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中中中文文文摘摘摘要要要

為了建造一個量子電腦，高精準度的邏輯閘運算是必要的。特別是兩個量子位

元(two qubit)所能進行的控制非門(CNOT)的運算，是一個很重要的量子邏輯閘。

然而，現實世界中有需多的問題導致實驗上的結果和理論上的預測是不盡相同的。

在這篇碩論中，我們探索了在量子最佳化控制理論下，考慮了流失態(leakage)和非

馬可夫(non-Markovian)環境下的控制非門的運算。首先，我們給了一個簡短的超

導體量子位元介紹，然後決定了單量子位元的漢米爾頓(Hamiltonian)矩陣。然後

我們描述了環境的雜訊能譜(noise power spectrum)，接著就用費米黃金定律(Fermi

golden rule)去連結馳耗速率(relaxation rate)和關聯函數(correlation function)之間

的關係。然後我們描述了一個非馬可夫環境下的控制方程式，接著用我們的模型實

行了量子最佳化控制。科羅多夫最佳化控制是我們在這篇碩論中採用的方法，目的

是為了最小化邏輯閘運算的誤差，然後找到相對應的控制參數，並且考慮非同時的

記憶效應(non-local memory effect)的非馬可夫開放系統。我們也討論了不同控制參

數的不同波形，以及控制參數和關聯函數影響最佳化邏輯閘控制的行為。我們發現

在環境的參數影響下(此參數參考真實實驗系統結果)，使用超導體電量量子位元是

可以完成一個誤差約為10−4 ∼ 10−5的控制非門的高精準度邏輯閘控制的。

中中中文文文關關關鍵鍵鍵字字字：：：最最最佳佳佳化化化、、、位位位元元元、、、邏邏邏輯輯輯閘閘閘、、、科科科羅羅羅多多多夫夫夫、、、約約約瑟瑟瑟芬芬芬
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Abstract

When building a quantum computer, high precision gate operations are needed. In

particular, the controlled-not (CNOT) operation regarded as a crucial universal two-

qubit gate is a very important quantum gate to implement. However, real world

contains a lot of problems and causes the difference between experimental results and

theoretical simulations. In this thesis, we investigate CNOT gate operation using

quantum optimal control theory for superconducting charge qubit system taking into

account the effects of leakage states and a non-Markovian environment. First, we

give a brief introduction to superconducting qubits and decide the Hamiltonian of a

simple one-qubit model. Then we describe the noise power spectrum of environments,

which gives the relation between the relaxation rate and the bath correlation function

through the Fermi golden rule . After that, we describe the non-Markovian master

equation approach and apply it to our model together with the quantum optimal

control theory. The Krotov optimal control method that we used in this thesis can

minimize the error of gate operations and find the corresponding optimal control

pulses to realize the gate operations. Considering the non-local memory effect in

non-Markovian open quantum systems. We also discuss the effect of different shapes

and behaviors in the bath correlation function on the optimal control gate fidelity.

We find that it is possible to implement high-fidelity CNOT gates with error about

10−4 ∼ 10−5 in superconducting charge qubit system with environment parameters

extracted from the realistic noise power spectrum of experiments.

Keywords: optimal, qubit, gate, Krotov, Josephson
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Chapter 1

Introduction and Background

1.1 Introduction

The field of solid-state quantum computation grows very fast. Since some quantum

algorithms (e.g. Shor’s algorithm) are shown to outperform significantly their best

known classical counterparts, the idea and implementation of quantum information

processing becomes important. The research of quantum bits, or qubits, is rapidly

growing. There are many types of physical objects that have potential to be imple-

mented as qubits. However, solid-state circuits, and superconducting circuit are of

great interest as they offer great scalability. That is, the possibility of making circuits

with a larger number of interacting qubits. The Josephson charge qubit circuit is

a good candidate because it can implement qubit, i.e., quantum two-level systems.

Such systems possess coherence, can be initialized and read out. Also, the logic gates

operations can be constructed and gate operation can be done. First, In chapter 1, we

introduce the background such as Josephson charge qubit Hamiltonian, power spec-

trum, and transition rate. In chapter 2, we describe our main purpose, i.e., two-qubit

gate operations and present some necessary material that are useful to achieve our

goal. We will give an overview of the performing two qubit Hamiltonian. We will dis-

cuss the noise spectral density and the bath correlation functions. We will try to use a

more realistic bath spectral density parameters extracted from relevant experiments.

In chapter 3, we introduce the Krotov optimal control method and the derivation to

1



obtain the iteration equations. In chapter 4, we present the optimal control results of

four different kinds of situations. They are the combination of open/closed systems

and with/without leakage levels. Finally, we conclude this whole thesis in Chapter 5.

Some details about how to perform the calculation are put in appendices.

1.2 Review of Josephson Charge Qubit

The Josephson charge qubit consists basically of a Cooper pair box as a supercon-

ducting island which is connected via a Josephson junction to a large electrode, called

a superconducting reservoir. Figure 1.1 shows a schematic illustration of a Joseph-

son charge qubit. There are some paper reviewing the property of superconducting

qubits, [1, 16]. Typically there are around 107 − 108 conduction electrons in the is-

land and the dimensions are about 1000 nm× 50 nm× 20 nm. The Cooper pairs can

tunnel into or out of the box with a tunneling amplitude described by the Josephson

coupling EJ between the box and the reservoir. The number of the Cooper pairs on

the island can be tuned by the voltage Vg applied to the gate coupled to the box

through the gate capacitor Cg.

1.3 Hamiltonian of the One Josephson Charge Qubit

Model

The Hamiltonian of a Josephson charge qubit can be written as

H = 4Ec(n̂− ng)2 − Ej cos Θ̂, (1.1)

where n is the number operator of (excess) Cooper-pair charges on the island, and

Θ, the phase of the superconducting order parameter of the island (phase difference

across a Josephson junction), is its quantum-mechanical conjugate, n = −i~ ∂
∂(~Θ)

, Ej

2



Figure 1.1: Schematic illustration of a Josephson charge qubit; from [1]. The bold
“n” is the number of Cooper pairs that tunnel through the insulator into the island or
“box”. CJ is the junction capacitance, Cg is the gate capacitance. EJ is the junction
energy and Vg is the gate voltage.

is the Josephson coupling energy.

EC =
e2

2(Cg + CJ)
(1.2)

is the single electron charging energy and depends on the total capacitance of the

island. The dimensionless gate charge

ng =
CgVg

2e
(1.3)

accounts for the effect of the gate voltage. We will vary the gate voltage as our

external control.

Since we will control the tunneling Cooper pairs, we choose the number states

describing the number of the Cooper pairs on the island as our basis, the so called

the charge basis. In order to express the Hamiltonian by the basis, we introduce the

relation between n and Θ:

[Θ̂, n̂] = i (1.4)

3



with Θ̂ ∈ [0, 2π]. One can use Eq.(1.4) to derive [eiΘ̂, n̂] = −eiΘ̂ and [e−iΘ̂, n̂] =

e−iΘ̂. This is similar to the commutation relation between the creation operator, the

annihilation operator and the number operator of a harmonic oscillator. So one can

regard e±iΘ̂ as creation and annihilation operators, respectively. Inserting an identity

I =
∑
n

|n〉〈n| onto the both sides of the Hamiltonian, Eq.(1.1), we obtain

H =
∑
n

{4Ec(n− ng)2|n〉〈n| − 1

2
Ej(|n+ 1〉〈n|+ |n〉〈n+ 1|)}. (1.5)

One may have seen different form of the Hamiltonian from the form of Eq.(1.3), but

they are actually the same just because sometimes people would like to shift identities

to make the equation look more simple than it’s original form.

Usually, one considers the charge states corresponding to n = 0, 1 as the com-

putational states of the qubit to perform a gate operation. However, as in [2], we

know that the dynamics of the Josephson charge qubit system is affected by the other

number state, which is the leaky qubit effect, or so called leakage. That is, the con-

sideration including other states into the calculations may have large difference to

the case by considering only the computational states {|0〉, |1〉}. To study the leakage

effect, in this thesis, we consider the charge states {| − 1〉, |0〉, |1〉, |2〉}. Many related

papers point out that there is no need to consider even more charge states.[2, 3, 4].

One will see that the control problem is not physical enough if one does not consider

the leakage effect. One may ask what n = −1 state is. What is minus number of

Cooper pairs? We have to see this in a bigger picture. Since the number of Cooper

pairs on the island should be a huge amount instead of just one or two, the number

of Cooper pairs on the island we discussed before is the change in the number of the

Cooper pairs as compared with the equilibrium number, i.e., the number of the excess

Cooper pairs.

Note that some people might use energy eigenstates like Figure 1.2 to construct

their two-level system. Here we just use the charge basis which are eigenstates of the

number operator with eigenvalue describing the number of Cooper-pair on the island.

4



Figure 1.2: The charge energy of the Cooper-pair box as a function of ng. From [1].
Since ng is not an actual number of charge, it can be a float number. When ng = 1

2
,

the system with states corresponding to the energy splitting caused by Ej can be
approximate as a two-level system. The dashed lines means the changing energy
with definite Cooper pairs n on the island, and the solid line stands for the energy
eigenstates.

1.4 Power Spectrum and Noise Fluctuation

There must exist some noise in every quantum system to prevent us from perfectly

controlling the quantum system. For Josephson charge qubit, there are some fluctu-

ation of the voltage that will cause noise.

Let’s rewrite Eq.(1.1) as in [7]

Hbox = 4EC(n− Qg

2e
)2 − Ej cos Θ, (1.6)

where Qg = CgVg is the gate charge which is controlled by gate voltage and EC =

e2

2(Cj+Cg)
.

By properly choosing the right parameters such as voltage, temperature, fre-

quency, and the strength of control pulses, only two charge states |n = 0〉and |n = 1〉

play an important role. In the spin notation, the number operator becomes n =

1
2
(1 − σz), while cos Θ = 1

2
σx, and the effective spin Hamiltonian after inserting

Vg + δV , where δV denotes the voltage fluctuation, into Eq. (1.6) reads

H = −1

2
Bz(Vg)σz −

1

2
Bxσx −

1

2
Xσz + Hbath, (1.7)

where the parameters are Bz = 2e
Cj+Cg

(e − CgVg), Bx = Ej, and Bz(Vg + δV ) =

5



Figure 1.3: From [7]. (a) Circuit of a Josephson charge qubit. (b) Circuit representing
noise coming from fluctuation denoted by δV .

Bz(Vg) +X. The sum of the voltage Vg + δV couples to the charge in the circuit.

The coupling term involving X, which comes from the fluctuation of voltage rep-

resented as the interaction with a bath results in decoherence and dissipation. Here

X = −(
2eCt
Cj

)δV. (1.8)

Since we assume interaction with the bath or environment is sufficient weak, [19, 20,

21], we can represent the environment as a set of harmonic oscillators with a coupling

linear in the oscillator coordinates and/or momenta to the system; by appropriate

canonical transformation and related tricks, it is possible to ensure that the “coupling

is only to the coordinates”. That is

Hbath =
∑
i

[
1

2mi

p2
i +

miωi
2

x2
i

]
(1.9)

and the coupling part of the environment is

δV =
∑
i

λixi, (1.10)

6



where λi is the coupling coefficient with each coordinate xi of the oscillators, where

xi =
1√

2mωi
(ai + a†i ) (1.11)

We will see later in Sec. 2.2 that X represents the coupling part of δn there:

X =
∑
i

λ̄ixi =
∑
i

λ̄i(ai + a†i ), (1.12)

where λ̄i absorbs the rest of the parameters of Eq. (1.8).

From the Hamiltonian of eigenbasis, one can easily see the energy splitting of the

system. Although one may not always choose eigenbasis, this representation can let

one see the relation between the power spectrum and the relaxation rate from the

Fermi golden rule. The Hamiltonian, Eq.(1.7), written in the qubit energy eigenbasis

becomes

H = −1

2
4 Eσz −

1

2
X [cos(η)σz + sin(η)σx] + Hbath (1.13)

with the energy difference 4E =
√
B2
x +B2

z , tan η = Bx
Bz

, Xtran = −1
2
X sin η, and

V (t) = Xtran(t). Why do we want to connect the power spectrum with the relaxation

rate? The reason is that we normally measure the relaxation rate to define how much

the environment affects our system, and the noise power spectrum and the bath

spectral density are related to the bath correlation function. The following equations

tell us how the relaxation rate is related to the noise power spectrum.

First we know from the Fermi golen rule that the transition rate between two

different states |a〉 and |b〉 is

Γba =
1

~2

ˆ ∞
−∞

dt〈Vab(t)Vba(0)〉Be−iωbat, (1.14)

where V denotes the interaction Hamiltonian which is assumed to be weak. This

equation will be discuss in the next section. And we know there must be two directions

7



of the transition

Γ↓ = Γ10 =
sin2 η

4~2
〈X2

ω=4E
~
〉, (1.15)

Γ↑ = Γ01 =
sin2 η

4~2
〈X2

ω=−4E
~
〉, (1.16)

where 〈X2
ω〉 =

´
dteiωt〈X(t)X(0)〉. Combining these two rates, we obtain the relax-

ation rate

Γ1 = Γ↓ + Γ↑ =
π sin2 η

2~2
SU(ω =

4E
~

) (1.17)

with the noise power spectrum SU(ω) = 1
2π

(〈X2
ω〉+ 〈X2

−ω〉). The relation between the

noise power spectrum and the bath spectral density will be discussed in Sec. 2.3 .

We can describe the evolution of the density matrix of the qubit via the equation of

motion:

Trρ̂ = ρ00 + ρ11 = 1, (1.18)

ρ̇00 = −ρ̇11 = −Γ↑ρ00 + Γ↓ρ11, (1.19)

1.5 Transition Rate

Since different papers have their own definition of the noise spectrum, power spec-

trum, spectral density, with or without 2π of the Fourier transformation, we can

check their definition of the transition rate, and relate it to the noise terms men-

tioned above. Then we can compute the environment effect using the noise power

spectrum obtained from the experimental data.

Return to how we get the transition rate from the Fermi golden rule [18]. Consider

a simple model

H = (HS + HB) + V = H0 + V, (1.20)

8



where V is the interaction Hamiltonian describing weak coupling the between system

and the bath.

Assume that the system has two eigenstates |a〉 and |b〉 and their corresponding

eigenenergies are Ea and Eb, respectively. Similarly, we assume that the bath mode

γ has eigenstates |γ〉 and eigenenergy Eγ. The Hamiltonian HS and HB written in

their eigenbasis become

HS = Ea|a〉〈a|+ Eb|b〉〈b|, (1.21)

HB =
∑
γ

Eγ|γ〉〈γ| (1.22)

with γ = · · ·α, β · · · . Thus, we have

H0|aα〉 = (Ea + Eα)|aα〉, (1.23)

where |aα〉 = |a〉 ⊗ |α〉 is the product state of the system and the bath. Set |aα〉

the initial state and |bβ〉 the final state. Consider the case where the system energy

decreases and the bath energy rises.

Γfi =
2π

~
∑
i,f

pf |〈i|V|f〉|2δ(Ef − Ei)

=
2π

~
∑
a,b,α,β

pbβ|〈aα|V|bβ〉|2δ((Eb + Eβ)− (Ea + Eα))

=
1

~2

ˆ ∞
−∞

dt
∑
a,b,α,β

pbβ〈bβ|V|aα〉〈aα|V|bβ〉e−
i
~ [(Eb−Ea)+(Eβ−Eα)]t, (1.24)

where pf is the probability of the final state |f〉. Therefore, the transition rate system

from the system eigenstate |a〉 to |b〉 is

Γba =
1

~2

ˆ ∞
−∞

dt
∑
α,β

pβ〈β|e
i
~EαtVbae

− i
~Eβt|α〉〈α|Vba|β〉e−iωbat (1.25)

9



Define

Vab = 〈a|V|b〉. (1.26)

In interaction picture, one can get

Vab(t) = e
i
~HBtVabe

− i
~HBt. (1.27)

The bath correlation function is defined as

Cba(t) = 〈Vab(t)Vba(0)〉B, (1.28)

where

〈· · · 〉B =
∑
β

〈β| · · · |β〉 (1.29)

means an equilibrium thermal average over the bath states. Then, we have

Γba =
1

~2

ˆ ∞
−∞

dt〈Vab(t)Vba(0)〉Be−iωbat. (1.30)

So we can use this form to the relation between the relaxation rate and the bath

correlation function.
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Chapter 2

Superconducting Qubit and Noise

2.1 Overview

The basic element of quantum information processing is qubit. There are many

physical systems that can implement qubits. Here we choose the Josephson super-

conducting charge qubit system to study. Like other qubits, the Josephson charge

qubit has its own weakness; especially it is susceptible to charge or voltage noise and

has the problem of qubit state leakage. However it is still a good physical system for

quantum computation, if we can perform quantum gate operation with high fidelity

taking into account the influence of noise and environment. So the goal of this thesis

is to find control field pulse to achieve high-fidelity controlled-not (CNOT) gate oper-

ation by the tool called the Krotov optimal control method, which will be introduced

in Chapter 3. In this Chapter, we first present the Hamiltonian of two Josephson

charge qubits. Then we describe the decoherence effect from the environment and

the leakage states.
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2.2 Hamiltonian of Two Coupled Josephson Charge

Qubits

The total Hamiltonian contain three parts: the Hamiltonian of the system, environ-

ment (bath), and their interaction

HT = HS + Hbath + Hint. (2.1)

Since our theoretical model is based on the experimental setup in [1, 5], we follow the

form of their Hamiltonian. So the system Hamiltonian of two capacitively coupled

charge qubits is

HS =
N∑

n1,n2=NL

{Ec1(n1 − ng1(t))2 + Ec2(n2 − ng2(t))2

+Em(n1 − ng1(t))(n2 − ng2(t))}|n1, n2〉〈n1, n2|

−1

2
Ej1

N−1∑
n1=NL

N∑
n2=NL

{(|n1 + 1〉〈n1|+ |n1〉〈n1 + 1|)⊗ |n2〉〈n2|}

−1

2
Ej2

N∑
n1=NL

N−1∑
n2=NL

{|n1〉〈n1| ⊗ (|n2 + 1〉〈n2|+ |n2〉〈n2 + 1|)}, (2.2)

where n1, n2 denote the charge states of the two qubits, and ng1, ng2 are the gate

charges, NL means the lowest charge state, and the N is the highest charge state. We

choose the values of the parameters according to the experimental setup in Refs.[1, 5]

as 

Ec1
h

= 140.2 GHz,

Ec2
h

= 162.2 GHz,

Ej1
h

= 10.9 GHz,

Ej2
h

= 9.9 GHz,

Em
h

= 23.0 GHz.

(2.3)
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The control parameters are

ngν(t) = n0
gν + ngν(t) (2.4)

with ν ∈ {1, 2}. The values of n0
g1 = 0.24, n0

g2 = 0.26 are chosen according to

Refs.[1, 5].

We consider two cases for the Hamiltonian Eq. (2.1). The first case is to treat

each of the qubits as a two-level system with N = 1, and NL = 0. The second case is

to include the leakage state for the qubits with N = 2, and NL = −1. Also, one can

split Eq. (2.2) into

HS = Hd + ng1(t)×H1 + ng2(t)×H2, (2.5)

where Hd,H1,H2 are time independent. In the case of N = 1, NL = 0, the Hamilto-

nians may be written in terms of Pauli matrices σi as

Hd = −(
Em
4

+
Ec1
2

)(σ(1)
z ⊗ I)− Ej1

2
(σ(1)

x ⊗ I)

−(
Em
4

+
Ec2
2

)(I⊗ σ(2)
z )− Ej2

2
(I⊗ σ(2)

x ) (2.6)

+
Em
4

(σ(1)
z ⊗ σ(2)

z ),

H1 = Ec1(σ(1)
z ⊗ I) +

Em
2

(I⊗ σ(2)
z ) (2.7)

H2 =
Em
2

(σ(1)
z ⊗ I) + Ec2(I⊗ σ(2)

z ) (2.8)

where σ
(ν)
i are Pauli matrices acting on the Hilbert space of the νth qubit. In the

case of N = 2, and NL = −1, we choose to use the original form of Hamiltonian in

number basis states. After appropriate identity shift

HS
′ = HS − {...}I (2.9)

and H1 = ∂HS
′

∂ng1
, H2 = ∂HS

′

∂ng2
, we write Hd = H′S − ng1(t)H1 − ng2(t)H2, and it’s
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possible to get the form as

H1 = Ec1(S1) +
Em
2

(S2), (2.10)

H2 =
Em
2

(S1) + Ec2(S2). (2.11)

where S1 and S2 are system operators similar to those in Eqs. (2.7) and (2.8).

In order to describe the decoherence effect, we focus on the charge noise and the

interaction between the system and the bath is

Hint = δng1S1 + δng2S2 (2.12)

The symbol δng denotes the fluctuation of the control ,like Eq.(1.10), or other forms of

charge noise. Each of the qubit couples to its own independent charge noise environ-

ment or independent voltage fluctuation source. We model each of the independent

environments as a large set of harmonic oscillators, each of which interacts weakly

with its corresponding qubit. So the bath Hamiltonian is

Hbath =
2∑

ν=1

∑
i

[
1

2m
(ν)
i

(p
(ν)
i )2 +

m
(ν)
i ω

(ν)
i

2
(x

(ν)
i )2] (2.13)

with

x
(1)
i =

1√
2m

(1)
i ω

(1)
i

(ai + a†i ), x
(2)
i =

1√
2m

(2)
i ω

(2)
i

(bi + b†i ). (2.14)

The bath operators δng1 and δng2 are

δng1 ≡
∑
i

λi(ai + a†i ) ≡ Y1 ⊗ I = Γ1, (2.15)

δng2 ≡
∑
j

λj(bj + b†j) ≡ I⊗Y2 = Γ2, (2.16)

where Y1 and Y2 are bath operators acting on the Hilbert space of the first and
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second qubits, respectively. The system-bath coupling Hamiltonian is then

Hint = S1 ⊗ Γ1 + S2 ⊗ Γ2. (2.17)

The master equation for the reduced density matrix ρ̃(t) of the two qubit system in

the interaction picture can be written as [23]

˙̃ρ(t) = −
∑
i,j

tˆ

0

dt′{[S̃i(t)S̃j(t
′)ρ̃(t′)− S̃j(t

′)ρ̃(t′)S̃j(t)] < Γ̃i(t)Γ̃j(t
′) >R

+[ρ̃(t′)S̃j(t
′)S̃i(t)− S̃i(t)ρ̃(t′)S̃j(t

′)] < Γ̃j(t
′)Γ̃i(t) >R}, (2.18)

where

ρ̃(t) = e
i
~
´ t
0 HS(τ)dτρ(t)e−

i
~
´ t
0 HS(τ)dτ (2.19)

Transforming back to the Schrodinger picture with

ρ(t) = e−
i
~
´ t
0 HS(τ)dτ ρ̃(t)e

i
~
´ t
0 HS(τ)dτ (2.20)

15



we obtain

ρ̇(t) = − i
~

HS(t) + e−
i
~
´ t
0 HS(τ)dτ ˙̃ρe

i
~
´ t
0 HS(τ)dτ + e−

i
~
´ t
0 HS(τ)dτ ρ̃

i

~
HS(t)e

i
~
´ t
0 HS(τ)dτ

= − i
~

[HS(t), ρ(t)] + U †(t) ˙̃ρU(t)

= − i
~

[HS(t), ρ(t)]

− 1

~2
U †(t)

2∑
i=1

tˆ

0

dt′{[S̃i(t)S̃i(t
′)ρ̃(t′)− S̃i(t

′)ρ̃(t′)S̃j(t)] < Γ̃i(t)Γ̃j(t
′) >R

+[ρ̃(t′)S̃i(t
′)S̃i(t)− S̃i(t)ρ̃(t′)S̃i(t

′)] < Γ̃i(t
′)Γ̃i(t) >R}U(t)

= − i
~

[HS(t), ρ(t)]

− 1

~2

2∑
i=1

{SiU
†(t)

tˆ

0

dt′(S̃i(t
′)ρ̃(t′) < Γ̃i(t)Γ̃i(t

′) >R −ρ̃(t′)S̃i(t) < Γ̃i(t
′)Γ̃i(t) >R)

−U †(t)
tˆ

0

dt′(S̃i(t
′)ρ̃(t′) < Γ̃i(t)Γ̃i(t

′) >R −ρ̃(t′)S̃i(t
′) < Γ̃i(t

′)Γ̃i(t) >R)U(t)Si}

= − i
~

[HS(t), ρ(t)]− 1

~2

2∑
i=1

{[Si, D
(i)(t)]− [Si, (D

(i)(t))†]}. (2.21)

Since we are dealing with two independent bathes, so there is no cross term. If there

is no environment effect, there will only be the first term left in Eq.(2.21). The 2nd

and 3rd terms describe the environment effect and the dissipators D(i)(t) are defined

as [24]

D(i)(t) = − 1

~2
U †(t)

ˆ t

0

dt′U(t′)Siρ(t′)U †(t′) < Γ̃i(t)Γ̃i(t
′) >R U(t)

= − 1

~2

ˆ t

0

US(t− t′)Siρ(t′)C(t− t′)dt′ (2.22)

The definition of the bath correlation function C(t − t′) =< Γ̃i(t)Γ̃i(t
′) >R will be

discussed in the next section. To overcome the difficulty of solving the time-nonlocal

integral-differential equations (2.21) and (2.22), we follow the approach in [24] to

introduce auxiliary density matrices in the extended Liouville space. The procedure

is to use many exponential terms to fit the bath correlation function, and the total
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number of the exponential terms is determined by the accuracy of the fitting error.

Usually, we choose error to be less than 10−5. So we can write

C(t− t′) = C(τ) =
∑
j

Cj(t− t′) =
∑
j

Cj(0)eγjτ , (2.23)

where Cj(0) and γj are complex. In this case, the dissipators,

D(i)(t) =
∑
j

K
(i)
j (t), (2.24)

where

K
(i)
j (t) = − 1

~2

ˆ t

0

US(t− t′)Siρ(t′)Cj(t− t′)dt′

= − 1

~2

ˆ t

0

A× Cj(t− t′)dt′ (2.25)

with A = US(t− t′)Siρ(t′). Differentiating Eq.(2.25) with respect to time, we obtain

d

dt
K

(i)
j (t) = − 1

~2
US(0)Siρ(t)Cj(0)− 1

~2

ˆ t

0

d

dt
{US(t− t′)Siρ(t′)Cj(t− t′)}dt′

= − 1

~2
Cj(0)Siρ(t)− 1

~2

ˆ t

0

dt′{[− i
~

Hs(t)A+
i

~
AHs(t)]Cj(t− t′) + A

dCj(t− t′)
dt

}

= − 1

~2
Cj(0)Siρ(t)− 1

~2

ˆ t

0

dt′{− i
~

[Hs(t), A]Cj(t− t′) + A
dCj(t− t′)

dt
}

= − 1

~2
Cj(0)Siρ(t)− 1

~2
{Ls(t)K(i)

j (t) + γjK
(i)
j (t)}. (2.26)

Eq.(2.21) with Eq.(2.24) and Eq.(2.26) form a set of coupled time-local differential

equations. Now with the above coupled time-local equations, one may solve the

evolution of the model. Remember that one can always returns to the Schrodinger

(von-Neumann) equation of the closed system by setting D = 0 in Eq.(2.21). Since

ρ(t) and Kj(t) are coupled and mutually needed for solving the differential equations.

17



One could combine them into a new vector as

−→ρ (t) =


ρ(t)

K†j (t)

Kj(t)
...

 . (2.27)

In this way, one may rewrite the coupled equations of motion in a very concise form

as

d

dt
−→ρ (t) = Λ(t)−→ρ (t), (2.28)

2.3 Spectral Density and Correlation Function

Generally speaking, there are two processes relevant for the observed decoherence:

energy relaxation (the decay of probability of some states) and dephasing effect (the

decay of the off-diagonal terms of the density matrix). We will discuss the bath

correlation function and the bath spectral density in the following

In the interaction picture, the bath operator takes the form

Γ̃1(t) = e
i
~HBtΓ1e

− i
~HBt. (2.29)

18



So the bath correlation function becomes

C(t− t′) = C(τ) = TrB[Γ̃1(t)Γ̃1(t′)R0]

= TrB[(
∑
i

λi(aie
−iωit + a†ie

iωit))(
∑
j

λj(aje
−iωjt′ + a†je

iωjt
′
))R0]

=
∑
i

|λi|2{(TrB[aia
†
iR0]e−iωi(t−t

′) + TrB[a†iaiR0]eiωi(t−t
′))

=

ˆ ∞
0

dω′J(ω′)[(n(ω′) + 1)e−iωi(t−t
′) + n(ω)eiωi(t−t

′)]

=

ˆ ∞
0

dω′J(ω′)[(n(ω′) + 1){cos[ω′(t− t′)]− i sin[ω′(t− t′)]}

+n(ω){cos[ω′(t− t′)] + i sin[ω′(t− t′)]}]

=

ˆ ∞
0

dω′J(ω′){(2n(ω′) + 1) cos[ω′(t− t′)]− i sin[ω′(t− t′)]}

=

ˆ ∞
0

dω′J(ω′){

(
1 + e

− ~ω
kBT

1− e−
~ω
kBT

)
cos[ω′(t− t′)]− i sin[ω′(t− t′)]}

=

ˆ ∞
0

dω′J(ω′){cos[ω′(t− t′)] coth(
~ω′

2kBT
)− i sin[ω′(t− t′)]},

where J(ω′) is the bath spectral density. Depending on the choice of the bath spectral

density, instead of the frequency integration limits of 0 and∞, we may introduce the

lower bound and upper bound frequencies, also called infrared and ultraviolet cutoff

frequencies, ωr and ωc, respectively. Rewrite the bath correlation function concisely:

< Γ̃1(τ)Γ̃1(0) > = < (
∑
i

λi(aie
−iωiτ + a†ie

iωiτ ))(
∑
j

λj(aj + a†j)) >B

=

ˆ ωc

ωr

dω′J(ω′)(cos(ω′τ) coth(
~ω′

2kBT
)− i sin(ω′τ)) (2.30)

The noise power spectrum is defined as the Fourier transform of the symmetric bath
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correlation function:

SU(ω) =
1

2π

ˆ ∞
−∞

< Γ1(τ)Γ1(0) + Γ1(0)Γ1(τ) >B e
−iωτdτ

=
1

2π

ˆ ∞
−∞

[

ˆ ∞
0

dω′J(ω′) cos(ω′τ) coth(
~ω′

2kBT
)× 2]e−iωτdτ

=
1

2π

ˆ ∞
0

dω′J(ω′) coth(
~ω′

2kBT
)× 2× 1

2
{πδ(ω − ω′) + πδ(ω′ − ω)}

=
1

2π
· 2πJ(ω) coth(

~ω
2kBT

)

= J(ω) coth(
~ω

2kBT
). (2.31)

The result of the following calculation has been used to derive Eq.(2.31)

ˆ ∞
−∞

cos(ω′τ)e−iωτdτ =

ˆ ∞
−∞

(
eiω

′τ + e−iω
′τ

2
)e−iωτdτ

=
1

2
[

ˆ ∞
−∞

ei(ω
′−ω)τ + e−i(ω

′+ω)τdτ ]

=
1

2
[

ˆ ∞
0

ei(ω
′−ω)τdτ −

ˆ −∞
0

ei(ω
′−ω)τdτ

+

ˆ ∞
0

e−i(ω
′+ω)τdτ −

ˆ −∞
0

e−i(ω
′+ω)τdτ ]

=
1

2
[

ˆ ∞
0

ei(ω
′−ω)τdτ +

ˆ ∞
0

ei(ω
′−ω)τdτ

+

ˆ ∞
0

e−i(ω
′+ω)τdτ +

ˆ ∞
0

e−i(ω
′+ω)τdτ ]

=
1

2
{[πδ(ω − ω′) + i

P

ω − ω′
] + [πδ(ω′ − ω) + i

P

ω′ − ω
]

+[πδ(ω′ + ω) + i
P

ω′ + ω
] + [πδ(−ω′ − ω) + i

P

−ω′ − ω
]}

=
1

2
{πδ(ω − ω′) + πδ(ω′ − ω)}

The decoherence effect is discuss in a number of theoretical papers and the re-

laxation of the excited states of the charge qubits off the degeneracy point had been

discussed. The decoherence effects still lack of systematic studies. Especially the

classical 1/f noise, we can only use it as a experimental data.

Figure 2.1 is the experimentally measured noise spectrum reported in [8]. The

reduced noise spectrum SU was derived from the measured relaxation rate Γ1 for two
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Figure 2.1: The noise spectrum of the experimental data from [8]. (a) The two dashed
lines are Ohmic noise SQU and 1/f noise SCU . (b) Simple diagram and the cross point
ωC . ωC is renamed as ωcross in the texts since it has be used to denote the cutoff
frequency.

measured samples. The pattern of the S4E can be seen as a combination of two

linear lines representing as Ohmic noise and 1/f noise, respectively. The cross point

of the two lines indicate that the noise contributions from 1/f and f dependencies

are the same at ωcross = 2π × 2.6GHz. This also defines an effective temperature

Tcross = ~ωcross
kB

= 120mK, close to the electron temperature. Theoretical studies to

construct a model to explain the measured noise spectra have been reported.

Instead of integrating the correlation function from zero to infinite, we choose

a ultraviolet cutoff frequency and an infrared cutoff frequency as the upper bound

and lower bound for the integration limits. The Ohmic noise spectral density is

proportional to the frequency, so it dominates over the 1/f noise at high frequencies

or low temperatures as shown below. For ~ω � 2kBT

SU(ω) = Jf (ω) coth(
~ω

2kBT
) ≈ Jf (ω)

= SQU (ω) =
4e2

π
R~ω (2.32)

The symbol Q of SQU (ω) means quantum. The other noise is the 1/f noise. Just like

its name, the 1/f noise is proportional to the inverse of the frequency of the bath
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oscillators. For ~ω � 2kBT

SU(ω) = J1/f (ω) coth(
~ω

2kBT
) ≈ J1/f (ω)

2kBT

~ω

= SCU (ω) = (
4EC
e

)2 α

2ω
(2.33)

with α ≈ (1.3 × 10−3e)2. The symbol C of SCU (ω) means classical. So the 1/f noise

dominates at low frequencies or high temperatures as shown below. One may use the

following equations to get the above equations.

coth(x) =
1

tanh(x)
=

cosh(x)

sinh(x)
=
ex + e−x

ex − e−x
=

1 + e−2x

1− e−2x

x� 1⇒ coth(x) ≈ (1 + e−2x)(1 + e−2x) ≈ 1 + 2e−2x + e−4x ≈ 1

x� 1⇒ e−2x = 1 + (−2x) +
(−2x)2

2!
+ . . .

∴ coth(x→∞) ≈ 2

2x
=

1

x

2.4 Diagram of simulation

The cross point of the ohmic and 1/f power spectrum is around ωcross = 2π×2.6GHz.

So we define that the “high” and “low” frequency cutoff according to ωcross, i.e.high (ωc > ωcross)

low (ωc < ωcross)

We plot the simulated bath correlation functions using the parameters of T =

10 mK, ωc = 2π × 1 GHz, tf = 55 ps, and dt = 0.1 ps.

As one can see in Figure 2.3, the value of the 1/f noise correlation function is

bigger than the Ohmic correlation function when the cutoff frequency is low. Also,

the shape of the Ohmic correlation function is steeper and the 1/f noise remains flat.

The blue lines in Figure 2.3 and Figure 2.4 indicate the real parts of the correlation
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Figure 2.2: The diagram of power spectrum from experimental data [8]. The cross
point is ωcross = 2π × 2.6 GHz.

functions and the green lines indicate the imaginary parts of the correlation functions.

On the contrary, the bath spectral density with a high cutoff frequency gives

different responses. We plot the bath correlations in Figure 2.4 for the parameters of

T = 10 mK, ωc = 2π × 100 GHz, tf = 55 ps, and dt = 0.1 ps.

Both the shapes of the Ohmic and the 1/f noise correlation functions are steeper

than their corresponding cases at low cutoff frequency. However, the values of the

Ohmic correlation functions dominates over the 1/f noise correlation function at short

time (within the time scale of the gate operation time). Therefore, we consider the

Ohmic correlation function in the high cutoff frequency region.
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Figure 2.3: Correlation functions (blue line: real part; green line: imaginary part) for
low cutoff frequency. The parameters used are T = 10 mK, ωc = 2π × 1 GHz, tf =
55 ps, and dt = 0.1 ps.
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Figure 2.4: Correlation functions (blue line: real part; green line: imaginary part) for
high cutoff frequency. The parameters used are T = 10 mK, ωc = 2π×100 GHz, tf =
55 ps, and dt = 0.1 ps..
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Chapter 3

Optimal Control

3.1 Introduction

The optimal control method can be applied to many different fields. But they all have

the same purpose that is to get a extreme accuracy result. There are many way to

do the optimal control such as GRAPE, Newton method, quasi-Newton method, and

Krotov method. The optimal control has an advantage to design a unitary quantum

gate in a closed system. In this thesis, we also use optimal control method to deal

with open systems, especially, non-Markovian open quantum systems. Some details

regarding the implementation of the optimal control are put in Appendices. Different

fidelity/error measures that are adopted as the objective function for optimization

and error values. We will discuss two commonly used error measures in Sec. 3.2

and will conclude in Chapter 4 why we use the error J2 defined in Eq. (3.2) for

the cases of open quantum systems. Since we are dealing with the gate operation,

we need to perform the operation independent of initial states. So I introduce the

state-independent optimal control and the superoperator concept latter.
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3.2 Error/Fidelity Definition

According to [22], we can simply definition two kinds definition of error/fidelity.

J1 = 1− 1

N
Tr(Q†G(T )) (3.1)

J2 =
1

2N
Tr[(Q−G(T ))†(Q−G(T ))] (3.2)

with Q is the target superoperator (CNOT gate), and G(T ) is the final optimized

propagator in a superoperator form, and N is the dimension of the superoperator.

The concept of superoperator is presented in section 3.5.2 since it also relates to the

concept of computational states.

In a closed system, the decoherence effect is not considered yet, the propagator

should be unitary since the system is “perfect”. Thus in a closed system, we have

G(t)†G(t) = I, (3.3)

and t ∈ [0, T ]. Expanding J2 , one can obtain the result that J2 = J1 in a “closed”

system.

However, we cannot promise Eq.(3.3) in a (non-Markovian) open system. And

since G(T ) is no longer a unitary matrix, then the definition of J1 may not be a better

measure of gate error. If we consider leakage levels, we will not have a unitary result

for the gate operation since we project the operation matrix onto the computational

basis states and let the other elements be zeros.

So when we consider an open system or leakage levels, we will use the error

definition of J2. However, to prove the optimal control based on the Krotov’ s method

in the next section. We will still use J1 as a part of the cost function.

Note that, when we replace the J1 into J2 in the cost function, the optimization

procedure can still work and the update rule just like Eq. (3.23) is obtained. However,

this change of target might cause the original derivation of Krotov unable to be done

and make the differential derivation more like the gradient ascent method. But the
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step by step update is still more like a Krotov type. So even the original proof of

Krotov might be a problem when we choose J2 as our error function, the result is still

monotonically convergent if we choose the right penalty function λ.

3.3 One Qubit Optimal Control

There are many paper [9, 10, 11, 12, 13] describe the standard way of the Krotov

optimal control method. However, some other papers use a different approach and

obtain the same result,[14, 15]. Here we choose the most comprehensive parts in

these approaches and combine them together to show the optimal iteration update

equation.

Consider the equation of motion

d

dt
−→ρ (t) = Λ(t)−→ρ (t), (3.4)

where Λ(t) is a matrix operator (superoperator) acting on a column vector −→ρ (t). Let

the propagator (superoperator) of −→ρ (t) be G(t). That is

−→ρ (t) = G(t, 0)−→ρ (0) = G(t)−→ρ (0). (3.5)

So we can rewrite the equation of motion

d

dt
G(t)−→ρ (0) = Λ(t)G(t)−→ρ (0), (3.6)

and get

d

dt
G(t) = Λ(t)G(t), (3.7)

which will be Schrodinger equation in our control problem if the environment is

excluded. Suppose that the superoperator of the Hamiltonian Λk(t) has the form

Λk(t) = Λd + εk(t)Λ1, (3.8)
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where k is the number of iteration, Λd and Λ1 are time-independent, and ε(t) is the

control parameter. The cost function for the propagator is chosen to be

J(εk+1) = ReTr(Q†Gk+1(T ))

−
ˆ T

0

ReTr{[ d
dt

Gk+1(t)− Λk+1(t)Gk+1(t)]B(t)}dt

−λ
ˆ T

0

|εk+1(t)− εk(t)|2dt (3.9)

The first term in the cost function is the error function, J1. One may replace it

with J2 and the proof for error function J2 is put in Appendix C. The second term

is the evolution condition Eq.(3.6) with the Lagrange multiplier Bk(t) which is the

backward propagating superoperator. The third term is the augmented Lagrange

multiplier with penalty function λ. This term makes sure that we can get the update

rule of control pulses.

Using the relation

ˆ T

0

ReTr{ d
dt

[Gk+1(t)B(t)]−Gk+1(t)
d

dt
B(t)}dt

=ReTr{Gk+1(t)B(t)}|T0 −
ˆ T

0

ReTr{Gk+1(t)
d

dt
B(t)}dt,

(3.10)

we can get

J(εk+1) = ReTr(Q†Gk+1(T ))− ReTr{Gk+1(t)B(t)}|T0

+

ˆ T

0

ReTr{Gk+1(t)
d

dt
B(t)}dt

+

ˆ T

0

ReTr{Λk+1(t)Gk+1(t)B(t)}dt

−λ
ˆ T

0

|εk+1(t)− εk(t)|2dt. (3.11)

Next, we focus on the difference of the cost function between two neighboring itera-
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tions:

J(εk+1)− J(εk) = ReTr(Q†∆G(T ))− ReTr(∆G(t)B(t))|T0

+

ˆ T

0

ReTr{∆G(t)
d

dt
B(t)}dt

+

ˆ T

0

ReTr{Λk(t)∆G(t)B(t)}dt

+

ˆ T

0

ReTr{∆Λ(t)Gk+1(t)B(t)}dt

−λ
ˆ T

0

[εk+1(t)− εk(t)]2dt

+λ

ˆ T

0

[εk(t)− εk−1(t)]2dt, (3.12)

where ∆G(t) = Gk+1(t)−Gk(t). And here we insert the boundary condition and the

evolution equation of G(t) and B(t) to let some terms of Eq.(3.12) to vanish.

B(T ) = Q†,

d
dt
B(t) = −B(t)Λk(t).

(3.13)

and we define the iteration number of B(t) by the iteration number of Λk(t). So we

can rewrite it asBk(T ) = Q†,

d
dt
Bk(t) = −Bk(t)Λk(t).

(3.14)

But we can also use another way to get the boundary condition of B(t), and this

method is simpler. Just differential the Eq.(3.11) with the forward propagator G and

you will get the same result of the backward propagator B(t).

∂J

∂G
= 0⇒

B(T ) = Q†,

d
dt
B(t) = −B(t)Λ(t).

(3.15)

Notice that we ignore the iteration number of Λ(t) in this method since it will be
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wrong. Because of we use the difference of Λ(t) in Eq.(3.12). That is,

∆Λ(t) = Λk+1(t)− Λk(t). (3.16)

But the differential method give us the same form and much simpler procedure than

Eq.(3.12). So we use this method when we consider another error definition J2. Also

we consider the projection the whole matrix into computational states in Appendix

C. We already have the evolution equation Eq.(3.7). Using the initial condition of

the forward propagator G gives

G(0) = I⇒ ∆G(0) = 0. (3.17)

Let

4a(t) = εk+1(t)− εk(t), (3.18)

4b(t) = εk(t)− εk−1(t), (3.19)

and then from Eq.(3.8) we have

∆Λ(t) = ∆a(t)Λ1. (3.20)

Substituting the boundary condition of Bk(t) into the difference of the cost function,

we obtain

∆J = J(εk+1)− J(εk)

= +

ˆ T

0

ReTr{∆a(t)Λ1G
k+1(t)Bk(t)}dt

−λ
ˆ T

0

[∆a(t)]2dt

+λ

ˆ T

0

[∆b(t)]2dt. (3.21)
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Taking the derivation with respect to 4a(t), and requiring it to vanish

∂(∆J)

∂(∆a(t))
=

ˆ T

0

ReTr{Bk(t)Λ1G
k+1(t)}dt

−2λ

ˆ T

0

∆a(t)dt = 0, (3.22)

we obtain an update rule for the control field

εk+1(t) = εk(t) + ∆a

= εk(t) +
1

2λ
ReTr{Bk(t)Λ1G

k+1(t)}. (3.23)

3.4 Two Qubit Optimal Control

If now we have two independent control fields on the two qubits, respectively, in the

operator Λk(t) , where

Λk(t) = Λd + εk1(t)Λ1 + εk2(t)Λ2, (3.24)

and the update can be easily generalized to be

εk+1
1 (t) = εk1(t) +

1

2λ
ReTr{Bk(t)Λ1G

k+1(t)} (3.25)

εk+1
2 (t) = εk2(t) +

1

2λ
ReTr{Bk(t)Λ2G

k+1(t)} (3.26)

3.5 State-independent Optimal Control

3.5.1 Computational States and Leakage States

Instead of the optimization of state-selective transition which is frequently used in

chemical reaction, we focus on the state independent optimal control for quantum

gate operations. Consider a Hilbert space which is the tensor product of the system
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and bath Hilbert spaces. The Hamiltonian of the whole system can be written as

H = HS ⊗HB, (3.27)

where HS is the system Hamiltonian acting on the system Hilbert space and HB is

the environment Hamiltonian acting on the environment Hilbert space.

If we consider the leakage levels and two independent baths coupled to the two

qubits, respectively, we may write down

HS = Hcom ⊕Hleak, (3.28)

and

HB = HB1 ⊗HB2, (3.29)

where Hcom is the qubit Hamiltonian acting on the Hilbert space of the computational

basis states and Hleak is the leakage part of the Hamiltonian.

Combining these we can get

H = (Hcom ⊕Hleak)⊗ (HB1 ⊗HB2). (3.30)

So how does we denote the evolution of state without telling you the initial one? If

we consider a state evolution with a time-independent Hamiltonian, we have

|ψS(t)〉 = e−
i
~Ht|ψS(0)〉, (3.31)

ρS(t) = e−
i
~HtρS(0)e

i
~Ht. (3.32)

Now we transform it to superoperator form representation:

ρS(t) = ξt{ρS(0)}. (3.33)
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In this case, the superoperator is functionally dependent on externally applied field

ε(t), i.e.

ξt = ξt[ε(t)].

Since the density matrix is a positive operator, it must remain positive under the gate

operation. So the map of the superoperator ξ must be completely positive. We can

express it by Kraus operators Km:

ρS(t) = ξt[ε(t)]{ρS(0)} =
∑
m

Km[ε](t)ρS(0)K†m[ε](t) (3.34)

with Km[ε](t) depending on the propagator of the composite system and on ε(t).

So we want to know when we can find the target control parameter using the

optimal control theory. How do we know that the superoperator ξt[ε
∗] is close to the

target mapping ξD? The target gate operation we want is a unitary operation. In

the state vector representation we can write

|ψS(tf )〉 = UD(tf )|ψS(0)〉.

In the density matrix representation, we have

ρS(tf ) = UD(tf )ρS(0)U†D(tf ).

In terms of the state-independent superoperator, ρS(tf ) = ξf{ρS(0)}, where

ξf{. . .} = UD(tf )(. . .)U
†
D(tf ) (3.35)

It is useful to formulate a cost functional within the language of process tomography,

so that one can easily see the difference between the target superoperator or if it is
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unitary or not. By expanding the Kraus operator, we can rewrite the mapping.

Km(t) =
∑
n

αmnKn (3.36)

with αmn ∈ C and Kn ∈ A, where A denotes a complete basis set of M×M matrices.

The total number of orthonormal basis states M is

M = Mcom +Mleak (3.37)

where Mcom is the number of the computational states and Mleak is the number of

the leakage states. So we can write the final density matrix

ρ(tf ) = ξtf{ρ(0)} =
∑
m,n

Kmρ(0)K
†
mχmn(tf ) (3.38)

with χmn =
∑

k αkmα
?
kn.

Considering the Josephson charge qubits we talk about before. We haveMcom = 2 (computational)

Mleak = 2 (leakage)

(3.39)

with basis states {|0 >, |1 >} and {| − 1 >, |2 >} respectively.

For one qubit, the dimension of the representation of χ is M2×M2 = 4× 4 = 16.

For two qubits, because of the tensor product of the Hilbert spaces of two different

qubits, we haveM
1
com ×M2

com = 4 (computational)

M1
leak ×M2

leak = 4 (leakage)

(3.40)

So the dimension of the representation of χ is M2 ×M2 = 16× 16 = 256.

Since the dimension of the total Hamiltonian superoperator matrix will become so

big when you consider the leakage states. It will take a lot of time for the evolution of
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the propagator. The matrix χ is usually termed as the process tomography matrix.

In order to compute the element of χ, we choose a fixed set of operators {σj} = B

(and choose B = A). We can write down the time evolution with respect to the

mapping ξ.

σj(tf ) ≡ ξtf{σj} (3.41)

For one-qubit operations with two leakage levels or for two-qubit gates, the tensor

product of Pauli matrices τi ⊗ τj with i, j ∈ {x, y, z, 0} and τ0 = I is a convenient

choice for A,B. Recently, people use process tomography method has been used to

deal with super conducting qubit problem [2].

The mapping is linear, so one can rewrite it by

ξtf{σj} =
∑
k

cjkσk (3.42)

The mapping ξtf is determined by the coefficients cjk, and the experimental determi-

nation of the mapping involves quantum state tomography.

Relating cjk to χmn yields

∑
k

cjkσk =
∑
m,n

σmσjσnχmn(tf ). (3.43)

By using

〈σi, σk〉 = iδik, (3.44)

we can extract cij:

cij = 〈σi, σj(tf )〉 =
∑
m,n

〈σi, σmσjσn〉χmn(tf ) ≡
∑
m,n

Bimjnχmn(tf ). (3.45)

So we can solve the system of linear equations 〈σi, σj(tf )〉 =
∑

m,nBimjnχmn(tf ),

which involves the inversion of B.
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Define the operator

χ̂ =
∑
m,n

(K̄?
n ⊗ K̄n)χmn (3.46)

and the cost functional

J ≡
∥∥Pχ̂− χ̂D∥∥2

= Tr{
[
Pχ̂− χ̂D

] [
Pχ̂− χ̂D

]†}, (3.47)

where P is the projection operator that project onto the MC-dimensional compu-

tational Hilbert space. Ref.[2] deals with the one-qubit operation with two leakage

states. The projector is

Pij =
∑

k=6,7,10,11

δi,kδj,k (3.48)

with i, j ∈ {1, 2, · · · ,M2 = 16}. How to explain the values of k ? For our two-

qubit operation, we consider that each qubits has two leakage states. We use the

computational tensor product state basis, e.g.

|00〉 = |0〉 ⊗ |0〉. (3.49)

The CNOT operation in the computational state basis reads

CNOT =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 . (3.50)
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The corresponding transitions are



|00〉 → |01〉,

|01〉 → |00〉,

|10〉 → |10〉,

|11〉 → |11〉.

(3.51)

By considering the leakage states from n = −1 ∼ 2, the target CNOT matrix must

be rewritten. Begin with the first qubit state in | − 1〉and combine the second qubit

state as a product state. Then we have the basis states

| − 1− 1〉, | − 10〉, | − 11〉, | − 12〉, |0− 1〉, |00〉, |01〉, |02〉

, |1− 1〉, |10〉, |11〉, |12〉, |2− 1〉, |20〉, |21〉, |22〉.

Checking with the Eq. (3.51), we can see that the tributed states are No.6,7,10,11.

Thus, the values of k in the expression of the projector, Eq.(3.48), should be exactly

those numbers with the other vanishing since we concern only the CNOT operation

in the computational state basis.

3.5.2 Superoperator and Column Representation

We transform the density matrix into a vector using the matlab function reshape.

The label of vector is first from the top to bottom of the first column of the matrix

and then jumps to the top of next column. The procedure is repeated until all the

elements are rearranged into the vector. That is, splitting the matrix into columns

and then combine all the columns into one vector.

Let’s consider a simple example of a density matix below and assume the index
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numbers with bar on the top are in the computational states:

ρ =


1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

 . (3.52)

Using the matlab reshape function will transform the matirx of Eq.(3.52) into

reshape(ρ, row = 16, column = 1)→ col(ρ) =



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16



. (3.53)

When do we need this column representation? Evolving a density matrix, unlike pure

state, we need to multiply the evolution operator both in the front and behind, i.e.,

ρ(t) = U(t)ρ(0)U†(t). More generally, we will encounter the operation of

ρ = AρB (3.54)
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in the master equation for the reduced system density matrix in open quantum sys-

tems. Define a superoperator by combining the equation Eq. (3.38) and Eq. (3.46)

χ̂ = BT ⊗A. (3.55)

The operation of Eq.(3.54) is transformed as

col(ρ) = χ̂col(ρ) = (BT ⊗A)col(ρ). (3.56)

The benefit of doing this is that (a) the operation part is complete in front of the

density matrix and (b) this will make the form of equation of motion simpler and

easier to compute by a computer.

But remember that the dimension of the superoperator is now bigger than ever.

dimension→


A (M ×M),

B (M ×M),

χ̂ (M2 ×M2).

Let’s consider the two-qubit CNOT operator with two leakage levels. In this
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column vector representation,

CNOT =



0 · · · · · · 0
...

. . .
...

. . .

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

. . .
...

. . .
...

0 · · · · · · · · · · · · 0



(3.57)

with the values of CNOT operator in the computational states, specified with bars

on the tops shown above. The operator in the number state basis which including

leakage states is a 16 × 16 matrix. But when we consider it in the superoperator

form, it is going to be a large 256× 256 matrix. We will use this column vector and

superoperator form to implement our numerical calculations on a computer.
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Chapter 4

Results

4.1 Overview

In this Chapter, we present our optimal control results for four different cases, namely,

closed/open system with/without leakage states.

But first we give an example of how we monitor the whole optimal procedure and

how we determine whether the result is good or bad.

The plot in the first row of Fig. 4.1 shows two different error measures, J1 and J2,

versus iteration number. As the number of iteration increases, the error J1 and error

J2 both decrease. The colorful matrix bar figure shows the values of the elements

of the final propagator in the column vector representation. Since this result is for

a closed system with no leakage states, two errors J1 and J2 are the same and the

propagators during this optimal procedure are all unitary. The plots in the bottom

row show two control field pulses or sequence, where “control n1” represents ng1 and

“control n2” represents ng2 as in Eq.(2.4).
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Figure 4.1: A standard diagram of analyzing a whole optimal control procedure. The
first row shows two errors J1 and J2 versus iteration number, and a color bar matrix
representing the elements of superoperator at the final operation time. The second
row shows the control pulses of the final optimal results.
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Figure 4.2: Optimal control CNOT gate error versus final gate operation time for a
closed system without leakage states.

4.2 Closed System with No Leakage Levels

4.2.1 Overview

We know that performing a gate operation needs time, and there is a limit on how

fast gate can be performed.Since errors J1 and J2 are the same for unitary operations

in a closed system, one can use either of them as a error measure. We can see that

the minimum time we need to perform this CNOT operation.

From Fig. 4.2, we can see that if the CNOT gate operation time is shorter than

55ps, the error grows rapidly. This is become there is a limit on how large the

parameters in the tunable terms of the Hamiltonian.

In the following analysis (with leakage or not), we will take the CNOT operation

time of 55ps as a reference standard.

4.2.2 Pulse Shape

Figures 4.3˜4.5 shows the CNOT gate error versus the iteration number, the matrix

element of the find propagator in the superoperator form, and control field pulses for

gate operation time of 35ps, 45ps, and 55ps, respectively. One can see that the gate
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error J1 and J2 for tf = 35ps and tf = 45ps can not be formed when the number of

iterations is above about 100. In contrast the gate error can still be improved with

the increasing iteration number for the case of tf = 55ps. As a result, it has a much

lower value of gate errors then the other two cases.

This can also be seen when one compares the values of the color bars representing

the matrix element of the superoperator in there three cases with that of the target

CNOT operation in Fig. 4.1.

Significant difference in color bar values between tf = 35ps, tf = 45ps cases and

the target CNOT case can be observed, while the agreement between the tf = 55ps

case and the target CNOT case is excellent.

Figure 4.6 shows the optimal control pulses of a CNOT gate for various operation

times. One can clearly see that the control pulse shapes depend on the values of the

gate operation times.

4.3 Open System with No Leakage Levels

4.3.1 Overview

In the case of open system, we want to know how much the decoherence effect of the

environment could affect the optimal results, and how well can we perform a optimal

CNOT gate control under the decoherence.

The CNOT gate errors for different temperatures and different cutoff frequencies

are plot in Fig. 4.8. The best result with error J2 ∼ 10−5 is at the lowest temperature

10mK and the lowest cutoff ωc = 2π × 1 GHz. This does make sense because the

decoherence effect should be small when the temperature and the cutoff frequency

are both small. Since this result is for the CNOT gate operation time of 55ps, this

operation time is fast so that the decoherence effect has not fully dominated. If one

compares the optimized pulses in the closed system case with their corresponding

optimal control pulses obtained in the open system cases for the CNOT gate with

tf = 55ps, one will find that the control pulses shapes do not change much. That is
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Figure 4.3: Result of the CNOT gate operation for a operation time tf = 35ps. The
first row shows two errors J1 and J2 versus iteration number, and a color bar matrix
representing the elements of superoperator at the final operation time. The second
row shows the control pulses of the final optimal results.
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Figure 4.4: Result of the CNOT gate operation for a operation time tf = 45ps. The
first row shows two errors J1 and J2 versus iteration number, and a color bar matrix
representing the elements of superoperator at the final operation time. The second
row shows the control pulses of the final optimal results.
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Figure 4.5: Result of the CNOT gate operation for a operation time tf = 55ps. The
first row shows two errors J1 and J2 versus iteration number, and a color bar matrix
representing the elements of superoperator at the final operation time. The second
row shows the control pulses of the final optimal results.
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Figure 4.6: CNOT gate control pulse for different operation times in a closed system
with no leakage states.
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Figure 4.7: 10mK open system optimal control diagram. Notice that the J1 does not
monotonically converge since we use the algorithm which optimize J2.
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Figure 4.8: Operation CNOT gate errorJ2 as a function of the cutoff frequency ωc for
different temperature.

50



50 60 70 80 90 100
10

−6

10
−5

10
−4

10
−3

10
−2

final time(ps)

er
ro

r 
J2

 

 

T=100mK ω
c
=2π*1GHz

T=100mK ω
c
=2π*100GHz

T=10mK ω
c
=2π*1GHz

T=10mK ω
c
=2π*100GHz

Figure 4.9: Open system CNOT gate error J2 as a function of final time tf for different
temperatures and cutoff frequencies.

the advantage of the fast operation time.

Figure 4.9 shows the open system CNOT gate error J2 versus gate operation

time for two different cutoff frequencies and two different temperature. As the gate

operation time gets larger, the error becomes bigger due to the larger decoherence

effect. The gate error for small cutoff frequency of ωc = 2π× 1 GHz is more sensitive

to the length of gate operation time tf But when tf > 70ps, the dependence is similar

to that of ωc = 2π × 100 GHz.

One can see that the cutoff frequency has a big effect on the gate error when the

gate operation time is 55ps. However, for a given cutoff frequency, the gate error is

almost unchanged for the two different temperatures of 10 mK and 100 mK.

4.4 Closed System with Leakage Levels

4.4.1 Overview

The behavior of the CNOT gate error as a function of gate operation time with leakage

states shown in Fig.4.10 is similar to that in Fig. 4.2. However, the leakage states
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Figure 4.10: The closed system CNOT gate optimal diagram with leakage level.

iteration number 5000 10000 15000 20000

error 1.9137e-005 1.2016e-005 7.6831e-006 5.8017e-006

Table 4.1: Comparison of the iteration numbers and error. Since the error didn’t
massively decrease and the time is too much, we only choose 5000 iteration number
to analyze in this section.

make the error bigger than Figure 4.2. This is fine since the errors are only around

10−4 ∼ 10−5. And the important part of this is we perform a CNOT gate optimal

control with leakage levels. So now we can compare our result with the previous

papers which they claim they use leakage levels.

Since the leakage levels make the dimension of the superoperator much larger,

the time we need to complete the optimal control calculation is massively increased.

Table 4.1 shows the gate error J2 at different iteration numbers. What we see is that

when the error reach a small value , it does not decrease very much as the number

of iteration increases. But the time we need increases significantly. Besides, when

the final time of the optimal gate operation increases, the time needed becomes very

expense. So the data used in Figure 4.10 is for the iteration number 5000. But Table

4.1 does show that the error can be lower when the iteration number increases.
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Figure 4.11: There are three columns and rows, they represent different optimal
situation and their control pulse shape. The first row is the optimization of CNOT
gate with leakage but the algorithm is made to optimize J1. The second and the
third rows are basically the same. The second is the algorithm is changed to adapt
the leakage levels but still made for J1, and the error is decided by pulling out the
computational elements and reconstruct it into a small matrix and then compute
error. The third one is the same but compute the error by using the big matrix with
leakage levels only set the non-computational elements into zeros. The fourth one is
made to optimize J2 with leakage levels. The dimension of time step is 0.1ps.
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Figure 4.12: The error and the control pulse from [3]. The pulse shape is very similar
to these obtained through the optimization of the error function J1 in Fig. 4.11.

4.4.2 Pulse Shape

Figure 4.10 shows the control field pulses obtained by the optimization of different

error functions.

The result of the first row is to optimize error function J1 in the closed system

with leakage states but without projecting J1 onto the computational states. The

second and the third are basically the same as they both optimize the error function

J1 with the second one making the projection onto the computational state subspace

and the third one setting the non-computational basis subspace elements to zero.

This lead to the question regarding which optimal control result is closer to the real

target CNOT operation. The proper choice is to optimize J2 with the propagator

and target CNOT gate projected onto the computational subspace.

The reason to make the projection operation is that we do not care what the

evolution of the leakage states is when we construct the two-qubit CNOT operation.

The consequence of projecting the actual evolution operator (or propagator) at the

final time will make the projected propagator no longer unitary. So the error functions

J1 and J2 optimized with projected propagator are different. We choose J2 as the

distance between target gate and actual propagator takes the difference of every

element in the matrix into account.

One can see from Fig. 4.11 that the control pulse shapes obtained by optimizing
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J1 are quite different from those obtained by optimizing J2. Figure 4.12 shows the

gate error and control pulses reproduced from [3]. The algorithm used in Ref.[3] is to

optimized J1, so the control pulses are very similar to our results for J1 in Fig. 4.11.

But as stated, optimization of J2 is a better choice to define error when the actual

propagator is not unitary.

4.5 Open System with Leakage Levels

Considering the open system effect by introducing the auxiliary density matrix make

the dimension of the matrix of the propagator big. For example, fitting the bath

correlation function with 1 exponential terms for the lowest cutoff frequency ωc =

2π× 1GHz has 1280× 1280 superoperators, which is very difficult to deal with using

matlab. The result is in Figure 4.14. And Figure 4.13 shows the optimal control pulses

obtained in the closed system with leakage states. We evaluate the error by evolving

the open system with the closed-system optimal control pulses. One iteration takes

about 45 minutes. The error affect one iteration with the parameters used is small:

J2 = 7.5266 × 10−5. That is, the closed system optimal control are good enough to

achieve a high-fidelity CNOT gates.

The gate errors for different temperature obtained by evolving the non-Markovian

master equation with the optimal control pulses in closed system case are presented

in Fig. 4.14. Since the optimal control calculation for two qubits with leakage states,

interacting with a non-Markovian bath is quite computationally expensive. We choose

to take the closed-system control pulses for the open system. The gate error obtained

in one iteration will be taken as the error for the open system. The gate error obtained

this way also same as a measure about how good the closed-system optimal control

pulses are against the environment induced decoherence. We find that the error is

only around 10−3 ∼ 10−4 even at high cutoff frequency for the parameters used in our

calculations. This indicates that the closed-system optimal control pulses are pretty

robust against decoherence for the model we investigate.

In Figure 4.15, we insert the different error J2 of closed system into T = 10mK
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Figure 4.13: Optimized pulses obtain in a closed system with leakage states for tf =
55ps, which are used to evolve the open system with leakage states.

open system. It shows that the error can be further improved if we have the extreme

low error result in closed system. Since the dimension is so big and the iteration of

closed system is slow enough, we only demonstrate the possibility of the improvement

in open system.

Compare to the gate error for the optimal control case of the open system without

leakage states shown in Fig. 4.8, the presence of the leakage states seems to prevent

the gate error at low cutoff frequencies from decreasing. But keep in mind that we do

not actually perform optimal control algorithm for the gate error shown in Fig. 4.14.
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Figure 4.14: The error J2 as a function of cutoff frequency ωc for different temper-
atures at tf = 55ps for the open quantum system with leakage states. The gate
error is obtained by inserting the optimal control pulses of the closed system into the
non-Markovian master equation of the open system.
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Figure 4.15: Demonstrate the effect of different insert errors into open system. In
10mK environment , the error J2 is possible to get lower level in open system if we
insert lower error pulse shapes of closed system. The blue line insert the pulse shapes
of error J2 = 2 × 10−5 of closed system into open system, and the green line insert
the pulse shapes of error J2 = 6× 10−6 of closed system into open system.
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Chapter 5

Conclusion

We give a short conclusion in this Chapter. In order to perform optimal control of

gate operations in closed and open quantum system, we choose the Krotov optimal

control method. Krotov optimal control method is effective when we are dealing with

closed system with no leakage level. Using J2 = 1
2N
Tr[(Q−G(T ))†(Q−G(T ))] is a

better way to define the error than J1 = 1 − 1
N
Tr(Q†G(T )) since the closed system

result will make J2 = J1 and in the open system result G(T ) will not be unitary and

the error function J2 take the distance of every matrix element in the Q−G(T ) into

account. However, the definition of J2 will cause the derivation of Krotov optimal

control not able to be monotonically convergence anymore. But since the Krotov

method only guarantee the convergence of the cost function and we only need the

convergence of the error. So the try and error of penalty become a practical issue

during the simulation. Using optimal control to optimize J2 in the closed system with

no leakage states can give extreme low error, e.g. 10−10. When we insert this control

parameters (closed system control pulses) into non-Markovian open system and do

the optimal control again, we find that the iteration just stops at very low numbers,

e.g. 10 with error J2 about 10−3 ∼ 10−5, depending on the bath parameters used

in the calculations. This shows that the optimal control is efficient and robust in

the closed system. The optimal control of error J2 in the closed system with leakage

states is hard to reach low error (but possible if the iteration increases). With 5000

to 10000 iterations we could only reach error J2 ∼ 10−5. With the same iteration
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number, we could reach error of 10−10 for the closed system without leakage states.

For the case of open system with leakage states, we simply use the optimal control

pulses obtained in the closed system to evolve the open system to obtain the gate error

as the optimal control calculation in this case is rather computationally expensive.

The result of the gate error is around 10−3 ∼ 10−4 for the bath parameters extracted

from the experimental noise spectrum.

The reason why the improvement for the open system optimal control is not great

may be the following. In our charge qubit model, it is assumed that we have control

only on the σz terms or on the operators with diagonal matrix elements in the charge

state basis in our Hamiltonian, Thus we may be able to correct the environment

induced relaxation efficiently. As a result, the optimal control can not improve much

the gate error for our open system model. If control over both σz and σx terms or

over both diagonal and off-diagonal matrix element operators in the Hamiltonian were

allowed, the optimal control theory might be able to do a much better job on gate

error improvement.
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Appendix A

RK4 and expm

In this appendix, we compare the Runge-Kutta method (RK4) with matrix exponen-

tial (expm) method of solving the differential equation of the propagator:

dG(t)

dt
= Λ(t)G(t). (A.1)

This problem of solving the differential equation is hard when you want to directly

solve it. However, we can use the assumption that the superoperator Hamiltonian

can be treated as time independent in every small time step dt.

That is,

G(t+ dt) = eΛ(t)dtG(t), (A.2)

which is exact in every small time step.

This can lead us to the evolution of the propagator G

G(tf ) = eΛ(tf−dt)dt · · · · · · eΛ(2dt)dteΛ(dt)dteΛ(0)dtG(0). (A.3)
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The definition of matrix exponential is

eA = I +
A

1!
+

A2

2!
+

A3

3!
+ · · · · · ·

=
∞∑
i=0

Ai

i!
. (A.4)

But the above definition cannot be directly turned into codes when the norm of A

is bigger than 1. Since the Taylor series do not converge. One may use the Pade

approximation to calculate the matrix exponential.

Another method to solve the differential equation is Runge-Kutta method (RK4).

For a differential equation dy
dt

= f(t, y) with the initial condition y(0) = y0, yn+1

at the time tn+1 = tn + h can be written as

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4), (A.5)

where h is a small time step

k1 = f(tn, yn)

= (Λd + ng1(tn)Λ1 + ng2(tn)Λ2)G(tn), (A.6)

k2 = f(tn +
h

2
, yn +

h

2
k1)

= (Λd + ng1(tn +
h

2
)Λ1 + ng2(tn +

h

2
)Λ2)(G(tn) +

h

2
k1), (A.7)

k3 = f(tn +
h

2
, yn +

h

2
k2)

= (Λd + ng1(tn +
h

2
)Λ1 + ng2(tn +

h

2
)Λ2)(G(tn) +

h

2
k2), (A.8)

k4 = f(tn + h, yn + hk3)

= (Λd + ng1(tn + h)Λ1 + ng2(tn + h)Λ2)(G(tn) + hk3), (A.9)

We have used dG
dt

= Λ(k)G for dy
dt

= f(t, g) to obtain each last line of Eq.(A.6)˜(A.9).
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Since we already make our control be constant in each of the small time intervals. By

comparing the expm of matlab and our own rk4. We figure out that every time step

of the differential equation must solve separately. That is, choose ng1(tn + h
2
) and

ng1(tn + h) both as ng1(tn) and choose ng2(tn + h
2
) and ng2(tn + h) both as ng2(tn).

Which means that the control does not change at all in this time interval.

Remember that RK4 gives only approximated results. When the norm of Λ(t)dt

is too big, using RK4 to approximate the matrix exponential result would fail. Why

is this issue important? Consider the closed system where is no environment noise.

Theoretically, the optimal control of a two-qubit CNOT gate should be perfect and

only bounded by the computer precision limit. Somehow the error of RK4 may cause

problem such as error re-bounce in early iteration or make the final error lower than

it used to be when using expm.

The lowest final time we choose with good fidelity is55ps. We divide it into 551

time steps in the closed system problem. Other paper [6] choose only 55 time steps. In

the first time step, the propagator elements only have error around 10−6 as compared

to the answer of expm. However, the initial error could cause a slightly difference

after all 551 points and make the propagator non-unitary. The propagator should be

unitary under the condition of being in a closed system. And this causes the values

of two definitions of the error functions different.

For example:

Λ(t) = A + ng1(t)B + ng2(t)C, (A.10)

whereA =


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

+ i


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
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and B = C =


1 2 0 0

5 6 0 0

0 0 11 12

0 0 15 16

+ i


1 2 0 0

5 6 0 0

0 0 11 12

0 0 15 16

 with dt = 10−3. We may

also tune the norm of the matrix and make A → aA, B → aB, C → aC, and

Λ(t)→ aΛ(t), with a = 1, 10, 100, 1000.

That is

aΛ(t) = aA + ng1(t)aB + ng2(t)aC. (A.11)

Compute the differential equation

dG(t)

dt
= aΛ(t)G(t) (A.12)

and compare each element of the matrix at the final time for different values of ”a”.

When the norm of the aΛ(t) is too big, e.g. a = 100, 1000, the RK4 method fails.
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Appendix B

Derivatives of Matrix, Traces

The following matrix properties are extracted from [17]. These properties and tech-

niques are necessary for our calculations.

B.1 Matrix Multiplication

A matrix multiplication is simple.

AB = C,

and the dimension of these real matrices are
A (m× n),

B (n× p),

C (m× p).

The elements of matrix C can be represented by those of the original two matrices:

Cij = (AB)ij =
n∑
r=1

AirBrj.
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B.2 Derivatives of Matrix

We want to perform a derivative of a matrix. Remember that the derivative can

always be reduced to the element derivative in matrix derivative. First, the basic

assumptions of the matrix element derivative can be written in a formula as

∂Xkl

∂Xij

= δikδlj.

B.3 Derivatives of Trace

C = Tr(AB),

Cij = Tr(AB)ij =
n∑
r=1

AirBri,

Dir =
∂C

∂Air
=
∂Tr(AB)

∂Air
=

∂

∂Air

[
n∑
r=1

AirBri

]
= Bri.

In a matrix form

D =
∂C

∂A
=
∂Tr(AB)

∂A
= BT .

This mathematical tool of matrix derivative is important because in optimal control

problems, we always want to reach some maximum or minimum points and a density

matrix is usually used. A lot of equations and constraints are also expressed by matrix

operators. Since we want to find the maximum or the minimum point, the derivative

of a matrix trace is very important.

B.3.1 Derivation of Trace REAL Matrix

Here we list some useful formula below. Assume that in this section the matrices are

REAL.
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B.3.1.1 First Order

∂Tr(X)

∂X
= I,

∂Tr(XA)

∂X
= AT ,

∂Tr(AXB)

∂X
= ATBT,

∂Tr(AXTB)

∂X
= BA,

∂Tr(XTA)

∂X
= A,

∂Tr(AXT)

∂X
= A.

B.3.1.2 Second Order

∂Tr(X2)

∂X
= 2XT ,

∂Tr(X2B)

∂X
= (XB + BX)T ,

∂Tr(XTBX)

∂X
= BX + BTX,

∂Tr(XBXT)

∂X
= XBT + XB,

∂Tr(AXBX)

∂X
= ATXTBT + BTXTAT,

∂Tr(XTX)

∂X
= 2X.

B.3.2 Derivation of Trace COMPLEX Matrix

The generalization to the case for complex matrices is straightforward. One can split

a complex matrix into a real part and a imaginary part, and just carries out the

calculation as in the case for real matrices. But putting them together into a formula

requires to pay more attention on the combination formula.
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B.3.2.1 Generalized Complex Derivative:

∂Tr(AB)

∂B
=

1

2

(
∂Tr(AB)

∂Breal

− i∂Tr(AB)

∂Bimag

)
.

B.3.2.2 Useful Formula

∂Tr(AX)

∂X
=

1

2

(
∂Tr(AX)

∂Xreal

− i∂Tr(AX)

∂Ximag

)
=

1

2

(
AT + AT

)
= AT,

∂Tr(AX†)

∂X
=

1

2

(
∂Tr(AX†)

∂Xreal

− i∂Tr(AX†)

∂Ximag

)
=

1

2
(A−A) = 0,

∂Tr(AX?)

∂X
=

1

2

(
∂Tr(AX?)

∂Xreal

− i∂Tr(AX?)

∂Ximag

)
=

1

2

(
AT −AT

)
= 0.
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Appendix C

Leakage Optimal Calculation

This is the basic calculation on the target function which is in the cost function that

one wants to minimize. The derivative of the target function is directly related to

the initial condition of the backward propagator. Surprisingly, when we consider the

leakage effect, the result of the derivative is still very simple.

Before we start, some basic knowledge and notations are given as follows

Let

G(T ) = G1 + iG2,

The projection operator acting on G is written as

P [G(T )]= Gpro1 + iGpro2.

We have

∂f(G(T ))

∂G(T )
=

1

2
{∂f(G(T ))

∂G1

− i∂f(G(T ))

∂G2

}

First, I present the calculation:

R = Q− P [G(T )],
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ReTr(R†R) = ReTr({Q−Gpro}†{Q−Gpro})

= ReTr(Q†Q−Q†Gpro −G†proQ + G†proGpro)

= ReTr{Q†Q−Q†(Gpro1 + iGpro2)

−[(Gpro1)T − i(Gpro2)T]Q

+[(Gpro1)T − i(Gpro2)T](Gpro1 + iGpro2)}

= ReTr{Q†Q−Q†Gpro1 − iGpro2Q† − (Gpro1)TQ

+i(Gpro2)TQ + (Gpro1)TGpro1

+i(Gpro1)TGpro2 − i(Gpro2)TGpro1 + (Gpro2)TGpro2}.

The derivative with respect to the real part G1:

∂

∂G1

ReTr({Q− P [G(T )]}†{Q− P [G(T )]}) = Re{0− P [Q?]− 0− P [Q]

+0 + P [2G1] + iP [G2]

−iP [G2] + 0} = α.

The derivative with respect to the imaginary part G2:

∂

∂G2

ReTr({Q− P [G(T )]}†{Q− P [G(T )]}) = Re{0− 0− iP [Q?]− 0

+iP [Q] + 0 + iP [G1]

−iP [G1] + P [2G2]} = β.

Combining them together, we obtain the result

∂

∂G(T )
ReTr({Q− P [G(T )]}†{Q− P [G(T )]}) =

1

2
(α− iβ)

=
1

2
{P [(−Q? −Q)− i(−iQ? + iQ)]

+P [(2G1)− i(2G2)]}

=
1

2
{P [−2Q? + 2G?(T )]}

= P [−Q? + G?(T )]

One may notice that if we remove the projection operator, the result reduces to
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the original one. The reason is the following. The derivative of the matrix with or

without the projection operator doesn’t change the derivative result much.

Mij =
∂Tr(P [A]B)

∂Aij
=
∂Tr(AproB)

∂Aij

=
∂

∂Aij

∑
i

∑
j

Apro,ijBji =

Bji computational,

0 otherwise.

In matrix form:

M =
∂Tr(P [A]B)

∂A
=
∂Tr(AproB)

∂A
= P [BT].

Nji =
∂Tr(P [A]TB)

∂Aji
=
∂Tr((Apro)TB)

∂Aji

=
∂

∂Aij

∑
i

∑
j

Apro,jiBji =

Bji computational,

0 otherwise.

In matrix form:

N =
∂Tr(P [A]TB)

∂A
=
∂Tr((Apro)TB)

∂A
= P [B].

Oji =
∂Tr(P [A]TP [A])

∂Aji
=
∂Tr((Apro)TApro)

∂Aji

=
∂

∂Aij
(

i6=j∑
i

i6=j∑
j

Apro,jiApro,ji +

i=j=u∑
u

Apro,uuApro,uu)

=



2Auu i = j = u(computational),

2Aji i 6= j(computational),

0 i = j = u(non-computational),

0 i 6= j(non-computational).
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In matrix form:

O =
∂Tr(P [A]TP [A])

∂A
=
∂Tr((Apro)TApro)

∂A
= P [2A].

72



Bibliography

[1] Yuriy Makhlin and Gerd Schon and Alexander Shnirman, Rev. of Mod. Phys.

Vol. 73, No. 2 (2001).

[2] Robert Roloff and Walter Potz, PRB, 79, 224516(2009)

[3] Simone Montangero and Tommaso Calarco and Rosario Fazio, PRL, 99,

170501(2007)

[4] Yu.A.Pashkin et al, Nature(London), Vol. 421, p.823(2003)

[5] T.Yamamoto and Yu.A.Pashkin and O.Astafiev and Y.Nakamura and J.S. Tsai,

Nature, Vol. 425, p.941(2003)

[6] A. Sporl and T. Schulte-Herbruggen and S. J. Glaser and V. Bergholm and M.

J. Storcz adn J. Ferber and F. K. Wilhelm, PRA, 75, 012302(2007)

[7] Yuriy Makhlin and Gerd Schon and Alexander Shnirman,Chemical Phys.

296(2004) 315-324

[8] O.Astafiev and Yu.A.Pashkin and Y.Nakamura and T.Yamanoto and J.S.Tsai,

PRL, 93, 267007(2004)

[9] Jose P. Palao and Ronnie Kosloff, PRA, 68, 062308(2003)

[10] R. Roloff and M. Wenin and W. Potz, arXiv:0910.0362v1 [quant-ph] 2 Oct 2009

[11] Jose P. Palao and Ronnie Kosloff, PRL, 89, 188301(2002)

[12] G.-Q. Li and U. Kleinekath¨ofer, Eur. Phys. J. B 76 , 309–319 (2010)

73



[13] Ruixue Xu and YiJing Yan and Yukiyoshi Ohtsuki and Yuichi Fujimura and

Herschel Rabitz J. Chem. Phys., Vol. 120, No. 14, 8 April 2004

[14] Allon Bartana and Ronnie Kosloff and David J. Tannor, Chemical Physics

267(2001) 195-207

[15] Matthew Grace, Constantin Brif, Herschel Rabitz, Ian A Walmsley, Robert L

Kosut and Daniel A Lidar, J. Phys. B: At. Mol. Opt. Phys. 40 (2007) S103–S125

[16] Yu. A. Pashkin and O. Astafiev and T. Yamamoto and Y. Nakamura and J. S.

Tsai, Quantum Inf Process (2009) 8:55–80

[17] Kaare Brandt Petersen and Michael Syskind Pedersen, The Matrix Cookbook,

version 12/14/2008

[18] Andrei Tokmakoffm, MIT Department of Chemistry, 3/12/2009, Quantum Re-

laxation Ch10

[19] A. J. Leggett and S. Chakravarty and A.T. Dorsey and Matthew P. A. Fisher

and Anupam Garg and W. Zwerger, Rev. Mod. Phys. Vol. 59, No1(1987)

[20] Leggett, A.J., 1984b, PRB, 30, 1208

[21] A.O Caldeira and A.J Leggett, Ann. Phys, 149, 374
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