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Abstract

In this thesis, we apply the optimal control theory based on the Krotov’s method to
an exactly derived master equation to find control pulses for single-qubit quantum
gate operations under the influence of an non-Markovian environment. High fidelity
quantum gates can be achieved for moderate qubit decaying parameters. An important
quantity, improvement I'mp, is defined to quantify the correction of gate errors due to
optimal control iteration for the open system. The desired range of parameters for mass
improvement is found in which the effect of optimal control iteration is maximized.
Keywords: Optimal control, Exact solution, Non-Markovian, Open quantum sys-

tem, Qubit, Quantum gate.
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Chapter 1

Introduction

Quantum information science and quantum computation has been a hot research field
since the pioneering paper of Feynman in 1982 [2]. In quantum information science, the
basic element is a quantum bit, or qubit, which is a quantum mechanical analogue to
the classical bit in classical computation. A qubit is a quantum two-level system which
can be in either the classical computational state, 0 or 1, or the superposition state of
both 0 and 1. Superposition, along with other novel properties allowed by quantum
mechanics, such as quantum interference and quantum entanglement, enable certain
quantum algorithms which are much more powerful than classical algorithms [3, 4].
Experimentally, several practical systems, such as ion traps [5], cold atoms [6], and
solid-state devices [7, 8, 9], have shown the potential of physically realizing quantum
computation. However, in these systems, the qubit is inevitably coupled to the environ-
ment and suffer from dissipation or decoherence. These environment effects destroy the
coherence of a qubit or the entanglement between qubits, which is crucial to quantum
computation. Up to now, a true large scale quantum computer is still far from reach.
Optimal control theory applied to quantum systems is a powerful tool for calculating
the optimal control pulse to minimize /maximize a desired physical quantity. It has also

been applied to various systems to obtain control pulses for quantum gate operations



[10, 11, 12, 13]. In this work, we combine a master equation exactly derived by the
non-Markovian quantum state diffusion method with the optimal control theory to
construct single qubit Z-gates and identity gates.

The structure of this thesis is organized as follows: In Chapter 2, a thorough and de-
tailed derivation of the master equation by the non-Markovian quantum state diffusion
is given. A two-level dephasing model and a two-level dissipative model are treated.
In Chapter 3, we introduce an optimal control theory based on Krotov [14]. Two op-
timization algorithms, the global-improvement and the gradient-type are specified for
two different definitions of the cost functions. The exact master equation and the op-
timal control method are combined in Chapter 4 to construct single qubit gates. We
discuss cases involving a Lorentzian-like environment and those involving an Ohmic en-
vironment. An important concept of improvement is proposed and defined to quantify
the correction of error generated by the optimal control iteration for the open quantum
system. We found out the conditions where considerable improvements are achieved

and discuss the physics behind. Chapter 5 concludes the thesis.



Chapter 2

Non-Markovian Quantum State

Diffusion

2.1 Overview([1]

The dynamics of open quantum systems is very different from that of closed systems.
In closed systems, the dynamics is unitary and the evolution of the system state vec-
tor follows the Schrodinger equation; or equivalently, the evolution of system density

operator follows the Liouville-von Neumann equation,
ih@tpt = [H,pt], (2.1)

where p; is the density operator and H is the system Hamiltonian. However, in open
quantum system the dynamics is no longer unitary but dissipative (or dephasing), and

the dynamics is described by the master equation

pr = Lipt (2.2)



where L£; is the super-operator that acts on the reduced system density operator. In
almost all cases, the exact equation of Eq. (2.2) cannot be derived or solved analytically.
Even numerical simulation is often beyond today’s algorithms and computer capacities.

In the Markov limit, the general form of Eq. (2.2) simplifies and reduces to a master

equation of Lindblad form

d

a”t h H"’t Z([ mpt, L ]+[Lm,ptLin]), (2.3)

m

where H is the system’s Hamiltonian and the terms involve Lindblad operators L,
describe the effect of the environment in the Markov approximation. This approxima-
tion is often very useful because it is valid for many physically relevant situations and
because analytical or numerical solutions can be found.

In the past few decades, a breakthrough in solving the Markovian master equation,
Eq. (2.3), has been achieved through the discovery of stochastic unravelings of the
density operator dynamics. An unraveling is a stochastic Schrodinger equation for
stochastic vector states [i:(2*)), driven by a certain noise z; such that the density

operator is recovered by the ensemble mean of the solutions to the stochastic equation

= M[J¢ (=) (¥ ()],

Here M[---] denotes the ensemble mean value over the classical noise z; according to a
certain distribution functional.

In the case of Markovian master equations of Lindblad form Eq. (2.3), the unraveling
has been used extensively and provide useful insight into the dynamics of continuously
monitored quantum processes. In addition, the unraveling provide an efficient tool for
the numerical solution of master equation.[15, 16] It is thus desirable to extend the
powerful concept of stochastic unravelings to the more general case of non-Markovian

evolution. In the remainder of this chapter we will show how the non-Markovian quan-



tum state diffusion is formulated and give examples on some simple systems.

2.2 Formulation of Non-Markovian Quantum State
Diffusion

The derivation uses a coherent state basis for the environmental degrees of freedom[17,

18, 19]. We start from introducing some properties of coherent states [20].

2.2.1 Basic Properties of Coherent States

The coherent state |z) is the eigenstate of the annihilation operator a. Here some basic

properties of coherent states are reviewed.

Proposition 1: If a harmonic oscillator, with Hamiltonian H = hwa'a, has as its
initial state the coherent state zgy, then it remains in a coherent state for all times with
the oscillating complex amplitude z(t) = zpe =™t~ i.e. the time-dependent state of the

oscillator is given by

t

|W(t)) = e G/MHL |5) = emioalal | z0) = |00 ) = |2(8)). (2.4)

Proof. We show that |¥(t)) is the eigenstate of a with eigenvalue «(t):

alU(t)) = ae | z)
e—iwaTat(eiwaTatae—iwaTat)

|20)

. (efiwtz())(efiwaTat ‘ZO>)

= 2(O)[v(@).



Proposition 2: The coherent state

s are minimum uncertainty states: for a mechan-

ical oscillator with position and momentum operators ¢ and p, respectively,

AgAp=1/{(q

—@P G BB = h

p

where the averages are taken with respect to a coherent state.

Proof.
h
e t

1 2mw (a+al),

h
p=—iy) o (a—a)

2
Then, for an oscillator in the state |z),
A a . 2
((G—@)?) = ()@

2mw

h

2mw

h

2mw

h

2mw’

(2] (aa’ —ala) [2) + (= +2")*] —

A

q

>2

A

q

(2] (a®+aa’ +a'a+a?)|z) —(
>2

(zl[a,al]|2)

where we assume that the state |z) is normalized. Similarly,

Thus,




Proposition 3 A normalized coherent state can be expanded in terms of the Fock

states |n), n=0,1,2,..., as

2) = 3 3 j% In). (2.6)

n=0

Proof. We write

=3 caln).,
n=0

and substitute this expansion into. Using a|n) =+/n|n — 1), this gives the relationship

o0 [0.9]
Y epVnln—1)=2> cyln).
n=1 n=0

Multiplying on the left by m and using the orthogonality of the Fock states, we have

00 00
Z Cn\/ﬁém,n—l =z Z Cn(sm,na
n=1 n=0

or

Cm+1Vm+1=zcy,.

Thus,

cp is determined by the normalization condition («|a) = 1:

) 00 ¥ M
fala) = laf 32 Z=tnlm)
o) 2n
s T
- ’00’ Z_:O n'
= Jeo|2e.



Thus,

1,12
—3l|z
cp=¢€ 2‘ ‘,

where the arbitrary phase has been chosen so that ¢ is real.

Proposition 4 The coherent states are not orthogonal; the overlap of the states |z)
and |C) is given by
2
[(21¢) [ = eI, (2.7)

Note that |z) and |¢) are approzimately orthogonal when |z — (|? becomes large.

Proof. Using Proposition 3,

(z|¢) = o~ 3l21% o= 31¢17 i ﬂwm

n,m=0 nlm!

= e_%|z|2e_%‘4|2 i (z"¢)"

= n!
= el emaldPere, (2.8)

Then

1) )2 = e lePemleP e e

Proposition 5 The coherent states are complete:

1/d2z |2) (z| =1, (2.9)

™

the integration being taken over the entire complex plane.

Proof. From Prop. 3

L@l =1 e S Z
— ZI\Z Zl = — zZe n m
T T vnlm! ’

n,m=0



or, in polar coordinates,

1 1 oo 2m )
- / d?z |Z> < ‘ _ - Z | > < ‘ drefr2rn+m+1 / d(beil(nim)(i’,
™ 7T 0

nlm

where z = re'®. The integration over ¢ gives zero unless n is equal to m.

1 00 00
/d22’2> <Z’:22 |n> <n’/ dre_TQ?"an.
T 0

|
n=0 n:

Thus,

After integrating by parts n times,

o0

i/d%p)@;:gi'” il =2 in) (2.10)

The final step follows from the completeness of the Fock states.

Proposition 6  The coherent states can be generated from the vacuum state by the

action of the certain operator a:

12) = e~2l ez’ |0y, (2.11)

Proof. Using a'|n) = v/n+1|n+1), we have

o n
emtlPexa 0y = 2l S 24t g)

This is the expression for the Fock state expansion of the coherent state |z).



2.2.2 Bargmann States

We define a special state called the Bargmann state,
T
[[2a) = €2940) (2.12)
which by Eq. (2.11) is just the unnormalized coherent state.

2.2.3 Open Quantum Systems

In the case of an open quantum system. The total system can be divided into the
system and the environment. If we consider the environment to be a bosonic oscillator

bath, the total Hamiltonian can be written as,

Hiot = H + Z(QT\LGT\ + QALTGA) + wa;%
A A

where H is the system Hamiltonian, L the coupling operator, and gy and w) are the
coupling constant and frequency for each oscillator. a) and ays satisfy the canonical

commutation relation,

[ax,ax] =6y

For convenience, we set h = 1. In the interaction picture,

iHpatnt —iHpant
Hiot(t) = e"beth? Hygre ™" 7Path? — Hyaep

= H+ Z(gj‘\Laiew/\t + gaLTaye ™) + Zw,\air\a)\,
A A

where we have used the identity

eiHbathtaAe_iHbatht — a)\e_iwkt7

eiHbathta.Le_iHbatht — a;e_iw)\t_

10



Short proof.
Let

. , . 1 . + .4 > +
S(t) = eszathta/\e—szatht _ ezEAwAa/\a,\ta)\e—zZ)\wAa)\a)\t _ ezwa)\axtaAe—zw,\aAaAt’

ds

% = _iw>\8<t)7

— 5(t) = 5(0)e A = grem N,

2.2.4 Stochastic Schrodinger Equation

Schrodinger Equation for the Total System (system-+tenvironment at zero

temperature)

The equation describing the dynamics of the total system is the Schrodinger equation,
10 | W) = Hiot(t) |Wy), (2.13)
with the initial condition,

[Wo) = [10) [01) [02) -+ [0x) -~ -, (2.14)

which indicates that the system is in the initial state |¢p) and the environment is at
zero temperature with no excitation in the oscillator states.
We go on to show that the total system state |¥;) can be written as the raveling of

the stochastic systems state and the Bragmann states

22’ 2
W) = [ e ) 2.

11



We introduce the following notations,

2= d%2- - d?2y - -,

122 =i |2a]?,

HZ>:HZ1>®Hz2>®---®H2A>®....

First, U; can be decomposed into the following expansion
Env
[@e) = D Ciyl65) ® | 05™) -
ij

Using the resolution of identity, Eq. (2.10), one obtains

‘Ift> = \Ijt>

d?z | p

=[St )

2 2

= ZC’ij/dﬂzeM ¢§>HZ><ZH¢3EHV>
i

=y [ el
ij

d?z 2
_ —|z] b ldS
/ - e Eij Oljbj|¢z> ’z>,

I

where b; = <z H(b}EnV> and 2,5 Cy50; |#7) = [¢¢(2*)). Thus

22 2
W)= [ e ) o).

Also note that,
(2]10) = 3 Ciy 69) = lun(=")).
ij

12

(2.15)



Following Eq. (2.13), we have
10 (2] W) = (2l Hiot (1) [4)

iont O
Orn(27)) = =l [ghu(" _ZLZQAZ* Ay (2 —Z’Lngxe_WtaizA e (2")),
X
(2.16)

where we have made use of the identities

axl|za) = 2 [12a) (zallal = 25 (2l
—

af 2a) = 5% ll2a).- (z[lax = % (2all-

Defining the random variable and the correlation function

P —ZZg* fet, (2.17)

c(t—s) Z|g | e~ A(t=s) (2.18)

a_/daza
0z% N 025 0z%

and using the chain rule

one can rewrite Eq. (2.16) as

01l = i [0n(=") + Laf [ () — L1 [ dselt=9) ). (219)

Equation (2.19) is the non-Markovian stochastic Schrodinger equation. It is a stochastic
equation since it depends on a stochastic process zs. The dynamics of the system
can be described by quantum trajectory derived from this equation or by the master

equation, where the reduced density operator can be recovered by ensemble averaging

13



the stochastic state vector ¢ (z*).

pr =T [Uy) (Uy]

22
= [ 31 el [0

‘ 2

22
= [ S ) )
= Ml (")) ()] (2.20)

For this expression, Eq. (2.20), we regard the coherent state variables z as classi-
cal stochastic variables with Gaussian distribution. A simple calculation shows that
the stochastic process defined as Eq. (2.17) are realizations of the colored Gaussian
processes:

M [z] = M [2e25] = 0, M[ze25] = ¢(t, s). (2.21)

Initial State Consistency

[94(2"))|1=0 = ([ ¥o)
= |t0) (2[10) = [0) - (2.22)

This result follows directly from Proposition 3 in Sec. 2.2.1. At the initial time ¢ =0,
the environmental effect does not come into play, so the initial system state is |tg)
regardless of the environment. |¢;(2%))|,_q = [%0) holds for all configurations of z. The
initial state is consistent with 2.14 and the reason that the environment initial state

corresponds to vacuum state is justified.

14



2.2.5 Convolution-less Formulation of Non-Markovian Quan-

tum Trajectories
Stochastic Propagator and O-operator

The last term of Eq. (2.16) depends on the history of the random variable z; and thus
it is in general difficult to manipulate this equation. In certain cases, we can change
it into a time-convolutionless form. First, consider Eq. (2.13) and the initial state Eq.
(2.14) and also

W) = Ut |Wo). (2.23)

So

[96(27)) = (z[Ut] ¢0) 0)
= Gi(2%) [tho) , (2.24)

where G¢(z*) = (2|U| 0) is the stochastic propagator.

Taking the functional derivative of Eq. (2.24) with respect to zs, we obtain

] G () (=)
= O(t,5,2") (). (2.25)

where O(t,s,z*) = {5 -Gy(z )} Gy 1(2*) is the O-operator. Substituting this into Eq.

(2.16), then we have the time-convolutionless stochastic equation
O |n(2)) = (—iH + Lz — L1O(t, 2%) ) (7)), (2.26)

where

O(t,z*)z/o dsc(t—s)O(t,s, z").

15



Consistency Condition

The O-operator equation can be obtained by the following consistency condition

o D) _ 0 51 ). (2.27)

* *
0z} 0z}

Combining Eq. (2.27) with Eq. (2.26), we get the following O-operator equation

Té@(t,z*) .

0 0(t,s,2") = {—iH%—LzZ‘ - LTO(t,z*),O(t,s,z*)} —L e

Initial Condition

The initial condition of O can be obtained by taking the Markov limit of the non-
Markovian stochastic Schrodinger equation. At the Markov limit, the correlation is

o-correlated

c(t—s)= %5(1&—3).

So Eq. (2.19) becomes

0uva(=")) = —iH (")) + Lz (")) — S LT ( ()

t_g) . (2.28)

Compare Eq. (2.28) with the Markovian quantum state diffusion equation[16]
Orlun(2") = —iH [$u(2)) + Lt [n(2")) — 5 LI L lun(2")

We conclude that
)

*
0z}

[0e(z7))] = Lle(27)) (2.29)

16



2.3 Spin-% Examples

In this section we use spin—% examples to illustrate general methods to solve the non-

Markovian QSD equations Eq. (2.19) and Eq. (2.26). These solutions are generally
numerical, which illustrate certain features unknown in the Markov theory. Throughout

this section & denotes the Pauli matrices.

2.3.1 Measurement-like Interaction (Pure Dephasing Model)

Consider a simple model in which H = (wy/2)o,, L = Ao, with X being a real number
parametrizing the strength of the interaction. The harmonic oscillator environment is
characterized by its correlation function «(t —s) which is left arbitrary. For this model

the stochastic Schrodinger equation reads

t
(=) = i [0z + o (=) = [ dsalt=s) 2= (). (230)

The corresponding O-operator equation obeys

5O(t, %)

*
0z}

0:0(t,s,2") = [—iH—kazz: —UZO(t,z*),O(t,s,z*)} -0, . (2.31)

We can immediately infer that the ansatz O(t,s,z) = Ao, satisfy Eq. (2.31) and the
initial condition Eq. (2.29). The O-operator is equal to the coupling operator due to
the fact that [H,L] =0 and L = LT. In other cases where the system Hamiltonian does
not commute with the coupling operator or the coupling operator is not Hermitian,
there would be complications.

So the stochastic Schrodinger equation becomes

t
O | (27)) = (—z’u;()az +Aoyzf — )\2/0 dsc(t — s)) [e(27)) . (2.32)
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c1(t)
Cg(t)

[¥e(27)) =

Then form 2.32 we get the equations of ¢;(t) and ca(t)

1= —%ci+ \zfep — N2 ftc(t — s)dscq,
? 0 (2.33)
Co = %02 +—Azfea— A2 fg c(t —s)dscs.
Equation (2.33) can be solved straightforwardly to yield
c1(t) = c1(0)exp [—% + )\fg ZEds — N2 fg dv [ dsc(v— 3)} :
(2.34)

co(t) = c2(0) exp [% - )\fg Zids — \? fg dv [, dsc(v— s)} :
The ensemble average of the stochastic vector recovers the density operator

=Ml (=) )= | |,
C1C2 (209
M[erct] = |er(0)* M {exp (/\ fg ds (2% +z5)>} exp (—)\QF(t)) :
M |ciea] = ¢5(0)e2(0)M {exp ()\ fg ds(zs — z;‘)ﬂ exp (iwot — )\QF(t)> :

M{e1c3] = e1(0)c3(0)M {exp (/\ fg ds(z} — zs))} exp (—z’wot - /\2F(t)) :

M [eacs] = [ea(0) M [exp (= [y ds (25 +22) ) | exp (A2 F (1)),

18



where F(t fo dv [y ds(c(v—s)+c*(v—s)). Making use of the identity[21]

M%mp<43wu«9%+g@w9)]
::exr>:/gtdznlgtds<f<v>c*<v——s>g<s>>]

ﬁm]hj%svavﬂ )+ £)els = 0)a0)|

ﬂw/m/% o(5) + F()e" (0 mmk (235)

where we used ¢*(s —t) = c¢(t —s) from Eq. (2.18) to get the second line in the above

equation, we obtain

M {exp (i)\ fg ds(zF+ zs)ﬂ = exp {/\2 fg dv [y ds(c(v—s)+c*(v— 3))] = exp ()\QF(t)) :

M {exp (i)\ fg ds(zF — zs))] = exp [—)\2 fg dv [y ds(c(v—s)+c*(v— s))} =exp (—)\QF(t)) .

So

= le1(0)) c1(0)c5(0) exp (—iwot - 2)\2F(t)) )
;=

c(0)ca(0) exp (iwot — 2)\2F(t)> le2(0)[?
Pll(o) p12(0) (—iWQt — 2)\2F(t)> )

(2.36)
p21(0) exp (iwot — 2)\2F(t)) p22(0)

Taking the time derivative of Eq. (2.36), we obtain the exact non-Markovian master

equation
)\2

2/0 ds(c(t—s)+c"(t—s))[oz, [0z, p]] -

.Wo

pr = _Z?[Umpt] -
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2.3.2 Dissipative Model
Master Equation

The model considered in this subsection is a simple example with a non-Hermitian cou-

pling operator L. Again the system Hamiltonian H = “0, but the coupling operator

L=Xo_=3\o,— ioy) describing spin relaxation. The total Hamiltonian reads
wo %
Hioy = ?Uz‘l’/\z (gka_a£+gk0+ak) +Zwka2ak- (2.37)
k k

Hereafter A will be absorbed into g; and make A\ again the summation index.

wo %
Hiot = 70z+2(9>\0—a1+9>\0+a/\) —|—Zw,\a;a)\. (2.38)
A A

We try an ansatz of the form

P — ft,s)o- ) (239
or namely,
O(t,s,2") = f(t,s)o— (2.40)

with f(¢,s) being a function to be determined.

The consistency condition Eq. (2.27) of the ansatz Eq. (2.40) leads to the condition

on f(t,s):

0F(18)o (") = | =i~ Flt)oso—. f(t.5)o- | [un())
= fiwo+ (1)) )0 [4(=") (2:41)

where



Hence, if o_ |1¢(2*)) #0, f(t,s) must satisfy
01 (t,5) = [iwo + F(D] £(t,5) (2.42)

along with the initial condition f(s,s) = 1.
Now we go on to derive the master equation. With the ansatz Eq. (2.40), the

stochastic Schrodinger of this model reads

t
OHJin(=") = =0 (")) 2 () = [ dselt ) f(ts)o- (=)

= (-0, + 50 —010 Flt >) n(2%)) (243)
Let
=] |,
Cc2

and we get the differential equations for ¢; and ca:

1 =—1%cy — F(t)cl,
? (2.44)

Co =10 5 0co + 2407

Solving Eq. (2.44) we have:

c1(t) = c1(0)exp [—i%t - fot dSF(Sﬂ ’

cot) = c1(0)ei 2t fg duzy, exp { iwou— [y F ds} +e(0)et 2.

Recovering the density matrix by ensemble averaging the stochastic state vector, we

obtain

Mleictl Mlejch
M) ey = | A Mladh )
Mcaci] Mlcacs]
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Mlcicf] = p11(0 exp( fo s)+ F*( )]ds) :
M e1¢3] = p12(0) exp <—iw0t— ng(S)dS) :

M [eaci] = p21(0) exp (zwot — fo F*(s ds)

M [eacs] =1—p11(0 exp( fo s)+ F*( )]ds),

where the ensemble means of the random variable Eq. (2.21) have been used. Therefore

the density matrix is

p11(0 eXp( fO s)+ F*(s)]ds ) plz(O)eXp( zwot—fo ds)

Pt =
p21(0) exp (zwot—fo F*(s ds) 1—p11(0 exp( fO s)+ F*(s)]ds )
(2.45)
Taking the time derivative of Eq. (2.45) we get the master equation
P (F'(t) + £ (1) pra(t)  (—iwo — F(2)) p12(t)
;=
(two — (1)) p21(t)  (F(t)+F*(t)) pra(t)
=Sl (510 + 7)) (- = g lsom )+ (T Y o,
(2.46)

Equation (2.46) is the master equation for the dissipative system. From Eq. (2.42),

function F'(¢ fo dsc(t,s) f(t,s) satisfies the

t
F(t) =c(t,t)f(t,t) +/0 ds{0¢[c(t,s)] f(t,s)+c(t,s)0:f(t,s)} (2.47)

t
:c(t,t)—l—/o dsdy [c(t, )] f(t,8) +iwgF(t) + F2(t)

with the initial condition

F(0) =0.

The bath correlation function c¢(t,s) is left general here without any assumption.
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Arbitrary Correlation Function

In the above, we have not assumed the form of the bath correlation function. Suppose
a bath correlation function a(t,s) can be expressed as a sum of exponential functions

with complex parameters p;’s and g;’s.

J

c(t,s) = ijeqj(t_s) = ch (t,s),
J

— F(t)z/o dsc(t—s)f(t,s):Z/O dsc;(t,s)f(t,s) =D Fj(t).

J

Then Eq. (2.47) becomes simultaneous equations of Fj(t) with

¢
O F;(t) = ¢j(t,t) f(t,1) +/O dsOg[cj(t,s) f(t,s)]

=Dj +/0 ds{gjcj(t,5)f(t,5) +cj(t,s) [iwot + F ()] f(t,5)}

=pj+ Fj(t) |gj+iwo+ > Fi(t) | + F (1) (2.48)
k#j
with the initial condition
Fj(O) =0.

F;(t)’s can be calculated numerically and thus we can have F'(¢) by summing the F}(t)’s.

This result implies that if a given correlation function of arbitrary shape can be fit by
complex exponential functions to arbitrary precision, we can take the fitting functions
as Fj;(t)’s and calculate the dynamics of the open system associated with such bath
correlation function. In general, the error is lowered as we include more fitting terms,

but at the same time, the numerical computation also becomes more expensive.
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Exponential Decaying Correlation Function (Lorentzian-like Spectral Den-
sity)

In the later chapters we often adopt the following phenomenological bath environment

correlation function

q(t—s)= a%e_ﬂt_‘s'_m(t_s). (2.49)

This exponential decaying correlation function corresponds to a Lorentzian spectral
density when € is sufficiently larger than ~. (The reader may refer to Appendix B for
a detailed description.) « being a constant characterizes the coupling strength of the

1is the finite environmental memory time scale and

system and the environment. v~
Markov case emerges in the limit v — oo. €2 is the central frequency of the environment
spectrum distribution.

With the correlation in Eq. (2.49), the differential equation of F(t) from Eq. (2.48)
becomes

OF(t) = —7F(t) +i(wo— Q+e(t)) F(t) + F(t) + % (2.50)
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Chapter 3

Optimal Control Theory

3.1 Overview

Optimal control theory is an extension of variational calculus which is a mathematical
optimization method for deriving control policies. In the field of science and technol-
ogy, the physical system we are interested in often allows some tunable parameters
that are crucial to the system dynamics; some external control fields can be applied to
increase the controllability of the system. This controllable system can then be con-
trolled to attain a certain goal such as best performance, least energy consumption, or
best fidelity in final state control. An objective functional is defined to quantify how
good this goal is fulfilled. Optimal control theory determines the control policy that
maximizes/minimizes the objective functional.

Various optimal control theories have been proposed in the last few decades [22, 23].
In this chapter, we introduce methods based on the use of an equivalent representation
of the objective functional [14, 24]. A global improvement method and a gradient-type

method are studied. Their applications to open quantum systems are compared.
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3.2 Optimization Algorithm of a Global Method

3.2.1 Control Problem

Consider a state of some system which can be defined by v and is controlled by a

time-varying variable ¢(t), through the equation of motion®

U(t) = fi,et). (3.1)

The initial value of ¥, 1¥(0) = 1) is fixed. Given the trajectory ¢(t) and the control
€(t), we define a process w = (¢(t),€(t)) as a pair of histories satisfying Eq. (3.1). We

now define the objective functional on the process w:

T
Jlw] = F[o(T)] + / atFO (1), e(8)]. (3.2)

0
Here F[i(t)] and fO[1)(t),e(t)] are general functions that represent the dependence of
J on the final and intermediate time values of ¥. We aim to find a process w that

minimizes J. (A maximization problem is similar if we change the sign of J.)

3.2.2 Parameter function and the equivalent representation

To proceed we define a equivalent representation, L[y, e, ®|, of J[w] such that
L[ip,e, @] = J[i), €, (3.3)

T
Ly,e, @] ZG[@/)(T%T}—@(OW(O))—/O R[(t),€(t), t]dt, (3-4)

where ®(1,1) is a parameter function whose utility is to reduce the functional problem

of minimizing J{w] to a series of elementary problems of maximizing/minimizing some

!The state 1 (€) can in general be replaced by a vector 1/; (€) if there are more than one state

varibles (control variables). In that case Eq. (3.1) becomes 15 = f (J,ét). Multiplication of vector
variables should then be understood as a inner product.
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function of state and control.

G is the final-time contribution:
Glo(T)] = Fly(T)]+2(¥(T),T). (3.5)

R is the intermediate-time contribution:

0d

R[p(t),e(),t] = = [ (1), e(t)] + o TO®-f(W,et). (3.6)

The functions R and G are designed to separate out the dependence of L[, €, @] on the
final time and intermediate time.

It can be shown that for an aribtrary continuously differentiable scalar function
® and process w, the equivalence of L[y, e, ®] and J[i), €] holds. The derivation is as

follows:

Lw,®]

T
= GIY(T).T) - B (0,5(0) - /0 RE(t), e(t) 1)t

od

T T
= P+ o u)lf - [ =Pl 5 e fwen)a

9o D aw}dt

T
= P+ o)l - [ {-Prodon G5

0
T T
- F[¢(T)]+<I>(t,z/z(t))|g—/o ‘g’dw/o FOlo(t), et)]
T
_ R+ /0 FORAE).e(t)]
Jw].

(3.7)

Therefore, minimizing J[w]| is equivalent to minimizing L{w,®] for any ® which can be

achieved by separately minimizing G[¢)(T"),T] and maximizing R[¢(t),€(t),t].
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It is convenient to define the function H through the following relation:

R(t,W,e)=H (t,w,e, W) 0

where

H(twdjveap) = pf(t,@/},(f) - fo(t,¢7€).

Here p = 0®/0. This extra parameterization emphasizes that ¢ and 0®/0v should

be treated as independent variables, with respect to H.

3.2.3 An iterative algorithm

We now turn to our main goal and describe the Krotov iterative method for finding
a sequence of process {ws} which monotonically decrease the value of the objective
functional J[w]. The central idea is that L[, €, @] coincide with the objective functional
J[1, €] regardless of the choice of the function ®(1),t). So we may construct ® such that
our current estimate of the state history maximizes L[y, e, ®]. This makes the current
state history the worst of all possible histories given such ®. We then find a new
estimate of control €(¢) which minimizes the objective L[, e, ®] with respect to its
explicit dependence on control €(t). The effect of €(t) on the objecitve thorugh the
change of 1(t) can only improve it.

We begin with an arbitrary initial guess of control history e0) (t) and intergrate Eq.
(3.1) to get the corresponding state trajectory ¥(%)(t), which constitute together an

initial process w(®,

1. Construct the function ®(t,1)) such that the objective functional is a maximum

with respect to state trajecotry ¢ (t) at the process w®). This is equivalent to the
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following tow conditions:

R(tvO@), %) = mlgnR(t,w(t),e(O)(t)) (3.8)
G(vf) = maxGr). (3.9)

The @ function we construct here makes our current state trajectory worst in min-
imizing the objective functional (maximizing R, minimizing G). Any change in v
brought about by a new choice of control €(¢) will only improve the minimization

of Jw].

. For the ®(t,1(t)) constructed above, we find a new control that maximizes H (t, e ( g—i))

and denote it by:

ét,) = argmgxﬂ<t’¢,67(gi)>

= argmng(t,w(t),e(t)) (3.10)

The second line follows since R and H is only deferent by %—? that is independent
of €. Note that the control €(¢,7) is still a function of ¢; i.e., the control é(t)
should comply with the equation of motion Eq. (3.1) . This freedom will be

removed in the next step.

. Requiring that €(¢,1) and 1(t) be consistent with each other through the equation
of motion. Equation (3.1) together with the equation ¢ = é(¢,7) provide two
equations for the two unknown e and v for the next iteration. Sovling these

equations self-consistenetly yields the new process w.

. It is now gauranteed that the minimization of the objective has been improved
such that J[w(M] < J[w®]. This completes the current iteration. The new process
w® becomes a starting point for the next iteration. The above operations are

repeated to achieve further decrease in the objective.
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We proceed to prove that indeed J[w™] < J[w(©)].

Jw®) = JwV] = Lw®;e] - L{w);e]

= () -o(#)+ [ (R0 0)
0
—R(t,0(),e0(t)) }dt

= A1+Ay+As, (3.11)
where
Ay :G<¢$)) —G<¢(T1)), (3.12)
Ay = /0 ' {R(t,pM(1),eD (1) = R(t,0 M), ) }dt, (3.13)
Ag = /0 ! {R(t,pM(1), V(1)) = R (£,0 0 (t),e0(t)) } dt. (3.14)

The non-negativeness of Az and A; follow from conditions Egs. (3.8) and (3.9). And

Eq. (3.10) ensures the non-negativeness of Ay. This completes the proof.

3.2.4 Construction of the parameter function and the improv-
ing algorithm
3.2.4.1 The sufficient conditions for local extremum

The main challenge of implementing the above iterative method lies in the construction
of the parameter function ® that satisfies the conditions Egs. (3.8) and (3.9). It is

proposed that ® can be constructed in the following form?

(t,1) = xi()0i + 03 () (i — 017) (1 = 03) = xa(OWs + 03 () A Ay, (3.15)

2For clarity, an indexed notation of vector components is adopted here. 1y = fj (t,,€), k=1,n.
Here n is the dimension of 1. Summation convention is implied whenever suitable.

30



where x;(t) = 8?bi(b(t’w)‘¢(0) = a?mq)(t,w(o)). 0i;(t) is a matrix function to be deter-
mined.

A necessary condition for an extremum of R and G at w(® = (1)) )Y is the

existence of a stationary point. That is:

G?biR(t’¢’e) o = 0, (3.16)
P @0
Eq. (3.16) implies that
o T80 " mmt,w,ew e (10,0 = 5o ) + 5 P .
= 82)@- H(t, 0@, % ) + 82;2;2;0)) Su(t 0, D)+ gtaq)(;;;f(o))
_ a?biH(t’@”(O)’e(O)’X)*(%a; ;)W
— S H(E 00+ X (3.18)

Eq. (3.17) implies that

OG(T,wNT)) _ 9F(wA(T)) N 00 (T,vNT)) _ oF(NT))

To make the condition sufficient for a relative minimum with respect to v of the function

R(t,1,€) at w©) | the quadratic form should be non-negative

O’R
2p , ) (0. (0)
d°R = 39005 (Vi =) (W5 Y, )

=Avy; =Av; w(©
02 R(t, (), e0)
0Y;0;

AYiAy;. (3.20)
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O*R(t, v, ") B 'afk(w(o),e(o),t) Af(1© €0 1)

wide; M g, W oy,
+X P fr(, D) doi; 9 fo(p @, €0 )
M 000w dt D 00;

To ensure that the quadratic form Eq. (3.20) be nonnegative, we set

O R(t, 0 )y
B0,

O R(t, ) )y
0 O

where § = {d;(t)} is a positve vector function.

(3.21)

(3.22)

Similarly, the sufficient condition for a relative minimum of the function G(T,,¢€)

at w(® with respect to ¢ is ensured by the nonnegativeness of:

82G(T,w(0) (T))
200 — _ A

G (T,0O(T))  *F (¢O(T))
OO OOy

+ Oij (T)
It is sufficient to set

0°G (T,4O(T))
N OO

0°G (T, O(T))
OO

where o = {o;} is a positive vector.

(3.23)

(3.24)

(3.25)

By Egs. (3.22) and (3.25), the matrix o is determined by solving a linear differential

equation with an boundary condition at the right endpoint.
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3.2.4.2 Realization of the iterative process

The improvement algorithm reduces to the following sequence of operations:

1. Choose an admissible control history e(© (t) and determine the state trajectory
O (t) by integrating Eq. (3.1) along with the initial condition of the state.

Calculate the value of J[w(©)].

2. Integrate eq. (3.18) along with the boundary condition (3.19) to determine the

function x(%).

3. For convenience, set all the functions d;(t) equal to a non-negative constant § and

all the functions «;(t) to a non-negative constant . Determine the matrix o;(t)

by Egs. (3.22) and (3.25).

4. For the parameter function in accordance with Eq. (3.15) and the matrix function

0i;(t) found in the previous step, we found a new control &(¢,7)) by maximizing

R(t,1,€).

5. Find the state trajectory 1 (t) by solving the equation of motion Eq. (3.1) and the
control synthesis equation € = €(¢,v) self-consistently. Thus find the new process
wl) = (w(l),e(l)). Calculate the objective functional with respect to this new

process J[wM)].

6. Start a new iteration with the new process w!) and repeat the iteration. If the

functional does not improve, increase § and « and redo steps 3-5.

Note that the above described algorithm does not sufficiently realize the statement
that an absolute minimum of R(t,w,e(o)) and an absolute maximum G(T,¢(T)) are
attained on the trajectory ¥(9), but rather relative extrema are attained. However,
with a suitable choice of § and «, this algorithm is sufficient to improve the objective

functional after every iteration. The drawback is that it ensures only the finding of the
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local minimal paths. It is therefore desirable to carry out the iterations with various

initial guesses and select the best solution among those obtained.

3.2.5 Reduction of the parameter function

In this section we consider a couple of special problems where the the parameter func-
tion, Eq. (3.15), can be simplified or reduced to a first-order function in state.
3.2.5.1 Linear systems with concave criterion

Suppose the equation of motion is linear in state (summation convention)

fit,,€) = a;j(t,e)j +bi(t,u) i=1,n. (3.26)

The intermediate cost function f°(¢,€,9)) and the final time cost F(1)(T)) are concave

with respect to 1
O*F(y)
O (T)?

PLet)

o0 < <0. (3.27)

Given the above conditions, we can assign the parameter function ®(¢,v) in the form

(t,9) = xi(t)i,

and we have

Rt e) = xi(t)bi(t,e)+ [xi(t)aij(t.€)]v; — fO(t.e,),
GW(T)) = xi(T)i—F((T)).

It is obvious that the function R(t,1),¢€) is convex with respect to ¢ and G(¢(T)) is
concave with respect to ¢(T"), so Egs. (3.16) and (3.17) are sufficient for local minimum

and maximum respectively on the trajectory (?). Thus in this case, a first-order
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parameter function ®(¢,1)) suffice and we can get away with the trouble of determining

the matrix function o;(t).

3.2.5.2 Linear systems with quadratic criterion

Suppose the equation is linear in state

fi(t,@b,e) = aij(t,e)wj +bi(t,u) 1=1,n.

The intermediate cost function fY(t,e,9)) and the final time cost F(¥(T)) are quadratic

but in general not concave

f()(taEvl/J) - a()(tve)wz+b0(t76)¢+co(t76)7
F((T) = mw*+wy.

The parameter function, in this case, should be assigned as Eq. (3.15) and the functions
xi(t) and o0;;(t) should be found by solving their corresponding differential equations.
But there exists a favorable fact that since the functions R(t,1,¢) and G(¢(T)) are
quadratic, Egs. (3.22) and (3.25) always hold as long as the tuning parameters o and ¢

are non-negative. There is no need to renew the value of a and ¢ after every iteration.

3.3 Optimization Algorithm of a gradient method

Here we describe a method of local improvement in terms of the parameter function ®.

0)

The updated process w!) should be sufficiently close to the original process w(® such

that the sign of the difference of the objective functional is the same as its linear part:

SO _ 5p_ 9G@O(T) [t (9R OR
o] = o1, = SR ) /Odt<aw6¢(t)+a€5(t)>, (3.28)
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where 6 = 1) — (), §e = e — €(0). We require that

0

%R(t,w(o)(t),e(o)(t)) = 0, (3.29)
9
%G(W)(T)) = 0. (3:30)

These equations are satisfied by the parameter function in the form ®(¢,v) = x(t)y
where x(t) is determined by Egs. (3.29) and (3.30). Then

T R
571w ] = 5L(w® &) = — / atoelt). (3.31)
0 €

If there exists a function d¢(t) such that the integrand in Eq. (3.31) is negative, we can

construct an iterative process to improve the objective functional:

1. Find the trajectory w(o) () by intergrating the equation of motion along with the

initial condition using the control €.

2. Find x(t) by Egs. (3.29) and (3.30) which determines the parameter function
O(t,9) = x ().

3. Set a variation of the control de(t) which makes the integrand in Eq. (3.31)

negative.

4. Solve for €M (t) and (M (t) self-consistently by the control update equation e =
€ 4 \je along with the equation of motion. \ is an arbitrary small positive

parameter such that J[w™M] < J[w(®)] holds.

One of the weak points of this method is the local character of improvement, which is
guaranteed only for small variations of the control €(¢). This deficiency is avoided in

the global improving method introduced previously.
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3.4 Application of OCT to Open Quantum Systems

We now pave the way for applying optimal control theory to constructing quantum gates
which will be discussed thoroughly in the next chapter. In open quantum mechanies, the
state is described by a density matrix (ensemble of states). The dynamics is described

by the master equation along with its initial condition

pit) = Lp(t),

plt=0) = p, (3.32)

where L is a superoperator and p; is the density matrix. Here we make a digression
by introducing the “vec” operation which transforms a superoperator into an operator

and an operator into a column vector:

P11

vee(p) = | ' [ == 1o,

P12

P22

vec(AXB) = (BT ®A) vec(X),
Tr(ATB) = vec(A)Tvec(B).

So Eq. (3.32) can be put in the propagator form

G(t) = L°G(1), (3.33)

Gt=0) = I. (3.34)
Here G(t) is the propagator of pf. L is defined such that vec (Lp) = Lp°.
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The vec operation again transforms the propagator G(t) into a vector. After the

operation Eq. (3.33) becomes

G()) = (1©L)|G(1)) = F(1.G.¢). (3.35)

In the state dependent gate control where the density matrix p is irrelevant, we treat
|G(t))) as the state to be controlled and Eq. (3.35) is its equation of motion. Depending
on the actual physical system, we are able to insert a control degree of freedom in the
evolution operator £, so £ should be a function of independent variables ¢ and e,
L(t,e). In the following we discuss two different definition of cost functions and their
corresponding optimal iterative processes. The readers may find detailed reasoning for

these definitions in Appendix B.

3.4.1 F(G(T)) first order in state

We may define the final-time cost function to be the fidelity multiplied by —1, such
that the minimization of the final time cost is equavilent to the maximization of the
fidelity
1 1
- T -
F(G(T)) = —Re (Tr[Ofg(T)]) = FRe(((01G(T))). (3.36)

where O is the “target” and N is the dimension of G (or O). And the intermediate cost

1) = — (e— )7, (3.37)

where S(t) is a shape function which also acts as a weighting (for reasons to be revealed
shortly).

The intermediate cost may be absurd at first glance but it is acutally quite useful
in deriving an explicit update rule of the control and in limiting the update rate.

These features would be revealed shortly. This problem belongs to the class that has
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been discussed in Sec. 3.2.5.1. where a firt-order parameter function is enough for

improvement. So we may assign the parameter function to be in the following form

o= ((x(t)|G(t))) +((G(1) Ix(t))) = 2Re (Tr [x ()G (¥)]) - (3.38)
And the H function reads

(e—&)

7= (e £19) +((g]0e ) - 5
_ 2Re(Tr[XTLCQ])—;w(e—a2. (3.39)

The differential equation along with its boundary equation, Egs. (3.18) and (3.19), for
x(t) s
) =(1eL) ), (3.40)

(T = =55 10) (3.41)

In step (4) in Sec 3.2.4.2, the new control is obtained by the necessary condition of a

relative maximum of R (or, equavilantly, H). That is

OH

O*H
rr 0, (3.43)

which yields
oL 1
t ey —
2Re (Tr [X(t) 5% QD 50 (e—€) =0, (3.44)
o*Le 1
t _

2Re (Tr [X(t) 5e2 g]) 30 <O0. (3.45)

Eq. (3.45) can be fulfilled by tunning the shape function S(t). If we set € to be the
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control before the iteration, e, then Eq. (3.44) becomes

€

e — e £ 25(1)Re (Tr [X(m 5850 gD . (3.46)

The new control is obtained by solving Eq. (3.46) and Eq. (3.35), the equation of
motion, consistently together with function x(¢) constructed from Egs. (3.40) and
(3.41).

3.4.2 F(G(T)) second order in state

In Appendix B, we have another definition of fidelity

1 ST {(0-6(1) (0 -G(T))} =1~ 5 ({0~ G(T) [0~ G(T))).

which is second order in G(T'). Define the final time cost F'(G(T")) to be Tr { |O—-G(T) |2} /2N,
so the minimization of the objective is in accordance with the maximization of the fi-
deltiy. A first-order parameter function no longer guarantees the monotonic convergence
in the global method since F'(G(T')) is not concave with respect to state. We turn to
the gradient method introduced in Sec. 3.3.

Note that there is no need for an intermediate cost in this formulation. The param-

eter function is first order in G(t)

= ((x(®)G(1))) +{((G(#) [x(1))) = 2Re (Tr[x ()G (1)]),

where x(t) satisfies Egs. (3.29) and (3.30) which in turn are

X)) = (1eL)x),

X(T) = 510G,
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Without the intermediate cost
H=((x|1oL£9)+{(G]1®L)|x)) = 2Re (Tr [x'£°G]).

In Sec. 3.3 we state that de is determined such that the quantity %R(t,g(o),e(o))ée be

)
€(0)

so for w) close enough to w(®, %R(t,g(o),e(o)) and de have the same sign.

positive. We may demand de to be

0

se= L R(1,6,69) = L1, x,G, ) = 2Re (Tr [x* oL

€

Oe Oe

The control update rule is then

L oL

€

e = 1 2)Re (Tr [X

S e

where A is chosen small enough such that the objective is improved. Solving Eq. (47)

self-consistently with the equation of motion yields the new process w),

3.5 Remarks

In this chapter two kinds of optimization formulation and algorithm are introduced.
The global improvement method has the advantage of producing macrosteps in the
functional values at every iteration, so it reduces dramatically the necessary amount of
calculation compared to the gradient method when the initial process w(® is far from
the local optimal process. However, the formulation of the global improvement method
is more complicated and a second-order parameter function is, in general, required.
Both methods ensures only the finding of a local optimal process, so it is necessary to
carry out the improving iterations with various initial guesses.

On applying optimal control theory to the open quantum systems, two definition of

final-time cost (fidelity) are studied. Apart from some subtle difference, the resulting
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update rules, Egs. (3.46) and (3.47), look almost identitcal. Though, the concept and

formulation behind these two equations is quite different.
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Chapter 4

Optimal Control of Quantum Gates

in Open Systems

4.1 Overview

Combining the exact master equation derived in Chapter 2 and the optimal control
theory described in Chapter 3, we are ready to construct the single-qubit quantum gates
in open quantum systems using the optimal control theory. In quantum computation,
an arbitrary single qubit gate can be built with successive operations of z-rotation and
x-rotation. For multi-qubit gates, CNOT-gates and single-qubit gates are considered
to be universal. That is, any multiple qubit gate can be obtained as a composition of
CNOT-gates and single-qubit gates [25].

In our work we focus on optimal controlling identity gates and z-gates. Identity gate
is not a logic gate employed in quantum computation but rather serves as a quantum
memory which stores the quantum state in a noisy environment for a certain period
of time. Its fidelity characterizes how good a qubit state is able to survive under the
influence of the environment.

We start with the dissipative system mentioned in Chapter 2 and with the exponen-
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tial decaying correlation function (Lorentzian-like spectral density). Systems with non
exponential decaying correlation functions are also considered. Here an environment

with an Ohmic spectral density is treated.

4.2 Method

4.2.1 Control problem

In our model, the transition frequency of the two-level system is assumed to be tunable

and is treated as the control parameter,

wo — wo +€(t) = wo(t). (4.1)

The master equation of a two level dissipative system with a time dependent tran-
sition frequency can be derived following the derivation introduced in Chapter 2. All

we have to do is to substitute wp(t) for wy in (2.46)

= p11(0 exp( fo s) + F*( )]ds) p12(0) exp (—ifgwo s ds—fOtF s)ds)
p21(0) exp (z fo wo(s fo F*(s ds) 1—p11(0 exp( f() s)+ F*(s)]ds ) 7
(42)

b= —(F@)+F*(t) p11(t) (—iwo(t) — F(t)) pr2(t) 7 (4.3)

(iwo(t) = F*(1)) p2r (1) (F () + F*(1)) pra(?)

where F(t fo dsc(t,s)f(t,s) as in Chapter 2.

Using the vec operation introduced in the last chapter, the above equation becomes

—(F(t)+ F* (1)) 0 0 0
i = ’ olt) = F7L0) ’ =L @)
0 0 (—iwo(t) — F(£)) 0
F(t)+ F*(t) 0 0 0
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If we write

pi =G (t)rp, (4.5)

where G(t) is the propagator. Then we get the equation of motion for G(t)

(4.6)

From Eq. (4.5) we see that the effect of the propagator can be viewed as a gate

operation.

4.2.2 Target

An arbitrary state operated by a z-gate is equivalent to a state vector operated by a

Pauli-z matrix,

10
oz |Y) = 1) (4.7)
0 -1
In density matrix form,
02|w> _>Uz|w> <w’0'z:<7zpaz- (4.8)

Put the above expression in column form:

1 0 0 O
0 -1 0 0
vec(o,poy) = (UZT ® O'Z) pf = p° (4.9)
0 0 —-10
0 0 0 1

So the matrix with diagonal elements (1,-1,-1,1) and otherwise zero is the target for
Z-gate control. Denote this target matrix by Oz, the optimal control theory is applied

such that the difference between G(t) and Oy is as small as possible.
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Similarly, for identity gate, we define

10 00
01 00
Or = , (4.10)
0 010
0 001
or the 7/8-gate
1 0 0 0
0 €T 0 0
Oz = (4.11)
8 - T
0 e'7 0
0 0 0 1
4.2.3 Gate error and control update
The following definition of gate error is adopted:
1 T
2NTr{(O— G(ty)) (0 —g(tf>)}, (4.12)

where t; is the final operation time. This error also serve as the objective which we
wish to minimize in the optimal control theory. For this objective, a gradient-type
optimization algorithm is applied, the control update rule being solving the following

two equations simultaneously,

e =¢ £ 2)Re (Tr [X‘L %

e® ). (4.13)

LG(t) = L(t,6)G(¢).

Here x(t) is the adjoint function defined in Chapter 3.
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4.2.4 Range of control parameter

Practically, the control parameter - in our case the transition frequency - must be
constrained in a certain range. An overwhelmingly large magnitude of control may yield
a good performance in a short time but may well be impossible to realize experimentally.
Sometimes the original system is destroyed well before the desired control strength is
reached. In our work, we constrain the control to range form |e(¢)| < wg, where wyq is
the original system frequency.

The simplest way is to set a range and manually “chop off” the control when it
exceeds the limit. Another way is to define the control parameter as a trigonometric

function of some angle 0(t)

e(t) = Asin (0(t)), (4.14)

and the update equation becomes

60— g0 +1Re{Tr [X«» t) %5

and

eW (1) = Asin(0* D (1)). (4.16)

Thus the control is constrained in the desired range |e| < A due to its functional nature.
A drawback of this setup is that the control parameter cannot update when the initial
guess is set right at the upper/lower limit, i.e., when cos (9(0)) =0. So we use these

two methods interchangeably.
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4.2.5 Initial guess

In the ideal case where there is no environment effect (closed system), identity gates
and Z-gates are easily achieved by rotation due to the system Hamiltonian proportional

to 0,. In this case the propagator is

1 0 0 0

0 eifgwo(s)ds 0 0
g(t) = .

0 0 e—zjo wo(s)ds ()

0 0 0 1

To build a identity gate, we demand fgwg(s)ds =nm, where n =0,2,4,.... A Z-gate
requires fg wo(s)ds = mm, where m = 1,3,5,.... In the case where the final time t; is

fixed, a naive design of control could be

wo(t) = wo +e(t) = pt': (4.17)

where p = n for identity gates and p =m for Z-gates. The control constructed this way
is a square-wave pulse whose duration is ¢; (initial time tg = 0). In open systems, if
the environment effect is not too overwhelming, the ideal closed system control pulse
is a good starting point for the optimization iteration and is taken as the initial guess.
Note that p should be chosen such that ¢(t) < A. In the following, A = wy if not stated

otherwise.

4.3 Results

In this section we present some results of constructing quantum gates using optimal
control. All the parameters are in units of the system transition frequency wg if not

stated explicitly.
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4.3.1 Lorentzian-like spectral density

The Lorentzian spectral density,
Di(w)=—"+—F5— (4.18)

yields the exponential decaying bath correlation function,

a(t—s) = /O del(w)e_i“(t_S)%a%exp[—’y]t—s]—zﬂ(t—s)], (4.19)

when the central frequency of the environment spectrum 2 is substantially larger than
the Lorentzian width v (Appendix A). In the following we consider the bath correlation
function in the form of Eq. (4.19) which corresponds to a “Lorentzian-like” spectral
density and disregard the condition where the approximation in Eq. (4.19) is valid.

The relevant parameters are the correlation strength o, the correlation time y~!

, and
the central frequency of the environment spectrum €2. Figure 4.1 shows the correlation

function under various conditions.

49



0.025 : :
—Re[c(t-s)] (y=1)
---Im[c (t-s)] (v=1)
0.02 —Re[c(t-s)] (v=5)
- - - Im[c(t-5)] (v=5)
0.015 8
0
L o001- .
<
0.005 .
0(.,_ et ==
S i
— | | | | | | | | |
0-00% 0.5 1 15 2 25 3 35 4 4.5 5

wo(t—s)

(a) Correlation function at 2 =1 for various values of ~.
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(b) Correlation function at v =1 for various values of .

Figure 4.1: Lorentzian-like correlation functionn plotted at various conditions. Here
a=0.01.

4.3.2 Identity gate

Figure 4.2 shows the gate error of identity gate control vs. operation time. High

fidelity gates with error < 10™% can be achieved for operation time longer than the

~Y
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Figure 4.2: Gate error of identity-gate control vs. operation time. Here the environment
central frequency coincides with the system transition frequency, i.e., = wy.

system decay time for moderate system decay parameters. The gate control is better
performed with weaker system-environment coupling strength (« small) and with larger
correlation time (v small).

Figure 4.3 shows plots of gate error vs. iteration number and a typical control
pulse. Note that the error vs. iteration profile demonstrates the monotonic converging
behavior of the optimization iteration. It also shows saturation of the error near an

optimal trajectory.

4.3.3 Improvement

An important question to be addressed is that, how much can the optimal control
algorithm improve the gate fidelity in an open quantum system, given that we take the
ideal closed system control pulse as our initial guess. Define the improvement to be

Er0)
Imp= lim !

Ay (4.20)
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Figure 4.3: The gate error vs. iteration profile and a typical control pulse for identity
gate control.

where Er(® denotes the gate error before the optimization iteration when the ideal
closed system control pulse is taken as the initial guess, and Er(™ is the gate error
after n rounds of optimization iteration. The improvement I'mp corresponds to the
possibility of improving the gate error in an open quantum system by the optimal
control theory. A large improvement indicates that optimal control theory is useful and
powerful in correcting the error caused by the environment effect. A small improvement,
however, shows that optimal control does not play an important role for the open system
and an ideal closed system optimal control pulse suffices.

Figure 4.4 shows the improvement vs. the operation time under various conditions.
It is obvious that for environment effects with a long correlation time (v =0.1), the
improvement can be up to an order. However, short time environment effects (y = 1)
can hardly be corrected. Also note that the improvement increases as the operation
time gets longer, this is due to the fact that the longer the operation time is, the better
that optimal control can come into play and correct the error. The overall coupling

strength a does not play a role in the improvement.
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Figure 4.4: Improvement vs. operation time with €2 = wg for various conditions.

4.3.4 Z-gate

In contrast to the identity-gate control where we wish the qubit state to maintain in
its initial state as long as possible, in Z-gate control we desire the operation to be
fast. Recall that the ideal closed-system pulse, which is our initial guess, and final time
should comply with Eq. (4.17). We choose the final time ¢; to be the shortest integer
of wy ! where a 7 rotation can be completed within the admissible control range. That
is, tf =2/wp and €(t) = m/2—1. The results are shown in Table 4.1. Figure 4.5 gives

the error vs. iteration profile and a typical control pulse shape.
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Table 4.1: Z-gate error under various conditions with a Lorentzian-like spectral den-
sity. The value before the arrow denotes the error generated form the ideal closed
system control pulse and the value after the arrow denotes the saturate error after the
optimization iterations.
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(a) Gate error vs. iteration number. (b) A typical control pulse for z-gate control, plotted

at a=0.1, y=0.1, and Q2 =5.

Figure 4.5: (a) Gate error vs. iteration profile and (b) a typical control pulse for Z-gate
control.

The results show similar trends with the identity gate control that the Z-gate con-

trol is better performed and has a smaller gate error when the environment effect is
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weak in the overall strength (a small ) or relatively non-Markovian (v small ). The
Z-gate operation time is short compared to the identity gate operation time, so the
improvement defined in Eq. (4.20) is small in the case where Q = wp. However, we
found that the improvement increases considerably if we set (2 = 5wg or €2 = 10wy.
Figure 4.6 shows the plot of the improvement of the Z-gate control under various
conditions. Apparently there is hardly any improvement when (2 is equal to the system
transition frequency. As the detuning (2 —wp) grows large, we observe great improve-
ment in the Z-gate control up to one to two order of magnitude. The increase in the
improvement is not monotonic. Note that in Fig. 4.6(b) and 4.6(c) the improvement
at v=0.1 and 2 = 10wy is less than that at v = 0.1 and 2 = bwy. Improvement is also
larger when the bath correlation time (7_1) is longer. The parameter o does not play

a role in the improvement.
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Figure 4.6: Improvement of Z-gate control in a Lorentzian-like environment under
various conditions. Here the values of o and ~ are in units of wy.
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4.4 Ohmic spectral density

In this section, we adopt the spectral density which is commonly used in modeling the
environment. The bosonic spectral density may be parametrized as

Do(w) = 2000w ~FwPe /e (4.21)

C

Here a, is a dimensionless coupling parameter (similar to the parameter a in the
Lorentzian-like spectral density but is dimensionless) and w,. is the cutoff frequency.

The parameter x determines the low-frequency behavior of D,(w). Couplings with

r <1 : sub-ohmic
r=1 : ohmic
xr>1 : super-ohmic

This classification has its origin in the analysis of the dissipative two-level system [26].

The correlation function is then expressed analytically as
m .
Colt — ) = / Do(w)e ™9 = 20, T (24 1) (1 +iwe(t — s)) @Y (4.22)
0

where I'(x) is the gamma function and I'(z) = (z —1)! when x is an positive integer. In
the following we focus on the Ohmic spectral density where x = 1 and vary the cutoff
we and coupling a,.

Figure 4.7 shows the corresponding correlation function. Note that this correlation

function is no longer exponential in time and a function fitting is needed.

o7



; Re[co(t—si], 0 =W,

- Im[co(t—s)], W=w,

—_— Re[co(t—s)], wC:Swoi

.- Im[co(t—s)], u)c=5w0

|
"0 0.5 1 15 2 25 3 3.5 4 4.5 5

w,(t-s)

Figure 4.7: Correlation function corresponding to an Ohmic spectral density with «, =
0.01 for various cutoff frequencies.

4.4.1 Identity gate

Figure 4.8 shows the gate error and improvement vs. operation time for various cutoff
frequencies. The gate control is performed with smaller cutoff frequencies and shorter
operation time. The relation between the gate error and the cutoff frequency could
be understood by inspecting the plot for the correlation function, Fig. 4.7. When
the environment spectral density has a higher cutoff frequency, the correlation time of
system-environment is shorter, and the environment effect becomes stronger in weight
at the beginning of the operation time. This is similar to the effect of small y~1 in the
Lorentzian-like case.

The improvement also increases along with the cutoff frequency and with the op-
eration time. Unlike the Lorentzian-like case, where improvement is large when the
environment effect is relatively non-Markovian (y small), in an Ohmic environment,
large improvement corresponds to cases where the environment effect is more Marko-

vian (w. large). We shall study this behavior further in the following sections.
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Figure 4.8: Plots of identity gate control for various cutoff frequencies, «, = 0.01.
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Table 4.2: Z-gate error under various conditions with an Ohmic spectral density. The
value before the arrow denotes the error generated form the ideal closed system control
pulse and the value after the arrow denotes the saturate error after the optimization

iterations.

0.8+

log, ,(Imp)

Figure 4.9: Improvement of Z-gate control in a Ohmic environment under various con-
ditions with the Ohmic spectral density.

4.4.2 Z-gate

Table 4.2 shows the errors of the initial closed system pulse and errors after the optimal

control iterations. Figure 4.9 shows the improvement under various conditions.

Similar to the Lorentzian-like case, «, does not play an important role in improve-

ment. Improvement increases with the cutoff frequency as in the identity gate control

in the previous section. We discuss this somewhat anomalous trend in the next section.
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4.5 Environment suppression ability of optimal con-

trol

4.5.1 Error correction due to phase shift

Recall that in our model the exact solution of the density operator can be found. In

Eq. (4.2),

. p11(0 exp( fo s)+ F*( )]ds) p12(0) exp (—ifng ds—fo ds) )

p21(0)exp (z fo wo(s)ds — fo F*(s ds) 1—p11(0)exp ( fo s)+ F*(s)]ds
(4.23)

In this form it is clear that the real part of the integration of F'(s) encodes the dissipation
caused by the environment, and the imaginary part encodes the phase shift of the
coherence term resulted from the shift in the system frequency due to the presence of
the environment. It is therefore desirable to check how F(s) behaves before and after
the optimization iteration.

Upon inspecting several data where notable improvement is observed, it turns out
that there exists negligible difference before and after the optimization iteration, in
both real and imaginary part of F(s). Fig. (4.10) shows F(s) before and after the
optimization improvement.

Since we observe little suppression of the dissipation caused by the environment, the
only possible agent of correcting the gate error by the optimal control is then through

correcting the phase shift. The coherence term (p21 in particular ) in Eq. (4.23) is

t t
p21(t) = p2a(0)exp <Z/0 wo(S)dS—/O F*(S)CLS)
t t t
= po1(0)exp <—/0 Re [F(s)]ds) exp <z (/0 wo(s)ds—l—/o Im [F(s)]ds)%.%)

where Re[---] and Im[---] denote the real and imaginary part, respectively. The first
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Figure 4.10: Comparison of the function F(s) before and after the optimal control. Here

Fy(s) denotes the function before the control iteration and F'(s) denotes the function
after the iteration.
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exponential term represents the dissipation effect and the second represents the phase
shift. A quick check in the exponent of the phase shift term shows that the phase shift
is corrected by the optimal control iteration, as shown in Table 4.3, where the phase
difference is defined ( fgf wo(s)ds+ fgf Im [F'(s)] ds) /m for the identity gate control and

(fgf wo(s)ds+ fgf Im [F'(s)] ds) /m—1 for the Z-gate control.

4a 4b 4c 4d
Phase difference before control | —8.63x 10~% | —=3.10x 1073 | —2.72x 1072 | —1.46 x 10!
Phase difference after control | —6.66 x 107° | —8.11x 107 | —1.59 x 10~* [ —2.18 x 1073

Table 4.3: Phase difference of various cases before and after the optimal control itera-
tion.

4.5.2 Conditions for mass improvement

We have seen from the previous section that two effects contribute to the gate error,
namely the dissipation and the phase shift. The phase shift can be corrected by the
optimal control iteration; the dissipation, however, can hardly be suppressed. This
indicates that the improvement, Imp, is determined by the relative proportion of error
that these two effects lead to. For a system where the environment-induced dissipation
is the dominant source of gate error, the improvement is limited, since after the optimal
control iteration only a minor portion of error can be corrected. On the contrary, if in
a system the gate error mainly comes from the environment-induced phase shift, then
after the optimal control iteration the improvement can be substantial.
Mathematically, the dissipation and the phase shift are directly related to the mag-
nitude of ‘fgf Re[F(s)] ds‘ and ‘f(ff Im [F(s)]ds’. We inspect the plots of F(s) before
the optimal control iteration with both the Lorentzian-like environment and Ohmic
environment to verify this point. In Fig. 4.11(a), the function F(s) is plotted in an
Lorentzian-like environment for various Q’s and with v = 1, and in Fig. 4.11(b), Q is set
at bwy and F'(s) is plotted for various ’s. We can infer that the relative magnitude of

‘fgf Im[F(s)] ds’ over ’fotf Re[F(s)] ds‘ is larger when € is larger or when ~ is smaller.
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In Fig. 4.12, the function F'(s) is plotted in an Ohmic environment for various cutoff
frequencies. The relative magnitude of ‘ f(ff Im [F(s)] ds‘ over ‘ fgf Re[F(s)] ds’ becomes
larger as the cutoff frequency increases. In all of the cases, this behavior is in agreement

with a larger improvement.
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(b) Function Fy(s) before the optimal control iteration under various 7’s with Q = 5.

Figure 4.11: The function Fy(s) in an Lorentzian-like environment under various con-
ditions.
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Figure 4.12: Fy(s) in an Ohmic environment at various cutoff frequency.

The behavior of F(s) is determined by its differential equation, Eq. (2.48),

OiFy(t) = pj+ Fj(t) | qj +iwo(t) + > Fi(t) | + F7 ().
k#j
Mathematically, it is possible to find the conditions that make ‘ fgf Im [F(s)]ds’ rela-
tively larger than ’ fot TRe[F(s)] ds‘ and thus determine the conditions for mass improve-
ment. To gain some insight on the physics, we may turn to the time-convolutionless per-

turbative master equation for the two-level dissipative system with a zero-temperature

bath [20],
o 1
p= =0+ 8) [z p] + T (0-pos = 5 {owop} ) (4.25)
where
AEP/(MDW) (4.26)
0 Wy —w

is the environment-induced frequency shift (Lamb shift) and is defined as the Cauchy’s
principle value P of a improper integral over the spectral density with a weighting

(wo— w)_l. Note that the weighting is positive when wg > w and negative when wy < w.
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The decay rate I' is defined as the value of the spectral density at the qubit transition
frequency,

I = 27D (wy). (4.27)

The Lamb shift and the decay rate in general depend on time and this time-convolutionless
perturbative master equation is valid only in weak interaction regime and when the
system-environment correlation time is much shorter than the operation time. Never-
theless, Equation (4.25) is in complete analogy to the exact master equation, Eq. (2.46),
and the real part and the imaginary part of F(t) can be mapped to the constants I'
and A. By definition, I' and A are determined completely by the environment spectral
density D(w) and are in close relation to the shape of it.

Figure 4.13(a) shows the spectral density and the relative position of the qubit
transition frequency wg. For the case of zero-detuning, €2 = wp, the spectral density
is symmetric with respect to wp. The decay rate I' = 2mD(wp) turns out to be at the
peak value of the Lorentzian distribution, while the Lamb shift A defined in Eq. (4.26)
becomes vanishingly small due to mutual cancellation in the integration. In this situ-
ation the dissipation effect dominates over the phase shift effect, and the improvement
due to the optimal control is limited. However, if the environment central frequency
is detuned from the qubit’s transition frequency, the decay rate defined in Eq. (4.27)
drops dramatically, and the Lamb shift defined in Eq. (4.26) increases due to the asym-
metric distribution of the spectral density with respect to wg. This is in agreement with
the trend of improvement observed in the previous sections. Note that this behavior is
more prominent as the Lorentzian distribution gets sharper (v small).

In Fig. 4.13(b), a similar plot is demonstrated for the Ohmic spectral density. As
the cutoff frequency w. increases, the decay rate I' grows only slightly, whereas the
Lamb shift A grows substantially due to the asymmetric growth of the spectral density
with respect to wg. This behavior leads to the fact that the improvement is larger when

the cutoff frequency is increased.
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The overall coupling strength a(or «,) is irrelevant to the improvement since it does

not affect the shape of the spectral density but only the overall value of it.
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(a) The Lorentzian spectral density plotted under various environment central frequencies. Here o =0.01.
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(b) The Ohmic spectral density plotted under various cutoff frequencies with a, = 0.01.

Figure 4.13: The spectral density of a Lorentzian environment and an Ohmic environ-
ment. The relative position of the qubit transition frequency wg is shown.

Although the above qualitative argument is applied to a time-convolutionless per-

turbative master equation and not to the exact dynamics, it shows the important fact
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that, the shape of the spectral density is in close relation to the improvement. The
shape of the spectral density determines the decay rate and the Lamb shift, which in
turn determines the magnitude of the improvement. The improvement is maximized

when the system suffers from a small decay rate and a strong Lamb shift.

4.5.3 Suppression of dissipation

So far, we have observed very limited effect of suppressing the dissipation using the
optimal control iteration for the two-level dissipative model. This behavior is model
specific, and is due to the small range of control we choose in the beginning of the
control problem. As shown is Eq. (4.24), the control pulse can be designed to directly
cancel the environment-induced phase shift, but can hardly suppress the dissipation
effect through minimizing the magnitude of Re [ fot 'F (s)]ds]. A close inspection of the

differential equation of F(¢) in a Lorentzian-like spectral density, Eq. (2.50),

OF () = =y F(t) +i(wo — Q+e(t)) F(t) + F () +

may provide us some idea. In this equation, €(¢) follows the unit imaginary number 7, so
F(t) oscillates faster when the control €(¢) is large in magnitude, vice versa. fot F(s)ds is
then small in magnitude due to the mutual cancellation during the integration. There-
fore, if we allow the control magnitude to be large compared to other parameters, the
dissipation can be reduced remarkably.

Here we present the result of optimal control where the control range is set to
le(t)] < 20w in Fig. 4.14. Note the error is smaller than the previous small range
control by several orders. This is due to both phase shift correction and dissipation

suppression.

68



10

—-0=0.01y=0.1
" =¥-0=0.01y=1
10 r -m-0=0.1y=0.1 ||
-v-0=0.1y=1
10" .
S
"{; 10° F .
8 apmmmmmmmmmm v
10° |- .
g - =
10—107 B
—— 4T
10’12 | | | | | | | |

1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
ot
f

(a) Z-gate error vs. operation time in a Lorentzian-like environment. Note that compared to the small
range control, gate error smaller by several orders can be achieved in a much shorter operation time of
tp~0.20g "

E T
- | —8=0=0.01
3| | —#=0=0.1
107°L

Error
ool il

|
0 2 4 6 8 10 12 14 16 18
wC/w

N
o

(b) Z-gate error vs. operation time in an Ohmic environment, plotted at woty = 1. Compared to Fig. 4.8,
the error is much smaller even if the cutoff frequency is as high as w, = 20wy.

Figure 4.14: Results of optimal control with a large control range, |e(t)| < 20wyp.
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Chapter 5

Conclusion

In this thesis we introduced an optimal control theory for constructing single qubit
gates in an exactly solvable non-Markovian open system. The master equation of the
reduced system can be exactly derived without any approximation. It is in contrast to
the commonly used perturbation method, where the master equation is derived only
to low orders of system-environment interaction and ignore the high order effect. Thus
the dynamics derived from the perturbation method is only valid for weak system-
environment coupling. The exact master equation, however, is not constrained by this
limitation.

Given the exact master equation, or the equation of motion, the optimal control
theory is then introduced to construct the quantum gates. Two optimization algo-
rithms, the gradient-type method and the global improvement method, are formulated.
Depending on the form of the defined final cost of the objective, appropriate optimiza-
tion iteration algorithm can be applied. In our thesis, the open system dynamics is
concerned, so the final cost is defined to be second order in the propagator and the
gradient-type method is adopted.

We proceed to combine the exact master equation and the optimal control theory to

construct the state-independent quantum gates in the presence of the Lorentzian-like

70



bath and the Ohmic bath. We found that for moderate qubit decay parameters, high
fidelity identity gates and Z-gates can be achieved. The relation between the fidelity
and the qubit decay parameters can be interpreted physically.

An important definition of improvement, I'mp, is proposed to quantify how much
the optimal control iteration can improve the fidelity, given that the initial guess being
the ideal closed system control pulse. For an ideal closed-system, the optimal control
pulse can be calculated directly. Improvement is important in that for conditions where
the I'mp is negligible, there is no need for optimal control and the ideal closed-system
pulse suffices; on the other hand, large Imp characterizes the need for the open-system
optimization iteration. We found that, mathematically, Imp is directly related to the

relative magnitude of ‘ f(ff Im [F(s)]ds , and physically, it is in

over ‘fotf Re[F(s)]ds

close relation to the shape of the spectral density with respect to the qubit transition
frequency.

We further show that, for the model (dissipative model) and the control problem
(0, control) discussed in our work, the suppression of dissipation is limited, given that
we constrain the control in a relatively small range. The major improvement of gate
fidelity is due to the correction to the phase shift. For control range as large as ten times
of the system frequency, the dissipation can be substantially suppressed. Therefore, a
system with great tunability in the transition frequency can be a good candidate of the

physical implementation of this model.
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Appendix A

Lorentzian spectral density and

cavity QED

Consider the following summation in the continuum limit

Sl [ " dop(w) |9 (A1)
A 0

where p(w) is the density of states of the bath oscillators, and we define

D(w) = p(w) g(w)|* (A.2)

to be the spectral density of the reservoir.

If we consider the spectral density to be Lorentzian

_ % r
2T (w_wc)Q—l-(g)Q’

D(w)
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and the bath correlation function is then

> lgalfent=s) _>/ dwp(w) [g(w)|? e A=) :/ dwD(w)e 7o)
X 0 0

0 > ) :
_ Oe—zwc(t—s)/ d(w N Wc) 2e—z(w—w0)(t—s)
2 (w=we?+(F)
s Q—%e_mc(t_s) /OO dw’ I e—z‘w’(t—s)
2T — 00 w2 + <g)2

_ Q%efg(tfs)fiwc(tfs)

)

where we have assumed that w, is sufficiently larger than g, the width of the Lorentzian
function. Following the pseudo-mode method [27], we arrive at a master equation which
is identical to the master equation of Janynes-Cumming model with Damping.

Pseudo-mode master equation [with the spectral density given by Eq. (A.3)]:
Hy=wpor0_+ weala+Q (aTa, + aa+)

: . r
pr = —i[Ho, pt] — 9 [GTGPt - QGPtGT + PtGTCL}

where a and af are the pseudo-mode operators, and pt is the density operator for the
composite system of atom and pseudo-mode.

Damped Jaynes-Cummings model master equation|28]:
Hicm =wooro— + Qala+ g (aTa_ + aa+)

. . wo
pr = —i[Hyom, pt] — 0 [GT@Pt —2apa’ + Pt@Ta}
where wp and €2 are the two-level system transition frequency and the cavity mode

frequency, g is the system-cavity coupling strength, and % denotes the cavity loss rate

with @ being the quality factor of the cavity.
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These two master equations are identical apart from some matching of the parame-
ters. So we can conclude that the dissipative system with a Lorentzian reservoir spectral
density Eq. (A.3) physically describes the coupling of a two-level system to a single
mode lossy cavity which in turn couples to a broad-band harmonic oscillator bath in

vacuum state.
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Appendix B

Fidelity in Closed and Open

Systems

The dynamics in a closed quantum system is governed by unitary evolution

W) =U o), (B.1)
where U is an unitary operator. We proceed to prove the following identity.

Re (TrUTV) <NZ2. U, V are unitary and U, V € CN*N,

proof.
U, V unitary,
ettt (B.2)
Y0 ViaVia = 0ij
and

2aUailUp; = 0ij

Yo VaiVaj = 0ij
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Te[UTV] = Z U Vai = Y UsiVai (B.4)

By Cauchy-Schwarz inequality,

[0V = | S UV < S0l Vi (B.5)
Bj
From Eq. (B.3) we have
Z\Um| ]vﬁjy - (B.6)
o [UTVH <N (B.7)

The equality in Eq. (B.7) holds when U and V" are linearly dependent, i.e., X =aY".
However, for both U and V to be unitary, a must be of unit modulus. So a = ¢%.

This identity gives us an insperation on the definition of closed system gate fidelity.
We may define

F = Re (T [0T0(7))) (B.8)

where O is the target and U(T') is the propagator after operation time 7'. This definition
of fidelity ensures that F be in the range [0,1] and reaches its maximum when O and
U(T) only differs by a global phase.

In open systems, the evolution is no longer unitary. The definition in Eq. (B.8) does
not provide enough information on quantifying the distance between two matrices. We

define the gate error by

1

ST {(0-6(m)f 0 -6(1)}

1 2

Jr

(B.9)

which is always positive unless G(T') is identically equal to the target O. And the
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fidelity is defined to be 1 — Jp.

When the dynamics is unitary, namely G(T) is unitary, Jp becomes

Jr = 2?VTK {Q[g ~0'G(T) - GH(T)0 + Gt (T)Q(T)}
1

1

= (RN —2Re(Tr [0TG(T)))}

= 1- ;{Re (Tr[0Tg(1))) (B.10)

Thus the fidelity in open systems F =1 — Jp reduces to the same form as in the closed

system.
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