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中中中文文文摘摘摘要要要

本篇論文的研究目標是具有類似使用者和類似物品的同質性評分矩

陣：即使不知道使用者的匹配關係和物品的匹配關係時，是否仍能在

矩陣間進行轉移學習。更精確地說，我們假設有兩個評分矩陣，它們

表達了同樣的喜好，而且兩個評分矩陣的使用者集合、物品集合都有

很大一部份是重疊的。我們的目標便是找出這些使用者的匹配關係和

物品的匹配關係，進而利用這樣的關係把一個矩陣的資訊傳遞到另一

個矩陣上並改善其評分預測。

為了解出對應關係，我們會將稀疏的大型評分矩陣用低秩矩陣來

近似，並用分解出來的因子來辨認使用者和物品。 在解匹配問題的

演算法中，一開始會把因子轉為奇異值分解的形式，並執行近鄰演算

法。之後我們會指出奇異值分解的缺點，並用另一個目標函數來修正

結果，以獲得更準確的匹配關係。最後，我們修改了協同式過濾常用

的矩陣分解模型，使其能利用解出的匹配關係連結兩個矩陣，並做評

分預測。我們的實驗顯示，在匹配問題中，我們能得到相當準的解。

而即便匹配問題得到的解並不完美，我們仍能用其來改善評分預測模

型。

關鍵詞：協同式過濾、轉移學習、矩陣分解
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Abstract

This paper investigates the possibility of transferring information between
homogeneous datasets of similar users and items but both user correspon-
dence and item correspondence are unknown. More specifically, we assume
there are two rating matrices that model the same kind of preferences, and
there is a significant degree of overlap between the two user sets and between
the two item sets. Our goal is to find out the user correspondence and item
correspondence between the two rating matrices, and utilize the correspon-
dence for exploiting the information of one matrix to improve the quality of
rating prediction in the other matrix.

For finding out the correspondence, we factorize both rating matrices and
exploit the latent factors to identify the users and items. The algorithm for
solving the correspondence is initially based on singular value decomposition
and nearest neighbor search, and then we point out the drawbacks of singular
value decomposition and use another formulation to refine its result. Finally,
we introduce a simple modification of regular matrix factorization model for
transferring information across matrices with the obtained correspondence.
In our experiment, we show that it is possible to solve the correspondence
with decently high accuracy, and even with non-perfect correspondence ob-
tained from our method, it is still possible to improve the quality of rating
prediction.

Keywords : Collaborative Filtering, Transfer Learning, Matrix Factorization
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Chapter 1

Introduction

Collaborative filtering is a popular technique used in recommendation systems [2]. The

goal of a recommendation system is to model users’ preferences on items. Unlike content-

based filtering [6], which exploits information like user profiles and item attributes, col-

laborative filtering models predict users’ future preferences on items based on current

available preference records only.

Figure 1.1: A Partially Observed Low-Rank Matrix

More specifically, collaborative filtering algorithms can be viewed as a matrix com-

pletion process, as shown in Figure 1.1. The rows and columns represent users and items,

and each entry in the matrix represents a rating given by the user to the item. The rat-

ing matrix is partially observed and we want to predict the missing entries in the matrix.

We know that if the matrix is randomly generated, the missing elements can never be

predicted, so we have to make assumptions about the rating matrix. The fundamental

assumption of collaborative filtering is: if two users rated some items similarly in the

past, they will rate other items similarly in the future; in other words, the two rows are

dependent. Similar assumption is made on the item (column) side as well. For example,

matrix factorization (MF), one of the most successful approach in collaborative filtering
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[3, 1], assumes linear dependency among rows and among columns. Matrix factorization

assumes the rating matrix is low-rank, and the goal is to recover a partially observed low-

rank matrix. Back to the example in the Figure 1.1, if we assume the matrix is rank-1,

then the missing values are easy to guess.

Figure 1.2: User and Item Matching on Low-Rank Matrices

There are many recommendation systems which are modelling the same kind of user

preference. For example, both Netflix and IMDb contain American users’ preferences

toward movies, Similarly, Yahoo! music, Youtube and last.fm predict users’ preferences

toward music. We call these homogeneous rating datasets. The targeted items are similar

among these datasets. The users also overlap since users tend to have multiple accounts

across different websites. Homogeneous rating datasets are ideal sources for knowledge

transfer. However, the users and items in these datasets are usually anonymous. It might

be to protect user privacy, or simply because that the names are different across datasets.

The anonymity of users and items becomes the main obstacle for transferring knowledge

between homogeneous datasets. The major goal of this paper is to answer a question:

when the identities of users and items are both unknown, is it still possible to transfer the
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information between the two homogeneous systems?

In this paper, we assume we are given two homogeneous rating matrices, a target

matrix R1 and another auxiliary data matrix R2, where the two user sets and two item

sets both overlap significantly, but we do not know how to link the users and the items

between the matrices. We want to answer the following two problems:

1. Is it possible to find out the mapping of users and the mapping of items between R1

and R2?

2. Given the noisy mapping we obtained from our algorithm, is it sufficient to transfer

information from R2 and help the rating prediction in R1?

The problems sound hard because the user correspondence and item correspondence

are both unknown. If one side is matched, e.g. if the items are matched, then we can use

approaches like k-nearest-neighbor to find out similar users and match them, as discussed

in [9]. However, the problem is not impossible to solve. Figure 1.2 shows an illustrating

example of R1 and R2. If we assume the both matrices are low-rank and we factorize

them as the way shown in the figure, the correspondence becomes obvious. For example,

the first row of R1 should be mapped to the last row in R2 and they are labelled as user

m1. This is the fundamental idea of our matching algorithm.

Our paper is organized as follows. We will first summarize the existing transfer learn-

ing models in collaborative filtering and discuss their difference from our model. Then we

will present our two-step algorithm for user matching and item matching, and a factoriza-

tion model that exploits the matching result for rating prediction. In the experiment, we

will evaluate our approach on a noisy-free dataset and Yahoo! music dataset and discuss

how well we can solve the under different scenarios, and how matching the result affects

rating prediction.
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Chapter 2

Related Work

Many models have been proposed for transfer learning or multi-task learning in collab-

orative filtering (sometimes called cross-domain collaborative filtering or multi-domain

collaborative filtering). The common goal is to transfer information across different data

matrices. Most of models assume that there is a one-to-one correspondence between users

or between items across matrices. Such correspondence is known beforehand, but because

of the heterogeneity, the data matrices must be treated separately. In contrast, our goal is

to transfer information between homogeneous matrices when the correspondence is un-

known. We will summarize heterogeneous models (given correspondence) in Section 2.1.

Only two models assume homogeneous setting and the correspondence is unknown. We

will discuss them in Section 2.2.

2.1 Transfer Learning in Collaborative Filtering Given

Correspondence

In the following, we summarize models by listing an example of data matrices and the

assumption of the model.

Collective Matrix Factorization [13]

• R1: a rating matrix (users by movies), R2: a label matrix (genres by movies).

• R1 ≈ P1Q
T , R2 ≈ P2Q

T .

4



Social Recommendation [7]

• R1: a trust network (users by users), R2: a rating matrix (users by movies).

• R1 ≈ PQT
1 , R2 ≈ PQT

2 .

Bayesian Probabilistic Tensor Factorization [14]

• Ri: the rating matrix (users by movies) at time i.

• Combine all Ri’s as a tensor R and Rimn ≈
∑

k bikpmkqnk. Or equivalently,

Ri ≈ PBiQ
T , where Bi’s are diagonal matrices.

Moreover, a special regularization term is added on Bi’s to ensure the temporal

smoothness of the model.

Multi-Domain Collaborative Filtering [15]

• Ri: the rating matrix (users by movies) of movies type i.

• Ri ≈ PiQ
T
i and learn covariance matrices in order to fuse Pi’s.

Coordinate System Transfer [11]

• R: the target matrix, a numerical rating matrix (users by movies),

R1: an binary rating matrix (users by other items),

R2: an binary rating matrix (other users by movies).

• R1 ≈ U1D1V
T
1 , R2 ≈ U2D2V

T
2 , R ≈ UBVT .

For all U’s and V’s, UTU = I, VTV = I, and D’s are diagonal.

Use regularization to enforce U ≈ U1 and V ≈ V2.

Collective SVD [10] (or journal version [12])

• R1: a numerical rating matrix, R2: a binary rating matrix (both users by movies).

• R1 ≈ UB1V
T , R2 ≈ UB2V

T , subject to UTU = I, VTV = I.

In conclusion, all models transfer information across two or more heterogeneous data

matrices via constraining the latent factors of the shared user side or item sideto be similar.

In heterogeneous datasets, the rating patterns are different in each data matrix, e.g. the

B in tri-factorization models. On the other hand, in our setting the data matrices are

homogeneous while both the user and item correspondence are unknown in our problem.
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2.2 Transfer Learning in Collaborative Filtering When

Correspondence is Unknown

Codebook transfer (CBT) [4] and rating-matrix generative model (RMGM) [5] transfer

information between two rating matrices when user correspondence and item correspon-

dence are both unknown. The basic assumption of two models are of the form:

R1 ≈ U1BVT
1 ,

R2 ≈ U2BVT
2 ,

where B is a shared K by K matrix and it represents the homogeneous rating pattern.

In CBT, it constrains U and V to be 0-1 matrix, and there can only be a 1 in each

row. After adding the constraints, R ≈ UBVT can be viewed as a co-clustering process:

users and items are both divided into K groups; the rating prediction for a user and item

is the value of the correspondence element in B of the user group and item group. To

connect the two domains, CBT assumes the cluster pattern matrix B is shared between

R1 and R2. The main advantage of the model is that it does not need to solve user

correspondence and item correspondence. Both correspondence matrices are naturally

embedded in the clustering matrix U and V: for any U1 and U2, we can always find a

permutation G representing user correspondence such that GU1 = U2. However, the

model is too restrictive. Take the matrix in Figure 1.2 in the introduction section for

example. It is a rank-2 matrix, but it cannot be factorized into rank-2 UBVT because of

the hard clustering constraints. Besides, the optimization process requires the auxiliary

matrix R2 to be fully observed, or it has to fill in missing entries with data mean before

factorization.

RMGM relaxes the constraints in CBT from hard clustering to soft clustering by using

a probabilistic model, and it does not require R2 to be fully observed. To be more specific,

the joint probability is

P (r,m(i), n(i), Cm, Cn) = P (m(i)|Cm)P (n(i)|Cn)P (r|Cm, Cn)P (Cm)P (Cn),
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and the rating prediction is

∑
r

r

(∑
k1,k2

P (r|Cm = k1, Cn = k2)P (Cm = k1|m(i))P (Cn = k2|n(i))

)
,

where m(i) and n(i) are a user and item in i’th domain, and Cm and Cn are the cluster for

the user and item, respectively. If we rewrite the rating prediction as

∑
k1,k2

((∑
r

rP (r|Cm = k1, Cn = k2)

)
P (Cm = k1|m(i))P (Cn = k2|n(i))

)
,

The term
∑

r rP (r|Cm, Cn) is similar to B in CBT. P (Cm|m(i)) and P (Cn|n(i)) are simi-

lar to Ui and Vi, respectively. However, restrictions and problems still exist in the model.

First, the elements in each row of U and V must be nonnegative and sum to 1. Constraints

limit the expressive power of the model and complicate the optimization task. Second,

the objective function of RMGM is the self-defined likelihood. It deviates from common

evaluation measures such as root mean square error. Consider the following example:

R =


1 1

3 3

2 2

 =


1 0

0 1

0.5 0.5

×
1 1

3 3

×
1 1

0 0

 = UBVT

Even though this UBVT perfectly predicts all ratings given by the three users, the data

likelihood is much lower because the value 2 is far from the centers of all clusters (1 and

3). Thus, RMGM might try to find other U, V, B to fit the data. In our experiment, we

will show that RMGM performs poorly.

In conclusion, past models avoid solving correspondence at the cost of introducing

extra restrictions. Our model directly tackles the correspondence problem and removes

aforementioned restrictions.
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Chapter 3

Methodology

3.1 Solving the Correspondence Problem

We have two partially observed rating matrices R1 and R2 and there are more rating

records in R2. The two matrices are homogeneous: we assume they can be merged into

one homogeneous matrix when we know the correspondence. To find out the correspon-

dence between R1 and R2, we want to solve

R1 ≈ GuserR2G
T
item,

where Guser and Gitem are 0-1 matrices that represent user correspondence and item corre-

spondence. However, remember that the rating matrices are partially observed. Figure 1.2

in the introduction section had shown a case where the corresponding entries in R1 and

R2 never show up together. Therefore, we change the above formulation to the following

two alternatives:

1. R̂1 ≈ GuserR̂2G
T
item

2. R1 ≈ GuserR̂2G
T
item

The R̂ stands for the low-rank approximation of R and it has no missing values. Also, to

simplify the optimization process, we do not require G’s to be permutation matrices. We

only impose constraints on each row such that one entry is 1 and others are 0.
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In this section, we will discuss the two formulations. The first formulation is dis-

cussed in the Section 3.2. We apply singular value decomposition and decouple the user

matching problem and item matching problem. The problem of this approach is that it

is less accurate when the noise occurs, while the second formulation is more robust but

harder to solve. Consequently, we start from solving the first formulation, which offers

a good initialization and reduces the search space, then we will move on to the second

formulation (Section 3.3) to improve the quality of matching.

3.2 Matching from Singular Value Decomposition

3.2.1 The Idea of Singular Value Decomposition

Given a completely observed matrix R, the singular value decomposition (SVD) is R =

UDVT , where D is diagonal and U and V are unitary. From the theory of linear algebra,

we know that after sorted D is unique given R. Moreover, when all the singular values

are distinct, U and V are unique except sign differences (e.g., multiply a column of U

and the corresponding column of V by −1 at the same time). Thus, if we permute the

rows and columns of R, we are essentially switching the rows of U and rows of V. In

other words, by examining the singular vectors in U and V, we can solve user and item

correspondence.

3.2.2 From Matrix Factorization to Singular Value Decomposition

Conventional SVD solver cannot be applied on an incomplete matrix. Unlike some papers

that solve a constrained optimization problem to get the solution, we provide a simple and

efficient process to transform the result of regular matrix factorization (MF) to the form

of SVD. (Note that regular matrix factorization is called probabilistic matrix factorization

[8] in some literature.)

R is a rating matrix and W is an indicator matrix where Wij = 1 means user i rated

item j, Wij = 0 otherwise. The number of users is M and the number of items is N . K

is the parameter that controls the rank. If we omit the regularization terms, the objective

9



function of matrix factorization is to find PM×K and QN×K such that

min
P,Q
‖W �

(
R−PQT

)
‖2Fro

� is the Hadamard (entrywise) product and the norm is Frobenius norm. The SVD model

we want is to find UM×K , DK×K and VN×K such that

min
U,V,D

‖W �
(
R−UDVT

)
‖2Fro

subject to UTU = I,VTV = I,D is diagonal

We can transform P,Q to U,D,V efficiently by applying conventional SVD on P

and Q. The process is illustrated in Figure 3.1. Assume (UP , DP , VP ) is the SVD of P

and (UQ, DQ, VQ) is the SVD of Q. Let (UX , DX , VX) be the SVD of (DPV
T
PVQD

T
Q).

Then,

PQT = UPDPV
T
P

(
UQDQV

T
Q

)T
= UPUXDXV

T
XU

T
Q.

Thus, U = UPUX , V = UQVX and D = DX . 1

Figure 3.1: From MF to SVD

Finally, SVD normalizes the norm of each column of U and V to 1, so the values of U

and V tend to be smaller for a large matrix. To make a fair comparison between matrices

of different sizes, when we are doing the matching, we redefine U, D and V as

U = U×M0.5,D = D×M−0.5 ×N−0.5,V = V ×N0.5.

1the matrix is highly asymmetric so thin SVD (economical SVD) should be used in the implementation
for efficiency.
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3.2.3 Objective Function of SVD Matching

Here we want to solve

R̂1 ≈ GuserR̂2G
T
item.

From the previous section, we get low-rank approximation of two matrices as R̂1 =

U1D1V
T
1 and R̂2 = U2D2V

T
2 . Thus, the equation becomes

U1D1V
T
1 ≈ GuserU2D2V

T
2 G

T
item.

Since SVD is unique except the sign difference, we can decouple the above equation into

two matching problems:

min
Guser,Suser

‖U1D
0.5
1 −GuserU2D

0.5
2 Suser‖2Fro

min
Gitem,Sitem

‖V1D
0.5
1 −GitemV2D

0.5
2 Sitem‖2Fro

G means the user correspondence matrix or item correspondence matrix, and S is the

sign matrix, a small diagonal matrix (K by K) and each diagonal element is either 1 or

−1. Theoretically, Suser is equal to Sitem, but we do not enforce this constraint. Since

the formulations of user matching and item matching are identical, from now on we will

discuss user side only.

When S is given, the matching problem becomes a simple nearest neighbor search

problem: for each row in U1D
0.5
1 , the goal is to find the most similar row in U2D

0.5
2 . We

illustrate this in Figure 3.2, where Z = UD0.5. It takes Θ (M1M2K) time to solve G,

where M1 and M2 are the number of users in R1 and R2.

Figure 3.2: Matching as Nearest Neighbor Search

For solving the sign matrix, there are 2K possible solutions so it is impossible to

11



try all possibilities. We use a greedy approach to get an approximate solution. Assume

d1 ≥ d2 ≥ · · · ≥ dK , where di’s are singular values. In the k-th iteration, we try both

sk = 1 and sk = −1, and solve G by looking at dimensions from 1 to k. We will choose

the sign of sk that results in a smaller objective value. After determining sk, we move on

to the next iteration and solve sk+1.

On the other hand, since the small singular values and singular vectors are more noisy,

we want to use only the top singular values and vectors for matching. This can be com-

bined with the sign solving process. We will output a G(k) for each latent dimension k.

In the end, we will select the latent dimension k and the corresponding G that leads to

better rating prediction. We summarize the complete procedure in algorithm 1.

Algorithm 1 SVD Matching
Require: U1, D1, V1, U2, D2, V2 and R1

Ensure: G∗
user and G∗

item
function MATCHING(Z1, Z2)

initialize all elements in the all-pair distance table T to 0 . caching for speed-up
for k = 1 to K do

let sk = +1
let (α+,G+) = minG ‖Z1(:, 1 : k)−GZ2(:, 1 : k)S‖2 using T
let sk = −1
let (α−,G−) = minG ‖Z1(:, 1 : k)−GZ2(:, 1 : k)S‖2 using T
if α+ ≤ α− then

G(k) = G+, sk = +1
else

G(k) = G−, sk = −1
end if
update T according to G(k)

end for
return G(1), · · · ,G(K)

end function
Guser (1:K) = MATCHING(U1D

0.5
1 , U2D

0.5
2 )

Gitem (1:K) = MATCHING(V1D
0.5
1 , V2D

0.5
2 )

for k = 1 to K do . dimension selection
errork = ‖W1 �

(
R1 −Guser (k)U2D2V2G

T
item (k)

)
‖2Fro.

end for
(errormin, kmin) = mink errork
G∗

user = Guser (kmin)

G∗
item = Gitem (kmin)

In algorithm 1, we maintain a distance table T that records all pair distance between

Z1 and Z2 for speed-up. Thus, the complete time complexity is still Θ(M1M2K) for

12



user matching and Θ(N1N2K) for item matching. The dimension selection part takes

Θ(K ×R×K) = Θ(K2R), where R is the number of ratings in R1.

3.2.4 Remarks on SVD Matching

The main advantage of SVD matching algorithm is that it decouples user matching and

item matching. In the ideal case, the result of SVD matching is perfect (in Section 4.3,

our experiment will show this). However, there are some disadvantages of SVD matching

when noise occurs. First, SVD matching is based on matrix factorization, but the result of

matrix factorization is only an approximation of the original rating matrix. Second, when

some singular values are too close and the data is too noisy, the corresponding singular

vectors are mixed together (in degenerate cases, SVD is not unique). Therefore, we would

like to use another formulation and improve the result of SVD matching.

3.3 Refined Search Algorithm

Assume the low-rank approximation of R2 is R̂2 = P2Q
T
2 , we consider the following

objective function to improve the result of SVD matching:

min
Guser,Gitem

‖R1 −GuserP2Q
T
2G

T
item‖

From the SVD matching algorithm, we got a good initialization of Guser and Gitem.

Also, since SVD matching is similar to nearest neighbor search, it can output a candidate

neighbor list for each user (item). In this algorithm, we will only look at the candidates

given by SVD matching and reevaluate them based on the above formulation.

Assume the number of candidates we get from SVD matching is C, then the size of

Guser and Gitem become M1 by C and N1 by C, where M1 and N1 are the number of users

and the number of items in R1. We solve G in a similar manner to two-block coordinate

descent, except here the variables in G are discrete. When fixing Gitem, each row in

Guser becomes independent: finding the best Guser becomes a simple search problem. For

each user in R1, we are finding the candidate (which will select the corresponding row
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in P2) that minimizes the rating prediction error in the row of R1. It takes Θ(RCK)

time to solve Guser, where R is the number of ratings in R1. Also, when there are several

candidates that yield the same objective value, we will choose the one with the least index.

Then, if Guser is changed, the objective value will decrease. Things are the same when

fixing Guser. In short, our algorithm solves Guser and Gitem alternatively until both G’s

are not changing (which is like a local minimum). Since there is only a finite number of

possibilities, the algorithm will converge.

3.4 Rating Prediction Given Noisy Matching

In matrix factorization, our goal is to find P and Q to minimize

‖W �
(
R−PQT

)
‖2 + λ

(
‖P‖2 + ‖Q‖2

)
.

The norms here are all Frobenius norm and we omit the subscript. When the user and item

correspondence is given, let gm be the corresponding user in R2 for user m in R1 and gn

be the corresponding item in R2 for item n in R1. We combine the matrix factorization

of R1 and R2 by adding a regularization term:

‖W1 �
(
R1 −P1Q

T
1

)
‖2 + ‖W2 �

(
R2 −P1Q

T
2

)
‖2

+λ
(
‖P1‖2 + ‖Q1‖2 + ‖P2‖2 + ‖Q2‖2

)
+β

(
M1∑
m

arctan
(
‖P1(m, :)−P2(gm, :)‖2

)
+

N1∑
n

arctan
(
‖Q1(n, :)−Q2(gn, :)‖2

))

The extra regularization term implies that the latent factors of matched users (items)
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Figure 3.3: arctan(x)
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should be similar. The arctan reduces the influence of outliers. For example, if the

matching is wrong and the latent factors of two users are very different, our model will

not be distorted much. The objective is still differentiable and it can be solved via standard

approaches like gradient descent.
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Chapter 4

Experiment

4.1 Experiment Setup

Table 4.1: Statistics of R

Dataset Number of Users Number of Items Rating Scale Sparsity
Pure Low Rank 20000 10000 [-1,1] 5%
Yahoo! Music 20000 10000 integers in 0-100 5.4%

We conduct experiments on Yahoo! music dataset from track 1 of KDD cup 2011 [1].

We take out a dense subset as R and split it into R1 and R2. The user and item ids of

R2 are randomly permuted, and the permutation result will become the ground truth of

correspondence. Our goal is to solve the correspondence as well as use R2 to help rating

prediction in R1. The correspondence problem is an unsupervised learning problem so

the mapping of users and the mapping of items are only used in the evaluation process.

For verifying the soundness of our approach, we also try our algorithm on a synthetic

dataset, which is a noise-free low-rank matrix. 1

To be more specific, we split R into training set, validation set, testing set of R1 and

training set, validation set of R2. Each of the validation sets or testing set never overlaps

with any other set so as to ensure the sanity of our experiment. The training sets of R1

and R2 may overlap depending on the following scenarios.

1It is a rank-50 matrix, generated by matlab command “randn(20000,50)*diag(1.1.ˆ[1:50])*randn(50,10000)”.
We subsample 5% of it as R and linearly scale the minimum and maximum values to −1 and 1.
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We consider five different scenarios to see how the overlap ratio affects the matching

accuracy. The scenarios are illustrated in the Figure 4.1. We design disjoint split, overlap

split and contained split to reflect different overlap ratios of rating records. In the three

splits, the number of ratings in training set of R1, validation set of R1, testing set of R1,

training set of R2 and validation set of R2 are 40%, 2.5%, 5%, 50% and 2.5% of R,

respectively. The user sets and item sets of R1 and R2 are the same for the three splits, so

we also try subset split and partial split: in the subset split, the user set and the item set of

R1 are contained in those of R2 (40% for R1 and 100% for R2), while in the partial split,

the user set and the item set of R1 and those of R2 only partially overlap (40% for R1,

90% for R2, 30% are in both). Besides, we adjust the number of ratings in R1 and R2 in

the two splits in order to make the number of ratings per user similar to the previous three

splits.

Figure 4.1: Illustration of Splits

4.2 Implementation Details

For our factorization models, we use gradient descent and backtracking line search to

solve the objective function. The dimension K is fixed to 50, and the parameters λ and β

are automatically selected by observing the error rate of the validation set. After selection,

λ is 0 for purely low-rank dataset and 5 for Yahoo! music dataset, and β ranges from 25 to

400. Besides, we have data scaling and early stopping procedure: we scale the ratings in

the training set to zero mean and unit variance, and scale the values back in the prediction

phase; the training process will stop when validation error starts increasing.
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We implement two versions of rating-matrix generative model (RMGM) [5]. They

can be solved by standard expectation-maximization algorithm. 2 The original RMGM

uses categorical distribution for P (r|Cm, Cn), and we implement the other RMGM that

uses Gaussian distribution. For both models, we set the latent dimension K to 50 and

we have included the early stopping procedure. For Gaussian RMGM, we found that the

variance of Gaussian is better set to a constant and automatically selected by observing

the error rate of the validation set. The selected values range from 0.5 to 0.7. We have

also included data scaling for Gaussian RMGM.

4.3 Experiment Result of User and Item Matching

Table 4.2: Matching Result

(a) Purely Low-Rank Dataset

SVD Match Refined Search
Disjoint Split

Accuracy(user) 1.000 1.000
MAP(user) 1.000 1.000

Accuracy(item) 1.000 1.000
MAP(item) 1.000 1.000

Overlap Split
Accuracy(user) 1.000 1.000

MAP(user) 1.000 1.000
Accuracy(item) 1.000 1.000

MAP(item) 1.000 1.000
Contained Split
Accuracy(user) 1.000 1.000

MAP(user) 1.000 1.000
Accuracy(item) 1.000 1.000

MAP(item) 1.000 1.000
Subset Split

Accuracy(user) 1.000 1.000
MAP(user) 1.000 1.000

Accuracy(item) 1.000 1.000
MAP(item) 1.000 1.000

Partial Split
Accuracy(user) 1.000 1.000

MAP(user) 1.000 1.000
Accuracy(item) 1.000 1.000

MAP(item) 1.000 1.000

(b) Yahoo! Music Dataset

SVD Match Refined Search
Disjoint Split

Accuracy(user) 0.310 0.633
MAP(user) 0.419 0.717

Accuracy(item) 0.204 0.325
MAP(item) 0.325 0.463

Overlap Split
Accuracy(user) 0.547 0.960

MAP(user) 0.652 0.973
Accuracy(item) 0.442 0.786

MAP(item) 0.578 0.859
Contained Split
Accuracy(user) 0.851 0.997

MAP(user) 0.905 0.998
Accuracy(item) 0.815 0.975

MAP(item) 0.886 0.986
Subset Split

Accuracy(user) 0.392 0.918
MAP(user) 0.510 0.941

Accuracy(item) 0.297 0.686
MAP(item) 0.433 0.780

Partial Split
Accuracy(user) 0.350 0.871

MAP(user) 0.470 0.906
Accuracy(item) 0.272 0.573

MAP(item) 0.402 0.684

2An example code is provided by the author of RMGM: https://sites.google.com/site/libin82cn/
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In the matching process, our algorithm can output either the most likely candidate

or a rank list of candidates for each user (item) in R1. Therefore, we use accuracy as

well as mean average precision (MAP) as evaluation criteria. On the other hand, in the

partial split, some users and items in R1 do not appear in R2. Thus, when evaluating the

matching result, we will not consider these users and items.

The matching result is shown in Table 4.2(a) and 4.2(b). The result on purely low-

rank dataset proves the soundness of our approach. When there is no noise in the rating

matrix, matrix factorization recovers the whole matrix almost perfectly. In this case,

SVD matching can successfully distinguish all users and items by comparing the singular

vectors, and our algorithm is applicable on all kinds of splits. On Yahoo! music dataset,

we can see that in the first three splits the higher the overlap ratio is, the better the result

will be. For the subset split and partial split, the overlap condition is similar to the overlap

split, so they are a bit harder than the overlap split but still better than the disjoint split. In

all cases, refined search leads to great improvement over SVD matching. It is reasonable

because there are some drawbacks of SVD matching, which we have discussed in Section

3.2.4.

4.4 Experiment Result for Rating Prediction

Table 4.3: Rating Prediction (RMSE)

RMGM Gaussian RMGM MF Proposed Approach
Disjoint Split 27.5 26.6 24.2 23.3
Overlap Split 27.5 26.5 24.3 23.5

Contained Split 27.6 26.5 24.3 23.9
Subset Split 27.6 26.6 24.2 23.4
Partial Split 27.6 26.5 24.2 23.8

For rating prediction, we use root mean square error (RMSE) as the evaluation cri-

terion. Since matrix factorization recovers the whole matrix almost perfectly on purely

low-rank dataset, we focus on Yahoo! music dataset here. The experiment result is shown

in the Table 4.3.

We can see that rating-matrix generative model (RMGM) performs poorly in all cases.
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Some people might argue that RMGM performs poorly because it uses categorical dis-

tribution for P (r|Cm, Cn). Therefore, we have implemented Gaussian RMGM, which

changes the term to Gaussian distribution. The result is better, but still worse than other

models. As we discussed in the relation work (Section 2.2), we believe the poor perfor-

mance of RMGM is because of the constraints and the design of the objective function.

In all cases, our proposed approach leads to great improvement over matrix factoriza-

tion (MF), which is the best single domain model. Interestingly, even though the matching

accuracy is lower when the overlap ratio is lower, the improvement is greater. This is be-

cause when there is less overlap, the two training sets (R1 and R2) together contain more

rating records, and more information available leads to better prediction models.
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Chapter 5

Conclusion and Future Work

We present a novel two-step algorithm for identifying user correspondence and item cor-

respondence between two homogeneous rating matrices. We then introduce a simple

modification of regular matrix factorization model for transferring the information given

the obtained correspondence. The correspondence is identified by utilizing the latent fac-

tors. The initial algorithm, SVD matching, works perfectly on noise-free data, but it has

problems dealing with data noise. In this case, refined search can lead to a much better

solution. Even though the correspondence problem sounds difficult, the experiment re-

sult shows that it is possible to identify the correspondence with decently high accuracy.

We note that the matching result suggests a privacy concern on publishing rating datasets.

More studies can be done in this direction for further investigation. On the other hand, our

transfer learning model is robust to wrong matches. We show that even when our match-

ing result is non-perfect, our algorithm still leads to great improvement in the quality of

rating prediction.
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