1−M)/2, we get

qc(M) ≤ β1(2− σ)‖zM1 ‖L∞ .
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Now σ = (1 − M)/(1 + M) is bounded for 0 < M < 1, and it remains to show

the boundedness of ‖zM1 ‖L∞ . From Remark 4.1, M 7→ zM is continuous from [0, 1]

into B. With this result, we can in fact prove that M 7→ zM is also continuous from

[0, 1] into L∞, in the same spirit as the proof of the assertion (b) of Lemma 5.2. This

completes the proof.

Remark 5.2. It might be surprising that, by the same argument, we have trouble to

prove that M 7→ zM−1 is also continuous from [0, 1] into L∞. Indeed, the problem only

occurs at M = 1, where zM−1 is equal to zero. See §7.2 for discussion of such problem.
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Chapter 6

Redistributional Perturbation in a
Fixed Admissible Class

Let u ∈ GM,q. We have seen it’s sometimes useful to construct a “redistributional

perturbation” u(δ) of u, where δ ≥ 0 is a small parameter, and u(0) = u. In pre-

vious examples (namely proofs of Proposition 4.2 and Proposition 4.3), the u(δ) are

so constructed to be in different AM ′ , in order to compare ground states with differ-

ent magnetizations. In this chapter we consider similar constructions lying in a fixed

admissible class. Thus E [u] ≤ E [u(δ)]. By letting I(δ) = E [u(δ)], δ = 0 is then an

endpoint minimum of I . Hence

I ′(0+) ≥ 0, (6.1)

where I ′(0+) is the right derivative of I at 0. It turns out that the existence of such

derivative needs some verification. We will give two examples, Proposition 6.1 and

Proposition 6.2, as more delicate treatments of (5.1) and (5.3) respectively. We remark

that δ will always denote a nonnegative parameter, which is small enough so that all

involved expressions make sense.

6.1 Inequality from redistributional perturbation

For convenience we give some notations and remarks first.

1. As above, whenever a construction of u(δ) is considered, we write I(δ) for E [u(δ)].

Similarly Ikin(δ), I1(δ) and IZee(δ) stand for the corresponding parts. Note that Ipot(δ)
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and I0(δ) are constant functions, and hence (6.1) says

I ′kin(0+) + I ′1(0+) + I ′Zee(0
+) ≥ 0. (6.2)

As I ′Zee(0
+), if exists, must be nonpositive since u(δ) are redistributions of u, we have

I ′kin(0+) + I ′1(0+) ≥ 0. (6.3)

Using (6.3) for a construction of u(δ) is much of the same spirit as using (2.7) for

a specific choice of v, which has the advantage of involving only algebraic expres-

sions of u. Nevertheless, in this chapter we aim to gain as complete information from

redistribution as possible, and hence we will use the full inequality (6.2).

2. When a construction of u(δ) is considered, we write

D(u(δ)) =
H(u(δ))−H(u)

δ

for small δ > 0. Dkin(u(δ)), D1(u(δ)) and DZee(u(δ)) are similarly defined. Thus

I ′(0+) = lim
δ→0+

∫
D(u(δ)) =

∫
∂

∂δ
H(u(δ))

∣∣∣∣
δ=0+

if differentiation under the integral sign is valid.

3. For u ∈ GM,q, we write (as in Section 8.1)

S(ui, uj) = |ui∇uj − uj∇ui|2.

When computing Dkin(u(δ)), we will use the following fact:

• Whenever
∑

j aju
2
j > 0 for some nonnegative constants aj (j = 1, 0,−1), we

have

∑
j

aj|∇uj|2 −
∣∣∣∣∇√∑

j

aju2
j

∣∣∣∣2 =

∑
k<` aka`S(uk, u`)∑

j aju
2
j

.

This formula is just (8.1) with f = (
√
a1u1,

√
a0u0,

√
a−1u−1).

We now give our examples of (6.1).
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Proposition 6.1. For 0 < M < 1 and 0 ≤ q ≤ qc(M) (so that z ∈ GM,q), we have

4β1

∫
z1z−1(z1 − z−1)(τz−1 − z1) ≥ q(1 +M) +

∫
τS(z1, z−1)

(z1)2 + τ(z−1)2
, (6.4)

where τ = (1 +M)/(1−M).

Proof. Consider the redistribution u(δ) of z defined by
u1(δ)2 = (1− δ)z2

1

u0(δ)2 = δz2
1 + τδz2

−1

u−1(δ)2 = (1− τδ)z2
−1 .

(6.5)

It’s easy to check u(δ) ∈ AM for each small δ > 0. We compute I ′(0+) as follows.

First,

Dkin(u(δ)) =
1

δ

{
|∇u0(δ)|2 − (δ|∇z1|2 + τδ|∇z−1|2)

}
= −τS(z1, z−1)

z2
1 + τz2

−1

,

which is independent of δ, and hence

I ′kin(0+) = −
∫
τS(z1, z−1)

z2
1 + τz2

−1

.

Second,

H1(u(δ)) = β1

{
2δ(z2

1 + τz2
−1)
(√

1− δz1 −
√

1− τδz−1

)2

+
[
(1− δ)z2

1 − (1− τδ)z2
−1

]2
}
.

It’s not hard to see that ∂
∂δ
H1(u(δ)) is a homogeneous polynomial of z with degree 4,

and for δ ≥ 0 in a fixed small neighborhood of 0, we have∣∣∣∣ ∂∂δH1(u(δ))

∣∣∣∣ ≤ C|z|4 ∈ L1

for some constant C independent of δ. Thus it’s valid to differentiate I1(δ) under the

integral sign, which gives

I ′1(0+) = 2β1

∫ {
(z2

1 + τz2
−1)(z1 − z−1)2 + (z2

1 − z2
−1)(−z2

1 + τz2
−1)

}
= 4β1

∫
z1z−1(z1 − z−1)(τz−1 − z1).
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Finally,

HZee(u(δ)) = q
[
(1− δ)z2

1 + (1− τδ)z2
−1

]
,

and we obviously have

I ′Zee(0
+) = q

(
−
∫
z2

1 − τ
∫
z2
−1

)
= −q(1 +M).

(6.4) now follows I ′(0+) = I ′kin(0+) + I ′1(0+) + I ′Zee(0
+) ≥ 0.

Proposition 6.2. For 0 < M < 1 and q ≥ 0, every u ∈ GM,q satisfies

q

∫
u2

0 ≥ β1

∫
u2

0(u1 − u−1)2

(
2 +

u2
0

u1u−1

)
+

1

2

∫ ∑
j=1,−1

S(uj, u0)

u2
j

. (6.6)

Proof. Let u(δ) be defined by
u1(δ)2 = u2

1 + δu2
0

u0(δ)2 = (1− 2δ)u2
0

u−1(δ)2 = u2
−1 + δu2

0 .

(6.7)

It’s easy to see u(δ) ∈ AM for each small δ > 0. Now

HZee(u(δ)) = q
(
u2

1 + u2
−1 + 2δu2

0

)
,

and it’s also obvious that

I ′Zee(0
+) = 2q

∫
u2

0.

On the other hand,

Dkin(u(δ)) =
∑
j=1,−1

∣∣∣∇√u2
j + δu2

0

∣∣∣2 − (|∇uj|2 + δ|∇u0|2
)

δ

= −
∑
j=1,−1

S(uj, u0)

u2
j + δu2

0

,

(6.8)

and it’s not clear if |Dkin(u(δ))|, for small δ ≥ 0, is bounded by an L1 function

independent of δ. Hence the operation

I ′kin(0+) =

∫
lim
δ→0+

Dkin(u(δ)) = −
∫ ∑

j=1,−1

S(uj, u0)

u2
j
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is not valid immediately. Similar problem occurs with I ′1(0+). Precisely,

H1(u(δ)) = β1

[
2(1− 2δ)u2

0 (u1(δ)− u−1(δ))2 +
(
u2

1 − u2
−1

)2
]
.

By using the fact (∂uj/∂δ)(δ) = u2
0/(2uj(δ)) for j = 1,−1, we have

∂

∂δ
H1(u(δ))

= β1

[
− 4u2

0 (u1(δ)− u−1(δ))2

+ 2(1− 2δ)u2
0 · 2 (u1(δ)− u−1(δ))

(
u2

0

2u1(δ)
− u2

0

2u−1(δ)

)]
= −2β1

[
2u2

0 (u1(δ)− u−1(δ))2 + (1− 2δ)
u4

0 (u1(δ)− u−1(δ))2

u1(δ)u−1(δ)

]

= −2β1u
2
0 (u1(δ)− u−1(δ))2

[
2 +

(1− 2δ)u2
0

u1(δ)u−1(δ)

]
,

(6.9)

and we are not sure if | ∂
∂δ
H1(u(δ))|, for small δ ≥ 0, can be bounded by an L1 function

independent of δ. This prevents us from computing I ′1(0+) by differentiation under the

integral. To be rigorous, we avoid these problems as follows.

Since
∫
D(u(δ)) ≥ 0 for δ > 0,∫

DZee(u(δ)) ≥ −
∫
D1(u(δ))−

∫
Dkin(u(δ)). (6.10)

Now Dkin(u(δ)) ≤ 0 since u(δ) is a redistribution of u. Also, from the result of

(6.9), ∂
∂δ
H1(u(δ)) ≤ 0 for δ > 0, and hence we also have D1(u(δ)) ≤ 0 for small

δ > 0. Thus, after taking limit inferior as δ → 0+, we can apply Fatou’s lemma to the

right-hand side of (6.10), and we obtain

2q

∫
u2

0 ≥
∫
− ∂

∂δ
H1(u(δ))

∣∣∣∣
δ=0+

+

∫
− ∂

∂δ
Hkin(u(δ))

∣∣∣∣
δ=0+

. (6.11)

From (6.8) and (6.9), we see (6.11), after divided by 2, gives (6.6).

Remark 6.1. Now that the terms of the right-hand side of (6.11) are finite, we have

S(uj, u0)

u2
j

∈ L1 (j = 1,−1) and
u4

0(u1 − u−1)2

u1u−1

∈ L1.

We can obviously use them to find suitableL1 bounds of |Dkin(u(δ))| and | ∂
∂δ
H1(u(δ))|

independent of δ. Hence I ′kin(0+) and I ′1(0+) can really be obtained by differentiation
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under the integrals. One might suspect that such operations of taking differentiation

should be valid for all similar constructions of u(δ). This is probably true. However,

there are cases of which the validity are still open. See §7.3 for for an example and

discussions.

6.1.1 Comparison with previous results

(6.5) and (6.7) can be regarded respectively as perturbation versions of (5.1) and (5.3).

For the relation between (6.5) and (5.1), note that σ = (1−M)/(1 + M) = 1/τ , and

we claim that we can in fact replace (6.5) by the following to get the same inequality

(6.4): 
u1(δ)2 = (1− σδ)z2

1

u0(δ)2 = σδz2
1 + δz2

−1

u−1(δ)2 = (1− δ)z2
−1 .

We omit the easy verification of the claim. Note however that this should be quite

natural, since the true point of this construction is to share parts of z1 and z−1 to

the middle component. The ratio of the amounts shared is totally determined by the

constraintM = M and is not a controllable parameter.

We have promised in §5.2.1 that it might be better to use redistributional perturba-

tions to get inequalities. Let’s now examine if this claim is true. For Proposition 6.2,

the inequality (6.6) is obviously sharper than (5.4), since the right-hand side of (5.4) is

only a part of the right-hand side of (6.6). We will see in the next section that (6.6) is

indeed the sharpest possible inequality, in that it’s really an equality.

As for Proposition 6.1, things are not so obvious. Whether (6.4) is sharper than

(5.16) cannot be answered from their appearances. (Of course, we have to compare

them after omitting (or adding) the contributions of the kinetic part for both of them.)

To see this, let’s write (5.16) as qc ≤ U1[z]. And similarly (6.4) gives qc ≤ U2[z],
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where

U2[z] =
4β1

1 +M

∫
z1z−1(z1 − z−1)(τz−1 − z1)

=
4β1

1−M

∫
z1z−1(z1 − z−1)(z−1 − σz1).

For (6.4) to be better than (5.16), we must have U2[z] ≤ U1[z]. Direct calculation gives

U2[z]− U1[z] =
β1

1−M

∫ {
σ2z4

1 − 4σz3
1z−1 + 6σz2

1z
2
−1 − 4z1z

3
−1 + z4

−1

}
,

of which the integrand, as a polynomial, is not identically positive or negative. It’s

interesting, however, that from some numerical simulations, the integrand is really a

negative function when we take z to be the two-component ground state, and hence the

inequality from redistributional perturbation wins again. We don’t know how to prove

this fact rigorously, but there is an intuitive reason. To see this, we claim that, although

we have shown in Corollary 3.5 that z in general doesn’t obey the SMA, numerical

results show that they are not far from SMA. If we are willing to take the assumption

z−1 = κz1, where it’s easy to check that κ must be σ1/2, then

U2[z]− U1[z] =
β1

(1−M)

∫ {
σ2 − 4σ3/2 + 6σ2 − 4σ3/2 + σ2

}
z4

1

=
β1

1−M

∫
8σ3/2(σ1/2 − 1)z4

1 .

Thus the integrand is negative.

6.2 From the viewpoint of the GP system

There is another point of view on what we did above, which leads us to find (6.6) is

really an equality but not merely an inequality. We discuss it in the following.

At any rate, a redistributional perturbation u(δ) is a kind of perturbation, and it’s

natural to ask whether the results above could also be obtained from the GP system

(2.4), which, by its derivation, consists of information from general perturbations. The

only obstruction is that (2.4) is obtained from smooth perturbation, while u(δ) is kind

of singular at δ = 0. Indeed, using chain rule formally we have

I ′(0+) =
d

dδ
E [u(δ)]

∣∣∣∣
δ=0+

= E ′[u](u′(0+)),
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and one expects (6.1) might be a consequence of testing (2.4) by u′(0+). To carry out

this idea rigorously, however, we have to take care of the problem that u′(0+) may not

be good enough (precisely in B) so that E ′[u](u′(0+)) makes sense. It turns out that we

can follow the idea for u(δ) defined by (6.7), and find that the equality holds in (6.6).

While in our argument the inequality itself plays a critical role. For u(δ) defined by

(6.5), the same idea doesn’t work directly. We’ll discuss the problem in §6.2.2

6.2.1 Validity of the equality of (6.6)

We first give a computational result.

Lemma 6.3. Assume f, g ∈ C1 and f, g > 0, then

g2

(
∆f

f
− ∆g

g

)
= −∇ ·

(
fg∇

(
g

f

))
+

∣∣∣∣f∇( gf
)∣∣∣∣2 (6.12)

in the sense of distribution.

Proof. Assume f, g ∈ C2 and f, g > 0, then

∆f

f
− ∆g

g
=
g∆f − f∆g

fg
= − 1

fg
∇ · (f∇g − g∇f)

= − 1

g2

g

f
∇ ·
(
f 2∇

(
g

f

))
= − 1

g2

{
∇ ·
(
g

f
· f 2∇

(
g

f

))
− f 2∇

(
g

f

)
· ∇
(
g

f

)}
= − 1

g2

{
∇ ·
(
fg∇

(
g

f

))
−
∣∣∣∣f∇( gf

)∣∣∣∣2
}
.

Thus (6.12) holds. It’s then very natural to expect that (6.12) also holds in the sense of

distribution when f, g are only of class C1. That is∫ {
−∇f · ∇

(
g2

f
ϕ

)
+∇g · ∇(gϕ)

}
=

∫ {
fg∇

(
g

f

)
· ∇ϕ+

∣∣∣∣f∇( gf
)∣∣∣∣2 ϕ} (6.13)

for every smooth function ϕ with compact support. Rigorous justification can be done

by the following observations:
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1. We can arrange (6.13) into the form∫ {
a(f, g,∇f,∇g)ϕ+ A(f, g,∇f,∇g) · ∇ϕ

}
= 0,

where a is a scalar function and A is a vector function.

2. Given f, g ∈ C1, f, g > 0. By mollifying f and g, we get smooth functions fε

and gε such that fε → f ,∇fε → ∇f , gε → g, and∇gε → ∇g uniformly on any

compact set.

We omit the routine details.

Theorem 6.4. The inequality (6.6) is an equality.

Proof. If u0 ≡ 0, the assertion is trivial. So assume u0 > 0. The discussion before

Lemma 6.3 suggests we test the GP system by

u′(0+) =
(
u2

0/(2u1),−u0, u
2
0/(2u−1)

)
.

That is computing

(2.4a)×
(
u2

0

2u1

)
+ (2.4b)× (−u0) + (2.4c)×

(
u2

0

2u−1

)
.

After some rearrangement, the result is

qu2
0 = β1u

2
0(u1 − u−1)2

(
2 +

u2
0

u1u−1

)
+

1

2

∑
j=1,−1

u2
0

(
∆uj
uj
− ∆u0

u0

)
. (6.14)

By Lemma 6.3, for j = 1,−1 we have

u2
0

(
∆uj
uj
− ∆u0

u0

)
= −∇ ·

(
u0uj∇

(
u0

uj

))
+

∣∣∣∣uj∇(u0

uj

)∣∣∣∣2 . (6.15)

Note that ∣∣∣∣uj∇(u0

uj

)∣∣∣∣2 =
S(uj, u0)

u2
j

, (6.16)

which lies in L1 by (6.6). Also by (6.6) we have u2
0(u1−u−1)2 (2 + u2

0/(u1u−1)) ∈ L1,

and it remains to show ∫
∇ ·
(
u0uj∇

(
u0

uj

))
= 0.

This is true by Lemma 4.9. To see why u0uj∇ (u0/uj) ∈ L1(R3,R3), note that u0 ∈

L2, and uj∇ (u0/uj) ∈ L2(R3,R3) by (6.16).
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Remark 6.2. To eliminate the unwanted term∇ · (u0uj∇(u0/uj)), in the proof above

we use the inequality (6.6) to guarantee its integrability. It looks somewhat pedantic,

but seems unavoidable. Similar problems happen when we try to prove equalities from

other constructions of u(δ). Thus the inequalities obtained from redistribution are not

direct consequences of the GP system. This declaration however may be overthrown if

we can prove some comparison results of the decaying rates of the three components.

See §7.3 for discussion.

6.2.2 Discussions on (6.4)

We’d like to prove the same thing for (6.4). However, note that since z is independent

of q, it’s impossible that (6.4) be an equality for varied q. Indeed, following the above

idea, we get a trouble at the very beginning: With u(δ) defined by (6.5), we have

u′(δ) =
1

2

(
−z1√
1− δ

,
z2

1 + τz2
−1√

δz2
1 + τδz2

−1

,
−τz−1√
1− τδ

)
.

Thus

u′(0+) = (−z1/2,+∞,−τz−1/2),

which suggests we multiply (2.4b) for z, i.e. the trivial equation 0 = 0, by infinity.

And if we ignore this part and just using (2.4a) and (2.4c), the result is really far from

(6.4).

This problem can be avoided if there is a sequence un ∈ GMn,qn such that un0 > 0,

Mn → M ∈ (0, 1), qn → qc(M), and un → z ∈ GM,qc(M) in B. Note that the

existence of such sequence is not proved. Using Corollary 4.4 and Corollary 4.6, it’s

only guaranteed that there exists such un that converges to some u∞ ∈ GM,qc(M),

and, as pointed out in Remark 5.1, we have no reason to say u∞ = z. Since anyway

such sequence may really exist, we still illustrate how we can use it to avoid the above

problem in the following.

The idea is to consider the same construction as (6.5) for u ∈ GM,q with u0 > 0.
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Precisely, for such u we consider u(δ) defined by
u1(δ)2 = (1− δ)u2

1

u0(δ)2 = u2
0 + δu2

1 + τuδu
2
−1

u−1(δ)2 = (1− τuδ)u2
−1 ,

where τu = (
∫
u2

1)/(
∫
u2
−1), the constant making u(δ) ∈ AM . We claim without

proof that, by using this redistributional perturbation, and following the idea of proving

Theorem 6.4, we have the following result.

Theorem 6.5. Let M ∈ (0, 1) and q > qc(M). u ∈ GM,q satisfies

4β1

∫
u1u−1(u1 − u−1)(τuu−1 − u1) + 2β1

∫
u2

0(u1 − u−1)(τuu−1 − u1)

= q

∫
(u2

1 + τuu
2
−1) +

∫
S(u0, u1) + τuS(u0, u−1)

u2
0

.

Now assume there exists un ∈ GM,qn , where M ∈ (0, 1) and qn → qc(M)+, such

that un → z. Define τn = τun . Note that τn → τ = (1 + M)/(1 −M). By applying

Theorem 6.5 to un, and letting n→∞, we obtain

4β1

∫
z1z−1(z1 − z−1)(τz−1 − z1)

= (1 +M)qc + lim
n→∞

∫
S(un0 , u

n
1 ) + τnS(un0 , u

n
−1)

(un0 )2
.

(6.17)

This is the equality corresponding to (6.4). To see how (6.17) implies (6.4), we have

the following result.

Lemma 6.6. For general positive functions v1, v0, v−1 ∈ C1, we have the following

identity:

S(v0, v1) + S(v0, v−1)

v2
0

= (v2
1 + v2

−1)

∣∣∣∣∇v0

v0

− v1∇v1 + v−1∇v−1

v2
1 + v2

−1

∣∣∣∣2 +
S(v1, v−1)

v2
1 + v2

−1

.

Proof. Let f = ∇v0/v0. We have

S(v0, v1) + S(v0, v−1)

v2
0

= |∇v1 − v1f |2 + |∇v−1 − v−1f |2

= (v2
1 + v2

−1)|f |2 − 2(v1∇v1 + v−1∇v−1) · f + |∇v1|2 + |∇v−1|2

= (v2
1 + v2

−1)

∣∣∣∣f − v1∇v1 + v−1∇v−1

v2
1 + v2

−1

∣∣∣∣2 +
S(v1, v−1)

v2
1 + v2

−1

.
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Thus, by letting v1 = un1 , v0 = un0 , and v−1 =
√
τnu

n
−1, we obtain

S(un0 , u
n
1 ) + τnS(un0 , u

n
−1)

(un0 )2
≥

τnS(un1 , u
n
−1)

(un1 )2 + τn(un−1)2
. (6.18)

Since un → z in B, there is a subsequence un(k) of un such that

un(k) → z and ∇un(k) → ∇z almost everywhere.

un(k) → z and ∇un(k) → ∇z almost everywhere. Applying Fatou’s lemma to (6.18),

we finally obtain

lim
k→∞

∫
S(u

n(k)
0 , u

n(k)
1 ) + τn(k)S(u

n(k)
0 , u

n(k)
−1 )

(u
n(k)
0 )2

≥
∫
τS(z1, z−1)

z2
1 + τz2

−1

. (6.19)

And hence (6.17) implies (6.4).

Open Problem. It’s very interesting to know if the equality of (6.19) holds, which is

equivalent to the equality of (6.4) at q = qc. Were this true, (6.4) doesn’t only provide

an upper bound of qc, but a characterization. From Lemma 6.6, the gap is provided by

the limiting behavior of

(u2
1 + τuu

2
−1)

∣∣∣∣∇u0

u0

− u1∇u1 + τuu−1∇u−1

u2
1 + τuu2

−1

∣∣∣∣2 ,
as u→ z.
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Chapter 7

Discussions of some Open Problems

We discuss some open problems arising from this study. They are categorized into

three sections.

7.1 Uniqueness

Uniqueness is a standard and prominent problem to be settled in variational problems.

Even in this thesis, although it’s not essential for our main considerations, the lack of

it causes troubles in some places. Examples are given by Remark 4.1 and Remark 5.1,

which also haunt the discussion in §6.2.2.

We have mentioned in Remark 2.2 that our energy functional E doesn’t have the

suitable convexity property due to the term H1. Let’s also consider only β1 > 0 here.

Then, more precisely, it’s the term 2β1u
2
0(u1 − u−1)2 appearing in H1(u) that causes

problem. As to remedy this difficulty, there are two natural ideas:

(a) Although E is not convex on B, it might be convex on a fixed AM , which is

sufficient to prove uniqueness.

(b) In this paper there is no assumption on the magnitude of β1, while for real spin-1

BECs it’s very small compared to β0, and hence E1 contributes to a rather in-

significant amount of the whole energy. If we are willing to take this fact into

consideration, maybe the convexity of other parts will outweigh the nonconvex-

ity of E1.
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Unfortunately, these ideas do not work since there are u,v ∈ AM such that

E [u] + E [v]

2
− E [w] =

E1[u] + E1[v]

2
− E1[w] < 0,

where w ∈ AM , as in the proof of Theorem 2.4, is defined by w2
j = (u2

j + v2
j )/2 for

each j. We give an example below.

Let f, g, h be any three nonnegative functions in H1 ∩ L2
V ∩ L4 such that

(1) f , g and h are supported on disjoint sets,

(2)
∫

(f 2 + g2 + h2) = 1, and

(3)
∫
g2 =

∫
h2 > 0 and

∫
(f 2 − g2) = M .

Then let u = (f, g, h) and v = (f, h, g). We have u,v,w ∈ AM . It’s easy to see

E [u] + E [v]

2
− E [w] =

E1[u] + E1[v]

2
− E1[w].

To check that it is negative, note that

H1(u) +H1(v)

2
−H1(w)

= β1

{
2g2(f − h)2 + (f 2 − h2)2

2
+

2h2(f − g)2 + (f 2 − g2)2

2

− (g2 + h2)

(
f −

√
g2 + h2

2

)2

−
(
f 2 − g2 + h2

2

)2}
.

Let Ωf = supp(f), Ωg = supp(g) and Ωh = supp(h), then we have∫
Ωf

{
H1(u) +H1(v)

2
−H1(w)

}
= β1

∫
Ωf

{
f 4

2
+
f 4

2
− 0− f 4

}
= 0,∫

Ωg

{
H1(u) +H1(v)

2
−H1(w)

}
= β1

∫
Ωg

{
0 +

g4

2
− g4

2
− g4

4

}
= −β1

4

∫
g4,∫

Ωh

{
H1(u) +H1(v)

2
−H1(w)

}
= β1

∫
Ωh

{
h4

2
+ 0− h4

2
− g4

4

}
= −β1

4

∫
h4.

Thus, no matter how small β1 is, E doesn’t have the desired convexity property on

AM . Of course, the u and v above are far from ground states, especially due to the

assumption that the supports of their components are disjoint. We can go on to sus-

pect E might satisfy the convexity property when u,v ∈ AM are “similar to” ground
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states. Anyway, uniqueness for our model, if holds, can not be easily obtained from

the standard method.

On the other hand, it’s also not quite clear whether uniqueness holds from numeri-

cal simulations. The trickiest part lies on the bifurcation point qc(M). To have a better

understanding of the problem, remember that the “nonuniqueness” point (M, q) =

(0, 0) connects two boundary regimes which sharply contrast each other:

For 0 < M ≤ 1 and q = 0, u ∈ GM,0 has u0 ≡ 0, while for M = 0 and

q > 0, u0 is the only nonvanishing component of u ∈ G0,q (Proposition

4.7).

It’s observed in numerical simulations that such sharp contrast also occurs at qc(M)

for 0 < M < 1, and it’s not easy to tell whether u0 shrinks to zero rapidly as q →

qc(M)+, or indeed there are both two-component and three-component ground states

at qc(M). In [15], the latter (nonuniqueness) is claimed to be the case. However,

in other simulations by using numerical continuation method (Not published private

discussions. See [7] for related study.), it looks possible to track the changes of ground

state from three-component profiles to the two-component one as q → qc(M)+, and

hence ground state is unique (for (M, q) 6= (0, 0)).

7.2 Uniform convergence at boundary regimes

We have stated the bifurcation phenomenon in terms of varying q and fixed M . This

choice is physically natural as the value of q can be tuned by modifying the applied

magnetic field. From a mathematical point of view, we might as well consider the

bifurcation with respect to other parameters. Somewhat unexpectedly at first sight,

there are two difficulties to imitate the proof of Theorem 5.1 if we consider M as the

varying parameter. The first one is that we lack an analogue of Claim 2 in Chapter 5.

That is, we do not know how to prove that if for some M ∈ (0, 1) there is u ∈ GM,q

with u0 > 0, then every v ∈ GM ′,q with 0 ≤ M ′ < M must have v0 > 0, or

equivalently zM ∈ GM,q implies zM ′ ∈ GM ′,q for 1 ≥M ′ > M . Thus, we can’t prove

58



that there exists a number Mc(q) which definitely separates the two-component regime

and the three-component one.

The second problem, which is more fundamental, is that we are not sure whether

the Lagrange multipliers will converge as M tends to 1− or 0+. Note that in either

case
∫
u2
−1 → 0 for u ∈ GM,q, and we can not use the formula (5.9) directly. As a

consequence, we can’t obtain uniform convergence whenM → 1−1 or 0+ as in Lemma

5.2. Despite of this, we remark that in either situation it’s known that the component

which is not tending to zero does converge uniformly. For example, let Mn → 1− and

un ∈ GMn,q converges in B to the unique element in G1,q, which we denote here also

by u∞ = (u∞1 , 0, 0), then we have un1 → u∞1 uniformly. This is because we can still

prove µn + λn converges by using (2.4a), and (2.4a) for un tends to (2.4a) for u∞.

What really left open is whether un0 and un−1 converge to zero uniformly. This lack of

uniform convergence (of un−1 precisely) then prevents us from imitating the proof of

Claim 3 in Chapter 5 to conclude that un0 = 0 for large n. Similarly, when M → 0+,

we only know u0 converges uniformly but not for u1 and u−1. (Of course, this is

sufficient to conclude that u0 > 0 when M is close to zero.) As we have mentioned in

the remark after Theorem 5.4, such problem also occurs for zM when M → 1−, where

zM−1 converges to zero in B, and we don’t know if it converges uniformly.

7.3 Comparison of the decaying rates

We are not sure whether I ′(0+) exists for some constructions of redistributional per-

turbation u(δ). An example is given by
u1(δ)2 = (1− δ)u2

1 + τuδu
2
−1

u0(δ)2 = u2
0

u−1(δ)2 = δu2
1 + (1− τuδ)u2

−1 ,

where u ∈ GM,q is such that uj > 0 for each j, and τu = (
∫
u2

1)/(
∫
u2
−1) is the

constant making u(δ) ∈ AM . Since u0(δ) = u0 for each small δ ≥ 0, to compute
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I ′ it suffices to compute I ′kin and I ′1, of which we do not know the existence of both.

Indeed, if we differentiate them formally under the integral signs, we obtain∫ {
τuS(u1, u−1)

u2
1

+
S(u−1, u1)

u2
−1

}
≤ 2β1

∫
(u2

1 − u2
−1)(τuu

2
−1 − u2

1)

(
u2

0

u1u−1

+ 2

)
,

(7.1)

which might be an equation saying∞ ≤ ∞. Note that for the left-hand side of (7.1),

we know

S(u1, u−1)

u2
1

=

∣∣∣∣∇u−1 −
u−1

u1

∇u1

∣∣∣∣2 ∈ L1

since u−1 ≤ u1, and it’s S(u1, u−1)/u2
−1 that causes trouble. The problem here is very

similar to that mentioned in Remark 6.2. Roughly speaking, they are all due to the fact

that we do not have a comparison of the decaying rates of different components. To be

precise, we remark directly that some numerical results show that

u0(x) < u−1(x) < u1(x) for |x| large. (7.2)

In fact it looks like

u0(x) = o(u−1(x)) and u−1(x) = o(u1(x)) as |x| → ∞.

If (7.2) can be proved, then the right-hand side of (7.1) is finite, and we can justify the

differentiation by Fatou’s lemma as in the proof of Proposition 6.2. Also, one can see

that all the integrability to be justified in the proof of Theorem 6.4 are obvious, and

Theorem 6.4 can be obtained from the GP system (2.4) without using Proposition 6.2.
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Chapter 8

Appendices

This chapter contains results which are not the main focuses of the thesis, while are

used or at least relevant.

We give some remarks on the notation.

• By a domain in Rd we mean a connected open subset of Rd.

• We use A ⊂⊂ B to denote the fact that Ā is a compact subset of B, where Ā is

the closure of A.

8.1 Convexity inequality for gradients

In the following, let Ω be a domain in Rd. Let f = (f1, f2, . . . , fn), where each com-

ponent is a real-valued function in H1(Ω).

Theorem 8.1. |f | ∈ H1(Ω), and

∇|f | =


f1∇f1 + . . .+ fn∇fn

|f |
on where |f | > 0

0 on where |f | = 0.

We omit the proof of this theorem, which is a direct generalization of Theorem

6.17 of [13].

Let S(fk, f`) denote |fk∇f` − f`∇fk|2. From Theorem 8.1, it’s easy to check that

∑
k

|∇fk|2 − |∇|f ||2 =


∑

k<` S(fk, f`)

|f |2
on where |f | > 0

0 on where |f | = 0.
(8.1)
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Hence

|∇|f ||2 ≤
∑
k

|∇fk|2 . (8.2)

And the condition of equality given in §7.8 of [13] can also be generalized as follows.

Theorem 8.2. If fn > 0 and is locally bounded away from zero, i.e. infK fn > 0 for

every K ⊂⊂ Ω, then equality of (8.2) holds a.e. iff there are constants c1, c2, . . . , cn−1

such that fk = ckfn a.e. for k = 1, 2, . . . , n− 1.

For uses in this thesis, we give a simple generalization.

Corollary 8.3. If |f | is locally bounded away from zero, then equality of (8.2) holds

a.e. iff there are constants c1, c2, . . . , cn such that fk = ck|f | for each k.

Proof. Let g = (g1, . . . , gn+1) = (f1, f2, . . . , fn, |f |). Then |g| =
√

2|f |, and it’s easy

to see that

|∇|g||2 =
n+1∑
k=1

|∇gk|2 iff |∇|f ||2 =
n∑
k=1

|∇fk|2 .

Thus, by applying Theorem 8.2 to g, we obtain the assertion of the corollary.

8.2 Equivalence of the u-model and the Ψ-model

Define

uΨ = (|ψ1|, |ψ0|, |ψ−1|) for Ψ ∈ B,

and, for a fixed triple (θ1, θ0, θ−1) of real constants satisfying (2.2),

Ψu = (u1e
iθ1 , u0e

iθ0 , u−1e
iθ−1) for u ∈ B+.

We have the following observation.

Lemma 8.4. If Ψ is a ground state, then uΨ ∈ G. Conversely, if u ∈ G, then Ψu is a

ground state.
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Proof. We have known from Section 2.1 that E[Ψ] ≥ E [uΨ] for every Ψ ∈ B, and

E [u] = E[Ψu] for every u ∈ B+. Thus, for the first statement, given any v ∈ A, we

have

E [v] = E[Ψv] ≥ E[Ψ] ≥ E [uΨ].

Hence uΨ ∈ G. Similarly, for the second statement, for any Φ ∈ B satisfying the

constraints N [Φ] = 1 andM[Φ] = M ,

E[Φ] ≥ E [uΦ] ≥ E [u] = E[Ψu].

And hence Ψu is a ground state.

Corollary 8.5. The assertion “Every ground state Ψ has ψ0 ≡ 0” is equivalent to

“Every u ∈ G has u0 ≡ 0”.

Proof. Assume the first assertion. Then for any u ∈ G, the fact Ψu is a ground state

implies u0e
iθ0 ≡ 0. Hence u0 ≡ 0. Conversely, assume the second assertion. Then for

any ground state Ψ, the fact uΨ ∈ G implies |ψ0| ≡ 0, that is ψ0 ≡ 0.

Therefore, using the original Ψ-model is equivalent to using the u-model for study-

ing the bifurcation phenomenon. For the SMA, one direction of the implications is still

obvious.

Corollary 8.6. The assertion “Every ground state obeys the SMA” implies “Every

element in G obeys the SMA”.

Proof. Assume the first statement. Let u ∈ G, then

Ψu = (γ1ψ, γ0ψ, γ−1ψ)

for some constants γj and some function ψ ∈ H1(R3) ∩ L2
V (R3) ∩ L4(R3). That is

u = (e−iθ1γ1ψ, e
−iθ0γ0ψ, e

−iθ−1γ−1ψ),

the form of the SMA.
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For the converse, we need the following result. (See relevant discussions after

Corollary 8.8.)

Lemma 8.7. Let Ψ be a ground state, then

Ψ = (|ψ1|eiη1 , |ψ0|eiη0 , |ψ−1|eiη−1)

for some real constants η1, η0 and η−1.

Proof. Since Ψ is a ground state, the fact E[Ψ] ≥ E [uΨ] = E[ΨuΨ
] implies

E[Ψ] = E [uΨ]. (8.3)

From the derivation of the reduction in Section 2.1, the validity of (8.3) implies

|∇ψj| = |∇|ψj|| for each j. (8.4)

Now since uΨ ∈ G, for each j, |ψj| ≡ 0 or |ψj| > 0 everywhere. For some fixed j,

if |ψj| ≡ 0, we can choose ηj to be any real constant. On the other hand, if |ψj| > 0,

the fact that |ψj| ∈ C1 implies |ψj| is locally bounded away from zero. Thus, applying

Corollary 8.3 for f = (Re(ψj), Im(ψj)), we find the equality (8.4) is equivalent to

ψj = a|ψj|+ ib|ψj| = |ψj|(a+ ib)

for some real constants a and b. Obviously |a + ib| = 1, and hence a + ib = eiηj for

some constant ηj .

Corollary 8.8. The assertion “Every element in G obeys the SMA” implies “Every

ground state obeys the SMA”.

Proof. Assume the first assertion. Then let Ψ be a ground state, we have

uΨ = (|ψ1|, |ψ0|, |ψ−1|) = (γ1u, γ0u, γ−1u),

for some constants γj and some function u ∈ H1 ∩ L2
V ∩ L4. By Lemma 8.7, we then

have

Ψ = (eiη1γ1u, e
iη0γ0u, e

iη−1γ−1u)

for some real constants ηj . Hence Ψ obeys the SMA.
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Discussion 1

One might think, naturally, that the constants ηj in Lemma 8.7 should satisfy (2.2), i.e.

cos(η1 − 2η0 + η−1) = −sgn(β1), (8.5)

as is indicated by the reduction. This is not exactly true. Indeed, from the reduction in

Section 2.1, The equality (8.3) holds iff (8.4) holds and

|ψ0|2|ψ1||ψ−1| cos(η1 − 2η0 + η−1) = −sgn(β1)|ψ0|2|ψ1||ψ−1|.

Hence (8.5) is required only when ψj 6= 0 for each j. While if one of the ψj vanishes,

its phase plays no role and in principle can be arbitrary. And the phase(s) correspond-

ing to nonvanishing component(s) can be arbitrary real constant(s).

Discussion 2

There is a more intuitive, and frequently adopted, way to see why the phases of the

components of a ground state should be constants. That is by directly differentiating

the polar form of ψj . To see this, we again let ψj = |ψj|eiηj , of which ηj is not yet

known to be a constant. Then we have

∇ψj = eiηj∇|ψj|+ i|ψj|eiηj∇ηj, (8.6)

from which

|∇ψj|2 = |∇|ψj||2 + |ψj|2|∇ηj|2.

Hence |∇ψj|2 ≥ |∇|ψj||2, and the equality holds if |ψj|2|∇ηj|2 ≡ 0. From this result,

we obtain the same conclusion that ηj is a constant for nonvanishing ψj .

The differentiation (8.6) is however somewhat formal. There is no problem for

|ψj|, which lies in H1 as long as ψj does. Nevertheless, the differentiability of ηj is not

automatically ensured, even if we have known that ψj ∈ C1. For example, ix (x ∈ R)

is a smooth function, while its phase θ(x) satisfies

eiθ(x) =

{
i if x > 0

−i if x < 0.
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And hence θ(x) must have a jump discontinuity at x = 0. This problem is resolved

again by the fact that |ψj| is either identically zero or positive everywhere. The proof

however relies on a nontrivial result asserting the possibility of “lifting” a S1-valued

function without losing regularity. Precisely, the validity of (8.6) for ground state Ψ is

given by the following fact.

Lemma 8.9. Let Ω ⊂ Rd be a (smooth) bounded domain which is simply connected.

Let f ∈ H1(Ω,C) be such that |f | is bounded away from zero, then f = |f |eiθ for

some θ ∈ H1(Ω,R).

Proof. Since |f | is bounded away from zero, f/|f | ∈ H1(Ω, S1). Thus f/|f | = eiθ

for some θ ∈ H1(Ω,R) [4].

Remark 8.1. The θ in the above proof is called a lifting of f/|f |. One can consult [5]

for more about assertions on the regularity of lifting.

8.3 Complements to Section 2.2

The main results in this section are Proposition 8.12 and Proposition 8.14. They con-

tain respectively the following assertions given in Section 2.2:

• the strict positivity of nonvanishing components of elements in G, and

• Proposition 2.2.

8.3.1 Positivity of nonvanishing components

We first give a special case of Theorem 8.19 (the strong maximum principle) of [8].

Proposition 8.10. Let Ω be a domain in Rd. Suppose v ∈ H1(Ω,R) satisfies (in the

sense of distribution)

∆v + d(x)v ≥ 0 in Ω
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for some measurable function d(x) which is bounded and nonpositive. Then, if for

some ball B ⊂⊂ Ω we have

sup
B
v = sup

Ω
v ≥ 0,

the function v must be constant in Ω.

Corollary 8.11. Let Ω be a domain in Rd. Suppose u : Ω → [0,∞) is of class C1. If

u satisfies

∆u+ d(x)u ≤ 0 in Ω

for some d(x) ∈ L∞loc(Ω), then either u ≡ 0 or u > 0 on Ω.

Proof. Assume u(x0) = 0 for some x0 ∈ Ω. We want to prove u ≡ 0. Let Ω1 be a

subdomain of Ω such that x0 ∈ Ω1 ⊂⊂ Ω. Since d(x) ∈ L∞loc(Ω), d(x) is bounded on

Ω1. Let c be a positive constant such that d̃(x) := d(x)− c ≤ 0 on Ω1. Then v := −u

satisfies

∆v + d̃(x)v = −
(
∆u+ d(x)u

)
+ cu ≥ 0 in Ω1.

Thus we can apply Proposition 8.10 to v, and v ≡ 0 (i.e. u ≡ 0) follows the fact

sup
B
v = sup

Ω1

v = v(x0) = 0,

for arbitrary ball B satisfying x0 ∈ B ⊂⊂ Ω1.

Proposition 8.12. Let u ∈ G. Then for each uj , either uj ≡ 0 or uj > 0 everywhere.

Proof. (2.4b) can be arranged as

∆u0 + d0(x)u0 = 0,

where

d0(x) = µ− V (x)− 2β0|u|2 − 2β1 (u1 − sgn(β1)u−1)2 .
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Similarly, from (2.4a) and (2.4c) we have, for j = 1,−1,

∆uj + dj(x)uj = −2β1sgn(β1)u2
0u−j ≤ 0,

where

dj(x) = µ+ jλ− V − 2β0|u|2 − 2β1

(
u2

0 + u2
j − u2

−j
)
− q.

By the fact that u ∈ C1 and the assumption (A1), dj(x) is locally bounded for each

j = 1, 0,−1. The assertion of the proposition thus follows Corollary 8.11

8.3.2 Proof of Proposition 2.2

We next prove Proposition 2.2. Note that we write H1 for H1(R3,C), and similarly

for L2
V and L4. A sequence {(un1 , un0 , un−1)} in (H1)3 is said to be (weakly) convergent

in H1 if it is (weakly) convergent in (H1)3 = H1 ⊕H1 ⊕H1 = H1(R3,R3), which is

equivalent to say {unj } is (weakly) convergent in H1 for each j = 1, 0,−1. The same

convention applies to (weak) convergence in L2
V and in L4.

We’ll use without proof the following facts.

1. B is a reflexive Banach space, in which weak convergence is equivalent to weak

convergence in H1, in L2
V , and in L4 separately.

2. Since B+ is a convex and closed subset of B, B+ is a weakly closed subset of B

(Mazur’s theorem).

3. H1, L2
V , and L4 are uniformly convex.

Remark 8.2. For our purpose, we can in fact “define” weak convergence in B to be

weak convergence inH1, in L2
V and in L4, without knowing that this definition is really

equivalent to weak convergence in the Banach space B. Some arguments should then

be modified, for example the reason B+ is weakly closed in B. This, though works, is

of course very unsatisfactory.
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Remark 8.3. Although these facts are well-known, some of them usually do not ap-

pear in standard courses. Indeed, I myself got the answer of the first claim from

mathoverflow.net (Thanks Dr. William B. Johnson), and the uniform convexity of gen-

eral Sobolev spaces (but not only Lebesgue spaces) was found on a page of

math.stackexchange.com (asked by Tomás and answered by martini).

We’ll also need the following observation.

Lemma 8.13. For β1 < 0 (and |β1| < β0 by the assumption (A2)), we have for every

u ∈ A

E0[u] + E1[u] = (β0 + β1)

∫
|u|4 − β1

∫ (
u2

0 − 2u1u−1

)2
.

In particular,

E0[u] + E1[u] ≥ (β0 + β1)

∫
|u|4.

Proof. The assertion is a direct consequence of the following identity:

|u|4 −
[
2u2

0(u1 + u−1)2 + (u2
1 − u2

−1)2
]

=
(
u2

0 − 2u1u−1

)2
. (8.7)

Remark 8.4. Identity (8.7) is also used in the proof of Theorem 3.1 (equation 3.5).

For convenience we restate Proposition 2.2 below.

Proposition 8.14. Let {un} be a sequence in B+. Suppose N [un] → 1, M[un] →

M , and E [un] is uniformly bounded in n, then {un} has a subsequence {un(k)}∞k=1

converging weakly to some u∞ ∈ A, which satisfies E [u∞] ≤ lim infk→∞ E [un(k)]. If

we assume further that E [un]→ Eg, then u∞ ∈ G, and un(k) → u∞ in the norm of B.

Proof. We first remark that with the norm defined by (2.1), B is a reflexive Banach

space, in which weak convergence is equivalent to weak convergence in H1, in L2
V ,

and in L4 separately. We omit the verifications of these standard facts. Moreover, since
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B+ is a convex and closed subset of B, B+ is a weakly closed subset of B (Mazur’s

theorem).

Note that the uniform boundedness of E [un] implies {un} is a bounded sequence

in B. This is obvious if β1 > 0, and is also true for β1 < 0 by Lemma 8.13. Thus,

by the reflexivity of B, {un} has a weakly convergent subsequence {un(k)}∞k=1 in B, of

which we denote the weak limit by u∞. We have u∞ ∈ B+ since B+ is weakly closed

in B.

To prove u∞ ∈ A, we shall prove∫ (
u∞j
)2

= lim
k→∞

∫ (
u
n(k)
j

)2

. (8.8)

First, by the weak lower semi-continuity of a norm, we have∫ (
u∞j
)2 ≤ lim inf

k→∞

∫ (
u
n(k)
j

)2

. (8.9)

On the other hand, to give a suitable estimate of lim supk
∫

(u
n(k)
j )2, we exploit the facts

that (i) (A1) implies (u
n(k)
j )2 is very small outside a large enough bounded set, and that

(ii) on any bounded set, un(k)
j → u∞j in L2 by compact embedding H1 ↪→ L2. As to

(i), note that since {un} is a bounded sequence, we have in particular
∫
V |un(k)|2 ≤ C

for some C > 0 independent of k. By the assumption (A1), for any ε > 0, there exists

Rε > 0 such that V (x) ≥ C/ε for |x| ≥ Rε. Thus we have

C ≥
∫
V |un(k)|2 ≥

∫
B(Rε)c

V |un(k)|2 ≥ C

ε

∫
B(Rε)c

|un(k)|2,

and hence
∫
B(Rε)c

|un(k)|2 ≤ ε for each k. In particular∫
B(Rε)c

(
u
n(k)
j

)2

≤ ε for each k ∈ N and j = 1, 0,−1.

From this fact and the strong convergence mentioned in (ii), we obtain

lim sup
k→∞

∫ (
u
n(k)
j

)2

= lim sup
k→∞

(∫
B(Rε)c

(
u
n(k)
j

)2

+

∫
B(Rε)

(
u
n(k)
j

)2
)

≤ ε+

∫
B(Rε)

(
u∞j
)2

≤ ε+

∫ (
u∞j
)2
.

(8.10)
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Since ε > 0 is arbitrary, (8.9) and (8.10) implies (8.8), and hence u∞ ∈ A.

Next, the assertion E [u∞] ≤ lim infk E [un(k)] follows a general weak lower semi-

continuity theorem. See e.g. Theorem 1.6 of [20]. Indeed, by that theorem we have∫ ∣∣∇u∞j ∣∣2 ≤ lim inf
k→∞

∫ ∣∣∣∇un(k)
j

∣∣∣2 ,∫
V (x)

(
u∞j
)2 ≤ lim inf

k→∞

∫
V (x)

(
u
n(k)
j

)2

,

and ∫
f(u∞1 , u

∞
0 , u

∞
−1) ≤ lim inf

k→∞

∫
f(u

n(k)
1 , u

n(k)
0 , u

n(k)
−1 ) (8.11)

for every continuous function f : R3 → [0,∞). As a consequence, we have

Ekin[u∞] ≤ lim inf
k→∞

Ekin[un(k)]

Epot[u∞] ≤ lim inf
k→∞

Epot[un(k)]

E0[u∞] + E1[u∞] ≤ lim inf
k→∞

(
E0[un(k)] + E1[un(k)]

)
EZee[u∞] ≤ lim inf

k→∞
EZee[un(k)].

(8.12)

Note carefully that (8.11) requires that f be nonnegative, and hence the assertion of

the weak lower semi-continuity of E0 + E1 in (8.12) also uses Lemma 8.13. It is then

clear that the limit inferiors in (8.12) must all be limits provided E [un] tends to the

ground-state energy Eg. Otherwise we get the contradiction

Eg = lim
k→∞
E [un(k)] > E [u∞].

Now Ekin[un(k)]→ Ekin[u∞] and (8.8) imply∥∥∥un(k)
j

∥∥∥
H1
→
∥∥u∞j ∥∥H1 . (8.13)

Since H1 is uniformly convex, (8.13) together with the fact un(k) ⇀ u∞ weakly in H1

imply un(k) → u∞ strongly in H1. Similarly we can prove un(k) → u∞ in L2
V and in

L4, and hence un(k) → u∞ in the norm of B.
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