
國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Graduate Institute of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

低階虛擬機器的全域冗餘儲存指令消去

Global Dead Store Elimination in LLVM

林以倫

Yi-Lun Lin

指導教授：廖世偉 博士

Advisor: Shih-Wei Liao, Ph.D.

中華民國 102 年 7 月

July, 2013

2

誌謝

感謝指導教授廖世偉在學術研究上的大力幫助，以及實驗室強者學弟 TDY 及

Logan 的指教，還有各位實驗室子杰，老二，浩呆，FKG，安格斯，致遠，同學在

研究上的陪伴。

 i

中文摘要

我們優化了 LLVM 的 Dead Store Elimination，使其具有處理 global dead store

instruction 的能力。增加三個功能，一是處理 Load-Store Redundancy，二是

Write-Write Redundancy，第三是 Write to Local Stack Object，這其中需要 Alias

Analysis 的分析，以及新的演算法加入。

 ii

ABSTRACT

We optimize the Dead Store Elimination Pass in LLVM for handling global

dead store instructions. Global Dead Store Elimination can handle Load-Store

Redundancy, Write-Write Redundancy and Write to Local Stack Objects globally.

It needs alias analysis and a new algorithim(revised DFS) is introduced.

 iii

CONTENTS

口試委員會審定書 ... #

誌謝 ..i

中文摘要 .. ii

ABSTRACT .. iii

CONTENTS ...iv

LIST OF FIGURES ..vi

Chapter 1 Introduction .. 1

1.1 Dead Store Elimination Pass in LLVM .. 1

1.2 LLVM Code Representation ... 2

1.2.1 Memory Access and Addressing Operations ... 2

1.3 Memory Dependency Analysis in LLVM ... 3

1.4 Alias Analysis in LLVM ... 4

1.4.1 Type Based Alias Analysis .. 4

Chapter 2 Design and Implementation of LLVM Dead Store Elimination 6

2.1 Single BasicBlock Dead Stores .. 6

2.1.1 Load-Store Redundancy .. 6

2.1.2 Write-Write Redundancy ... 7

2.2 Handling Functions ... 7

2.2.1 Handle Free Call ... 7

2.2.2 Handle End-Block ... 8

2.3 Important Memory Dependence Analysis Functions 8

Chapter 3 Global Dead Store Elimination ... 9

 iv

3.1 Control Flow Graph .. 9

3.2 Dominator ... 9

3.2.1 Postdominance .. 9

3.3 Global Dead Stores Recognition .. 10

3.3.1 Dependent Instruction ... 10

3.3.2 Load-Store Redundancy .. 10

3.3.3 Write-Write Redundancy ... 11

3.3.4 Write to Dead Stack Objects ... 15

3.4 Implementation ... 16

3.4.1 Load-Store Dead Store Elimination .. 16

3.4.2 Write-Write Dead Store Elimination ... 17

3.4.3 Dead Store on Local Stack Object .. 19

Chapter 4 Experiment ... 20

4.1 Platform Enviroment .. 20

4.2 Result .. 20

Chapter 5 Conclusion .. 23

Chapter 6 Reference .. 24

v

LIST OF FIGURES

Figure 1.1 Examples of “alloca” instruction .. 3

Figure 1.2 Examples of “load” instruction ... 3

Figure 1.3 Examples of “store” instruction .. 3

Figure 1.4 TBAA MDNodes .. 5

Figure 2.1 An example of Load-Store redundancy .. 6

Figure 2.2 An example of Write-Write redundancy ... 7

Figure 2.3 Store a value to a location which will be freed later 7

Figure 3.1 Load-Store Redundancy ... 11

Figure 3.2 1st Write-Write Redundancy Example ... 12

Figure 3.3 2nd Write-Write Redundancy Example .. 13

Figure 3.4 3nd Write-Write Depdendency Eample ... 14

Figure 3.5 Write to dead stack object ... 15

Figure 3.6 Another write to dead stack object example ... 16

Figure 3.7 Examine the dependent relation of the memory write instruction in the

basicblock ... 17

Figure 3.8 DFS Algorithm walking through all possible path 18

 vi

Chapter 1 Introduction

 The last decade has seen a proliferation of managed languages. This is motivated

by the pressing needs for higher-level, more flexible, garbage-collecting languages such

as Java and Python. Runtime has become essential. The challenge of building high

quality language runtimes has increased significantly since the late 1990's when the

Java and C# runtimes emerged. Thus, the need to update runtime data structure has

skyrocketed. As a result, the store operations become more and more frequent than in a

traditional native environment.

Although LLVM claims to support both native (C and C++) and managed (Java

and JavaScript), LLVM is more ready for native. For instance, DSE in LLVM is not

suitable for a dynamic environment. This thesis enhances DSE to make it global and

suitable for managed languages.

 Dead Store Elimination is a technique to reduce the redundant store instructions in

programs. Store instructions cost more cycles than most instructions. A program with

many dead stores will drastically decrease the efficiency. As a result, it is important for a

program to reduce the unnecessary stores.

1.1 Dead Store Elimination Pass in LLVM

 LLVM’s Dead Store Elimination(DSE) pass is not strong enough to handle some of

the situations. The limitation is that it only focuses on dead stores in a single basic block;

that is, a store is a dead store only if we can find out the dependent instruction in the

 1

same basic block, and the behavior of the dependent instruction make the store not

needed.

 To eliminates dead stores thoroughly, a cross-block based approach is appropriate.

It is needed to extend the instruction depdence relation for crossing blocks. Control flow

graphs(CFG) are also been introduced. Several issues should be concerned in the

cross-block dead store elimination.

1.2 LLVM Code Representation

 To utilize LLVM passes, programs should be transformed into LLVM code

representation so that the passes of LLVM can manipulate programs. The LLVM code

representation is designed to be used in three different forms: as an in-memory compiler

IR, as an on-disk bitcode representation (suitable for fast loading by a Just-In-Time

compiler), and as a human readable assembly language representation.

LLVM code representation is an SSA-based representation. A key design point of

an SSA-based representation is how it represents memory. In LLVM, no memory

locations are in SSA form, which makes things very simple.

1.2.1 Memory Access and Addressing Operations

“alloca” instruction

The ‘alloca‘ instruction allocates memory on the stack frame of the currently

2

executing function, to be automatically released when this function returns to its caller.

The object is always allocated in the generic address space (address space zero).

Figure 1.1 Examples of “alloca” instruction

“load” Instruction

 The ‘load‘ instruction is used to read from memory.

Figure 1.2 Examples of “load” instruction

“store” Instruction

 The ‘store‘ instruction is used to write to memory.

Figure 1.3 Examples of “store” instruction

1.3 Memory Dependency Analysis in LLVM

The DSE pass use Memory Dependence Analysis. This is an analysis that

determines, for a given memory operation, what preceding memory operations it

depends on. It builds on alias analysis information, and tries to provide a lazy, caching

interface to a common kind of alias information query. The dependency information

returned is somewhat unusual, but is pragmatic.

 3

If queried about a store or call that might modify memory, the analysis will return

the instruction[s] that may either load from that memory or store to it. If queried with a

load or call that can never modify memory, the analysis will return calls and stores that

might modify the pointer, but generally does not return loads unless a) they are volatile,

or b) they load from *must-aliased* pointers. Returning a dependence on must-alias'd

pointers instead of all pointers interacts well with the internal caching mechanism.

1.4 Alias Analysis in LLVM

Alias Analysis is a class of techniques which attempt to determine whether or not two

pointers ever can point to the same object in memory. There are many different algorithms

for alias analysis. You can use diferent alias analysis at the same time. LLVM chains the

result. All of the AliasAnalysis virtual methods default to providing chaining to another

alias analysis implementation, which ends up returning conservatively correct information

(returning “May” Alias and “Mod/Ref” for alias and mod/ref queries respectively).

1.4.1 Type Based Alias Analysis

In LLVM IR, memory does not have types, so LLVM's own type system is not

suitable for doing TBAA. Instead, metadata is added to the IR to describe a type system

of a higher level language. This can be used to implement typical C/C++ TBAA, but it

can also be used to implement custom alias analysis behavior for other languages.

The current metadata format is very simple. TBAA MDNodes have up to three

fields, e.g.:

 4

Figure 1.4 TBAA MDNodes

The first field is an identity field. It can be any value, usually an MDString, which

uniquely identifies the type. The most important name in the tree is the name of the root

node. Two trees with different root node names are entirely disjoint, even if they have

leaves with common names.

The second field identifies the type's parent node in the tree, or is null or omitted

for a root node. A type is considered to alias all of its descendants and all of its ancestors

in the tree. Also, a type is considered to alias all types in other trees, so that bitcode

produced from multiple front-ends is handled conservatively.

If the third field is present, it's an integer which if equal to 1 indicates that the type

is "constant".

 5

Chapter 2 Design and Implementation of LLVM

Dead Store Elimination

 As mentioned preveiously, LLVM’s DSE pass does not deal with cross-block dead

store instructions. The following section will show what LLVM DSE does, and what

dose not.

2.1 Single BasicBlock Dead Stores

The method of LLVM’s DSE for detecting dead stores can be classified into two

category. The first one is Load-Store redundancy and the second one is Write-Write

redundancy. For the first case, the latter store instruction is redundant, for the second

one, the prior write instruction is redundant.

2.1.1 Load-Store Redundancy

Figure 2.1 An example of Load-Store redundancy

 Figure 2.1 shows that storing the same value back to a pointer which just loaded

from. Line 1 load a value to Val from Loc whitch pointed to, and line 3 store Val back to

Loc. It is easy to find out the store at line 3 is a dead store.

6

2.1.2 Write-Write Redundancy

Figure 2.2 An example of Write-Write redundancy

 Figure 2.2 shows that two consequtive stores modifying the same location without

any interleaving use. Line 1 store ValA to location Loc, and line 3 store ValB to the

same location. The second store is obviously redundant.

2.2 Handling Functions

2.2.1 Handle Free Call

Figure 2.3 Store a value to a location which will be freed later

A store instruction storing to a location(in a part of a structure) which will be freed

later is a redundant store. In Figure 2.3, line 1 and line 3 will be viewed as redundnat

instructions.

When DSE pass visits a free call to free a memory location, it regards any memory

write instruction referencing to the freed memory location as a dead instruction. The

write instruction will be removed and recursively finding other dependent write

instruction toward the unconditional branch predecessor of the basic block at which the

 7

free call located.

2.2.2 Handle End-Block

In the end-block of a function, it is no use to store a value to a local stack which

will not be used later, or any memory location which does not escape. These stores

are dead stores. DSE pass adds all the alloca instruction and heap pointers which

do not escape the function to DeadStackObjectSet. Then examing all the

instructions bottom-up in the end-block. If visiting a write instruction storing to

any object in DeadStackObjectSet, then the write instruction is a dead store. If

visits a load or load-like instruction referencing any object in DeadStackObjectSet,

the object would be moved out DeadStackObjectSet.

2.3 Important Memory Dependence Analysis Functions

 getDependency

Return the instruction on which a memory operation depends in a basic block.

 getNonLocalPointerDependency

 Return a set of instructions on which a memory operation depends in basic blocks.

 8

Chapter 3 Global Dead Store Elimination

3.1 Control Flow Graph

A control flow graph (CFG) is a representation, using graph notation, of all paths

that might be traversed through a program during its execution. To recognize dead

stores, CFG should be introduced.

3.2 Dominator

Dominator information is required to find out global dead stores. In control flow

graphs, a node d dominates a node n if every path from the start node to n must go

through d. Notationally, this is written as d dom n. By definition, every node dominates

itself.

3.2.1 Postdominance

Analogous to the definition of dominance above, a node z is said to post-dominate

a node n if all paths to the exit node of the graph starting at n must go through z.

Similarly, the immediate post-dominator of a node n is the postdominator of n that

doesn't strictly postdominate any other strict postdominators of n.

9

3.3 Global Dead Stores Recognition

There are several global dead store types, and none of them can be removed by

LLVM DSE.

3.3.1 Dependent Instruction

If instruction A is dependent to instruction B, then A and B both refer to or modify

the same memory address. If we are not sure whether the memory space referred or

modified by A and B is the same or not, we let them be dependent instruction to each

other.

To be more preciesely, a memory write instruction A writing to a memory address

Ptr is dependent to a instruction B which would be execute later if

1. B is also a memory write instruction, and B writes to Ptr.

2. B is also a memory write instruction, and we don’t know where B writes to.

3. B is a memory read instruction, and B loads a value from Ptr.

4. B is a memory read instruction, and we don’t know where B loads a value

from.

5. B is a call instruction, Ptr has escaped, and we can know B refers to or

modifies Ptr.

6. B is a call instruction, Ptr has escaped, and we can not determine whether B

refers to or modifies Ptr.

3.3.2 Load-Store Redundancy

 10

Figure 3.1 Load-Store Redundancy

At a basicblock, says Bi, a value loaded from a pointer, and all pathes from Bi to a

basicblock, says Bj, containing a store instruction at Bj storing the value just loaded to

the pointer. To be noticed is that all ofthe path from Bi to Bj should not exist any other

memory write instruction to the address which the pointer points to.

3.3.3 Write-Write Redundancy

The following section dicusses some cases which results to wite-wite redundancy,

and conclude what the attributes are that make the redundancy.

11

Figure 3.2 1st Write-Write Redundancy Example

Figure 3.2 shows that at a basicblock, says Bi, there exists a store instruction writes

to a pointer, Ptr, for all path from Bi must pass a basicblock, Bj, and Bj exists a store

instruction writes to Ptr. To be noticed is that there is no other load or store in all pathes.

 12

Figure 3.3 2nd Write-Write Redundancy Example

 Figure 3.3 shows that at a basicblock, Bi, there exists a store instruction writes to a

pointer, Ptr, and all the successors of Bi must contain one write instruction writes to Ptr.

To be noticed, there are no other store and load intructions in the basicblocks in the

pathes leaving from Bi.

13

Figure 3.4 3nd Write-Write Depdendency Eample

Figure 3.4 is jus like Figure 3.2 with 2 redundant store instructions.

Figure 3.5 4th Write-Write Dependency Example

 Figure 3.5 shows that at a basicblock, Bi, there exists a store instruction writes to a

pointer, Ptr, and all the successors of Bi must contain one write instruction writes to Ptr.

If any of Bi’s sucessors, says Bj, does not contain a write instruction to Ptr, then all of

Bj’s successors must contain a write instruction to Ptr.

14

 To conclude above, if a write instruction writing to a pointer Ptr located at

basicblock Bi is dead, for all pathes leaving Bi to basicblocks Bj Bj+1… Bk, Bj Bj+1… Bk

should contain a write instruction writing to Ptr. If one of successors of Bi, Bm, does not

contain a write instruction writing to Ptr, then all of the successors of Bm should contain

a write instruction writint to Ptr.

3.3.4 Write to Dead Stack Objects

Figure 3.5 Write to dead stack object

If a write instruction writing to a pointer Ptr, and the memory location is never

been loaded or rewritten. The write instruction is a redundant instruction. Ptr points

to local stacks, or a heap address which never escapes the function.

15

Figure 3.6 Another write to dead stack object example

3.4 Implementation

3.4.1 Load-Store Dead Store Elimination

LLVM Memory Dependence Analysis provide a function to determine what

instructions a memory instruction dependent to .

 getNonLocalPointerDependency - Perform a full dependency query for an access

to the specified (non-volatile) memory location, returning the set of instructions

that either define or clobber the value. The set of instructions must lead to where

the store instruction located.

1. If we visit a store instruction storing value to a pointer, Ptr, querry function

getNonLocalPointerDependency. The getNonLocalPointerDependency

 16

function returns a set of instructions, S.

2. If the set S only contains a load instruction, and the value loaded by the load

instruction is just the same as the stored value, then the store instruction is

redundant.

3.4.2 Write-Write Dead Store Elimination

To detect this case, we use a modified depth first search. For the performance issue,

the iterative DFS is applied.

Figure 3.7 Examine the dependent relation of the memory write instruction in the

basicblock

1. If we visit a memory write instruction, we need to examine (Figure 3.7)

dependent relation of the memory write instruction in the basicblock. If

there is a dependent instruction in the upward side, then we call the

memory write instruction ‘local dependent’. If there is a dependent

instruction in the downward side then the elimination pass is over, and the

memory write instruction is not a global dead store.

2. We use DFS to walk through all possible path, examining every

memory-related or function all instruction. (Figure 3.8 shows the pseudo

code)

 17

Figure 3.8 DFS Algorithm walking through all possible path
18

3. Afther executing algorithm in Figure 3.8, the memory write instruction still

not be seen as live (contrary to dead), then it is a dead store.

3.4.3 Dead Store on Local Stack Object

1. A memory write instruction MemInst writes to a memory address, Ptr.

2. Use DFS in Figure 3.8 to find out whether there is a dependent instruction in the

successors.

A. If there are no dependent instructions in all pathes till function end-block.

B. or, if there exist dependent stores (accessing the same memory address as Ptr) in

some pathes and no dependent instructions in all the other pathes till function

end-block

3. If the memory write instruction satisfied A or B, then it is a dead store.

19

Chapter 4 Experiment

4.1 Platform Enviroment

• Intel Core i7-2600 CPU @ 3.40GHz

• Ubuntu 64bit 12.04 LTS

• Clang version 3.4 (trunk 184282)

• LLVM 3.4svn – optimized build with assertions

• Benchmark - SPEC2000 CINT2000

4.2 Result

 20

Global
Dead
Stores

Local
Dead
Stores

Global
Other

Instruction

Local
Other

Instruction

Global
Total

Instruction

Local
Total

Instruction

164.gzip 6 1 1 1 7 2

167.gcc 504 136 656 128 1160 264

186.crafty 31 4 29 4 60 8

197.parser 29 1 71 1 100 2

256.bzip2 14 2 8 2 22 4

 The coloum “Other Instruction” refers to how man instructions are been removed

due to the corresponding store instructions been removed. We can find that global DSE

reduced many dead instructions.

Program Size (byte)

DSE GDSE Change%
164.gzip 62547 62575 0.04
167.gcc 1847494 1843528 -0.21
186.crafty 242067 242141 0.03
197.parser 153257 153291 0.02
256.bzip2 53983 53987 0.01

 We can find that although there are many instruction had been removed, but the

code size in the small program-size benchmark are a little bigger than the original DSE.

In the bigger program-size benchmark (167.gcc), the number of deleted instructions is

direct proportion to the program-size. I think it is due to the level of the instruction

selection.

21

Performance

 DSE GDSE Accelerate%
164.gzip 116.13 115.97 0.14
167.gcc 37.54 37.44 0.26
186.crafty 37.22 37.19 0.07
197.parser 117.35 116.94 0.35
256.bzip2 387.19 385.01 0.56

 The performance has no significant improvement due to SPEC2000 is a C-based

benchmark. There are not many store instructions comparing with managed programs.

 22

Chapter 5 Conclusion

The global dead store problem is handled thoroughly without code-motion.

Although GDSE is not shinning in the area of native language, it will have a great

influence in the near future when the managed program are supported by the

LLVM.

23

Chapter 6 Reference

(Lattner and Adve 2004, Lattner 2008)

Lattner, C. (2008). LLVM and Clang: Next generation compiler technology. The BSD
Conference.

Lattner, C. and V. Adve (2004). LLVM: A compilation framework for lifelong program
analysis & transformation. Code Generation and Optimization, 2004. CGO 2004.
International Symposium on, IEEE.

Sair, S. and M. Charney (2000). "Memory behavior of the SPEC2000 benchmark suite."
IBM TJ Watson Research Center Technical Report.

(Sair and Charney 2000)

 24

	誌謝
	中文摘要
	ABSTRACT
	CONTENTS
	LIST OF FIGURES
	Chapter 1 Introduction
	1.1 Dead Store Elimination Pass in LLVM
	1.2 LLVM Code Representation
	1.2.1 Memory Access and Addressing Operations
	“alloca” instruction
	“load” Instruction
	“store” Instruction

	1.3 Memory Dependency Analysis in LLVM
	1.4 Alias Analysis in LLVM
	1.4.1 Type Based Alias Analysis

	Chapter 2 Design and Implementation of LLVM Dead Store Elimination
	2.1 Single BasicBlock Dead Stores
	2.1.1 Load-Store Redundancy
	2.1.2 Write-Write Redundancy

	2.2 Handling Functions
	2.2.1 Handle Free Call
	2.2.2 Handle End-Block

	2.3 Important Memory Dependence Analysis Functions

	Chapter 3 Global Dead Store Elimination
	3.1 Control Flow Graph
	3.2 Dominator
	3.2.1 Postdominance

	3.3 Global Dead Stores Recognition
	3.3.1 Dependent Instruction
	3.3.2 Load-Store Redundancy
	3.3.3 Write-Write Redundancy
	3.3.4 Write to Dead Stack Objects

	3.4 Implementation
	3.4.1 Load-Store Dead Store Elimination
	3.4.2 Write-Write Dead Store Elimination
	3.4.3 Dead Store on Local Stack Object

	Chapter 4 Experiment
	4.1 Platform Enviroment
	4.2 Result

	Chapter 5 Conclusion
	Chapter 6 Reference

